Science.gov

Sample records for structure-property relationship study

  1. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study

    PubMed Central

    Šoškić, Milan; Porobić, Ivana

    2016-01-01

    Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor. PMID:27124734

  2. Structure Property Relationships of Carboxylic Acid Isosteres.

    PubMed

    Lassalas, Pierrik; Gay, Bryant; Lasfargeas, Caroline; James, Michael J; Tran, Van; Vijayendran, Krishna G; Brunden, Kurt R; Kozlowski, Marisa C; Thomas, Craig J; Smith, Amos B; Huryn, Donna M; Ballatore, Carlo

    2016-04-14

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure-property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group.

  3. Experimental and theoretical study on the structure-property relationship of novel 1-aryl-3-methylsuccinimides

    NASA Astrophysics Data System (ADS)

    Banjac, Nebojša R.; Božić, Bojan Đ.; Mirković, Jelena M.; Vitnik, Vesna D.; Vitnik, Željko J.; Valentić, Nataša V.; Ušćumlić, Gordana S.

    2017-02-01

    A series of ten 1-aryl-3-methylsuccinimides was synthesized and their solvatochromic properties were studied in a set of fifteen binary solvent mixtures. The solute-solvent interactions were analyzed on the basis of the linear solvation energy relationship (LSER) concept proposed by Kamlet and Taft. The electronic effect of the substituents on the UV-Vis absorption and NMR spectra was analyzed using the simple Hammett equation. Moreover, the B3LYP, CAM-B3LYP, and M06-2X functionals using the 6-311G(d,p) basic set have been assessed in light of the position of experimental absorption maxima obtained for these compounds. The integration grid effects have also been evaluated. An interpretation of the substituent-effect transmission through the molecular skeleton and the nature of the HOMO and LUMO orbitals based on quantum-chemical calculations is given. The values of partial atomic charges from the atomic polar tenzors (APT), natural population analysis (NBO), and charges fit to the electrostatic potential using the B3LYP, CAM-B3LYP, and M06-2X methods are produced and correlated with different experimental properties. In order to estimate the chemical activity of the molecule, the molecular electrostatic potential (MEP) surface map is calculated for the optimized geometry of 1-phenyl-3-methylsuccinimide.

  4. Selenium-Containing Fused Bicyclic Heterocycle Diselenolodiselenole: Field Effect Transistor Study and Structure-Property Relationship.

    PubMed

    Debnath, Sashi; Chithiravel, Sundaresan; Sharma, Sagar; Bedi, Anjan; Krishnamoorthy, Kothandam; Zade, Sanjio S

    2016-07-20

    The first application of the diselenolodiselenole (C4Se4) heterocycle as an active organic field effect transistor materials is demonstrated here. C4Se4 derivatives (2a-2d) were obtained by using a newly developed straightforward diselenocyclization protocol, which includes the reaction of diynes with selenium powder at elevated temperature. C4Se4 derivatives exhibit strong donor characteristics and planar structure (except 2d). The atomic force microscopic analysis and thin-film X-ray diffraction pattern of compounds 2a-2d indicated the formation of distinct crystalline films that contain large domains. A scanning electron microscopy study of compound 2b showed development of symmetrical grains with an average diameter of 150 nm. Interestingly, 2b exhibited superior hole mobility, approaching 0.027 cm(2) V(-1) s(-1) with a transconductance of 9.2 μS. This study correlate the effect of π-stacking, Se···Se intermolecular interaction, and planarity with the charge transport properties and performance in the field effect transistor devices. We have shown that the planarity in C4Se4 derivatives was achieved by varying the end groups attached to the C4Se4 core. In turn, optoelectronic properties can also be tuned for all these derivatives by end-group variation.

  5. Study of Chemistry and Structure-Property Relationship on Tunable Plasmonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Jing, Hao

    In this dissertation, the rational design and controllable fabrication of an array of novel plasmonic nanostructures with geometrically tunable optical properties are demonstrated, including metal-semiconductor hybrid hetero-nanoparticles, bimetallic noble metal nanoparticles and hollow nanostructures (nanobox and nanocage). Firstly, I have developed a robust wet chemistry approach to the geometry control of Ag-Cu2O core-shell nanoparticles through epitaxial growth of Cu2O nanoshells on the surfaces of various Ag nanostructures, such as quasi-spherical nanoparticles, nanocubes, and nanocuboids. Precise control over the core and the shell geometries enables me to develop detailed, quantitative understanding of how the Cu2O nanoshells introduce interesting modifications to the resonance frequencies and the extinction spectral line shapes of multiple plasmon modes of the Ag cores. Secondly, I present a detailed and systematic study of the controlled overgrowth of Pd on Au nanorods. The overgrowth of Pd nanoshells with fine-controlled dimensions and architectures on single-crystalline Au nanorods through seed-mediated growth protocol in the presence of various surfactants is investigated. Thirdly, I have demonstrated that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, I have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high index facets abundant on the particle surfaces. And the nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time

  6. A quantum mechanical quantitative structure-property relationship study of the melting point of a variety of organosilicons.

    PubMed

    Liu, Yi; Holder, Andrew J

    2011-11-01

    We have developed quantitative structure-property relationship (QSPR) models that correlate the melting points of chain and cyclic silanes and siloxanes with their molecular structures. A comprehensive correlation was derived for a variety of molecules, but the quality of the comprehensive model was modest at best. This provided the impetus for the development of two additional models focused on silanes and siloxanes, respectively. Statistical analyses confirm the robustness of the refined models, and the chemical interpretation of the descriptors was consistent with effects expected for melting.

  7. Structure Property Relationships of Biobased Epoxy Resins

    NASA Astrophysics Data System (ADS)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  8. A novel approach to study the structure-property relationships and applications in living systems of modular Cu2+ fluorescent probes

    NASA Astrophysics Data System (ADS)

    She, Mengyao; Yang, Zheng; Hao, Likai; Wang, Zhaohui; Luo, Tianyou; Obst, Martin; Liu, Ping; Shen, Yehua; Zhang, Shengyong; Li, Jianli

    2016-08-01

    A series of Cu2+ probe which contains 9 probes have been synthesized and established. All the probes were synthesized using Rhodamine B as the fluorophore, conjugated to various differently substituted cinnamyl aldehyde with C=N Schiff base structural motif as their core moiety. The structure-property relationships of these probes have been investigated. The change of optical properties, caused by different electronic effect and steric effect of the recognition group, has been analyzed systematically. DFT calculation simulation of the Ring-Close and Ring-Open form of all the probes have been employed to illuminate, summarize and confirm these correlations between optical properties and molecular structures. In addition, biological experiment demonstrated that all the probes have a high potential for both sensitive and selective detection, mapping of adsorbed Cu2+ both in vivo and environmental microbial systems. This approach provides a significant strategy for studying structure-property relationships and guiding the synthesis of probes with various optical properties.

  9. Structure Property Relationships of Carboxylic Acid Isosteres

    PubMed Central

    2016-01-01

    The replacement of a carboxylic acid with a surrogate structure, or (bio)-isostere, is a classical strategy in medicinal chemistry. The general underlying principle is that by maintaining the features of the carboxylic acid critical for biological activity, but appropriately modifying the physicochemical properties, improved analogs may result. In this context, a systematic assessment of the physicochemical properties of carboxylic acid isosteres would be desirable to enable more informed decisions of potential replacements to be used for analog design. Herein we report the structure–property relationships (SPR) of 35 phenylpropionic acid derivatives, in which the carboxylic acid moiety is replaced with a series of known isosteres. The data set generated provides an assessment of the relative impact on the physicochemical properties that these replacements may have compared to the carboxylic acid analog. As such, this study presents a framework for how to rationally apply isosteric replacements of the carboxylic acid functional group. PMID:26967507

  10. A Quantitative Structure-Property Relationship (QSPR) Study of aliphatic alcohols by the method of dividing the molecular structure into substructure.

    PubMed

    Liu, Fengping; Cao, Chenzhong; Cheng, Bin

    2011-01-01

    A quantitative structure-property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol-water partition coefficient (lg P(OW)), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure-property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX(1CH)) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable.

  11. A novel approach to study the structure-property relationships and applications in living systems of modular Cu2+ fluorescent probes

    PubMed Central

    She, Mengyao; Yang, Zheng; Hao, Likai; Wang, Zhaohui; Luo, Tianyou; Obst, Martin; Liu, Ping; Shen, Yehua; Zhang, Shengyong; Li, Jianli

    2016-01-01

    A series of Cu2+ probe which contains 9 probes have been synthesized and established. All the probes were synthesized using Rhodamine B as the fluorophore, conjugated to various differently substituted cinnamyl aldehyde with C=N Schiff base structural motif as their core moiety. The structure-property relationships of these probes have been investigated. The change of optical properties, caused by different electronic effect and steric effect of the recognition group, has been analyzed systematically. DFT calculation simulation of the Ring-Close and Ring-Open form of all the probes have been employed to illuminate, summarize and confirm these correlations between optical properties and molecular structures. In addition, biological experiment demonstrated that all the probes have a high potential for both sensitive and selective detection, mapping of adsorbed Cu2+ both in vivo and environmental microbial systems. This approach provides a significant strategy for studying structure-property relationships and guiding the synthesis of probes with various optical properties. PMID:27485974

  12. Quantitative structure-property relationships in pharmaceutical research - Part 2.

    PubMed

    Grover; Singh; Bakshi

    2000-02-01

    Part one of this two-part review described the advantages and limitations of quantitative structure-property relationships (QSPR), and offered an overview of the components involved in the development of correlations1. Part two provides a discussion of a few notable examples of relationships with organoleptic, physicochemical and pharmaceutical properties.

  13. Structure-Property Relationships of Bismaleimides

    NASA Technical Reports Server (NTRS)

    Tenteris-Noebe, Anita D.

    1997-01-01

    The purpose of this research was to control and systematically vary the network topology of bismaleimides through cure temperature and chemistry (addition of various coreactants) and subsequently attempt to determine structure-mechanical property relationships. Characterization of the bismaleimide structures by dielectric, rheological, and thermal analyses, and density measurements was subsequently correlated with mechanical properties such as modulus, yield strength, fracture energy, and stress relaxation. The model material used in this investigation was 4,4'-BismaleiMidodIphenyl methane (BMI). BMI was coreacted with either 4,4'-Methylene Dianiline (MDA), o,o'-diallyl bisphenol A (DABA) from Ciba Geigy, or Diamino Diphenyl Sulfone (DDS). Three cure paths were employed: a low- temperature cure of 140 C where chain extension should predominate, a high-temperature cure of 220 C where both chain extension and crosslinking should occur simultaneously, and a low-temperature (140 C) cure followed immediately by a high-temperature (220 C) cure where the chain extension reaction or amine addition precedes BMI homopolymerization or crosslinking. Samples of cured and postcured PMR-15 were also tested to determine the effects of postcuring on the mechanical properties. The low-temperature cure condition of BMI/MDA exhibited the highest modulus values for a given mole fraction of BMI with the modulus decreasing with decreasing concentration of BMI. The higher elastic modulus is the result of steric hindrance by unreacted BMI molecules in the glassy state. The moduli values for the high- and low/high-temperature cure conditions of BMI/MDA decreased as the amount of diamine increased. All the moduli values mimic the yield strength and density trends. For the high-temperature cure condition, the room- temperature modulus remained constant with decreasing mole fraction of BMT for the BMI/DABA and BMI/DDS systems. Postcuring PMR-15 increases the modulus over that of the cured

  14. Structure-Property Relationships in Intercalated Graphite.

    DTIC Science & Technology

    1985-07-10

    McNeil, J. Steinbeck, L. Salamanca- Riba and G. Dresselhaus, Bull. APS 29, 253 (1984). 4. "The Effect of Impurities on the Electronic Phase Transition In...12. "Raman Microprobe Observation of Intercalate Contraction In Graphite Inter- calation Compounds", L.E. McNeil, J. Steinbeck, L. Salamanca- Riba and...17. "High Resolution Electron Microscopy and X-Ray Diffraction Studies on SbCl5 - GI0", G. Roth, L. Salamanca- Riba , A.R. Kortan, G. Dresselhaus, R.J

  15. Structure-Property Relationships of Solids in Pharmaceutical Processing

    NASA Astrophysics Data System (ADS)

    Chattoraj, Sayantan

    Pharmaceutical development and manufacturing of solid dosage forms is witnessing a seismic shift in the recent years. In contrast to the earlier days when drug development was empirical, now there is a significant emphasis on a more scientific and structured development process, primarily driven by the Quality-by-Design (QbD) initiatives of US Food and Drug Administration (US-FDA). Central to such an approach is the enhanced understanding of solid materials using the concept of Materials Science Tetrahedron (MST) that probes the interplay between four elements, viz., the structure, properties, processing, and performance of materials. In this thesis work, we have investigated the relationships between the structure and those properties of pharmaceutical solids that influence their processing behavior. In all cases, we have used material-sparing approaches to facilitate property assessment using very small sample size of materials, which is a pre-requisite in the early stages of drug development when the availability of materials, drugs in particular, is limited. The influence of solid structure, either at the molecular or bulk powder levels, on crystal plasticity and powder compaction, powder flow, and solid-state amorphization during milling, has been investigated in this study. Through such a systematic evaluation, we have captured the involvement of structure-property correlations within a wide spectrum of relevant processing behaviors of pharmaceutical solids. Such a holistic analysis will be beneficial for addressing both regulatory and scientific issues in drug development.

  16. Revealing the structure-property relationship of covalent organic frameworks for CO₂ capture from postcombustion gas: a multi-scale computational study.

    PubMed

    Tong, Minman; Yang, Qingyuan; Xiao, Yuanlong; Zhong, Chongli

    2014-08-07

    With the aid of multi-scale computational methods, a diverse set of 46 covalent organic frameworks (COFs), covering the most typical COFs synthesized to date, were collected to study the structure-property relationship of COFs for CO2 capture. For this purpose, CO2 capture from postcombustion gas (CO2-N2 mixture) under industrial vacuum swing adsorption (VSA) conditions was considered as an example. This work shows that adsorption selectivity, CO2 working capacity and the sorbent selection parameter of COFs all exhibit strong correlation with the difference in the adsorbility of adsorbates (ΔAD), highlighting that realization of large ΔAD can be regarded as an important starting point for designing COFs with improved separation performance. Furthermore, it was revealed that the separation performance of 2D-layered COFs can be greatly enhanced by generating "splint effects", which can be achieved through structural realignment to form slit-like pores with suitable size in the structures. Such "splint effects" in 2D-COFs can find their similar counterpart of "catenation effects" in 3D-COFs or MOFs. On the basis of these observations, a new design strategy was proposed to strengthen the separation performance of COFs. It could be expected that the information obtained in this work not only will enrich the knowledge of the structure-property relationship of COFs for separation, but also will largely facilitate their future applications to the fields related to energy and environmental science, such as natural gas purification, CO2, NO(x) and SO(x) capture, etc.

  17. Endochin optimization: structure-activity and structure-property relationship studies of 3-substituted 2-methyl-4(1H)-quinolones with antimalarial activity.

    PubMed

    Cross, R Matthew; Monastyrskyi, Andrii; Mutka, Tina S; Burrows, Jeremy N; Kyle, Dennis E; Manetsch, Roman

    2010-10-14

    Since the 1940s endochin and analogues thereof were known to be causal prophylactic and potent erythrocytic stage agents in avian models. Preliminary screening in a current in vitro assay identified several 4(1H)-quinolones with nanomolar EC(50) against erythrocytic stages of multidrug resistant W2 and TM90-C2B isolates of Plasmodium falciparum. Follow-up structure-activity relationship (SAR) studies on 4(1H)-quinolone analogues identified several key features for biological activity. Nevertheless, structure-property relationship (SPR) studies conducted in parallel revealed that 4(1H)-quinolone analogues are limited by poor solubilities and rapid microsomal degradations. To improve the overall efficacy, multiple 4(1H)-quinolone series with varying substituents on the benzenoid quinolone ring and/or the 3-position were synthesized and tested for in vitro antimalarial activity. Several structurally diverse 6-chloro-2-methyl-7-methoxy-4(1H)-quinolones with EC(50) in the low nanomolar range against the clinically relevant isolates W2 and TM90-C2B were identified with improved physicochemical properties while maintaining little to no cross-resistance with atovaquone.

  18. Bio-related noble metal nanoparticle structure property relationships

    NASA Astrophysics Data System (ADS)

    Leonard, Donovan Nicholas

    Structure property relationships of noble metal nanoparticles (NPs) can be drastically different than bulk properties of the same metals. This research study used state-of-the-art analytical electron microscopy and scanned probe microscopy to determine material properties on the nanoscale of bio-related Au and Pd NPs. Recently, it has been demonstrated the self-assembly of Au NPs on functionalized silica surfaces creates a conductive surface. Determination of the aggregate morphology responsible for electron conduction was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). In addition, changes in the electrical properties of the substrates after low temperature (<350°C) annealing was also studied. It was found that coalescence and densification of the Au NP aggregates disrupted the interconnected network which subsequently created a loss of conductivity. Investigation of bio-related Au/SiO2 core-shell NPs determined why published experimental results showed the sol-gel silica shell improved, by almost an order of magnitude, the detection efficiency of a DNA detection assay. Novel 360° rotation scanning TEM (STEM) imaging allowed study of individual NP surface morphology and internal structure. Electron energy loss spectroscopy (EELS) spectrum imaging determined optoelectronic properties and chemical composition of the silica shell used to encapsulate Au NPs. Results indicated the sol-gel deposited SiO2 had a band gap energy of ˜8.9eV, bulk plasmon-peak energy of ˜25.5eV and chemical composition of stoichiometric SiO2. Lastly, an attempt to elicit structure property relationships of novel RNA mediated Pd hexagon NPs was performed. Selected area electron diffraction (SAD), low voltage scanning transmission electron microscopy (LV-STEM), electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) were chosen for characterization of atomic ordering, chemical composition and optoelectronic properties of the novel

  19. Structure-Property Relationship in High Tg Thermosetting Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Meador, Mary Ann B.; HardyGreen, DeNise

    2000-01-01

    This viewgraph presentation gives an overview of the structure-property relationship in high glass transition temperatures (T(sub g)) thermosetting polyimides. The objectives of this work are to replace MDA in PMR-15 with 2,2-substituted benzidine and to evaluate the thermo-oxidative stability and mechanical properties of DMBZ-15 against PMR-15. Details are given on the T(sub g) of polyimide resins, the x-ray crystal structure of 2,2-Bis(trifluoro)benzidine (BFBZ), the isothermal aging of polyimide resins at 288 C under 1 atm of circulating air, the compressive strength of polyimide composites, and a gas evaluation profile of DMBZ-15 polyimide resins.

  20. Structure-property relationships in polymers for dielectric capacitors

    NASA Astrophysics Data System (ADS)

    Gupta, Sahil

    Effective energy storage is a key challenge of the 21st century that has fueled research in the area of energy storage devices. In this dissertation, structure-property relationships have been evaluated for polymers that might be suitable for storing energy in high-energy density, high-temperature capacitors. Firstly, hydroxyl-modified polypropylenes (PPOH) were synthesized by copolymerization of the propylene and undecenyloxytrimethylsilane monomers. The presence of H-bonding in PPOH copolymers increased their glass-transition temperature. Steric hindrance by the comonomer reduced the PP crystal growth rate and crystal size, resulting in a melting point depression. The comonomer was restricted outside the crystalline domains leaving the alpha-monoclinic crystal structure of PP unaffected, but increasing the fold-surface free energy. Crystallization was slower for PPOH copolymers than PP, but exhibited a skewed bell curve as a function of hydroxyl concentration. H-bonding persisted even at melt temperatures up to 250°C resulting in a higher elasticity and viscosity for PPOH copolymers. Secondly, sulfonated poly(ether ether ketone) (HSPEEK) was synthesized by sulfonating PEEK with sulfuric acid, and further neutralized with Zn to obtain ZnSPEEK. The thermal and dielectric properties of SPEEK were compared with PEEK. The glass-transition increased and melting point were high enough to enable the use of polymer at 180°C. The incorporation of sulfonic groups in PEEK increased the dielectric constant. HSPEEK had a higher dielectric constant than ZnSPEEK due to higher dipolar mobility, but the dielectric loss was also higher for HSPEEK due to electrode polarization and DC conduction. These results were consistent with our observations from sulfonated polystyrene (HSPS), which was used as a >model&lang' polymer. Lastly, commercial poly(4-methyl-1-pentene) (P4MP) was characterized to check its viability as a high-temperature polymer dielectric. Thermal stability up to

  1. Structure-property relationships: Model studies on melt-extruded uniaxially-oriented high density polyethylene films having well defined morphologies

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyi

    High density polyethylene (HDPE) films having simple and well-defined stacked lamellar morphology, either with or without a distinct presence of row-nucleated fibril structures, have been utilized as model materials to carry out investigations on solid state structure-property relationships. Mechanical tests, including tensile (INSTRON), creep (TMA), and dynamic mechanical (DMTA) tests, were performed at different angles with respect to the original machine direction (MD) of the melt extruded films; morphological changes as a result of these mechanical tests were detected by WAXS, SAXS, and TEM. Crystalline lamellar thickness and its distribution were determined by DSC, SAXS, TEM and AFM experiments. In the large strain deformation study (chapter 4.0), samples were stretched at 00sp°, 45sp° and 90sp° angles with respect to the original MD. A distinct orientation dependence of the tensile behavior was observed and correlated to the corresponding deformation modes and morphological changes, namely (1) lamellar separation and fragmentation by chain slip for the 00sp° stretch, (2) lamellar break-up via chain pull-out for the 90sp° stretch, and (3) lamellar shear, rotation and break-up through chain slip and/or tilt for the 45sp° stretch. A strong strengthening effect was observed for samples with row-nucleated fibril structures at the 00sp° stretch; whereas for the 90sp° stretch, the presence of such structures significantly limited deformability of the samples. In the dynamic strain mechanical alpha relaxation study (chapter 5.0), samples were tested at nine different angles with respect to the original MD, and the morphologies of samples before and after the dynamic tests were also investigated. The mechanical dispersions for the 00sp° and 90sp° tests were believed to arise essentially from the crystalline phase, and they contain contributions from two earlier recognized sub-relaxations of alphasbI and alphasbII. While for the 45sp° test, in addition to a

  2. Structure-property relationships in silica-siloxane nanocomposite materials

    SciTech Connect

    Ulibarri, T.A.; Derzon, D.K.; Wang, L.C.

    1997-03-01

    The simultaneous formation of a filler phase and a polymer matrix via in situ sol-gel techniques provides silica-siloxane nanocomposite materials of high strength. This study concentrates on the effects of temperature and relative humidity on a trimodal polymer system in an attempt to accelerate the reaction as well as evaluate subtle process- structure-property relations. It was found that successful process acceleration is only viable for high humidity systems when using the tin(IV) catalyst dibutyltin dilaurate. Processes involving low humidity were found to be very temperature and time dependent. Bimodal systems were investigated and demonstrated that the presence of a short-chain component led to enhanced material strength. This part of the study also revealed a link between the particle size and population density and the optimization of material properties.

  3. Structure-property relationships in graphene/polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Z.

    Graphene's unique combination of excellent electrical, thermal, and mechanical properties can provide multi-functional reinforcement for polymer nanocomposites. However, poor dispersion of graphene in non-polar polyolefins limits its applications as a universal filler. Thus, the overall goal of this thesis was to improve graphene's dispersion in graphene/polyolefin nanocomposites and develop processing-structure-property relationships. A new polymer matrix was synthesized by blending polyethylene (PE) with oxidized polyethylene (OPE). Inclusion of OPE in PE produced miscible blends, but the miscibility decreased with increasing OPE loading. Meanwhile, the Young's modulus of blends increased with increasing OPE concentration, attributed to decreased long period order in PE and increased crystallinity. In addition, the miscibility of OPE in PE substantially reduced the viscosity of blends. Using thermally reduced graphene (TRG) produced by simultaneous thermal exfoliation and reduction of graphite oxide, electrically conductive nanocomposites were manufactured by incorporating TRG in PE/OPE blends via solution blending. The rheological and electrical percolations decreased substantially to 0.3 and 0.13 vol% of TRG in PE/OPE/TRG nanocomposites compared to 1.0 and 0.3 vol% in PE/TRG nanocomposites. Improved dispersion of TRG in blends was attributed to increased TRG/polymer interactions, leading to high aspect ratio of the dispersed TRG. A universal Brownian dispersion mechanism for graphene was concluded similar to that of carbon nanotubes, following the Doi-Edwards theory. Furthermore, the improved dispersion of TRG correlated with the formation of surface fractals in PE/OPE/TRG nanocomposites, whereas the poor dispersion of TRG in PE led to the formation of only mass fractals. Moreover, graphene and carbon black (CB) were combined as a synergic filler for manufacturing electrically conductive PE nanocomposites. Smaller fractals were observed at lower CB

  4. Structure-property relationships of multiferroic materials: A nano perspective

    NASA Astrophysics Data System (ADS)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  5. Structure-property relationships of flexible polyurethane foams

    NASA Astrophysics Data System (ADS)

    Aneja, Ashish

    This study examined several features of flexible polyurethane foams from a structure-property perspective. A major part of this dissertation addresses the issue of connectivity of the urea phase and its influence on mechanical and viscoelastic properties of flexible polyurethane foams and their plaque counterparts. Lithium salts (LiCl and LiBr) were used as additives to systematically alter the phase separation behavior, and hence the connectivity of the urea phase at different scale lengths. Macro connectivity, or the association of the large scale urea rich aggregates typically observed in flexible polyurethane foams was assessed using SAXS, TEM, and AFM. These techniques showed that including a lithium salt in the foam formulation suppressed the formation of the urea aggregates and thus led to a loss in the macro level connectivity of the urea phase. WAXS and FTIR were used to demonstrate that addition of LiCl or LiBr systematically disrupted the local ordering of the hard segments within the microdomains, i.e., it led to a reduction of micro level connectivity or the regularity in segmental packing of the urea phase. Based on these observations, the interaction of the lithium salt was thought to predominantly occur with the urea hard segments, and this hypothesis was confirmed using quantum mechanical calculations. Another feature of this research investigated model trisegmented polyurethanes based on monofunctional polyols, or "monos", with water-extended toluene diisocyanate (TDI) based hard segments. The formulations of the monol materials were maintained similar to those of flexible polyurethane foams with the exceptions that the conventional polyol was substituted by an oligomeric monofunctional polyether of ca. 1000 g/mol molecular weight. Plaques formed from these model systems were shown to be solid materials even at their relatively low molecular weights of 3000 g/mol and less, AFM phase images, for the first time, revealed the ability of the hard

  6. Structure-property study of keto-ether polyimides

    NASA Technical Reports Server (NTRS)

    Dezern, James F.; Croall, Catharine I.

    1991-01-01

    As part of an on-going effort to develop an understanding of how changes in the chemical structure affect polymer properties, an empirical study was performed on polyimides containing only ether and/or carbonyl connecting groups in the polymer backbone. During the past two decades the structure-property relationships in linear aromatic polyimides have been extensively investigated. More recently, work has been performed to study the effect of isomeric attachment of keto-ether polyimides on properties such as glass transition temperature and solubility. However, little work has been reported on the relation of polyimide structure to mechanical properties. The purpose of this study was to determine the effect of structural changes in the backbone of keto-ether polyimides on their mechanical properties, specifically, unoriented thin film tensile properties. This study was conducted in two stages. The purpose of the initial stage was to examine the physical and mechanical properties of a representative group (four) of polyimide systems to determine the optimum solvent and cure cycle requirements. These optimum conditions were then utilized in the second stage to prepare films of keto-ether polyimides which were evaluated for mechanical and physical properties. All of the polyimides were prepared using isomers of oxydianiline (ODA) and diaminobenzophenone (DABP) in combination with 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-oxydiphthalic anhydride (ODPA).

  7. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants

    PubMed Central

    García, Andrés Calderín; de Souza, Luiz Gilberto Ambrosio; Pereira, Marcos Gervasio; Castro, Rosane Nora; García-Mina, José María; Zonta, Everaldo; Lisboa, Francy Junior Gonçalves; Berbara, Ricardo Luis Louro

    2016-01-01

    Knowledge of the structure-property-function relationship of humic substances (HSs) is key for understanding their role in soil. Despite progress, studies on this topic are still under discussion. We analyzed 37 humic fractions with respect to their isotopic composition, structural characteristics, and properties responsible for stimulating plant root parameters. We showed that regardless of the source of origin of the carbon (C3 or C4), soil-extracted HSs and humic acids (HAs) are structurally similar to each other. The more labile and functionalized HS fraction is responsible for root emission, whereas the more recalcitrant and less functionalized HA fraction is related to root growth. Labile structures promote root stimulation at lower concentrations, while recalcitrant structures require higher concentrations to promote a similar stimulus. These findings show that lability and recalcitrance, which are derived properties of humic fractions, are related to the type and intensity of their bioactivity. In summary, the comparison of humic fractions allowed a better understanding of the relationship between the source of origin of plant carbon and the structure, properties, and type and intensity of the bioactivity of HSs in plants. In this study, scientific concepts are unified and the basis for the agronomic use of HSs is established. PMID:26862010

  8. Incoloy 908 database report: On process -- structure -- property relationship

    SciTech Connect

    Toma, L.S.; Hwang, I.S.; Steeves, M.M.

    1993-05-01

    Incoloy 908 is a nickel-iron base superalloy with a coefficient of expansion (COE) and mechanical properties that have been optimized for use in Nb{sub 3}Sn superconducting magnets. It has been proposed for use as a conduit material for the International Thermonuclear Experimental Reactor (ITER) magnets. The relationship between manufacturing processes, microstructures and mechanical properties of Incoloy 908 are characterized in support of the magnet fabrication and quality control. This report presents microhardness, microstructure, and yield and ultimate tensile strengths as functions of thermomechanical process variables including heat treatment, annealing and cold work for laboratory prepared Incoloy 908 specimens. Empirical correlations have been developed for the microhardness at room temperature and tensile strength at room temperature and at 4K. These results may be used for manufacturing quality control or for design.

  9. Presence of Peierls pairing and absence of insulator-to-metal transition in VO2 (A): a structure-property relationship study.

    PubMed

    Popuri, S R; Artemenko, A; Decourt, R; Villesuzanne, A; Pollet, M

    2017-03-01

    Layered vanadium oxides have been extensively explored due to their interesting metal-insulator transitions and energy conversion/storage applications. In the present study, we have successfully synthesized VO2 (A) polymorph powder samples by a single-step hydrothermal synthesis process and consolidated them using spark plasma sintering. The structural and electronic properties of VO2 (A) are measured over a large temperature range from liquid helium, across the structural transition (400-440 K) and up to 500 K. The structural analysis around this transition reveals an antiferrodistorsive to partially ferrodistorsive ordering upon cooling. It is followed by a progressive antiferromagnetic spin pairing which fully settles at about 150 K. The transport measurements show that, in contrast to the rutile archetype VO2 (R/M1), the structural transition comes with a transition from semiconductor to band-type insulator. Under these circumstances, we propose a scenario with a high temperature antiferrodistorsive paramagnetic semiconducting phase, followed by an intermediate regime with a partially ferrodistorsive paramagnetic semiconducting phase, and finally a low temperature partially ferrodistorsive antiferromagnetic band insulator phase with a possible V-V Peierls-type pairing.

  10. Structure-property relationship of 3-(N-phthalimidomethyl)-4-amino-1,2,4-triazole-5-thione: A structural, spectroscopic and DFT study

    NASA Astrophysics Data System (ADS)

    Tamer, Ömer; Bhatti, Moazzam H.; Yunus, Uzma; Nadeem, Muhammad; Avcı, Davut; Atalay, Yusuf; Yaqub, Azra; Quershi, Rumana

    2017-04-01

    The title molecule, 3-(N-phthalimidomethyl)-4-amino-1,2,4-triazole-5-thione (C11H9N5O2S), was synthesized by the fusion of N-Phthaloylglycine and thiocarbohydrazide at 145 °C. In this study, we have investigated the crystal structure, photophysical properties as well as the relation between the molecular structure and nonlinear optical properties of 2-(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-ylmethyl)isoindoline-1,3-dione. For this purpose, the molecular structure, vibration spectrum, electronic absorption spectrum, 1H and 13C NMR spectra have been evaluated by both of the experimental techniques and density functional theory method. A detailed assignment of vibrational bands has been performed on the basis of potential energy distribution analysis. Additionally, UV-Vis spectrum was recorded in different solvents in order to examine the solvent effect on the electronic absorption spectrum. NBO analysis has been carried out to investigate intra-molecular charge transfer interactions. Finally, nonlinear optical properties of the title compound have been investigated by using M062X level of density functional theory.

  11. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    SciTech Connect

    Chen, Jingguan

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  12. Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes.

    PubMed

    Solanki, Archana; Mehta, Jayen; Thakore, Sonal

    2014-09-22

    Biocompatible and biodegradable polyurethanes (PUs) based on castor oil and polypropylene glycols (PPGs) were prepared using various carbohydrate crosslinkers: monosaccharide (glucose), disaccharide (sucrose) and polysaccharides (starch and cellulose). The mechanical and thermal properties were investigated and interpreted on the basis of SEM study. The advantage of incorporating various carbohydrates is to have tunable mechanical properties and biodegradability due to variety in their structure. The glass transition temperature and sorption behavior were dominated by the type of polyol than by the type of crosslinker. All the PUs were observed to be biodegradable as well as non-cytotoxic as revealed by MTT assay in normal lung cell line L132. The study supports the suitability of carbohydrates as important components of biocompatible PUs for development of biomedical devices.

  13. Miscibility and structure-property relationships in some novel polyolefins

    NASA Astrophysics Data System (ADS)

    Kamdar, Akshay Rajprakash

    In the first chapter, miscibility of homogeneous propylene/ethylene (P/E) copolymers of relatively narrow molecular weight distribution was studied as a function of constituent comonomer content. Polymers with up to 31 mol% ethylene were blended in pairs in order to vary the comonomer content difference. Copolymers of molecular weight about 200 kg mol-1 were miscible if the difference in ethylene content was less than about 18 mol%, and immiscible if the ethylene content difference was greater than about 20 mol%. Blends with constituent composition difference in the range of 18-20 mol% exhibited partial miscibility in the melt. In the second chapter, the effect of chain microstructure on the miscibility and phase behavior of ethylene-octene (EO) copolymer blends was studied. Binary blends of two statistical copolymers (EO/EO blends) that differed in comonomer content were compared with blends of an EO with an olefinic blocky ethylene-octene copolymer, OBC (EO/OBC blends). Two EOs of molecular weight about 100 kg/mol were miscible if the difference in octene content was less than about 10 mol% and immiscible if the octene content difference was greater than about 13 mol%. The blocky nature of the OBCs reduced the miscibility and broadened the partial miscibility window of EO/OBC blends compared to EO/EO blends. The EO/OBC blends were miscible if the octene content difference was less than 7 mol% and immiscible above 13 mol% octene content difference. In the third chapter, the adhesion of some ethylene-octene copolymers to polypropylene (PP) and high density polyethylene (HDPE) was studied in order to evaluate their suitability as compatibilizers for PP/HDPE blends. A one-dimensional model of the compatibilized blend was fabricated by layer-multiplying coextrusion. The microlayered tapes consisted of many alternating layers of PP and HDPE with a thin tie-layer inserted at each interface. The thickness of the tie-layer varied from 0.1 to 14 mum, which included

  14. Structure-Property Relationships for Branched Worm-Like Micelles

    NASA Astrophysics Data System (ADS)

    Beaucage, Gregory; Rai, Durgesh

    2013-03-01

    Micellar solutions can display a wide range of phase structure as a function of counter ion content, surfactant concentration, and the presence of ternary components. Under some conditions, common to consumer products, extended cylindrical structures that display persistence and other chain features of polymers are produced. These worm-like micelles (WLMs) can form branched structures that dynamically change under shear and even in quiescent conditions. The rheology of these branched WLMs is strongly dependent on migration of the branch points, and the dynamics of branch formation and removal. Persistence and other polymer-based descriptions are also of importance. We have recently developed a scattering model for branched polyolefins and other topologically complex materials that can quantify the branching density, branch length, branch functionality and the hyperbranch (branch-on-branch) content of polymers. This work is being extended to study branching in WLMs in work coupled with Ron Larson at UMich to predict rheological properties.

  15. Structure-Property Relationships in Polyolefin Block Copolymers

    NASA Astrophysics Data System (ADS)

    Mansour, Ameara Salah

    Poly(cyclohexylethylene) (PCHE for a homopolymer or C in a block copolymer) is created by hydrogenating polystyrene, and this polymer exhibits interesting properties, such as a high glass transition temperature (147 °C), high flexural modulus (2.8 GPa), low stress optical coefficient (-0.2 * 10-9 Pa-1), and low cost. However, the inherently brittle nature of PCHE prevents it from being used in applications that simultaneously require high modulus, ductility, thermal stability, and optical clarity. Previous research has shown that incorporating PCHE into a block copolymer with rubbery poly(ethylene-alt-propylene) (P) or poly(ethylethylene) (EE) or semicrystalline polyethylene (E) results in a tough material. In some cases, applications also require specific mechanical or optical properties. In order to tune these properties, this research examined tuning crystallinity using two methods: (1) by controlling the microstructure of the soft block by synthesizing a random copolymer of E and EE, and (2) by blending high C content pentablock copolymers with semicrystalline and rubbery minority components. In the first study, diblock copolymers of C(EcoEE) also were used to understand how the microstructure of the random copolymer affects the thermodynamics of the system. In the second study, CECEC and CPCPC, designed to form the same morphology (hexagonally packed cylinders with glassy C matrices), and have similar order-to-disorder transition temperatures and domain spacings, were blended together. Isothermal crystallization experiments were used to determine how the confining E and P in one domain affects the crystallization process. The effect of architecture, the state of the minority component, and the percent crystallinity on the mechanical properties of high glass content materials was also examined. These results were compared to the mechanical properties of homopolymer PCHE, polystyrene, and polycarbonate. The processing conditions needed to create smooth films of

  16. Structure-property Relationships for Methyl-terminated Alkyl Self-assembled Monolayers

    SciTech Connect

    F DelRio; D Rampulla; C Jaye; G Stan; R Gates; D Fischer; R Cook

    2011-12-31

    Structure-property relationships for methyl-terminated alkyl self-assembled monolayers (SAMs) are developed using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM). NEXAFS C K-edge spectra are used to compute the dichroic ratio, which provides a quantitative measure of the molecular structure. AFM data are analyzed with an elastic adhesive contact model, modified by a first-order elastic perturbation method to include substrate effects, to extract the monolayer mechanical properties. Using this approach, the measured mechanical properties are not influenced by the substrate, which allows universal structure-property relationships to be developed for methyl-terminated alkyl SAMs.

  17. Structure-Property Relationships in Oxides Containing Tellurium

    NASA Astrophysics Data System (ADS)

    Siritanon, Theeranun

    Oxides of post-transition metals often show unique structures and properties due to the presence of lone pair electrons and the diffused s orbitals. The present work focuses on synthesis and characterizations of oxides containing Te, a heavy post transition metal. New series of pyrochlore oxides of the formula Cs(M,Te)2O 6 (M = Al, Ga, Cr, Fe, Co, In, Ho, Lu, Yb, Er, Ge, Rh, Ti, Zn, Ni, and Mg) have been prepared. The samples were highly colored (ranging from black to dark green) indicating a possible mixed valency for Te with appreciable charge transfer between them in the octahedral sites. Electronic conductivity was observed in some phases and could be as high as 2S/cm (M=Ge). Seebeck coefficients of conducting samples show negative values which suggest that electrons are the major charge carriers. Temperature dependence of conductivity indicates that the samples are semiconductors with, in some cases, degenerate semiconducting behavior. Detailed studies on the conduction mechanism indicate the mixed valency of tellurium which leads to semiconducting behavior and the color of the compounds. Systematic studies of cesium tellurate with CsTe2O6-x where x = 0, 0.15, 0.25, 1.5 have been investigated. On heating at slightly above 600ºC, CsTe2O6 loses oxygen resulting in cubic structure with disordered Te4+/Te6+ and oxygen vacancies. Two novel phases of CsTe2O6-x were prepared with orthorhombic structure. The first phase with x value of about 0.2-0.3 crystallizes in Pnma symmetry. At higher values of x, a new compound was discovered with a structure related to Rb4Te 8O23. Optical properties of the compounds are consistent with their colors. CsTe2O6 belongs to class II mixed valency according to Robin and Day classification. However, structures and properties of CsTe 2O6-x phases indicate that they are class I mixed valence compounds. Series of compounds with formula CsTe2-xWxO 6 with x=0.2-0.5 have been made which can be considered as solid solution of CsTe2O6 and Cs

  18. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides.

    PubMed

    Goodarzi, Mohammad; Coelho, Leandro dos Santos; Honarparvar, Bahareh; Ortiz, Erlinda V; Duchowicz, Pablo R

    2016-06-01

    The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide.

  19. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    PubMed

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  20. Structure-property relationships in major ampullate spider silk as deduced from polarized FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Papadopoulos, P.; Sölter, J.; Kremer, F.

    2007-10-01

    Polarized Fourier Transform Infrared (FTIR) spectroscopy is employed to study structure-property relationships in major ampullate spider silk being exposed to an external mechanical strain. From the measured infrared dichroism of aminoacid-residue - specific bands the molecular order parameter, the frequency width at half-maximum (FWHM) and the spectral position of the absorption maximum are determined in dependence on the external strain. For the highly ordered alanine-rich β sheets a change in the vibrational potential is found for macroscopic strains as low as a few percent. It can be quantitatively described by a quantum-mechanical approach in which the mechanical strain is treated as a weak external perturbation. The immediate microscopic response to the external field proves that β -sheeted crystals are tightly interconnected by pre-stretched chains as suggested recently (Y. Liu et al., Nat. Mater. 4, 901 (2005)).

  1. An Investigation of College Chemistry Students' Understanding of Structure-Property Relationships

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Corley, Leah M.; Underwood, Sonia M.

    2013-01-01

    The connection between the molecular-level structure of a substance and its macroscopic properties is a fundamental concept in chemistry. Students in college-level general and organic chemistry courses were interviewed to investigate how they used structure-property relationships to predict properties such as melting and boiling points. Although…

  2. Structure-property relationship of 3-(4-substituted benzyl)-1,3-diazaspiro[4.4]nonane-2,4-diones as new potentional anticonvulsant agents. An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Lazić, Anita M.; Božić, Bojan Đ.; Vitnik, Vesna D.; Vitnik, Željko J.; Rogan, Jelena R.; Radovanović, Lidija D.; Valentić, Nataša V.; Ušćumlić, Gordana S.

    2017-01-01

    The structure-property relationship of newly synthesized 3-(4-substituted benzyl)-1,3-diazaspiro [4.4]nonane-2,4-diones was studied by experimental and calculated methods. The prepared compounds were characterized by UV-Vis, FT-IR, 1H NMR and 13C NMR spectroscopy and elemental analysis. The crystal structure was elucidated by single-crystal X-ray diffraction. The 3-benzyl-1,3-diazaspiro[4.4]nonane-2,4-dione crystallizes in triclinic P-1 space group, with two crystallographically independent molecules in the asymmetric unit. Cyclopentane ring adopts an envelope conformation. A three-dimensional crystal packing is governed by hydrogen N-H⋯O bonds, numerous C-H⋯O/N and C-H … π interactions between neighboring molecules. Density functional theory (DFT) calculations with B3LYP and M06-2X methods using 6-311++G(d,p) basis set were performed to provide structural and spectroscopic information. Comparisons between experimental and calculated UV-Vis spectral properties suggest that the monomeric form of the investigated spirohydantoins is dominant in all used solvents. The effects of substituents on the absorption spectra of spirohydantoins are interpreted by correlation of absorption frequencies with Hammett equation. The lipophilicities of the investigated molecules were estimated by calculation of their log P values. Some of the spirohydantoins synthesized in this work, exhibit the lipophilicities comparable to the standard medicine anticonvulsant drug Phenytoin. The results obtained in this investigation afford guidelines for the preparation of new derivatives of spirohydantoin as potential anticonvulsant agents and for better understanding the structure-activity relationship.

  3. Density Functional Study of the structural properties in Tamoxifen

    NASA Astrophysics Data System (ADS)

    de Coss-Martinez, Romeo; Tapia, Jorge A.; Quijano-Quiñones, Ramiro F.; Canto, Gabriel I.

    2013-03-01

    Using the density functional theory, we have studied the structural properties of Tamoxifen. The calculations were performed with two methodological approaches, which were implemented in SIESTA and Spartan codes. For SIESTA, we considerate a linear combination of atomic orbitals method, using pseudopotentials and the van der Waals approximation for the exchange-correlation potential. Here we analyzed and compared the atomic structure between our results and other theoretical study. We found differences in the bond lengths between the results, that could be attributed to code approaches in each one. This work was supported under Grant FOMIX 2011-09 N: 170297 of Ph.D. A. Tapia.

  4. Grain Boundary Plane Orientation Fundamental Zones and Structure-Property Relationships.

    PubMed

    Homer, Eric R; Patala, Srikanth; Priedeman, Jonathan L

    2015-10-26

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.

  5. Grain Boundary Plane Orientation Fundamental Zones and Structure-Property Relationships

    PubMed Central

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-01-01

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries. PMID:26498715

  6. Grain boundary plane orientation fundamental zones and structure-property relationships

    SciTech Connect

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-10-26

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to the strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.

  7. Grain boundary plane orientation fundamental zones and structure-property relationships

    DOE PAGES

    Homer, Eric R.; Patala, Srikanth; Priedeman, Jonathan L.

    2015-10-26

    Grain boundary plane orientation is a profoundly important determinant of character in polycrystalline materials that is not well understood. This work demonstrates how boundary plane orientation fundamental zones, which capture the natural crystallographic symmetries of a grain boundary, can be used to establish structure-property relationships. Using the fundamental zone representation, trends in computed energy, excess volume at the grain boundary, and temperature-dependent mobility naturally emerge and show a strong dependence on the boundary plane orientation. Analysis of common misorientation axes even suggests broader trends of grain boundary energy as a function of misorientation angle and plane orientation. Due to themore » strong structure-property relationships that naturally emerge from this work, boundary plane fundamental zones are expected to simplify analysis of both computational and experimental data. This standardized representation has the potential to significantly accelerate research in the topologically complex and vast five-dimensional phase space of grain boundaries.« less

  8. Development of quantitative structure property relationships for predicting the melting point of energetic materials.

    PubMed

    Morrill, Jason A; Byrd, Edward F C

    2015-11-01

    The accurate prediction of the melting temperature of organic compounds is a significant problem that has eluded researchers for many years. The most common approach used to develop predictive models entails the derivation of quantitative structure-property relationships (QSPRs), which are multivariate linear relationships between calculated quantities that are descriptors of molecular or electronic features and a property of interest. In this report the derivation of QSPRs to predict melting temperatures of energetic materials based on descriptors calculated using the AM1 semiempirical quantum mechanical method are described. In total, the melting points and experimental crystal structures of 148 energetic materials were analyzed. Principal components analysis was performed in order to assess the relative importance and roles of the descriptors in our QSPR models. Also described are the results of k means cluster analysis, performed in order to identify natural groupings within our study set of structures. The QSPR models resulting from these analyses gave training set R(2) values of 0.6085 (RMSE = ± 15.7 °C) and 0.7468 (RMSE = ± 13.2 °C). The test sets for these clusters had R(2) values of 0.9428 (RMSE = ± 7.0 °C) and 0.8974 (RMSE = ± 8.8 °C), respectively. These models are among the best melting point QSPRs yet published for energetic materials.

  9. Investigating ionomer morphologies with STEM and SAXS: Toward rigorous processing-structure-property relationships

    NASA Astrophysics Data System (ADS)

    Benetatos, Nicholas M.

    Due to their extraordinary chemical and physical properties, ionomers have found wide-ranging applications including chemically resistant thermoplastics, robust coatings, and selectively permeable ion-transport membranes. The unique properties of ionomers result directly from the self-assembly/organization of ionic functional groups and counterions into nanoscale aggregates which act as transient physical crosslinks. For more than a half century, significant effort has been devoted toward understanding these structurally complex multi-component polymers, however, a complete description of their processing-structure-property relationships remains elusive. Quantifying these relationships will provide an important step toward the rational design, synthesis, and preparation of superior ionomeric materials. In order to rigorously advance the study of ionomer morphology, we combine traditional small angle X-ray scattering (SAXS) approaches with cutting-edge real space imaging via scanning transmission electron microscopy (STEM). This technique has provides high resolution imaging capability in which the image contrast is generated by differences in local average atomic number. Our work has shown that these characterization methods can be used to obtain complementary morphological information regarding the size, shape, and spatial distribution of the nanoscale ionic aggregates that control the physical properties of ionomers. With this information, we evaluate the validity of prevalent structural/morphological models and systematically explore how the nanoscale morphology is affected by changes in polymer backbone structure, materials chemistry, and processing.

  10. Modelling of the structure-property relationships in the α-quartz structures

    NASA Astrophysics Data System (ADS)

    Yao, Yongtao; Alderson, Kim; Alderson, Andrew; Leng, Jinsong

    2013-04-01

    The molecular mechanism has been employed to model the structure-property relationships of auxetic material with tetrahedral framework at the atomistic level. The germania α-quartz subject uniaxial stress loading in z direction will be investigated. The strain-dependent structure and mechanical properties will be predicted from the force field based simulations, including the transformation from positive-to-negative Poisson's ratio behaviour and vice versa.

  11. Localized surface plasmon resonance induced structure-property relationships of metal nanostructures

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, Subramanian

    The confluence of nanotechnology and plasmonics has led to new and interesting phenomena. The industrial need for fast, efficient and miniature devices which constantly push the boundaries on device performance tap into the happy marriage between these diverse fields. Designing devices for real life application that give superior performance when compared with existing ones are enabled by a better understanding of their structure-property relationships. Among all the design constraints, without doubt, the shape and size of the nanostructure along with the dielectric medium surrounding it has the maximum influence on the response and thereby the performance of the device. Hence a careful study of the above mentioned parameters is of utmost importance in designing efficient devices. In this dissertation, we synthesize and study the optical properties of nanostructures of different shapes and size. In particular, we estimated the plasmonic near field enhancement via surface-enhanced Raman scattering (SERS) and 2-photon Photoemission electron microscopy (2P-PEEM). We synthesized the nanostructures using four different techniques. One synthesis technique, the thermal growth method was employed to grow interesting Ag and Au nanostructures on Si. The absence of toxic chemicals during nanostructure synthesis via the thermal growth technique opens up myriad possibilities for applications in the fields of biomedical science, bioengineering, drug delivery among others along with the huge advantage of being environment friendly. The other three synthesis techniques (ion implantation, Electrodeposition and FIB lithography) were chosen with the specific goal of designing novel plasmonic metal, metal hybrid nanostructures as photocathode materials in next generation light sources. The synthesis techniques for these novel nanostructures were dictated by the requirement of high quantum efficiency, robustness under constant irradiation and coherent unidirectional electron emission

  12. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers.

    PubMed

    Lei, Ting; Wang, Jie-Yu; Pei, Jian

    2014-04-15

    Conjugated polymers have developed rapidly due to their promising applications in low-cost, lightweight, and flexible electronics. The development of the third-generation donor-acceptor (D-A) polymers greatly improved the device performance in organic solar cells (OSCs) and field-effect transistors (FETs). However, for further improvement of device performance, scientists need to develop new building blocks, in particular electron-deficient aromatics, and gain an in-depth understanding of the structure-property relationships. Recently, isoindigo has been used as a new acceptor of D-A conjugated polymers. An isomer of indigo, isoindigo is a less well-known dye and can be isolated as a by-product from certain biological processes. It has two lactam rings and exhibits strong electron-withdrawing character. This electron deficiency gives isoindigo-based polymers intriguing properties, such as broad absorption and high open circuit voltage in OSCs, as well as high mobility and good ambient stability in FETs. In this Account, we review our recent progress on the design, synthesis, and structure-property relationship study of isoindigo-based polymers for FETs. Starting with some discussion on carrier transport in polymer films, we provide some basic strategies towards high-performance polymer FETs. We discuss the stability issue of devices, the impediment of the alkyl side chains, and the choice of the donor part of conjugated polymers. We demonstrate that introducing the isoindigo core effectively lowers the HOMO levels of polymers and provides FETs with long-time stability. In addition, we have found that when we use inappropriate alkyl side chains or non-centrosymmetric donors, the device performance of isoindigo polymers suffers. To further improve device performance and ambient stability, we propose several design strategies, such as using farther branched alkyl chains, modulating polymer energy levels, and extending π-conjugated backbones. We have found that using

  13. Probing Structure Property Relationships in Complex Engineering Silicones by 1H NMR

    SciTech Connect

    Chinn, S C; Gjersing, E L; Maxwell, R S; Eastwood, E; Bowen, D; Stephens, T

    2006-07-14

    It is generally accepted that the properties of polymeric materials are controlled by the network structure and the reactions by which they have been constructed. These properties include the bulk moduli at creation, but also the properties as a function of age during use. In order to interpret mechanical properties and predict the time dependent changes in these properties, detailed knowledge of the effect of structural changes must be obtained. The degree and type of crosslinking, the molecular weight between crosslinks, the number of elastically ineffective chains (loops, dangling chain ends, sol-fraction) must be characterized. A number of theoretical and experimental efforts have been reported in the last few years on model networks prepared by endlinking reactions and the relationships of those structures with the ultimate mechanical properties. A range of experimental methods have been used to investigate structure including rheometric, scattering, infrared, {sup 29}Si MAS and CPMAS, {sup 1}H relaxation measurements, and recently {sup 1}H multiple quantum methods. Characterization of the growth of multiple quantum coherences have recently been shown to provide detailed insight into silicone network structure by the ability to selective probe the individual components of the polymer network, such as the polymer-filler interface or network chains. We have employed recently developed MQ methods to investigate the structure-property relationships in a series of complex, endlinked filled-PDMS blends. Here, a systematic study of the relationship between the molecular formulation, as dictated by the amount and type of crosslinks present and by the remaining network chains, and the segmental dynamics as observed by MQ NMR was performed.

  14. Studies on structural properties of clay magnesium ferrite nano composite

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Mandeep; Jeet, Kiran; Kaur, Rajdeep

    2015-08-01

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m2/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  15. Studies on structural properties of clay magnesium ferrite nano composite

    SciTech Connect

    Kaur, Manpreet Singh, Mandeep; Jeet, Kiran Kaur, Rajdeep

    2015-08-28

    Magnesium ferrite-bentonite clay composite was prepared by sol-gel combustion method employing citric acid as complexing agent and fuel. The effect of clay on the structural properties was studied with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) Spectroscopy, Scanning electron microscopy (SEM), SEM- Energy dispersive Spectroscope (EDS) and BET surface area analyzer. Decrease in particle size and density was observed on addition of bentonite clay. The BET surface area of nano composite containing just 5 percent clay was 74.86 m{sup 2}/g. Whereas porosity increased from 40.5 per cent for the pure magnesium ferrite to 81.0 percent in the composite showing that nano-composite has potential application as an adsorbent.

  16. Quantitative structure-property relationship modeling of remote liposome loading of drugs.

    PubMed

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-06-10

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R(2) for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments.

  17. Thermoelectric plastics: from design to synthesis, processing and structure-property relationships.

    PubMed

    Kroon, Renee; Mengistie, Desalegn Alemu; Kiefer, David; Hynynen, Jonna; Ryan, Jason D; Yu, Liyang; Müller, Christian

    2016-11-07

    Thermoelectric plastics are a class of polymer-based materials that combine the ability to directly convert heat to electricity, and vice versa, with ease of processing. Potential applications include waste heat recovery, spot cooling and miniature power sources for autonomous electronics. Recent progress has led to surging interest in organic thermoelectrics. This tutorial review discusses the current trends in the field with regard to the four main building blocks of thermoelectric plastics: (1) organic semiconductors and in particular conjugated polymers, (2) dopants and counterions, (3) insulating polymers, and (4) conductive fillers. The design and synthesis of conjugated polymers that promise to show good thermoelectric properties are explored, followed by an overview of relevant structure-property relationships. Doping of conjugated polymers is discussed and its interplay with processing as well as structure formation is elucidated. The use of insulating polymers as binders or matrices is proposed, which permit the adjustment of the rheological and mechanical properties of a thermoelectric plastic. Then, nanocomposites of conductive fillers such as carbon nanotubes, graphene and inorganic nanowires in a polymer matrix are introduced. A case study examines poly(3,4-ethylenedioxythiophene) (PEDOT) based materials, which up to now have shown the most promising thermoelectric performance. Finally, a discussion of the advantages provided by bulk architectures e.g. for wearable applications highlights the unique advantages that thermoelectric plastics promise to offer.

  18. Structure-property relationship in core-shell rubber toughened epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Gam, Ki Tak

    The structure-property relationships of epoxy nanocomposites with inorganic layer-structure nanofillers have been studied to obtain the fundamental understanding of the role of nanofillers and the physics of polymer nanocomposites in this dissertation. Several polymer nanocomposite systems with modified montmorillonite (MMT) or alpha-zirconium phosphate (ZrP) nanofillers were prepared with epoxy matrices of different ductility and properties. The successful nanofiller's exfoliations were confirmed with X-ray diffraction and transmission electronic microscopy (TEM). Dynamic mechanical analysis (DMA) on the prepared epoxy nanocomposites revealed the significant increase in rubbery plateau moduli of the epoxy nanocomposite systems above Tg, as high as 4.5 times, and tensile test results showed improved modulus by the nanofiller addition, while the fracture toughness was not affected or slightly decreased by nanofillers. The brittle epoxy nanocomposite systems were toughened with core shell rubber (CSR) particles and showed remarkable increase in fracture toughness (KIC) value up to 270%. The CSR toughening is more effective at ductile matrices, and TEM observation indicates that major toughening mechanisms induced by the CSR addition involve a large scale CSR cavitation, followed by massive shear deformation of the matrix.

  19. Predicting adsorption of aromatic compounds by carbon nanotubes based on quantitative structure property relationship principles

    NASA Astrophysics Data System (ADS)

    Rahimi-Nasrabadi, Mehdi; Akhoondi, Reza; Pourmortazavi, Seied Mahdi; Ahmadi, Farhad

    2015-11-01

    Quantitative structure property relationship (QSPR) models were developed to predict the adsorption of aromatic compounds by carbon nanotubes (CNTs). Five descriptors chosen by combining self-organizing map and stepwise multiple linear regression (MLR) techniques were used to connect the structure of the studied chemicals with their adsorption descriptor (K∞) using linear and nonlinear modeling techniques. Correlation coefficient (R2) of 0.99 and root-mean square error (RMSE) of 0.29 for multilayered perceptron neural network (MLP-NN) model are signs of the superiority of the developed nonlinear model over MLR model with R2 of 0.93 and RMSE of 0.36. The results of cross-validation test showed the reliability of MLP-NN to predict the K∞ values for the aromatic contaminants. Molar volume and hydrogen bond accepting ability were found to be the factors much influencing the adsorption of the compounds. The developed QSPR, as a neural network based model, could be used to predict the adsorption of organic compounds by CNTs.

  20. Predicting total organic halide formation from drinking water chlorination using quantitative structure-property relationships.

    PubMed

    Luilo, G B; Cabaniss, S E

    2011-10-01

    Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (‰<‰1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.

  1. Structure property relationships of nitride superlattice hard coatings prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Patel, Nitin

    Today, more than 40% of all cutting tools used in machining applications are covered with coatings. Coatings improve wear resistance, increase tool life, enable use at higher speed, and broaden the application range. Superlattices, where thin layers (typically <10 nm) of two different materials (e.g. TiN and AlN) are deposited in an alternating fashion, are widely used commercially. Importantly, the hardness value of a superlattice (e.g. TiN/AlN) can significantly exceed the rule of mixture value. Superlattice coatings built from crystallographically dissimilar materials are not widely studied but hold promise for improvements in performance by allowing for both hardness and toughness to be simultaneously optimized. This is what this thesis is concerned with: a structure-property comparison of isostructural superlattices with corresponding non-isostructural superlattices. In order to grow both isostructural and non-isostructural superlattices from the same set of materials, it is necessary to grow monolithic films in different phases. Towards this end, the synthesis of different phases of AlN, (Ti,Al)N, TaN, and TiN was investigated. Films were grown by pulsed laser deposition in two different chambers that had different base pressures to study the effect of background gases on the phases and orientations of the films. Growth of AlN and (Ti,Al)N films is strongly affected in a chamber that had a base pressure of 10-6 Torr, but the films adopt their stable nitride structures in a chamber with the lower base pressure of 10-8 Torr. TaN adopts either the cubic rock salt structure or its stable hexagonal structure, depending on the growth temperature, while TiN grows as rock salt in all conditions. Single crystal epitaxial superlattices were then grown with different compositions, periodicities, and crystallographic orientations to compare the effect of chemistry, nanostructure, and crystallographic texture on hardness. Finally, the structure-property relationships of

  2. Hybrid Mixed Media Nonwovens: An Investigation of Structure-Property Relationships

    NASA Astrophysics Data System (ADS)

    Hollowell, Kendall Birckhead

    There have been myriad studies on utilizing bicomponent splittables produced through spunbond/spunlace processes. These production methods have proven to yield microfibers which increase the surface area of the nonwoven structures. There has been recent focus on studying the microfibers within these nonwoven structures as well as using a multiplicity of deniers of fibers within the nonwoven. There have also been studies on producing nonwovens with fibers of differing cross-sectional shapes and diameters. The purpose of this study is to examine the properties of a nonwoven structure, marrying the concepts of multi-denier fibers with multi-shaped fibers in two configurations: three-layer and alternating. The basis for this study will be US Patent 6,964,931 B2 "Method of making Continuous Filament Web with Statistical Filament Distribution" as well as US Patent 7,981,336 B2 "Process of Making Mixed Fibers and Nonwoven Fabrics". This study addresses the melt-spinning and hydroentanglement of nonwoven webs made from bicomponent fibers in three-layer and alternating configurations. The bicomponent cross-sections that will be used include 16-segmented pie and 7-islands-in-the-sea. In this study the establishment of the utility of mixed media nonwovens will take place through property and structure analysis in order to determine the inherent properties of the mixed media structures as well as the structure-property relationships of the nonwoven fabric. Property and structure analysis will also take place on mixed media structures containing poly(lactic acid) as a sacrificial component in the bicomponent fiber after optimizing the removal conditions of the poly(lactic acid) in a sodium hydroxide (NaOH) bath.

  3. Construction of coherent nano quantitative structure-properties relationships (nano-QSPR) models and catastrophe theory.

    PubMed

    Carbó-Dorca, R; Besalú, E

    2011-10-01

    The structure one can associate to coherent nano-quantitative structure-properties relationship (nano-QSPR) models is briefly discussed. Such nano-QSPR model functions are described as possessing three parts: a particle size polynomial; a typical QSPR function; and a special effects function. The expected behaviour of the particle size part is discussed from the point of view of catastrophe theory, in this way providing a plausible general picture about the emergence of new properties of nanoparticles and holographic location of information content.

  4. Quantitative structure-property relationship modeling of Grätzel solar cell dyes.

    PubMed

    Venkatraman, Vishwesh; Åstrand, Per-Olof; Alsberg, Bjørn Kåre

    2014-01-30

    With fossil fuel reserves on the decline, there is increasing focus on the design and development of low-cost organic photovoltaic devices, in particular, dye-sensitized solar cells (DSSCs). The power conversion efficiency (PCE) of a DSSC is heavily influenced by the chemical structure of the dye. However, as far as we know, no predictive quantitative structure-property relationship models for DSSCs with PCE as one of the response variables have been reported. Thus, we report for the first time the successful application of comparative molecular field analysis (CoMFA) and vibrational frequency-based eigenvalue (EVA) descriptors to model molecular structure-photovoltaic performance relationships for a set of 40 coumarin derivatives. The results show that the models obtained provide statistically robust predictions of important photovoltaic parameters such as PCE, the open-circuit voltage (V(OC)), short-circuit current (J(SC)) and the peak absorption wavelength λ(max). Some of our findings based on the analysis of the models are in accordance with those reported in the literature. These structure-property relationships can be applied to the rational structural design and evaluation of new photovoltaic materials.

  5. Unraveling Structure-Property Relationships in Polymer Blends for Intelligent Materials Design

    NASA Astrophysics Data System (ADS)

    Irwin, Matthew Tyler

    Block polymers provide an accessible route to structured, composite materials by combining two or more components with disparate mechanical, chemical, and electrical properties into a single bulk material with nanoscale domains. However, the characteristic lengthscale of these systems is limited, and the choice of components is restricted to those that are able to undergo microstructural ordering at accessible temperatures. This thesis details routes to overcoming these limitations through the addition of a lithium salt, a blend of homopolymers, or both. Chapter 2 describes a study wherein complex sphere phases such as the Frank-Kasper sigma phase can be observed in otherwise disordered asymmetric block polymers through the addition of a lithium salt. Chapter 3 discusses the development and characterization of a ternary polymer blend of an AB diblock copolymer and A and B homopolymers doped with a lithium salt. Detailed characterization showed that doping blends that are otherwise disordered with lithium salt induced microstructural ordering and largely recovers the phase behavior of traditional ternary polymer blends. A systematic study of the ionic conductivity of the blends at a fixed salt concentration demonstrates that, at a given composition, disordered, yet highly structured blends consistently exhibit better conductivity than polycrystalline morphologies with long range order. Chapter 4 extends the methodology of Chapter 3 and details a systematic study of the effects of cross-linker concentration on the performance of polymer electrolyte membranes produced via polymerization-induced microphase separation that exhibit a highly structured, globally disordered microstructure. Finally, Chapter 5 details efforts to develop a water filtration membrane using a polyethylene template derived from a polymeric bicontinuous microemulsion. Throughout all of this work, the goal is to better understand structure-property relationships at the molecular level in order to

  6. Processing-structure-property relationships of carbon nanotube and nanoplatelet enabled piezoresistive sensors

    NASA Astrophysics Data System (ADS)

    Luo, Sida

    Individual carbon nanotubes (CNTs) possess excellent piezoresistive performance, which is manifested by the significant electrical resistance change when subject to mechanical deformation. In comparison to individual CNTs, the CNT thin films, formed by a random assembly of individual tubes or bundles, show much lower piezoresistive sensitivity. Given the progress made to date in developing CNT ensemble based-piezoresistive sensors, the related piezoresistive mechanism(s) are still not well understood. The crucial step to obtain a better understanding of this issue is to study the effects of CNT structure in the dispersion on the piezoresistivity of CNT ensemble based-piezoresistive sensors. To reach this goal, my Ph.D. research first focuses on establishing the processing-structure-property relationship of SWCNT thin film piezoresistive sensors. The key accomplishment contains: 1) developing the combined preparative ultracentrifuge method (PUM) and dynamic light scattering (DLS) method to quantitatively characterized SWCNT particle size in dispersions under various sonication conditions; 2) designing combined ultrasonication and microfluidization processing protocol for high throughput and large-scale production of high quality SWCNT dispersions; 3) fabricating varied SWCNT thin film piezoresistive sensors through spray coating technique and immersion-drying post-treatment; and 4) investigating the effect of microstructures of SWCNTs on piezoresistivity of SWCNT thin film sensors. This experimental methodology for quantitative and systematic investigation of the processing-structure-property relationships provides a means for the performance optimization of CNT ensemble based piezoresistive sensors. As a start to understand the piezoresistive mechanism, the second focus of my Ph.D. research is studying charge transport behaviors in SWCNT thin films. It was found that the temperature-dependent sheet resistance of SWCNT thin films could be explained by a 3D variable

  7. Hierarchical multiscale structure-property relationships of the red-bellied woodpecker (Melanerpes carolinus) beak.

    PubMed

    Lee, Nayeon; Horstemeyer, M F; Rhee, Hongjoo; Nabors, Ben; Liao, Jun; Williams, Lakiesha N

    2014-07-06

    We experimentally studied beaks of the red-bellied woodpecker to elucidate the hierarchical multiscale structure-property relationships. At the macroscale, the beak comprises three structural layers: an outer rhamphotheca layer (keratin sheath), a middle foam layer and an inner bony layer. The area fraction of each layer changes along the length of the beak giving rise to a varying constitutive behaviour similar to functionally graded materials. At the microscale, the rhamphotheca comprises keratin scales that are placed in an overlapping pattern; the middle foam layer has a porous structure; and the bony layer has a big centre cavity. At the nanoscale, a wavy gap between the keratin scales similar to a suture line was evidenced in the rhamphotheca; the middle foam layer joins two dissimilar materials; and mineralized collagen fibres were revealed in the inner bony layer. The nano- and micro-indentation tests revealed that the hardness (associated with the strength, modulus and stiffness) of the rhamphotheca layer (approx. 470 MPa for nano and approx. 320 MPa for micro) was two to three times less than that of the bony layer (approx. 1200 MPa for nano and approx. 630 MPa for micro). When compared to other birds (chicken, finch and toucan), the woodpecker's beak has more elongated keratin scales that can slide over each other thus admitting dissipation via shearing; has much less porosity in the bony layer thus strengthening the beak and focusing the stress wave; and has a wavy suture that admits local shearing at the nanoscale. The analysis of the woodpeckers' beaks provides some understanding of biological structural materials' mechanisms for energy absorption.

  8. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge.

    PubMed

    Wang, Liping; Li, Aimin; Chang, Yuzhi

    2017-04-01

    Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon.

  9. Quantitative structure property relationships for the adsorption of pharmaceuticals onto activated carbon.

    PubMed

    Dickenson, E R V; Drewes, J E

    2010-01-01

    Isotherms were determined for the adsorption of five pharmaceutical residues, primidone, carbamazepine, ibuprofen, naproxen and diclofenac, to Calgon Filtrasorb 300 powdered activated carbon (PAC). The sorption behavior was examined in ultra-pure and wastewater effluent organic matter (EfOM) matrices, where more sorption was observed in the ultra-pure water for PAC doses greater than 10 mg/L suggesting the presence of EfOM hinders the sorption of the pharmaceuticals to the PAC. Adsorption behaviors were described by the Freundlich isotherm model. Quantitative structure property relationships (QSPRs) in the form of polyparameter linear solvation energy relationships were developed for simulating the Freundlich adsorption capacity in both ultra-pure and EfOM matrices. The significant 3D-based descriptors for the QSPRs were the molar volume, polarizability and hydrogen-bond donor parameters.

  10. Solid solution directionally solidified eutectics: Model systems for structure-property relationships in interfacial fracture

    NASA Astrophysics Data System (ADS)

    Brewer, Luke Nathaniel

    The next generation of high temperature materials for application in aerospace and power generation systems will be required to withstand temperatures well in excess of 1200°C, often in oxidizing atmospheres. Oxide-oxide directionally solidified eutectics (DSE's) have shown promise as high temperature ceramic materials, only to be limited by their lack of fracture toughness at room temperature. In the case of DSE oxide materials, the interfacial fracture behavior has been blamed for the poor performance in the past and is the subject of interest in this work. In this thesis, the solid solution, directionally solidified quaternary eutectic (SS-DSE), Co1-xNixO/ZrO2(CaO), is developed as a model system for the study of interfacial fracture in oxide-oxide DSE's. A variety of structural and mechanical characterization techniques are applied to investigate structure-property relationships for interfacial fracture behavior. The optical floating zone technique was employed for growing both the eutectic crystals and their single crystal counterparts, Co1-x NixO. Co1-xNixO/ZrO2(CaO) was shown to possess the necessary structural elements to serve as a model system for interfacial fracture. Lamellar microstructures were observed for all compositions. The crystallographic relationships between phases evolved as a model solid solution. Interdiffusion of chemical species was minimal, allowing the layers to treated independently. The core of this thesis is dedicated to studying the nature of interfacial fracture behavior in oxide eutectics. This study is motivated by the novel observation of extensive interfacial delamination for the system CoO/ZrO 2(CaO). A transition from interfacial delamination to interfacial penetration is observed for compositions of Co1-xNixO/ZrO 2(CaO) with x > 0.2. The residual stress state in these materials was investigated using X-ray and neutron diffraction-based techniques. The role of plasticity in interfacial fracture was explored using a

  11. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    PubMed

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  12. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy.

    PubMed

    d'Ischia, Marco; Napolitano, Alessandra; Ball, Vincent; Chen, Chun-Teh; Buehler, Markus J

    2014-12-16

    CONSPECTUS: Polydopamine (PDA), a black insoluble biopolymer produced by autoxidation of the catecholamine neurotransmitter dopamine (DA), and synthetic eumelanin polymers modeled to the black functional pigments of human skin, hair, and eyes have burst into the scene of materials science as versatile bioinspired functional systems for a very broad range of applications. PDA is characterized by extraordinary adhesion properties providing efficient and universal surface coating for diverse settings that include drug delivery, microfluidic systems, and water-treatment devices. Synthetic eumelanins from dopa or 5,6-dihydroxyindoles are the focus of increasing interest as UV-absorbing agents, antioxidants, free radical scavengers, and water-dependent hybrid electronic-ionic semiconductors. Because of their peculiar physicochemical properties, eumelanins and PDA hold considerable promise in nanomedicine and bioelectronics, as they are biocompatible, biodegradable, and exhibit suitable mechanical properties for integration with biological tissues. Despite considerable similarities, very few attempts have so far been made to provide an integrated unifying perspective of these two fields of technology-oriented chemical research, and progress toward application has been based more on empirical approaches than on a solid conceptual framework of structure-property relationships. The present Account is an attempt to fill this gap. Following a vis-à-vis of PDA and eumelanin chemistries, it provides an overall view of the various levels of chemical disorder in both systems and draws simple correlations with physicochemical properties based on experimental and computational approaches. The potential of large-scale simulations to capture the macroproperties of eumelanin-like materials and their hierarchical structures, to predict the physicochemical properties of new melanin-inspired materials, to understand the structure-property-function relationships of these materials from

  13. Structure-property relationships in the design, assembly and applications of polyelectrolyte multilayer thin films

    NASA Astrophysics Data System (ADS)

    Rmaile, Hassan H.

    Ultrathin films consisting of an alternating sequence of positively and negatively charged polyelectrolytes have been prepared by means of the electrostatic layer-by-layer sequential assembly technique. To augment their typical applications in the water treatment, personal care as well as the pulp and paper industry, the structure and the design of these polyelectrolytes were tailored synthetically to satisfy the requirements of different types of applications. Some were used for surface modifications, hydrophobic and hydrophilic coatings, corrosion protection, conducting and biocompatible surfaces. Others were found to be very efficient for membrane and chromatographic applications. The ease with which these multilayer coatings can be constructed, their robustness and stability make them very good candidates for industrial applications. The dissertation focuses mainly on the structure-property relationships of these polyelectrolytes and their corresponding thin films. Various polyelectrolytes were synthesized or modified in a strategic approach and gave novel and promising properties. Some of them exhibited permeabilities that were higher than any membranes reported in the literature. Also, some are potentially very useful for designing drug delivery systems such as tablets or encapsulations since they were shown to control the permeability of sample drugs and vitamins very efficiently based on their sensitivity to pH changes. Other synthesized polyelectrolytes proved to be very effective in preventing protein adsorption or promoting cell growth and differentiation. Some systems were very useful as robust stationary phases for simple chiral separations in capillary electrochromatography. Along with modifications and improvements, the approach might one day be applied commercially for chiral separations using high performance liquid chromatography and replace currently used stationary phases. Last but not least, the potential for these polyelectrolytes and their

  14. TECHNIQUES FOR THE STUDY OF THE STRUCTURAL PROPERTIES.

    SciTech Connect

    FERNANDEZ-GARCIA, M.; RODRIGUEZ, J.A.; MARTINEZ-ARIAS, A.; HANSON, J.C.

    2006-06-30

    The evolution of our understanding of the behavior of oxide nanostructures depends heavily on the structural information obtained from a wide range of physical methods traditionally used in solid state physics, surface science and inorganic chemistry. In this chapter, we describe several techniques that are useful for the characterization of the structural properties of oxide nanostructures: X-ray diffraction (XRD) and scattering, X-ray absorption fine structure (XAFS), Raman spectroscopy, transmission electron microscopy (TEM), scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The ultimate goal is to obtain information about the spatial arrangement of atoms in the nanostructures with precise interatomic distances and bond angles. This may not be possible for complex systems and one may get only partial information about the local geometry or morphology.

  15. Structure/property relationships in polymer membranes for water purification and energy applications

    NASA Astrophysics Data System (ADS)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  16. Structure-property relationships in self-assembling peptide hydrogels, homopolypeptides and polysaccharides

    NASA Astrophysics Data System (ADS)

    Hule, Rohan A.

    The main objective of this dissertation is to investigate quantitative structure-property relationships in a variety of molecular systems including de novo designed peptides, peptide amphiphiles, polysaccharides and high molecular weight polypeptides. Peptide molecules consisting of 20 amino acids were designed to undergo thermally triggered intramolecular folding into asymmetric beta-hairpins and intermolecular self-assembly via a strand swapping mechanism into physically crosslinked fibrillar hydrogels. The self-assembly mechanism was confirmed by multiple characterization techniques such as circular dichroism and FITR spectroscopy, atomic force and transmission electron microscopy and small angle neutron scattering. Three distinct fibrillar nanostructures, i.e. non-twisted, twisted and laminated were produced, depending on the degree of strand asymmetry and peptide registry. Differences in the fibrillar morphology have a direct consequence on the mechanical properties of the hydrogels, with the laminated hydrogels exhibiting a significantly higher elastic modulus as compared to the twisted or non-twisted fibrillar hydrogels. SANS and cryo-TEM data reveal that the self-assembled fibrils form networks that are fractal in nature. Models employed to elucidate the fractal behavior can relate changes in the correlation lengths, low q (network), and high q (fibrillar) fractal exponents to the distinct fibrillar nanomorphology. The fractal dimension of the networks varies significantly, from a mass to a surface fractal and can be directly related to the local fibrillar morphology and changes in the peptide concentration. Transitions in the fractal behavior seen in the high q regime can be attributed to self-assembly kinetics. An identical model can be used to establish a direct correlation between the bulk properties and changes in both, the network density and underlying morphology, of a modified peptide-based hydrogel. As in the case of asymmetric peptides, changes in

  17. Chemical Modification and Structure-property Relationships of Acrylic and Ionomeric Thermoplastic Elastomer Gels

    NASA Astrophysics Data System (ADS)

    Vargantwar, Pruthesh Hariharrao

    Block copolymers (BCs) have remained at the forefront of materials research due to their versatility in applications ranging from hot-melt/pressure-sensitive adhesives and impact modifiers to compatibilizing agents and vibration-dampening/nanotemplating media. Of particular interest are macromolecules composed of two or more chemically dissimilar blocks covalently linked together to form triblock or pentablock copolymers. If the blocks are sufficiently incompatible and the copolymer behaves as a thermoplastic elastomer, the molecules can spontaneously self-assemble to form nanostructured materials that exhibit shape memory due to the formation of a supramolecular network. The BCs of these types are termed as conventional. When BCs contain blocks having ionic moieties such as sulfonic acid groups, they are termed as block ionomers. Designing new systems based on either conventional or ionic BCs, characterizing their structure-property relationships and later using them as electroacive polymers form the essential objectives of this work. Electroactive polymers (EAPs) exhibit electromechanical actuation when stimulated by an external electric field. In the first part of this work, it is shown that BCs resolve some of the outstanding problems presently encountered in the design of two different classes of EAP actuators: dielectric elastomers (DEs) and ionic polymer metal composites (IPMCs). All-acrylic triblock copolymer gels used as DEs actuate with high efficacy without any requirement of mechanical prestrain and, thus, eliminate the need for bulky and heavy hardware essential with prestrained dielectric actuators, as well as material problems associated with stress relaxation. The dependence of actuation behavior on gel morphology as evaluated from mechanical and microstructure studies is observed. In the case of IPMCs, ionic BCs employed in this study greatly facilitate processing compared to other contenders such as NafionRTM, which is commonly used in this class

  18. Quantitative structure-property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers.

    PubMed

    Li, Linnan; Xie, Shaodong; Cai, Hao; Bai, Xuetao; Xue, Zhao

    2008-08-01

    Theoretical molecular descriptors were tested against logK(OW) values for polybrominated diphenyl ethers (PBDEs) using the Partial Least-Squares Regression method which can be used to analyze data with many variables and few observations. A quantitative structure-property relationship (QSPR) model was successfully developed with a high cross-validated value (Q(cum)(2)) of 0.961, indicating a good predictive ability and stability of the model. The predictive power of the QSPR model was further cross-validated. The values of logK(OW) for PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied molecular orbital and the net atomic charges on the oxygen atom. All these descriptors have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk property of the molecules represented by molecular surface area is the leading factor, and K(OW) values increase with the increase of molecular surface area. Higher energy of the lowest unoccupied molecular orbital and higher net atomic charge on the oxygen atom of PBDEs result in smaller K(OW). The energy of the lowest unoccupied molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in affecting the partition of PBDEs between octanol and water by influencing the interactions between PBDEs and solvent molecules.

  19. Probing structure-property relationships in perpendicularly magnetized Fe/Cu(001) using MXLD and XPD

    SciTech Connect

    Cummins, T.R.; Waddill, G.D.; Goodman, K.W.

    1997-04-01

    Magnetic X-ray Linear Dichroism (MXLD) in Photoelectron Spectroscopy and X-Ray Photoelectron Diffraction (XPD) of the Fe 3p core level have been used to probe the magnetic structure-property relationships of perpendicularly magnetized Fe/Cu(001), in an element-specific fashion. A strong MEXLD effect was observed in the high resolution photoelectron spectroscopy of the Fe 3p at {open_quotes}normal{close_quotes} emission and was used to follow the loss of perpendicular ferromagnetic ordering as the temperature was raised toward room temperature. In parallel with this, {open_quotes}Forward Focussing{close_quotes} in XPD was used as a direct measure of geometric structure in the overlayer. These results and the implications of their correlation will be discussed. Additionally, an investigation of the effect of Mn doping of the Fe/Cu(001) will be described. These measurements were performed at the Spectromicroscopy Facility (Beamline 7.0.1) of the Advanced Light Source.

  20. Processable fluoropolymers with low dielectric constants: Preparation and structure-property relationships of polyacrylates and polymethacrylates

    SciTech Connect

    Hu, H. S.W.; Griffith, J.R.

    1993-12-31

    The preparation of a series of processable heavily fluorinated acrylic and methacrylic homo- and co-polymers with low dielectric constants is carried out to elucidate the structure-property relationships. The monomers were prepared through the condensation of the respective alcohols with acryloyl and methacryloyl chloride. Unlike tetrafluoroethylene, these monomers are easy to process into transparent polymers under normal conditions due to their liquid or semisolid nature. All polymers exhibit dielectric constants around 2.06-2.41 with variation within 0.03 over a frequency region of 500 MHz to 18.5 GHz. These values are very close to the minimum known dielectric constants of 2.0-2.08 for Teflon and 1.89-1.93 for Teflon AF. The factors which affect the dielectric constant include the fluorine content, the polymer type and molecular features. Lower dielectric constants are obtained as fluorine contents from polymer backbone or sidechain increase, when acrylate is replaced by methacrylate, when ether linkages are present in the fluorocarbon and when aromatic structure is symmetrically meta-substituted.

  1. Size-separation characterization of starch and glycogen for biosynthesis-structure-property relationships.

    PubMed

    Gilbert, Robert G

    2011-02-01

    Starch and glycogen are highly branched polymers of glucose of great importance to humans in managing and mitigating nutrition-related diseases, especially diabetes and obesity, and in industrial uses, for example in food and paper-making. Size-separation characterization using multiple-detection size-exclusion chromatography (SEC, also known as gel-permeation chromatography, GPC) is able to furnish substantial amounts of information on the relationships between the biosynthesis, processing, structure, and properties of these biopolymers, and achieves superior characterization for use in industrial product and process improvements. Multi-detector SEC is able to give much more information about structure than simple averages such as total molecular weight or size; the detailed information yielded by this technique has already given new information on important biosynthesis-structure-property reactions, and has considerable potential in this field in the future. However, it must be used with care to avoid artifacts arising from incomplete dissolution of the substrate and shear scission during separation. It is also essential in interpreting data to appreciate that this size-separation technique can only ever give size distributions, never true molecular weight distributions. Other size-separation techniques, particularly field-flow fractionation, require substantial technical development to be used on undegraded native starches.

  2. Prediction of photosensitivity of 1,4-dihydropyridine antihypertensives by quantitative structure-property relationship.

    PubMed

    Ioele, Giuseppina; De Luca, Michele; Oliverio, Filomena; Ragno, Gaetano

    2009-10-15

    A quantitative structure-property relationships (QSPR) model, correlating the light sensitivity against theoretical molecular descriptors, was developed for a set of 1,4-dihydropyridine calcium channel antagonist drugs. These compounds are characterized by a high tendency to degradation when exposed to light, furnishing in the most of cases a related oxidation product from aromatization of the dihydropyridinic ring. Photodegradation was forced by exposing the drugs to a Xenon lamp, in accordance with the ICH international rules, and degradation kinetics was monitored by spectrophotometry. The photodegradation rates combined with a series of descriptors related to the chemical structures were computed by Partial Least Squares (PLS) multivariate analysis. An accurate selection of the variables, fitting at the best the PLS model, was performed. Two descriptors related to the substituent information on both the dihydropyridinic and benzenic rings and four molecular descriptors, were selected. The QSPR model was fully cross validated and then optimized with an external set of novel 1,4-dihydropyridine drugs, obtaining very satisfactory statistical results. The good agreement between predicted and measured photodegradation rate (R(2)=0.8727) demonstrated the high accuracy of the QSPR model in predicting the photosensitivity of the drugs belonging to this class. The model was finally proposed as an effective tool to design new congeneric molecules characterized by high photostability.

  3. Processing, structure, property and performance relationships for the thermal spray of the internal surface of aluminum cylinders

    NASA Astrophysics Data System (ADS)

    Cook, David James

    The increased need for automotive weight reduction has necessitated the use of aluminum for engine blocks. Conventional aluminum alloys cannot survive the constant wear from a piston ring reciprocating on the surface. However, a wear resistant thermal spray coating can be applied on the internal surface of the cylinder bore, which has significant advantages over other available options. Thermal spray is a well-established process for depositing molten, semi-molten, or solid particles onto a substrate to form a protective coating. For this application, the two main challenges were obtaining good wear resistance, and achieving good adhesion. To design a system capable of producing a well-adhered, wear resistant coating for this high volume application it is necessary to identify the overall processing, structure, properties, and performance relationships. The results will demonstrate that very important relationships exist among particle characteristics, substrate conditions, and the properties of the final coating. However, it is the scientific studies to understand some of the process physics in these relationships that allow recognition of the critical processing conditions that need to be controlled to ensure a consistent, reliable thermal spray coating. In this investigation, it will be shown that the critical microstructural aspect of the coating that produced the required tribological properties was the presence of wuestite (FeO). It was found that by using a low carbon steel material with compressed air atomizing gas, it was possible to create an Fe/FeO structure that exhibited excellent tribological properties. This study will also show that traditional thermal spray surface preparation techniques were not ideal for this application, therefore a novel alternative approach was developed. The application of a flux to the aluminum surface prior to thermal spray promotes excellent bond strengths to non-roughened aluminum. Analysis will show that this flux strips

  4. Structure-property-performance relationships of new high temperature relaxors for capacitor applications

    NASA Astrophysics Data System (ADS)

    Stringer, Craig J.

    temperature (Tf) of ˜150°C. Static and in-situ transmission electron microscopy investigations of the BS-PMN-PT compositions demonstrated a frustrated microstructure of nanometer scale regions and were used to establish structure-property relationships with different electric field and thermal histories. A comparative study of the key relaxor parameters, EA, T f, and TD was tabulated with previously investigated relaxor ferroelectrics. These parameters were found to scale relative to other lead-based perovskite relaxor ferroelectric compounds and solid solutions, with the BS-PMN-PT ternary system exhibiting the highest temperature behavior. Finally, to demonstrate one possible application area for these materials, multilayer ceramic capacitor devices were designed for operation at 300°C and up to 10 kHz. The voltage saturation was found to be extremely encouraging at 300°C with observed changes in capacitance (˜3%) on the application of 10 kV/cm. The insulation resistivity followed an Arrhenius behavior and at 300°C was ˜1010 O-cm. Weibull statistics were used to estimate a characteristic breakdown field at 300°C for the BS-PMN-PT multilayer capacitors of ˜40 kV/cm. Current-voltage measurements were performed to voltages up to breakdown and exhibited Ohmic behavior, indicating intrinsically controlled conduction. Highly accelerated life time tests were performed on BS-PMN-PT capacitors. It was observed that silver migration from termination electrodes caused premature failure at elevated temperature.

  5. Development of structure-property relationships for intrinsically microporous polymers through molecular simulations

    NASA Astrophysics Data System (ADS)

    Hart, Kyle E.

    Creating a safe and effective means to store and/or capture small molecules is of paramount importance, as these processes are some of the highest energy consumers today. New materials will have profound impacts on various environmentally conscious applications, such as alternative fuel storage, hydrogen recovery, natural gas purification, and carbon dioxide capture and storage. Designing a material that meets the demanding performance criteria of real-world use has proven a challenging endeavor, but microporous polymers are a promising alternative. This is primarily due to the material's pore sizes being on the order of molecular dimensions, while simultaneously retaining the ability for the polymer-gas physicochemical interactions to be tailored for specific gas separation applications. Both experimental and computational investigations have shown that seemingly minor changes in the chemical structure can have a profound effect on the gas adsorption and separation properties of a polymeric material; however, the vast number of possible functionalities makes the evaluation of potential structures a daunting challenge. This dissertation focuses on developing and utilizing computationally efficient means to analyze candidate polymeric materials for use in carbon dioxide adsorption and separation applications. After validating the simulation models for structural and adsorptive performance, several important structure-property relationships are described. In particular, this work proposes and analyzes multiple families of functionalized polymers of intrinsic microporosity, from which we obtain important design principles of gas separation performance. It is shown that the explicit modeling of a polymer's micropore structure facilitates a fundamental understanding of the nature of the polymer-gas interactions, which was used as a means to reveal the most influential pore characteristics for each application. The molecular simulation results discussed here will aid

  6. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    PubMed

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  7. A general structure-property relationship to predict the enthalpy of vaporisation at ambient temperatures.

    PubMed

    Oberg, T

    2007-01-01

    The vapour pressure is the most important property of an anthropogenic organic compound in determining its partitioning between the atmosphere and the other environmental media. The enthalpy of vaporisation quantifies the temperature dependence of the vapour pressure and its value around 298 K is needed for environmental modelling. The enthalpy of vaporisation can be determined by different experimental methods, but estimation methods are needed to extend the current database and several approaches are available from the literature. However, these methods have limitations, such as a need for other experimental results as input data, a limited applicability domain, a lack of domain definition, and a lack of predictive validation. Here we have attempted to develop a quantitative structure-property relationship (QSPR) that has general applicability and is thoroughly validated. Enthalpies of vaporisation at 298 K were collected from the literature for 1835 pure compounds. The three-dimensional (3D) structures were optimised and each compound was described by a set of computationally derived descriptors. The compounds were randomly assigned into a calibration set and a prediction set. Partial least squares regression (PLSR) was used to estimate a low-dimensional QSPR model with 12 latent variables. The predictive performance of this model, within the domain of application, was estimated at n=560, q2Ext=0.968 and s=0.028 (log transformed values). The QSPR model was subsequently applied to a database of 100,000+ structures, after a similar 3D optimisation and descriptor generation. Reliable predictions can be reported for compounds within the previously defined applicability domain.

  8. Understanding Structure-Property Relationships for Palladium-Gold Nanoparticles as Colloidal Catalysts

    NASA Astrophysics Data System (ADS)

    Fang, Yu-Lun

    Bimetallic palladium-gold (PdAu) nanoparticle (NP) catalysts have been demonstrated for the better catalytic performance than monometallic Pd catalysts in various reactions; however, the enhancement mechanism is not completely clear for most reactions. This thesis addresses the investigation of PdAu NP catalysts with emphasis on the structure-property relationships in water-phase reactions, using hydrodechlorination (HDC) of trichloroethene (TCE) as the model reaction. Catalyzed TCE HDC is a potential approach for water pollution control, in which colloidal Pd-decorated Au NPs (Pd/Au NPs) are known to be significantly better catalysts than monometallic Pd ones. X-ray absorption spectroscopy (XAS) of carbon-supported Pd/Au NPs with different surface Pd coverages verified their core-shell structure (Au-rich core and Pd-rich shell). Structure evolution was observed upon heat treatment, in which Pd was in the form of surface Pd ensembles at room temperature. The metals formed a surface PdAu alloy or a bulk PdAu alloy above 200°C, as determined from the average coordination environment. Results suggested a new way to promote Pd catalysis, namely, by impregnating supported Pd catalysts with gold salt followed by thermal annealing; such post-impregnation with different heat treatments could lead to >15-fold increase in TCE HDC activity. Pd ensembles on the Au NP surface were demonstrated to be major active sites for TCE HDC as the reaction rates correlated strongly with the size of Pd ensembles determined from XAS. The geometric effect, in which atomic ensembles act as active sites, appeared to dominate over the mixed metal site effect and the electronic effect. Au NPs could stabilize surface Pd atoms in the metallic form, possibly leading to a set of highly active sites that is not present in monometallic Pd NPs. The TCE HDC reaction with Pd/Au NPs and Pd NPs was conducted as a closed batch system. Mass transfer effects in this three-phase reaction were assessed and

  9. The Structure-property Relationships of D-π-A BODIPY Dyes for Dye-sensitized Solar Cells.

    PubMed

    Mao, Mao; Song, Qin-Hua

    2016-04-01

    BODIPY dyes have attracted considerable attention as potential photosensitizers in dye-sensitized solar cells (DSSCs) owing to their excellent optical properties and facile structural modification. This account focuses on recent advances in the molecular design of D-π-A BODIPY dyes for applications in DSSCs. Special attention has been paid to the structure-property relationships of D-π-A BODIPY dyes for DSSCs. The developmental process in the modified position at the BODIPY core with a donor/acceptor is described. The devices based on 2,6-modified BODIPY dyes exhibit better photovoltaic performance over other modified BODIPY dyes. Meanwhile, the research reveals the correlation of molecular structures (various donor chromophores, extended units, molecular frameworks, and long alkyl groups) with their photophysical and electrochemical properties and relates it to their performance in DSSCs. The structure-property relationships give valuable information and guidelines for designing new D-π-A BODIPY dyes for DSSCs.

  10. Structure-Property Study of Piezoelectricity in Polyimides

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida; Park, Cheol; Harrison, Joycelyn S.; Smith, Joseph G.; Hinkley, Jeffrey

    1999-01-01

    High performance piezoelectric polymers are of interest to NASA as they may be useful for a variety of sensor applications. Over the past few years research on piezoelectric polymers has led to the development of promising high temperature piezoelectric responses in some novel polyimides. In this study, a series of polyimides have been studied with systematic variations in the diamine monomers that comprise the polyimide while holding the dianhydride constant. The effect of structural changes, including variations in the nature and concentration of dipolar groups, on the remanent polarization and piezoelectric coefficient is examined. Fundamental structure-piezoelectric property insight will enable the molecular design of polymers possessing distinct improvements over state-of-the-art piezoelectric polymers including enhanced polarization, polarization stability at elevated temperatures, and improved processability.

  11. A study of the mechanical and structural properties ofpolonium

    SciTech Connect

    Kraig, Robert E.; Roundy, David; Cohen, Marvin L.

    2003-05-15

    We have performed an ab initio study of the structure of polonium. By calculating total energies in a number of tetragonal lattice configurations, we have shown that the simple cubic structure is preferred by the system. The other two zero-stress structures, bcc and fcc, correspond to inflection points along this path. These calculations agree with experimental evidence that polonium is the only known element to assume the simple cubic structure at room temperature.

  12. Studies on Structure Property Relations in Printed Polymer Semiconductors

    NASA Astrophysics Data System (ADS)

    Mahadevapuram, Nikhila; Ahmadi Vaselabadi, Saeed; Reza Shakarisaz, David; Strzalka, Joseph; Ruchhoeft, Paul; Stein, Gila

    2014-03-01

    Printed polymer semiconductors can be used in systems which require precise control on domain placements and for sequential casting like in sensors, multi color light-emitting diodes or tandem solar cells. Morphology in polymer semiconductors places an important role on carrier mobility. Polymer crystals help in charge transport. In this work, we used helium ion beam lithography to irradiate polymer films and study crystallinity and carrier mobility. Thin films of poly (3-hexylthiphene) P3HT were irradiated with helium ion beam and light absorption properties were measured using UV-Vis spectroscopy. Crystal orientations in irradiated P3HT films were investigated using grazing incidence wide angle X-ray scattering (GIWAXS). Degree of crystallinity in irradiated polymer films were estimated by constructing pole figures. Charge mobility was estimated from device measurements. It was observed that the light absorption properties were retained in irradiated polymer films. Irradiation can influence both crystal orientations and charge mobility as a function of exposure dose. In summary, polymer crystallinity can be independently varied using this technique and a better understanding of the charge transport and device function can be established.

  13. Process-Structure-Property Relationships for 316L Stainless Steel Fabricated by Additive Manufacturing and Its Implication for Component Engineering

    NASA Astrophysics Data System (ADS)

    Yang, Nancy; Yee, J.; Zheng, B.; Gaiser, K.; Reynolds, T.; Clemon, L.; Lu, W. Y.; Schoenung, J. M.; Lavernia, E. J.

    2016-12-01

    We investigate the process-structure-property relationships for 316L stainless steel prototyping utilizing 3-D laser engineered net shaping (LENS), a commercial direct energy deposition additive manufacturing process. The study concluded that the resultant physical metallurgy of 3-D LENS 316L prototypes is dictated by the interactive metallurgical reactions, during instantaneous powder feeding/melting, molten metal flow and liquid metal solidification. The study also showed 3-D LENS manufacturing is capable of building high strength and ductile 316L prototypes due to its fine cellular spacing from fast solidification cooling, and the well-fused epitaxial interfaces at metal flow trails and interpass boundaries. However, without further LENS process control and optimization, the deposits are vulnerable to localized hardness variation attributed to heterogeneous microstructure, i.e., the interpass heat-affected zone (HAZ) from repetitive thermal heating during successive layer depositions. Most significantly, the current deposits exhibit anisotropic tensile behavior, i.e., lower strain and/or premature interpass delamination parallel to build direction (axial). This anisotropic behavior is attributed to the presence of interpass HAZ, which coexists with flying feedstock inclusions and porosity from incomplete molten metal fusion. The current observations and findings contribute to the scientific basis for future process control and optimization necessary for material property control and defect mitigation.

  14. Nanoporous-Gold-Based Electrode Morphology Libraries for Investigating Structure-Property Relationships in Nucleic Acid Based Electrochemical Biosensors.

    PubMed

    Matharu, Zimple; Daggumati, Pallavi; Wang, Ling; Dorofeeva, Tatiana S; Li, Zidong; Seker, Erkin

    2017-01-31

    Nanoporous gold (np-Au) electrode coatings significantly enhance the performance of electrochemical nucleic acid biosensors because of their three-dimensional nanoscale network, high electrical conductivity, facile surface functionalization, and biocompatibility. Contrary to planar electrodes, the np-Au electrodes also exhibit sensitive detection in the presence of common biofouling media due to their porous structure. However, the pore size of the nanomatrix plays a critical role in dictating the extent of biomolecular capture and transport. Small pores perform better in the case of target detection in complex samples by filtering out the large nonspecific proteins. On the other hand, larger pores increase the accessibility of target nucleic acids in the nanoporous structure, enhancing the detection limits of the sensor at the expense of more interference from biofouling molecules. Here, we report a microfabricated np-Au multiple electrode array that displays a range of electrode morphologies on the same chip for identifying feature sizes that reduce the nonspecific adsorption of proteins but facilitate the permeation of target DNA molecules into the pores. We demonstrate the utility of the electrode morphology library in studying DNA functionalization and target detection in complex biological media with a special emphasis on revealing ranges of electrode morphologies that mutually enhance the limit of detection and biofouling resilience. We expect this technique to assist in the development of high-performance biosensors for point-of-care diagnostics and facilitate studies on the electrode structure-property relationships in potential applications ranging from neural electrodes to catalysts.

  15. Conformationally dynamic π-conjugation: probing structure-property relationships of fluorescent tris(N-salicylideneaniline)s.

    PubMed

    Vieweger, Mario; Jiang, Xuan; Lim, Young-Kwan; Jo, Junyong; Lee, Dongwhan; Dragnea, Bogdan

    2011-11-24

    We recently reported the design and synthesis of a series of conformationally dynamic chromophores that are built on the C(3)-symmetric tris(N-salicylideneaniline) platform. This system utilizes cooperative structural folding-unfolding motions for fluorescence switching, which is driven by the assembly and disassembly of hydrogen bonds between the rigid core and rotatable peripheral part of the molecule. Here, we report detailed time-resolved spectroscopic studies to investigate the structure-property relationships of a series of functionalized tris(N-salicylideneaniline)s. Time-resolved fluorescence decay spectroscopy was applied to determine the main relaxation mechanisms of these π-extended fluorophores, and to address the effects of hydrogen bonding, steric constraints, and extension of the π-conjugation on their relaxation dynamics. Our results agree well with the conformational switching model that was previously suggested from steady-state experiments. Notably, extension of the π-conjugation from peripheral aryl groups resulted in the stabilization of the excited states, as evidenced by longer lifetimes and lower nonradiative decay constants. As a consequence, an increase in the fluorescence quantum yields was observed, which could be explained by the suppression of the torsional motions about the C-N bonds from an overall increase in the quinoid character of the excited states. A combination of time-resolved and steady-state techniques also revealed intermolecular interactions through π-π stacking at higher concentrations, which provide additional de-excitation pathways that become more pronounced in solid samples.

  16. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    PubMed

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  17. Chlorophenol sorption on multi-walled carbon nanotubes: DFT modeling and structure-property relationship analysis.

    PubMed

    Watkins, Marquita; Sizochenko, Natalia; Moore, Quentarius; Golebiowski, Marek; Leszczynska, Danuta; Leszczynski, Jerzy

    2017-02-01

    The presence of chlorophenols in drinking water can be hazardous to human health. Understanding the mechanisms of adsorption under specific experimental conditions would be beneficial when developing methods to remove toxic substances from drinking water during water treatment in order to limit human exposure to these contaminants. In this study, we investigated the sorption of chlorophenols on multi-walled carbon nanotubes using a density functional theory (DFT) approach. This was applied to study selected interactions between six solvents, five types of nanotubes, and six chlorophenols. Experimental data were used to construct structure-adsorption relationship (SAR) models that describe the recovery process. Specific interactions between solvents and chlorophenols were taken into account in the calculations by using novel specific mixture descriptors.

  18. Structure-Property Relationships of Polymer Brushes in Restricted Geometries and their Utilization as Ultra-Low Lubricants

    SciTech Connect

    Kuhl, Tonya Lynn; Faller, Roland

    2015-09-28

    Though polymer films are widely used to modify or tailor the physical, chemical and mechanical properties of interfaces in both solid and liquid systems, the rational design of interface- or surface-active polymer modifiers has been hampered by a lack of information about the behavior and structure-property relationships of this class of molecules. This is especially true for systems in which the role of the polymer is to modify the interaction between two solid surfaces in intimate contact and under load, to cause them to be mechanically coupled (e.g. to promote adhesion and wetting) or to minimize their interaction (e.g. lubrication, colloidal stabilization, etc.). Detailed structural information on these systems has largely been precluded by the many difficulties and challenges associated with direct experimental measurements of polymer structure in these geometries. As a result, many practitioners have been forced to employ indirect measurements or rely wholly on theoretical modeling. This has resulted in an incomplete understanding of the structure-property relationships, which are relied upon for the rational design of improved polymer modifiers. Over the course of this current research program, we made direct measurements of the structure of polymers at the interface between two solid surfaces under confinement and elucidated the fundamental physics behind these phenomena using atomistic and coarse grained simulations. The research has potential to lead to new lubricants and wear reducing agents to improve efficiency.

  19. Specific catalysis of asparaginyl deamidation by carboxylic acids: kinetic, thermodynamic, and quantitative structure-property relationship analyses.

    PubMed

    Connolly, Brian D; Tran, Benjamin; Moore, Jamie M R; Sharma, Vikas K; Kosky, Andrew

    2014-04-07

    Asparaginyl (Asn) deamidation could lead to altered potency, safety, and/or pharmacokinetics of therapeutic protein drugs. In this study, we investigated the effects of several different carboxylic acids on Asn deamidation rates using an IgG1 monoclonal antibody (mAb1*) and a model hexapeptide (peptide1) with the sequence YGKNGG. Thermodynamic analyses of the kinetics data revealed that higher deamidation rates are associated with predominantly more negative ΔS and, to a lesser extent, more positive ΔH. The observed differences in deamidation rates were attributed to the unique ability of each type of carboxylic acid to stabilize the energetically unfavorable transition-state conformations required for imide formation. Quantitative structure property relationship (QSPR) analysis using kinetic data demonstrated that molecular descriptors encoding for the geometric spatial distribution of atomic properties on various carboxylic acids are effective determinants for the deamidation reaction. Specifically, the number of O-O and O-H atom pairs on carboxyl and hydroxyl groups with interatomic distances of 4-5 Å on a carboxylic acid buffer appears to determine the rate of deamidation. Collectively, the results from structural and thermodynamic analyses indicate that carboxylic acids presumably form multiple hydrogen bonds and charge-charge interactions with the relevant deamidation site and provide alignment between the reactive atoms on the side chain and backbone. We propose that carboxylic acids catalyze deamidation by stabilizing a specific, energetically unfavorable transition-state conformation of l-asparaginyl intermediate II that readily facilitates bond formation between the γ-carbonyl carbon and the deprotonated backbone nitrogen for cyclic imide formation.

  20. Quantitative Structure-Property Relationship (QSPR) Modeling of Drug-Loaded Polymeric Micelles via Genetic Function Approximation

    PubMed Central

    Lin, Wenjing; Chen, Quan; Guo, Xindong; Qian, Yu; Zhang, Lijuan

    2015-01-01

    Self-assembled nano-micelles of amphiphilic polymers represent a novel anticancer drug delivery system. However, their full clinical utilization remains challenging because the quantitative structure-property relationship (QSPR) between the polymer structure and the efficacy of micelles as a drug carrier is poorly understood. Here, we developed a series of QSPR models to account for the drug loading capacity of polymeric micelles using the genetic function approximation (GFA) algorithm. These models were further evaluated by internal and external validation and a Y-randomization test in terms of stability and generalization, yielding an optimization model that is applicable to an expanded materials regime. As confirmed by experimental data, the relationship between microstructure and drug loading capacity can be well-simulated, suggesting that our models are readily applicable to the quantitative evaluation of the drug-loading capacity of polymeric micelles. Our work may offer a pathway to the design of formulation experiments. PMID:25780923

  1. Structure-Property Relationships in Atomic-Scale Junctions: Histograms and Beyond.

    PubMed

    Hybertsen, Mark S; Venkataraman, Latha

    2016-03-15

    are pulled apart has given complementary information such as the stiffness and rupture force of the molecule-metal link bond. Overall, while the BJ technique does not produce a single molecule circuit for practical applications, it has proved remarkably versatile for fundamental studies. Measured data and analysis have been combined with atomic-scale theory and calculations, typically performed for representative junction structures, to provide fundamental physical understanding of structure-function relationships. This Account integrates across an extensive series of our specific nanoscale junction studies which were carried out with the STM- and AFM-BJ techniques and supported by theoretical analysis and density functional theory based calculations, with emphasis on the physical characteristics of the measurement process and the rich data sets that emerge. Several examples illustrate the impact of measured trends based on the most probable values for key characteristics (obtained from ensembles of order 1000-10 000 individual junctions) to build a solid picture of conductance phenomena as well as attributes of the link bond chemistry. The key forward-looking question posed here is the extent to which the full data sets represented by the individual trajectories can be analyzed to address structure-function questions at the level of individual junctions. Initial progress toward physical modeling of conductance of individual junctions indicates trends consistent with physical junction structures. Analysis of junction mechanics reveals a scaling procedure that collapses existing data onto a universal force-extension curve. This research directed to understanding the distribution of structures and physical characteristics addresses fundamental questions concerning the interplay between chemical control and stochastically driven diversity.

  2. Synthesis and Structure-Property Relationships of Phosphole-Based π Systems and Their Applications in Organic Solar Cells.

    PubMed

    Matano, Yoshihiro

    2015-06-01

    Phosphole is a chemically tunable heterole, and its π-conjugated derivatives are potential candidates for optoelectronic materials. This account describes recent developments in the synthesis and structure-property relationships of π-conjugated phosphole derivatives made by my research group. Thiophene-phosphole-styrene, phosphole-acetylene-arene, oligophosphole, polyphosphole, areno[c]phosphole, and phosphole-heterole π systems are synthesized using titanacycle-mediated metathesis and palladium-catalyzed cross-coupling reactions. The structural, optical, and electrochemical properties of selected compounds are discussed. Initial results on some applications of thiophene-phosphole copolymers, acenaphtho[c]phospholes, and amine-terthiophene-phosphole donor-π-acceptor dyes in organic solar cells are described. These results give valuable information and guidelines for designing new phosphorus-containing organic materials for molecular electronics.

  3. Structure-property relationships in multilayered polymeric system and olefinic block copolymers

    NASA Astrophysics Data System (ADS)

    Khariwala, Devang

    Chapter 1. The effect of tie-layer thickness on delamination behavior of polypropylene/tie-layer/Nylon-6 multilayers is examined in this study. Various maleated polypropylene resins were compared for their effectiveness as tie-layers. Delamination failure occurred cohesively in all the multilayer systems. Two adhesion regimes were defined based on the change in slope of the linear relationship between the delamination toughness and the tie-layer thickness. The measured delamination toughness of the various tie-layers was quantitatively correlated to the damage zone length formed at the crack tip. In addition, the effect of tie-layer thickness on the multilayer tensile properties was correlated with the delamination behavior. The fracture strain of the multilayers decreased with decreasing tie-layer thickness. Examination of the prefracture damage mechanism of stretched multilayers revealed good correlation with the delamination toughness of the tie-layers. In thick tie-layers (>2microm) the delamination toughness of the tie-layers was large enough to prevent delamination of multilayers when they were stretched. In the thin tie-layers (<2microm) the delamination toughness of all the tie-layers is low and consequently delamination led to premature fracture in stretched multilayers. Chapter 2. The kinetics of interdiffusion in the layer multiplying coextrusion process was studied between the miscible Nylon-6 and EVOH pair. The interdiffusion was followed by studying multilayer films of alternating Nylon-6 and EVOH layers that were coextruded with increasing number of layers. The AFM confirmed that the layers interdiffused with increasing number of layers and were forced to a homogeneous blend after several multiplications. The oxygen permeability of Nylon-6/EVOH multilayers was strongly affected by the amount of interdiffusion. The symmetry of the multilayers made it possible to model the composition profile through the layer thickness by application of Fick's law of

  4. Effect of Fe(3)O(4) on the sedimentation and structure-property relationship of starch under different pHs.

    PubMed

    Palanikumar, S; Siva, P; Meenarathi, B; Kannammal, L; Anbarasan, R

    2014-06-01

    The nanosized ferrite (Fe3O4) was synthesized and characterized by analytical techniques such as Fourier transform infrared (FTIR) spectroscopy, UV-visible spectroscopy, fluorescence spectroscopy and transmission electron microscopy (TEM). The structure-property relationship of starch was studied under three different pHs namely 3.8, 7.1 and 12.5. The starch treated under acidic condition was degraded. In a similar manner, the structure-property relationship of starch in the presence of ferrite nanoparticles at three different pHs, as mentioned above was studied. The starch/ferrite nanocomposite prepared under acidic condition showed a degraded structure. Further, the polymer/nanocomposite systems were characterized by analytical techniques such as FTIR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vibrating sample measurement (VSM), TEM and scanning electron microscopy (SEM). Finally, the settling velocity of starch under three different pHs both in the presence and absence of Fe3O4 was carried out to ensure the role of pH and effect of Fe3O4 on the settling velocity of starch.

  5. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    SciTech Connect

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-05-15

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  6. Quantitative structure-property relationship of aromatic sulfur-containing carboxylates.

    PubMed

    Liu, Xin-hui; Yang, Zhi-feng; Wang, Lian-sheng

    2003-11-01

    Based on quantum chemical calculations, TLSER model (theoretical linear solvation energy relationships) and atomic charge approach were applied to model the partition properties(water solubility and octanol/water partition coefficient) of 96 aromatic sulfur-containing carboxylates, including phenylthio, phenylsulfinyl and phenylsulfonyl carboxylates. In comparison with TLSER models, the atomic charge models are more accurate and reliable to predict the partition properties of the kind of compounds. For the atomic charge models, the molecular descriptors are molecular surface area (S), molecular shape (O), weight( MW), net charges on carboxyl group (QOC), net charges of nitrogen atoms (QN), and the most negative atomic charge (q-) of the solute molecule. For water solubility (log SW) and octanol/water partition coefficient (log KOW), the correction coefficients r2adj (adjusted for degrees of freedom) are 0.936 and 0.938, and the standard deviations are 0.364 and 0.223, respectively.

  7. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles

    PubMed Central

    Luxenhofer, Robert; Sahay, Gaurav; Schulz, Anita; Alakhova, Daria; Bronich, Tatiana K.; Jordan, Rainer; Kabanov, Alexander V.

    2011-01-01

    The family of poly(2-oxazoline)s (POx) is being increasingly investigated in the context of biomedical applications. We tested the relative cytotoxicity of POx and were able to confirm that these polymers are typically not cytotoxic even at high concentrations. Furthermore, we report structure-uptake relationships of a series of amphiphilic POx block copolymers that have different architectures, molar mass and chain termini. The rate of endocytosis can be fine-tuned over a broad range by changing the polymer structure. The cellular uptake increases with the hydrophobic character of the polymers and is observed even at nanomolar concentrations. Considering the structural versatility of this class of polymers, the relative ease of preparation and their stability underlines the potential of POx as a promising platform candidate for the preparation of next-generation polymer therapeutics. PMID:21513750

  8. S09 Symposium KK, Structure-Property Relationships in Biomineralized and Biomimetic Composites

    SciTech Connect

    David Kisailus; Lara Estroff; Himadri S. Gupta; William J. Landis; Pablo D. Zavattieri

    2010-06-07

    The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. This symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.

  9. Quantitative Relationships Between the Cytotoxicity of Flavonoids on the Human Breast Cancer Stem-Like Cells MCF7-SC and Their Structural Properties.

    PubMed

    Jung, Hyeryoung; Shin, Soon Young; Jung, Yearam; Tran, Thao Anh; Lee, Hye Ok; Jung, Kang-Yeoun; Koh, Dongsoo; Cho, Somi Kim; Lim, Yoongho

    2015-10-01

    As some breast cancer-related deaths can be attributed to the metastasis of cancer stem cells, chemotherapeutic agents targeting breast cancer stem cells are of interest as a potential treatment. Flavonoids that exhibit cytotoxicity on breast cancer stem cells have rarely been observed. Thus, the objective of this study was to measure potential cytotoxic effects of 42 different flavonoids on the human breast cancer stem-like cell line, MCF7-SC. The relationship between flavonoid structural properties and cytotoxicity has not been reported previously; therefore, we determined quantitative structure-activity relationships using both comparative molecular field analysis and comparative molecular similarity analysis. Further biological experiments including Western blot analysis, flow cytometry, and immunofluorescence microscopy were also conducted on the most cytotoxic 8-chloroflavanone.

  10. Structure - Property Relationships of Furanyl Thermosetting Polymer Materials Derived from Biobased Feedstocks

    NASA Astrophysics Data System (ADS)

    Hu, Fengshuo

    Biobased thermosetting polymers have drawn significant attention due to their potential positive economic and ecological impacts. New materials should mimic the rigid, phenylic structures of incumbent petroleum-based thermosetting monomers and possess superior thermal and mechanical properties. Furans and triglycerides derived from cellulose, hemicellulose and plant oils are promising candidates for preparing such thermosetting materials. In this work, furanyl diepoxies, diamines and di-vinyl esters were synthesized using biobased furanyl materials, and their thermal and mechanical properties were investigated using multiple techniques. The structure versus property relationship showed that, compared with the prepared phenylic analogues, biobased furanyl thermosetting materials possess improved glassy storage modulus (E '), advanced fracture toughness, superior high-temperature char yield and comparable glass transition temperature (Tg) properties. An additive molar function analysis of the furanyl building block to the physical properties, such as Tg and density, of thermosetting polymers was performed. The molar glass transition function value (Yg) and molar volume increment value (Va,i) of the furanyl building block were obtained. Biobased epoxidized soybean oil (ESO) was modified using different fatty acids at varying molar ratios, and these prepared materials dramatically improved the critical strain energy release rate (G1c) and the critical stress intensity factor (K1c) values of commercial phenylic epoxy resins, without impairing their Tg and E ' properties. Overall, it was demonstrated that biobased furans and triglycerides possess promising potential for use in preparing high-performance thermosetting materials, and the established methodologies in this work can be utilized to direct the preparation of thermosetting materials with thermal and mechanical properties desired for practical applications.

  11. Structure-Property Relationships in Lithium, Silver, and Cesium Uranyl Borates

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Stritzinger, Jared T.; Liu, Guokui; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2010-11-09

    Four new uranyl borates, Li[UO{sub 2}B{sub 5}O{sub 9}]·H{sub 2}O (LiUBO-1), Ag[(UO{sub 2})B{sub 5}O{sub 8}(OH){sub 2}] (AgUBO-1), α-Cs[(UO{sub 2}){sub 2}B{sub 11}O{sub 16}(OH){sub 6}] (CsUBO-1), and β-Cs[(UO{sub 2}){sub 2}B{sub 11}O{sub 16}(OH){sub 6}] (CsUBO-2) were synthesized via the reaction of uranyl nitrate with a large excess of molten boric acid in the presence of lithium, silver, or cesium nitrate. These compounds share a common structural motif consisting of a linear uranyl, UO{sub 2}{sup 2+}, cation surrounded by BO{sub 3} triangles and BO{sub 4} tetrahedra to create an UO{sub 8} hexagonal bipyramidal environment around uranium. The borate anions bridge between uranyl units to create sheets. Additional BO{sub 3} triangles extend from the polyborate layers, and are directed approximately perpendicular to the sheets. In Li[(UO{sub 2})B{sub 5}O{sub 9}]·H{sub 2}O, the additional BO{sub 3} triangles connect these sheets together to form a three-dimensional framework structure. Li[UO{sub 2})B{sub 5}O{sub 9}]·H{sub 2}O and β-Cs[(UO{sub 2}){sub 2}B{sub 11}O{sub 16}(OH){sub 6}] adopt noncentrosymmetric structures, while Ag[(UO{sub 2})B{sub 5}O{sub 8}(OH){sub 2}] and α-Cs[(UO{sub 2}){sub 2}B{sub 11}O{sub 16}(OH){sub 6}] are centrosymmetric. Li[(UO{sub 2})B{sub 5}O{sub 9}]·H{sub 2}O, which can be obtained as pure phase, displays second-harmonic generation of 532 nm light from 1064 nm light. Topological relationships of all actinyl borates are developed.

  12. Structure-property relationships in low-temperature adhesives. [for inflatable structures

    NASA Technical Reports Server (NTRS)

    Schoff, C. K.; Udipi, K.; Gillham, J. K.

    1977-01-01

    Adhesive materials of aliphatic polyester, linear hydroxyl end-capped polybutadienes, or SBS block copolymers are studied with the objective to replace conventional partially aromatic end-reactive polyester-isocyanate adhesives that have shown embrittlement

  13. Structure-property relationships: Synthesis and characterization of Perovskite-related transition metal oxides

    NASA Astrophysics Data System (ADS)

    Whaley, Louis

    The fundamental structural component of perovskite-related phases is the octahedrally coordinated transition metal ion, symbolized as BO6 . Corner-sharing networks of BO6 octahedra are present in perovskites and related Ruddlesden-Popper Phases, ABO3 and AO(ABO 3)n, respectively. Face-sharing octahedra arranged into columns are characteristic of hexagonal, perovskite-related phases, and the relationship will be described in detail in Chapter 1. Edge sharing octahedra are characteristic of Keggin- and Lindquist-type polyoxometallates, which at first glance, seem unconnected from perovskites. However, Chapter 1 will show the deep connections among all of the phases mentioned above, by starting with perovskite phases. Temperature- and field-dependent, magnetic and electronic transitions are linked to the structure by overlap of metal d-orbitals with oxygen 2p orbitals, and (in special cases) direct d-d overlap. A mixed-transition metal oxide with two or more type of B ions provides an environment in which dissimilar B-ion orbitals can interact via exchange of charge carriers (hole or electron transport). The general goal in choosing two B ions is to provide an opportunity for the large combined magnetic moment and a low barrier to hopping of charge carriers, achieved by pairing a 3d-ion having 3 to 5 unpaired d-electrons, with a 4d or 5d transition metal ion, having 1 or 2 unpaired electrons, such as Fe(III) and Mo(V), which have compatible reduction potentials (i.e., they can co-exist in the same oxide, and exchange takes place with a low barrier). This research includes the following systems: an n = 2 Ruddlesden-Popper (RP) phase, Sr3Fe5/4Mo3/4O6.9, containing 3-7% Sr2FeMoO6, as intergrowths (not separate crystal grains, by high-resolution transmission electron microscopy), and G-type antiferromagnetism below 150°K and a "partial spin-reorientation transition" by powder neutron diffraction (PND), not previously reported for n = 2 RP phases in the Sr-Fe-Mo-O system

  14. Structure-Property-Performance Relationships for Organic Photovoltaics and the Utilization of Photoconducting Atomic Force Microscopy for Characterizing Organic Thin Films

    NASA Astrophysics Data System (ADS)

    Guide, Michele Elyse

    Progress in the development of organic photovoltaics (OPVs) depends on a continually growing understanding of the effects of chemical composition or processing method on the optoelectronic and structural properties and, in turn, how those properties influence device performance. Unfortunately, no single characterization method can provide all of the necessary information to develop these structure-property-performance relationships. This thesis details examples of structure-property-performance studies in which multiple characterization methods are used to identify the root cause of limited device performance for a particular photovoltaic system. As a large part of this work, the refinement and utilization of a nanoscale characterization technique, namely photoconducting atomic force microscopy (pc-AFM) is presented, not as an alternative to other characterization methods, but as a unique approach to characterizing the nanoscale morphology and local optoelectronic properties of an organic thin film simultaneously. The goal of this work was to make pc-AFM as robust and reliable a characterization tool and as close an analog to bulk OPV performance testing as possible. The first sections of this thesis focus on the development of pc-AFM for the characterization of OPVs. The capabilities of pc-AFM at the time this research commenced are illustrated in a study of a multilayered p/i/n architecture OPV system comprising a thermoset small molecule donor, tetrabenzoporphyrin (BP) and one of two structurally similar soluble fullerene derivative acceptors. By investigating the nanoscale topography, dark current, and photocurrent in each layer of these multilayer devices, the differences in bulk device performance can be rationalized and the composition of specific morphological features can be identified. At the same time, this study demonstrates how interpretation of pc-AFM measurements was not straightforward and required knowledge of the bulk performance. This issue

  15. Uniaxial Extensional Behavior of A--B--A Thermoplastic Elastomers: Structure-Properties Relationship and Modeling

    NASA Astrophysics Data System (ADS)

    Martinetti, Luca

    relation between the observed power-law exponent and molecular structure was established. The measured low-frequency response, originating from the incipient glass transition of the A domains, was exploited and extrapolated to lower frequencies via a sequential application of the fractional Maxwell model and the fractional Zener model. With only a few, physically meaningful material parameters a realistic description of the A--B--A self-similar relaxation was obtained over a frequency range much broader than the experimental window and not accessible via time-temperature superposition. The relationship between large-strain response and network structure of A--B--A triblocks was investigated, by examining (1) the effect of linear relaxation mechanisms on the tensile behavior, (2) the sources of elastic and viscoelastic nonlinearities, and (3) the strain rate dependence of the ultimate properties. For the first time in the literature, the complex high-dimensional rheological signature of chewing gum was analyzed, especially in response to nonlinear and unsteady deformations in both shear and extension. A unique rheological fingerprint was obtained that is sufficient to provide a new robust definition of chewing gum that is independent of specific molecular composition. (Abstract shortened by ProQuest.).

  16. Novel multiphase systems based on thermoplastic chitosan: Analysis of the structure-properties relationships

    NASA Astrophysics Data System (ADS)

    Avérous, Luc; Pollet, Eric

    2016-03-01

    In the last years, biopolymers have attracted great attention. It is for instance the case of chitosan, a linear polysaccharide. It is a deacetylated derivative of chitin, which is the second most abundant polysaccharide found in nature after cellulose. Chitosan has been found to be nontoxic, biodegradable, biofunctional, and biocompatible in addition to having antimicrobial and antifungal properties, and thus has a great potential for environmental (packaging,) or biomedical applications.For preparing chitosan-based materials, only solution casting or similar methods have been used in all the past studies. Solution casting have the disadvantage in low efficiency and difficulty in scaling-up towards industrial applications. Besides, a great amount of environmentally unfriendly chemical solvents are used and released to the environment in this method. The reason for not using a melt processing method like extrusion or kneading in the past studies is that chitosan, like many other polysaccharides such as starch, has very low thermal stability and degrade prior to melting. Therefore, even if the melt processing method is more convenient and highly preferred for industrial production, its adaptation for polysaccharide-based materials remains very difficult. However, our recently published studies has demonstrated the successful use of an innovative melt processing method (internal mixer, extrusion,) as an alternative route to solution casting, for preparing materials based on thermoplastic chitosan. These promising thermoplastic materials, obtained by melt processing, have been the main topic of recent international projects, with partners from different countries Multiphase systems based on various renewable plasticizers have been elaborated and studied. Besides, different blends, and nano-biocomposites based on nanoclays, have been elaborated and fully analyzed. The initial consortium of this vast project was based on an international consortium (Canada, Australia

  17. Structure-property relationship of metal-organic frameworks (MOFs) and physisorbed off-gas radionuclides.

    SciTech Connect

    Nenoff, Tina Maria; Chupas, Peter J.; Garino, Terry J.; Rodriguez, Mark Andrew; Chapman, Karena W.; Sava, Dorina Florentina

    2010-11-01

    We report on the host-guest interactions between metal-organic frameworks (MOFs) with various profiles and highly polarizable molecules (iodine), with emphasis on identifying preferential sorption sites in these systems. Radioactive iodine 129I, along with other volatile radionuclides (3H, 14C, Xe and Kr), represents a relevant component in the off-gas resulted during nuclear fuel reprocessing. Due to its very long half-life, 15.7 x 106 years, and potential health risks in humans, its efficient capture and long-term storage is of great importance. The leading iodine capture technology to date is based on trapping iodine in silver-exchanged mordenite. Our interests are directed towards improving existent capturing technologies, along with developing novel materials and alternative waste forms. Herein we report the first study that systematically monitors iodine loading onto MOFs, an emerging new class of porous solid-state materials. In this context, MOFs are of particular interest as: (i) they serve as ideal high capacity storage media, (ii) they hold potential for the selective adsorption from complex streams, due to their high versatility and tunability. This work highlights studies on both newly developed in our lab, and known highly porous MOFs that all possess distinct characteristics (specific surface area, pore volume, pore size, and dimension of the window access to the pore). The materials were loaded to saturation, where elemental iodine was introduced from solution, as well as from vapor phase. Uptakes in the range of {approx}125-150 wt% I2 sorbed were achieved, indicating that these materials outperform all other solid adsorbents to date in terms of overall capacity. Additionally, the loaded materials can be efficiently encapsulated in stable waste forms, including as low temperature sintering glasses. Ongoing studies are focused on gathering qualitative information with respect to localizing the physisorbed iodine molecules within the frameworks: X

  18. Composition-structure-properties relationship of strontium borate glasses for medical applications.

    PubMed

    Hasan, Muhammad S; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-07-01

    We have synthesized TiO2 doped strontium borate glasses, 70B2O3-(30-x)SrO-xTiO2 and 70B2 O3 -20SrO(10-x)Na2 O-xTiO2 . The composition dependence of glass structure, density, thermal properties, durability, and cytotoxicity of degradation products was studied. Digesting the glass in mineral acid and detecting the concentrations of various ions using an ICP provided the actual compositions that were 5-8% deviated from the theoretical values. The structure was investigated by means of (11)B magic angle spinning (MAS) NMR spectroscopy. DSC analyses provided the thermal properties and the degradation rates were measured by measuring the weight loss of glass disc-samples in phosphate buffered saline at 37°C in vitro. Finally, the MTT assay was used to analyze the cytotoxicity of the degradation products. The structural analysis revealed that replacing TiO2 for SrO or Na2 O increased the BO3/BO4 ratio suggesting the network-forming role of TiO2 . Thermal properties, density, and degradation rates also followed the structural changes. Varying SrO content predominantly controlled the degradation rates, which in turn controlled the ion release kinetics. A reasonable control (2-25% mass loss in 21 days) over mass loss was achieved in current study. Even though, very high concentrations (up to 5500 ppm B, and 1200 ppm Sr) of ions were released from the ternary glass compositions that saturated the degradation media in 7 days, the degradation products from ternary glass system was found noncytotoxic. However, quaternary glasses demonstrated negative affect on cell viability due to very high (7000 ppm) Na ion concentration. All the glasses investigated in current study are deemed fast degrading with further control over degradation rates, release kinetics desirable.

  19. Investigations of the processing-structure-property relationships of selected semicrystalline polymers

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew Brian

    2000-10-01

    An investigation was carried out on a three stage method (extrusion/annealing/uniaxial-stretching) (MEAUS) utilized to produce semicrystalline polymeric microporous membranes. The two semicrystalline polymers studied were selected based on a set-of-prerequisites proposed for the formation of highly porous membranes via the method in question. The prerequisites included "fast" crystallization kinetics, presence of an alphac relaxation, ability to form a planar stacked lamellar morphology with a "good" crystalline orientation upon melt-extrusion, and rapid heat transfer of the film during extrusion. The first polymer was isotactic poly(4-methyl-1-pentene) (PMP), and the second was polyoxymethylene (POM). Three PMP resins were studied, which differed in weight average molecular weight. Three POM resins were also investigated where two of resins were characterized by relatively narrow molecular weight distributions (MWD) ca 2 while the third POM resin possessed a MWD ca 5.9. The melt-extruded film morphologies and orientation values were a consequence of the melt-relaxation times as a result of the resin characteristics and/or the melt-extrusion conditions. Following the extrusion stage, the effect of annealing (second stage) on film properties was investigated. The annealing variables investigated included the temperature, time, and level of extension applied during annealing. The annealed films were then subjected to the uniaxially stretching stage (third stage) consisting of a cold and hot step, respectively, where deformation was along the extrusion direction. The variables of interest included the cold and hot stretch temperature and extension level. It was found that starting precursor morphology and orientation, annealing conditions, and stretching variables impact the final film microporous morphology and permeability. Additionally, the proposed prerequisites were verified in both the PMP and POM film series. In addition to the MEAUS study, a comprehensive

  20. Structure-property-glass transition relationships in non-isocyanate polyurethanes investigated by dynamic nanoindentation

    NASA Astrophysics Data System (ADS)

    Weyand, Stephan; Blattmann, Hannes; Schimpf, Vitalij; Mülhaupt, Rolf; Schwaiger, Ruth

    2016-07-01

    Newly developed green-chemistry approaches towards the synthesis of non-isocyanate polyurethane (NIPU) systems represent a promising alternative to polyurethanes (PU) eliminating the need for harmful ingredients. A series of NIPU systems were studied using different nanoindentation techniques in order to understand the influence of molecular parameters on the mechanical behavior. Nanoindentation revealed a unique characteristic feature of those materials, i.e. stiffening with increasing deformation. It is argued that the origin of this observed stiffening is a consequence of the thermodynamic state of the polymer network, the molecular characteristics of the chemical building blocks and resulting anisotropic elastic response of the network structure. Flat-punch nanoindentation was applied in order to characterize the constitutive viscoelastic nature of the materials. The complex modulus shows distinct changes as a function of the NIPU network topology illustrating the influence of the chemical building blocks. The reproducibility of the data indicates that the materials are homogeneous over the volumes sampled by nanoindentation. Our study demonstrates that nanoindentation is very well-suited to investigate the molecular characteristics of NIPU materials that cannot be quantified in conventional experiments. Moreover, the technique provides insight into the functional significance of complex molecular architectures thereby supporting the development of NIPU materials with tailored properties.

  1. Preparation of TiO2/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship.

    PubMed

    Bittmann, Birgit; Haupert, Frank; Schlarb, Alois Karl

    2011-01-01

    By the insertion of nanoparticles into a polymer matrix a considerable improvement of mechanical properties can be achieved. Therefore, a homogeneous distribution of fillers within the matrix is required. In the present paper the dispersion of TiO(2)-nanoparticles in a DGEBA (diglycidyl ether of bisphenol A) epoxy resin by means of an ultrasonic horn was studied. The systematic examination of process parameters of a previous study was completed in order to determine the optimum processing window leading to a good dispersion result without degrading the molecular structure of the epoxy resin. Therefore, particle sizes were examined using a dynamic light scattering device, and the effect of the ultrasonic treatment on the resin was surveyed by FT-IR spectroscopy (Fourier transform infrared spectroscopy). Furthermore, the mechanical performance of the nanocomposites was examined for various contents of TiO(2)-nanoparticles to show that the materials prepared by ultrasonic dispersion show an improved property's profile. In order to understand the reinforcing mechanisms of nanoparticles in the polymer matrix providing improved mechanical properties, scanning electron microscope (SEM) pictures of the fracture surfaces of the samples were carried out, which revealed that nanocomposites show a significantly rougher surface than the neat epoxy resin. This indicates a change in the fracture mechanisms.

  2. Structure-property relationships in carbon nanotube-polymer systems: Influence of noncovalent stabilization techniques

    NASA Astrophysics Data System (ADS)

    Liu, Lei

    A variety of experiments were carried out to study the dispersion and microstructure of carbon nanotubes in aqueous suspensions and polymer composites with the goal to improve the electrical conductivity of the composites containing nanotubes. Epoxy composites containing covalently and noncovalently functionalized nanotubes were compared in terms of electrical and mechanical behavior. Covalent functionalization of nanotubes is based on chemical attachments of polyethylenimine (PEI) whereas noncovalent functionalization takes place through physical mixing of nanotubes and PEI. The electrical conductivity is reduced in composites containing covalently functionalized nanotubes due to damage of the tube's conjugated surface that reduces intrinsic conductivity. Conversely, the mechanical properties are always better for epoxy composites containing covalently functionalized nanotubes. Clay particles were used as a rigid dispersing aid for nanotubes in aqueous suspensions and epoxy composites. When both nanotubes and clay were introduced into water by sonication, the suspension is stable for weeks, whereas the nanotubes precipitate almost instantly for the suspension without clay. In epoxy composites, nanotubes form separated clusters of aggregation, whereas a continuous three-dimensional nanotube network is achieved when clay is introduced. Electrical conductivity of the epoxy composite is shown to significantly improve with a small addition of clay and the percolation threshold is simultaneously decreased (from 0.05 wt% nanotubes, when there is no clay, to 0.01 wt% when 2 wt% clay is introduced). The addition of clay can also improve the mechanical properties of the composites, especially at higher clay concentration. Weak polyelectrolytes (i.e., pH-responsive polymers) were also studied for their interaction with nanotubes and the electrical properties of the dried composite films. When dispersed by sonication, Nanotubes show pH-dependent dispersion and stability in

  3. Structure-property relationships in Sterculia urens/polyvinyl alcohol electrospun composite nanofibres.

    PubMed

    Patra, Niranjan; Martinová, Lenka; Stuchlik, Martin; Černík, Miroslav

    2015-04-20

    Sterculia urens (Gum Karaya) based polyvinyl alcohol (PVA) composite nanofibres have been successfully electrospun after chemical modification of S. urens to increase its solubility. The effect of deacetylated S. urens (DGK) on the morphology, structure, crystallization behaviour and thermal stability was studied for spuned fibres before and after spinning post treatment. An apparent increase in the PVA crystallinity were observed in the PVA-DGK composite nanofibres indicating S. urens induced crystallization of PVA. The pure PVA nanofibre and the nanofibres of PVA-DGK composites were introduced to post electrospinning heat treatment at 150°C for 15 min. The presence of sterculia gum reduced the fibre diameter and distribution of the nanofibres due to the increased stretching of the fibres during spinning. Switching of the thermal behaviour occurs due to post spinning heat treatments.

  4. Effect of construction of TiO2 nanotubes on platelet behaviors: Structure-property relationships.

    PubMed

    Huang, Qiaoling; Yang, Yun; Zheng, Dajiang; Song, Ran; Zhang, Yanmei; Jiang, Pinliang; Vogler, Erwin A; Lin, Changjian

    2017-03-15

    Blood compatibility of TiO2 nanotubes (TNTs) has been assessed in rabbit platelet-rich plasma (PRP), which combines activation of both blood plasma coagulation and platelets. We find that (i) amorphous TiO2 nanotubes (TNTs) with relatively larger outer diameters led to reduced platelet adhesion/activation, (ii) TNTs with relatively smaller outer diameters in a predominately rutile phase also inhibited platelet adhesion and activation, and (iii) a pervasive fibrin network formed on larger outer diameter TNTs in a predominately anatase phase. Thus, this study suggests that combined effect of crystalline phase and surface chemistry controls blood-contact behavior of TNTs. A more comprehensive mechanism is proposed for understanding hemocompatibility of TiO2 which might prove helpful as a guide to prospective design of TiO2-based biomaterials.

  5. Structure-property relationships in thermomechanically treated beryllia dispersed nickel alloys

    NASA Technical Reports Server (NTRS)

    Grewal, M. S.; Sastri, S. A.; Grant, N. J.

    1975-01-01

    BeO dispersed nickel alloys, produced by powder metallurgy techniques, were studied extensively in stress rupture at 815, 982, and 1093 C (1088, 1255, and 1366 K) and by transmission electron microscopy. The alloys were subjected to a variety of thermomechanical treatments (TMT) to determine the benefits of TMT on properties. It is shown that the use of intermediate annealing treatments after 10 pct reduction steps is highly beneficial on both low and high temperature properties. It is indicated that the high temperature strength is not primarily dependent on the grain aspect ratio or texture but depends strongly on the dislocation density and distribution of dislocations in a stable substructure which is pinned by the fine oxide dispersion.

  6. Understanding nanocellulose chirality and structure-properties relationship at the single fibril level

    NASA Astrophysics Data System (ADS)

    Usov, Ivan; Nyström, Gustav; Adamcik, Jozef; Handschin, Stephan; Schütz, Christina; Fall, Andreas; Bergström, Lennart; Mezzenga, Raffaele

    2015-06-01

    Nanocellulose fibrils are ubiquitous in nature and nanotechnologies but their mesoscopic structural assembly is not yet fully understood. Here we study the structural features of rod-like cellulose nanoparticles on a single particle level, by applying statistical polymer physics concepts on electron and atomic force microscopy images, and we assess their physical properties via quantitative nanomechanical mapping. We show evidence of right-handed chirality, observed on both bundles and on single fibrils. Statistical analysis of contours from microscopy images shows a non-Gaussian kink angle distribution. This is inconsistent with a structure consisting of alternating amorphous and crystalline domains along the contour and supports process-induced kink formation. The intrinsic mechanical properties of nanocellulose are extracted from nanoindentation and persistence length method for transversal and longitudinal directions, respectively. The structural analysis is pushed to the level of single cellulose polymer chains, and their smallest associated unit with a proposed 2 × 2 chain-packing arrangement.

  7. Kinetic Control of Aqueous Hydrolysis: Modulating Structure/Property Relationships in Inorganic Crystals

    NASA Astrophysics Data System (ADS)

    Neilson, James R.

    2011-12-01

    A grand challenge in materials science and chemistry revolves around the preparation of materials with desired properties by controlling structure on multiple length scales. Biology approaches this challenge by evolving tactics to transform soluble precursors into materials and composites with macro-scale and atomic precision. Studies of biomineralization in siliceous sponges led to the discovery of slow, catalytic hydrolysis of molecular precursors in the biogenesis of silica skeletal elements with well defined micro- and nano-scale architectures. However, the role of aqueous hydrolysis in the limit of kinetic control is not well understood; this allows us to form a central hypothesis: that the kinetics of hydrolysis modulate the structures of materials and their properties. As a model system, the diffusion of a simple hydrolytic catalyst (such as ammonia) across an air-water interface into a metal salt solution reproduces some aspects of the chemistry found in biomineralization, namely kinetic and vectorial control. Variation of the catalyst concentration modulates the hydrolysis rate, and thus alters the resulting structure of the inorganic crystals. Using aqueous solutions of cobalt(II) chloride, each product (cobalt hydroxide chloride) forms with a unique composition, despite being prepared from identical mother liquors. Synchrotron X-ray total scattering methods are needed to locate the atomic positions in the material, which are not aptly described by a traditional crystallographic unit cell due to structural disorder. Detailed definition of the structure confirms that the hydrolysis conditions systematically modulate the arrangement of atoms in the lattice. This tightly coupled control of crystal formation and knowledge of local and average structures of these materials provides insight into the unusual magnetic properties of these cobalt hydroxides. The compounds studied show significant and open magnetization loops with little variation with composition

  8. Structure-property relationship in polyethylene reinforced by polyethylene-grafted multi-walled carbon nanotubes.

    PubMed

    Causin, Valerio; Yang, Bing-Xing; Marega, Carla; Goh, Suat Hong; Marigo, Antonio

    2008-04-01

    Polyethylene-grafted multiwalled carbon nanotubes (PE-g-MWNT) were used to reinforce polyethylene (PE). The nanocomposites possessed not only improved stiffness and strength, but also increased ductility and toughness. The effects on the structure and morphology of composites due to pristine multiwalled carbon nanotubes (MWNT) and PE-g-MWNT were studied and compared using small angle X-ray scattering (SAXS), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The SAXS long period, crystalline layer thickness and crystallinity of polymer lamellar stacks were found to decrease significantly in MWNT composites, while the decreases were much smaller in PE-g-MWNT composites. PE-g-MWNT allowed a more efficient and unhindered crystallization at a lamellar level, while MWNT disrupted the order of lamellar stacks, probably because of their tendency to aggregate. The SAXS crystallinity and the mechanical properties of the composites showed similar trends as a function of MWNT content. This suggested that the improvement of the interfacial strength between polymer and carbon nanotubes was a result of synergistic effects of better dispersion of the filler, better stress transfer, due to the grafting of polymer and MWNT, and the nucleation of a crystalline phase around MWNT. The latter effect was confirmed by measurements of kinetics of non-isothermal crystallization.

  9. Covalent attachment of nanoparticles to copolymer surfaces to control structure-property relationships

    NASA Astrophysics Data System (ADS)

    McConnell, Marla D.

    Interest in functional nanoparticles has increased in recent years, because their small size gives them unique properties. Surface assembly of nanoparticles is particularly appealing, because it can create surfaces with tunable wetting and optical properties. This thesis presents a novel method for the covalent assembly of silica nanoparticles on random copolymer films via covalent bonding, and the subsequent analysis of the wetting and optical properties of these functionalized surfaces. First, the kinetics of the covalent attachment of amine-modified silica nanoparticles to poly(styrene-ran-acrylic acid) were investigated. The surface swelling of the copolymer films upon exposure to reaction solvents was studied with in situ AFM. The films' surface roughness controlled the nanoparticle attachment kinetics, as well as the final nanoparticle coverage. For particle diameters on the order of the roughness features, 70% surface coverage was achieved, while particles with diameters much larger than the surface features reached only 30% coverage. The wetting properties of the nanoparticle surfaces were investigated as a function of particle coverage and diameter. At low coverages of small particles, the surfaces exhibited Wenzel-type wetting behavior. At high particle coverages, the surfaces showed Cassie-type wetting. Finally, the particles were observed to sink into the polymer film with increasing reaction time. This sinking, as well as the magnitude of the contact angles achieved at high particle coverages, led to the hypothesis that polymer chains wet onto the surface of the silica particles. Core-shell Janus particles were prepared by electrostatic assembly of gold nanoparticles on the unprotected surfaces of the silica particles. The plasmon resonance absorption of the gold particles underwent a red shift upon formation of closely-packed networks on the silica particle surfaces. By applying gold, chromium, and gold:palladium coatings to the Janus particles and

  10. Composition-structure-property relationships for non-classical ionomer cements formulated with zinc-boron germanium-based glasses.

    PubMed

    Zhang, Xiaofang; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-04-01

    Non-classical ionomer glasses like those based on zinc-boron-germanium glasses are of special interest in a variety of medical applications owning to their unique combination of properties and potential therapeutic efficacy. These features may be of particular benefit with respect to the utilization of glass ionomer cements for minimally invasive dental applications such as the atruamatic restorative treatment, but also for expanded clinical applications in orthopedics and oral-maxillofacial surgery. A unique system of zinc-boron-germanium-based glasses (10 compositions in total) has been designed using a Design of Mixtures methodology. In the first instance, ionomer glasses were examined via differential thermal analysis, X-ray diffraction, and (11)B MAS NMR spectroscopy to establish fundamental composition - structure-property relationships for the unique system. Secondly, cements were synthesized based on each glass and handling characteristics (working time, Wt, and setting time, St) and compression strength were quantified to facilitate the development of both experimental and mathematical composition-structure-property relationships for the new ionomer cements. The novel glass ionomer cements were found to provide Wt, St, and compression strength in the range of 48-132 s, 206-602 s, and 16-36 MPa, respectively, depending on the ZnO/GeO2 mol fraction of the glass phase. A lower ZnO mol fraction in the glass phase provides higher glass transition temperature, higher N4 rate, and in combination with careful modulation of GeO2 mol fraction in the glass phase provides a unique approach to extending the Wt and St of glass ionomer cement without compromising (in fact enhancing) compression strength. The data presented in this work provide valuable information for the formulation of alternative glass ionomer cements for applications within and beyond the dental clinic, especially where conventional approaches to modulating working time and strength exhibit co

  11. Predicting equilibrium vapour pressure isotope effects by using artificial neural networks or multi-linear regression - A quantitative structure property relationship approach.

    PubMed

    Parinet, Julien; Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gerald; Höhener, Patrick

    2015-09-01

    We aim at predicting the effect of structure and isotopic substitutions on the equilibrium vapour pressure isotope effect of various organic compounds (alcohols, acids, alkanes, alkenes and aromatics) at intermediate temperatures. We attempt to explore quantitative structure property relationships by using artificial neural networks (ANN); the multi-layer perceptron (MLP) and compare the performances of it with multi-linear regression (MLR). These approaches are based on the relationship between the molecular structure (organic chain, polar functions, type of functions, type of isotope involved) of the organic compounds, and their equilibrium vapour pressure. A data set of 130 equilibrium vapour pressure isotope effects was used: 112 were used in the training set and the remaining 18 were used for the test/validation dataset. Two sets of descriptors were tested, a set with all the descriptors: number of(12)C, (13)C, (16)O, (18)O, (1)H, (2)H, OH functions, OD functions, CO functions, Connolly Solvent Accessible Surface Area (CSA) and temperature and a reduced set of descriptors. The dependent variable (the output) is the natural logarithm of the ratios of vapour pressures (ln R), expressed as light/heavy as in classical literature. Since the database is rather small, the leave-one-out procedure was used to validate both models. Considering higher determination coefficients and lower error values, it is concluded that the multi-layer perceptron provided better results compared to multi-linear regression. The stepwise regression procedure is a useful tool to reduce the number of descriptors. To our knowledge, a Quantitative Structure Property Relationship (QSPR) approach for isotopic studies is novel.

  12. The relationship between star formation activity and galaxy structural properties in CANDELS and a semi-analytic model

    NASA Astrophysics Data System (ADS)

    Brennan, Ryan; Pandya, Viraj; Somerville, Rachel S.; Barro, Guillermo; Bluck, Asa F. L.; Taylor, Edward N.; Wuyts, Stijn; Bell, Eric F.; Dekel, Avishai; Faber, Sandra; Ferguson, Henry C.; Koekemoer, Anton M.; Kurczynski, Peter; McIntosh, Daniel H.; Newman, Jeffrey A.; Primack, Joel

    2017-02-01

    We study the correlation of galaxy structural properties with their location relative to the SFR-M* correlation, also known as the star formation `star-forming main sequence' (SFMS), in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey and Galaxy and Mass Assembly Survey and in a semi-analytic model (SAM) of galaxy formation. We first study the distribution of median Sérsic index, effective radius, star formation rate (SFR) density and stellar mass density in the SFR-M* plane. We then define a redshift-dependent main sequence and examine the medians of these quantities as a function of distance from this main sequence, both above (higher SFRs) and below (lower SFRs). Finally, we examine the distributions of distance from the main sequence in bins of these quantities. We find strong correlations between all of these galaxy structural properties and the distance from the SFMS, such that as we move from galaxies above the SFMS to those below it, we see a nearly monotonic trend towards higher median Sérsic index, smaller radius, lower SFR density, and higher stellar density. In the SAM, bulge growth is driven by mergers and disc instabilities, and is accompanied by the growth of a supermassive black hole which can regulate or quench star formation via active galactic nucleus feedback. We find that our model qualitatively reproduces the trends described above, supporting a picture in which black holes and bulges co-evolve, and active galactic nucleus feedback plays a critical role in moving galaxies off of the SFMS.

  13. Quantitative structure--property relationships for enhancing predictions of synthetic organic chemical removal from drinking water by granular activated carbon.

    PubMed

    Magnuson, Matthew L; Speth, Thomas F

    2005-10-01

    Granular activated carbon is a frequently explored technology for removing synthetic organic contaminants from drinking water sources. The success of this technology relies on a number of factors based not only on the adsorptive properties of the contaminant but also on properties of the water itself, notably the presence of substances in the water which compete for adsorption sites. Because it is impractical to perform field-scale evaluations for all possible contaminants, the pore surface diffusion model (PSDM) has been developed and used to predict activated carbon column performance using single-solute isotherm data as inputs. Many assumptions are built into this model to account for kinetics of adsorption and competition for adsorption sites. This work further evaluates and expands this model, through the use of quantitative structure-property relationships (QSPRs) to predict the effect of natural organic matter fouling on activated carbon adsorption of specific contaminants. The QSPRs developed are based on a combination of calculated topographical indices and quantum chemical parameters. The QSPRs were evaluated in terms of their statistical predictive ability,the physical significance of the descriptors, and by comparison with field data. The QSPR-enhanced PSDM was judged to give results better than what could previously be obtained.

  14. Quantitative structure-property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase.

    PubMed

    Rojas, Cristian; Duchowicz, Pablo R; Tripaldi, Piercosimo; Pis Diez, Reinaldo

    2015-11-27

    A quantitative structure-property relationship (QSPR) was developed for modeling the retention index of 1184 flavor and fragrance compounds measured using a Carbowax 20M glass capillary gas chromatography column. The 4885 molecular descriptors were calculated using Dragon software, and then were simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceeded in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptor blocks, and the last one by analyzing only 3D-descriptor families. The models were validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-many-out were applied, together with Y-randomization and applicability domain analysis. The developed model was used to estimate the I of a set of 22 molecules. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the Randić-like index from reciprocal squared distance matrix has a high relevance for this purpose.

  15. Study of the micro-structural properties of RISUG--a newly developed male contraceptive.

    PubMed

    Kumar, Sunil; Roy, Sohini; Chaudhury, Koel; Sen, Prasenjit; Guha, Sujoy K

    2008-07-01

    A new male contraceptive given the name RISUG (an acronym for reversible inhibition of sperm under guidance) and presently undergoing advanced clinical trials has been developed. When injected into the lumen of the vas deferens, its polyelectrolytic nature induces a surface charge imbalance on sperm membrane system leading to the leakage of enzymes essential for fertilization. Contact mode atomic force microscopy (AFM) has been used to analyze quantitatively the micro-structural properties of RISUG and its precipitate in various systems. Hydrolysis of the contraceptive gel resulted in the formation of pores of varying dimensions. RISUG being a highly charged molecule, as evident from zeta potential measurements, has a tendency to form a complex with ionic biomolecules present in the seminal plasma. This is supported by the experimental observations using AFM. This RISUG-biomolecule complex possibly acts as an ionic trap for spermatozoa passing through the vas deferens. Micro-structural properties of RISUG including amplitude (root mean square, peak-to-valley distance, skewness and kurtosis) and spatial roughness have been studied to understand its response to various physiological conditions. Significant alterations in the surface charge distribution of the sperm cell is observed on exposure to RISUG.

  16. Chemical Modification of Graphene Oxide through Diazonium Chemistry and Its Influence on the Structure-Property Relationships of Graphene Oxide-Iron Oxide Nanocomposites.

    PubMed

    Rebuttini, Valentina; Fazio, Enza; Santangelo, Saveria; Neri, Fortunato; Caputo, Gianvito; Martin, Cédric; Brousse, Thierry; Favier, Frédéric; Pinna, Nicola

    2015-08-24

    4-Carboxyphenyl groups are covalently grafted onto graphene oxide via diazonium chemistry for studying their role on the adsorption of iron oxide nanoparticles. The nanoparticles are deposited via a novel phase-transfer approach involving specific interactions at the interface between two immiscible solvents. The increased density and the homogeneous distribution of surface carboxyl moieties enable the preparation of a nanocomposite with improved iron oxide distribution and loading. Structure-properties relationships are investigated by analysing the electrochemical properties of the nanocomposites, which are regarded as promising active materials for application in supercapacitors. It is demonstrated that the nature of the interactions between the components similarly affects the overall electrochemical performances of the nanocomposites and the structure of the materials.

  17. On the Development and Use of Large Chemical Similarity Networks, Informatics Best Practices and Novel Chemical Descriptors towards Materials Quantitative Structure Property Relationships

    ERIC Educational Resources Information Center

    Krein, Michael

    2011-01-01

    After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright…

  18. Design, synthesis, and characterization of new phosphazene related materials, and study the structure property correlations

    NASA Astrophysics Data System (ADS)

    Tian, Zhicheng

    The work described in this thesis is divided into three major parts, and all of which involve the exploration of the chemistry of polyphosphazenes. The first part (chapters 2 and 3) of my research is synthesis and study polyphoshazenes for biomedical applications, including polymer drug conjugates and injectable hydrogels for drug or biomolecule delivery. The second part (chapters 4 and 5) focuses on the synthesis of several organic/inorganic hybrid polymeric structures, such as diblock, star, brush and palm tree copolymers using living cationic polymerization and atom transfer radical polymerization techniques. The last part (chapters 6 and 7) is about exploratory synthesis of new polymeric structures with fluorinated side groups or cycloaliphatic side groups, and the study of new structure property relationships. Chapter 1 is an outline of the fundamental concepts for polymeric materials, as such the history, important definitions, and some introductory material for to polymer chemistry and physics. The chemistry and applications of phopshazenes is also briefly described. Chapter 2 is a description of the design, synthesis, and characterization of development of a new class of polymer drug conjugate materials based on biodegradable polyphosphazenes and antibiotics. Poly(dichlorophosphazene), synthesized by a thermal ring opening polymerization, was reacted with up to 25 mol% of ciprofloxacin or norfloxacin and three different amino acid esters (glycine, alanine, or phenylalanine) as cosubstituents via macromolecular substitutions. Nano/microfibers of several selected polymers were prepared by an electrospinning technique. Chapter 3 is concerned with the development of a class of injectable and biodegradable hydrogels based on water-soluble poly(organophosphazenes) containing oligo(ethylene glycol) methyl ethers and glycine ethyl esters. The hydrogels can be obtained by mixing alpha-cyclodextrin aqueous solution and poly(organophosphazenes) aqueous solution in

  19. Zn1-xCoxO nanoparticles: Synthesis and study of enhanced optical and structural properties

    NASA Astrophysics Data System (ADS)

    Ahad, Abdul; Majid, Suhail; Rahman, F.

    2016-05-01

    We have synthesized the Zn1-xCoxO (x= 0, 0.01, 0.03 and 0.05) using Sol-gel method. The structural properties were characterized using X-ray diffraction. Optical properties were characterized using UV-VIS and FT-IR spectroscopy. The lattice parameters were refined using Reitveld refinement which also reveals that all the peaks in XRD patterns were indexed in the wurtzite type hexagonal structure with space group P 63 mc. The FT-IR spectra confirmed the presence of functional groups and chemical bonding. The band gap of each sample was calculated by adopting Kubelka-Munk transformed reflectance spectra and effect of doping on band gap is also studied.

  20. Structural properties and thermodynamics of water clusters: a Wang-Landau study.

    PubMed

    Yin, Junqi; Landau, D P

    2011-02-21

    The temperature dependence of structural properties and thermodynamic behavior of water clusters has been studied using Wang-Landau sampling. Four potential models, simple point charge/extended (SPC/E), transferable intermolecular potential 3 point (TIP3P), transferable intermolecular potential 4 point (TIP4P), and Gaussian charge polarizable (GCP), are compared for ground states and properties at finite temperatures. Although the hydrogen bond energy and the distance of the nearest-neighbor oxygen pair are significantly different for TIP4P and GCP models, they approach to similar ground state structures and melting transition temperatures in cluster sizes we considered. Comparing with TIP3P, SPC/E model provides properties closer to that of TIP4P and GCP.

  1. Structural properties and thermodynamics of water clusters: A Wang-Landau study

    NASA Astrophysics Data System (ADS)

    Yin, Junqi; Landau, D. P.

    2011-02-01

    The temperature dependence of structural properties and thermodynamic behavior of water clusters has been studied using Wang-Landau sampling. Four potential models, simple point charge/extended (SPC/E), transferable intermolecular potential 3 point (TIP3P), transferable intermolecular potential 4 point (TIP4P), and Gaussian charge polarizable (GCP), are compared for ground states and properties at finite temperatures. Although the hydrogen bond energy and the distance of the nearest-neighbor oxygen pair are significantly different for TIP4P and GCP models, they approach to similar ground state structures and melting transition temperatures in cluster sizes we considered. Comparing with TIP3P, SPC/E model provides properties closer to that of TIP4P and GCP.

  2. Two-photon polarity probes built from octupolar fluorophores: synthesis, structure-properties relationships, and use in cellular imaging.

    PubMed

    Le Droumaguet, Céline; Sourdon, Aude; Genin, Emilie; Mongin, Olivier; Blanchard-Desce, Mireille

    2013-12-01

    A series of octupolar fluorophores built from a triphenylamine (TPA) core connected to electron-withdrawing (EW) peripheral groups through conjugated spacers has been synthesized. Their photoluminescence, solvatochromism, and two-photon absorption (2PA) properties were systematically investigated to derive structure-property relationships. All derivatives exhibit two 2PA bands in the 700-1000 nm region: a first band at low energy correlated with a core-to-periphery intramolecular charge transfer that leads to an intense 1PA in the blue-visible range, and a second more intense band at higher energy due to an efficient coupling of the branches through the TPA core. Increasing the strength of the EW end groups or the length of the conjugated spacers and replacing triple-bond linkers with double bonds induces both enhancement and broadening of the 2PA responses, thereby leading to cross-sections up to 2100 GM at peak and higher than 1000 GM over the whole 700-900 nm range. All derivatives exhibit intense photoluminescence (PL) in low- to medium-polarity environments (with quantum yields in the 0.5-0.9 range) and display a strong positive solvatochromic behavior (with Lippert-Mataga specific shifts ranging from 15,000 to 27,500 cm(-1)), triple bonds, and phenyl moieties in the conjugated spacers, thereby leading to larger sensitivities than those of double bonds and thienyl moieties. More hydrophilic derivatives were also shown to be biocompatible, to retain their 2PA and PL properties in biological conditions, and finally to be suitable as polarity sensors for multiphoton cell imaging.

  3. Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties

    PubMed Central

    2013-01-01

    Background Change in land use and management can impact massively on soil ecosystems. Ecosystem engineers and other functional biodiversity in soils can be influenced directly by such change and this in turn can affect key soil functions. Here, we employ meta-analysis to provide a quantitative assessment of the effects of changes in land use and land management across a range of successional/extensification transitions (conventional arable → no or reduced tillage → grassland → wooded land) on community metrics for two functionally important soil taxa, earthworms and fungi. An analysis of the relationships between community change and soil structural properties was also included. Results Meta-analysis highlighted a consistent trend of increased earthworm and fungal community abundances and complexity following transitions to lower intensity and later successional land uses. The greatest changes were seen for early stage transitions, such as introduction of reduced tillage regimes and conversion to grassland from arable land. Not all changes, however, result in positive effects on the assessed community metrics. For example, whether woodland conversion positively or negatively affects community size and complexity depends on woodland type and, potentially, the changes in soil properties, such as pH, that may occur during conversion. Alterations in soil communities tended to facilitate subsequent changes in soil structure and hydrology. For example, increasing earthworm abundances and functional group composition were shown to be positively correlated with water infiltration rate (dependent on tillage regime and habitat characteristics); while positive changes in fungal biomass measures were positively associated with soil microaggregate stability. Conclusions These findings raise the potential to manage landscapes to increase ecosystem service provision from soil biota in relation to regulation of soil structure and water flow. PMID:24289220

  4. Predicting enthalpy of vaporization for Persistent Organic Pollutants with Quantitative Structure-Property Relationship (QSPR) incorporating the influence of temperature on volatility

    NASA Astrophysics Data System (ADS)

    Sosnowska, Anita; Barycki, Maciej; Jagiello, Karolina; Haranczyk, Maciej; Gajewicz, Agnieszka; Kawai, Toru; Suzuki, Noriyuki; Puzyn, Tomasz

    2014-04-01

    Enthalpy of vaporization (ΔHvap) is a thermodynamic property associated with the dispersal of Persistent Organic Pollutants (POPs) in the environment. Common problem in the environmental risk assessment studies is the lack of experimentally measured ΔHvap data. This problem can be solved by employing computational techniques, including QSPR (Quantitative Structure-Property Relationship) modelling to predict properties of interest. Majority of the published QSPR models can be applied to predict the enthalpy of vaporization of compounds from only one, particular group of POPs (i.e., polychlorinated biphenyls, PCBs). We have developed a more general QSPR model to estimate the ΔHvap values for 1436 polychlorinated and polybrominated benzenes, biphenyls, dibenzo-p-dioxins, dibenzofurans, diphenyl ethers, and naphthalenes. The QSPR model developed with Multiple Linear Regression analysis was characterized by satisfactory goodness-of-fit, robustness and the external predictive performance (R2 = 0.888, QCV2=0.878, QExt2=0.842, RMSEC = 5.11, RMSECV = 5.34, RMSEP = 5.74). Moreover, we quantified the temperature dependencies of vapour pressure for twelve groups of POPs based on the predictions at six different temperatures (logPL(T)). In addition, we found a simple arithmetic relationship between the logarithmic values of vapour pressure in pairs of chloro- and bromo-analogues. By employing this relationship it is possible to estimate logPL(T) for any brominated POP at any temperature utilizing only the logPL(T) value for its chlorinated analogues.

  5. Multi-scale effects of poling on structure-property relationships in lead magnesium niobate-lead titanate single crystals

    NASA Astrophysics Data System (ADS)

    Sehirlioglu, Alp

    Ferroelectric Pb(Mg1/3Nb2/3)O 3-PbTiO3 (PMN-PT) single crystals are the most promising candidates for the next generation of ultrasonic devices. These materials have superior properties (d33= 3000 PC/N, d31= -1800 pC/N, d15= 5000 pC/N, k33 >0.90) when compared with conventional PZT ceramics. The outstanding properties of ferroelectric piezoelectrics depend in large part on the domain reorientation process known as poling. In this thesis, the multi-scale effects of poling on structure-property relationships are investigated, as a function of crystallographic orientation and temperature, for compositions in the morphotropic phase boundary (MPB) region. Thermal softening and expansion coefficients were determined by dilatometry, and a unique direction was discovered along one of the crystallographic equivalent <001> directions, even for unpoled melt-grown crystals. Values of dielectric constant (K33) tripled along the unique direction for compositions near the MPB, compared with the other orthogonal directions. Poling along <001> doubled K33 at room temperature (from K33≈2000 to ≈5000) for compositions near the critical point, and increased over ten-fold (from K33≈1200 to ≈14000) for compositions near the MPB. Room temperature poling also affected the domain structure, and the phase transformation characteristics. Onsets in non-linearity for thermal strain and Curie-Weiss behavior were found to correlate with the Burns temperature. Diffuse dielectric phase anomalies for compositions close to the critical point were attributed to a convergence of three phases rather than classic relaxor behavior. In addition, hyper-Raman measurements revealed softening of a new composition-independent non-polar mode at the Burns temperature. A never-before-seen superlattice in the MPB region was revealed by XRD in the transmission mode. Poling increased the average significance of the superlattice, signifying a structural contribution to the super-structure. The effects of

  6. Elucidation of the structure-property relationship of p-type organic semiconductors through rapid library construction via a one-pot, Suzuki-Miyaura coupling reaction.

    PubMed

    Fuse, Shinichiro; Matsumura, Keisuke; Wakamiya, Atsushi; Masui, Hisashi; Tanaka, Hiroshi; Yoshikawa, Susumu; Takahashi, Takashi

    2014-09-08

    The elucidation of the structure-property relationship is an important issue in the development of organic electronics. Combinatorial synthesis and the evaluation of systematically modified compounds is a powerful tool in the work of elucidating structure-property relationships. In this manuscript, D-π-A structure, 32 p-type organic semiconductors were rapidly synthesized via a one-pot, Suzuki-Miyaura coupling with subsequent Knoevenagel condensation. Evaluation of the solubility and photovoltaic properties of the prepared compounds revealed that the measured solubility was strongly correlated with the solubility parameter (SP), as reported by Fedors. In addition, the SPs were correlated with the Jsc of thin-film organic solar cells prepared using synthesized compounds. Among the evaluated photovoltaic properties of the solar cells, Jsc and Voc had strong correlations with the photoconversion efficiency (PCE).

  7. Quantitative structure-property relationship modeling of water-to-wet butyl acetate partition coefficient of 76 organic solutes using multiple linear regression and artificial neural network.

    PubMed

    Dashtbozorgi, Zahra; Golmohammadi, Hassan

    2010-12-01

    The main aim of this study was the development of a quantitative structure-property relationship method using an artificial neural network (ANN) for predicting the water-to-wet butyl acetate partition coefficients of organic solutes. As a first step, a genetic algorithm-multiple linear regression model was developed; the descriptors appearing in this model were considered as inputs for the ANN. These descriptors are principal moment of inertia C (I(C)), area-weighted surface charge of hydrogen-bonding donor atoms (HACA-2), Kier and Hall index (order 2) ((2)χ), Balaban index (J), minimum bond order of a C atom (P(C)) and relative negative-charged SA (RNCS). Then a 6-4-1 neural network was generated for the prediction of water-to-wet butyl acetate partition coefficients of 76 organic solutes. By comparing the results obtained from multiple linear regression and ANN models, it can be seen that statistical parameters (Fisher ratio, correlation coefficient and standard error) of the ANN model are better than that regression model, which indicates that nonlinear model can simulate the relationship between the structural descriptors and the partition coefficients of the investigated molecules more accurately.

  8. Quantitative structure-property relationships of retention indices of some sulfur organic compounds using random forest technique as a variable selection and modeling method.

    PubMed

    Goudarzi, Nasser; Shahsavani, Davood; Emadi-Gandaghi, Fereshteh; Chamjangali, Mansour Arab

    2016-10-01

    In this work, a noble quantitative structure-property relationship technique is proposed on the basis of the random forest for prediction of the retention indices of some sulfur organic compounds. In order to calculate the retention indices of these compounds, the theoretical descriptors produced using their molecular structures are employed. The influence of the significant parameters affecting the capability of the developed random forest prediction power such as the number of randomly selected variables applied to split each node (m) and the number of trees (nt ) is studied to obtain the best model. After optimizing the nt and m parameters, the random forest model conducted for m = 70 and nt = 460 was found to yield the best results. The artificial neural network and multiple linear regression modeling techniques are also used to predict the retention index values for these compounds for comparison with the results of random forest model. The descriptors selected by the stepwise regression and random forest model are used to build the artificial neural network models. The results achieved showed the superiority of the random forest model over the other models for prediction of the retention indices of the studied compounds.

  9. Theoretical study of the structural properties of plutonium(IV) and (VI) complexes.

    PubMed

    Odoh, Samuel O; Schreckenbach, Georg

    2011-12-08

    The structural properties of several plutonium(IV) and (VI) complexes have been examined in the gaseous and aqueous phases using Kohn-Sham density functional theory calculations with scalar relativistic effective core potentials and the polarizable continuum solvation model. The aquo and nitrate complexes of PuO(2)(2+) and Pu(4+) were considered in addition to the aquo-chloro complexes of PuO(2)(2+). The nitrate and chloro- complexes formed with triphenylphosphine oxide (TPPO) and tributylphosphate (TBP) respectively were also studied. The structural parameters of the plutonyl complexes were compared to their uranyl and neptunyl analogues. The bond lengths and vibrational frequencies of the plutonyl complexes can generally be computed with sufficient accuracy with the pure PBE density functional with shorter bond lengths being predicted by the B3LYP functional. The structural parameters of the [PuO(2)Cl(2)L(2)] systems formed with TPPO and TBP as well as the aqueous [PuO(2)Cl(2)(H(2)O)(3)] complex are matched to previous experimental results. Overall, the inclusion of ligands in the equatorial region results in significant changes in the stretching frequency of the plutonyl group. The structural features of the plutonyl (VI) systems are rather similar to those of their 5f(0) uranyl and 5f(1) neptunyl counterparts. For the Pu(IV) aquo and nitrate complexes, the average of the calculated Pu-OH(2) and Pu-O(nitrate) bond lengths are generally within 0.04 Å of the reported experimental values. Overall Kohn-Sham DFT can be used successfully in predicting the structures of this diverse set of Pu(VI) and Pu(IV) complexes.

  10. Research on the relationship between the structural properties of bedding layer in spring mattress and sleep quality.

    PubMed

    Shen, Liming; Chen, Yu-xia; Guo, Yong; Zhong, ShiLu; Fang, Fei; Zhao, Jing; Hu, Tian-Yi

    2012-01-01

    Mattress, as a sleep platform, its types and physical properties has an important effect on sleep quality and rest efficiency. In this paper, by subjective evaluations, analysis of sleeping behaviors and tests of depth of sleep, the relationship between characteristics of the bedding materials, the structure of mattress, sleep quality and sleep behaviors were studied. The results showed that: (1) Characteristics of the bedding materials and structure of spring mattress had a remarkable effect on sleep behaviors and sleep quality. An optimum combination of the bedding materials, the structure of mattress and its core could improve the overall comfort of mattress, thereby improving the depth of sleep and sleep quality. (2) Sleep behaviors had a close relationship with sleeping postures and sleep habits. The characteristics of sleep behaviors vary from person to person.

  11. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    NASA Astrophysics Data System (ADS)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  12. A study of Eletronic and Structural Properties Of THe [ Co(tpy-SH)2

    NASA Astrophysics Data System (ADS)

    da Silva, Antonio J. R.; Pontes, Renato B.; Fazzio, A.

    2004-03-01

    A new trend in the science and technology of nanometer-scaled systems is the use of molecules as electronic components. Molecules containing a Co ion bonded to polypyridil ligands were studied by Park et al.[1], and they verified that these molecules may be used as transistors. The aim of this work is to determine and understand the electronic and structural properties of the molecule [Co(tpy-SH)2] where (tpy-SH) is 4'-(mercapto)-2,2':6',2'-terpyridinyl. This study is an essential first step to understand the transport properties in this system. For this we have performed first-principles, total energy calculations, based on the density functional theory (DFT) with the generalized gradient approximation (GGA) for the exchange-correlation potential. The electron-ion interaction is described using a norm-conserving pseudopotential of Troullier-Martins form. The Kohn-Sham orbitals were expanded in a atom-centered localized DZP basis set. We will present the potential energy surface for the molecule tpy-SH as a function of the dihedral angles of the pyridynil rings phi1(N-C-C-N) and phi2(N-C-C-N), and we have determined that its most stable structure has the pyridyl rings in a staggered configuration, whereas the [Co(tpy-SH)] molecule has all the N atoms as nearest neighbors to the Co atom, with a Co-(tpy-SH) binding energy of -4.40 eV. For the neutral [Co(Tpy-SH)2] molecule we find an angle of approximately 96 degrees between the two (Tpy-SH) groups bound to the Co atom, leading to an approximate octahedral environment for the Co in [Co(tpy-SH)2]. The energy to separate the [Co(Tpy-SH)2] into [Co(Tpy-SH)] + [Tpy-SH] is 1.92 eV. Similar results for different charge states will be presented, as well as a detailed analysis of the electronic structure. Moreover, results will also be shown for Fe and Ni. [1] Park et. al., Nature, 417, 722-725 (2002). Acknowledgments: (FAPESP, CAPES and CENAPAD-SP)

  13. Retrospective hit-deconvolution of mixed metal oxides: spotting structure-property-relationships in gas phase oxidation catalysis through high throughput experimentation.

    PubMed

    Schunk, Stephan Andreas; Sundermann, Andreas; Hibst, Hartmut

    2007-01-01

    Complex multi-element lead structures of mixed metal oxides that may be identified as hits during high throughput experimentation (HTE) campaigns, can be deconvoluted retrospectively on the basis of simple binary and ternary oxides as illustrated in the current example of a hit found in an ammoxidation reaction. On the basis of the performance of the simple binary and ternary mixed metal oxides structure property relationships can be established, that give insight into the roles of the different components of the complex mixed metal oxides and may also help in establishing a reaction mechanism and converting the hit into a development candidate.

  14. Structure-Property Relationships in W Doped (Ba,Sr)TiO(3) Thin Films Deposited by Pulsed Laser Deposition on (001) MgO

    DTIC Science & Technology

    2003-04-03

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013347 TITLE: Structure-Property Relationships in W Doped [Ba,Sr]TiO[3... Doped (Ba,Sr)TiO 3 Thin Films Deposited by Pulsed Laser Deposition on (001) MgO N. Navi1’*, J.S. Horwitz, H.-D. Wu2 and S.B. Qadri, Naval Research...oscillators, delay lines and phase shifters [1]. These devices will reduce the size and the operating power of the current semiconducting and ferrite based

  15. Energetic N-Nitramino/N-Oxyl-Functionalized Pyrazoles with Versatile π-π Stacking: Structure-Property Relationships of High-Performance Energetic Materials.

    PubMed

    Yin, Ping; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2016-11-07

    N-Nitramino/N-oxyl functionalization strategies were employed to investigate structure-property relationships of energetic materials. Based on single-crystal diffraction data, π-π stacking of pyrazole backbones can be tailored effectively by energetic functionalities, thereby resulting in diversified energetic compounds. Among them, hydroxylammonium 4-amino-3,5-dinitro-1H-pyrazol-1-olate and dipotassium N,N'-(3,5-dinitro-1H-pyrazol-1,4-diyl)dinitramidate, with unique face-to-face π-π stacking, can be potentially used as a high-performance explosive and an energetic oxidizer, respectively.

  16. A quantitative structure-property relationship analysis of soot-water partition coefficients for persistent organic pollutants.

    PubMed

    Xu, Hui-Ying; Zou, Jian-Wei; Min, Jian-Qing; Wang, Wei

    2012-06-01

    Geometrical optimization and electrostatic potential calculations have been performed at the HF/6-31G level of theory for investigated persistent organic pollutants (POPs). A number of statistically based parameters have been obtained. Relationship between soot-water partition coefficients (logK(SC)) of POPs and the structural descriptors has been established by the multiple linear regression method. The result shows that the quantities derived from electrostatic potential V(s)(-)¯ and V(s,max), together with molecular surface area (A(S)) and the energy of the highest occupied molecular orbital (E(HOMO)) can be well used to express the quantitative relationship between structure and logK(SC) (QSPR) of POPs. Predictive capability of the model has been demonstrated by leave-one-out cross-validation with the cross-validated correlation coefficient of 0.9797. Furthermore, the predictive power of this model was further examined for the external test set with the correlation coefficient of 0.9811 between observed and predicted logK(SC), validating the robustness and good predictive ability of our model. Furthermore, in order to further investigate the applicability of these parameters derived from electrostatic potential in prediction of soot-water partition coefficient for organic pollutants, eleven polycyclic aromatic hydrocarbons (PAHs), eleven polychlorinated biphenyls (PCBs) and nine phenyl urea herbicides (PUHs) from other source have also been studied. The QSPR models established may provide a new powerful method for predicting soot-water partition coefficients (logK(SC)) of organic pollutants.

  17. Structures, properties, and functions of the stings of honey bees and paper wasps: a comparative study

    PubMed Central

    Zhao, Zi-Long; Zhao, Hong-Ping; Ma, Guo-Jun; Wu, Cheng-Wei; Yang, Kai; Feng, Xi-Qiao

    2015-01-01

    ABSTRACT Through natural selection, many animal organs with similar functions have evolved different macroscopic morphologies and microscopic structures. Here, we comparatively investigate the structures, properties and functions of honey bee stings and paper wasp stings. Their elegant structures were systematically observed. To examine their behaviors of penetrating into different materials, we performed penetration–extraction tests and slow motion analyses of their insertion process. In comparison, the barbed stings of honey bees are relatively difficult to be withdrawn from fibrous tissues (e.g. skin), while the removal of paper wasp stings is easier due to their different structures and insertion skills. The similarities and differences of the two kinds of stings are summarized on the basis of the experiments and observations. PMID:26002929

  18. Analyis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy.

    PubMed

    Sirichaisit, Jutarat; Brookes, Victoria L; Young, Robert J; Vollrath, Fritz

    2003-01-01

    The molecular deformation of both silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks has been studied using a combination of mechanical deformation and Raman spectroscopy. The stress/strain curves for both kinds of silk showed elastic behavior followed by plastic deformation. It was found that both materials have well-defined Raman spectra and that some of the bands in the spectra shift to lower frequency under the action of tensile stress or strain. The band shift was linearly dependent upon stress for both types of silk fiber. This observation provides a unique insight into the effect of tensile deformation upon molecular structure and the relationship between structure and mechanical properties. Two similar bands in the Raman spectra of both types of silk in the region of 1000-1300 cm(-1) had significant identical rates of Raman band shift of about 7 cm(-1)/GPa and 14 cm(-1)/GPa demonstrating the similarity between the silk fibers from two different animals.

  19. Structural properties of liquid Ge2Se3: A first-principles study

    NASA Astrophysics Data System (ADS)

    Le Roux, Sébastien; Zeidler, Anita; Salmon, Philip S.; Boero, Mauro; Micoulaut, Matthieu; Massobrio, Carlo

    2011-10-01

    The structural properties of liquid Ge2Se3were investigated by first-principles molecular dynamics using the Becke-Lee-Yang-Parr scheme for the treatment of the exchange-correlation functional in density functional theory. Our data for the total neutron structure factor and the total pair-distribution function are in excellent agreement with the experimental results. The structure is made predominantly (˜61%) from units comprising fourfold coordinated Ge atoms in the form of Ge-GeSe3 or Ge-Se4 motifs, but there is also a large variety of motifs in which Ge and Se are not fourfold and twofold coordinated, respectively. The miscoordinated atoms and homopolar bonds lead to a highly perturbed tetrahedral network, as reflected by diffusion coefficients that are larger than in the case of liquid GeSe2. The network does, nevertheless, exhibit intermediate range order which is associated with the Ge-Ge correlations and which manifests itself by a first sharp diffraction peak in the total neutron structure factor. The evolution of the properties of GexSe1-x liquids (0 ≤x≤ 1) with composition is discussed.

  20. On the Development and Use of Large Chemical Similarity Networks, Informatics Best Practices and Novel Chemical Descriptors Towards Materials Quantitative Structure Property Relationships

    NASA Astrophysics Data System (ADS)

    Krein, Michael

    After decades of development and use in a variety of application areas, Quantitative Structure Property Relationships (QSPRs) and related descriptor-based statistical learning methods have achieved a level of infamy due to their misuse. The field is rife with past examples of overtrained models, overoptimistic performance assessment, and outright cheating in the form of explicitly removing data to fit models. These actions do not serve the community well, nor are they beneficial to future predictions based on established models. In practice, in order to select combinations of descriptors and machine learning methods that might work best, one must consider the nature and size of the training and test datasets, be aware of existing hypotheses about the data, and resist the temptation to bias structure representation and modeling to explicitly fit the hypotheses. The definition and application of these best practices is important for obtaining actionable modeling outcomes, and for setting user expectations of modeling accuracy when predicting the endpoint values of unknowns. A wide variety of statistical learning approaches, descriptor types, and model validation strategies are explored herein, with the goals of helping end users understand the factors involved in creating and using QSPR models effectively, and to better understand relationships within the data, especially by looking at the problem space from multiple perspectives. Molecular relationships are commonly envisioned in a continuous high-dimensional space of numerical descriptors, referred to as chemistry space. Descriptor and similarity metric choice influence the partitioning of this space into regions corresponding to local structural similarity. These regions, known as domains of applicability, are most likely to be successfully modeled by a QSPR. In Chapter 2, the network topology and scaling relationships of several chemistry spaces are thoroughly investigated. Chemistry spaces studied include the

  1. Theoretical Studies on Structures, Properties and Dominant Debromination Pathways for Selected Polybrominated Diphenyl Ethers

    PubMed Central

    Li, Lingyun; Hu, Jiwei; Shi, Xuedan; Ruan, Wenqian; Luo, Jin; Wei, Xionghui

    2016-01-01

    The B3LYP/6-311+G(d)-SDD method, which considers the relativistic effect of bromine, was adopted for the calculations of the selected polybrominated diphenyl ethers (PBDEs) in the present study, in which the B3LYP/6-311+G(d) method was also applied. The calculated values and experimental data for structural parameters of the selected PBDEs were compared to find the suitable theoretical methods for their structural optimization. The results show that the B3LYP/6-311+G(d) method can give the better results (with the root mean square errors (RMSEs) of 0.0268 for the C–Br bond and 0.0161 for the C–O bond) than the B3LYP/6-311+G(d)-SDD method. Then, the B3LYP/6-311+G(d) method was applied to predict the structures for the other selected PBDEs (both neutral and anionic species). The lowest unoccupied molecular orbital (LUMO) and the electron affinity are of a close relationship. The electron affinities (vertical electron affinity and adiabatic electron affinity) were discussed to study their electron capture abilities. To better estimate the conversion of configuration for PBDEs, the configuration transition states for BDE-5, BDE-22 and BDE-47 were calculated at the B3LYP/ 6-311+G(d) level in both gas phase and solution. The possible debromination pathway for BDE-22 were also studied, which have bromine substituents on two phenyl rings and the bromine on meta-position prefers to depart from the phenyl ring. The reaction profile of the electron-induced reductive debromination for BDE-22 were also shown in order to study its degradation mechanism. PMID:27322242

  2. Theoretical Studies on Structures, Properties and Dominant Debromination Pathways for Selected Polybrominated Diphenyl Ethers.

    PubMed

    Li, Lingyun; Hu, Jiwei; Shi, Xuedan; Ruan, Wenqian; Luo, Jin; Wei, Xionghui

    2016-06-16

    The B3LYP/6-311+G(d)-SDD method, which considers the relativistic effect of bromine, was adopted for the calculations of the selected polybrominated diphenyl ethers (PBDEs) in the present study, in which the B3LYP/6-311+G(d) method was also applied. The calculated values and experimental data for structural parameters of the selected PBDEs were compared to find the suitable theoretical methods for their structural optimization. The results show that the B3LYP/6-311+G(d) method can give the better results (with the root mean square errors (RMSEs) of 0.0268 for the C-Br bond and 0.0161 for the C-O bond) than the B3LYP/6-311+G(d)-SDD method. Then, the B3LYP/6-311+G(d) method was applied to predict the structures for the other selected PBDEs (both neutral and anionic species). The lowest unoccupied molecular orbital (LUMO) and the electron affinity are of a close relationship. The electron affinities (vertical electron affinity and adiabatic electron affinity) were discussed to study their electron capture abilities. To better estimate the conversion of configuration for PBDEs, the configuration transition states for BDE-5, BDE-22 and BDE-47 were calculated at the B3LYP/ 6-311+G(d) level in both gas phase and solution. The possible debromination pathway for BDE-22 were also studied, which have bromine substituents on two phenyl rings and the bromine on meta-position prefers to depart from the phenyl ring. The reaction profile of the electron-induced reductive debromination for BDE-22 were also shown in order to study its degradation mechanism.

  3. Simple quantitative structure-property relationship (QSPR) modeling of 17O carbonyl chemical shifts in substituted benzaldehydes compared to DFT and empirical approaches.

    PubMed

    Kiralj, Rudolf; Ferreira, Márcia M C

    2008-07-10

    The geometry of 50 substituted benzaldehydes was optimized at the semiempirical PM3 level, and various electronic and steric descriptors accounting for properties of the benzene ring, aldehyde group, and their connecting carbon-carbon bond were calculated. Quantitative structure-property relationships (QSPR) between (17)O carbonyl chemical shifts and these descriptors were established using partial least-squares regression and principal component regression. These two parsimonious QSPR models were comparable with the literature empirical model and DFT (density functional theory) and capable of predicting (17)O chemical shifts for 10 benzaldehydes. Principal component analysis, hierarchical cluster analysis, and crystal structure data retrieved from the Cambridge Structural Database were additional methods for chemical verification of the regression models. The QSPR models are recommended as being more reliable than and superior to the empirical and DFT models due to the results of all validations, simplicity, and short time that regressions need for (17)O shift prediction.

  4. The synthesis, characterization, and structure-property relationships of regioregular 4,4'-dialkyl-2,2'-bithiazole oligomers and polymers

    NASA Astrophysics Data System (ADS)

    Nanos, John I.

    2005-12-01

    The 4,4'-dialkyl-2,2'-bithiazole moiety can be efficiently coupled to produce well-defined oligomers or block co-oligomers via Stille reactions of mono-bromo and tin substituted precursors. Dehalogenative polycondensations produce high molecular weight homo-polymers and Stille coupling of dibromo and di-tin monomers yields alternating copolymers. The symmetry of the bithiazole monomeric unit produces regioregular oligomers and polymers with the HH-TT dyad sequence. Model compound oligomers were synthesized and studied to explore the progression of structure property relationships with main chain extension. DSC measurements indicate the potential presence of at least three phases in solution cast thin films---the disordered isotropic melt, a stable low temperature morphology designated the alpha-phase, and a high temperature meta-stable morphology designated the beta-phase. Melt transition temperatures are inversely proportional to side alkyl chain length and directly proportional to main chain length and the interplay between the two effects greatly influences the observed thermochromism. Temperature dependent IR studies show an increase in the gauche conformations of the side chains at the low temperature alpha-beta phase transition and main chain twisting at the beta-isotropic transition. The onset of side chain and main chain motion at these phase transition temperatures was confirmed with variable temperature solid state NMR. Temperature dependent XRD results indicate the presence of a solid-to-solid crystal phase change at the low temperature transition followed by formation of preferred orientations of the beta and alpha ordered phases upon cooling from the isotropic melt. The solid-to-solid crystal phase transition is triggered by the increased motion of the side chains, and the magnitude of the intermolecular side chain packing forces dictate if the transitions occur cooperatively (observed isosbestic point) or as isolated events. Comparison with the 3

  5. Structure-property correlation study through sum-over-state approach

    NASA Astrophysics Data System (ADS)

    Nandi, P. K.; Hatua, K.; Bansh, A. K.; Panja, N.; Ghanty, T. K.

    2015-01-01

    The use of Thomas Kuhn (TK) sum rule in the expanded sum-over-state (SOS) expression of hyperpolarizabilities leads to various relationships between different order of polarizabilities and ground state dipole moment etc.

  6. Processing-Structure-Property Relationships for Lignin-Based Carbonaceous Materials Used in Energy-Storage Applications

    DOE PAGES

    García-Negrón, Valerie; Phillip, Nathan D.; Li, Jianlin; ...

    2016-11-18

    Lignin, an abundant organic polymer and a byproduct of pulp and biofuel production, has potential applications owing to its high carbon content and aromatic structure. Processing structure relationships are difficult to predict because of the heterogeneity of lignin. Here, this work discusses the roles of unit operations in the carbonization process of softwood lignin, and their resulting impacts on the material structure and electrochemical properties in application as the anode in lithium-ion cells. The processing variables include the lignin source, temperature, and duration of thermal stabilization, pyrolysis, and reduction. Materials are characterized at the atomic and microscales. High-temperature carbonization, atmore » 2000 °C, produces larger graphitic domains than at 1050 °C, but results in a reduced capacity. Coulombic efficiencies over 98 % are achieved for extended galvanostatic cycling. Consequently, a properly designed carbonization process for lignin is well suited for the generation of low-cost, high-efficiency electrodes.« less

  7. Processing-Structure-Property Relationships for Lignin-Based Carbonaceous Materials Used in Energy-Storage Applications

    SciTech Connect

    García-Negrón, Valerie; Phillip, Nathan D.; Li, Jianlin; Daniel, Claus; Wood, David; Keffer, David J.; Rios, Orlando; Harper, David P.

    2016-11-18

    Lignin, an abundant organic polymer and a byproduct of pulp and biofuel production, has potential applications owing to its high carbon content and aromatic structure. Processing structure relationships are difficult to predict because of the heterogeneity of lignin. Here, this work discusses the roles of unit operations in the carbonization process of softwood lignin, and their resulting impacts on the material structure and electrochemical properties in application as the anode in lithium-ion cells. The processing variables include the lignin source, temperature, and duration of thermal stabilization, pyrolysis, and reduction. Materials are characterized at the atomic and microscales. High-temperature carbonization, at 2000 °C, produces larger graphitic domains than at 1050 °C, but results in a reduced capacity. Coulombic efficiencies over 98 % are achieved for extended galvanostatic cycling. Consequently, a properly designed carbonization process for lignin is well suited for the generation of low-cost, high-efficiency electrodes.

  8. Processing-structure-property relationships of thermal barrier coatings deposited using the solution precursor plasma spray process

    NASA Astrophysics Data System (ADS)

    Xie, Liangde

    This research is intended to develop a novel process, solution-precursor plasma-spray (SPPS), for the deposition of highly durable thermal barrier coatings (TBCs). In the SPPS process a solution precursor feedstock, that results in ZrO2-7 wt% Y2O3 ceramic, is injected into the plasma jet and the coating is deposited on a metal substrate. The formed coating has the following novel microstructural features: (i) ultra-fine splats, (ii) through-thickness cracks, (iii) micrometer and nanometer porosity, and (iv) interpass boundaries. The deposition mechanisms of the solution precursor droplets injected into the different regions of the plasma jet were found to be different due to large temperature variation across the plasma jet. The solution precursor droplets injected into the core of the plasma jet are deposited on the substrate as ultra-fine splats that account for around 65 volume% of the coating. The other 35 volume% of the coating includes porosity and deposits formed from the solution precursor droplets injected into other regions of the plasma jet. The optimum processing condition for highly durable TBCs was determined using Taguchi design of experiments. Meanwhile, the relationship of the microstructural features and processing parameters was revealed. During thermal cycling, the unmelted particles in the coating were observed to pyloyze and/or sinter, while no sign of sintering was observed for the ultra-fine splats. The spacing of through-thickness cracks remains in the range of 160 to 190 mum throughout the thermal cycling test. Three stages of oxidation of the bond coat were observed. Failure of the SPPS TBC starts with the crack nucleation along the unmelted particles in the top coat and the Ni, Cr, Co-rich oxides of large thickness. These cracks propagate and coalesce with thermal cycling. The extensive cracking of the rapidly formed Ni, Cr, Co-rich oxides resulting from the depletion of aluminum in the bond coat leads to the development of large

  9. Structure-Property Relationships in Surface-Modified Ceramics. NATO advanced Science Institutes, Series E: Applied Sciences, Volume 170

    DTIC Science & Technology

    1989-01-01

    PROPERTIES OF CERAMICS AND THEIR STUDY BY COMPUTER SIMULATION METHODS ... 1 C.R.A. Catlow DISORDER, RANDOMNESS, AND AMORPHOUS PHASES...Federal Republic of Germany PROPERTIES OF CERAMICS AND THEIR STUDY BY COMPUTER SIMULATION METHODS C. R. A. Catlow Department of Chemistry, University...considerable success over the last ten years. Static and dynamical methods have been used, and the techniques have been applied with success to both bulk

  10. Harnessing Structure-Property Relationships for Poly(alkyl thiophene)-Fullerene Derivative Thin Filmsto Optimize Performance in Photovoltaic Devices

    DOE PAGES

    Deb, Nabankur; Li, Bohao; Skoda, Maximilian; ...

    2016-02-08

    Nanoscale bulk heterojunction (BHJ) systems, consisting of fullerenes dispersed in conjugated polymers as the active component, have been actively studied over the last decades in order to produce high performance organic photovoltaics (OPVs). A significant role in device efficiency is played by the active layer morphology, but despite considerable study, a full understanding of the exact role that morphology plays and therefore a definitive method to produce and control an ideal morphology is lacking. In order to understand the BHJ phase behavior and associated morphology in these devices, we have used neutron reflection, together with grazing incidence X-ray and neutronmore » scattering and X-ray photoelectron spectroscopy (XPS) to determine the morphology of the BHJ active layer in functional devices. We have studied nine model BHJ systems based on mixtures of three poly(3-alkyl thiophenes, P3AT) (A=butyl, hexyl, octyl) blended with three different fullerene derivatives, which provides variations in crystallinity and miscibility within the BHJ composite. In studying properties of functional devices, we show a direct correlation between the observed morphology within the BHJ layer and the device performance metrics, i.e., the short-circuit current (JSC), fill factor (FF), open-circuit voltage (VOC) and overall power conversion efficiency (PCE). Using these model systems, the effect of typical thermal annealing processes on the BHJ morphology through the film thickness as a function of the polythiophene-fullerene mixtures and different electron transport layer interfaces has been determined. It is shown that fullerene enrichment occurs at both the electrode interfaces after annealing. The degree of fullerene enrichment is found to strongly correlate with JSC and to a lesser degree with FF. Finally, based on these findings we demonstrate that by deliberately adding a fullerene layer at the electron transport layer interface, JSC can be increased by up to 20

  11. Harnessing Structure-Property Relationships for Poly(alkyl thiophene)-Fullerene Derivative Thin Filmsto Optimize Performance in Photovoltaic Devices

    SciTech Connect

    Deb, Nabankur; Li, Bohao; Skoda, Maximilian; Rogers, Sarah; Sun, Yan; Gong, Xiong; Karim, Alamgir; Sumpter, Bobby G.; Bucknall, David G.

    2016-02-08

    Nanoscale bulk heterojunction (BHJ) systems, consisting of fullerenes dispersed in conjugated polymers as the active component, have been actively studied over the last decades in order to produce high performance organic photovoltaics (OPVs). A significant role in device efficiency is played by the active layer morphology, but despite considerable study, a full understanding of the exact role that morphology plays and therefore a definitive method to produce and control an ideal morphology is lacking. In order to understand the BHJ phase behavior and associated morphology in these devices, we have used neutron reflection, together with grazing incidence X-ray and neutron scattering and X-ray photoelectron spectroscopy (XPS) to determine the morphology of the BHJ active layer in functional devices. We have studied nine model BHJ systems based on mixtures of three poly(3-alkyl thiophenes, P3AT) (A=butyl, hexyl, octyl) blended with three different fullerene derivatives, which provides variations in crystallinity and miscibility within the BHJ composite. In studying properties of functional devices, we show a direct correlation between the observed morphology within the BHJ layer and the device performance metrics, i.e., the short-circuit current (JSC), fill factor (FF), open-circuit voltage (VOC) and overall power conversion efficiency (PCE). Using these model systems, the effect of typical thermal annealing processes on the BHJ morphology through the film thickness as a function of the polythiophene-fullerene mixtures and different electron transport layer interfaces has been determined. It is shown that fullerene enrichment occurs at both the electrode interfaces after annealing. The degree of fullerene enrichment is found to strongly correlate with JSC and to a lesser degree with FF. Finally, based on these findings we demonstrate that by deliberately adding a fullerene layer at the electron transport layer interface, JSC can be

  12. Photoinduced self-structured surface pattern on a molecular azo glass film: structure-property relationship and wavelength correlation.

    PubMed

    Wang, Xiaolin; Yin, Jianjun; Wang, Xiaogong

    2011-10-18

    In this study, three series of star-shaped molecular azo glasses were synthesized, and self-structured surface pattern formation on the azo compound films was studied by laser irradiation at different wavelengths. The molecular azo glasses were synthesized from three core precursors (Tr-AN, Tr-35AN, Tr-H35AN), which were prepared by ring-opening reactions between 1,3,5-triglycidyl isocyanurate and corresponding aniline derivatives. The star-shaped azo compounds were obtained through azo-coupling reactions between the core precursors and diazonium salts of 4-chloroaniline, 4-aminobenzonitrile, and 4-nitroaniline, respectively. By using the two-step reaction scheme, three series of azo compounds with different structures were obtained. The core precursors and azo compounds were characterized by using (1)H NMR, FT-IR, UV-vis, mass spectrometry, and thermal analyses. The self-structured surface pattern formation on films of the azo compounds was studied by irradiating the azo compound films with a normal-incident laser beam at different wavelengths (488, 532, and 589 nm). The results show that the photoinduced surface pattern formation behavior is closely related to the structure of the azo compounds, excitation wavelength, and light polarization conditions. The absorption band position of the π-π* transition is mainly determined by the electron-withdrawing groups on the azo chromophores. When the excitation wavelength is between λ(max) and the band tail at the longer wavelength side, the self-structured surface patterns can be more efficiently induced to form on the films. The 3,5-dimethyl substitution on azo chromophores inhibits the surface pattern formation for certain excitation wavelengths. Increasing molecular interaction also shows an effect of restraining the surface pattern formation. The irradiations with linearly and circularly polarized light cause significant differences in the alignment manner of the pillarlike structures and their saturated height.

  13. Structure-property relationships: asymmetric alkylphenyl-substituted anthracene molecules for use in small-molecule solar cells.

    PubMed

    Kim, Yu Jin; Ahn, Eun Soo; Jang, Sang Hun; An, Tae Kyu; Kwon, Soon-Ki; Chung, Dae Sung; Kim, Yun-Hi; Park, Chan Eon

    2015-05-11

    Two asymmetric anthracene-based organic molecules, NDHPEA and TNDHPEA, were prepared without or with a thiophene spacer between the anthracene and naphthalene units. These asymmetric oligomers displayed different degrees of coplanarity, as evidenced by differences in the dihedral angles calculated by using DFT. Differential scanning calorimetry and XRD studies were used to probe the crystallization characteristics and molecular packing structures in the active layers. The coplanarity of the molecules in the asymmetric structure significantly affected the crystallization behavior and the formation of crystalline domains in the solid state. The small-molecule crystalline properties were correlated with the device physics by determining the J-V characteristics and hole mobilities of the devices.

  14. The structure-property relationship of oxovanadium(IV) complexes in the wall framework of PMOs and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Zhou, Shijian; Wang, Bangbang; Gao, Shuying; Ding, Yun; Kong, Yan

    2017-03-01

    Oxovanadium(IV) species could be considered as effective active sites in the catalytic oxidation reactions, but in the traditional vanadium-containing catalysts, the unstable and undispersible status of these active sites cause great limitation in their application. In this study, we present a novel approach to utilize the co-condensation of the silica source with oxovanadium organic complexes through the liquid-crystal templating (LCT) process introducing the vanadium species into the framework of periodically meosporous organosilicas (PMOs). Oxovanadium organic complexes are successfully obtained by the coordination effect between vanadium species and organic complexes. Thus the vanadium-containing PMOs catalysts are accordingly synthesized; the model structure of as-prepared catalysts is proposed and further verified by different characterization measurements. These vanadium-containing PMOs catalysts display the extremely stable and well-dispersed oxovanadium(IV) species in the framework, and due to this advanced structure, the corresponding excellent catalytic properties of these catalysts in styrene oxidation reaction are obtained.

  15. Ferroelectric, ferromagnetic and optical properties of KBiFe2O5 thin film: a structure property relationship

    NASA Astrophysics Data System (ADS)

    Jalaja, M. A.; Predeep, P.; Dutta, Soma

    2017-01-01

    KBiFe2O5 thin film was prepared by spin-coating on platinized (111) Si wafer and characterized for its structure, microstructure, ferroelectric, magnetic and optical properties. X-ray diffraction (XRD) revealed a noncentrosymmetric, orthorhombic crystal structure of KBiFe2O5. The well-distributed dense microstructure with large grain and narrow grain boundaries in KBiFe2O5 enhanced its ferroelectric properties. The strong, frequency-dependent behavior of the ferroelectric hysteresis loop suggested the leaky nature of the material. Piezoelectricity was confirmed by determining the piezoelectric charge coefficients (d 33 = 2.82 nm V-1 at positive bias and 3.195 nm V-1 at negative bias voltage) from the field versus the displacement plot. The weak ferromagnetism of the film is attributed to the high spin state of Fe3+ in the FeO4 tetrahedron of KBiFe2O5. Optical properties (refractive indices and extinction coefficients) are studied from the reflectance spectrum. The refractive indices are higher in the visible region and showed a normal dispersion in the blue region. The bandgap of the film was calculated to be 1.61 eV.

  16. Structure-property relationships in cubic cuprous iodide: A novel view on stability, chemical bonding, and electronic properties.

    PubMed

    Pishtshev, A; Karazhanov, S Zh

    2017-02-14

    Based on the combination of density functional theory and theory-group methods, we performed systematic modeling of γ-CuI structural design at the atomistic level. Being started from the metallic copper lattice, we treated a crystal assembly as a stepwise iodination process characterized in terms of a sequence of intermediate lattice geometries. These geometries were selected and validated via screening of possible structural transformations. The genesis of chemical bonding was studied for three structural transformations by analyzing the relevant changes in the topology of valence electron densities. We determined structural trends driven by metal-ligand coupling. This allowed us to suggest the improved scenario of chemical bonding in γ-CuI. In particular, the unconventional effect of spatial separation of metallic and covalent interactions was found to be very important with respect to the preferred arrangements of valence electrons in the iodination process. We rigorously showed that useful electronic and optical properties of γ-CuI originate from the combination of two separated bonding patterns-strong covalency established in I-Cu tetrahedral connections and noncovalent interactions of copper cores is caused by the 3d(10) closed-shell electron configurations. The other finding of ours is that the self-consistency of the GW calculations is crucial for correctly determining the dynamic electronic correlations in γ-CuI. Detail reinvestigation of the quasi-particle energy structure by means of the self-consistent GW approach allowed us to explain how p-type electrical conductivity can be engineered in the material.

  17. Structure-property relationships in cubic cuprous iodide: A novel view on stability, chemical bonding, and electronic properties

    NASA Astrophysics Data System (ADS)

    Pishtshev, A.; Karazhanov, S. Zh.

    2017-02-01

    Based on the combination of density functional theory and theory-group methods, we performed systematic modeling of γ-CuI structural design at the atomistic level. Being started from the metallic copper lattice, we treated a crystal assembly as a stepwise iodination process characterized in terms of a sequence of intermediate lattice geometries. These geometries were selected and validated via screening of possible structural transformations. The genesis of chemical bonding was studied for three structural transformations by analyzing the relevant changes in the topology of valence electron densities. We determined structural trends driven by metal-ligand coupling. This allowed us to suggest the improved scenario of chemical bonding in γ-CuI. In particular, the unconventional effect of spatial separation of metallic and covalent interactions was found to be very important with respect to the preferred arrangements of valence electrons in the iodination process. We rigorously showed that useful electronic and optical properties of γ-CuI originate from the combination of two separated bonding patterns—strong covalency established in I-Cu tetrahedral connections and noncovalent interactions of copper cores is caused by the 3d10 closed-shell electron configurations. The other finding of ours is that the self-consistency of the GW calculations is crucial for correctly determining the dynamic electronic correlations in γ-CuI. Detail reinvestigation of the quasi-particle energy structure by means of the self-consistent GW approach allowed us to explain how p-type electrical conductivity can be engineered in the material.

  18. Structural properties of Al and TiAl3 metallic glasses — An embedded atom method study

    NASA Astrophysics Data System (ADS)

    Tahiri, M.; Trady, S.; Hasnaoui, A.; Mazroui, M.; Saadouni, K.; Sbiaai, K.

    2016-06-01

    In this paper, we investigated the structural properties of metallic glasses (MGs). We emphasized our study on monatomic Al and binary TiAl3 systems. The calculations are performed by using the molecular dynamics (MD) simulation based on semi-empirical many-body potentials derived from the embedded atom method. The structure is analyzed using the radial distribution function (RDF), the common neighbor analysis (CNA) and the coordination numbers (CNs). Our results demonstrated that it is possible to form MGs in both systems upon fast cooling from the liquid state. This is confirmed by the fact that the system energy and/or volume during the cooling stage decrease continuously with a slight change and by atomic scale analysis using the RDF, CNA and CN analyzing techniques. Furthermore, this specific study shows that under the same conditions, the icosahedral structures appeared in TiAl3 are more abundant than in pure Al. Implications of these findings are discussed.

  19. An in-situ analytical scanning and transmission electron microscopy investigation of structure-property relationships in electronic materials

    NASA Astrophysics Data System (ADS)

    Wagner, Andrew James

    As electronic and mechanical devices are scaled downward in size and upward in complexity, macroscopic principles no longer apply. Synthesis of three-dimensionally confined structures exhibit quantum confinement effects allowing, for example, silicon nanoparticles to luminesce. The reduction in size of classically brittle materials reveals a ductile-to-brittle transition. Such a transition, attributed to a reduction in defects, increases elasticity. In the case of silicon, elastic deformation can improve electronic carrier mobility by over 50%, a vital attribute of modern integrated circuits. The scalability of such principles and the changing atomistic processes which contribute to them presents a vitally important field of research. Beginning with the direct observation of dislocations and lattice planes in the 1950s, the transmission electron microscope has been a powerful tool in materials science. More recently, as nanoscale technologies have proliferated modern life, their unique ability to spatially resolve nano- and atomic-scale structures has become a critical component of materials research and characterization. Signals produced by an incident beam of high-energy electrons enables researchers to both image and chemically analyze materials at the atomic scale. Coherently and elastically-scattered electrons can be collected to produce atomic-scale images of a crystalline sample. New specimen stages have enabled routine investigation of samples heated up to 1000 °C and cooled to liquid nitrogen temperatures. MEMS-based transducers allow for sub-nm scale mechanical testing and ultrathin membranes allow study of liquids and gases. Investigation of a myriad of previously "unseeable" processes can now be observed within the TEM, and sometimes something new is found within the old. High-temperature annealing of pure a Si:H films leads to crystallization of the film. Such films provide higher carrier mobility compared to amorphous films, offering improved

  20. Investigation of the structure/property relationship of spray-formed 7XXX series high-strength aluminum alloys and their metal matrix composites

    NASA Astrophysics Data System (ADS)

    Sharma-Judd, Malavika M.

    2000-12-01

    The purpose of this investigation was to identify the structure/property relationship of spray formed 7XXX series alloys. High solute, ultra-high strength 7XXX series aluminum alloys with solute contents close to equilibrium solid solubility limits of the Al-Zn-Mg-Cu system have been produced by rapid solidification using spray deposition. The process yields massive preforms directly from the liquid state. Various elements, including chromium, manganese, silver, zirconium and scandium, were incorporated to produce a variety of microstructures and mechanical properties. SiC particulate was added to these same alloy compositions to produce metal matrix composites (MMCs). The resulting extruded products in the T6 and T7 conditions were evaluated and compared. Under peak-aged conditions in the unreinforced materials, strengths in excess of 860 MPa were achieved, with one alloy exceeding 900 MPa. Apart from the elongation to failure, the mechanical properties of the composite materials were equal to or superior to those of their unreinforced counterparts. The superior strength properties of the spray formed alloys were attributed to two major substructures with different scale; nanometer sized eta ' metastable precipitates and slightly larger, but finely distributed dispersoids. The large volume fraction of plate-like eta' precipitates (average size 58A, ranging up to 73 A in diameter) were identified as having a hexagonal structure with lattice parameters a = 0.488 nm and c = 1.376. The remarkable strengthening is predominantly attributed to precipitation hardening. The enhanced mechanical properties of the MMC materials are attributed to the increased dislocation density, and thus, a higher concentration of structural particles compared to the unreinforced materials. Higher gas-to-metal ratios of 4.45, as opposed to lower gas-to-metal ratios of 1.95 produced a refined grain structure with an evenly distributed second phase. In both unreinforced and MMC materials

  1. Notes on quantitative structure-property relationships (QSPR), part 3: density functions origin shift as a source of quantum QSPR algorithms in molecular spaces.

    PubMed

    Carbó-Dorca, Ramon

    2013-04-05

    A general algorithm implementing a useful variant of quantum quantitative structure-property relationships (QQSPR) theory is described. Based on quantum similarity framework and previous theoretical developments on the subject, the present QQSPR procedure relies on the possibility to perform geometrical origin shifts over molecular density function sets. In this way, molecular collections attached to known properties can be easily used over other quantum mechanically well-described molecular structures for the estimation of their unknown property values. The proposed procedure takes quantum mechanical expectation value as provider of causal relation background and overcomes the dimensionality paradox, which haunts classical descriptor space QSPR. Also, contrarily to classical procedures, which are also attached to heavy statistical gear, the present QQSPR approach might use a geometrical assessment only or just some simple statistical outline or both. From an applied point of view, several easily reachable computational levels can be set up. A Fortran 95 program: QQSPR-n is described with two versions, which might be downloaded from a dedicated web site. Various practical examples are provided, yielding excellent results. Finally, it is also shown that an equivalent molecular space classical QSPR formalism can be easily developed.

  2. Quantitative structure-property relationship (QSPR) for the adsorption of organic compounds onto activated carbon cloth: Comparison between multiple linear regression and neural network

    SciTech Connect

    Brasquet, C.; Bourges, B.; Le Cloirec, P.

    1999-12-01

    The adsorption of 55 organic compounds is carried out onto a recently discovered adsorbent, activated carbon cloth. Isotherms are modeled using the Freundlich classical model, and the large database generated allows qualitative assumptions about the adsorption mechanism. However, to confirm these assumptions, a quantitative structure-property relationship methodology is used to assess the correlations between an adsorbability parameter (expressed using the Freundlich parameter K) and topological indices related to the compounds molecular structure (molecular connectivity indices, MCI). This correlation is set up by mean of two different statistical tools, multiple linear regression (MLR) and neural network (NN). A principal component analysis is carried out to generate new and uncorrelated variables. It enables the relations between the MCI to be analyzed, but the multiple linear regression assessed using the principal components (PCs) has a poor statistical quality and introduces high order PCs, too inaccurate for an explanation of the adsorption mechanism. The correlations are thus set up using the original variables (MCI), and both statistical tools, multiple linear regression and neutral network, are compared from a descriptive and predictive point of view. To compare the predictive ability of both methods, a test database of 10 organic compounds is used.

  3. A review of quantitative structure-property relationships for the fate of ionizable organic chemicals in water matrices and identification of knowledge gaps.

    PubMed

    Nolte, Tom M; Ragas, Ad M J

    2017-03-22

    Many organic chemicals are ionizable by nature. After use and release into the environment, various fate processes determine their concentrations, and hence exposure to aquatic organisms. In the absence of suitable data, such fate processes can be estimated using Quantitative Structure-Property Relationships (QSPRs). In this review we compiled available QSPRs from the open literature and assessed their applicability towards ionizable organic chemicals. Using quantitative and qualitative criteria we selected the 'best' QSPRs for sorption, (a)biotic degradation, and bioconcentration. The results indicate that many suitable QSPRs exist, but some critical knowledge gaps remain. Specifically, future focus should be directed towards the development of QSPR models for biodegradation in wastewater and sediment systems, direct photolysis and reaction with singlet oxygen, as well as additional reactive intermediates. Adequate QSPRs for bioconcentration in fish exist, but more accurate assessments can be achieved using pharmacologically based toxicokinetic (PBTK) models. No adequate QSPRs exist for bioconcentration in non-fish species. Due to the high variability of chemical and biological species as well as environmental conditions in QSPR datasets, accurate predictions for specific systems and inter-dataset conversions are problematic, for which standardization is needed. For all QSPR endpoints, additional data requirements involve supplementing the current chemical space covered and accurately characterizing the test systems used.

  4. Computational studies of the structural properties of the monomer and dimer of Aβ(1-28)

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Chen, Wei; Mousseau, Normand; Derreumaux, Philippe

    2007-03-01

    Neurodegenerative diseases are linked with the self-assembly of normally soluble proteins into amyloid fibrils. In this work, in silico characterization of the structures of the monomer and dimer of Aβ(1-28) are studied with the coarse-grained OPEP model using the activation-relaxation technique (ART nouveau). We find a dominant anti-parallel β-sheet structure present for both the monomer and dimer. While the monomer does not adopt a stable conformation, it fluctuates around a well-defined structure: starting from the end point, the monomer wraps a first time around, producing a β-hairpin and returns on the other side of the N-terminal, forming a three-strand β-sheet. The dimer assembles in a similar fashion, but with the two strands interlocking. The thermodynamics of the molecular assemblies and various folding path-ways are further studied using molecular dynamics.

  5. Platinum Group Thiophenoxyimine Complexes: Syntheses,Crystallographic and Computational Studies of Structural Properties

    SciTech Connect

    Krinsky, Jamin L.; Arnold, John; Bergman, Robert G.

    2006-10-03

    Monomeric thiosalicylaldiminate complexes of rhodium(I) and iridium(I) were prepared by ligand transfer from the homoleptic zinc(II) species. In the presence of strongly donating ligands, the iridium complexes undergo insertion of the metal into the imine carbon-hydrogen bond. Thiophenoxyketimines were prepared by non-templated reaction of o-mercaptoacetophenone with anilines, and were complexed with rhodium(I), iridium(I), nickel(II) and platinum(II). X-ray crystallographic studies showed that while the thiosalicylaldiminate complexes display planar ligand conformations, those of the thiophenoxyketiminates are strongly distorted. Results of a computational study were consistent with a steric-strain interpretation of the difference in preferred ligand geometries.

  6. EXAFS study of the structural properties of In and In + C implanted Ge

    NASA Astrophysics Data System (ADS)

    Feng, R.; Kremer, F.; Sprouster, D. J.; Mirzaei, S.; Decoster, S.; Glover, C. J.; Medling, S. A.; Russo, S. P.; Ridgway, M. C.

    2016-05-01

    The structural configurations of In implanted Ge have been studied via x-ray absorption spectroscopy with and without the codoping of C. In the case of In singly implanted Ge, while the In atoms occupy an substitutional site in Ge (InGe4) at low In concentration (≤ 2 at. %), they precipitate into a metallic phase (In metal) and form complexes composed of one vacancy and three Ge atoms (InVGe3) at concentration ≥ 0.6 at. %. This behaviour can be suppressed by the addition of C leading to In-C pairing to form InCGe3 complexes. This cluster enables In atoms to recover a four-fold coordinated structure and has the potential to improve the electrical activation of In atoms in Ge.

  7. Study of magnetic and structural properties of ferrofluids based on cobalt-zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    López, J.; González-Bahamón, L. F.; Prado, J.; Caicedo, J. C.; Zambrano, G.; Gómez, M. E.; Esteve, J.; Prieto, P.

    2012-02-01

    Ferrofluids are colloidal systems composed of a single domain of magnetic nanoparticles with a mean diameter around 30 nm, dispersed in a liquid carrier. Magnetic Co(1-x)ZnxFe2O4 (x=0.25, 0.50, 0.75) ferrite nanoparticles were prepared via co-precipitation method from aqueous salt solutions in an alkaline medium. The composition and structure of the samples were characterized through Energy Dispersive X-ray Spectroscopy and X-ray diffraction, respectively. Transmission Electron Microscopy (TEM) studies permitted determining nanoparticle size; grain size of nanoparticle conglomerates was established via Atomic Force Microscopy. The magnetic behavior of ferrofluids was characterized by Vibrating Sample Magnetometer (VSM); and finally, a magnetic force microscope was used to visualize the magnetic domains of Co(1-x)ZnxFe2O4 nanoparticles. X-ray diffraction patterns of Co(1-x)ZnxFe2O4 show the presence of the most intense peak corresponding to the (311) crystallographic orientation of the spinel phase of CoFe2O4. Fourier Transform Infrared Spectroscopy confirmed the presence of the bonds associated to the spinel structures; particularly for ferrites. The mean size of the crystallite of nanoparticles determined from the full-width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation diminished from (9.5±0.3) nm to (5.4±0.2) nm when the Zn concentration increases from 0.21 to 0.75. The size of the Co-Zn ferrite nanoparticles obtained by TEM is in good agreement with the crystallite size calculated from X-ray diffraction patterns, using Scherer's formula. The magnetic properties investigated with the aid of a VSM at room temperature presented super-paramagnetic behavior, determined by the shape of the hysteresis loop. In this study, we established that the coercive field of Co(1-x)ZnxFe2O4 magnetic nanoparticles, the crystal and nanoparticle sizes determined by X-ray Diffraction and TEM, respectively, decrease with the

  8. Natural nanoparticle structure, properties and reactivity from X-ray studies

    SciTech Connect

    Waychunas, Glenn A.

    2009-10-01

    Synthetic analogs of naturally occurring nanoparticles have been studied by a range of X-ray techniques to determine their structure and chemistry, and relate these to their novel chemical properties and physical behavior. ZnS nanoparticles, formed in large concentrations naturally bymicrobial action, have an interesting core-shell structure with a highly distorted and strained outer layer. The strain propagates through the particles and produces unusual stiffness but can be relieved by changing the nature of the surface ligand binding. Weaker bound ligands allow high surface distortion, but strongly bound ligands relax this structure and reduce the overall strain. Only small amounts of ligand exchange causes transformations from the strained to the relaxed state. Most remarkably, minor point contacts between strained nanoparticles also relax the strain. Fe oxyhydroxide nanoparticles appear to go through structural transformations dependent on their size and formation conditions, and display a crystallographically oriented form of aggregation at the nanoscale that alters growth kinetics. At least one Fe oxyhydroxide mineral may only be stable on the nanoscale, and nonstoichiometry observed on the hematite surface suggests that for this phase and possibly other natural metal oxides, chemistry may be size dependent. Numerous questions exist on nanominerals formed in acid mine drainage sites and by reactions at interfaces.

  9. Photometric and structural properties of NGC 6544: A combined VVV-Hubble space telescope study

    SciTech Connect

    Cohen, Roger E.; Mauro, Francesco; Geisler, Doug; Moni Bidin, Christian; Dotter, Aaron; Bonatto, Charles

    2014-07-01

    We combine archival Hubble Space Telescope imaging with wide-field near-infrared photometry to study the neglected metal-poor Galactic globular cluster NGC 6544. A high spatial resolution map of differential reddening over the inner portion of the cluster is constructed, revealing variations of up to half of the total reddening, and the resulting corrected color-magnitude diagrams reveal a sparse blue horizontal branch and centrally concentrated blue straggler population, verified via relative proper motions. Using the corrected photometry to investigate the cluster distance, reddening, and age via direct comparison to well-calibrated photometry of clusters with similar metallicities, we estimate (m – M){sub 0} = 11.96, E(B – V) = 0.79, and an age coeval with M13 to within the relevant uncertainties. Although our data are insufficient to place tight constraints on the reddening law toward NGC 6544, we find no strong evidence that it is non-standard at optical or near-infrared wavelengths. We also provide near-infrared fiducial sequences extending nearly 2 mag below the cluster main sequence turnoff, generated from a statistically decontaminated sample of cluster stars. Lastly, we redetermine the cluster center and construct a radial number density profile which is well fit by an atypically flat power law with a slope of about 1.7. We discuss this result, together with a flattened main sequence luminosity function and inverted mass function, in the context of mass segregation and tidal stripping via interactions with Milky Way potential.

  10. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    NASA Astrophysics Data System (ADS)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  11. Experimental Study of the Structure-Property Relationship of Molecular Junctions

    DTIC Science & Technology

    2013-12-11

    al., ACS Nano, 2012). Finally, we used the novel scanning thermal imaging techniques (Jeong et al., In Review, ACS Nano) to both understand Joule ...role of Joule heating in the electromigration of devices. Finally, we also present details of the picowatt resolution calorimeter developed by us...temperature differential (DC or at 2 ), due to Joule heating, across the MJ. An aluminum gate-electrode coated with aluminum oxide is located beneath the

  12. An investigation of the structure-property relationships in ionic polymer polymer composites (IP2Cs) manufactured by polymerization in situ of PEDOT/PSS on Nafion®117

    NASA Astrophysics Data System (ADS)

    Di Pasquale, G.; Graziani, S.; Messina, F. G.; Pollicino, A.; Puglisi, R.; Umana, E.

    2014-03-01

    Ionic polymer polymer composites (IP2Cs) are all-organic electroactive polymers (EAPs) that show sensing and actuation capabilities when a deformation or a voltage is applied, respectively. They are fabricated starting from an ionic polymer coated on both sides with a conducting polymer as electrode element. In this work, poly(3,4-ethylendioxytiophene)-poly-(styrenesulfonate) (PEDOT/PSS) has been polymerized directly on Nafion®117 membrane and devices have been manufactured varying the polymerization time. Water and ethylene glycol (EG) have been used as solvents. The obtained IP2Cs have been characterized using thermal and mechanical analyses and electromechanically tested. The results have shown that in IP2Cs manufactured by polymerization in situ the PEDOT/PSS layer adheres very strongly on the Nafion®117 film, improving the possibility of rehydrating the devices after use. Moreover, taking into account that the different polymerization times influence the uniformity of the surface of the organic electrode and, consequently, both device stiffness and electrode conductivity, the structure-property relationships of the obtained devices have been investigated. The influence of the different solvents inside the devices has also been studied when IP2Cs have been used as actuators or sensors. Reported results show that it is possible to modulate the performances of IP2Cs by varying some manufacture parameters and the solvent.

  13. Study of optical and structural properties of CZTS thin films grown by co-evaporation and spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Ramirez, E. A.; Gordillo Guzmán, G.

    2016-02-01

    Results regarding optical and structural properties of Cu2ZnSnS4 (CZTS) thin films prepared by co-evaporation using a novel procedure are compared with those obtained with CZTS films grown using a solution based route. The lattice strain ε and crystallite size D of CZTS films prepared by co-evaporation and by spray pyrolysis were estimated through X-ray diffraction (XRD) measurements using Williamson-Hall-isotropic strain model. The results of estimated average crystallite size of CZTS films by Scherrer and Williamson-Hall plot methods were compared with AFM (atomic force microscopy) measurements. It was found that the average crystallite size measured by Williamson-Hall plot methods agree quite well with AFM results. Further, information regarding the influence of preparation method on both, crystalline phases and the formation of structural defects was achieved through Raman and Urbach energy measurements.

  14. Structure property relationships in polymer blends and composites. Part I. Polymer/POSS composites. Part II. Poly(ethylene terephthalate) ionomer/polyamide 6 blends. Part III. Elastomer/boron nitride composites

    NASA Astrophysics Data System (ADS)

    Iyer, Subramanian

    Multiphase polymer systems are an increasingly important technical area of polymer science. By definition, a multiphase system is one that has two or more distinct phases. From the standpoint of commercial applications and developments, polymer blending represents one of the easiest ways to achieve properties not available in individual materials. This work discusses the structure property relationships in polymer certain blends and composites. Polymer/polyhedral oligomeric silsesquioxanes (POSSRTM) blends and copolymers have gained significant attention in the last decade due the unique properties of the inorganic-organic hybrid structure of POSS. The majority of the research in polymer/POSS has been in the form of copolymers and thermosets. The criteria for the reinforcement of polymers using POSS as a filler material is not been discussed in literature. Part I of the thesis will highlight the effect of blending POSS with different polymers and discuss the rules for reinforcement of polymers when using POSS as a filler material. Part II of the thesis will discuss the structure property relationships in poly(ethylene terephthalate) ionomer/polyamide 6 blends. Part III will discuss the control of coefficient of thermal expansion of elastomers using boron nitride as a filler material.

  15. Optimization of 1,2,3,4-tetrahydroacridin-9(10H)-ones as antimalarials utilizing structure-activity and structure-property relationships.

    PubMed

    Cross, R Matthew; Maignan, Jordany R; Mutka, Tina S; Luong, Lisa; Sargent, Justin; Kyle, Dennis E; Manetsch, Roman

    2011-07-14

    Antimalarial activity of 1,2,3,4-tetrahydroacridin-9(10H)-ones (THAs) has been known since the 1940s and has garnered more attention with the development of the acridinedione floxacrine (1) in the 1970s and analogues thereof such as WR 243251 (2a) in the 1990s. These compounds failed just prior to clinical development because of suboptimal activity, poor solubility, and rapid induction of parasite resistance. Moreover, detailed structure-activity relationship (SAR) studies of the THA core scaffold were lacking and SPR studies were nonexistent. To improve upon initial findings, several series of 1,2,3,4-tetrahydroacridin-9(10H)-ones were synthesized and tested in a systematic fashion, examining each compound for antimalarial activity, solubility, and permeability. Furthermore, a select set of compounds was chosen for microsomal stability testing to identify physicochemical liabilities of the THA scaffold. Several potent compounds (EC(50) < 100 nM) were identified to be active against the clinically relevant isolates W2 and TM90-C2B while possessing good physicochemical properties and little to no cross-resistance.

  16. Structure-property relationship for in vitro siRNA delivery performance of cationic 2-hydroxypropyl-β-cyclodextrin: PEG-PPG-PEG polyrotaxane vectors.

    PubMed

    Badwaik, Vivek D; Aicart, Emilio; Mondjinou, Yawo A; Johnson, Merrell A; Bowman, Valorie D; Thompson, David H

    2016-04-01

    Nanoparticle-mediated siRNA delivery is a promising therapeutic approach, however, the processes required for transport of these materials across the numerous extracellular and intracellular barriers are poorly understood. Efficient delivery of siRNA-containing nanoparticles would ultimately benefit from an improved understanding of how parameters associated with these barriers relate to the physicochemical properties of the nanoparticle vectors. We report the synthesis of three Pluronic(®)-based, cholesterol end-capped cationic polyrotaxanes (PR(+)) threaded with 2-hydroxypropyl-β-cyclodextrin (HPβCD) for siRNA delivery. The biological data showed that PR(+):siRNA complexes were well tolerated (∼90% cell viability) and produced efficient silencing (>80%) in HeLa-GFP and NIH 3T3-GFP cell lines. We further used a multi-parametric approach to identify relationships between the PR(+) structure, PR(+):siRNA complex physical properties, and biological activity. Small angle X-ray scattering and cryoelectron microscopy studies reveal periodicity and lamellar architectures for PR(+):siRNA complexes, whereas the biological assays, ζ potential measurements, and imaging studies suggest that silencing efficiency is influenced by the effective charge ratio (ρeff), polypropylene oxide (PO) block length, and central PO block coverage (i.e., rigidity) of the PR(+) core. We infer from our findings that more compact PR(+):siRNA nanostructures arising from lower molecular weight, rigid rod-like PR(+) polymer cores produce improved silencing efficiency relative to higher molecular weight, more flexible PR(+) vectors of similar effective charge. This study demonstrates that PR(+):siRNA complex formulations can be produced having higher performance than Lipofectamine(®) 2000, while maintaining good cell viability and siRNA sequence protection in cell culture.

  17. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts.

    PubMed

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-05-07

    observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ∼ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified.

  18. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-04-01

    observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ~ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified.An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic

  19. Structure-Property Relationships in CO2-philic (Co)polymers: Phase Behavior, Self-Assembly, and Stabilization of Water/CO2 Emulsions.

    PubMed

    Girard, Etienne; Tassaing, Thierry; Marty, Jean-Daniel; Destarac, Mathias

    2016-04-13

    This Review provides comprehensive guidelines for the design of CO2-philic copolymers through an exhaustive and precise coverage of factors governing the solubility of different classes of polymers. Starting from computational calculations describing the interactions of CO2 with various functionalities, we describe the phase behavior in sc-CO2 of the main families of polymers reported in literature. The self-assembly of amphiphilic copolymers of controlled architecture in supercritical carbon dioxide and their use as stabilizers for water/carbon dioxide emulsions then are covered. The relationships between the structure of such materials and their behavior in solutions and at interfaces are systematically underlined throughout these sections.

  20. Mixture designs to assess composition-structure-property relationships in SiO₂-CaO-ZnO-La₂O₃-TiO₂-MgO-SrO-Na₂O glasses: potential materials for embolization.

    PubMed

    Kehoe, Sharon; Langman, Maxine; Werner-Zwanziger, Ulli; Abraham, Robert J; Boyd, Daniel

    2013-09-01

    Embolization with micron-sized particulates is widely applied to treat uterine fibroids. The objective of this work was to develop mixture designs to predict materials composition-structure-property relationships for the SiO₂-CaO-ZnO-La₂O₃-TiO₂-MgO-SrO-Na₂O glass system and compare its fundamental materials properties (density and cytocompatibility), against a state-of-the-art embolic agent (contour polyvinyl alcohol) to assess the potential of these materials for embolization therapies. The glass structures were evaluated using ²⁹Si MAS NMR to identify chemical shift and line width; the particulate densities were determined using helium pycnometry and the cell viabilities were assessed via MTT assay. ²⁹Si MAS NMR results indicated peak maxima for each glass in the range of -82.3 ppm to -89.9 ppm; associated with Q² to Q³ units in silicate glasses. All experimental embolic compositions showed enhanced in vitro compatibility in comparison to Contour PVA with the exceptions of ORP9 and ORP11 (containing no TiO₂). In this study, optimal compositions for cell viability were obtained for the following compositional ranges: 0.095-0.188 mole fraction ZnO; 0.068-0.159 mole fraction La₂O₃; 0.545-0.562 mole fraction SiO₂ and 0.042-0.050 mole fraction TiO₂. To ensure ease of producibility in obtaining good melts, a maximum loading of 0.068 mole fraction La₂O₃ is required. This is confirmed by the desirability approach, for which the only experimental composition (ORP5) of the materials evaluated was presented as an optimum composition; combining high cell viability with ease of production (0.188 mole fraction ZnO; 0.068 mole fraction La₂O₃; 0.562 mole fraction SiO₂ and 0.042 mole fraction TiO₂).

  1. Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA).

    PubMed

    Redmond, Haley; Thompson, Jonathan E

    2011-04-21

    In this work we describe and evaluate a simple scheme by which the refractive index (λ = 589 nm) of non-absorbing components common to secondary organic aerosols (SOA) may be predicted from molecular formula and density (g cm(-3)). The QSPR approach described is based on three parameters linked to refractive index-molecular polarizability, the ratio of mass density to molecular weight, and degree of unsaturation. After computing these quantities for a training set of 111 compounds common to atmospheric aerosols, multi-linear regression analysis was conducted to establish a quantitative relationship between the parameters and accepted value of refractive index. The resulting quantitative relationship can often estimate refractive index to ±0.01 when averaged across a variety of compound classes. A notable exception is for alcohols for which the model consistently underestimates refractive index. Homogenous internal mixtures can conceivably be addressed through use of either the volume or mole fraction mixing rules commonly used in the aerosol community. Predicted refractive indices reconstructed from chemical composition data presented in the literature generally agree with previous reports of SOA refractive index. Additionally, the predicted refractive indices lie near measured values we report for λ = 532 nm for SOA generated from vapors of α-pinene (R.I. 1.49-1.51) and toluene (R.I. 1.49-1.50). We envision the QSPR method may find use in reconstructing optical scattering of organic aerosols if mass composition data is known. Alternatively, the method described could be incorporated into in models of organic aerosol formation/phase partitioning to better constrain organic aerosol optical properties.

  2. DFT studies on structural properties and electron density topologies of the iron selenides Fe m Se n (1 ≤ m, n ≤ 4)

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Liu, Jianhong

    2016-12-01

    We report the structural properties and electron density topologies of the iron selenides Fe m Se n (1 ≤ m, n ≤ 4) using DFT method. Structural studies reveal the Se atom leads to significant change in the geometries of the iron selenides. We confirm that the bond length between Fe atoms increase owing to the sequential addition of Se atom. Comparable stabilities were investigated based on the variation of averaged binding energies and selenium doping energy. The covalent property of the Fe-Se bond is increased as the coincident bond critical points (BCPs) showed smaller positive nabla _{{ρ _{BCP}}}^2 values than those of original FeSe molecule. Our results demonstrate that the ρFe-Fe values keep in the order of 0.048-0.220 a.u. Almost all of the nabla _{{ρ _{BCP}}}^2 values are positive and consequently mean the closed-shell interactions are conserved in the iron selenides.

  3. A study of structural properties of gene network graphs for mathematical modeling of integrated mosaic gene networks.

    PubMed

    Petrovskaya, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A

    2016-12-22

    Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.

  4. Analysis of beta-carotene absorbance for studying structural properties of human plasma low-density lipoproteins.

    PubMed

    Krisko, Anita; Piantanida, Ivo; Kveder, Marina; Pifat, Greta

    2004-08-01

    A novel spectrophotometric assay for monitoring structural rearrangements of native low-density lipoproteins (LDL) is proposed. The approach is based on the analysis of the visible light absorbance maximum of lipoproteins at approximately 461 nm assigned to beta-carotene situated in the hydrophobic parts of LDL. It offers a direct method to study the surface-interior coupling of the lipoprotein particle under physiological conditions. The detected signal is intrinsic to LDL and responsible for the most of the beta-carotene signal from the whole plasma. The negligible interference of beta-carotene absorbance due to the high-density lipoproteins is experimentally verified. Since beta-carotene absorbance belongs to the visible spectral region, no spectral overlapping/artifacts in plasma are expected. The signal sensitivity has been studied through conformational changes of LDL induced by ionic strength, by temperature, and by ligand binding. The results of caffeine binding to LDL indicate that there could be only one dominant type of binding site for caffeine on LDL particles. It can be concluded that visible spectrum characteristics of beta-carotene molecules offer advantages in LDL ligand binding studies which can possibly be extended to monitor the interactions of LDL directly in plasma.

  5. Investigation into the structure-property relationship and technical properties of TPEs and TPVs derived from ethylene octene copolymer (EOC) and polydimethyl siloxane (PDMS) rubber blends

    NASA Astrophysics Data System (ADS)

    Padmanabhan, R.; Naskar, Kinsuk; Nando, Golok B.

    2015-10-01

    This work focuses on the study of thermoplastic vulcanizates based on ethylene octene copolymer (EOC) and poly dimethyl siloxane (PDMS) rubber prepared by melt mixing technique using dicumyl peroxide (DCP). It is found that the addition of peroxide causes crosslinking in both the phases. However, crosslinking without affecting the crystallinity of the EOC polymer leads to tremendous improvement in the mechanical properties, including the tensile strength which has improved by nearly 60%. For better understanding about the crosslinking characteristics of thermoplastic vulcanizates (TPVs), significant correlation has been made between the vulcanized network and the physico-mechanical properties. Further, the dynamic mechanical properties and creep behavior of these thermoplastic elastomers (TPEs) and TPVs have also been studied. It is inferred that the TPVs show a 19% decrease in the creep compliance, i.e. higher creep resistance compared to uncrosslinked blends. Subsequently, the morphology of the blends before and after vulcanization shows a decrease in the spherical PDMS domains from 0.8 μm to > 0.4 μm. Ageing and reprocessing studies of the prepared TPVs also show better physico-mechanical properties even after reprocessing twice. Thus, the prepared TPVs may have tremendous applications in automobile sectors.

  6. Study of optical and structural properties of CdSe quantum dot embedded in PVA polymer matrix

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Sharma, Ambika

    2015-08-01

    To enhance the properties and applicability of devices it is essential to incorporate semiconductor nanoparticles into polymer matrix. This introduces a new branch of science which includes device fabrications such as gas sensors, nonlinear optics, catalysis etc. Herein, we have synthesized CdSe/PVA nanocomposite (NC) material using wet chemical synthesis technique. The XRD studies revealed the formation of crystalline structure of CdSe nanoparticles (NP's) and PVA NC's with an average size of 100 nm and 5 nm respectively. Energy band gap is determined using UV-VIS Spectroscopy. A red shift in the absorption edge of CdSe/PVA NC is observed with respect to CdSe Np's, The photoluminescence spectra also show red shift for CdSe/PVA NC as compared to CdSe NP's Thus the use of CdSe/PVA for solar cell application would be more preferable than CdSe NP's.

  7. Vibrational and structural properties of amorphous n-butanol: A complementary Raman spectroscopy and X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Hédoux, Alain; Guinet, Yannick; Paccou, L.; Derollez, P.; Danède, F.

    2013-06-01

    Raman spectroscopy and X-ray diffraction experiments were performed in the liquid, undercooled liquid, and glassy states of n-butanol. Clear correlated signatures are obtained below the melting temperature, from both temperature dependences of the low-wavenumber vibrational excitations and the intermediate-range order characterized by a prepeak detected in the different amorphous states. It was found that these features are related to molecular associations via strong hydrogen bonds, which preferentially develop at low temperature, and which are not compatible with the long-range order of the crystal. This study provides information on structural heterogeneities developing in hydrogen-bonded liquids, associated to the undercooled regime and the inherent glass transition. The analysis of the isothermal abortive crystallization, 2 K above the glass transition temperature, has given the opportunity to analyze the early stages of the crystallization and to describe the origin of the frustration responsible for an uncompleted crystallization.

  8. The study of the structural properties of very low viscosity sodium alginate by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Badita, C. R.; Aranghel, D.; Radulescu, A.; Anitas, E. M.

    2016-03-01

    Sodium alginate is a linear polymer extract from brown algae and it is used in the biomedical, food, cosmetics and pharmaceutical industries as solution property modifiers and gelling agents. But despite the extensive studies of the alginate gelation process, still some fundamental questions remain unresolved. The fractal behavior of very low viscosity sodium alginate solutions and their influence on the critical gelation of alginate induced by Ca2+ ions were investigated using Small-Angle Neutron Scattering (SANS) measurements. SANS data are interpreted using both standard linear plots and the Beaucage model. The scattering intensity is dependent by alginate concentration and Ca2+ concentration. From a critical concentration of 1.0 % w/w our polymer swelled forming spherical structures with rough surfaces. Also the addition of the salt induces the collapse and the appearance of the aggregation and clusters formation.

  9. Investigation of structure-property relationships of polyisobutylene-based biomaterials: Morphology, thermal, quasi-static tensile and long-term dynamic fatigue behavior.

    PubMed

    Götz, C; Lim, G T; Puskas, J E; Altstädt, V

    2012-06-01

    This study examines the morphology, thermal, quasi-static and long-term dynamic creep properties of one linear and three arborescent polyisobutylene-based block copolymers (L_SIBS31, D_IBS16, D_IBS27 and D_IBS33). Silicone rubber, a common biopolymer, was considered as a benchmark material for comparison. A unique hysteretic testing methodology of Stepwise Increasing Load Test (SILT) and Single Load Test (SLT) was used in this study to evaluate the long-term dynamic fatigue performance of these materials. Our experimental findings revealed that the molecular weight of polyisobutylene (PIB) and polystyrene (PS) arms [M(n)(PIB(arm)) and M(n)(PS(arm))], respectively had a profound influence on the nano-scaled phase separation, quasi-static tensile, thermal transition, and dynamic creep resistance behaviors of these PIB-based block copolymers. However, silicone rubber outperformed the PIB-based block copolymers in terms of dynamic creep properties due to its chemically crosslinked structure. This indicates a need for a material strategy to improve the dynamic fatigue and creep of this class of biopolymers to be considered as alternative to silicone rubber for biomedical devices.

  10. An experimental and theoretical study on the electronic and structural properties of CdSe@TiO2 nanotube arrays.

    PubMed

    Freitas, R G; Lucas, F W S; Santanna, M A; Mendes, R A; Terezo, A J; de Souza, G L C; Mascaro, L H; Pereira, E C

    2016-09-29

    In this work, the effects of the structural (crystallite size, stress) and electronic parameters (band gap, lifetime) on the photoelectrocatalysis and electron transport over CdSe electrodeposited inside TiO2-nanotubes (CdSe@TiO2NT) were investigated. Density functional theory (DFT) calculations of TiO2 were used to elucidate the electronic band structure and to correlate with experimental values. CdSe was grown by pulsed electrodeposition into previous and late thermal-treated TiO2NT (Sample-PTT and Sample-LTT, respectively) without blocking the nanotube's entrance. The Rietveld refinement method was used to obtain information from crystallographic data of each photoelectrode. The lattice strains calculated from the Rietveld analysis for Sample-PTT and Sample-LTT were 0.472 and 0.540, and the average volume of the TiO2-anatase unit cell increased from 133.235(0) Å(3) to 136.950(6) Å(3), respectively. Sample-PTT exhibited higher experimental electron lifetime, larger than 1.0 order of magnitude compared to Sample-LTT photoanodes. The band structures and DOS obtained by computational modelling showed theoretical band gap values of 2.54 eV and 2.75 eV, which were close to the experimental values. All studies evidenced a strong dependence of the electronic properties of the CdSe@TiO2 samples on their morphology, and, consequently, on their photoelectrochemical activity in water splitting.

  11. Structure-property studies of thermoplastic and thermosetting polyurethanes using palm and soya oils-based polyols.

    PubMed

    Mohammed, Issam Ahmed; Al-Mulla, Emad Abbas Jaffar; Kadar, Nurul Khizien Abdul; Ibrahim, Mazlan

    2013-01-01

    Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4'-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, (1)H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials.

  12. Study of optical and structural properties of CdSe quantum dot embedded in PVA polymer matrix

    SciTech Connect

    Tyagi, Chetna Sharma, Ambika

    2015-08-28

    To enhance the properties and applicability of devices it is essential to incorporate semiconductor nanoparticles into polymer matrix. This introduces a new branch of science which includes device fabrications such as gas sensors, nonlinear optics, catalysis etc. Herein, we have synthesized CdSe/PVA nanocomposite (NC) material using wet chemical synthesis technique. The XRD studies revealed the formation of crystalline structure of CdSe nanoparticles (NP’s) and PVA NC’s with an average size of 100 nm and 5 nm respectively. Energy band gap is determined using UV-VIS Spectroscopy. A red shift in the absorption edge of CdSe/PVA NC is observed with respect to CdSe Np’s, The photoluminescence spectra also show red shift for CdSe/PVA NC as compared to CdSe NP’s Thus the use of CdSe/PVA for solar cell application would be more preferable than CdSe NP’s.

  13. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    SciTech Connect

    Lee, Geon Joon Sim, Geon Bo; Choi, Eun Ha; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  14. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  15. Identifying Structure-Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach

    NASA Astrophysics Data System (ADS)

    Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk

    2017-03-01

    Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.

  16. Structure-Property Relationships in Porous 3-D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Padadopoulos, Demetrios S.; Leventis, Nicholas

    2007-01-01

    Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of C-13 CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.

  17. Structure-Property Relationships in Porous 3-D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Papadopoulos, Demetrios S.; Leventis, Nicholas

    2007-01-01

    Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of 13C CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.

  18. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    PubMed Central

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  19. Structure-property relationships in block copolymers

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.

    1976-01-01

    Block copolymers are a class of relatively new materials which contain long sequences of two (or more) chemically different repeat units. Unlike random copolymers, each segment may retain some properties which are characteristic of its homopolymer. It is well known that most physical blends of two different homopolymers are incompatible on a macro-scale. By contrast most block copolymers display only a microphase (eg. 100-200 A domains) separation. Complete separation is restricted because of a loss in configurational entropy. The latter is due to presence of chemical bond(s) between the segments. Novel physical properties can be obtained because it is possible to prepare any desired combination of rubber-like, glassy, or crystalline blocks. The architecture and sequential arrangement of the segments can strongly influence mechanical behavior.

  20. Structure Property Relationships in Liquid Crystalline Thermosets

    DTIC Science & Technology

    2003-04-25

    Adhesion Science and Technology , 2002, 16, 15-32 Jianxun Feng and Elliot P. Douglas, “Permeability of a liquid crystalline epoxy”, Materials Research...Arthur J. Gavrin and Elliot P. Douglas, “Cure behavior of liquid crystalline thermosets”, poster presentation at POLY Millenial 2000, Waikoloa, HI...December, 2000 Elliot P. Douglas, "Liquid crystalline thermosets", Massachusetts Institute of Technology , Cambridge, MA, April, 2000 Arthur J. Gavrin

  1. Optimization of bulkheterojunction organic photovoltaics: Structure/property study with oxadiazole contained poly(p-phenylene)s [OXA-PPVs] and device system engineering

    NASA Astrophysics Data System (ADS)

    Ko, Changheui

    This thesis is focused on investigating organic semiconducting materials and photophysical phenomenon to build high efficient polymer light emitting diodes (PLEDs) and organic photovoltaic cells (OPVs) through material engineering and process engineering. We have synthesized and characterized three electroactive polymers of oxadiazole containing poly(p-phenylenevinylene)s [OXA-PPV3-1s] with different solubilizing alkoxy side chains. They have hybrid electronic characteristics of hole transporting and electron transporting properties in a molecule. By utilizing their novel properties we expect high PLED and OPV device performance. First, we seek to resolve the structure-property relationships by looking at the effects of side groups through photophysical studies such as UV/Vis spectroscopy, photoluminescence spectroscopy (PL) and also by morphological characterization with atomic force microscopy (AFM). High quantum efficiencies have been observed from solution OXA-PPVs. To investigate the electric field induced photogeneration characteristic in OXA-PPVs, we fabricated single layer PLEDs using three OXA-PPV3-1s as the active material. Balanced charge injection will be discussed based on device performances. At the same time, to investigate the photoactivated charge separation phenomenon in OXA-PPV3-1s, we prepared several bulkheterojunction OPVs. The active layer was formed from a solution mixture of OXA-PPV3-1s as an electron acceptor and well known semicrystalline poly(3-hexylthiophene) (P3HT) as an electron donor. As a pair, the well matched HOMO and LUMO levels, as well as significant oxidative stability in OXA-PPV3-1s and high carrier mobility in P3HT motivated our OPV study. When OXA-PPV3-1 is blended with P3HT and formed into films, significant photoluminescence quenching (PL quenching) is observed from the films using a wavelength that corresponds to the absorption maximum of OXA-PPV3-1s. Such PL quenching is evidence for the pre-requisite of photoactivated

  2. Structure-property relationships in self-assembled metalorganic chemical vapor deposition-grown CoFe{sub 2}O{sub 4-}-PbTiO{sub 3} multiferroic nanocomposites using three-dimensional characterization.

    SciTech Connect

    Pan, M.; Liu, Y.; Bai, G.; Hong, S.; Dravid, V. P.; Petford-Long, A. K.

    2011-01-01

    Multiferroic nanocomposites, consisting of branched, ferrimagnetic CoFe{sub 2}O{sub 4} filaments and large protruding PbTiO{sub 3} particles embedded in a piezoelectric PbTiO{sub 3} matrix, have been fabricated by co-deposition using metalorganic chemical vapor deposition. Branched CoFe{sub 2}O{sub 4} filaments reduce the CoFe{sub 2}O{sub 4}/PbTiO{sub 3} interfacial strain and induce a perpendicular magnetic anisotropy. Three-dimensional characterizations reveal that in addition to the c-domain, grains with a second orientation in PbTiO{sub 3} particles contribute to an additional four apparent variants of polarization. In contrast, the PbTiO{sub 3} matrix exhibits only c-domain polarization with a smaller magnitude. The smaller piezoresponse results from the constraints imposed by the branched CoFe{sub 2}O{sub 4} filaments. Three-dimensional microstructure and property analysis provide a comprehensive insight on the structure-property relationship of multiferroic nanocomposites grown by metalorganic chemical vapor deposition.

  3. Elucidating the structure-property relationships of donor-π-acceptor dyes for dye-sensitized solar cells (DSSCs) through rapid library synthesis by a one-pot procedure.

    PubMed

    Fuse, Shinichiro; Sugiyama, Sakae; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Katoh, Ryuzi; Kaiho, Tatsuo; Takahashi, Takashi

    2014-08-18

    The creation of organic dyes with excellent high power conversion efficiency (PCE) is important for the further improvement of dye-sensitized solar cells. We wish to describe the rapid synthesis of a 112-membered donor-π-acceptor dye library by a one-pot procedure, evaluation of PCEs, and elucidation of structure-property relationships. No obvious correlations between ε, and the η were observed, whereas the HOMO and LUMO levels of the dyes were critical for η. The dyes with a more positive E(HOMO), and with an E(LUMO)<-0.80 V, exerted higher PCEs. The proper driving forces were crucial for a high J(sc), and it was the most important parameter for a high η. The above criteria of E(HOMO) and E(LUMO) should be useful for creating high PCE dyes; nevertheless, that was not sufficient for identifying the best combination of donor, π, and acceptor blocks. Combinatorial synthesis and evaluation was important for identifying the best dye.

  4. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  5. Dissolution of cellulose in 1-allyl-3-methylimizodalium carboxylates at room temperature: a structure-property relationship study.

    PubMed

    Zhang, Yajuan; Xu, Airong; Lu, Benlian; Li, Zhiyong; Wang, Jianji

    2015-03-06

    The development of highly efficient cellulose solvents is imperative to the effective utilization of cellulose. In this work, ionic liquids (ILs) with the same 1-allyl-3-methylimidazolium cation ([Amim](+)) but different carboxylate anions, such as formate ([HCOO](-)), acetate ([CH3COO](-)), propionate ([CH3CH2COO](-)), butyrate ([CH3CH2CH2COO](-)), glycollate ([HOCH2COO](-)), lactate ([CH3CHOHCOO](-)) and benzoate ([C6H5COO](-)) were synthesized, and their thermal properties and viscosities were determined. Then these ILs were used to investigate the effect of anion structure on solubility of cellulose in the ILs. It was shown that the viscosity and cellulose solubility depended strongly on the anion structure of the ILs. For example, at 30 °C solubility of cellulose in [Amim][CH3CH2COO] was as high as 19.0%, whereas cellulose was not soluble in [Amim][HOCH2COO], [Amim][CH3CHOHCOO] and [Amim][C6H5COO]. In addition, solvatochromic UV/vis probe and (13)C NMR measurements were performed to demonstrate dissolution mechanism of cellulose in the ILs. The results suggested that although cations of the ILs have un-negligible contribution to the highly efficient dissolution of cellulose, hydrogen bonding interactions of anions of the ILs with cellulose is predominant.

  6. New Insights into Structure-Property Relationships in Thermosetting Polymers from Studies of Co-Cured Polycyanurate Networks (Preprint)

    DTIC Science & Technology

    2011-12-19

    highly selective nature of the cure reaction ,14, 15 along with the ease of detection of both the extent of cure and side reactions in the solid state,1...was judged unnecessary. Moisture uptake and heat of reaction data were analyzed on a mole fraction basis, while glass transition temperature values...little difference in the thermodynamics of the reaction , as expected. S1.3 Peak Cure Temperature (variable 3). As with the enthalpy of cure, there

  7. Determinants of Long Bone Structural Properties

    NASA Technical Reports Server (NTRS)

    Cleek, T. M.; Katz, B.; Whalen, R. T.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    The objective of our research is to determine whether a non-invasive determination of long bone cross-sectional areal properties using only the mineral component of bone accurately predicts the true structural properties. In this study section properties of a whole long bone were compared using two methods: (1) special analysis of bone densitometry data, and (2) experimental determination of flexural rigidities from bone surface strain measurements during controlled loading.

  8. Finite Element Estimation of Meteorite Structural Properties

    NASA Technical Reports Server (NTRS)

    Hart, Kenneth Arthur

    2015-01-01

    The goal of the project titled Asteroid Threat Assessment at NASA Ames Research Center is to develop risk assessment tools. The expertise in atmospheric entry in the Entry Systems and Technology Division is being used to describe the complex physics of meteor breakup in the atmosphere. The breakup of a meteor is dependent on its structural properties, including homogeneity of the material. The present work describes an 11-week effort in which a literature survey was carried for structural properties of meteoritic material. In addition, the effect of scale on homogeneity isotropy was studied using a Monte Carlo approach in Nastran. The properties were then in a static structural response simulation of an irregularly-shape meteor (138-scale version of Asteroid Itokawa). Finally, an early plan was developed for doctoral research work at Georgia Tech. in the structural failure fragmentation of meteors.

  9. Adiposity is associated with structural properties of the adolescent brain.

    PubMed

    Schwartz, Deborah H; Dickie, Erin; Pangelinan, Melissa M; Leonard, Gabriel; Perron, Michel; Pike, G Bruce; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš

    2014-12-01

    Obesity, a major risk factor for cardiometabolic disease, is associated with variations in a number of structural properties in the adult brain, as assessed with magnetic resonance imaging (MRI). In this study, we investigated the cross-sectional relationship between visceral fat (VF), total body fat (TBF) and three MRI parameters in the brains of typically developing adolescents: (i) T1-weighted (T1W) signal intensity; (ii) T1W signal contrast between white matter (WM) and gray matter (GM); and (iii) magnetization transfer ratio (MTR). In a community-based sample of 970 adolescents (12-18 years old, 466 males), VF was quantified using MRI, and total body fat was measured using a multifrequency bioimpedance. T1W images of the brain were used to determine signal intensity in lobar GM and WM, as well as WM:GM signal contrast. A magnetization transfer (MT) sequence of MT(ON) and MT(OFF) was used to obtain MTR in GM and WM. We found that both larger volumes of VF and more TBF were independently associated with higher signal intensity in WM and higher WM:GM signal contrast, as well as higher MTR in both GM and WM. These relationships were independent of a number of potential confounders, including age, sex, puberty stage, household income and height. Our results suggest that both visceral fat and fat deposited elsewhere in the body are associated independently with structural properties of the adolescent brain. We speculate that these relationships suggest the presence of adiposity-related variations in phospholipid composition of brain lipids.

  10. Structural properties of small rhodium clusters

    SciTech Connect

    Soon, Yee Yeen; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    We report a systematic study of the structural properties of rhodium clusters at the atomistic level. A novel global-minimum search algorithm, known as parallel tempering multicanonical basin hopping plus genetic algorithm (PTMBHGA), is used to obtain the geometrical structures with lowest minima at the semi-empirical level where Gupta potential is used to describe the atomic interaction among the rhodium atoms. These structures are then re-optimized at the density functional theory (DFT) level with exchange-correlation energy approximated by Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA). The structures are optimized for different spin multiplicities. The ones with lowest energies will be taken as ground-state structures. In most cases, we observe only minor changes in the geometry and bond length of the clusters as a result of DFT-level re-optimization. Only in some limited cases, the initial geometries obtained from the PTMBHGA are modified by the re-optimization. The variation of structural properties, such as ground-state geometry, symmetry and binding energy, with respect to the cluster size is studied and agreed well with other results available in the literature.

  11. Study the Effect of Annealing Temperature on Optical and Structural Properties of Zinc Oxide Thin Film Prepared by Thermal Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Adawiah, R.; Rafaie, H. A.; Rusop, M.

    2009-06-01

    Zinc oxide (ZnO) thin films deposited on silicon and glass substrate were prepared using chemical vapor deposition (CVD) method utilizing zinc acetate dihydrate as the zinc sources. The deposited film then annealed at 300° C to 500° C for 1 hour. The optical and structural properties of ZnO thin films were characterized using photoluminescence (PL) and Scanning Electron Microscopy (SEM) respectively. SEM images show that the ZnO thin film on silicon substrate formed unique morphology of flower-like and ball-shaped structures at annealing temperature 300° C and 400° C. Increasing annealing temperature to 450° C for ZnO deposited on glass substrate had increased the grain size of particle which implies the improvement of crystalline grain of thin film. PL results observed that the defect of oxygen vacancy decreased after annealing process for films deposited on silicon substrate. The blue peak emission at 437 nm appears only on the glass substrate. Based on the highest PL intensity value, the optimum annealing temperature for silicon and glass substrate is 350° C and 450° C respectively.

  12. A first-principles study of elastic, magnetic, and structural properties of PrX2 (X=Fe, Mn, Co) compounds

    NASA Astrophysics Data System (ADS)

    Shabara, Reham M.; Aly, Samy H.

    2017-02-01

    The elastic, magnetic, and structural properties of PrX2 (X=Fe, Mn, Co) alloys, of the cubic Laves structure (MgCu2), have been evaluated by first-principles density functional theory using both local spin density (LSDA) and generalized gradient (GGA) approximations. The lattice constant, magnetic moment, density of states, band structure, bulk modulus and its first pressure derivative are calculated. At zero pressure, the total magnetic moments of PrFe2, PrCo2, and PrMn2 using GGA are 4.515, 1.05, and 4.79 μB respectively. The bulk moduli using LSDA are higher than those using GGA approximation. The evaluated Bulk moduli of PrFe2, PrMn2 and PrCo2 using GGA approximation are 48.1, 42.98, and 72.23 GPa respectively. The lattice constant and magnetic moment of PrFe2 using GGA approximation are 7.2 Ǻ and 4.51 μB respectively in good agreement with experimental results.

  13. Structural properties, vibrational spectra and surface-enhanced Raman scattering of 2,4,6-trichloro- and tribromoanilines: A comparative study

    NASA Astrophysics Data System (ADS)

    Haruna, Kabiru; Saleh, Tawfik A.; Al Thagfi, Jameel; Al-Saadi, Abdulaziz A.

    2016-10-01

    A comparative electronic and spectroscopic analysis of 2,4,6-trichloroaniline (TCA) and 2,4,6-tribromoaniline (TBA) was carried out by theoretical and experimental techniques. The NH2 inversion barrier in TCA and TBA molecules was predicted to be three times less than that in aniline and 2,4,6-trifluoroaniline. The size of the halogen substituents in the ortho positions is shown by density functional theory to play an important role in determining the electronic and structural properties of the amino group in the investigated haloaniline derivatives. A thorough interpretation of the infrared and Raman spectra has been performed on the basis of the observed and calculated infrared and Raman spectra as well as calculated potential energy distribution values. In addition, the SERS spectra for both trihaloanilines were successfully collected up to a concentration of 10-6 M using aged hydroxylamine-reduced silver colloid as an active substrate for TCA and TBA. SERS intensities of several peaks were found to linearly change with concentration allowing quantitative analyses of TCA and TBA. A relatively stronger interaction in the case of TBA-silver colloids is predicted compared to the TCA analogue.

  14. Mediterranean-style diet effect on the structural properties of the erythrocyte cell membrane of hypertensive patients: the Prevencion con Dieta Mediterranea Study.

    PubMed

    Barceló, Francisca; Perona, Javier S; Prades, Jesús; Funari, Sérgio S; Gomez-Gracia, Enrique; Conde, Manuel; Estruch, Ramon; Ruiz-Gutiérrez, Valentina

    2009-11-01

    A currently ongoing randomized trial has revealed that the Mediterranean diet, rich in virgin olive oil or nuts, reduces systolic blood pressure in high-risk cardiovascular patients. Here, we present a structural substudy to assess the effect of a Mediterranean-style diet supplemented with nuts or virgin olive oil on erythrocyte membrane properties in 36 hypertensive participants after 1 year of intervention. Erythrocyte membrane lipid composition, structural properties of reconstituted erythrocyte membranes, and serum concentrations of inflammatory markers are reported. After the intervention, the membrane cholesterol content decreased, whereas that of phospholipids increased in all of the dietary groups; the diminishing cholesterol:phospholipid ratio could be associated with an increase in the membrane fluidity. Moreover, reconstituted membranes from the nuts and virgin olive oil groups showed a higher propensity to form a nonlamellar inverted hexagonal phase structure that was related to an increase in phosphatidylethanolamine lipid class. These data suggest that the Mediterranean-style diet affects the lipid metabolism that is altered in hypertensive patients, influencing the structural membrane properties. The erythrocyte membrane modulation described provides insight in the structural bases underlying the beneficial effect of a Mediterranean-style diet in hypertensive subjects.

  15. Electronic and structural properties of functional nanostructures

    NASA Astrophysics Data System (ADS)

    Yang, Teng

    In this Thesis, I present a study of electronic and structural properties of functional nanostructures such as MoSxIy nanowires, self-assembled monolayer on top of metallic surfaces and structural changes induced in graphite by photo excitations. MoSxI y nanowires, which can be easily synthesized in one step, show many advantages over conventional carbon nanotubes in molecular electronics and many other applications. But how to self-assemble them into desired pattern for practical electronic network? Self-assembled monolayers of polymers on metallic surfaces may help to guide pattern formation of some nanomaterials such as MoSxIy nanowires. I have investigated the physical properties of these nanoscale wires and microscopic self-assembly mechanisms of patterns by total energy calculations combined with molecular dynamics simulations and structure optimization. First, I studied the stability of novel Molybdenum chaicohalide nanowires, a candidate for molecular electronics applications. Next, I investigated the self-assembly of nanoparticles into ordered arrays with the aid of a template. Such templates, I showed, can be formed by polymer adsorption on surfaces such as highly ordered pyrolytic graphite and Ag(111). Finally, I studied the physical origin of of structural changes induced in graphite by light in form of a femtosecond laser pulse.

  16. Perspective: Composition-structure-property mapping in high-throughput experiments: Turning data into knowledge

    NASA Astrophysics Data System (ADS)

    Hattrick-Simpers, Jason R.; Gregoire, John M.; Kusne, A. Gilad

    2016-05-01

    With their ability to rapidly elucidate composition-structure-property relationships, high-throughput experimental studies have revolutionized how materials are discovered, optimized, and commercialized. It is now possible to synthesize and characterize high-throughput libraries that systematically address thousands of individual cuts of fabrication parameter space. An unresolved issue remains transforming structural characterization data into phase mappings. This difficulty is related to the complex information present in diffraction and spectroscopic data and its variation with composition and processing. We review the field of automated phase diagram attribution and discuss the impact that emerging computational approaches will have in the generation of phase diagrams and beyond.

  17. Structural Properties of Green Tea Catechins.

    PubMed

    Botten, Dominic; Fugallo, Giorgia; Fraternali, Franca; Molteni, Carla

    2015-10-08

    Green tea catechins are polyphenols which are believed to provide health benefits; they are marketed as health supplements and are studied for their potential effects on a variety of medical conditions. However, their mechanisms of action and interaction with the environment at the molecular level are still not well-understood. Here, by means of atomistic simulations, we explore the structural properties of four green tea catechins, in the gas phase and water solution: specifically, (-)-epigallocatechin-3-gallate, which is the most abundant, (-)-epicatechin-3-gallate, (-)-epigallocatechin-3-O-(3-O-methyl)-gallate, and (-)-epigallocatechin. We characterize the free energy conformational landscapes of these catechins at ambient conditions, as a function of the torsional degrees of freedom of the pholyphenolic rings, determining the stable conformers and their connections. We show that these free energy landscapes are only subtly influenced by the interactions with the solvent and by the structural details of the polyphenolic rings. However, the number and position of the hydroxyl groups (or their sustituents) and the presence/absence of the galloyl moiety have significant impact on the selected catechin solvation shells and hydrogen bond capabilities, which are ultimately linked to their ability to interact with and affect the biological environment.

  18. Annealing and structural properties of composite films

    NASA Astrophysics Data System (ADS)

    Kotov, L. N.; Ustyugov, V. A.; Vlasov, V. S.; Turkov, V. K.; Dianov, M. Yu; Antonets, I. V.; Kalinin, Yu E.; Sitnikov, A. V.; Golubev, E. A.

    2017-02-01

    The composite films were investigated by AFM methods before and after annealing. Topographic and phase-contrast AFM images of the composite films at different annealing temperature were obtained. The separate metal granules and larger-scale labyrinth-like formations were described. These formations appear by the process of the film growth, also by film annealing. Strong changes of the structural properties of the films are observed after the percolation transition. The significant changes of the structural properties are connected with nanostructural transformations in the metal granules topology and presence of metal crystal phase.

  19. A first-principles study of the electronic and structural properties of Sb and F doped SnO{sub 2} nanocrystals

    SciTech Connect

    Kim, Minjung; Scott Bobbitt, N.; Marom, Noa; Chelikowsky, James R.

    2015-01-28

    We examine the electronic properties of Sb and F doped SnO{sub 2} nanocrystals up to 2.4 nm in diameter. A real-space pseudopotential implementation of density functional theory is employed within the local density approximation. We calculate electron binding energies and dopant formation energies as function of nanocrystal size, dopant concentration, and dopant species. Structural changes for different dopant species are also investigated. Our study should provide useful information for the design of transparent conducting oxides at the nanoscale.

  20. Structural Properties and UV-Visible Absorption Spectroscopy of Retinal-pyridyl-CN Re(I) Carbonyl Bipyridine Complex: A Theoretical Study.

    PubMed

    Eng, Julien; Daniel, Chantal

    2015-10-29

    The structural, electronic, and optical properties of the all-trans and five cis conformers of [Re(CO)3(bpy)(ret-pyr-CN)](+) (bpy = 2,2'-bipyridine; ret-pyr-CN = pyridyl-CN-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-2-n)-none-(2,4,6,8-tetraen) were studied in solvent by means of density functional theory (DFT) and time-dependent DFT. The isolated retinal-like chromophore ret-pyr-CN was investigated as well for comparison. By coordination to the complex the two lowest intraligand (IL) states localized on the retinal group are slightly red-shifted from 627 to 690 nm and from 415 to 450 nm, respectively. Several isomerization pathways are open upon irradiation of the Re(I) complex by visible light (400-450 nm), especially to two cis conformers corresponding to the isomerization of the two double bonds of the retinal-like ligand close to the pyridyl group linked to the Re(I) fragment. The metal-to-ligand charge transfer states localized either on the retinal group or on the bpy ligand should play a minor role in the isomerization process itself but could improve its efficiency via ultra-fast intersystem crossing.

  1. Kinetic study of κ-carrageenan degradation and its impact on mechanical and structural properties of chitosan/κ-carrageenan film.

    PubMed

    Shahbazi, Mahdiyar; Rajabzadeh, Ghadir; Ettelaie, Rammile; Rafe, Ali

    2016-05-20

    The purpose of the current research was to study κ-carrageenan degradation behavior under thermal treatment, and its influence on chitosan κ-carrageenan film properties. A pseudo-first-order reaction equation was applied by using reciprocal plots of κ-carrageenan molecular mass versus heating time, which showed a strong dependence on heating time. Incorporation of thermally treated κ-carrageenan into the chitosan had diminished both water resistance and water vapor permeability of the blend, in contrast to those for intact or untreated κ-carrageenan. A dramatic decrease of equilibrium moisture content and tensile strength were noticed, and these parameters were more affected by the longer times. Furthermore, the contact angle of the films was found to be a function of the heating time. Scanning electron microscopy revealed apparent agglomeration of κ-carrageenan through the thermal process. Atomic force microscopy demonstrated that the intact blend had the flattest surface, whilst the blend containing treated κ-carrageenan had high roughness.

  2. Correlation of optical and structural properties of GaN/AlN multi-quantum wells—Ab initio and experimental study

    SciTech Connect

    Kaminska, A.; Strak, P.; Sakowski, K.; Sobczak, K.; Domagala, J. Z.; Grzanka, E.

    2016-01-07

    The results of comprehensive theoretical and experimental study of binary GaN/AlN multi-quantum well (MQW) systems oriented along polar c-direction of their wurtzite structure are presented. A series of structures with quantum wells and barriers of various thicknesses were grown by plasma-assisted molecular-beam epitaxy and characterized by x-ray diffraction and transmission electron microscopy. It was shown that in general the structures of good quality were obtained, with the defect density decreasing with increasing quantum well thickness. The optical transition energies in these structures were investigated comparing experimental measurements with ab initio calculations of the entire GaN/AlN MQW structure depending on the QW widths and strains, allowing for direct determination of the energies of optical transitions and the electric fields in wells/barriers by electric potential double averaging procedure. Photoluminescence (PL) measurements revealed that the emission efficiency as well as the shape of luminescence spectra correlated well with their structural quality. Additionally, due to the Quantum-Confined Stark Effect, the emission energy decreased by over 1 eV for quantum well thicknesses increasing from 1 nm up to 6 nm, and this effect was accompanied by the drastic drop of the PL efficiency. The experimental results are consistent with theoretical models. Comparison of experimental data obtained by a number of different characterization techniques with the density functional theory results received on the same geometry structure allowed to prove directly the theoretical models and to determine the polarization and the oscillator strengths in the AlN/GaN nitride systems for the first time.

  3. Comparative study of optical and structural properties of electrospun 1-dimensional CaYAl{sub 3}O{sub 7}:Eu{sup 3+} nanofibers and bulk phosphor

    SciTech Connect

    Yim, Chul Jin; Unithrattil, Sanjith; Chung, Woon Jin; Im, Won Bin

    2014-09-15

    We report the optical and structural studies of Eu{sup 3+}-doped 1-dimensional CaYAl{sub 3}O{sub 7} nano-fiber phosphor. CaYAl{sub 3}O{sub 7}:Eu{sup 3+} phosphors were synthesized by electrospinning technique and the pristine nano-fibers were annealed at 900 °C to form well crystallized uniform fibers. Under ultraviolet excitation, the CaYAl{sub 3}O{sub 7}:Eu{sup 3+} exhibited red emission, due to transitions in the 4f states of Eu{sup 3+}. In order to explore the difference between the quantum efficiency of nano-fiber and bulk CaYAl{sub 3}O{sub 7}:Eu{sup 3+} phosphor, detailed structural and optical analyses were carried out. The structural analysis of the CaYAl{sub 3}O{sub 7}:Eu{sup 3+} nano-fibers indicates that the structural environment surrounding the dopant Eu{sup 3+} ion was more unstable in nano-fiber when compared to a bulk sample. Decay curves for both the samples when fitted with double exponential decay model indicate that the nano-fiber has shorter decay time, arising from the larger contribution from the non-radiative decay, due to defect levels introduced in the host lattice. - Highlights: • Synthesis of red nano-phosphor through electrospinning • Luminescence properties of bulk and nano-phosphors are compared. • Inferior emission intensity of the nano-phosphor is analyzed using MEM. • Charge cloud around nano-phosphor was found to be oblique.

  4. Density measurements and structural properties of liquid and amorphous metals under high pressure studied by in situ X-ray scattering (Invited)

    NASA Astrophysics Data System (ADS)

    Morard, G.; Garbarino, G.; Andrault, D.; Antonangeli, D.; Guignot, N.; Siebert, J.; Roberge, M.; Boulard, E.; Lincot, A.; Denoeud, A.; Petitgirard, S.

    2013-12-01

    Density determination for crystalline materials under high pressure and high temperature is straightforward using X-ray diffraction. For liquid and amorphous materials, it is more complicated due to the absence of long-range order. Different high pressure techniques have been developed: in-situ X-ray absorption 1-4 or ex-situ sink/float method 5-8. However, these techniques suffer several limitations, such as the limited pressure range or the long exposure time required. We have implemented an in situ X-ray diffraction analysis method suitable for the determination of Pressure-Volume-Temperature equations of state (P-V-T EoS) in the critical case of liquid and amorphous materials over an extended thermodynamic range (T>2000 K and P> 40 GPa). This method is versatile, it can be applied to data obtained using various angle-dispersive X-ray diffraction high-pressure apparatus and, contrary to in situ X-ray absorption techniques, is independent from the sample geometry. Further advantage is the fast data acquisition (between 10 to 300 seconds integration time). Information on macroscopic bulk properties (density) and local atomic arrangement (pair distribution function g(r)) can be gathered in parallel. To illustrate the method, we present studies on liquid Fe-S alloys in Paris Edinburgh press and in laser-heated diamond anvil cell, and measurements on Ce glass in diamond anvil cell at room temperature. References 1 G. Shen, N. Sata, M. Newville et al., App. Phys. Lett. 81 (8), 1411 (2002). 2 C. Sanloup, F. Guyot, P. Gillet et al., Geophys. Res. Lett. 27 (6), 811 (2000). 3 Y. Katayama, K. Tsuji, O. Shimomura et al., J. Synch. Rad. 5, 1023 (1998). 4 T. Sato and N. Funamori, Phys. Rev. Lett. 101, 255502 (2008). 5 R. Knoche and R. W. Luth, Chem. Geol. 128, 229 (1996). 6 P.S. Balog, R.A. Secco, D.C. Rubie et al., J. Geophys. Res. 108 (B2), 2124 (2003). 7 C. B. Agee and D. Walker, J. Geophys. Res. 93 (B4), 3437 (1988). 8 E. Ohtani, A. Suzuki, and T. Kato, Proc. Jpn. Acad

  5. Relationship of Study Habits with Mathematics Achievement

    ERIC Educational Resources Information Center

    Odiri, Onoshakpokaiye E.

    2015-01-01

    The study examined the relationship of study habits of students and their achievement in mathematics. The method used for the study was correlation design. A sample of 500 students were randomly selected from 25 public secondary schools in Delta Central Senatorial District, Delta State, Nigeria. Questionnaires were drawn to gather data on…

  6. Structure Property Studies for Additively Manufactured Parts

    SciTech Connect

    Milenski, Helen M; Schmalzer, Andrew Michael; Kelly, Daniel

    2015-08-17

    Since the invention of modern Additive Manufacturing (AM) processes engineers and designers have worked hard to capitalize on the unique building capabilities that AM allows. By being able to customize the interior fill of parts it is now possible to design components with a controlled density and customized internal structure. The creation of new polymers and polymer composites allow for even greater control over the mechanical properties of AM parts. One of the key reasons to explore AM, is to bring about a new paradigm in part design, where materials can be strategically optimized in a way that conventional subtractive methods cannot achieve. The two processes investigated in my research were the Fused Deposition Modeling (FDM) process and the Direct Ink Write (DIW) process. The objectives of the research were to determine the impact of in-fill density and morphology on the mechanical properties of FDM parts, and to determine if DIW printed samples could be produced where the filament diameter was varied while the overall density remained constant.

  7. On the study of Structural properties and Cation distribution of Zn0.75-xNixMg0.15Cu0.1Fe2O4 nano ferrite: Effect of Ni addition

    NASA Astrophysics Data System (ADS)

    Satalkar, M.; Kane, S. N.

    2016-10-01

    Effect of Ni addition on structural properties and, cation distribution of Zn0.75-xNixMg0.15Cu0.1Fe2O4 (x = 0.0, 0.15, 0.30, 0.60, 0.75) ferrites, prepared using sol-gel autocombustion method was studied using X-ray diffraction (XRD) technique. XRD analysis reveals the formation of spinel phase even in dry gel form. The lattice constant (a exp.) decreases with Ni2+ substitution and follows Vegard's law. Scherrer's grain diameter (D) lies within the range of 17.33 - 26.47 nm. Due to difference in the ionic radii of Zn2+ and Ni2+ significant changes are observed in the structural parameters - unit cell volume (V), hopping length at A (La ) and B (Lb ) site, and x-ray density (ρXRD ). Linear increase in Neel magnetic moment (nB N) with oxygen positional parameter is observed in the studied samples, attributed to simultaneous weakening of A-B interaction and strengthening of the B-B interaction.

  8. A Study of Relationships in Teacher Proficiency.

    ERIC Educational Resources Information Center

    Powell, William R.

    This study investigated two questions: what relationships exist between a teacher's knowledge of reading and the teacher's ability to solve problems in reading? and What effect does teacher effort have upon teacher knowledge and the teacher's problem-solving ability in reading tasks? Three instruments (the Artley-Hardin Inventory of Teacher…

  9. A comparative study of electronic and structural properties of polycrystalline and epitaxial magnetron-sputtered ZnO:Al and Zn{sub 1-x}Mg{sub x}O:Al Films—Origin of the grain barrier traps

    SciTech Connect

    Bikowski, André; Ellmer, Klaus

    2013-08-14

    Homoepitaxial and heteroepitaxial ZnO, ZnO:Al, and Zn{sub 1-x}Mg{sub x}O:Al films have been grown by magnetron sputtering from ceramic targets at substrate temperatures between 200 °C and 500 °C. We studied the relation between the electronic transport and structural properties for the epitaxially grown films and compared it to the properties of polycrystalline films by means of X-ray diffraction, transmission electron microscopy and optical reflectance and transmittance measurements. The results show that the epitaxial growth of ZnO:Al and Zn{sub 1-x}Mg{sub x}O:Al thin films, which has been observed for nearly all films prepared on single crystalline substrates, will not significantly improve the electronic transport properties in comparison to polycrystalline films unless the grain boundaries are eliminated completely. The grain boundary defect densities of about 3 × 10{sup 13} cm{sup −2} are nearly independent on the structural quality of the different polycrystalline, hetero- and homoepitaxial films. This clearly proves that the grain boundary defects are not caused by crystallographic defects, but, most probably, by the dopant aluminium.

  10. Solvent Effects on the Structure-Property Relationship of Redox-Active Self-Assembled Nanoparticle-Polyelectrolyte-Surfactant Composite Thin Films: Implications for the Generation of Bioelectrocatalytic Signals in Enzyme-Containing Assemblies.

    PubMed

    Cortez, M Lorena; Ceolín, Marcelo; Cuellar Camacho, Luis; Donath, Edwin; Moya, Sergio E; Battaglini, Fernando; Azzaroni, Omar

    2017-01-11

    The search for strategies to improve the performance of bioelectrochemical platforms based on supramolecular materials has received increasing attention within the materials science community, where the main objective is to develop low-cost and flexible routes using self-assembly as a key enabling process. Important contributions to the performance of such bioelectrochemical devices have been made based on the integration and supramolecular organization of redox-active polyelectrolyte-surfactant complexes on electrode supports. Here, we examine the influence of the processing solvent on the interplay between the supramolecular mesoorganization and the bioelectrochemical properties of redox-active self-assembled nanoparticle-polyelectrolyte-surfactant nanocomposite thin films. Our studies reveal that the solvent used in processing the supramolecular films and the presence of metal nanoparticles not only have a substantial influence in determining the mesoscale organization and morphological characteristics of the film but also have a strong influence on the efficiency and performance of the bioelectrochemical system. In particular, a higher bioelectrochemical response is observed when nanocomposite supramolecular films were cast from aqueous solutions. These observations seem to be associated with the fact that the use of aqueous solvents increases the hydrophilicity of the film, thus favoring the access of glucose, particularly at low concentrations. We believe that these results improve our current understanding of supramolecular nanocomposite materials generated via polyelectrolyte-surfactant complexes, in order to use the processing conditions as a variable to improve the performance of bioelectrochemical devices.

  11. Synthesis and Structure - Property Relationships for Regular Multigraft Copolymers

    SciTech Connect

    Mays, Jimmy; Uhrig, David; Gido, Samuel; Zhu, Yuqing; Weidisch, Roland; Iatrou, Hermis; Hadjichristidis, Nikos; Hong, Kunlun; Beyer, Frederick; Lach, Ralph

    2004-01-01

    Multigraft copolymers with polyisoprene backbones and polystyrene branches, having multiple regularly spaced branch points, were synthesized by anionic polymerization high vacuum techniques and controlled chlorosilane linking chemistry. The functionality of the branch points (1, 2 and 4) can be controlled, through the choice of chlorosilane linking agent. The morphologies of the various graft copolymers were investigated by transmission electron microscopy and X-ray scattering. It was concluded that the morphology of these complex architectures is governed by the behavior of the corresponding miktoarm star copolymer associated with each branch point (constituting block copolymer), which follows Milner's theoretical treatment for miktoarm stars. By comparing samples having the same molecular weight backbone and branches but different number of branches it was found that the extent of long range order decreases with increasing number of branch points. The stress-strain properties in tension were investigated for some of these multigraft copolymers. For certain compositions thermoplastic elastomer (TPE) behavior was observed, and in many instances the elongation at break was much higher (2-3X) than that of conventional triblock TPEs.

  12. Structure-Property Relationships in Polycyanurate / Graphene Networks

    DTIC Science & Technology

    2015-12-12

    Motivation • Sequentially Prepared Graphene Types • Polycyanurate / GO Composite Preparation • Composite Morphology • Composite Mechanical and Physical...improved performance in the example applications shown above. 5Distribution A – Approved for public release; distribution is unlimited. GO and TRGO...distribution is unlimited. Sequential Preparation of GO and TRGO • Graphene oxide ( GO ) prepared by Hummers method of oxidation of XG Sciences® xGNP-M-25

  13. Cement-aggregate compatibility and structure property relationships including modelling

    SciTech Connect

    Jennings, H.M.; Xi, Y.

    1993-07-15

    The role of aggregate, and its interface with cement paste, is discussed with a view toward establishing models that relate structure to properties. Both short (nm) and long (mm) range structure must be considered. The short range structure of the interface depends not only on the physical distribution of the various phases, but also on moisture content and reactivity of aggregate. Changes that occur on drying, i.e. shrinkage, may alter the structure which, in turn, feeds back to alter further drying and shrinkage. The interaction is dynamic, even without further hydration of cement paste, and the dynamic characteristic must be considered in order to fully understand and model its contribution to properties. Microstructure and properties are two subjects which have been pursued somewhat separately. This review discusses both disciplines with a view toward finding common research goals in the future. Finally, comment is made on possible chemical reactions which may occur between aggregate and cement paste.

  14. Structure-property relationships in semicrystalline copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Katsuyuki

    Many outstanding physical properties of ethylene/(meth)acrylic acid (E/(M)AA) copolymers and ionomers are associated with their nanometer-scale morphology, which consists of ethylene crystallites, amorphous segments, and acid/ionic functional groups. The goal of this dissertation is a fundamental understanding of the interplay between these structural motifs and the consequent effects on the material properties. We identify small-strain modulus as a key mechanical property and investigate its dependence upon material structure through X-ray scattering, calorimetry, and mechanical property measurements. We first treat E/(M)AA copolymers as composites of polyethylene crystallites and amorphous regions, and establish a quantitative combining rule to describe the copolymer modulus. At temperatures above the Tg of the copolymers, a monotonic increase in modulus with crystallinity is quantitatively described by the Davies equation for two-phase composites, which serves as the basis for separating the effects of amorphous and crystalline phases throughout this dissertation. The room-temperature modulus of E/(M)AA copolymers is concurrently affected by ethylene crystallinity and proximity to the amorphous phase Tg, which rises through room temperature with increasing comonomer content. In E/(M)AA ionomers, phase separation and aggregation of ionic groups provide additional stiffness and toughness. Ionomers are modeled as composites of crystallites and ionically crosslinked rubber, whose amorphous phase modulus far above the ionomer Tg is satisfactorily described by simple rubber elasticity theory. Thermomechanical analyses probe the multi-step relaxation behavior of E/(M)AA ionomers and lead to the development of a new semicrystalline ionomer morphological model, wherein secondary crystallites and ionic aggregates together form rigid percolated pathways throughout the amorphous phase. Metal soaps are oligomeric analogs of E/(M)AA ionomers, which can be blended into ionomers to achieve high ion content and in turn desirable physical properties. We assess the compatibility of various types of metal soaps with E/(M)AA ionomers, and investigate how the soap modifies the ionomers' structure and properties. The mechanical properties and phase behavior of these hybrids, which are found to differ significantly depending on the neutralizing cation type and crystallinizability of the metal soap, are traced back to various levels of molecular coassembly involving the hydrocarbon chains and/or the ionic groups of both entities.

  15. Uncovering structure-property relationships of materials by subgroup discovery

    NASA Astrophysics Data System (ADS)

    Goldsmith, Bryan R.; Boley, Mario; Vreeken, Jilles; Scheffler, Matthias; Ghiringhelli, Luca M.

    2017-01-01

    Subgroup discovery (SGD) is presented here as a data-mining approach to help find interpretable local patterns, correlations, and descriptors of a target property in materials-science data. Specifically, we will be concerned with data generated by density-functional theory calculations. At first, we demonstrate that SGD can identify physically meaningful models that classify the crystal structures of 82 octet binary (OB) semiconductors as either rocksalt or zincblende. SGD identifies an interpretable two-dimensional model derived from only the atomic radii of valence s and p orbitals that properly classifies the crystal structures for 79 of the 82 OB semiconductors. The SGD framework is subsequently applied to 24 400 configurations of neutral gas-phase gold clusters with 5–14 atoms to discern general patterns between geometrical and physicochemical properties. For example, SGD helps find that van der Waals interactions within gold clusters are linearly correlated with their radius of gyration and are weaker for planar clusters than for nonplanar clusters. Also, a descriptor that predicts a local linear correlation between the chemical hardness and the cluster isomer stability is found for the even-sized gold clusters.

  16. Structure-Property Relationships of Steel Cylindrical Shells

    DTIC Science & Technology

    2012-03-01

    hoop tensile specimens in the pipe’s transverse orienta- tion. The ERDC machine shop prepared the test specimens using a water - jet cutting system...polishing procedure. Abrasive Lubricant Time (min) Step 1 60-grit silicon carbide distilled water until plane Step 2 120-grit silicon carbide...using the procedure outlined in Table 1. Between each polishing step, sonication using distilled water cleaned the specimens. Table 1. Details of

  17. Structure Property Relationships in Imidazole-based Deep Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Terheggen, Logan; Cosby, Tyler; Sangoro, Joshua

    2015-03-01

    Deep eutectic mixtures of levulinic acid with a systematic series of imidazoles are measured by broadband dielectric spectroscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy to investigate the impact of steric interactions on charge transport and structural dynamics. An enhancement of dc conductivity is found in each of the imidazoles upon the addition of levulinic acid. However, the extent of increase is dependent upon the alkyl substitution on the imidazole ring. These results highlight the importance of molecular structure on hydrogen bonding and charge transport in deep eutectic mixtures.

  18. Processing-structure-properties relationships in PLA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Incarnato, L.

    2014-05-01

    This work deals on the possibility to improve performances of PLA-based nanocomposite films, for packaging applications, through conveniently tuning materials and processing conditions in melt compounding technology. In particular, two types of polylactic acid and different types of filler selected from montmorillonites and bentonites families were used to prepare the hybrid systems by using a twin-screw extruder. The effect of biaxial drawing on morphology and properties of the nanocomposites, produced by film blowing, was investigated.

  19. Structure-property-processing relationships in Kevlar fibers

    SciTech Connect

    Lacks, D.J.

    1996-12-31

    Molecular simulations are carried out to elucidate the differences in the properties of the commercial fibers Kevlar 29, Kevlar 49 and Kevlar 149, which are manufactured under different processing conditions, and are composed of poly(p-phenylene teraphthalamide) (PPTA). In going from Kevlar 29 to Kevlar 49 to Kevlar 149, the axial Young`s modulus increases significantly and the torsion modulus decreases significantly, while the compressive strength stays roughly the same. Previous investigators have shown that the increase in the Young`s modulus arises from increased axial orientation. The present paper addresses the torsion modulus and compressive strength of the fibers.

  20. Structure-Property Relationships of Architectural Coatings by Neutron Methods

    NASA Astrophysics Data System (ADS)

    Nakatani, Alan

    2015-03-01

    Architectural coatings formulations are multi-component mixtures containing latex polymer binder, pigment, rheology modifiers, surfactants, and colorants. In order to achieve the desired flow properties for these formulations, measures of the underlying structure of the components as a function of shear rate and the impact of formulation variables on the structure is necessary. We have conducted detailed measurements to understand the evolution under shear of local microstructure and larger scale mesostructure in model architectural coatings formulations by small angle neutron scattering (SANS) and ultra small angle neutron scattering (USANS), respectively. The SANS results show an adsorbed layer of rheology modifier molecules exist on the surface of the latex particles. However, the additional hydrodynamic volume occupied by the adsorbed surface layer is insufficient to account for the observed viscosity by standard hard sphere suspension models (Krieger-Dougherty). The USANS results show the presence of latex aggregates, which are fractal in nature. These fractal aggregates are the primary structures responsible for coatings formulation viscosity. Based on these results, a new model for the viscosity of coatings formulations has been developed, which is capable of reproducing the observed viscosity behavior.

  1. Structural properties of autoclaved aerated concrete masonry

    SciTech Connect

    Matthys, J.H.; Nelson, R.L.

    1999-07-01

    Autoclaved aerated concrete masonry units are manufactured from portland cement, quartz sand, water, lime, gypsum and a gas forming agent. The units are steam cured under pressure in an autoclave transforming the material into a hard calcium silicate. The autoclaved aerated concrete masonry units are large-size solid rectangular prisms which are laid using thin-bed mortar layers into masonry assemblages. The system and product are not new--patented in 1924 by Swedish architect Johan Eriksson. Over a period of 60 years this product has been used in all areas of residential and industrial construction and in virtually all climates. However, the principal locations of application have been generally outside the US Little information in the US is available on the structural properties of this product. Due to the interest in use of this product in the construction industry and the construction of production plants in the US, the Construction Research Center at the University of Texas at Arlington and Robert L. Nelson & Associates conducted a series of tests to determine some of the basic structural properties of this product. This paper presents the findings of those investigations.

  2. Dynamically hot galaxies. I - Structural properties

    NASA Technical Reports Server (NTRS)

    Bender, Ralf; Burstein, David; Faber, S. M.

    1992-01-01

    Results are reported from an analysis of the structural properties of dynamically hot galaxies which combines central velocity dispersion, effective surface brightness, and effective radius into a new 3-space (k), in which the axes are parameters that are physically meaningful. Hot galaxies are found to divide into groups in k-space that closely parallel conventional morphological classifications, namely, luminous ellipticals, compacts, bulges, bright dwarfs, and dwarf spheroidals. A major sequence is defined by luminous ellipticals, bulges, and most compacts, which together constitute a smooth continuum in k-space. Several properties vary smoothly with mass along this continuum, including bulge-to-disk ratio, radio properties, rotation, degree of velocity anisotropy, and 'unrelaxed'. A second major sequence is comprised of dwarf ellipticals and dwarf spheroidals. It is suggested that mass loss is a major factor in hot dwarf galaxies, but the dwarf sequence cannot be simply a mass-loss sequence, as it has the wrong direction in k-space.

  3. Relationships between study skills and academic performance

    NASA Astrophysics Data System (ADS)

    Md Rahim, Nasrudin; Meon, Hasni

    2013-04-01

    Study skills play an important role in influencing academic performance of university students. These skills, which can be modified, can be used as an indicator on how a student would perform academically in his course of study. The purpose of the study is to determine the study skills profile among Universiti Selangor's (Unisel) students and to find the relationships of these skills with student's academic performance. A sample of seventy-eight (78) foundation studies and diploma students of Unisel were selected to participate in this study. Using Study Skills Inventory instrument, eight skills were measured. They are note taking; test taking; textbook study; concentration and memory; time management; analytical thinking and problem solving; nutrition; and vocabulary. Meanwhile, student's academic performance was measured through their current Grade Point Average (GPA). The result showed that vocabulary skill scored the highest mean with 3.01/4.00, followed by test taking (2.88), analytical thinking and problem solving (2.80), note taking (2.79), textbook study (2.58), concentration and memory (2.54), time management (2.25) and nutrition (2.21). Correlation analysis showed that test taking (r=0.286, p=0.011), note taking (r=0.224, p=0.048), and analytical thinking and problem solving (r=0.362, p=0.001) skills were positively correlated with GPA achievement.

  4. An exploratory study of adolescent pimping relationships.

    PubMed

    Anderson, Pamela M; Coyle, Karin K; Johnson, Anisha; Denner, Jill

    2014-04-01

    In the last decade, public attention to the problem of commercially sexually exploited children (CSEC) has grown. This exploratory qualitative study examines adolescent pimping relationships, including how urban youth perceive these types of relationships. Study data stem from interviews with three young adult informants with first-hand knowledge of adolescent pimping, as well as three gender-specific focus group discussions with a convenience sample of 26 urban high school students who have first- or second-hand knowledge of adolescent pimping. Findings indicate that respondents believe teen pimping exists in their schools and communities, and that those exploited typically do not self-identify as victims. Respondents also believed that younger pimps are more likely to use violence to induce compliance among the girls they exploit, whereas older pimps are more likely to emotionally manipulate young women into exploitation. Further, respondents indicated that some young people agreed to exchange or sell sex for money as a favor to their boyfriends or girlfriends, and some young people believed that selling sex is acceptable under certain circumstances. The growing attention to CSEC provides an important opportunity to expand prevention efforts to reach those most affected and at risk for exploitation. The findings highlight critical areas for augmenting traditional content in school-based HIV/STI and sexuality education classes.

  5. Graph Theoretic Foundations of Multibody Dynamics Part I: Structural Properties

    PubMed Central

    Jain, Abhinandan

    2011-01-01

    This is the first part of two papers that use concepts from graph theory to obtain a deeper understanding of the mathematical foundations of multibody dynamics. The key contribution is the development of a unifying framework that shows that key analytical results and computational algorithms in multibody dynamics are a direct consequence of structural properties and require minimal assumptions about the specific nature of the underlying multibody system. This first part focuses on identifying the abstract graph theoretic structural properties of spatial operator techniques in multibody dynamics. The second part paper exploits these structural properties to develop a broad spectrum of analytical results and computational algorithms. Towards this, we begin with the notion of graph adjacency matrices and generalize it to define block-weighted adjacency (BWA) matrices and their 1-resolvents. Previously developed spatial operators are shown to be special cases of such BWA matrices and their 1-resolvents. These properties are shown to hold broadly for serial and tree topology multibody systems. Specializations of the BWA and 1-resolvent matrices are referred to as spatial kernel operators (SKO) and spatial propagation operators (SPO). These operators and their special properties provide the foundation for the analytical and algorithmic techniques developed in the companion paper. We also use the graph theory concepts to study the topology induced sparsity structure of these operators and the system mass matrix. Similarity transformations of these operators are also studied. While the detailed development is done for the case of rigid-link multibody systems, the extension of these techniques to a broader class of systems (e.g. deformable links) are illustrated. PMID:22102790

  6. Mastalgia-Cancer Relationship: A Prospective Study

    PubMed Central

    Yıldırım, Ali Cihat; Yıldız, Pınar; Yıldız, Mustafa; Kahramanca, Şahin; Kargıcı, Hülagü

    2015-01-01

    Objective Mastalgia is an important symptom affecting approximately 70% of women and it disrupts the quality of life especially due to the worry of having cancer. In our study, the type and severity of mastalgia symptom of patients who presented to the outpatient clinic with mastalgia complaint were assessed along with their physical examination findings and radiology results. The purpose of the study is to demonstrate the relationship between mastalgia and malignity when assessed in combination with the risk factors of patients. Materials and Methods The age, family history, menopausal status, age at the first childbirth, menarche, presence/absence of hormone replacement therapy, type of mastalgia, comorbidities and examination findings of 104 patients, who presented to the General Surgery outpatient clinic with mastalgia symptom, were recorded and assessed in the light of radiological study results. Results With respect to the mastalgia types of the patients, 38.5% had cyclic pain, 57.7% non-cyclic pain and 3.8% other types of pain. Mild mastalgia was present in 46.2% of the patients, moderate mastalgia in 24% and severe mastalgia in 29.8% of them. According to the BIRADS category, 48.1% of the patients were identified to have BIRADS 1 mass lesions, 39.4% BIRADS 2, 9.6% BIRADS 3 and 2.9% BIRADS 5 mass lesions. The patients who were identified to have BIRADS 5 mass lesions described non-cyclic and severe pain in the post-menopausal period. They had palpable masses along with the pain symptom. Conclusion Our study suggests that mastalgia symptom does not per se result in suspicion of malignancy, but physical examination and radiological imaging should also be used as needed for confirmation. Studies with a larger patient population are needed to shed light on the mastalgia epidemiology and its relationship with cancer.

  7. Understanding Structural Properties of Carbonate-Silicate Melts: An EXAFS Study on Y and Sr in the System Na2O-CaO-Al2O3-SiO2-CO2

    NASA Astrophysics Data System (ADS)

    Pohlenz, J.; Pascarelli, S.; Mathon, O.; Belin, S.; Shiryaev, A.; Safonov, O.; Murzin, V.; Shablinskaya, K.; Irifune, T.; Wilke, M.

    2014-12-01

    Carbonatite volcanism generally occurs in intra-plate settings associated with continental rifting. The only active carbonatitic volcano is the Oldoinyo Lengai, Tanzania, which generates sodium-rich carbonatites in close association with phonolites and nephelinites1. The processes of carbonatite genesis are still unresolved, however carbonate-bearing melts evidently play a crucial role during mantle melting, in diamond formation and as metasomatic agents. Carbonate melts show extraordinary properties, especially in regard to their low melt viscosities and densities, high surface tensions and electrical conductivities as well as distinct geochemical affinities to a wide range of trace elements2. Understanding the structural properties of carbonate-bearing melts is fundamental to explaining their chemical and physical behaviour as well as modeling processes operating in the deep Earth. Extended X-ray absorption fine structure (EXAFS) spectroscopy is a versatile tool for element specific investigation of the short to medium range structure of melts and glasses. This study focuses on unraveling the influence of carbonate concentration on the structural incorporation of the geochemically important trace elements Y and Sr in silicate and carbonate melts in the system Na2O-CaO-Al2O3-SiO2-CO2. First, we present structural data of silicate glasses with up to 10 wt% CO2, quenched from melts under high temperature and pressure, which indicate that the local structure of Y and Sr is not or only slightly affected by CO2. Melts with higher CO2 contents could not be quenched to glass, so far. Second, we show results of high pressure, high temperature experiments conducted in the Paris Edinburgh-Press, which provides in-situ insight into carbonate-silicate melts. All EXAFS measurements were performed at the synchrotron facility beamlines SAMBA (SOLEIL) and BM23 (ESRF). Information derived from the trace elements' local structure is used to develop a structural model for carbonate

  8. Structural properties of Alumnum nitride compound

    NASA Astrophysics Data System (ADS)

    Mohammad, R.; Katırcıoğlu, Ş.

    2014-10-01

    Structural properties of Alumnum nitride in wurtzite, zinc-blende and rock-salt phases have been investigated by Full Potential-Linearized Augmented Plane Waves method based on Density Functional Theory within Local Density Approximation and seven Generalized Gradient schemes. It is found that, Alumnum nitride in wurtzite phase is the stable ground state structure and makes a transition to rock-salt phase at a low transition pressure (11.54 GPa). According to present total energy calculations, zinc-blende phase of Alumnum nitride also makes a transition to rock-salt phase, at a low transition pressure (10.17 GPa). Generalized Gradient functionals of Perdew-Wang-Engel-Vosko and Perdew-Burke-Ernzerhof are found to be more successful than other approximations considered in this work for providing the closest values of the structural features, such as, lattice constants, bulk moduli, first order pressure derivatives of bulk moduli and cohesive energies of Alumnum nitride three phases to available experimental ones. Although Generalized Gradient approaches of Perdew-Wang-Engel-Vosko, Perdew-Burke-Ernzerhof, Becke-Perdew-Wang and Perdew-Burke-Ernzerhof (revised) are found to be accurate schemes for elastic constants of rock-salt AlN, only Perdew-Wang-Engel-Vosko and Perdew-Burke-Ernzerhof functionals are observed to be more successful than the other schemes for supplying accurately both C_{11} and C_{12} of zinc-blende Alumnum nitride structure. Perdew-Wang-Engel-Vosko functional is observed to be superior to Perdew-Burke-Ernzerhof for elastic constants of wurtzite Alumnum nitride structure. Elastic constants of wurtzite Alumnum nitride obtained by self Perdew-Wang-Engel-Vosko approach and Martin's transformation calculations in which elastic constants of zinc-blende Alumnum nitride are calculated with Perdew-Wang-Engel-Vosko scheme, are very close to the experimental ones. Hence, functional of Perdew-Wang-Engel-Vosko is decided to be the most accurate approximation

  9. An Exploratory Study of Child Molesters Relationship Patterns Using the Core Conflictual Relationship Theme Method

    ERIC Educational Resources Information Center

    Drapeau, Martin; de Roten, Yves; Korner, Annett

    2004-01-01

    This study examined the relationship patterns of N = 20 child molesters (CM) using the Core Conflictual Relationship Theme (CCRT) method. The relationship patterns of the CMs were compared with those of a control group of N = 20 subjects from an out patient counseling service. Results showed that CMs had significantly less wish to be controlled,…

  10. Parent-Child Relationships, Partner Relationships, and Emotional Adjustment: A Birth-to-Maturity Prospective Study

    ERIC Educational Resources Information Center

    Overbeek, Geertjan; Stattin, Hakan; Vermulst, Ad; Ha, Thao; Engels, Rutger C. M. E.

    2007-01-01

    This study examined whether detrimental childhood relationships with parents were related to partner relationship quality and emotional adjustment in adulthood. The authors tested a theoretical model in which (a) low-quality parent-child relationships were related to conflict and low-quality communication with parents in adolescence, (b)…

  11. Bulimia and Interpersonal Relationships: A Longitudinal Study.

    ERIC Educational Resources Information Center

    Thelen, Mark H.; And Others

    1990-01-01

    Assessed changes in bulimia in female college students (N=44) and in relation between bulimia and interpersonal relationships over time. Found (1) stable symptomology for normals and bulimics; (2) strong negative correlations between bulimia measures and interpersonal relationships with men; and (3) improvement in symptomology and relationships…

  12. Density Functional Theory and Electrochemical Studies: Structure-Efficiency Relationship on Corrosion Inhibition.

    PubMed

    Camacho-Mendoza, Rosa L; Gutiérrez-Moreno, Evelin; Guzmán-Percástegui, Edmundo; Aquino-Torres, Eliazar; Cruz-Borbolla, Julián; Rodríguez-Ávila, José A; Alvarado-Rodríguez, José G; Olvera-Neria, Oscar; Thangarasu, Pandiyan; Medina-Franco, José L

    2015-11-23

    The relationship between structure and corrosion inhibition of a series of 30 imidazol, benzimidazol, and pyridine derivatives has been established through the investigation of quantum descriptors calculated with PBE/6-311++G**. A quantitative structure-property relationship model was obtained by examination of these descriptors using a genetic functional approximation method based on a multiple linear regression analysis. Our results indicate that the efficiency of corrosion inhibitors is strongly associated with aromaticity, electron donor ability, and molecular volume descriptors. In order to calibrate and validate the proposed model, we performed electrochemical impedance spectroscopy (EIS) studies on imidazole, 2-methylimidazole, benzimidazole, 2-chloromethylbenzimidazole, pyridine, and 2-aminopyridine compounds. The experimental values for efficiency of corrosion inhibition are in good agreement with the estimated values obtained by our model, thus confirming that our approach represents a promising and suitable tool to predict the inhibition of corrosion attributes of nitrogen containing heterocyclic compounds. The adsorption behavior of imidazole or benzimidazole heterocyclic molecules on the Fe(110) surface was also studied to elucidate the inhibition mechanism; the aromaticity played an important role in the adsorbate-surface complex.

  13. Structural properties of bismuth-bearing semiconductor alloys

    NASA Technical Reports Server (NTRS)

    Berding, M. A.; Sher, A.; Chen, A.-B.; Miller, W. E.

    1988-01-01

    The structural properties of bismuth-bearing III-V semiconductor alloys InPBi, InAsBi, and InSbBi were studied theoretically. Bond energies, bond lengths, and strain coefficients were calculated for pure AlBi, GaBi, and InBi compounds and their alloys, and predictions were made for the mixing enthalpies, miscibility gaps, and critical metastable-to-stable material transition temperatures. Miscibility calculations indicate that InSbBi will be the most miscible, and the InPBi will be the the most difficult to mix. However, calculations of the hardness of the Bi compounds indicate that, once formed, the InPBi alloy will be harder than the other Bi alloys and substantially harder than the currently favored narrow-gap semiconductor HgCdTe.

  14. DNA-linked nanoparticle materials: optical, electrical, and structural properties

    NASA Astrophysics Data System (ADS)

    Lazarides, A.; Park, S.-J.; Mirkin, C.; Storhoff, J.; Schatz, G.; Brazis, P.; Kannewurf, C.

    2001-03-01

    Novel bioinorganic materials composed of Au nanoparticles linked with DNA have been developed as colorimetric DNA sensors. In the presence of complimentary DNA, particles dressed with one of two oligonucleotide sequences are linked to form binary nanoparticle aggregates. Assemblies linked at 298K have plasmon frequency shifts that decrease with increasing linker length; annealing, however, eliminates the length dependence of the shift. Neither sedimentation rate measurements nor theoretical studies of the optical properties provide unambiguous explanation. However, small-angle X-ray scattering (SAXS) measurements indicate that separations between nanoparticles with or without annealing are proportional to the number of base pairs in the oligonucleotide linkers. DNA is thus shown to offer a means for tuning separations in nanoparticle materials. We have also investigated the electrical and structural properties of dry Au nanoparticle films linked by DNA. The assemblies are semiconducting, which suggests that DNA can be used as a chemically specific scaffolding material for assembly of conductive structures.

  15. Shared Relationship Efficacy of Dyad Can Increase Life Satisfaction in Close Relationships: Multilevel Study

    PubMed Central

    Ito, Kenichi; Yoshida, Toshikazu

    2016-01-01

    Characteristics of relationship itself play an important role in determining well-being of individuals who participate in the relationship. We used efficacy expectations mutually shared between close friends or romantic partners as a characteristic of relationship and investigated its impact on their life satisfaction. In Study 1, we conducted a cross-sectional study among 137 pairs of close same-sex friends to test whether the efficacy expectations shared between friends are associated with levels of life satisfaction. In Study 2, we conducted a longitudinal study among 114 heterosexual romantic couples to test predictive validity of the efficacy expectations shared between couples predict levels of life satisfaction 2 month later. In both studies we found a consistent result that as degrees of the efficacy expectations shared between individuals in a relationship increased, the degree of their life satisfaction also increased. Underlying mechanisms that explain how characteristics of relationship itself increase life satisfaction are discussed. PMID:27437946

  16. Novel aliphatic lipid-based diesters for use in lubricant formulations: Structure property investigations

    NASA Astrophysics Data System (ADS)

    Raghunanan, Latchmi Cindy

    Structure-property relationships are increasingly valued for the identification of specifically engineered materials with properties optimized for targeted application(s). In this work, linear and branched diesters for use in lubricant formulations are prepared from lipid-based oleochemicals and their structure-property relationships reported. It is shown that the branched diesters possess exceptional physical property profiles, including suppression of crystallization, and are superior alternatives for use in lubricant formulations. For the linear aliphatic diesters, both high and low temperature properties were predictable functions of total chain length, and both were differently influenced by the fatty acid versus diol chain length. Symmetry did not influence either, although thermal stability decreased and thermal transition temperatures increased with increasing saturation. All of the linear diesters demonstrated Newtonian flow behaviour. Viscosity was also predictable as a function of total chain length; any microstructural features due to structural effects were superseded by mass effects.

  17. Measuring codependents' close relationships: a preliminary study.

    PubMed

    Wright, P H; Wright, K D

    1990-01-01

    A survey of clinical literature and input from addiction counselors yielded eight commonly assumed characteristics of codependents' relationships. These were defined in a manner amenable to measurement by the Acquaintance Description Form (Wright, 1985), and added to the standard form to provide a codependent version (ADF-C2). Forty-one women and 19 men awaiting or beginning codependent counseling responded to the ADF-C2, and to Friel's Codependency Assessment Inventory and forms soliciting background information. Thirty-nine women and 30 men from the general population provided a comparison group. Although tentative, results were encouraging concerning progress toward measuring codependents' relationships. Broad profiles for both women and men supported the foundational observation that codependents maintain strong commitments to their partners notwithstanding stress and unrewardingness. Specifically, codependent women showed five expected characteristics: Control, Exaggerated Responsibility, Worth Dependency, Rescue Orientation, and Change Orientation. Codependent men showed two: Control and Exaggerated Responsibility.

  18. Questions for future studies: social relationships in old age.

    PubMed

    Troll, L E

    1999-01-01

    It is impressive, not to mention refreshing, to see four careful, weighty studies on social relationships that are not primarily concerned with caregiving. The fact that they are both longitudinal and cross-cultural makes them even more impressive and highlights general issues in the area of social relationships as well as more specific issues of aging. Four issues seem to me to be notable: 1) kinds of relationships, 2) continuity of relationships, 3) functions of relationships, and 4) cultural differences. I will consider each in turn.

  19. Social Anxiety and Close Relationships: A Hermeneutic Phenomenological Study

    ERIC Educational Resources Information Center

    Nielsen, Kate E. J.; Cairns, Sharon L.

    2009-01-01

    While only a few quantitative studies have looked at social anxiety and close relationships, this study uses the qualitative approach of hermeneutic phenomenology to explore the meaning of being in a close relationship for eight individuals with social anxiety. Participants completed a written questionnaire with open-ended questions about their…

  20. DFT calculations on spectroscopic and structural properties of a NLO chromophore

    NASA Astrophysics Data System (ADS)

    Altürk, Sümeyye; Avci, Davut; Tamer, Ömer; Atalay, Yusuf

    2016-03-01

    The molecular geometry optimization, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values of 2-(1'-(4'''-Methoxyphenyl)-5'-(thien-2″-yl)pyrrol-2'-yl)-1,3-benzothiazole as potential nonlinear optical (NLO) material were calculated using density functional theory (DFT) HSEh1PBE method with 6-311G(d,p) basis set. The best of our knowledge, this study have not been reported to date. Additionally, a detailed vibrational study was performed on the basis of potential energy distribution (PED) using VEDA program. It is noteworthy that NMR chemical shifts are quite useful for understanding the relationship between the molecular structure and electronic properties of molecules. The computed IR and NMR spectra were used to determine the types of the experimental bands observed. Predicted values of structural and spectroscopic parameters of the chromophore were compared with each other so as to display the effects of the different substituents on the spectroscopic and structural properties. Obtained data showed that there is an agreement between the predicted and experimental data.

  1. Measuring Long-Distance Romantic Relationships: A Validity Study

    ERIC Educational Resources Information Center

    Pistole, M. Carole; Roberts, Amber

    2011-01-01

    This study investigated aspects of construct validity for the scores of a new long-distance romantic relationship measure. A single-factor structure of the long-distance romantic relationship index emerged, with convergent and discriminant evidence of external validity, high internal consistency reliability, and applied utility of the scores.…

  2. INTERPERSONAL RELATIONSHIPS--A REVIEW. UTAH STUDIES IN VOCATIONAL REHABILITATION.

    ERIC Educational Resources Information Center

    JORGENSEN, GARY Q.; RUSHLAU, PERRY J.

    THIS MONOGRAPH IS A REVIEW OF SELECTED LITERATURE IN THE AREA OF INTERPERSONAL RELATIONSHIPS, WHICH HAS RELEVANCE TO THE CLIENT-COUNSELOR INTERACTION. THE STUDIES HAVE BEEN TREATED WITHIN THE FRAMEWORK OF MCGRATH'S DESCRIPTIVE MODEL FOR INTERPERSONAL RELATIONSHIPS. COMPARATIVE ANALYSIS OF THEORETICAL APPROACHES HAS YIELDED TWO LINES OF EVIDENCE…

  3. Experiences of Male Counselor Educators: A Study of Relationship Boundaries

    ERIC Educational Resources Information Center

    Ray, Dee C.; Huffman, David D.; Christian, David D.; Wilson, Brittany J.

    2016-01-01

    This study surveyed male counselor educators regarding the impact of being male upon their professional relationships. Participants (N = 163) were surveyed about their attitudes concerning the influence of gender on their relational behavior, as well as their relationship practices with students and colleagues. Mixed-methods analyses revealed a…

  4. Adolescents in Wilderness Therapy: A Qualitative Study of Attachment Relationships

    ERIC Educational Resources Information Center

    Bettmann, Joanna E.; Olson-Morrison, Debra; Jasperson, Rachael A.

    2011-01-01

    Characterized by acute changes in attachment relationships, adolescence is a time of balancing autonomy and attachment needs. For adolescents in wilderness therapy programs, the setting often challenges their understanding of their own attachment relationships. The current study evaluates the narratives of 13 adolescents in a wilderness therapy…

  5. The Structural Properties of Sexual Fantasies for Sexual Offenders: A Preliminary Model

    ERIC Educational Resources Information Center

    Gee, Dion; Ward, Tony; Belofastov, Aleksandra; Beech, Anthony

    2006-01-01

    While the phenomenon of sexual fantasy has been researched extensively, little contemporary inquiry has investigated the structural properties of sexual fantasy within the context of sexual offending. In this study, a qualitative analysis was used to develop a descriptive model of the phenomena of sexual fantasy during the offence process.…

  6. Exploring the Structural Properties of the State Reading Policy Domain Using Network Visualization Techniques

    ERIC Educational Resources Information Center

    Song, Mengli; Miskel, Cecil G.

    2007-01-01

    Guided by the social network perspective, this study examined the structural properties of the state reading policy domain using network visualization tools: sociograms and multidimensional scaling scattergrams. The authors' graphic exploration of eight state reading policy networks produced rich insights about the density and the overall…

  7. University-Industry Research Relationships. Selected Studies.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. National Science Board.

    The results of a study of university/industry research interactions are presented, along with four reports on collaboration, and an annotated bibliography. The study, "Current U.S University/Industry Research Connections" (Lois S. Peters, Herbert I. Fusfeld, and others), involved on-site interviews with 66 companies and 61 public and…

  8. Stay vane and wicket gate relationship study

    SciTech Connect

    None, None

    2005-01-19

    This report evaluates potential environmental and performance gains that can be achieved in a Kaplan turbine through non-structural modifications to stay vane and wicket gate assemblies. This summary is based primarily on data and conclusions drawn from models and studies of Lower Granite Dam. Based on this investigation, the study recommends (1) a proof of concept at Lower Granite Dam to establish predicted improvements for the existing turbine and to further refine the stay vane wicket gate designs for fish passage; and (2) consideration of the stay vane wicket gate systems in any future turbine rehabilitation studies.

  9. The influence of strain rate dependency on the structure-property relations of porcine brain.

    PubMed

    Begonia, Mark T; Prabhu, Raj; Liao, Jun; Horstemeyer, Mark F; Williams, Lakiesha N

    2010-10-01

    This study examines the internal microstructure evolution of porcine brain during mechanical deformation. Strain rate dependency of porcine brain was investigated under quasi-static compression for strain rates of 0.00625, 0.025, and 0.10 s(-1). Confocal microscopy was employed at 15, 30, and 40% strain to quantify microstructural changes, and image analysis was implemented to calculate the area fraction of neurons and glial cells. The nonlinear stress-strain behavior exhibited a viscoelastic response from the strain rate sensitivity observed, and image analysis revealed that the mean area fraction of neurons and glial cells increased according to the applied strain level and strain rate. The area fraction for the undamaged state was 7.85 ± 0.07%, but at 40% strain the values were 11.55 ± 0.35%, 13.30 ± 0.28%, and 19.50 ± 0.14% for respective strain rates of 0.00625, 0.025, and 0.10 s(-1). The increased area fractions were a function of the applied strain rate and were attributed to the compaction of neural constituents and the stiffening tissue response. The microstructural variations in the tissue were linked to mechanical properties at progressive levels of compression in order to generate structure-property relationships useful for refining current FE material models.

  10. Growth and Structural Properties of Lead

    NASA Astrophysics Data System (ADS)

    Fang, Kai

    Using the high-resolution low-energy electron diffraction (HRLEED) technique, we have studied the structures of thin Pb films during the Molecular Beam Epitaxy (MBE). In an effort to find out the characteristics of a non-equilibrium growth process, we have investigated the homoepitaxy of Pb on a Pb(110) substrate using a high deposition rate. In comparison, we have also examined in detail the heteroepitaxy of Pb using W(112) as a substrate, in which we have obtained information about the interface formation and its kinetics property. As a precursor to understand the structures observed during growth, we have performed a detailed study on Pb itself, using Pb(110) as a sample, with or without impurities. During the non-equilibrium growth of Pb on Pb(110), we have observed the kinetic roughening phenomena in the form of non-conventional dynamic scaling and faceting. At the initial stage of growth, the interface width w changes with deposition time t in a scaling form w ~ t^beta with beta = 0.77 +/- 0.05. The other scaling hypothesis involving lateral correlation length xi ~ t ^{beta/alpha} is not valid and the local roughness increases dramatically. However, the short-range height-height correlation function H(r) still scales with r in the form of H(r) ~ f(t)r^{2alpha} with alpha = 1.33 +/- 0.05.. During the growth of Pb on W(112), we have observed rotational disorder. Pb grows on W(112) in a typical 3 -D fashion, forming Pb(111) islands. While the surface normal of the Pb(111) islands aligns with that of the W(112), the lateral lattice orientation within the Pb(111) plane is not unique with respect to the W(112) substrate. Depending on the growth rate, the Pb overlayer may have different morphologies in terms of number of different island orientations. The structure of a clean Pb(110) surface goes through a series of phase transitions between room temperature and the bulk melting temperature (600.7 K), such as ordered flat phase (OF), disordered flat (DOF) phase

  11. Structural properties of amorphous Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Khanh, B. T. H. L.; Hoang, V. V.; Zung, H.

    2008-10-01

    We have investigated the microstructure of amorphous Fe2O3 nanoparticles by using molecular dynamics (MD) simulations. Non-periodic boundary conditions with Born-Mayer type pair potentials were used to simulate a spherical model of different diameters of 2, 3, 4 and 5 nm. Structural properties of an amorphous model obtained at 350 K have been analyzed in detail through the partial radial distribution functions (PRPFs), coordination number distributions, bond-angle distributions and interatomic distances. Calculations showed that structural characteristics of the model are in qualitative agreement with the experimental data. The observation of a large amount of structural defects as the particle size is decreased suggested that surface structure strongly depends on the size of nanoparticles. In addition, surface structure of amorphous Fe2O3 nanoparticles have been studied and compared with that observed in the core and in the bulk counterpart. Radial density profiles and stoichiometry in morphous Fe2O3 nanoparticles were also found and discussed.

  12. Dielectric and structural properties of ferroelectric betaine arsenate films

    NASA Astrophysics Data System (ADS)

    Balashova, E. V.; Krichevtsov, B. B.; Zaitseva, N. V.; Yurko, E. I.; Svinarev, F. B.

    2014-12-01

    Ferroelectric films of betaine arsenate and partially deuterated betaine arsenate have been grown by evaporation on LiNbO3, α-Al2O3, and NdGaO3 substrates with a preliminarily deposited structure of interdigitated electrodes, as well as on the Al/glass substrate. This paper presents the results of the examination of the block structure of the films in a polarizing microscope, the X-ray diffraction analysis of their crystal structure, and the investigation of the dielectric properties in a measuring field oriented both parallel and perpendicular to the plane of the film. The transition of the films to the ferroelectric state at T = T c is accompanied by anomalies of the capacitance of the structure, an increase in the dielectric loss, and the appearance of dielectric hysteresis loops. The growth of the films from a solution of betaine arsenate in a heavy water leads to an increase in the ferroelectric transition temperature from T c = 119 K in the films without deuterium to T c = 149 K, which corresponds to the degree of deuteration of approximately 60-70%. The dielectric and structural properties of the films are compared with those of the betaine arsenate single crystals and the previously studied films of betaine phosphite and glycine phosphite.

  13. Energetics and structural properties of twist grain boundaries in Cu

    NASA Technical Reports Server (NTRS)

    Karimi, Majid

    1992-01-01

    Structural and energetics properties of atoms near a grain boundary are of great importance from theoretical and experimental standpoints. From various experimental work it is concluded that diffusion at low temperatures at polycrystalline materials take place near grain boundary. Experimental and theoretical results also indicate changes of up to 70 percent in physical properties near a grain boundary. The Embedded Atom Method (EAM) calculations on structural properties of Au twist grain boundaries are in quite good agreement with their experimental counterparts. The EAM is believed to predict reliable values for the single vacancy formation energy as well as migration energy. However, it is not clear whether the EAM functions which are fitted to the bulk properties of a perfect crystalline solid can produce reliable results on grain boundaries. One of the objectives of this work is to construct the EAM functions for Cu and use them in conjunction with the molecular static simulation to study structures and energetics of atoms near twist grain boundaries in Cu. This provides tests of the EAM functions near a grain boundary. In particular, we determine structure, single vacancy formation energy, migration energy, single vacancy activation energy, and interlayer spacing as a function of distance from grain boundary. Our results are compared with the available experimental and theoretical results from grain boundaries and bulk.

  14. Optical and structural properties of zinc iodine thin films

    NASA Astrophysics Data System (ADS)

    Kariper, İ. A.

    2015-06-01

    Zinc iodide (ZnI2) crystalline thin film is produced with chemical bath deposition on substrates (commercial glass). The pH of chemical bath is scanned with controlled potassium hydroxide. Some properties of films changed with pH and changes of pH were analyzed. The pH values are scanned at 6.01-6.29. Transmittance, absorption, optical band gap and refractive index are investigated by UV/Vis. spectrum. The hexagonal and tetragonal form in structural properties in XRD at pH: 6.01 were seen. The pH of bath was up to 6.01, KZnI3ṡ2H2O (orthorhombic), KZnI3ṡ(H2O)2 (orthorhombic), ZnI2 (tetragonal) and ZnI2 (hexagonal) forms were observed in XRD patterns. The structural and optical properties of ZnI2 thin films analyzed at different pH. SEM analysis studied for surface analysis in films. The SEM analyses were agreed with XRD patterns. The optical band gap increased with pH between 3.4 and 3.6 eV. The film thickness changed with pH at 108-345 nm. Also refractive index and transmission generally increased with pH.

  15. [Studies on genetic relationship of Dioscorea].

    PubMed

    Huang, Han-han; Li, Xia; Gao, Wen-yuan; Xiao, Pei-gen

    2015-09-01

    Based on the results of the morphologic studies on genus Dioscorea, the paper summarized the entire chemical constituent that isolated from this genus and analyzed it with the methods of chemotaxonomy. The rules of the chemical constituent and pharmacodynamic effects were analyzed. Seventeen species which belong to Sect. Stenophora Uline of Dioscorea contain steroidal sapogenin. Other species with different main components such as polysaccharide and tannin have have different effects. This chemotaxonomic view point will conduce to establish a phylogeny of the genus Dioscorea.

  16. Effect of wet grinding on structural properties of ball clay

    SciTech Connect

    Purohit, A. Chander, S.; Dhaka, M. S.; Hameed, A.; Singh, P.; Nehra, S. P.

    2015-05-15

    In this paper, the effect of wet grinding on structural properties of ball clay is undertaken. The wet grinding treatment was performed employing ball and vibro mills for different time spells of 2, 4, 8 and 16 hours. The structural properties were carried out using X-ray diffraction (XRD). The structure of ground samples is found to be simple cubic. The crystallographic parameters are calculated and slight change in lattice constant, inter planner spacing and particle size is observed with grinding treatment. The results are in agreement with the available literature.

  17. Natural Mentoring Relationships among Adolescent Mothers: A Study of Resilience

    PubMed Central

    Hurd, Noelle M.; Zimmerman, Marc A.

    2009-01-01

    This study focused on natural mentoring relationships between nonparental adults and African American adolescent mothers. Data were collected from 93 adolescent mothers over five time points, starting in the adolescent mothers’ senior year of high school and ending five years post-high school. We found that having a natural mentor was related to fewer depressive symptoms and fewer anxiety symptoms over time. Natural mentor presence also modified the relationship between stress and mental health problems over time. Facilitating these natural mentoring relationships between adolescent mothers and nonparental adults may be a useful strategy for promoting healthy development within this population. PMID:20938486

  18. Magnetic and structural properties of manganese ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Awo-Affouda, Chaffra A.

    2007-12-01

    This thesis focuses on semiconductor based spin electronics. The integration of ferromagnetic regions into semiconductor "spintronic" devices to produce spin polarized current is a dynamic research area. One avenue is to make conventional semiconductors ferromagnetic by doping with a transition metal impurity such as Mn. For this, we first investigated the magnetic properties of Mn-implanted Si. We were able to measure above room temperature ferromagnetic hysteresis loops. The high Curie temperature obtained (>400 K), indicated that the synthesis of a technologically useful Si-based magnetic semiconductor is possible. We then focused on studying the structure of the implanted samples in order to establish a correlation between the magnetic and structural properties. The structural investigation involved secondary ion mass spectrometry, Rutherford backscattering, and transmission electron microscopy (TEM) as the main characterization techniques. The combination of the structural and magnetic studies allowed us to isolate an "active" region from which the ferromagnetism originates. We then found that the magnetic properties of the samples are strongly dependant on the interaction of the Mn atoms with the residual implant damage. The evolution of the Mn concentration profiles was also found to be closely related to the distribution of the Si lattice defects. We also observed the formation of Mn rich secondary phases at high enough annealing temperatures >800°C. However, we argued that theses crystallites cannot account for all the observed magnetic properties due to the low Curie temperature of these compounds in bulk form. We concluded that achieving a room temperature Si-based DMS has great potential but careful synthesis of this material system is needed to prevent secondary phase formation.

  19. Morphological, luminescence and structural properties of nanocrystalline silicon thin films

    SciTech Connect

    Ali, Atif Mossad; Kobayashi, Hikaru; Inokuma, Takao; Al-Hajry, Ali

    2013-03-15

    Highlights: ► The PL spectra showed two stronger peaks and one weaker peak. ► The PL peak energies and optical band-gap values were found higher than 1.12 eV. ► The structural change from an amorphous to nanocrystalline with increasing [SiH{sub 4}]. - Abstract: Nanocrystalline silicon (nc-Si) thin films deposited by plasma-enhanced chemical vapor deposition at various silane flow rates ([SiH{sub 4}]) are studied. The characterization of these films by high-resolution transmission electron microscopy, Raman spectroscopy and X-ray diffraction reveals that no film and very thin film is deposited at [SiH{sub 4}] = 0.0 and 0.1 sccm, respectively. In addition, the structural change from an amorphous to a nanocrystalline phase occurs at around [SiH{sub 4}] = 0.2 sccm. In this study, the importance of arriving species at surfaces and precursors is clearly demonstrated by the effect of a small addition of SiH{sub 4} on the frequency and width of a Raman peak and the structure of the grown film. The infrared spectroscopic analysis shows no hydrogen incorporation in the nc-Si film deposited at the low value of [SiH{sub 4}]. However, the intensity of the peak around 2100 cm{sup −1} due to SiH decreases with increasing [SiH{sub 4}]. All fabricated films give photoluminescence in the range between 1.7 and 2.4 eV at room temperature, indicating enlargement of the band-gap energy. The presence of very small crystallites leads to the appearance of quantum confinement effects. The variations of the photoluminescence energy and spectral width are well correlated with the structural properties of the films such as crystallite size, crystalline volume fraction, and the density of Si-H bonds.

  20. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III

    SciTech Connect

    Han, Q.; Robinson, H; Cai, T; Tagle, D; Li, J

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  1. Biochemical and structural properties of mouse kynurenine aminotransferase III.

    PubMed

    Han, Qian; Robinson, Howard; Cai, Tao; Tagle, Danilo A; Li, Jianyong

    2009-02-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60 degrees C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  2. Biochemical and Structural Properties of Mouse Kynurenine Aminotransferase III▿

    PubMed Central

    Han, Qian; Robinson, Howard; Cai, Tao; Tagle, Danilo A.; Li, Jianyong

    2009-01-01

    Kynurenine aminotransferase III (KAT III) has been considered to be involved in the production of mammalian brain kynurenic acid (KYNA), which plays an important role in protecting neurons from overstimulation by excitatory neurotransmitters. The enzyme was identified based on its high sequence identity with mammalian KAT I, but its activity toward kynurenine and its structural characteristics have not been established. In this study, the biochemical and structural properties of mouse KAT III (mKAT III) were determined. Specifically, mKAT III cDNA was amplified from a mouse brain cDNA library, and its recombinant protein was expressed in an insect cell protein expression system. We established that mKAT III is able to efficiently catalyze the transamination of kynurenine to KYNA and has optimum activity at relatively basic conditions of around pH 9.0 and at relatively high temperatures of 50 to 60°C. In addition, mKAT III is active toward a number of other amino acids. Its activity toward kynurenine is significantly decreased in the presence of methionine, histidine, glutamine, leucine, cysteine, and 3-hydroxykynurenine. Through macromolecular crystallography, we determined the mKAT III crystal structure and its structures in complex with kynurenine and glutamine. Structural analysis revealed the overall architecture of mKAT III and its cofactor binding site and active center residues. This is the first report concerning the biochemical characteristics and crystal structures of KAT III enzymes and provides a basis toward understanding the overall physiological role of mammalian KAT III in vivo and insight into regulating the levels of endogenous KYNA through modulation of the enzyme in the mouse brain. PMID:19029248

  3. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    SciTech Connect

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  4. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    SciTech Connect

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  5. Study of the CASAS Relationship to GED 2002. Research Brief

    ERIC Educational Resources Information Center

    CASAS - Comprehensive Adult Student Assessment Systems (NJ1), 2003

    2003-01-01

    CASAS, in cooperation with the CASAS National Consortium Policy Council, conducted a study to provide guidance to program and instructional staff regarding student readiness to take the GED Tests. The study looked at the relationship of CASAS reading and math scores to official 2002 GED test results from five states--California, Hawaii, Iowa,…

  6. Structural properties and gas sensing behavior of sol-gel grown nanostructured zinc oxide

    NASA Astrophysics Data System (ADS)

    Rajyaguru, Bhargav; Gadani, Keval; Rathod, K. N.; Solanki, Sapana; Kansara, S. B.; Pandya, D. D.; Shah, N. A.; Solanki, P. S.

    2016-05-01

    In this communication, we report the results of the studies on structural properties and gas sensing behavior of nanostructured ZnO grown using acetone precursor based modified sol-gel technique. Final product of ZnO was sintered at different temperatures to vary the crystallite size while their structural properties have been studied using X-ray diffraction (XRD) measurement performed at room temperature. XRD results suggest the single phasic nature of all the samples and crystallite size increases from 11.53 to 20.96nm with increase in sintering temperature. Gas sensing behavior has been studied for acetone gas which indicates that lower sintered samples are more capable to sense the acetone gas and related mechanism has been discussed in the light of crystallite size, crystal boundary density, defect mechanism and possible chemical reaction between gas traces and various oxygen species.

  7. Structural properties of a three-dimensional all- sp sup 2 phase of carbon

    SciTech Connect

    Liu, A.Y.; Cohen, M.L. ); Hass, K.C.; Tamor, M.A. )

    1991-03-15

    We have studied the structural properties of a recently proposed, hypothetical, all-{ital sp}{sup 2} phase of carbon, using the first-principles pseudopotential total-energy method. Our results are compared with those of an earlier tight-binding calculation. While the two calculations yield equilibrium volumes and bond lengths that are in excellent agreement, there are discrepancies in the cohesive energy, elastic constants, and predicted stability of this phase.

  8. Relationship between systemic diseases and endodontics: an online study guide.

    PubMed

    2008-05-01

    The Editorial Board of the Journal of Endodontics has developed a literature-based study guide of topical areas related to endodontics. This study guide is intended to give the reader a focused review of the essential endodontic literature and does not cite all possible articles related to each topic. Although citing all articles would be comprehensive, it would defeat the idea of a study guide. This section will cover the relationship between systemic diseases and endodontics.

  9. Doping effect on the structural properties of Cu1-x(Ni, Zn, Al and Fe)xO samples (0study

    NASA Astrophysics Data System (ADS)

    Amaral, J. B.; Araujo, R. M.; Pedra, P. P.; Meneses, C. T.; Duque, J. G. S.; dos S. Rezende, M. V.

    2016-09-01

    In this work, the effect of insertion of transition metal, TM (=Ni, Zn, Al and Fe), ions in Cu1-xTMxO samples (0studied through experimental and computational methods. The analyses of X-ray diffraction (XRD) patterns using Rietveld refinement show that i) at x=0, all samples present a monoclinic crystal system with space group C2/c and ii) for increasing the TM-doping, Ni and Zn-doped samples show a small amount of spurious phases for concentrations above x=0.05. Based on these results, a defect disorder study for using atomistic computational simulations which is based on the lattice energy minimization technique is employed to predict the location of the dopant ions in the structure. In agreement with XRD data, our computational results indicate that the trivalent (Al and Fe ions) are more favorable to be incorporated into CuO matrix than the divalent (Ni and Zn ions).

  10. Structural property of regulatory elements in human promoters

    NASA Astrophysics Data System (ADS)

    Cao, Xiao-Qin; Zeng, Jia; Yan, Hong

    2008-04-01

    The capacity of transcription factors to activate gene expression is encoded in the promoter sequences, which are composed of short regulatory motifs that function as transcription factor binding sites (TFBSs) for specific proteins. To the best of our knowledge, the structural property of TFBSs that controls transcription is still poorly understood. Rigidity is one of the important structural properties of DNA, and plays an important role in guiding DNA-binding proteins to the target sites efficiently. After analyzing the rigidity of 2897 TFBSs in 1871 human promoters, we show that TFBSs are generally more flexible than other genomic regions such as exons, introns, 3' untranslated regions, and TFBS-poor promoter regions. Furthermore, we find that the density of TFBSs is consistent with the average rigidity profile of human promoters upstream of the transcription start site, which implies that TFBSs directly influence the promoter structure. We also examine the local rigid regions probably caused by specific TFBSs such as the DNA sequence TATA(A/T)A(A/T) box, which may inhibit nucleosomes and thereby facilitate the access of transcription factors bound nearby. Our results suggest that the structural property of TFBSs accounts for the promoter structure as well as promoter activity.

  11. Natural Mentoring Relationships among Adolescent Mothers: A Study of Resilience

    ERIC Educational Resources Information Center

    Hurd, Noelle M.; Zimmerman, Marc A.

    2010-01-01

    This study focused on natural mentoring relationships between nonparental adults and African American adolescent mothers. Data were collected from 93 adolescent mothers over 5 time points, starting in the adolescent mothers' senior year of high school and ending 5 years after high school. We found that having a natural mentor was related to fewer…

  12. Relationship Enhancement Therapy: A Case Study for Treating Vaginismus.

    ERIC Educational Resources Information Center

    Harman, Marsha J.; And Others

    1994-01-01

    A case study of Relationship Enhancement (RE) therapy with a couple, in which the woman was identified as having vaginismus, is presented including excerpts of transcripts from the therapy sessions. RE's effectiveness at improving communication skills and providing structure in which the couple could discuss the intimate issues affecting the…

  13. A Special Relationship: Rockefeller, Child Study, and Race.

    ERIC Educational Resources Information Center

    Milar, Katherine S.

    In 1928, the Laura Spelman Rockefeller Memorial granted funds to the University of Cincinnati to establish a child study and parent education program for African-Americans. This paper traces the origin of the idea for this program to a special relationship between the family of John D. Rockefeller, Sr. and Spelman College, an African-American…

  14. A comprehensive study of ferromagnetic resonance and structural properties of iron-rich nickel ferrite (NixFe3-xO4, x≤1) films grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pachauri, Neha; Khodadadi, Behrouz; Singh, Amit V.; Mohammadi, Jamileh Beik; Martens, Richard L.; LeClair, Patrick R.; Mewes, Claudia; Mewes, Tim; Gupta, Arunava

    2016-11-01

    We report a detailed study of the structural and ferromagnetic resonance properties of spinel nickel ferrite (NFO) films, grown on (100)-oriented cubic MgAl2O4 substrates by direct liquid injection chemical vapor deposition (DLI-CVD) technique. Three different compositions of NFO films (NixFe3-xO4 where x=1, 0.8, 0.6) deposited at optimized growth temperature of 600 °C are characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Vibrating Sample Magnetometry (VSM), and broadband ferromagnetic resonance (FMR) techniques. XRD confirms the growth of epitaxial, single crystalline NixFe3-xO4 films. The out-of-plane lattice constant (c) obtained for Ni0.8Fe2.2O4 film is slightly higher than the bulk value (0.833 nm), indicating only partial strain relaxation whereas for the other two compositions (x=1 and x=0.6) films exhibit complete relaxation. The in-plane and out-of-plane FMR linewidths measurements at 10 GHz give the lowest values of 458 Oe and 98 Oe, respectively, for Ni0.8Fe2.2O4 film as compared to the other two compositions. A comprehensive frequency (5-40 GHz) and temperature (10-300 K) dependent FMR study of the Ni0.8Fe2.2O4 sample for both in-lane and out-of-plane configurations reveals two magnon scattering (TMS) as the dominant in-plane relaxation mechanism. It is observed that the TMS contribution to the FMR linewidth scales with the saturation magnetization Ms. In-plane angle-dependent FMR measurements performed on the same sample show that the ferromagnetic resonance field (Hres) and the FMR linewidth (ΔH) have a four-fold symmetry that is consistent with the crystal symmetry of the spinel. SEM measurements show formation of pyramid-like microstructures at the surface of the Ni0.8Fe2.2O4 sample, which can explain the observed four-fold symmetry of the FMR linewidth.

  15. Structural Properties of Gene Promoters Highlight More than Two Phenotypes of Diabetes

    PubMed Central

    Guja, Cristian

    2015-01-01

    Genome-wide association studies (GWAS) published in the last decade raised the number of loci associated with type 1 (T1D) and type 2 diabetes (T2D) to more than 50 for each of these diabetes phenotypes. The environmental factors seem to play an important role in the expression of these genes, acting through transcription factors that bind to promoters. Using the available databases we examined the promoters of various genes classically associated with the two main diabetes phenotypes. Our comparative analyses have revealed significant architectural differences between promoters of genes classically associated with T1D and T2D. Nevertheless, five gene promoters (about 16%) belonging to T1D and six gene promoters (over 19%) belonging to T2D have shown some intermediary structural properties, suggesting a direct relationship to either LADA (Latent Autoimmune Diabetes in Adults) phenotype or to non-autoimmune type 1 phenotype. The distribution of these promoters in at least three separate classes seems to indicate specific pathogenic pathways. The image-based patterns (DNA patterns) generated by promoters of genes associated with these three phenotypes support the clinical observation of a smooth link between specific cases of typical T1D and T2D. In addition, a global distribution of these DNA patterns suggests that promoters of genes associated with T1D appear to be evolutionary more conserved than those associated with T2D. Though, the image based patterns obtained by our method might be a new useful parameter for understanding the pathogenetic mechanism and the diabetogenic gene networks. PMID:26379145

  16. Structure-property relation and third order nonlinear optical absorption study of a new organic crystal: 1-(3,4-Dimethoxyphenyl)-3-(2-fluorophenyl) prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Chidan Kumar, C. S.; Raghavendra, S.; Chia, Tze Shyang; Chandraju, Siddegowda; Dharmaprakash, S. M.; Fun, Hoong-Kun; Quah, Ching Kheng

    2015-11-01

    A new third order centrosymmetric organic crystal: 1-(3,4-dimethoxyphenyl)-3-(2-fluorophenyl) prop-2-en-1-one (2FRDP) belonging to chalcone family has been synthesized and characterized by FTIR, CHNS and UV-Visible spectroscopy. Single crystal X-ray diffraction reveals that compound crystallizes in C2/c monoclinic space group. The X-ray powder diffraction of the crystal was carried out and hkl values are indexed for the diffraction pattern using mercury software. UV-Visible spectrum showed that 2FRDP is transparent in the entire visible region. The thermal stability of the grown 2FRDP crystal was analyzed by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dielectric study revealed that, 2FRDP possesses low dielectric constant and dielectric loss at high frequency. The third order nonlinear optical absorption and the optical limiting experiment were carried out using open aperture Z-scan data using an Nd:YAG laser operating at the wavelength 532 nm.

  17. Tight-binding study of the hole subband structure properties of p-type delta-doped quantum wells in Si by using a Thomas-Fermi-Dirac potential

    NASA Astrophysics Data System (ADS)

    Rodrfguez-Vargas, I.; Madrigal-Melchor, J.; Vlaev, S. J.

    2009-05-01

    We present the hole subband structure of p-type delta-doped single, double, multiple and superlattice quantum wells in Si. We use the first neighbors sp3s' tight-binding approximation including spin for the hole level structure analysis. The parameters of the tight-binding hamiltonian were taken from Klimeck et al. [Klimeck G, Bowen R C, Boykin T B, Salazar-Lazaro C, Cwik T A and Stoica A 2000 Superlattice. Microst. 27 77], first neighbors parameters that give realiable results for the valence band of Si. The calculations are based on a scheme previously proposed and applied to delta-doped quantum well systems [Vlaev S J and Gaggero-Sager L M 1998 Phys. Rev. B 58 1142]. The scheme relies on the incorporation of the delta-doped quantum well potential in the diagonal terms of the tight-binding hamiltonian. We give a detail description of the delta-doped quantum well structures, this is, we study the hole subband structure behavior as a function of the impurity density, the interwell distance of the doped planes and the superlattice period. We also compare our results with the available theoretical and experimental data, obtaining a reasonable agreement.

  18. Structural Properties and Phase Behavior of Crosslinked Networks in Polymer Solutions

    PubMed Central

    Benmouna, Farida; Zemmour, Samira; Benmouna, Mustapha

    2016-01-01

    ABSTRACT Structural properties and phase behavior of crosslinked networks embedded in polymer solutions are theoretically investigated. The partial structure factor of the network is calculated using a matrix formulation of the random phase approximation and the forward scattering limit is correlated with the phase behavior. Swelling and deswelling processes are analyzed in terms of the polymer concentration, the mismatch of solvent quality with respect to polymer and network, the polymers incompatibility and their characteristic sizes. Most studies reported so far in the literature have focussed on the swelling of crosslinked networks and gels in pure solvents but the correlation of the structural properties with the phase behavior in the presence of high molecular weight polymers in solution has not been given sufficient attention. The present work is intended to fill this gap in view of the current efforts to develop novel drug encapsulating and targeted delivery devices. PMID:27134310

  19. Structural Properties and Phase Behavior of Crosslinked Networks in Polymer Solutions.

    PubMed

    Benmouna, Farida; Zemmour, Samira; Benmouna, Mustapha

    2016-03-03

    Structural properties and phase behavior of crosslinked networks embedded in polymer solutions are theoretically investigated. The partial structure factor of the network is calculated using a matrix formulation of the random phase approximation and the forward scattering limit is correlated with the phase behavior. Swelling and deswelling processes are analyzed in terms of the polymer concentration, the mismatch of solvent quality with respect to polymer and network, the polymers incompatibility and their characteristic sizes. Most studies reported so far in the literature have focussed on the swelling of crosslinked networks and gels in pure solvents but the correlation of the structural properties with the phase behavior in the presence of high molecular weight polymers in solution has not been given sufficient attention. The present work is intended to fill this gap in view of the current efforts to develop novel drug encapsulating and targeted delivery devices.

  20. Smartphone usage among ROTU and its relationship towards study performance

    NASA Astrophysics Data System (ADS)

    Redzuan, Muhammad Fazrul Ilahi Mohd; Roslan, Mohamad Amri; Rahman, Rosshairy Abd

    2015-12-01

    Reserve Officer Training Unit (ROTU) is a cooperation program between the Ministry of Defense and the Ministry of Higher Education for undergraduate students in public university. ROTU is known for its tight training schedule which might lead to limited learning time. The usage of smartphone with various applications might assist them in their learning activities. Therefore, this study aims to discover the rate of smartphone usage among ROTU and then analyze the relationship of smartphone usage towards their study performance. The result shows that most of the ROTU students use smartphone for five to eight hours a day. No significant correlation between relationship of smartphone and study performance of ROTU students with very small positive relationship was recorded. The result reflects that the frequent use of smartphone applications among ROTU students could not significantly help them in the study. However, further study need to be carried out since this paper does not specifically focus on each type of application. Therefore, for future research, usage rate for each application is also needed to be discovered so that the usage impact for ROTU study performance on each application can be seen clearly.

  1. Crystallization of Stretched Polyimides: A Structure-Property Study

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Dezern, James F.

    2002-01-01

    A simple rotational isomeric state model was used to detect the degree to which polyimide repeat units might align to give an extended crystal. It was found experimentally that the hallmarks of stretch-crystallization were more likely to occur in materials whose molecules could readily give extended, aligned conformations. A proposed screening criterion was 84% accurate in selecting crystallizing molecules.

  2. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density.

  3. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy.

    PubMed

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density.

  4. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy

    PubMed Central

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-01-01

    Abstract. The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell’s equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density. PMID:26886803

  5. Processing-structure-property studies of: (I) submicron polymeric fibers produced by electrospinning and (II) films of linear low density polyethylenes as influenced by the short chain branch length in copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst

    NASA Astrophysics Data System (ADS)

    Gupta, Pankaj

    The overall theme of the research discussed in this dissertation has been to explore processing-structure-property relationships for submicron polymeric fibers produced by electrospinning (Part I) and to ascertain whether or not the length of the short chain branch has any effect on the physical properties of films of linear low-density polyethylenes (LLDPEs) (Part II). The research efforts discussed in Part I of this dissertation relate to some fundamental as well as more applied investigations involving electrospinning. These include investigating the effects of solution rheology on fiber formation and developing novel methodologies to fabricate polymeric mats comprising of high specific surface submicron fibers of more than one polymer, high chemical resistant substrates produced by in situ photo crosslinking during electrospinning, superparamagnetic flexible substrates by electrospinning a solution of an elastomeric polymer containing ferrite nanoparticles of Mn-Zn-Ni and substrates for filtration applications. Bicomponent electrospinning of poly(vinyl chloride)-polyurethane and poly(vinylidiene fluoride)-polyurethane was successfully performed. In addition, filtration properties of single and bicomponent electrospun mats of polyacrylonitrile and polystyrene were investigated. Results indicated lower aerosol penetration or higher filtration efficiencies of the filters based on submicron electrospun fibers in comparison to the conventional filter materials. In addition, Part II of this dissertation explores whether or not the length of the short chain branch affects the physical properties of blown and compression molded films of LLDPEs that were synthesized by a single site metallocene catalyst. Here, three resins based on copolymers of ethylene/1-butene, ethylene/1-hexene, and ethylene/1-octene were utilized that were very similar in terms of their molecular weight and distribution, melt rheology, density, crystallinity and short chain branching content and

  6. Complementary study based on DFT to describe the structure and properties relationship of diblock copolymer based on PVK and PPV

    NASA Astrophysics Data System (ADS)

    Mbarek, M.; Abbassi, F.; Alimi, K.

    2016-09-01

    The structure-properties relationships of copolymer involving N-vinylcarbazole (PVK) and poly (p-phenylene-vinylene) (PPV) blocks, denoted PVK-PPV, was investigated by calculations based on density functional theory (DFT) and completed by experimental analyses. Thus, vibrational, optical and emission spectra of model compound have been simulated and compared to the experiments observations published recently. Ionization potentials (IPs), electron affinities (EAs) and energy gaps were determined. Furthermore, quantum yields, radiative and nonradiative exciton lifetime was highlighted.

  7. Determination of HART I Blade Structural Properties by Laboratory Testing

    NASA Technical Reports Server (NTRS)

    Jung, Sung N.; Lau, Benton H.

    2012-01-01

    The structural properties of higher harmonic Aeroacoustic Rotor Test (HART I) blades were measured using the original set of blades tested in the German-dutch wind tunnel (DNW) in 1994. the measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. the measured properties were compared to the estimated values obtained initially from the blade manufacturer. The previously estimated blade properties showed consistently higher stiffness, up to 30 percent for the flap bending in the blade inboard root section.

  8. Structural properties of amorphous silicon produced by electron irradiation

    SciTech Connect

    Yamasaki, J.; Takeda, S.

    1999-07-01

    The structural properties of the amorphous Si (a-Si), which was created from crystalline silicon by 2 MeV electron irradiation at low temperatures about 25 K, are examined in detail by means of transmission electron microscopy and transmission electron diffraction. The peak positions in the radial distribution function (RDF) of the a-Si correspond well to those of a-Si fabricated by other techniques. The electron-irradiation-induced a-Si returns to crystalline Si after annealing at 550 C.

  9. RaptorX-Property: a web server for protein structure property prediction

    PubMed Central

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-01-01

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence–structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction. PMID:27112573

  10. RaptorX-Property: a web server for protein structure property prediction.

    PubMed

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-07-08

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction.

  11. Physician-management relationships at HCA: a case study.

    PubMed

    Campbell, P; Kane, N M

    1990-01-01

    The questions of whether Hospital Corporation of America (HCA), a for-profit hospital company, fostered an environment detrimental to the physician-patient relationship during the period of implementation of the Medicare Prospective Payment System (PPS) was explored. The transition to PPS provided an opportunity to evaluate whether hospital ownership differences affected responses to a payment system which encouraged institutional intervention in the practice of medicine. A case study approach was used to observe the influence of the then largest for-profit hospital corporation upon physicians' medical practice in four owned hospitals. Findings indicated that HCA hospital managers were most directly influenced by the local competitive environment and their own personal agendas in responding to PPS incentives. Corporate influence actually softened payment system incentives to intervene in medical practice by providing a generous supply of capital, and by fostering a corporate culture conducive to cooperative relationships with physicians. Better public understanding of the determinants of hospital behavior is needed to preserve or enhance important social goals such as the physician-patient relationship; easily measurable characteristics such as ownership or bed size explain little about hospital behavior or motivation.

  12. A Study on the Relationship between Reflux Esophagitis and Periodontitis.

    PubMed

    Adachi, Kyoichi; Mishiro, Tomoko; Tanaka, Shino; Yoshikawa, Hiroo; Kinoshita, Yoshikazu

    2016-01-01

    Objective Metabolic syndrome and dental erosion have been demonstrated to correlate with gastroesophageal acid reflux disease (GERD), while periodontitis has been reported to have a positive relationship with metabolic syndrome. However, no correlation between periodontitis and GERD has yet been reported. We therefore investigated the relationship between periodontitis and GERD. Methods The subjects consisted of 280 individuals who visited the Health Center for a detailed medical checkup examination. Each underwent upper endoscopy and periodontitis examinations, with the latter performed by measuring the concentrations of lactate dehydrogenase and hemoglobin in saliva. The subjects were divided into those with positive and negative periodontitis findings, and the prevalence rates of endoscopically proven reflux esophagitis, dyslipidemia, hypertension, and hyperglycemia were compared. Results The number of subjects positive for periodontitis was 93, while 187 had negative findings. The prevalence of reflux esophagitis was not different between the positive and negative groups (8.6% vs. 8.0%). In addition, a multiple logistic regression analysis did not identify a positive relationship between the presence of periodontitis and reflux esophagitis. On the other hand, dyslipidemia and hypertension were more frequently observed in the subjects that were positive for periodontitis. Conclusion We did not find an association between periodontitis and reflux esophagitis in the present study. On the other hand, the presence of periodontitis was found to correlate with hypertension and dyslipidemia.

  13. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    SciTech Connect

    PaBlick, C.; Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.; Johnson, J.A.; Schweizer, S.

    2012-10-10

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl2) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu3+ is more strongly reduced to Eu2+, in particular, when doped as a chloride instead of fluoride compound. The Eu2+-to-Eu3+ doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu2+ fraction leads to a BaCl2 phase transition from hexagonal to orthorhombic structure at a lower temperature.

  14. Electronic and structural properties of ultrathin tungsten nanowires and nanotubes by density functional theory calculation

    SciTech Connect

    Sun, Shih-Jye; Lin, Ken-Huang; Li, Jia-Yun; Ju, Shin-Pon

    2014-10-07

    The simulated annealing basin-hopping method incorporating the penalty function was used to predict the lowest-energy structures for ultrathin tungsten nanowires and nanotubes of different sizes. These predicted structures indicate that tungsten one-dimensional structures at this small scale do not possess B.C.C. configuration as in bulk tungsten material. In order to analyze the relationship between multi-shell geometries and electronic transfer, the electronic and structural properties of tungsten wires and tubes including partial density of state and band structures which were determined and analyzed by quantum chemistry calculations. In addition, in order to understand the application feasibility of these nanowires and tubes on nano-devices such as field emitters or chemical catalysts, the electronic stability of these ultrathin tungsten nanowires was also investigated by density functional theory calculations.

  15. Structural properties of fluorozirconate-based glass ceramics doped with multivalent europium

    SciTech Connect

    Passlick, C.; Mueller, O.; Luetzenkirchen-Hecht, D.; Frahm, R.; Johnson, J. A.; Schweizer, S.

    2011-12-01

    The structure/property relationships of fluorochlorozirconate glass ceramics as a function of divalent and trivalent europium (Eu) co-doping and thermal processing have been investigated; the influence of doping ratio on the formation of barium chloride (BaCl{sub 2}) nanocrystals therein was elucidated. X-ray absorption near-edge structure spectroscopy shows that the post-thermal annealing changes the Eu valence of the as-poured glass slightly, but during the melting process Eu{sup 3+} is more strongly reduced to Eu{sup 2+}, in particular, when doped as a chloride instead of fluoride compound. The Eu{sup 2+}-to-Eu{sup 3+} doping ratio also plays a significant role in chemical equilibrium in the melt. X-ray diffraction measurements indicate that a higher Eu{sup 2+} fraction leads to a BaCl{sub 2} phase transition from hexagonal to orthorhombic structure at a lower temperature.

  16. Relationship of social problem-solving ability with interpersonal relationships: a prospective study among Japanese women and men.

    PubMed

    Sumi, Katsunori

    2012-12-01

    The present study of a Japanese sample used a prospective approach to examine the relationship between self-rated social problem-solving ability and quality of interpersonal relationships. The Japanese versions of the Problem-Solving self-efficacy scale, problem-solving skills scale, and the interpersonal relationship inventory short form were administered to 139 female and 148 male Japanese college students, who participated in two sessions separated by 6 wk. (time 1 and time 2). Partial correlations controlling for scores on the interpersonal relationship scales at Time 1 indicated that self-ratings of social problem-solving ability were correlated with aspects of interpersonal relationships assessed at time 2, and this relationship was stronger for men (five of six correlations were significant) than for women (two of six correlations were significant).

  17. Structure–activity relationships study of mTOR kinase inhibition using QSAR and structure-based drug design approaches

    PubMed Central

    Lakhlili, Wiame; Yasri, Abdelaziz; Ibrahimi, Azeddine

    2016-01-01

    The discovery of clinically relevant inhibitors of mammalian target of rapamycin (mTOR) for anticancer therapy has proved to be a challenging task. The quantitative structure–activity relationship (QSAR) approach is a very useful and widespread technique for ligand-based drug design, which can be used to identify novel and potent mTOR inhibitors. In this study, we performed two-dimensional QSAR tests, and molecular docking validation tests of a series of mTOR ATP-competitive inhibitors to elucidate their structural properties associated with their activity. The QSAR tests were performed using partial least square method with a correlation coefficient of r2=0.799 and a cross-validation of q2=0.714. The chemical library screening was done by associating ligand-based to structure-based approach using the three-dimensional structure of mTOR developed by homology modeling. We were able to select 22 compounds from two databases as inhibitors of the mTOR kinase active site. We believe that the method and applications highlighted in this study will help future efforts toward the design of selective ATP-competitive inhibitors. PMID:27980424

  18. Structural properties for determining mechanisms of toxic action

    SciTech Connect

    Bradbury, S.P.; Lipnick, R.L.

    1989-01-01

    The results of a workshop co-sponsored by EPA through the Health and Environmental Review Division, Office of Toxic Substances and the Environmental Research Laboratory-Duluth, of the Office of Research and Development are briefly summarized as an introduction to a series of manuscripts dealing with the structural properties of chemicals that determine their toxic mechanisms. Results of the workshop are intended to be incorporated in an expert system to predict mechanisms from chemical structure and aid in predictive toxicology applications in the Agency. The goal of the workshop was to review current understanding of fundamental mechanisms, and develop an initial knowledge base on chemical features and properties from which toxic mechanisms could be predicted from structure. Areas addressed included general anesthesia, or narcosis, oxidative phosphorylation uncoupling, electrophile and free-radical reactivity, and a variety of pesticide-based mechanisms.

  19. Vibrational and structural properties of tetramethyltin under pressure

    NASA Astrophysics Data System (ADS)

    Qin, Zhen-Xing; Chen, Xiao-Jia; Zhang, Chao; Tang, Ling-Yun; Zhong, Guo-Hua; Lin, Hai-Qing; Meng, Yue; Mao, Ho-Kwang

    2013-01-01

    The vibrational and structural properties of a hydrogen-rich group IVa hydride, Sn(CH3)4, have been investigated by combining Raman spectroscopy and synchrotron x-ray diffraction measurements at room temperature and at pressures up to 49.9 GPa. Both techniques allow the obtaining of complementary information on the high-pressure behaviors and yield consistent phase transitions at 0.9 GPa for the liquid to solid and 2.8, 10.4, 20.4, and 32.6 GPa for the solid to solid. The foregoing solid phases are identified to have the orthorhombic, tetragonal, monoclinic crystal structures with space groups of Pmmm for phase I, P4/mmm for phase II, P2/m for phase III, respectively. The phases IV and V coexist with phase III, resulting in complex analysis on the possible structures. These transitions suggest the variation in the inter- and intra-molecular bonding of this compound.

  20. The effect of doped zinc on the structural properties of nano-crystalline (Se0.8Te0.2)100-xZnx

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Singh, Harkawal; Gill, P. S.; Goyal, Navdeep

    2016-05-01

    The effect of metallic zinc (Zn) on the structural properties of (Se0.8Te0.2)1-XZnX (x=0, 2, 6, 8, 10) samples analyzed by X-ray Diffraction (XRD). The presence of sharp peaks in XRD patterns confirmed the crystalline nature of the samples and is indexed in orthorhombic crystal structure. XRD studies predicts that the average particle size of all the samples are about 46.29 nm, which is less than 100 nm and hence have strong tendency of agglomeration. Williamson-Hall plot method was used to evaluate the lattice strain. The dislocation density and no. of unit cells of the samples were calculated which show the inverse relation with each other. Morphology index derived from FWHM of XRD data explains the direct relationship with the particle size.

  1. What's a Good Job? The Importance of Employment Relationships. CPRN Study. Changing Employment Relationships Series.

    ERIC Educational Resources Information Center

    Lowe, Graham S.; Schellenberg, Grant

    The Changing Employment Relationships Project examined the importance of good employment relationships for workers, employers, and public policy. A nationally representative sample of 2,500 employed Canadians was surveyed, and 8 focus groups were conducted. The research findings were analyzed to explain the multidimensional nature of the…

  2. Relationship between orthodontic treatment and gingival health: A retrospective study

    PubMed Central

    Boke, Fatma; Gazioglu, Cagri; Akkaya, Sevil; Akkaya, Murat

    2014-01-01

    Objective: The aim of this retrospective study was to evaluate the relationship between orthodontic treatment and gingival health. Materials and Methods: A total of 251 patients among whom 177 were girls and 74 were boys, recruited from the records pool of the Department of Orthodontics, Faculty of Dentistry, University of Gazi, were included in the study. Patients’ treatments have been completed by postgraduate students during the period between 2006 and 2012. Patients’ folders were analyzed according to their age, treatment time, and the type of orthodontic treatment. Intra-oral photographs were analyzed, and the presence or absence of visible plaque, visible inflammation, and gingival recession were recorded, and incisor inclinations analyzed on lateral cephalometric films, before and after orthodontic treatment. Results: No statistically significant difference was found in patients treated with functional appliances before and after treatment. In patients treated with fixed orthodontic appliances, visible plaque, visible inflammation, and gingival recession showed significant increases after treatment, gingival biotype did not show any significant difference. Positive correlation was found between lower incisor position and gingival recession in patients treated with fixed appliance and extraction. And also cuspids were the teeth with the highest prevalence of gingival recession. Conclusion: Considering the relationship between orthodontic treatment and gingival health, cooperation among patients, orthodontists, and periodontists is important. PMID:25202219

  3. Structure-Property Characterization of the Crinkle-Leaf Peach Wood Phenotype: A Future Model System for Wood Properties Research?

    NASA Astrophysics Data System (ADS)

    Wiedenhoeft, Alex C.; Arévalo, Rafael; Ledbetter, Craig; Jakes, Joseph E.

    2016-09-01

    Nearly 400 million years of evolution and field-testing by the natural world has given humans thousands of wood types, each with unique structure-property relationships to study, exploit, and ideally, to manipulate, but the slow growth of trees makes them a recalcitrant experimental system. Variations in wood features of two genotypes of peach ( Prunus persica L.) trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Crinkle-leaf is a naturally-occurring mutation in which wood strength is altered in conjunction with an easily observed `crinkling' of the leaves' surface. Trees from three vigor classes (low growth rate, average growth rate, and high growth rate) of each genotype were sampled. No meaningful tendency of dissimilarities among the different vigor classes was found, nor any pattern in features in a genotype-by-vigor analysis. Wild-type trees exhibited longer vessels and fibers, wider rays, and slightly higher specific gravity. Neither cell wall mechanical properties measured with nanoindentation nor cell wall histochemical properties were statistically or observably different between crinkle-leaf and wild-type wood. The crinkle-leaf mutant has the potential to be a useful model system for wood properties investigation and manipulation if it can serve as a field-observable vegetative marker for altered wood properties.

  4. Negative differential gain in quantum dot systems: Interplay of structural properties and many-body effects

    SciTech Connect

    Goldmann, E. Jahnke, F.; Lorke, M.; Frauenheim, T.

    2014-06-16

    The saturation behaviour of optical gain with increasing excitation density is an important factor for laser device performance. For active materials based on self-organized InGaAs/GaAs quantum dots, we study the interplay between structural properties of the quantum dots and many-body effects of excited carriers in the optical properties via a combination of tight-binding and quantum-kinetic calculations. We identify regimes where either phase-space filling or excitation-induced dephasing dominates the saturation behavior of the optical gain. The latter can lead to the emergence of a negative differential material gain.

  5. Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure.

    PubMed

    Shen, Yun; Huang, Conghui; Monroy, Guillermo L; Janjaroen, Dao; Derlon, Nicolas; Lin, Jie; Espinosa-Marzal, Rosa; Morgenroth, Eberhard; Boppart, Stephen A; Ashbolt, Nicholas J; Liu, Wen-Tso; Nguyen, Thanh H

    2016-02-16

    Mechanical and structural properties of biofilms influence the accumulation and release of pathogens in drinking water distribution systems (DWDS). Thus, understanding how long-term residual disinfectants exposure affects biofilm mechanical and structural properties is a necessary aspect for pathogen risk assessment and control. In this study, elastic modulus and structure of groundwater biofilms was monitored by atomic force microscopy (AFM) and optical coherence tomography (OCT) during three months of exposure to monochloramine or free chlorine. After the first month of disinfectant exposure, the mean stiffness of monochloramine- or free-chlorine-treated biofilms was 4 to 9 times higher than those before treatment. Meanwhile, the biofilm thickness decreased from 120 ± 8 μm to 93 ± 6-107 ± 11 μm. The increased surface stiffness and decreased biofilm thickness within the first month of disinfectant exposure was presumably due to the consumption of biomass. However, by the second to third month during disinfectant exposure, the biofilm mean stiffness showed a 2- to 4-fold decrease, and the biofilm thickness increased to 110 ± 7-129 ± 8 μm, suggesting that the biofilms adapted to disinfectant exposure. After three months of the disinfectant exposure process, the disinfected biofilms showed 2-5 times higher mean stiffness (as determined by AFM) and 6-13-fold higher ratios of protein over polysaccharide, as determined by differential staining and confocal laser scanning microscopy (CLSM), than the nondisinfected groundwater biofilms. However, the disinfected biofilms and nondisinfected biofilms showed statistically similar thicknesses (t test, p > 0.05), suggesting that long-term disinfection may not significantly remove net biomass. This study showed how biofilm mechanical and structural properties vary in response to a complex DWDS environment, which will contribute to further research on the risk assessment and control of biofilm-associated-pathogens in DWDS.

  6. Soil erosion-runoff relationships: insights from laboratory studies

    NASA Astrophysics Data System (ADS)

    Mamedov, Amrakh; Warrington, David; Levy, Guy

    2016-04-01

    Understanding the processes and mechanisms affecting runoff generation and subsequent soil erosion in semi-arid regions is essential for the development of improved soil and water conservation management practices. Using a drip type laboratory rain simulator, we studied runoff and soil erosion, and the relationships between them, in 60 semi-arid region soils varying in their intrinsic properties (e.g., texture, organic matter) under differing extrinsic conditions (e.g., rain properties, and conditions prevailing in the field soil). Both runoff and soil erosion were significantly affected by the intrinsic soil and rain properties, and soil conditions within agricultural fields or watersheds. The relationship between soil erosion and runoff was stronger when the rain kinetic energy was higher rather than lower, and could be expressed either as a linear or exponential function. Linear functions applied to certain limited cases associated with conditions that enhanced soil structure stability, (e.g., slow wetting, amending with soil stabilizers, minimum tillage in clay soils, and short duration exposure to rain). Exponential functions applied to most of the cases under conditions that tended to harm soil stability (e.g., fast wetting of soils, a wide range of antecedent soil water contents and rain kinetic energies, conventional tillage, following biosolid applications, irrigation with water of poor quality, consecutive rain simulations). The established relationships between runoff and soil erosion contributed to a better understanding of the mechanisms governing overland flow and soil loss, and could assist in (i) further development of soil erosion models and research techniques, and (ii) the design of more suitable management practices for soil and water conservation.

  7. Rapid Changes in Soil Carbon and Structural Properties Due to Stover Removal from No-Till Corn Plots

    SciTech Connect

    Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

    2006-06-01

    Harvesting corn (Zea mays L.) stover for producing ethanol may be beneficial to palliate the dependence on fossil fuels and reduce CO2 emissions to the atmosphere, but stover harvesting may deplete soil organic carbon (SOC) and degrade soil structure. We investigated the impacts of variable rates of stover removal from no-till (NT) continuous corn systems on SOC and soil structural properties after 1 year of stover removal in three soils in Ohio: Rayne silt loam (fine-loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. This study also assessed relationships between SOC and soil structural properties as affected by stover management. Six stover treatments that consisted of removing 100, 75, 50, 25, and 0, and adding 100% of corn stover corresponding to 0 (T0), 1.25 (T1.25), 2.50 (T2.5), 3.75 (T3.75), 5.00 (T5), and 10.00 (T10) Mg haj1 of stover, respectively, were studied for their total SOC concentration, bulk density (>b), aggregate stability, and tensile strength (TS) of aggregates. Effects of stover removal on soil properties were rapid and significant in the 0- to 5-cm depth, although the magnitude of changes differed among soils after only 1 year of stover removal. The SOC concentration declined with increase in removal rates in silt loams but not in clay loam soils. It decreased by 39% at Coshocton and 30% at Charleston within 1 year of complete stover removal. At the same sites, macroaggregates contained 10% to 45% more SOC than microaggregates. Stover removal reduced 94.75-mm macroaggregates and increased microaggregates (P G 0.01). Mean weight diameter (MWD) and TS of aggregates in soils without stover (T0) were 1.7 and 3.3 times lower than those in soils with normal stover treatments (T5) across sites. The SOC concentration was negatively correlated with >b and positively with MWD and

  8. PREFACE: Symmetry and Structural Properties of Condensed Matter

    NASA Astrophysics Data System (ADS)

    Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara

    2008-03-01

    This volume comprises the proceedings of the Ninth Summer School on Theoretical Physics under the leading title `Symmetry and Structural Properties of Condensed Matter' (SSPCM 2007). The school, organised by Rzeszów University of Technology, Poland, together with AGH University of Science and Technology, Cracow, Poland, in 5-12 September 2007 in Myczkowce. The meeting aimed to continue the series of biannual SSPCM schools (since 1990), and focused on the promotion of some advanced mathematical methods within the physics of condensed matter, with an emphasis on quantum information aspects. The main topics of the SSPCM07 school were the following: Quantum information and computing Finite dimensional Hilbert spaces Generating functions and exactly soluble models The Proceedings are divided into three parts accordingly. These topics can be seen as a natural continuation of the previous SSPCM05 school, aimed at studying interrelations between solid state physics and quantum informatics, as well as an extension of earlier SSPCM meetings, devoted to mathematical tools of condensed matter theory. The school gathered together more than 60 participants from 11 countries and 7 scientific centres in Poland. Some of them were there for the first time, and some had attended nearly all previous meetings. We had advanced researchers as well as their young collaborators and students. Acknowledgements The Organizing Committee wishes to express our gratitude to all participants for several their activities at the school and for creating so friendly and inspiring an atmosphere that one can talk about the term: `SSPCM society'. Special thanks are due to all lecturers, for preparing and presenting their talks, and for several valuable discussions. We also give thanks to all those who prepared manuscripts, giving us thus an opportunity to share their ideas, to all referees who improved significantly the quality of this volume, to all members of our International Advisory Committee, and

  9. Relationships between God and people in the Bible: a core conflictual relationship theme study of the Pentateuch/Torah.

    PubMed

    Popp, Carol A; Luborsky, Lester; Andrusyna, Tomasz P; Cotsonis, George; Seligman, David

    2002-01-01

    The most widely known images of God are from the Bible. An important characteristic of these images is their portrayal of God's interactions with people. Although there have been many religious and literary discussions of God's relationships with people in the Bible, no systematic psychological assessment has been reported. Therefore, the aim of this study was an innovation: to identify patterns of relationship between God and people portrayed in the first five books of the Bible, the Pentateuch or Torah, by using the core conflictual relationship theme (CCRT) method, a widely used scoring system for the assessment of interpersonal relationships. Reliability for the application of the CCRT method to relationship episode narratives in the Pentateuch/Torah was assessed and found to be very good. Results show that the most frequent theme in relationship episode narratives about God and people is that God is helpful. Two less frequent but also highly repetitive themes are that God controls or hurts the other person. Many differences were found between relationship themes defined by the type of person with whom God interacted: patriarch, Moses, woman, non-Israelite, or not a non-Israelite. Thus, the CCRT results identify several different patterns of relationship between God and people.

  10. Studying the relationship between past people and their environments

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.; Flad, Rowan; Fuller, Dorian Q.; Giosan, Liviu

    2011-06-01

    AGU Chapman Conference on Climates, Past Landscapes, and Civilizations; Santa Fe, New Mexico, 21-25 March 2011; The fortunes of human societies are intimately linked to the environments that sustain them. This has been true from the first emergence of human ancestors through to the present day. An AGU Chapman Conference was held to discuss the relationship between past people and their environments. Participants examined the state of the field, debated issues of contention, and formulated ways that such cross-disciplinary research can progress. Scientists' increasing ability to generate high-resolution climate records has proliferated studies that link the rise and fall of cultures to climate change. This meeting brought together scholars from across the divide between Earth sciences and archaeology to derive a deeper understanding of how humans have reacted to and shaped the changing environment.

  11. Close Relationships: A Study of Mobile Communication Records

    NASA Astrophysics Data System (ADS)

    Palchykov, Vasyl; Kertész, János; Dunbar, Robin; Kaski, Kimmo

    2013-05-01

    Mobile phone communication as digital service generates ever-increasing datasets of human communication actions, which in turn allow us to investigate the structure and evolution of social interactions and their networks. These datasets can be used to study the structuring of such egocentric networks with respect to the strength of the relationships by assuming direct dependence of the communication intensity on the strength of the social tie. Recently we have discovered that there are significant differences between the first and further "best friends" from the point of view of age and gender preferences. Here we introduce a control parameter p max based on the statistics of communication with the first and second "best friend" and use it to filter the data. We find that when p max is decreased the identification of the "best friend" becomes less ambiguous and the earlier observed effects get stronger, thus corroborating them.

  12. Age, sex, body anthropometry, and ACL size predict the structural properties of the human anterior cruciate ligament.

    PubMed

    Hashemi, Javad; Mansouri, Hossein; Chandrashekar, Naveen; Slauterbeck, James R; Hardy, Daniel M; Beynnon, Bruce D

    2011-07-01

    Anterior cruciate ligament (ACL) injury continues to be at the forefront of sports injury concerns because of its impact on quality of life and joint health prognosis. One strategy is to reduce the occurrence of this injury by identifying at-risk subjects based on key putative risk factors. The purpose of our study was to develop models that predict the structural properties of a subject's ACL based on the combination of known risk factors. We hypothesized that the structural properties of the ACL can be predicted using a multi-linear regression model based on significant covariates that are associated with increased risk of injury, including age, sex, body size, and ACL size. We also hypothesized that ACL size is a significant contributor to the model. The developed models had predictive capabilities for the structural properties of the ACL: load at failure (R2 = 0.914), elongation at failure (R2 = 0.872), energy at failure (R2 = 0.913), and linear stiffness (R2 = 0.756). Furthermore, sex, age, body mass, BMI, and height were contributors (p < 0.05) to all predicted structural properties. ACL minimal area was a contributor to elongation, energy at failure, and linear stiffness (p < 0.05), but not to load at failure. ACL volume was also a contributor to elongation and energy at failure (p < 0.05), but not to linear stiffness and load at failure models. ACL length was not a significant contributor to any structural property. The clinical significance of this research is its potential, after continued development and refinement of the model, for application to prognostic studies that are designed to identify individuals at increased risk for injury to the ligament.

  13. Quantitative structure activity relationship studies of mushroom tyrosinase inhibitors

    NASA Astrophysics Data System (ADS)

    Xue, Chao-Bin; Luo, Wan-Chun; Ding, Qi; Liu, Shou-Zhu; Gao, Xing-Xiang

    2008-05-01

    Here, we report our results from quantitative structure-activity relationship studies on tyrosinase inhibitors. Interactions between benzoic acid derivatives and tyrosinase active sites were also studied using a molecular docking method. These studies indicated that one possible mechanism for the interaction between benzoic acid derivatives and the tyrosinase active site is the formation of a hydrogen-bond between the hydroxyl (aOH) and carbonyl oxygen atoms of Tyr98, which stabilized the position of Tyr98 and prevented Tyr98 from participating in the interaction between tyrosinase and ORF378. Tyrosinase, also known as phenoloxidase, is a key enzyme in animals, plants and insects that is responsible for catalyzing the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the bioactivities of 48 derivatives of benzaldehyde, benzoic acid, and cinnamic acid compounds were used to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models using comparative molecular field (CoMFA) and comparative molecular similarity indices (CoMSIA) analyses. After superimposition using common substructure-based alignments, robust and predictive 3D-QSAR models were obtained from CoMFA ( q 2 = 0.855, r 2 = 0.978) and CoMSIA ( q 2 = 0.841, r 2 = 0.946), with 6 optimum components. Chemical descriptors, including electronic (Hammett σ), hydrophobic (π), and steric (MR) parameters, hydrogen bond acceptor (H-acc), and indicator variable ( I), were used to construct a 2D-QSAR model. The results of this QSAR indicated that π, MR, and H-acc account for 34.9, 31.6, and 26.7% of the calculated biological variance, respectively. The molecular interactions between ligand and target were studied using a flexible docking method (FlexX). The best scored candidates were docked flexibly, and the interaction between the benzoic acid derivatives and the tyrosinase active site was elucidated in detail. We believe

  14. Structural properties of bismuth-bearing semiconductor alloys

    NASA Technical Reports Server (NTRS)

    Berding, M. A.; Sher, A.; Chen, A. B.

    1986-01-01

    The structural properties of bismuth-bearing III-V semiconductor alloys are addressed. Because the Bi compounds are not known to form zincblende structures, only the anion-substituted alloys InPBi, InAsBi, and InSbBi are considered candidates as narrow-gap semiconductors. Miscibility calculations indicate that InSbBi will be the most miscible, and InPBi, with the large lattice mismatch of the constituents, will be the most difficult to mix. Calculations of the hardness of the Bi compounds indicate that, once formed, the InPBi alloy will be harder than the other Bi alloys, and substantially harder than the currently favored narrow-gap semiconductor HgCdTe. Thus, although InSbBi may be an easier material to prepare, InPBi promises to be a harder material. Growth of the Bi compounds will require high effective growth temperatures, probably attainable only through the use of nonequilibrium energy-assisted epitaxial growth techniques.

  15. Structure-Property Correlations in Microwave Joining of Inconel 718

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep; Das, Shantanu

    2015-09-01

    The butt joining of Inconel 718 plates at 981°C solution treated and aged (981STA) condition was carried out using the microwave hybrid heating technique with Inconel 718 powder as a filler material. The developed joints were free from any microfissures (cracks) and were metallurgically bonded through complete melting of the powder particles. The as-welded joints were subjected to postweld heat treatments, including direct-aged, 981STA and 1080STA. The microstructural features of the welded joints were investigated using a field emission-scanning electron microscope equipped with x-ray elemental analysis. Microhardness and room-temperature tensile properties of the welded joints were evaluated. The postweld heat-treated specimens exhibited higher microhardness and tensile strength than the as-welded specimens due to the formation of strengthening precipitates in the microstructure after postweld heat treatments. The microhardness of the fusion zone of the joint in 1080STA condition was higher than all welded conditions due to the complete dissolution of Laves phase after 1080STA treatment. However, the tensile strength of the welded specimen in 981STA condition was higher than all welded conditions. The tensile strength in 1080STA condition was lower than that in 981STA condition because of the grain coarsening that took place after 1080STA condition. The fractography of the fractured surfaces was carried out to determine the structure-property-fracture correlation.

  16. Unusual structural properties of polymers confined in a nanocylinder

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi-Bin; Peng, Meng-Jie; Li, Lin-Ling; Zhou, Dong-Shan; Wang, Rong; Xue, Gi

    2015-07-01

    Structural properties of polymers confined in nanocylinders are investigated by Monte Carlo simulation, which is successfully used to consider the conformational property of constrained polymers. The conformational properties of the polymers close to the walls exhibit different features. The density profiles of polymers are enhanced near the wall of the nanocylinder, which shows that the packing densities differ near the wall and far from the wall. The highest densities near the wall of the nanocylinder decrease with increasing radius of the nanocylinder. Furthermore, the density excess is not only near the wall of the nanocylinder, but also shifts to the center of the nanocylinder at lower temperatures. The radius of gyration and the bond length of polymers in the nanocylinder show that the polymer chains tend to extend along the axis of the nanocylinder in highly confined nanocylinder and contract at lower temperature. Our results are very helpful in understanding the packing induced physical behaviors of polymers in nanocylinders, such as glass transition, crystallization, etc. Project supported by the National Natural Science Foundation of China (Grant Nos. 21474051, 21074053, and 51133002), the National Basic Research Program of China (Grant No. 2012CB821503), and the Program for Changjiang Scholars and Innovative Research Team in University, China.

  17. The challenges to intimacy and sexual relationships for gay men in HIV serodiscordant relationships: a pilot study.

    PubMed

    Palmer, R; Bor, R

    2001-10-01

    Human Immunodeficiency Virus (HIV) infection and disease progression create imbalance in long-term, HIV-serodiscordant, gay male relationships, particularly in sexual relations and issues of physical and emotional intimacy. Stage of disease progression and worldview of the couple both affect the relationship and its survival. To redress imbalance, partners employ a range of coping strategies and techniques. This article explores these issues in the context of HIV serodiscordant gay couples and how they preserve their relationships in the face of these unique challenges. For workers who provide psychotherapeutic and community support for people with HIV and for their partners, the results of this study may be helpful in recognizing stress factors for couples, and tailoring support services to the needs of both partners. Overall, this study provides a basis for further work examining the dynamics of serodiscordant relationships.

  18. Sexual Dimorphism and Population Differences in Structural Properties of Barn Swallow (Hirundo rustica) Wing and Tail Feathers.

    PubMed

    Pap, Péter L; Osváth, Gergely; Aparicio, José Miguel; Bărbos, Lőrinc; Matyjasiak, Piotr; Rubolini, Diego; Saino, Nicola; Vágási, Csongor I; Vincze, Orsolya; Møller, Anders Pape

    2015-01-01

    Sexual selection and aerodynamic forces affecting structural properties of the flight feathers of birds are poorly understood. Here, we compared the structural features of the innermost primary wing feather (P1) and the sexually dimorphic outermost (Ta6) and monomorphic second outermost (Ta5) tail feathers of barn swallows (Hirundo rustica) from a Romanian population to investigate how sexual selection and resistance to aerodynamic forces affect structural differences among these feathers. Furthermore, we compared structural properties of Ta6 of barn swallows from six European populations. Finally, we determined the relationship between feather growth bars width (GBW) and the structural properties of tail feathers. The structure of P1 indicates strong resistance against aerodynamic forces, while the narrow rachis, low vane density and low bending stiffness of tail feathers suggest reduced resistance against airflow. The highly elongated Ta6 is characterized by structural modifications such as large rachis width and increased barbule density in relation to the less elongated Ta5, which can be explained by increased length and/or high aerodynamic forces acting at the leading tail edge. However, these changes in Ta6 structure do not allow for full compensation of elongation, as reflected by the reduced bending stiffness of Ta6. Ta6 elongation in males resulted in feathers with reduced resistance, as shown by the low barb density and reduced bending stiffness compared to females. The inconsistency in sexual dimorphism and in change in quality traits of Ta6 among six European populations shows that multiple factors may contribute to shaping population differences. In general, the difference in quality traits between tail feathers cannot be explained by the GBW of feathers. Our results show that the material and structural properties of wing and tail feathers of barn swallows change as a result of aerodynamic forces and sexual selection, although the result of these

  19. Structure-property optimizations in donor polymers via electronics, substituents, and side chains toward high efficiency solar cells.

    PubMed

    Uy, Rycel L; Price, Samuel C; You, Wei

    2012-07-26

    Many advances in organic photovoltaic efficiency are not yet fully understood and new insight into structure-property relationships is required to push this technology into broad commercial use. The aim of this article is not to comprehensively review recent work, but to provide commentary on recent successes and forecast where researchers should look to enhance the efficiency of photovoltaics. By lowering the LUMO level, utilizing electron-withdrawing substituents advantageously, and employing appropriate side chains on donor polymers, researchers can elucidate further aspects of polymer-PCBM interactions while ultimately developing materials that will push past 10% efficiency.

  20. A structure-activity relationship study of ABCC2 inhibitors.

    PubMed

    Wissel, Gloria; Deng, Feng; Kudryavtsev, Pavel; Ghemtio, Leo; Wipf, Peter; Xhaard, Henri; Kidron, Heidi

    2017-02-07

    Multidrug resistance associated protein 2 (MRP2/ABCC2) is a membrane transport protein that can potentially affect the disposition of many substrate drugs and their metabolites. Recently, we studied the interaction of a library of 432 compounds with ABCC2, and the structure-activity relationship (SAR) of a subset of 64 compounds divided into four scaffolds (Wissel, G. et al., 2015. Bioorg Med Chem., 23(13), pp.3513-25). We have now expanded this test set by investigating 114 new compounds, of which 71 are representative of the previous four scaffolds and 43 compounds belong to a new scaffold. Interaction with ABCC2 was assessed by measuring the compounds effect on 5(6)-carboxy-2',7'-dichlorofluorescein transport in the vesicular transport assay. In line with our previous study, we observed that anionic charge is not essential for inhibition of ABCC2 transport, even though it often increases the inhibitory activity within the analogue series. Additionally, we found that halogen substitutions often increase the inhibitory activity. The results confirm the importance of structural features such as aromaticity and lipophilicity for ABCC2 inhibitory activity.

  1. Relationship between Childhood Maltreatment, Suicidality, and Bipolarity: A Retrospective Study

    PubMed Central

    2017-01-01

    Objective The aims of current study were to determine whether childhood maltreatment contributes to the occurrence of major depressive disorder (MDD) with bipolarity or suicidality. Methods In total, 132 outpatients diagnosed with MDD between 2014 and 2015 on the medical records were included. The subjects were divided into two groups according to the presence of childhood maltreatment (CM group) and no childhood maltreatment (NCM group). Depression severity and bipolarity were identified using Beck Depression Inventory (BDI) and the Korean version of Mood Disorder Questionnaire (K-MDQ) respectively on the medical records. In addition, the baseline loud dependence of auditory evoked potentials of 36 patients on medical records were analyzed. Results The mean total BDI, BDI item 9 (suicide ideation), and total K-MDQ score were significantly higher in the CM group than the NCM group. The number of subjects with bipolarity was significantly higher in the CM than in the NCM group. Furthermore two thirds subjects experienced the significant maltreatment during childhood. The central serotonergic activity of the CM group was also lower than that of the NCM group. Conclusion The findings of this study support that there is a relationship between childhood maltreatment and bipolarity or suicidality in patients with MDD. PMID:28326110

  2. Structure-property relations in engineered semiconductor nanomaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jennifer A.; Htoon, Han

    2016-09-01

    Particle-size or `quantum-confinement' effects have been used for decades to tune semiconductor opto-electronic properties. More recently, particle size control as the primary means for properties control has been succeeded by nanoscale hetero-structuring. In this case, the nanosized particle is modified to include internal, nanoscale interfaces, generally defined by compositional variations that induce additional changes to semiconductor properties. These changes can entail enhancements to the size-induced properties as well as unexpected or `emergent' behaviors. Common structural motifs include enveloping a spherical semiconductor nanocrystal, i.e., a quantum dot, within a shell of a different composition. In this talk, I will discuss how solution-phase synthesis can be used to create these structures with precisely `engineered' complexity. Most notably, I will review our experiences with so-called `giant' quantum dots that, due to their internal nanoscale structure, exhibit a range of novel behaviors, including being non-blinking and non-photobleaching (Chen et al. J. Am. Chem. Soc. 2008, 130, 5026; Ghosh et al. J. Am. Chem. Soc. 2012, 134, 9634; Dennis et al. Nano Lett. 2012 12, 5545; Acharya et al. J. Am. Chem. Soc. 2015, 137, 3755), and remarkably efficient emitters of `multi-excitons' due to extreme suppression of Auger recombination (Mangum et al. Nanoscale 2014, 6, 3712; Gao et al. Adv. Optical Mater. 2015, 3, 39). I will discuss recent work extending non-blinking behavior to the blue/green and "dual-color" emission, and show how correlated optical/structural characterization can reveal new information regarding structure-property relations to guide new nanomaterials development (Orfield et al. ACS Nano, Article ASAP).

  3. Material and structural properties of fin whale (Balaenoptera physalus) Zwischensubstanz.

    PubMed

    Pinto, Sheldon J D; Shadwick, Robert E

    2013-08-01

    The oral anatomy of the fin whale (Balaenoptera physalus) consists of several major structures crucial to its engulfment method of feeding, such as stiff keratinized baleen plates, a large flaccid tongue, and a prominent vomer. One under-documented part of this anatomy is the cream white Zwischensubstanz that holds the baleen plates to the rostrum at their dorsal base. The mechanical and structural properties of Zwischensubstanz play a key role in baleen plate dynamics and, on the grand scale, contribute to baleen whales' filtration efficiency and attainment of large body size. Compression and tensile tests on the Zwischensubstanz sampled from an 18 m fin whale showed that this material unexpectedly exhibits linear isotropic behaviour with Elastic Modulus of 2.56 ± 0.60 MPa and hysteresis of 0.44 ± 0.02 in compression despite apparent unidirectional growth. Acting similar to a soft rubber, the Zwischensubstanz absorbs and dissipates the enormous forces acting on baleen plates during engulfment feeding while maintaining spacing between the plates to maximize filtration efficiency. Microscopic analysis provided images of connective tissue papillae penetrating the base of the Zwischensubstanz and developing within it to emerge as fully formed, keratinized baleen plates. The plates develop from the papillae and a connective tissue sheet within the 5-7 cm deep Zwischensubstanz. The Zwischensubstanz provides a keratin matrix of concentrically oriented fibers around each papilla forming the hard baleen plates and frayed fringes used for filter feeding. During this formation, the Zwischensubstanz remains unchanged and appears to slough away to allow the baleen plate to grow unhindered.

  4. Structural properties of PAS domains from the KCNH potassium channels.

    PubMed

    Adaixo, Ricardo; Harley, Carol A; Castro-Rodrigues, Artur F; Morais-Cabral, João H

    2013-01-01

    KCNH channels form an important family of voltage gated potassium channels. These channels include a N-terminal Per-Arnt-Sim (PAS) domain with unknown function. In other proteins PAS domains are implicated in cellular responses to environmental queues through small molecule binding or involvement in signaling cascades. To better understand their role we characterized the structural properties of several channel PAS domains. We determined high resolution structures of PAS domains from the mouse EAG (mEAG), drosophila ELK (dELK) and human ERG (hERG) channels and also of the hERG domain without the first nine amino acids. We analyzed these structures for features connected to ligand binding and signaling in other PAS domains. In particular, we have found cavities in the hERG and mEAG structures that share similarities with the ligand binding sites from other PAS domains. These cavities are lined by polar and apolar chemical groups and display potential flexibility in their volume. We have also found that the hydrophobic patch on the domain β-sheet is a conserved feature and appears to drive the formation of protein-protein contacts. In addition, the structures of the dELK domain and of the truncated hERG domain revealed the presence of N-terminal helices. These helices are equivalent to the helix described in the hERG NMR structures and are known to be important for channel function. Overall, these channel domains retain many of the PAS domain characteristics known to be important for cell signaling.

  5. Gender, Emotion Work, and Relationship Quality: A Daily Diary Study

    PubMed Central

    Curran, Melissa A.; McDaniel, Brandon T.; Pollitt, Amanda M.; Totenhagen, Casey J.

    2015-01-01

    We use the gender relations perspective from feminist theorizing to investigate how gender and daily emotion work predict daily relationship quality in 74 couples (148 individuals in dating, cohabiting, or married relationships) primarily from the southwest U.S. Emotion work is characterized by activities that enhance others’ emotional well-being. We examined emotion work two ways: trait (individuals’ average levels) and state (individuals’ daily fluctuations). We examined actor and partner effects of emotion work and tested for gender differences. As outcome variables, we included six types of daily relationship quality: love, commitment, satisfaction, closeness, ambivalence, and conflict. This approach allowed us to predict three aspects of relationship quality: average levels, daily fluctuations, and volatility (overall daily variability across a week). Three patterns emerged. First, emotion work predicted relationship quality in this diverse set of couples. Second, gender differences were minimal for fixed effects: Trait and state emotion work predicted higher average scores on, and positive daily increases in, individuals’ own positive relationship quality and lower average ambivalence. Third, gender differences were more robust for volatility: For partner effects, having a partner who reported higher average emotion work predicted lower volatility in love, satisfaction, and closeness for women versus greater volatility in love and commitment for men. Neither gender nor emotion work predicted average levels, daily fluctuations, or volatility in conflict. We discuss implications and future directions pertaining to the unique role of gender in understanding the associations between daily emotion work and volatility in daily relationship quality for relational partners. PMID:26508808

  6. TIGHT CORRELATIONS BETWEEN MASSIVE GALAXY STRUCTURAL PROPERTIES AND DYNAMICS: THE MASS FUNDAMENTAL PLANE WAS IN PLACE BY z ∼ 2

    SciTech Connect

    Bezanson, Rachel; Van Dokkum, Pieter G.; Leja, Joel; Van de Sande, Jesse; Franx, Marijn; Kriek, Mariska

    2013-12-20

    The fundamental plane (FP) is an empirical relation between the size, surface brightness, and velocity dispersion of early-type galaxies. This relation has been studied extensively for early-type galaxies in the local universe to constrain galaxy formation mechanisms. The evolution of the zero point of this plane has been extended to high redshifts to study the luminosity evolution of massive galaxies, under the assumption of structural homology. In this work, we assess this assumption by replacing surface brightness with stellar mass density and present the evolution of the ''mass FP'' for massive, quiescent galaxies since z ∼ 2. By accounting for stellar populations, we thereby isolate and trace structural and dynamical evolution. Despite the observed dramatic evolution in the sizes and morphologies of massive galaxies since z ∼ 3, we find that quiescent galaxies lie on the mass FP out to z ∼ 2. In contrast with ∼1.4 dex evolution in the luminosity FP, average residuals from the z ∼ 0 mass FP are less than ∼0.15 dex since z ∼ 2. Assuming the Hyde and Bernardi mass FP slope, we find that this minimal offset scales as (1 + z){sup –0.095} {sup ±} {sup 0.043}. This result lends credence to previous studies that derived luminosity evolution from the FP. Therefore, despite their compact sizes and suggestions that massive galaxies are more disk-like at z ∼ 2, the relationship between their dynamics and structural properties are consistent with local early-type galaxies. Finally, we find no strong evidence for a tilt of the mass FP relative to the virial plane, but emphasize the need for full models including selection biases to fully investigate this issue.

  7. A Cross-National Study of the Relationship between Elderly Suicide Rates and Urbanization

    ERIC Educational Resources Information Center

    Shah, Ajit

    2008-01-01

    There is mixed evidence of a relationship between suicide rates in the general population and urbanization, and a paucity of studies examining this relationship in the elderly. A cross-national study with curve estimation regression model analysis, was undertaken to examine the a priori hypothesis that the relationship between elderly suicide…

  8. Social Dominance in Romantic Relationships: A Prospective Longitudinal Study of Non-Verbal Processes

    ERIC Educational Resources Information Center

    Ostrov, Jamie M.; Collins, W. Andrew

    2007-01-01

    The study of social dominance has a long tradition within the peer relationships literature, but rarely has the topic been investigated observationally and longitudinally within other salient close relationships. The present study investigated the role of experiences in social relationships and adjustment indices in childhood in predicting later…

  9. High School Football Players and Their Coaches: A Qualitative Study of Their Relationships

    ERIC Educational Resources Information Center

    Skaza, Robert J.

    2014-01-01

    This basic qualitative study of high school football coach-player relationships explores the players' perceptions of these relationships, specifically the perceptions the players have of how these relationships influenced their lives. This study allowed the researcher to examine the characteristics of high school football coaches as they relate to…

  10. Adopting Quality Assurance Technology in Customer-Vendor Relationships: A Case Study of How Interorganizational Relationships Influence the Process

    NASA Astrophysics Data System (ADS)

    Heeager, Lise Tordrup; Tjørnehøj, Gitte

    Quality assurance technology is a formal control mechanism aiming at increasing the quality of the product exchanged between vendors and customers. Studies of the adoption of this technology in the field of system development rarely focus on the role of the relationship between the customer and vendor in the process. We have studied how the process of adopting quality assurance technology by a small Danish IT vendor developing pharmacy software for a customer in the public sector was influenced by the relationship with the customer. The case study showed that the adoption process was shaped to a high degree by the relationship and vice versa. The prior high level of trust and mutual knowledge helped the parties negotiate mutually feasible solutions throughout the adoption process. We thus advise enhancing trust-building processes to strengthen the relationships and to balance formal control and social control to increase the likelihood of a successful outcome of the adoption of quality assurance technology in a customer-vendor relationship.

  11. Rare earth-doped lead borate glasses and transparent glass-ceramics: structure-property relationship.

    PubMed

    Pisarski, W A; Pisarska, J; Mączka, M; Lisiecki, R; Grobelny, Ł; Goryczka, T; Dominiak-Dzik, G; Ryba-Romanowski, W

    2011-08-15

    Correlation between structure and optical properties of rare earth ions in lead borate glasses and glass-ceramics was evidenced by X-ray-diffraction, Raman, FT-IR and luminescence spectroscopy. The rare earths were limited to Eu(3+) and Er(3+) ions. The observed BO(3)↔BO(4) conversion strongly depends on the relative PbO/B(2)O(3) ratios in glass composition, giving important contribution to the luminescence intensities associated to (5)D(0)-(7)F(2) and (5)D(0)-(7)F(1) transitions of Eu(3+). The near-infrared luminescence and up-conversion spectra for Er(3+) ions in lead borate glasses before and after heat treatment were measured. The more intense and narrowing luminescence lines suggest partial incorporation of Er(3+) ions into the orthorhombic PbF(2) crystalline phase, which was identified using X-ray diffraction analysis.

  12. Comparison of Polyurethanes with Polyhydroxyurethanes: Effect of the Hydroxyl Group on Structure-Property Relationships

    NASA Astrophysics Data System (ADS)

    Leitsch, Emily K.; Lombardo, Vince M.; Scheidt, Karl A.; Torkelson, John M.

    2014-03-01

    Polyurethanes (PUs) are commonly synthesized by rapid step-growth polymerization through the reaction of a multifunctional alcohol with a polyisocyanate. PUs can be prepared at ambient conditions utilizing a variety of starting material molecular weights and backbones, resulting in highly tunable thermal and physical properties. The urethane linkages as well as the nanophase separated morphology attainable in PU materials lead to desirable properties including elastomeric character and adhesion. The isocyanate-based monomers used in the synthesis of traditional PUs have come under increasing regulatory pressure and thus inspired the investigation of alternative routes for the formation of PU materials. We examine an alternative route to synthesize PU- the reaction of five-membered cyclic carbonate with amines. This reaction results in the formation of a urethane linkage with an adjacent alcohol group. The effects of this hydroxyl group on the thermal and mechanical properties of the resulting polymer are investigated and compared with an analogous traditional PU system.

  13. Quantitative structure-property relationships for chemical functional use and weight fractions in consumer articles

    EPA Science Inventory

    Chemical functional use -- the functional role a chemical plays in processes or products -- may be a useful heuristic for predicting human exposure potential in that it comprises information about the compound's likely physical properties and the product formulations or articles ...

  14. Quantitative structure-property relationships for predicting Henry's law constant from molecular structure.

    PubMed

    Dearden, John C; Schüürmann, Gerrit

    2003-08-01

    Various models are available for the prediction of Henry's law constant (H) or the air-water partition coefficient (Kaw), its dimensionless counterpart. Incremental methods are based on structural features such as atom types, bond types, and local structural environments; other regression models employ physicochemical properties, structural descriptors such as connectivity indices, and descriptors reflecting the electronic structure. There are also methods to calculate H from the ratio of vapor pressure (p(v)) and water solubility (S(w)) that in turn can be estimated from molecular structure, and quantum chemical continuum-solvation models to predict H via the solvation-free energy (deltaG(s)). This review is confined to methods that calculate H from molecular structure without experimental information and covers more than 40 methods published in the last 26 years. For a subset of eight incremental methods and four continuum-solvation models, a comparative analysis of their prediction performance is made using a test set of 700 compounds that includes a significant number of more complex and drug-like chemical structures. The results reveal substantial differences in the application range as well as in the prediction capability, a general decrease in prediction performance with decreasing H, and surprisingly large individual prediction errors, which are particularly striking for some quantum chemical schemes. The overall best-performing method appears to be the bond contribution method as implemented in the HENRYWIN software package, yielding a predictive squared correlation coefficient (q2) of 0.87 and a standard error of 1.03 log units for the test set.

  15. Structure-property relationships of iron-hydroxyapatite ceramic matrix nanocomposite fabricated using mechanosynthesis method.

    PubMed

    Nordin, Jamillah Amer; Prajitno, Djoko Hadi; Saidin, Syafiqah; Nur, Hadi; Hermawan, Hendra

    2015-06-01

    Hydroxyapatite (HAp) is an attractive bioceramics due to its similar composition to bone mineral and its ability to promote bone-implant interaction. However, its low strength has limited its application as load bearing implants. This paper presented a work focusing on the improvement of HAp mechanical property by synthesizing iron (Fe)-reinforced bovine HAp nanocomposite powders via mechanosynthesis method. The synthesis process was performed using high energy milling at varied milling time (3, 6, 9, and 12h). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Its mechanical properties were investigated by micro-Vicker's hardness and compression tests. Results showed that milling time directly influenced the characteristics of the nanocomposite powders. Amorphous BHAp was formed after 9 and 12h milling in the presence of HPO4(2-) ions. Continuous milling has improved the crystallinity of Fe without changing the HAp lattice structure. The nanocomposite powders were found in spherical shape, agglomerated and dense after longer milling time. The hardness and Young's modulus of the nanocomposites were also increased at 69% and 66%, respectively, as the milling time was prolonged from 3 to 12h. Therefore, the improvement of the mechanical properties of nanocomposite was attributed to high Fe crystallinity and homogenous, dense structure produced by mechanosynthesis.

  16. Symposium KK: Structure-Property Relationships in Biomineralized and Bio-mimetic Composites

    DTIC Science & Technology

    2010-04-06

    KK3.4 KK5.26 Self-healable Biopolymers for Drug Delivery and Tissue Engineering Xuanhe Zhao. Nathaniel D Huebsch, David J Mooney and Zhigang Suo...AM KK9.4 Abstract Withdrawn 9:45 AM BREAK 10:15 AM’KK9.5 Self-Assembling Peptide Nanofiber Hydrogels Targeted for Dental Tissue Regeneration...Phosphate Nanotubes. Deepa Khushalani, Dept. of Chemical Sciences, TIFR, Mumbai, MH. India. KK5.18 The Effect of Silk Fibroin Hydrogels , Peptides, and p

  17. Semiconducting Polythiophenes for Field-Effect Transistor Devices in Flexible Electronics: Synthesis and Structure Property Relationships

    NASA Astrophysics Data System (ADS)

    Heeney, Martin; McCulloch, Iain

    Interest in the field of organic electronics has burgeoned over the last 10 years, as the continuing improvement in performance has transitioned the technology from an academic curiosity to the focus of intense industrial and academic research. Much of this interest is driven by the belief that organic materials will be readily amenable to low-cost, large-area deposition techniques, enabling both significant cost savings and the ability to pattern flexible substrates with active electronics. Potential applications include thin-film transistor (TFT) backplanes for a variety of display modes including active matrix liquid crystal displays (AMLCDs), flexible displays such as e-paper, disposable item level radio frequency identity (RFID) tags, flexible solar cells, and cheap and disposable sensors.

  18. Structure/Property Relationships of Siloxane-Based Liquid Crystalline Materials

    DTIC Science & Technology

    1992-05-01

    Chemie; Weinheim, (1978). (66) Noel, C. in Side Chain Liquid Crystal Polymers, C. B. McArdle, Ed., Blackie; Glasgow, pp 159-195, (1989). (67) Viney , C...72.9 mm and 170 mm. Several samples were also examined with a Philips X-ray microcamera equipped with a 50 tim collimator. D-spacing calibrations were...cooled in ice water and fractured. TEM was performed with a Philips 300 electron microscope. Samples investigated were embedded within an epoxy

  19. Structure-properties relationship of carbazole and fluorene hybrid trimers: experimental and theoretical approaches.

    PubMed

    Tomkeviciene, Ausra; Grazulevicius, Juozas V; Volyniuk, Dmytro; Jankauskas, Vygintas; Sini, Gjergji

    2014-07-21

    Synthesis and properties of fluorene and carbazole derivatives having three electrophores per molecule with different architectures are reported. The synthesized compounds possess high thermal stabilities with 5% weight loss temperatures exceeding 350 °C. They form glasses with glass transition temperatures ranging from 60 to 68 °C. Cyclovoltammetric experiments revealed the high electrochemical stability of the fluorene trimer. In contrast, 2- and 2,7-fluorenyl substituted carbazole derivatives show irreversible oxidation in the CV experiments. The electron photoemission spectra of the films of the synthesized compounds revealed ionization potentials of 5.65-5.89 eV. Hole drift mobilities in the amorphous layers of the synthesized compounds reach 10(-2) cm(2) V(-1) s(-1) at high electric fields, as established by a xerographic time-of-flight technique. DFT calculations show that HOMO and LUMO orbitals of the compounds are very similar in energy and shape. The similar hole mobilities observed for the three compounds are discussed in the frame of the Marcus theory. An important influence of the alkyl groups on the ionization potentials and on the hole mobilities was also observed and its origin is discussed.

  20. Examining the Relationship Between Ballistic and Structural Properties of Lightweight Thermoplastic Unidirectional Composite Laminates

    DTIC Science & Technology

    2011-08-01

    Kevlar KM2® Style 705 PVB phenolic woven aramid composite was included. A developmental unidirectional thermoplastic aramid fiber, Honeywell... discovery and development of the ARL X Hybrid architecture, which consists of 1) the balance of architecture in the panel being 75% [0°/90°] and 25

  1. Synthesis and Structure-Property Relationships of Poly(sulfone)s for Anion Exchange Membranes

    SciTech Connect

    Yan, JL; Moore, HD; Hibbs, MR; Hickner, MA

    2013-10-05

    Membranes based on cationic polymers that conduct anions are important for enabling alkaline membrane fuel cells and other solid-state electrochemical devices that operate at high pH. Anion exchange membranes with poly(arylene ether sulfone) backbones are demonstrated by two routes: chloromethylation of commercially available poly(sulfone)s or radical bromination of benzylmethyl moieties in poly(sulfone)s containing tetramethylbisphenol A monomer residues. Polymers with tethered trimethylbenzyl ammonium moieties resulted from conversion of the halomethyl groups by quaternization with trimethyl amine. The water uptake of the chloromethylated polymers was dependent on the type of poly(sulfone) backbone for a given IEC. Bisphenol A-based Udel (R) poly(sulfone) membranes swelled in water to a large extent while membranes from biphenol-based Radel (R) poly(sulfone), a stiffer backbone than Udel, only showed moderate water uptake. The water uptake of cationic poly(sulfone)s was further reduced by synthesizing tetramethylbisphenol A and 4,4-biphenol-containing poly(sulfone) copolymers where the ionic groups were clustered on the tetramethylbisphenol A residues. The conductivity of all samples scaled with the bulk water uptake. The hydration number of the membranes could be increased by casting membranes from the ionic form polymers versus converting the halomethyl form cast polymers to ionic form in the solid state. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1790-1798, 2013

  2. Structure-Property Relationships in Ion-Beam Surface-Modified Ceramics - Theory and Applications

    DTIC Science & Technology

    1988-09-09

    Australia "Enhanced Hardness and Wear Resistance in Polymeric Carbons by Ion Implantation" 1200 - 1230 B. D. Sawicka, Chalk River Laboratories, Canada...exciting new ceramic oxide superconductors will be discussed. 14 ENHANCED HARDNESS AND WEAR RESISTANCE IN POLYMERIC CARBONS BY ION IMPLANTATION John...of graphite-based carbons. Wear resistance has been measured, using both diamond abrasion and sliding ruby ball-on- disc, as a function of implant

  3. Structure-Property Relationships in Thermoplastic Elastomers. I. Segmented Polyether-Polyurethanes.

    DTIC Science & Technology

    1984-10-26

    copolymers were synthesized by a two stage process. PPO was first capped by an appropriate amount of MDI at 60 - 700C in the presence of dibutyltin ...iJ1-2-1) 22 23 5.6 1.5 0.52 -36 70 138 i(1-3-2)8 11 32 3.3 3.8 0.34 -36 10 138 aPolymerization catalyzed by dibutyltin dilaurate unless otherwise...compared, dibutyltin dilaurate is superior to triethylamine. Table I showed that MDI- *I L(1-2-1) polyurethanes formed without and with amine and tin

  4. Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical absorption and scattering properties of fruit change with the physiological and biochemical activities in the tissue during ripening and postharvest storage. But it has not been well understood on how these changes are related to the structural and mechanical properties of fruit. This resear...

  5. Structure-Property Relationships for Optimal Thermo-Mechanical Performance in Organic Cyanate Ester

    DTIC Science & Technology

    2013-02-05

    PROJECT NUMBER Josiah Reams, Andrew Guenthner , Kevin Lamison, Matthew Davis, Joseph Mabry 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0BG 7. PERFORMING...Maximum decomposition rate in nitrogen Systematic deviation from rule of mixtures From Guenthner et al. Macromolecules 2012, 45, 211-220 • Because

  6. Structure-property relationships of polyisobutylene- block-polyamide thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Hooks, Edward T., Jr.

    Thermoplastic elastomers (TPEs) are a class of polymer fit for a wide variety of applications due to their customizability. In the synthesis of these types of materials, an elastically-performing polymer, deemed the "soft block," is combined with a stiffer "hard block" polymer, each of which can be selected based on their own specific properties in order to achieve desired material behavior in the final copolymer. Recently, the use of polyisobutylene as a soft block in combination with a polyamide hard block has been investigated for use in TPE synthesis. While the material showed some promising behavior, many properties were still below those of the commercially standard TPE material PebaxRTM. Polyisobutylene and polyamide samples of varying molecular weights and types were synthesized and combined in different ratios to form a variety of polyisobutylene-block-polyamide (PIB-PA) samples. Mechanical stirring as opposed to magnetic mixing and an increase in the soft block component of the copolymer were the most important adjustments made from previous PIB-PA syntheses. The effect of overall block length and the incorporation of a wider variety of polyamide (PA) types were also investigated. Mechanical stirring allowed for the achievement of higher molecular weights, and use of PA-6,6 as a hard block also produced a TPE with a markedly higher melting point than previously witnessed. Increasing the PIB content as well as using longer blocks of both precursors produced tougher copolymers, allowing them to undergo more mechanical deformation before failure as compared to previous PIB-PA formulations.

  7. Investigating the Structure-Property Relationships of Aqueous Self-Assembled Materials

    NASA Astrophysics Data System (ADS)

    Krogstad, Daniel Vincent

    The components of all living organisms are formed through aqueous self-assembly of organic and inorganic materials through physical interactions including hydrophobic, electrostatic, and hydrogen bonding. In this dissertation, these physical interactions were exploited to develop nanostructured materials for a range of applications. Peptide amphiphiles (PAs) self-assemble into varying structures depending on the physical interactions of the peptides and tails. PA aggregation was investigated by cryo-TEM to provide insight on the effects of varying parameters, including the number and length of the lipid tails as well as the number, length, charge, hydrophobicity, and the hydrogen bonding ability of the peptides. It was determined that cylindrical micelles are most commonly formed, and that specific criteria must be met in order to form spherical micelles, nanoribbons, vesicles or less ordered aggregates. Controlling the aggregated structure is necessary for many applications---particularly in therapeutics. Additionally, two-headed PAs were designed to act as a catalyst and template for biomimetic mineralization to control the formation of inorganic nanomaterials. Finally, injectable hydrogels made from ABA triblock copolymers were synthesized with the A blocks being functionalized with either guanidinium or sulfonate groups. These oppositely charged polyelectrolyte endblocks formed complex coacervate domains, which served as physical crosslinks in the hydrogel network. The mechanical properties, the network structure, the nature of the coacervate domain and the kinetics of hydrogel formation were investigated as a function of polymer concentration, salt concentration, pH and stoichiometry with rheometry, SAXS and SANS. It was shown that the mechanical properties of the hydrogels was highly dependent on the structural organization of the coacervate domains and that the properties could be tuned with polymer and salt concentration. Polymer and salt concentration were also shown to play roles in determining the size and density of the coacervate domains. Additionally, 20 wt% hydrogels were shown to form through a nucleation and growth pathway, in which the coacervate domains formed within minutes, the BCC structure was predominant within 100 minutes, but the equilibrium structure was not achieved for months. Ultimately, the work presented in this dissertation has resulted in an improved understanding of the physical interactions that are needed for self-assembly and may eventually lead to smarter design of nanomaterials for therapeutic, electronic and mechanical applications.

  8. Structure-Property Relationships of Poly(lactide)-based Triblock and Multiblock Copolymers

    NASA Astrophysics Data System (ADS)

    Panthani, Tessie Rose

    Replacing petroleum-based plastics with alternatives that are degradable and synthesized from annually renewable feedstocks is a critical goal for the polymer industry. Achieving this goal requires the development of sustainable analogs to commodity plastics which have equivalent or superior properties (e.g. mechanical, thermal, optical etc.) compared to their petroleum-based counterparts. This work focuses on improving and modulating the properties of a specific sustainable polymer, poly(lactide) (PLA), by incorporating it into triblock and multiblock copolymer architectures. The multiblock copolymers in this work are synthesized directly from dihydroxy-terminated triblock copolymers by a simple step-growth approach: the triblock copolymer serves as a macromonomer and addition of stoichiometric quantities of either an acid chloride or diisocyanate results in a multiblock copolymer. This work shows that over wide range of compositions, PLA-based multiblock copolymers have superior mechanical properties compared to triblock copolymers with equivalent chemical compositions and morphologies. The connectivity of the blocks within the multiblock copolymers has other interesting consequences on properties. For example, when crystallizable poly(L-lactide)-based triblock and multiblock copolymers are investigated, it is found that the multiblock copolymers have much slower crystallization kinetics. Additionally, the total number of blocks connected together is found to effect the linear viscoelastic properties as well as the alignment of lamellar domains under uniaxial extension. Finally, the synthesis and characterization of pressure-sensitive adhesives based upon renewable PLA-containing triblock copolymers and a renewable tackifier is detailed. Together, the results give insight into the effect of chain architecture, composition, and morphology on the mechanical behavior, thermal properties, and rheological properties of PLA-based materials.

  9. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    ERIC Educational Resources Information Center

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  10. Polymorphism in acesulfame sweetener: structure-property and stability relationships of bending and brittle crystals.

    PubMed

    Velaga, Sitaram P; Vangala, Venu R; Basavoju, Srinivas; Boström, Dan

    2010-05-28

    Acesulfame is found to exist in two crystalline forms of which Form I (needles) shows bending upon mechanical stress. Crystal structures explain their mechanical response. This is the first case of aliphatic organic compounds featuring a bending phenomenon. Form I is physically more stable than Form II in ambient conditions.

  11. Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications

    NASA Astrophysics Data System (ADS)

    Mehlem, Jeremy John

    Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well as in their final state. Using these methods the size of the high and low cross-link density phase was examined and determined to be on the order of 50--150 nanometers. Model compounds based on phenylethyl methacrylate were formulated to determine how of nadic methyl anhydride and maleic anhydride incorporate into dimethacrylate resin systems.

  12. Quantitative Structure-Property Relationships for Melting Points and Densities of Ionic Liquids

    DTIC Science & Technology

    2004-07-01

    316. (27) Fukui, K. Theory of Orientation and Stereoselection , Springer-Verlag, Berlin. 1975. (28)Trohalaki, S.; Pachter, R. SAR and QSAR in...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC),AFRL/PRSP,10 E. Saturn Blvd.,Edwards AFB,CA,93524...7680 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR

  13. Investigation of structure-property relationships in systematic series of novel polymers

    NASA Technical Reports Server (NTRS)

    Gillham, J. K.

    1976-01-01

    Solid state transitions in polymeric materials was associated with the onset of sub-molecular motions of the polymer chains. Although these were considered to be intramolecular in general, the local environment of the polymer molecule exerts a strong influence through, for example, the effects of crystallinity, polarity and diluents. The manner of specimen preparation and previous history also affect transitions. The transitions are considered to arise when sufficient free volume is available to permit the occurrence of these side chain and backbone reorientations. The glass transition is the principal transition of amorphous polymeric materials and is associated with the onset of long range segmental motion of the polymer backbone. The various types of shorter range motion occurring below the glass transition have been catalogued.

  14. Structure-property relationships in directionally solidified single crystal NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Kim, J. T.; Gibala, R.

    1987-01-01

    The ordered intermetallic alloy NiAl is being considered as a potential high temperature structural material, but lack of ductility at ambient temperatures, especially in polycrystalline form, is presently a major obstacle in achieving this goal. Even general agreement of the intrinsic ductility that can be achieved in monocrystals is in dispute. In order to understand this problem, two directionally solidified ingots of NiAl which displayed known differences in ductility were characterized in sufficient detail to identify the corresponding microstructural differences. It was found that the type and size of casting defects, i.e., porosity, present in the material were the major factors in controlling ductility of NiAl single crystals and could explain the order of magnitude variance in fracture strains reported in the literature.

  15. New Synthetic Methods and Structure-Property Relationships in Neptunium, Plutonium, and Americium Borates. Final report

    SciTech Connect

    Albrecht-Schmitt, Thomas Edward

    2013-09-14

    The past three years of support by the Heavy Elements Chemistry Program have been highly productive in terms of advanced degrees awarded, currently supported graduate students, peer-reviewed publications, and presentations made at universities, national laboratories, and at international conferences. Ph.D. degrees were granted to Shuao Wang and Juan Diwu, who both went on to post-doctoral appointments at the Glenn T. Seaborg Center at Lawrence Berkeley National Laboratory with Jeff Long and Ken Raymond, respectively. Pius Adelani completed his Ph.D. with me and is now a post-doc with Peter C. Burns. Andrea Alsobrook finished her Ph.D. and is now a post-doc at Savannah River with Dave Hobbs. Anna Nelson completed her Ph.D. and is now a post-doc with Rod Ewing at the University of Michigan. As can be gleaned from this list, students supported by the Heavy Elements Chemistry grant have remained interested in actinide science after leaving my program. This follows in line with previous graduates in this program such as Richard E. Sykora, who did his post-doctoral work at Oak Ridge National Laboratory with R. G. Haire, and Amanda C. Bean, who is a staff scientist at Los Alamos National Laboratory, and Philip M. Almond and Thomas C. Shehee, who are both staff scientists at Savannah River National Laboratory, Gengbang Jin who is a staff scientist at Argonne National Lab, and Travis Bray who has been a post-doc at both LBNL and ANL. Clearly this program is serving as a pipe-line for students to enter into careers in the national laboratories. About half of my students depart the DOE complex for academia or industry. My undergraduate researchers also remain active in actinide chemistry after leaving my group. Dan Wells was a productive undergraduate of mine, and went on to pursue a Ph.D. on uranium and neptunium chalcogenides with Jim Ibers at Northwestern. After earning his Ph.D., he went directly into the nuclear industry.

  16. The structure-property relationships of powder processed Fe-Al-Si alloys

    SciTech Connect

    Prichard, Paul D.

    1998-02-23

    Iron-aluminum alloys have been extensively evaluated as semi-continuous product such as sheet and bar, but have not been evaluated by net shape P/M processing techniques such as metal injection molding. The alloy compositions of iron-aluminum alloys have been optimized for room temperature ductility, but have limited high temperature strength. Hot extruded powder alloys in the Fe-Al-Si system have developed impressive mechanical properties, but the effects of sintering on mechanical properties have not been explored. This investigation evaluated three powder processed Fe-Al-Si alloys: Fe-15Al, Fe-15Al-2.8Si, Fe-15Al-5Si (atomic %). The powder alloys were produced with a high pressure gas atomization (HPGA) process to obtain a high fraction of metal injection molding (MIM) quality powder (D84 < 32 μm). The powders were consolidated either by P/M hot extrusion or by vacuum sintering. The extruded materials were near full density with grain sizes ranging from 30 to 50 μm. The vacuum sintering conditions produced samples with density ranging from 87% to 99% of theoretical density, with an average grain size ranging from 26 μm to 104 μm. Mechanical property testing was conducted on both extruded and sintered material using a small punch test. Tensile tests were conducted on extruded bar for comparison with the punch test data. Punch tests were conducted from 25 to 550 C to determine the yield strength, and fracture energy for each alloy as a function of processing condition. The ductile to brittle transition temperature (DBTT) was observed to increase with an increasing silicon content. The Fe-15Al-2.8Si alloy was selected for more extensive testing due to the combination of high temperature strength and low temperature toughness due to the two phase α + DO3 structure. This investigation provided a framework for understanding the effects of silicon in powder processing and mechanical property behavior of Fe-Al-Si alloys.

  17. Hydrogen storage in metal-organic frameworks: An investigation of structure-property relationships

    NASA Astrophysics Data System (ADS)

    Rowsell, Jesse

    Metal-organic frameworks (MOFs) have been identified as candidate hydrogen storage materials due to their ability to physisorb large quantities of small molecules. Thirteen compounds (IRMOF-1, -2, -3, -6, -8, -9, -11, -13, -18, -20, MOF-74, MOF-177 and HKUST-1) have been prepared and fully characterized for the evaluation of their dihydrogen (H2) adsorption properties. All compounds display approximately type I isotherms with no hysteresis at 77 K up to 1 atm. The amount adsorbed ranges from 0.89 to 2.54 wt%; however, saturation is not achieved under these conditions. The influences of link functionalization, catenation and topology are examined for the eleven MOFs composed of Zn4O(O2C-)6 clusters. Enhanced H2 uptake by catenated compounds is rationalized by increased overlap of the surface potentials within their narrower pores. This is corroborated by the larger isosteric heat of adsorption of IRMOF-11 compared to IRMOF-1. Inelastic neutron scattering spectroscopic analysis of four Zn4O-based materials (IRMOF-1, -8, -11, and MOF-74) under a range of H2 loading suggests the presence of multiple localized adsorption sites on both the inorganic and organic moieties. To determine the structural details of the adsorption sites, variable temperature single crystal X-ray diffraction was used to analyze adsorbed argon and dinitrogen molecules in IRMOF-1. The principle binding site was found to be the same for both adsorbates and is located on faces of the octahedral Zn4O(O2C-)6 clusters with close contacts to three carboxylate groups. A total of eight symmetry-independent adsorption sites were identified for argon at 30 K. Similar sites were observed for dinitrogen, suggesting that they are good model adsorbates for the behaviour of dihydrogen. Two additional materials composed of inorganic clusters with coordinatively unsaturated metal sites (MOF-74, HKUST-1) were examined and their increased capacities and isosteric heats of adsorption provide further evidence that the interaction is strongest at the inorganic clusters. This enhancement becomes less important at high pressure, where large pore volume proves to be the greater contributor to capacity.

  18. Structure-property-relationship of p-toluidinium tetrachloromercurate(II)

    SciTech Connect

    Dinesh; Kumar, Mukesh; Dalela, S.

    2014-04-24

    The single crystals of p-toluidinium tetrachloromercurate(II) hybrid materials have been grown with perfect crystal of size 0.35 × 0.30 × 0.27 mm. The hybrid material is exposed to X-rays for 3D intensity data which is used to refine the crystal structure upto reliability-factor of 0.034. The phenyl ring has planar conformation with skeletal torsion angle of 0.003(6)° and the aromatic ring (C1-C6) forms an angle of 78.7(1)° to the plane of inorganic layer. The N-H...Cl hydrogen bonded tetramer pattern is observed in p-toluidinium tetrachloromercurate(II) and the two tetramer layers are separated by a distance of 3.925(6)Å and the minimum distance between two mercury atoms is 4.112(1)Å which is quite larger for any metallophilic interaction. The inorganic layers form zig-zag ribbons which are separated by a distance of 12.987(5)Å.

  19. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces

    PubMed Central

    Katz, J. Lawrence; Misra, Anil; Spencer, Paulette; Wang, Yong; Bumrerraj, Sauwanan; Nomura, Tsutomu; Eppell, Steven J.; Tabib-Azar, Massood

    2007-01-01

    This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin–enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level. PMID:18270549

  20. Silica-supported silver nanoparticles: Tailoring of structure-property relationships

    SciTech Connect

    Barreca, Davide; Gasparotto, Alberto; Maragno, Cinzia; Tondello, Eugenio; Gialanella, Stefano

    2005-03-01

    Silica-supported silver nanoparticles were obtained by rf sputtering from Ar plasmas under soft synthesis conditions, with particular attention to the combined influence of rf power and total pressure on the system composition, nanostructure, morphology, and optical properties. In order to attain a thorough insight into the nucleation and growth phenomena of Ag nanoparticles on the silica substrate, several in situ and ex situ characterization techniques were used. In particular, a laser reflection interferometry system was employed for a real-time monitoring of the deposition process, providing useful and complementary information with respect to the other ex situ techniques (x-ray photoelectron spectroscopy and x-ray excited Auger electron spectroscopy, glancing incidence x-ray diffraction, atomic force microscopy, optical-absorption spectroscopy, and transmission electron microscopy). The above investigations evidenced the formation of silver-based nanosystems (average crystallite size {<=}10 nm), whose features (metal content, Ag particle size and shape, structure and optical properties) could be carefully tailored by moderate and controlled variations of the synthesis parameters.

  1. Structure-Property Relationships for Polycyanurate Networks Derived from Renewable Sources (Briefing Charts)

    DTIC Science & Technology

    2015-08-18

    counting / averaging rules are the same  as for Me‐mp FB “Flexible” non‐hydrogen  atoms  in bridge “backbone”  structure ;  the “backbone” of the  bridge is...exists,  atoms   in all such paths count, if more than one bridge exists, the total number of flexible non‐ hydrogen  atoms  in all bridge  structures  is...chain terminus) not in a ring; sp3 atoms  in ring  structures  considered  on a case by case basis. DISTRIBUTION A:  Approved for public release

  2. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications.

    PubMed

    Bazban-Shotorbani, Salime; Hasani-Sadrabadi, Mohammad Mahdi; Karkhaneh, Akbar; Serpooshan, Vahid; Jacob, Karl I; Moshaverinia, Alireza; Mahmoudi, Morteza

    2017-02-27

    pH-responsive polymers contain ionic functional groups as pendants in their structure. The total number of charged groups on polymer chains determines the overall response of the system to changes in the external pH. This article reviews various pH-responsive polymers classified as polyacids (e.g., carboxylic acid based polymers, sulfonamides, anionic polysaccharides, and anionic polypeptides) and polybases (e.g., polyamines, pyridine and imidazole containing polymers, cationic polysaccharides, and cationic polypeptides). We correlate the pH variations in the body at the organ level (e.g., gastrointestinal tract and vaginal environment), tissue level (e.g., cancerous and inflamed tissues), and cellular level (e.g., sub-cellular organelles), with the intrinsic properties of pH-responsive polymers. This knowledge could help to select more effective ('smart') polymeric systems based on the biological target. Considering the pH differences in the body, various drug delivery systems can be designed by utilizing smart biopolymeric compounds with the required pH-sensitivity. We also review the pharmaceutical application of pH-responsive polymeric carriers including hydrogels, polymer-drug conjugates, micelles, dendrimers, and polymersomes.

  3. Structure/Property Relationships of Cyanate Ester Resins from Renewable Sources

    DTIC Science & Technology

    2013-04-11

    derived from lignin . These materials possess favorable thermal and water uptake properties with dry glass transition temperatures above 200°C and wet...distribution is unlimited. Creosol as a Monomer Source 7 • Input material cost is an important consideration for cyanate ester resins • Lignin is...from lignin • Oxidative and reductive coupling reactions lead to precursor phenols, which are then treated with cyanogen bromide to generate cyanate

  4. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    PubMed

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-09

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.

  5. Atomically resolved tomography to directly inform simulations for structure-property relationships

    NASA Astrophysics Data System (ADS)

    Moody, Michael P.; Ceguerra, Anna V.; Breen, Andrew J.; Cui, Xiang Yuan; Gault, Baptiste; Stephenson, Leigh T.; Marceau, Ross K. W.; Powles, Rebecca C.; Ringer, Simon P.

    2014-11-01

    Microscopy encompasses a wide variety of forms and scales. So too does the array of simulation techniques developed that correlate to and build upon microstructural information. Nevertheless, a true nexus between microscopy and atomistic simulations is lacking. Atom probe has emerged as a potential means of achieving this goal. Atom probe generates three-dimensional atomistic images in a format almost identical to many atomistic simulations. However, this data is imperfect, preventing input into computational algorithms to predict material properties. Here we describe a methodology to overcome these limitations, based on a hybrid data format, blending atom probe and predictive Monte Carlo simulations. We create atomically complete and lattice-bound models of material specimens. This hybrid data can then be used as direct input into density functional theory simulations to calculate local energetics and elastic properties. This research demonstrates the role that atom probe combined with theoretical approaches can play in modern materials engineering.

  6. Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship.

    PubMed

    Moravej, M; Prima, F; Fiset, M; Mantovani, D

    2010-05-01

    An electroforming technique was developed for fabricating iron foils targeted for application as biodegradable cardiovascular stent material. The microstructure, mechanical properties and corrosion of electroformed iron (E-Fe) foils were evaluated and compared with those of pure iron made by casting and thermomechanical treatment (CTT-Fe), with 316L stainless steel (316L SS) and with other candidate metallic materials for biodegradable stents. Electron backscattered diffraction revealed an average grain size of 4 microm for E-Fe, resulting in a high yield (360 MPa) and ultimate tensile strength (423 MPa) being superior to those of other metallic biodegradable stent materials. Annealing at 550 degrees C was found to improve the ductility of the E-Fe from 8% to 18%. The corrosion rate of E-Fe in Hanks' solution, measured by potentiodynamic polarization, was higher than that of CTT-Fe, which had been found to have a slow in vivo degradation. The results showed that E-Fe possesses fine-grain microstructure, suitable mechanical properties and moderate corrosion rate as a degradable stent material.

  7. Structure-property relationships in oxide-dispersed iron-beryllia alloys

    NASA Technical Reports Server (NTRS)

    Wolf, S.; Grant, N. J.

    1977-01-01

    Two BeO dispersed iron alloys containing about 2.5 and 5.5 v/o dispersoid were produced by attritting, internally oxidizing, and extruding dilute, prealloyed Fe-Be powders. As-extruded alloys were given various thermomechanical treatments involving room temperature swaging and annealing above and below the allotropic transformation temperature. The elevated temperature rupture strengths were measured and correlated with changes in structure; strengthening trends were examined in the light of proposed models for such strengthening. The results obtained showed that the elevated temperature strength was determined by the oxide interparticle spacing (IPS) in recrystallized material and IPS as well as prior deformation in swaged specimens. In fact, a parametric correlation was found between rupture strength values in the longitudinal direction with prestrain during swaging. The overall pattern in strength and microstructural observations were more consistent with a strength-stored energy (substructure) dependence than a strength-grain shape (grain aspect ratio) relation.

  8. Thermal, dielectric and structural properties of Enceladus' leading face

    NASA Astrophysics Data System (ADS)

    Le Gall, Alice; Bonnefoy, Léa; Leyrat, Cedric; Janssen, Michael A.

    2016-10-01

    The Cassini RADAR was initially designed to examine the surface of Titan through the veil of its optically-opaque atmosphere. However, it is occasionally used to observe airless Saturn's moons from long range and, less frequently, during targeted flybys. In particular, the 16th targeted encounter of Enceladus (Nov. 6, 2011, flyby E16) was dedicated to the RADAR instrument which then acquired data for over 4 hours. This paper focuses on the mid-resolution (0.1-0.6REnceladus) and low-resolution polarized data (0.6-1.0REnceladus) collected during the E16 flyby in the radiometry mode of the RADAR, mainly on the leading side of the moon.In its passive mode, the RADAR records the thermal emission at 2-cm wavelength from, likely, the first meters of an icy surface. Ries and Janssen (2015) first analyzed the E16 mid-resolution radiometry observation and reported on a large-scale emissivity anomaly, possibly associated with the seemingly young tectonized Leading Hemisphere Terrain mapped by Crow-Willard and Pappalardo (2015). With the goal of further investigating the extension of the anomaly region and providing constrains on the thermal, dielectric and structural properties of Enceladus' near surface, we have re-examined this dataset as well as observations acquired in two orthogonal polarizations with the help of a thermal model. This thermal model accounts for both diurnal and seasonal variations of the incident flux, including eclipses which is of importance for the E16 observations partially occurred during a solar eclipse by Saturn.Preliminary results suggest that the average thermal inertia of the near surface of Enceladus' leading face is relatively low, as low as 40 Jm-2K-1s-1/2 . This value does not depart much from the one inferred from measurements in the IR suggesting that the surface of Enceladus is covered by a very porous regolith, at least a few meters thick. In agreement, with this interpretation, the degree of volume scattering (i.e., high

  9. The effects of swift heavy ion irradiation on the structural properties of poly(lactide-co-glycolide)/clay nanocomposite

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Surinder; Mehta, Rajeev

    2016-05-01

    Radiation has been used as a processing technique to modify structural, chemical, physical and morphological properties of polymers and its nanocomposite and can thus be used as a method to control the rate of degradation. The swift heavy ions (SHI) irradiation effects on the structural properties of poly(lactide-co-glycolide) nanocomposites containing 5wt% organo-montmorillonite (OMMT) clay by irradiating with 50 MeV Li3+ and 180 MeV Ag8+ ions has been studied at different fluences. The structural responses of PLGA nanocomposite under the influence of SHI were studied using Fourier transform infrared (FTIR) spectroscopy. The presence of clay and irradiation by swift heavy ions (SHI) brings out interesting changes in structural properties of nanocomposite.

  10. Digenean trematodes-marine mollusc relationships: a stable isotope study.

    PubMed

    Dubois, S Y; Savoye, N; Sauriau, P-G; Billy, I; Martinez, P; de Montaudouin, X

    2009-03-09

    The stable carbon and nitrogen isotopic composition of digenean trematode parasites and their marine mollusc hosts was investigated to describe the potential influence of parasites on their host and its different tissues, and to obtain further insight into their trophic relationships. Four parasite-host systems were studied: Labratrema minimus-Cerastoderma edule, Monorchis parvus-C. edule, Lepocreadiidae parasites-Nassarius reticulatus and Zoogonidae parasites-N. reticulatus. Among the 4 sampling occasions reported here and corresponding to the 4 parasite-host systems, isotopic shifts from pathologic (i.e. linked to disturbances in host metabolism) and mass-balance (i.e. linked to significant differences between host and parasite isotopic signatures) origins were observed only once. Both corresponded to delta 13C measurements of the L. minimus-C. edule system when the infestation load (percentage parasite dry weight compared to total flesh dry weight) was highest (9 to 25%, mean = 16%) over the sampling period. Overall, measurements indicate that digenean trematode parasitism induced low or no shifts in isotopic signatures of C. edule and N. reticulatus tissues. The 2 endoparasites L. minimus and M. parvus appeared to be slightly depleted in 13C compared to C. edule digestive gland and gonads, which were the most parasitized tissues. In contrast, no fractionation or low 15N trophic enrichments occurred in the parasites. These results highly contrast with the classical trophic enrichment reported in prey-predator systems but are in agreement with the scarce literature regarding other parasite-host systems. Our results indicate that (1) digenean trematodes mainly feed on digestive glands (the cockle tissue with which they are mainly associated) with a possible slight preference for lipids, and (2) fractionation due to parasite metabolism should be low due to abbreviated metabolic pathways and/or slight loss of materials through excretion, tegument diffusion and

  11. Exploring Familial Relationship Growth and Negotiation: A Case Study of Outward Bound Family Courses

    ERIC Educational Resources Information Center

    Overholt, Jillisa R.

    2013-01-01

    This study explored the phenomenon of father-child relationship development within the context of an Outward Bound (OB) family course, an environment that may both disrupt the ordinary aspects of an established relationship, and provide activities to purposefully encourage relationship development through a variety of aspects inherent to the…

  12. College Student Mentors and Latino Youth: A Qualitative Study of the Mentoring Relationship

    ERIC Educational Resources Information Center

    Knoche, Lisa L.; Zamboanga, Byron L.

    2006-01-01

    This phenomenological study describes the meaning of mentoring relationships from the perspectives of six purposefully selected mentors involved in the Latino Achievement Mentoring Program (LAMP), and investigates underlying themes regarding the mentors' relationships. Clusters of themes pertaining to the mentors' relationship with the mentee, the…

  13. Structural Properties and Estimation of Delay Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kwong, R. H. S.

    1975-01-01

    Two areas in the theory of delay systems were studied: structural properties and their applications to feedback control, and optimal linear and nonlinear estimation. The concepts of controllability, stabilizability, observability, and detectability were investigated. The property of pointwise degeneracy of linear time-invariant delay systems is considered. Necessary and sufficient conditions for three dimensional linear systems to be made pointwise degenerate by delay feedback were obtained, while sufficient conditions for this to be possible are given for higher dimensional linear systems. These results were applied to obtain solvability conditions for the minimum time output zeroing control problem by delay feedback. A representation theorem is given for conditional moment functionals of general nonlinear stochastic delay systems, and stochastic differential equations are derived for conditional moment functionals satisfying certain smoothness properties.

  14. Optical and structural properties of sulfur-doped ELOG InP on Si

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Ting; Junesand, Carl; Metaferia, Wondwosen; Kataria, Himanshu; Julian, Nick; Bowers, John; Pozina, Galia; Hultman, Lars; Lourdudoss, Sebastian

    2015-06-01

    Optical and structural properties of sulfur-doped epitaxial lateral overgrowth (ELOG) InP grown from nano-sized openings on Si are studied by room-temperature cathodoluminescence and cross-sectional transmission electron microscopy (XTEM). The dependence of luminescence intensity on opening orientation and dimension is reported. Impurity enhanced luminescence can be affected by the facet planes bounding the ELOG layer. Dark line defects formed along the [011] direction are identified as the facet planes intersected by the stacking faults in the ELOG layer. XTEM imaging in different diffraction conditions reveals that stacking faults in the seed InP layer can circumvent the SiO2 mask during ELOG and extend to the laterally grown layer over the mask. A model for Suzuki effect enhanced stacking fault propagation over the mask in sulfur-doped ELOG InP is constructed and in-situ thermal annealing process is proposed to eliminate the seeding stacking faults.

  15. The effects of 7-dehydrocholesterol on the structural properties of membranes

    NASA Astrophysics Data System (ADS)

    Liu, Yingzhe; Chipot, Christophe; Shao, Xueguang; Cai, Wensheng

    2011-10-01

    Smith-Lemli-Opitz syndrome, a congenital and developmental malformation disease, is typified by abnormal accumulation of 7-dehydrocholesterol (7DHC), the immediate precursor of cholesterol (CHOL), and depletion thereof. Knowledge of the effect of 7DHC on the biological membrane is, however, still fragmentary. In this study, large-scale atomistic molecular dynamics simulations, employing two distinct force fields, have been conducted to elucidate differences in the structural properties of a hydrated dimyristoylphosphatidylcholine bilayer due to CHOL and 7DHC. The present series of results indicate that CHOL and 7DHC possess virtually the same ability to condense and order membranes. Furthermore, the condensing and ordering effects are shown to be strengthened at increasing sterol concentrations.

  16. Effect of Operating Temperature on Structure Properties of TICX Nanoparticle Coating Applied by Pacvd

    NASA Astrophysics Data System (ADS)

    Shanaghi, Ali; Sabour Rouhaghdam, Ali Reza; Ahangarani, Shahrokh; Moradi, Hadi; Mohammadi, Ali

    Titanium carbide (TiC) is a widely used hard coating to improve the wear resistance and lifetime of tools because of its outstanding properties such as high melting point, high hardness, corrosion resistance and abrasion resistance. These properties were drastically improved by using nanotechnology. So in this project, TiCx was applied on hot-working die steel (H11) by Plasma CVD (PACVD). The effect of operating temperatures on TiCx structure properties have been studies by typical and advanced analyses methods such as SEM, XRD, FTIR and Raman. The best properties of TiCx nanoparticle, such as nanostructure, mechanical properties and chemical properties, were obtained at 480 °C.

  17. Investigation of the structural properties of ferromagnetic Mn-implanted Si

    NASA Astrophysics Data System (ADS)

    Bolduc, M.; Awo-Affouda, C.; Stollenwerk, A.; Huang, M. B.; Ramos, F.; LaBella, V. P.

    2006-01-01

    The structural properties of Si crystals that were made ferromagnetic through Mn-ion implantation are studied. 300-keV Mn+ ions were implanted at 350 °C at doses of 1-10 × 1015 cm-2 reaching peak concentrations of 0.1-0.8 at.%. Ferromagnetic hysteresis loops were obtained using a SQUID magnetometer at temperature of 300 K, yielding a saturation magnetization of 0.2 emu/g after annealing at 800 °C for 5 min. The Curie temperature for all samples was found to be greater than 400 K. After annealing, a pronounced redistribution of Mn is observed in the depth profiles as measured through SIMS profiling. The quality of the resulting crystal structure has been investigated by RBS in the channeling mode.

  18. Surface, dynamic and structural properties of liquid Al-Ti alloys

    NASA Astrophysics Data System (ADS)

    Novakovic, R.; Giuranno, D.; Ricci, E.; Tuissi, A.; Wunderlich, R.; Fecht, H.-J.; Egry, I.

    2012-01-01

    The systems containing highly reactive element such as Ti are the most difficult to be determined experimentally and therefore, it is often necessary to estimate the missing values by theoretical models. The thermodynamic data of the Al-Ti system are scarce, its phase diagram is still incomplete and there are very few data on the thermophysical properties of Al-Ti melts. The study on surface, dynamic and static structural properties of liquid Al-Ti alloys has been carried out within the framework of the Compound Formation Model. In spite of the experimental difficulties, the surface tension of liquid Al-2 at.%Ti alloy has been measured over a temperature range by the pinned drop method.

  19. [Thermal and structural properties of nano- and micro-filled composites].

    PubMed

    Nica, Irina; Rusu, V; Cimpoeşu, N; Vizureanu, P; Aluculesei, A

    2009-01-01

    The thermal and structural properties of nano-filled and micro-filled restorative composites (Filtek Supreme XT and Filtek Z250) are studied in comparison with the ones of teeth. Our results show slightly decreased values of the thermal constants of Filtek Supreme XT with respect of Filtek Z250. Both analyzed composite materials have the values of the thermal conductivity and diffusivity very close to the one of enamel, with the better fitting in the case of Filtek Supreme XT. Comparing the effusivities, a good compatibility with all dental tissues resulted. The thermal expansion coefficient is about two times higher for Filtek Supreme XT than Filtek Z250 which fits better with the one of teeth. The chemical composition is similar for both composites except for zirconium which indicate a lower percent of zirconia particle for Filtek Supreme XT.

  20. Impact of observational incompleteness on the structural properties of protein interaction networks

    NASA Astrophysics Data System (ADS)

    Kuhnt, Mathias; Glauche, Ingmar; Greiner, Martin

    2007-01-01

    The observed structure of protein interaction networks is corrupted by many false positive/negative links. This observational incompleteness is abstracted as random link removal and a specific, experimentally motivated (spoke) link rearrangement. Their impact on the structural properties of gene-duplication-and-mutation network models is studied. For the degree distribution a curve collapse is found, showing no sensitive dependence on the link removal/rearrangement strengths and disallowing a quantitative extraction of model parameters. The spoke link rearrangement process moves other structural observables, like degree correlations, cluster coefficient and motif frequencies, closer to their counterparts extracted from the yeast data. This underlines the importance to take a precise modeling of the observational incompleteness into account when network structure models are to be quantitatively compared to data.

  1. Gamma-ray shielding and structural properties of PbO-SiO 2 glasses

    NASA Astrophysics Data System (ADS)

    Singh, K. J.; Singh, N.; Kaundal, R. S.; Singh, K.

    2008-03-01

    Gamma-ray attenuation coefficients have been determined experimentally using a narrow beam transmission method for the xPbO(1-x)SiO2 (x = 0.45-0.70) glass system at 662, 1173 and 1332 keV photon energies. These values have also been obtained theoretically using the 'mixture rule' and the 'XCOM' computer software. The results have been used to calculate half value layer parameters. Gamma-ray shielding properties of PbO-SiO2 glass samples have been compared with standard radiation shielding concretes. The molar volume, FTIR and acoustic investigations have been used to study the structural properties of the prepared glass system.

  2. Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses

    NASA Astrophysics Data System (ADS)

    Bootjomchai, Cherdsak; Laopaiboon, Jintana; Yenchai, Chadet; Laopaiboon, Raewat

    2012-07-01

    The attenuation coefficients of barium-bismuth-borosilicate glasses have been measured for gamma-ray photon energies of 662, 1173 and 1332 keV using a narrow beam transmission geometry. These coefficients were then used to obtain the values of mass attenuation coefficients, effective atomic number, effective electron density and mean free path. Good agreement has been observed between experimental and theoretical values of these parameters. From the obtained results it is reported here that from the barium-bismuth-borosilicate glasses are better shields to gamma-radiations in comparison to the standard radiation shielding concretes from the shielding point of view. The molar volume, FTIR and acoustic investigations have been used to study the structural properties of the prepared glass system. The obtained results reveal that the formation of non-bridging oxygens occurs at higher concentration of Bi2O3.

  3. Molecular and structural properties of polymer composites filled with activated charcoal particles

    NASA Astrophysics Data System (ADS)

    Tahir, Dahlang; Liong, Syarifuddin; Bakri, Fahrul

    2016-03-01

    We have studied the molecular properties, structural properties, and chemical composition of composites by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) spectroscopy, and X-ray fluorescence (XRF) spectroscopy, respectively. FTIR spectra shows absorption band of hydroxyl group (-OH), methyl group (-CH3) and aromatic group (C-C). The absorption band for aromatic group (C-C) shows the formation of carbonaceous in composites. XRF shows chemical composition of composites, which the main chemicals are SO3, Cl, and ZnO. The loss on ignition value (LOI) of activated charcoal indicates high carbonaceous matter. The crystallite size for diffraction pattern from hydrogel polymer is about 17 nm and for activated charcoal are about 19 nm. The crystallite size of the polymer is lower than that of activated charcoal, which make possible of the particle from filler in contact with each other to form continuous conducting polymer through polymer matrix.

  4. Optical and structural properties of sulfur-doped ELOG InP on Si

    SciTech Connect

    Sun, Yan-Ting Junesand, Carl; Metaferia, Wondwosen; Kataria, Himanshu; Lourdudoss, Sebastian; Julian, Nick; Bowers, John; Pozina, Galia; Hultman, Lars

    2015-06-07

    Optical and structural properties of sulfur-doped epitaxial lateral overgrowth (ELOG) InP grown from nano-sized openings on Si are studied by room-temperature cathodoluminescence and cross-sectional transmission electron microscopy (XTEM). The dependence of luminescence intensity on opening orientation and dimension is reported. Impurity enhanced luminescence can be affected by the facet planes bounding the ELOG layer. Dark line defects formed along the [011] direction are identified as the facet planes intersected by the stacking faults in the ELOG layer. XTEM imaging in different diffraction conditions reveals that stacking faults in the seed InP layer can circumvent the SiO{sub 2} mask during ELOG and extend to the laterally grown layer over the mask. A model for Suzuki effect enhanced stacking fault propagation over the mask in sulfur-doped ELOG InP is constructed and in-situ thermal annealing process is proposed to eliminate the seeding stacking faults.

  5. Relationships between Telecommuting Workers and Their Managers: An Exploratory Study.

    ERIC Educational Resources Information Center

    Reinsch, N. Lamar, Jr.

    1997-01-01

    Finds that telecommuters, in interviews, consistently reported that telecommuting had been a success with few disadvantages, whereas questionnaire results suggest that the relationship between the telecommuter and his or her manager may deteriorate after an initial "honeymoon" phase has passed. Suggests that age and sex may affect a telecommuter's…

  6. Structural properties and relative stability of (meta)stable ordered, partially ordered, and disordered Al-Li alloy phases

    NASA Astrophysics Data System (ADS)

    Alam, Aftab; Johnson, D. D.

    2012-04-01

    We resolve issues that have plagued reliable prediction of relative phase stability for solid solutions and compounds. Due to its commercially important phase diagram, we showcase the Al-Li system because historically density-functional theory (DFT) results show large scatter and limited success in predicting the structural properties and stability of solid solutions relative to ordered compounds. Using recent advances in an optimal basis-set representation of the topology of electronic charge density (and, hence, atomic size), we present DFT results that agree reasonably well with all known experimental data for the structural properties and formation energies of ordered, off-stoichiometric partially ordered, and disordered alloys, opening the way for reliable study in complex alloys.

  7. A NON-LINEAR STRUCTURE-PROPERTY MODEL FOR OCTANOL-WATER PARTITION COEFFICIENT.

    PubMed

    Yerramsetty, Krishna M; Neely, Brian J; Gasem, Khaled A M

    2012-10-25

    Octanol-water partition coefficient (K(ow)) is an important thermodynamic property used to characterize the partitioning of solutes between an aqueous and organic phase and has importance in such areas as pharmacology, pharmacokinetics, pharmacodynamics, chemical production and environmental toxicology. We present a non-linear quantitative structure-property relationship model for determining K(ow) values of new molecules in silico. A total of 823 descriptors were generated for 11,308 molecules whose K(ow) values are reported in the PhysProp dataset by Syracuse Research. Optimum network architecture and its associated inputs were identified using a wrapper-based feature selection algorithm that combines differential evolution and artificial neural networks. A network architecture of 50-33-35-1 resulted in the least root-mean squared error (RMSE) in the training set. Further, to improve on single-network predictions, a neural network ensemble was developed by combining five networks that have the same architecture and inputs but differ in layer weights. The ensemble predicted the K(ow) values with RMSE of 0.28 and 0.38 for the training set and internal validation set, respectively. The ensemble performed reasonably well on an external dataset when compared with other popular K(ow) models in the literature.

  8. Structural properties of Au and Ag nanoclusters embedded in MgO

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; Fedorov, A. V.; van Veen, A.; Falub, C. V.; Eijt, S. W. H.; Kooi, B. J.; De Hosson, J. Th. M.; Hibma, T.; Zimmerman, R. L.

    2002-05-01

    Gold and silver nanoclusters embedded in MgO were created by means of ion implantation of 1.0 MeV Au or 600 keV Ag ions to a dose of 10 16 cm -2 into single crystals of MgO(1 0 0) and subsequent annealing at 1473 K for a period of 22 h. The structural properties of the nanoclusters were characterised by optical absorption spectroscopy (OAS), high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (XTEM). Nanocluster sizes are estimated using three different methods: using the Doyle formula for the broadening of the optical absorption peak associated with Mie plasmon resonance; using the Scherrer formula for the broadening of the Au and Ag XRD peaks, and from direct observation of TEM images. For the Au clusters, the methods are in excellent agreement with mean cluster sizes of 4-5 nm. For the Ag clusters, the optical Doyle method yields a mean nanocluster size of 5 nm while the XRD and XTEM methods yield 10-11 nm. The XRD and XTEM results reveal a cube-on-cube orientation relationship of the Au and Ag nanoclusters with respect to the MgO matrix.

  9. Individual-Oriented Relationship Education: An Evaluation Study in Community-Based Settings.

    PubMed

    Visvanathan, Pallavi D; Richmond, Melissa; Winder, Chandra; Koenck, Cynthia Hoskins

    2015-12-01

    The effects of relationship education aimed at individuals, rather than couples, have not yet been widely investigated. However, increasingly, relationship education is provided to large and diverse groups of individuals who may be in varying stages of relationships. Several programs have been developed to strengthen relationship competencies among single individuals as well as among partnered individuals who, for a variety of reasons, seek relationship education without their partners. The current study is an exploratory evaluation study that examined self-reported outcomes for 706 single and partnered individuals who attended Within My Reach classes delivered in community-based agencies. Participants were from diverse backgrounds and exhibited many of the risk factors for poor relationship outcomes including unemployment, low income, and childhood experience of abuse or neglect. Pre-post analyses indicated that the program was beneficial for both singles and partnered individuals. Singles reported increased belief in ability to obtain healthy relationships. Partnered individuals reported increased relationship quality, relationship confidence, and reduced conflict. Regardless of relationship status, participants also reported improvement in general relationship and communication skill. Results support the utility of individual-oriented relationship education for singles and partnered individuals with diverse background characteristics.

  10. Structural properties of thermoresponsive poly(N-isopropylacrylamide)-poly(ethyleneglycol) microgels

    NASA Astrophysics Data System (ADS)

    Clara-Rahola, J.; Fernandez-Nieves, A.; Sierra-Martin, B.; South, A. B.; Lyon, L. A.; Kohlbrecher, J.; Fernandez Barbero, A.

    2012-06-01

    We present investigations of the structural properties of thermoresponsive poly(N-isopropylacrylamide) (PNiPAM) microgels dispersed in an aqueous solvent. In this particular work poly(ethyleneglycol) (PEG) units flanked with acrylate groups are employed as cross-linkers, providing an architecture designed to resist protein fouling. Dynamic light scattering (DLS), static light scattering (SLS), and small angle neutron scattering (SANS) are employed to study the microgels as a function of temperature over the range 10 °C ≤ T ≤ 40 °C. DLS and SLS measurements are simultaneously performed and, respectively, allow determination of the particle hydrodynamic radius, Rh, and radius of gyration, Rg, at each temperature. The thermal variation of these magnitudes reveals the microgel deswelling at the PNiPAM lower critical solution temperature (LCST). However, the hydrodynamic radius displays a second transition to larger radii at temperatures T ≤ 20 °C. This feature is atypical in standard PNiPAM microgels and suggests a structural reconfiguration within the polymer network at those temperatures. To better understand this behavior we perform neutron scattering measurements at different temperatures. In striking contrast to the scattering profile of soft sphere microgels, the SANS profiles for T ≤ LCST of our PNiPAM-PEG suspensions indicate that the particles exhibit structural properties characteristic of star polymer configurations. The star polymer radius of gyration and correlation length gradually decrease with increasing temperature despite maintenance of the star polymer configuration. At temperatures above the LCST, the scattered SANS intensity is typical of soft sphere systems.

  11. General practitioners' relationship with preventive knowledge: a qualitative study.

    PubMed

    Bloy, Géraldine; Rigal, Laurent

    2015-09-09

    General practitioners (GPs) do not provide enough preventive care. Nonetheless, without a detailed understanding of the logical processes that underlie their practices, it remains difficult to develop effective means of improvement. Their relationship to knowledge is one of three elements that strongly structure GPs' preventive work (together with the doctor-patient relationship and the organisation of their professional space).The objective of this article was to explore the question of GPs' relationship to knowledge about prevention. In 2010-2011, semi-directive interviews with a diverse sample of 100 GPs practising in the Paris metropolitan area were conducted. These interviews were coded according a reading grid that was developed collectively and analysed in the framework of grounded theory. The cognitive universe of GPs is neither homogeneous nor stable. It is composed of biomedical knowledge (delivered via guidelines, the professional press, opinion leaders and pharmaceutical companies), clinical knowledge (fed by individual situations from their daily experience and often conflicting with epidemiologic reasoning and data) and lay knowledge (from folk culture). Plunged into this complex cognitive universe that is difficult for them to master, doctors construct their own idiosyncratic preventive style by themselves, mostly in isolation. Two types of actions emerged as likely to help GPs better appropriate preventive knowledge: clarification of scientific data (especially from epidemiology and the social sciences) but also development of a collective analysis of the cognitive work required to integrate the different types of knowledge mobilised daily in their preventive practices.

  12. The Student-Teacher Relationship Scale: Results of a Pilot Study.

    ERIC Educational Resources Information Center

    Pianta, Robert C.; Nimetz, Sheri L.

    This study reports the results of a pilot study of the relationship between teachers and students. The study used a newly developed measure: The Student-Teacher Relationship Scale (STRS). In a sample of 72 kindergarten children, the STRS was found to have three factors: Secure, Change, and Insecure. The total scale and the subscales based on these…

  13. Sequence-structure relationship study in all-α transmembrane proteins using an unsupervised learning approach.

    PubMed

    Esque, Jérémy; Urbain, Aurélie; Etchebest, Catherine; de Brevern, Alexandre G

    2015-11-01

    Transmembrane proteins (TMPs) are major drug targets, but the knowledge of their precise topology structure remains highly limited compared with globular proteins. In spite of the difficulties in obtaining their structures, an important effort has been made these last years to increase their number from an experimental and computational point of view. In view of this emerging challenge, the development of computational methods to extract knowledge from these data is crucial for the better understanding of their functions and in improving the quality of structural models. Here, we revisit an efficient unsupervised learning procedure, called Hybrid Protein Model (HPM), which is applied to the analysis of transmembrane proteins belonging to the all-α structural class. HPM method is an original classification procedure that efficiently combines sequence and structure learning. The procedure was initially applied to the analysis of globular proteins. In the present case, HPM classifies a set of overlapping protein fragments, extracted from a non-redundant databank of TMP 3D structure. After fine-tuning of the learning parameters, the optimal classification results in 65 clusters. They represent at best similar relationships between sequence and local structure properties of TMPs. Interestingly, HPM distinguishes among the resulting clusters two helical regions with distinct hydrophobic patterns. This underlines the complexity of the topology of these proteins. The HPM classification enlightens unusual relationship between amino acids in TMP fragments, which can be useful to elaborate new amino acids substitution matrices. Finally, two challenging applications are described: the first one aims at annotating protein functions (channel or not), the second one intends to assess the quality of the structures (X-ray or models) via a new scoring function deduced from the HPM classification.

  14. The relationship between study addiction and work addiction: A cross-cultural longitudinal study

    PubMed Central

    Atroszko, Paweł A.; Andreassen, Cecilie Schou; Griffiths, Mark D.; Pallesen, Ståle

    2016-01-01

    Aims Recent empirical studies investigating “study addiction” have conceptualized it as a behavioral addiction, defined within the framework of work addiction. This study is the first attempt to examine the longitudinal relationship between study addiction and work addiction. Methods The Bergen Study Addiction Scale (BStAS), the Bergen Work Addiction Scale (BWAS), and the Ten-Item Personality Inventory were administered online together with questions concerning demographics and study-related variables in two waves. In Wave 1, a total of 2,559 students in Norway and 2,177 students in Poland participated. A year later, in Wave 2, 379 Norwegians and 401 Polish who began to work professionally completed the survey. Results The intraclass correlation between BStAS and BWAS revealed that the scores were somewhat related; however, the relationship was slightly weaker than the temporal stability of both constructs. In the Norwegian sample, scoring higher on neuroticism and lower on learning time outside educational classes in Wave 1 was positively related to work addiction in Wave 2, whereas gender was unrelated to work addiction in Wave 2 when controlling for other studied variables in either samples. Conclusion Study addiction and work addiction appear to be closely related suggesting that the former may be a precursor for (or an early form of) the latter. PMID:27842448

  15. The relationship between study addiction and work addiction: A cross-cultural longitudinal study.

    PubMed

    Atroszko, Paweł A; Andreassen, Cecilie Schou; Griffiths, Mark D; Pallesen, Ståle

    2016-12-01

    Aims Recent empirical studies investigating "study addiction" have conceptualized it as a behavioral addiction, defined within the framework of work addiction. This study is the first attempt to examine the longitudinal relationship between study addiction and work addiction. Methods The Bergen Study Addiction Scale (BStAS), the Bergen Work Addiction Scale (BWAS), and the Ten-Item Personality Inventory were administered online together with questions concerning demographics and study-related variables in two waves. In Wave 1, a total of 2,559 students in Norway and 2,177 students in Poland participated. A year later, in Wave 2, 379 Norwegians and 401 Polish who began to work professionally completed the survey. Results The intraclass correlation between BStAS and BWAS revealed that the scores were somewhat related; however, the relationship was slightly weaker than the temporal stability of both constructs. In the Norwegian sample, scoring higher on neuroticism and lower on learning time outside educational classes in Wave 1 was positively related to work addiction in Wave 2, whereas gender was unrelated to work addiction in Wave 2 when controlling for other studied variables in either samples. Conclusion Study addiction and work addiction appear to be closely related suggesting that the former may be a precursor for (or an early form of) the latter.

  16. A practical guide to the study of social relationships.

    PubMed

    Silk, Joan; Cheney, Dorothy; Seyfarth, Robert

    2013-01-01

    Behavioral ecologists have devoted considerable effort to identifying the sources of variation in individual reproductive success. Much of this work has focused on the characteristics of individuals, such as their sex and rank. However, many animals live in stable social groups and the fitness of individuals depends at least in part on the outcome of their interactions with other group members. For example, in many primate species, high dominance rank enhances access to resources and reproductive success. The ability to acquire and maintain high rank often depends on the availability and effectiveness of coalitionary support. Allies may be cultivated and coalitions may be reinforced by affiliative interactions such as grooming, food sharing, and tolerance. These findings suggest that if we want to understand the selective pressures that shape the social behavior of primates, it will be profitable to broaden our focus from the characteristics of individuals to the properties of the relationships that they form with others. The goal of this paper is to discuss a set of methods that can be used to quantify the properties of social relationships.

  17. Finding a Balance: Fifteen Institutional Case Studies on the Relationship between Part-Time Work and Advanced Level Study. Report.

    ERIC Educational Resources Information Center

    Hodgson, Ann, Ed.; Spours, Ken, Ed.

    This document presents and discusses case studies that examined the relationship between part-time employment and advanced level study at 15 schools in Essex, England. "Foreword" (David Jones) provides a brief overview of the project. "Finding a Balance--Fifteen Institutional Case Studies on the Relationship between Part-time Work…

  18. JPRS Report, Science & Technology, Japan, Structure, Properties of Al Amorphous Alloys

    DTIC Science & Technology

    2007-11-02

    JPRS-JST-90-054 4 DECEMBER 1990 FOREIGN BROADCAST INFORMATION SERVICE JPRS Report-- Science & Technology Japan STRUCTURE , PROPERTIES OF AL...JPRS-JST-90-054 4 DECEMBER 1990 SCIENCE & TECHNOLOGY JAPAN STRUCTURE . PROPERTIES OF AL AMORPHOUS ALLOYS 906C7531 Tokyo AL KEI AMORUFASU GOKIN NO KOZO...TO TOKUSEI in Japanese 6 Feb 90 pp 1-40 [Papers presented at the Symposium for Structure and Properties of Al Amorphous Alloys, held 6 Feb 90 in

  19. Fifth-Grade Teachers' Social Studies Knowledge and Beliefs and Their Relationship to Classroom Practices

    ERIC Educational Resources Information Center

    Harcarik, Michele

    2009-01-01

    This mixed methods study investigates the relationship between fifth-grade teachers' social studies knowledge and beliefs and their relationship to classroom practices. Quantitative data were collected through a beliefs and classroom practices survey and 60-item knowledge test covering the areas of American History, America and the World,…

  20. An Exploratory Study of the Relationship between Attention-Deficit Hyperactivity Disorder and Youth Homelessness

    ERIC Educational Resources Information Center

    Harding, Blake

    2014-01-01

    A 1997 study by Lomas and Garside suggests a 62% prevalence rate of ADHD [Attention-Deficit Hyperactivity Disorder] amongst homeless, which prompts a need for further elucidation of this relationship. This study sought to examine the relationship between Attention-Deficit Hyperactivity Disorder and the homeless youth population aged 18-24. The…

  1. Perceptions of Student-Teacher Relationships and GED Completion: A Correlational Study

    ERIC Educational Resources Information Center

    Hairston, Melissa Tynetta

    2013-01-01

    This study took an in depth look at student-teacher relationships as one institutional barrier affecting GED completion among adults. The purpose of this study was to examine the perceptions of student-instructor relationships, specifically Instructor Connectedness and Instructor Anxiety, and its effects on adults seeking GED completion. Data from…

  2. Gay and lesbian couple relationship commitment in taiwan: a preliminary study.

    PubMed

    Shieh, Wen-Yi

    2010-01-01

    Due to the traditional values on marriage and heterosexual relationships, gay and lesbian couple relationships were long ignored in Taiwan. This study attempted to look at gay and lesbian couple relationship commitment. Questionnaires were used in this study. Due to the difficulties of getting gays and lesbians to participate in research, snowballing method was used. The sample included 218 participants in a stable couple relationship for at least six months. Through multiple regression analyses, the result showed that the influencing factors of gay and lesbian couples' commitment fit Rusbult's Investment Model closely.

  3. Effect of Heat Treatment on the Structural Properties of TiO2 Films Produced by Sol-Gel Spin Coating Technique

    NASA Astrophysics Data System (ADS)

    Nebi, M.; Peker, D.

    2016-10-01

    Due to have superior properties as fotocatalyst and have wide band gap, TiO2 thin films often investigated by researchers and used by technological applications widely. In this study TiO2 films were deposited on glass substrate by Sol-Gel Spin Coating Technic. TiO2 films were deposited at different number of layer and then annealed at 400o C, 500o C, and 600o C in air. Effect of anneal temperature to structural properties were investigated by XRD analysis. It was observed by the light of XRD results that the structural properties of films had changed by anneal temperature.

  4. Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3d mesostructures as templates.

    PubMed

    Gierszal, Kamil P; Kim, Tae-Wan; Ryoo, Ryong; Jaroniec, Mietek

    2005-12-15

    Adsorption and structural properties of inverse carbon replicas of two ordered siliceous P6mm and Ia3d mesostructures have been studied by nitrogen adsorption, powder X-ray diffraction, and transmission electron microscopy. These carbon replicas were prepared by filling the pores of SBA-15 and KIT-6 siliceous templates with various carbon precursors followed by carbonization and silica dissolution. Sucrose, furfuryl alcohol, acenaphthene, mesophase pitch, and petroleum pitch were used to obtain inverse carbon replicas of SBA-15 and KIT-6. While structural properties of the resulting ordered mesoporous carbons are mainly determined by the hard template used, their adsorption properties depend on the type of the carbon precursor.

  5. Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications.

    PubMed

    Feng, Wei; Long, Peng; Feng, Yiyu; Li, Yu

    2016-07-01

    Fluorinated graphene, an up-rising member of the graphene family, combines a two-dimensional layer-structure, a wide bandgap, and high stability and attracts significant attention because of its unique nanostructure and carbon-fluorine bonds. Here, we give an extensive review of recent progress on synthetic methods and C-F bonding; additionally, we present the optical, electrical and electronic properties of fluorinated graphene and its electrochemical/biological applications. Fluorinated graphene exhibits various types of C-F bonds (covalent, semi-ionic, and ionic bonds), tunable F/C ratios, and different configurations controlled by synthetic methods including direct fluorination and exfoliation methods. The relationship between the types/amounts of C-F bonds and specific properties, such as opened bandgap, high thermal and chemical stability, dispersibility, semiconducting/insulating nature, magnetic, self-lubricating and mechanical properties and thermal conductivity, is discussed comprehensively. By optimizing the C-F bonding character and F/C ratios, fluorinated graphene can be utilized for energy conversion and storage devices, bioapplications, electrochemical sensors and amphiphobicity. Based on current progress, we propose potential problems of fluorinated graphene as well as the future challenge on the synthetic methods and C-F bonding character. This review will provide guidance for controlling C-F bonds, developing fluorine-related effects and promoting the application of fluorinated graphene.

  6. Two‐Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications

    PubMed Central

    Long, Peng; Feng, Yiyu; Li, Yu

    2016-01-01

    Fluorinated graphene, an up‐rising member of the graphene family, combines a two‐dimensional layer‐structure, a wide bandgap, and high stability and attracts significant attention because of its unique nanostructure and carbon–fluorine bonds. Here, we give an extensive review of recent progress on synthetic methods and C–F bonding; additionally, we present the optical, electrical and electronic properties of fluorinated graphene and its electrochemical/biological applications. Fluorinated graphene exhibits various types of C–F bonds (covalent, semi‐ionic, and ionic bonds), tunable F/C ratios, and different configurations controlled by synthetic methods including direct fluorination and exfoliation methods. The relationship between the types/amounts of C–F bonds and specific properties, such as opened bandgap, high thermal and chemical stability, dispersibility, semiconducting/insulating nature, magnetic, self‐lubricating and mechanical properties and thermal conductivity, is discussed comprehensively. By optimizing the C–F bonding character and F/C ratios, fluorinated graphene can be utilized for energy conversion and storage devices, bioapplications, electrochemical sensors and amphiphobicity. Based on current progress, we propose potential problems of fluorinated graphene as well as the future challenge on the synthetic methods and C‐F bonding character. This review will provide guidance for controlling C–F bonds, developing fluorine‐related effects and promoting the application of fluorinated graphene. PMID:27981018

  7. Quantitative structure-activity relationship studies on nitrofuranyl antitubercular agents

    PubMed Central

    Hevener, Kirk E.; Ball, David M.; Buolamwini, John K.

    2008-01-01

    A series of nitrofuranylamide and related aromatic compounds displaying potent activity against M. tuberculosis has been investigated utilizing 3-Dimensional Quantitative Structure-Activity Relationship (3D-QSAR) techniques. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods were used to produce 3D-QSAR models that correlated the Minimum Inhibitory Concentration (MIC) values against M. tuberculosis with the molecular structures of the active compounds. A training set of 95 active compounds was used to develop the models, which were then evaluated by a series of internal and external cross-validation techniques. A test set of 15 compounds was used for the external validation. Different alignment and ionization rules were investigated as well as the effect of global molecular descriptors including lipophilicity (cLogP, LogD), Polar Surface Area (PSA), and steric bulk (CMR), on model predictivity. Models with greater than 70% predictive ability, as determined by external validation, and high internal validity (cross validated r2 > .5) have been developed. Incorporation of lipophilicity descriptors into the models had negligible effects on model predictivity. The models developed will be used to predict the activity of proposed new structures and advance the development of next generation nitrofuranyl and related nitroaromatic anti-tuberculosis agents. PMID:18701298

  8. Comparative study on parameter estimation methods for attenuation relationships

    NASA Astrophysics Data System (ADS)

    Sedaghati, Farhad; Pezeshk, Shahram

    2016-12-01

    In this paper, the performance and advantages and disadvantages of various regression methods to derive coefficients of an attenuation relationship have been investigated. A database containing 350 records out of 85 earthquakes with moment magnitudes of 5-7.6 and Joyner-Boore distances up to 100 km in Europe and the Middle East has been considered. The functional form proposed by Ambraseys et al (2005 Bull. Earthq. Eng. 3 1-53) is selected to compare chosen regression methods. Statistical tests reveal that although the estimated parameters are different for each method, the overall results are very similar. In essence, the weighted least squares method and one-stage maximum likelihood perform better than the other considered regression methods. Moreover, using a blind weighting matrix or a weighting matrix related to the number of records would not yield in improving the performance of the results. Further, to obtain the true standard deviation, the pure error analysis is necessary. Assuming that the correlation between different records of a specific earthquake exists, the one-stage maximum likelihood considering the true variance acquired by the pure error analysis is the most preferred method to compute the coefficients of a ground motion predication equation.

  9. Social relationships among adolescents as described in an electronic diary: a mixed methods study.

    PubMed

    Anttila, Katriina I; Anttila, Minna J; Kurki, Marjo H; Välimäki, Maritta A

    2017-01-01

    Social relationships among adolescents with mental disorders are demanding. Adolescents with depressive symptoms may have few relationships and have difficulties sharing their problems. Internet may offer reliable and easy to use tool to collect real-time information from adolescents. The aim of this study is to explore how adolescents describe their social relationships with an electronic diary. Mixed methods were used to obtain a broad picture of adolescents' social relationships with the data gathered from network maps and reflective texts written in an electronic diary. Adolescents who visited an outpatient clinic and used an intervention (N=70) designed for adolescents with signs of depression were invited to use the electronic diary; 29 did so. The quantitative data gathered in the electronic diary were summarized with descriptive statistics, and the qualitative data were categorized using a thematic analysis with an inductive approach. We found that social relationships among adolescents with signs of depression can vary greatly in regards to the number of existing relationships (from lacking to 21) and the quality of the relationships (from trustful to difficult). However, the relationships may change, and the adolescents are also willing to build up their social relationships. Professionals need to be aware of the diversity of adolescents' social relationships and their need for personalized support.

  10. Social relationships among adolescents as described in an electronic diary: a mixed methods study

    PubMed Central

    Anttila, Katriina I; Anttila, Minna J; Kurki, Marjo H; Välimäki, Maritta A

    2017-01-01

    Social relationships among adolescents with mental disorders are demanding. Adolescents with depressive symptoms may have few relationships and have difficulties sharing their problems. Internet may offer reliable and easy to use tool to collect real-time information from adolescents. The aim of this study is to explore how adolescents describe their social relationships with an electronic diary. Mixed methods were used to obtain a broad picture of adolescents’ social relationships with the data gathered from network maps and reflective texts written in an electronic diary. Adolescents who visited an outpatient clinic and used an intervention (N=70) designed for adolescents with signs of depression were invited to use the electronic diary; 29 did so. The quantitative data gathered in the electronic diary were summarized with descriptive statistics, and the qualitative data were categorized using a thematic analysis with an inductive approach. We found that social relationships among adolescents with signs of depression can vary greatly in regards to the number of existing relationships (from lacking to 21) and the quality of the relationships (from trustful to difficult). However, the relationships may change, and the adolescents are also willing to build up their social relationships. Professionals need to be aware of the diversity of adolescents’ social relationships and their need for personalized support. PMID:28280307

  11. PGS:Gelatin Nanofibrous Scaffolds with Tunable Mechanical and Structural Properties for Engineering Cardiac Tissues

    PubMed Central

    Kharaziha, Mahshid; Nikkhah, Mehdi; Shin, Su-Ryon; Annabi, Nasim; Masoumi, Nafiseh; Gaharwar, Akhilesh K.; Camci-Unal, Gulden; Khademhosseini, Ali

    2013-01-01

    A significant challenge in cardiac tissue engineering is the development of biomimetic grafts that can potentially promote myocardial repair and regeneration. A number of approaches have used engineered scaffolds to mimic the architecture of the native myocardium tissue and precisely regulate cardiac cell functions. However previous attempts have not been able to simultaneously recapitulate chemical, mechanical, and structural properties of the myocardial extracellular matrix (ECM). In this study, we utilized an electrospinning approach to fabricate elastomeric biodegradable poly(glycerol-sebacate) (PGS):gelatin scaffolds with a wide range of chemical composition, stiffness and anisotropy. Our findings demonstrated that through incorporation of PGS, it is possible to create nanofibrous scaffolds with well-defined anisotropy that mimics the left ventricular myocardium architecture. Furthermore, we studied attachment, proliferation, differentiation and alignment of neonatal rat cardiac fibroblast cells (CFs) as well as protein expression, alignment, and contractile function of cardiomyocyte (CMs) on PGS:gelatin scaffolds with variable amount of PGS. Notably, aligned nanofibrous scaffold, consisting of 33 wt. % PGS, induced optimal synchronous contractions of CMs while significantly enhanced cellular alignment. Overall, our study suggests that the aligned nanofibrous PGS:gelatin scaffold support cardiac cell organization, phenotype and contraction and could potentially be used to develop clinically relevant constructs for cardiac tissue engineering. PMID:23747008

  12. PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues.

    PubMed

    Kharaziha, Mahshid; Nikkhah, Mehdi; Shin, Su-Ryon; Annabi, Nasim; Masoumi, Nafiseh; Gaharwar, Akhilesh K; Camci-Unal, Gulden; Khademhosseini, Ali

    2013-09-01

    A significant challenge in cardiac tissue engineering is the development of biomimetic grafts that can potentially promote myocardial repair and regeneration. A number of approaches have used engineered scaffolds to mimic the architecture of the native myocardium tissue and precisely regulate cardiac cell functions. However, previous attempts have not been able to simultaneously recapitulate chemical, mechanical, and structural properties of the myocardial extracellular matrix (ECM). In this study, we utilized an electrospinning approach to fabricate elastomeric biodegradable poly(glycerol sebacate) (PGS):gelatin nanofibrous scaffolds with a wide range of chemical composition, stiffness and anisotropy. Our findings demonstrated that through incorporation of PGS, it is possible to create nanofibrous scaffolds with well-defined anisotropy that mimic the left ventricular myocardium architecture. Furthermore, we studied attachment, proliferation, differentiation and alignment of neonatal rat cardiac fibroblast cells (CFs) as well as protein expression, alignment, and contractile function of cardiomyocyte (CMs) on PGS:gelatin scaffolds with variable amount of PGS. Notably, aligned nanofibrous scaffold, consisting of 33 wt. % PGS, induced optimal synchronous contractions of CMs while significantly enhanced cellular alignment. Overall, our study suggests that the aligned nanofibrous PGS:gelatin scaffold support cardiac cell organization, phenotype and contraction and could potentially be used to develop clinically relevant constructs for cardiac tissue engineering.

  13. Exploring Stakeholder Relationships in a University Internship Program: A Qualitative Study

    ERIC Educational Resources Information Center

    Hoyle, Jeffrey A.

    2013-01-01

    This study explores stakeholder relationships between the key stakeholders of a public university, private employers, and university students in a marketing undergraduate internship program. By exploring these relationships through the process of stakeholder analysis a deeper understanding of the power dynamics between key stakeholders emerged.…

  14. Does Youth Relationship Education Continue to Work after a High School Class? A Longitudinal Study

    ERIC Educational Resources Information Center

    Gardner, Scott P.; Boellaard, Rila

    2007-01-01

    "Connections: Relationships and Marriage" ("Connections") is a high school marriage education curriculum designed to teach students how to develop healthy relationships and marriages. This study evaluated the effectiveness of this curriculum over 4-years postintervention with a matched set of 72 high school students who were in either the…

  15. Parent-Caregiver Relationships among Beginning Caregivers in Canada: A Quantitative Study

    ERIC Educational Resources Information Center

    Cantin, Gilles; Plante, Isabelle; Coutu, Sylvain; Brunson, Liesette

    2012-01-01

    Despite the importance of establishing meaningful parent-caregiver relationships, little is known about these dyadic relationships among beginning caregivers, who often feel insufficiently prepared to build successful alliances with parents. The present study examined the congruence between parents' and beginning caregivers' perceptions of their…

  16. The Study of Government-University Relationship in Malaysian Higher Education System

    ERIC Educational Resources Information Center

    Ahmad, Abd Rahman; Farley, Alan; Naidoo, Moonsamy

    2012-01-01

    Recently the Agency Theory is extensively used in the study of government-university relationship in higher education system. The theory expounds the main concept of information asymmetry and goal conflict in the relationship. In this paper these two concepts are used to explain efforts undertaken by the Malaysian Federal Government to improve the…

  17. School Culture: A Validation Study and Exploration of Its Relationship with Teachers' Work Environment

    ERIC Educational Resources Information Center

    Guo, Ping

    2012-01-01

    This study was aimed at exploring the relationship between school culture and teachers' work environment and further exploring the roles of school culture, teachers' efficacy, beliefs, and behaviors for character education, and teachers' work environment in the relationship between a character education intervention and students' social emotional…

  18. The Close Relationships of People with Intellectual Disabilities: A Qualitative Study

    ERIC Educational Resources Information Center

    Sullivan, Faye; Bowden, Keith; McKenzie, Karen; Quayle, Ethel

    2016-01-01

    Background: Positive interpersonal relationships have been found to enhance an individual's quality of life. However, people with intellectual disabilities (PWID) often have restricted social networks, and little is known about their views on close social relationships. The study aimed to explore how this group perceives and experiences close…

  19. Childhood Abuse and Neglect and Adult Intimate Relationships: A Prospective Study

    ERIC Educational Resources Information Center

    Colman, R.A.; Widom, C.S.

    2004-01-01

    Objective:: The present study extends prior research on childhood maltreatment and social functioning by examining the impact of early childhood physical abuse, sexual abuse, and neglect on rates of involvement in adult intimate relationships and relationship functioning. Method:: Substantiated cases of child abuse and neglect from 1967 to 1971…

  20. Moral Orientation and Relationships in School and Adolescent Pro- and Antisocial Behaviors: A Multilevel Study

    ERIC Educational Resources Information Center

    Wissink, Inge B.; Dekovic, Maja; Stams, Geert-Jan; Asscher, Jessica J.; Rutten, Esther; Zijlstra, Bonne J. H.

    2014-01-01

    This multilevel study examined the relationships between moral climate factors and prosocial as well as antisocial behaviors inside and outside the school (school misconduct, delinquent behavior, and vandalism). The moral climate factors were punishment-and victim-based moral orientation, relationships among students, and teacher-student…

  1. Job Satisfaction and Teacher-Student Relationships across the Teaching Career: Four Case Studies

    ERIC Educational Resources Information Center

    Veldman, Ietje; van Tartwijk, Jan; Brekelmans, Mieke; Wubbels, Theo

    2013-01-01

    We studied the development of teacher-student relationships and teachers' job satisfaction throughout the careers of four veteran teachers who retained high job satisfaction. Teacher data gathered with the narrative-biographical method were compared with students' perceptions of the teacher-student relationships, using the Questionnaire on Teacher…

  2. A Study of the Relationship between Students' Anxiety and Test Performance on State-Mandated Assessments

    ERIC Educational Resources Information Center

    Hernandez, Rosalinda; Menchaca, Velma; Huerta, Jeffery

    2011-01-01

    This study examined whether relationships exist between Hispanic fourth-grade students' anxiety and test performance on a state-mandated writing assessment. Quantitative methodologies were employed by using test performance and survey data from 291 participants. While no significantly direct relationship exists between students' levels of anxiety…

  3. The Protective Effects of Adaptability, Study Skills, and Social Skills on Externalizing Student-Teacher Relationships

    ERIC Educational Resources Information Center

    Fisher, Sycarah D.; Reynolds, Jennifer L.; Sheehan, Chelsea E.

    2016-01-01

    Although students with externalizing behaviors inherently exhibit behaviors that contribute to poor teacher relationships, little research has examined the positive characteristics these students may possess that serve to facilitate positive teacher relationships. This study explores the moderating effects of adaptability, social skills, and study…

  4. The Relationship Between Economic Understanding and the Social Studies Curriculum

    ERIC Educational Resources Information Center

    Boddy, Edward; Tocco, Thomas S.

    1974-01-01

    The purpose of the study was to describe the contribution made by the social studies curriculum, in general, and the Americanism vs. Communism course in particular, to the development of overall economic understanding among high school seniors in Southwest Florida. (Author/JH)

  5. Study made of relationship between growth and metabolism

    NASA Technical Reports Server (NTRS)

    Surrey, K.

    1967-01-01

    Study shows that the growth of X irradiated sunflower seeds is inversely related to the metabolism of the seeds. The actual magnitudes of the relation between the two differed for various ranges of X ray exposure. The results of the study suggested that the X rays affected the embryo.

  6. The Symbiotic Relationship between Liberal Studies and Science

    ERIC Educational Resources Information Center

    Unah, Jim I.

    2008-01-01

    The Artistic and Humanistic studies (liberal studies) and the science and technology disciplines (science) constitute the two dominant cultures in a modern university. Subsumed in these cultures are the professional disciplines of law, architecture, engineering, medicine, accounting, administration and a few others. Essentially, the university…

  7. Design of Polymers with Semiconductor, NLO and Structural Properties.

    DTIC Science & Technology

    1991-04-22

    Electrooptic Effect by Ultraviolet Initiated Crosslinking of a Doped Polymer 16 -24 Electroactive Properties of Diphenylpolyenes and...Diphenylphenylenevinylenes 24 - 27 Aniline Thiophene Copolymers 28- 33 Electroactive Attachment of Polyaniline 33 - 35 Synthesis and Characterization of New Polymers...have also vigorously pursued oxidative and protonic doping studies particularly but not exclusively on our polyene containing systems. We have

  8. Acousto-ultrasonics to Assess Material and Structural Properties

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    2002-01-01

    This report was created to serve as a manual for applying the Acousto-Ultrasonic NDE method, as practiced at NASA Glenn, to the study of materials and structures for a wide range of applications. Three state of the art acousto-ultrasonic (A-U) analysis parameters, ultrasonic decay (UD) rate, mean time (or skewing factor, "s"), and the centroid of the power spectrum, "f(sub c)," have been studied and applied at GRC for NDE interrogation of various materials and structures of aerospace interest. In addition to this, a unique application of Lamb wave analysis is shown. An appendix gives a brief overview of Lamb Wave analysis. This paper presents the analysis employed to calculate these parameters and the development and reasoning behind their use. It also discusses the planning of A-U measurements for materials and structures to be studied. Types of transducer coupling are discussed including contact and non-contact via laser and air. Experimental planning includes matching transducer frequency range to material and geometry of the specimen to be studied. The effect on results of initially zeroing the DC component of the ultrasonic waveform is compared with not doing so. A wide range of interrogation problems are addressed via the application of these analysis parameters to real specimens is shown for five cases: Case 1: Differences in density in [0] SiC/RBSN ceramic matrix composite. Case 2: Effect of tensile fatigue cycling in [+/-45] SiC/SiC ceramic matrix composite. Case 3: Detecting creep life, and failure, in Udimet 520 Nickel-Based Super Alloy. Case 4: Detecting Surface Layer Formation in T-650-35/PMR-15 Polymer Matrix Composites Panels due to Thermal Aging. Case 5: Detecting Spin Test Degradation in PMC Flywheels. Among these cases a wide range of materials and geometries are studied.

  9. Thermodynamics and structural properties of a confined HP protein determined by Wang-Landau simulation

    NASA Astrophysics Data System (ADS)

    Pattanasiri, Busara; Li, Ying Wai; Landau, David P.; Wüst, Thomas; Triampo, Wannapong

    2013-08-01

    Understanding protein folding confined by surfaces is important for both biological sciences and the development of nanomaterials. In this work, we study the properties of a confined HP model protein by three different types of surfaces, namely, surfaces that attract: (a) all monomers; (b) only P monomers; and (c) only H monomers. The thermodynamic and structural quantities, such as the specific heat, number of surface contacts, and number of hydrophobic pairs, are obtained by using Wang-Landau sampling. The conformational "transitions", specifically, the debridging process and hydrophobic core formation, can be identified based on an analysis of these quantities. We found that these transitions take place at different temperatures, and the ground state configurations show variations in structural properties when different surface type is used. These scenarios are confirmed by snapshots of typical states of the systems. From our study, we conclude that the thermodynamics of these transitions and the structural changes depend on the combined actions of both the composition of the H monomers and the P monomers in the HP chain and the surface types.

  10. Strontium substituted hydroxyapatites: Synthesis and determination of their structural properties, in vitro and in vivo performance.

    PubMed

    Kaygili, Omer; Keser, Serhat; Kom, Mustafa; Eroksuz, Yesari; Dorozhkin, Sergey V; Ates, Tankut; Ozercan, Ibrahim H; Tatar, Cengiz; Yakuphanoglu, Fahrettin

    2015-10-01

    The objective of this study is to present a detailed report related to the synthesis and characterization of strontium substituted hydroxyapatites. Based on this purpose, hydroxyapatite (HAp) bioceramics with different amounts of strontium (e.g., 0, 0.45, 0.90, 1.35, 1.80 and 2.25 at.%) were prepared using a sol-gel method. The effects of Sr substitution on the structural properties and biocompatibility of the samples were studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) techniques, in vitro and in vivo tests. All the samples composed of the nanoparticles ranging from 21 to 27 nm. The presence of Sr at low levels influenced the crystal size, crystallinity degree, lattice parameters and volume of the unit cell of the HAp. Both in vitro conditions and soaking period in simulated body fluid (SBF) significantly affected these properties. Especially, the (Ca+Sr)/P molar ratio gradually decreases with increasing soaking period in SBF. Animal experiments revealed the bone formation and osseointegration for all samples, and as compared with other groups, more reasonable, were observed for the sample with the lowest Sr content.

  11. Thermodynamic behavior and structural properties of an aqueous sodium chloride solution upon supercooling.

    PubMed

    Corradini, D; Gallo, P; Rovere, M

    2008-06-28

    We present the results of a molecular dynamics simulation study of thermodynamic and structural properties upon supercooling of a low concentration sodium chloride solution in TIP4P water and the comparison with the corresponding bulk quantities. We study the isotherms and the isochores for both the aqueous solution and bulk water. The comparison of the phase diagrams shows that thermodynamic properties of the solution are not merely shifted with respect to the bulk. Moreover, from the analysis of the thermodynamic curves, both the spinodal line and the temperatures of maximum density curve can be calculated. The spinodal line appears not to be influenced by the presence of ions at the chosen concentration, while the temperatures of maximum density curve displays both a mild shift in temperature and a shape modification with respect to bulk. Signatures of the presence of a liquid-liquid critical point are found in the aqueous solution. By analyzing the water-ion radial distribution functions of the aqueous solution, we observe that upon changing density, structural modifications appear close to the spinodal. For low temperatures, additional modifications appear also for densities close to that corresponding to a low density configurational energy minimum.

  12. Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves

    NASA Astrophysics Data System (ADS)

    Rodríguez-Castellón, E.; Jiménez-López, A.; Maireles-Torres, P.; Jones, D. J.; Rozière, J.; Trombetta, M.; Busca, G.; Lenarda, M.; Storaro, L.

    2003-11-01

    Homogeneous mesoporous zirconium-containing MCM-41 type silica were prepared by supramolecular templating and their textural and structural properties were studied using powder X-ray diffraction, N 2 porosimetry, atomic force microscopy, EXAFS, XPS, and UV-VIS-NIR diffuse reflectance spectroscopy. Their acid properties were also studied by using IR spectroscopy and by the use of catalytic tests such as the decomposition of isopropanol and the isomerization of 1-butene. The materials prepared show a good degree of crystallinity with a regular ordering of the pores into a hexagonal arrangement and high thermal stability. The specific surface area of the prepared materials decreases as the zirconium content rises. Zirconium atoms are in coordination 7 to 8 and located at the surface of the pores such that a high proportion of the oxygen atoms bonded to zirconium corresponds to surface non-condensed oxygen atoms. Both facts are responsible for the acid properties of the solids that show weak Brønsted and medium strong Lewis acidity.

  13. Structural properties of invasion percolation with and without trapping: Shortest path and distributions

    NASA Astrophysics Data System (ADS)

    Schwarzer, Stefan; Havlin, Shlomo; Bunde, Armin

    1999-03-01

    We study several structural properties including the shortest path l between two sites separated by a Euclidean distance r of invasion percolation with trapping (TIP) and without trapping (NIP). For the trapping case we find that the mass M scales with l as M~ldl with dl=1.510+/-0.005 and l scales with r as l~rdmin with dmin=1.213+/-0.005, whereas in the nontrapping case dl=1.671+/-0.006 and dmin=1.133+/-0.005. These values further support previous results that NIP and TIP are in distinct universality classes. We also study numerically using scaling approaches the distribution N(l,r) of the lengths of the shortest paths connecting two sites at distance r in NIP and TIP. We find that it obeys a scaling form N(l,r)~rdf-1-d minf(l/rdmin). The scaling function has a power-law tail for large x values, f(x)~x-h, with a universal value of h~2 for both models within our numerical accuracy.

  14. Structural Properties of Amorphous Semiconductors by Mossbauer Spectroscopy

    DTIC Science & Technology

    1974-12-31

    distinguished from each other by this technique. The line shapes reflect the dispersion of the crystalline field. MÖssbauer studies oi 125Te , which...deposited. The evaporation source consisted oi tellurium powder enriched to 50’,’ 125Te (by mixing t’O^ enriched powder with natural tellurium powder... 125Te In ^-TeO. (6), and Sb in Cu , all of which have been reported to give substantial improvements in one or more of the important

  15. Relaxed structural property of Al nano-cluster: Theory

    NASA Astrophysics Data System (ADS)

    Diwan, Bhoopendra Dhar; Khaskalam, Amit

    2013-06-01

    In this paper we have studied the thermodynamic property of metallic Aluminium (Al) nano-clusters with relaxed structure by model approach. The relaxed cohesive energy is higher than that of the un-relaxed one due to relaxation process decreasing the total energy. It is found that cohesive energy of nano-clauster depends on the size of the clusters and increase with increasing the cluster size.

  16. Correlation of electrical and structural properties of single as-grown GaAs nanowires on Si (111) substrates.

    PubMed

    Bussone, Genziana; Schäfer-Eberwein, Heiko; Dimakis, Emmanouil; Biermanns, Andreas; Carbone, Dina; Tahraoui, Abbes; Geelhaar, Lutz; Bolívar, Peter Haring; Schülli, Tobias U; Pietsch, Ullrich

    2015-02-11

    We present the results of the study of the correlation between the electrical and structural properties of individual GaAs nanowires measured in their as-grown geometry. The resistance and the effective charge carrier mobility were extracted for several nanowires, and subsequently, the same nano-objects were investigated using X-ray nanodiffraction. This revealed a number of perfectly stacked zincblende and twinned zincblende units separated by axial interfaces. Our results suggest a correlation between the electrical parameters and the number of intrinsic interfaces.

  17. The Seattle Longitudinal Study: Relationship Between Personality and Cognition

    PubMed Central

    Schaie, K. Warner; Willis, Sherry L.; Caskie, Grace I.L.

    2006-01-01

    This article reviews the history, measures and principal findings of the Seattle Longitudinal Study. This study began in 1956 focusing upon age differences and age changes in cognitive abilities. Its sampling frame is a large HMO in the Pacific Northwest. The study has been expanded to investigate various influences on cognitive aging including, cognitive styles, personality traits, life styles, and family environment. Current interest is also in the early detection of risk for dementia. In addition, this article reports original analyses of the relation of personality dimensions to cognitive abilities (both concurrent and longitudinal). While personality remains relatively stable over the adult life span, modest proportions of variance are shared between various personality traits and the cognitive abilities. PMID:16755303

  18. Optical and Structural Properties of Thin Film Composites.

    NASA Astrophysics Data System (ADS)

    Gibson, Ursula Jane

    This work describes the optical and structural characterization of metal-insulator and bimetallic composite films. Included are experimental details, theoretical descriptions of these systems, and a correlation of the optical response and microstructure of these thin film systems. The films were made by simultaneous or sequential evaporation of the constituents onto either amorphous or single crystal substrates. Two reflectance and one transmittance measurements were combined and inverted to determine the intrinsic optical constants of these materials over the wavelength range 0.2 to 3.0 microns. The metal insulator systems studied were Au-Al(,2)O(,3) and Au-MgO. The optical behavior and transport properties of these materials were measured, and correlated with their disparate microstructures. The optical behavior was compared to the predictions of three effective medium theories, labelled as the Maxwell-Garnett, Bruggeman Self-Consistent and Probabilistic Growth theories. The differing topological assumptions which form the bases of these theories were correlated with microscopic examination of the morphologies of the films, and it was found that the simple theories adequately predicted the optical response of the composites. Bimetallic systems were also studied, to investigate the extension of the Bruggeman theory to symmetric composites of immiscible metal constituents. It was found that the theory adequately predicts the behavior of films which display the symmetric morphology assumed by the theory. Studies of non-symmetric composites, and anisotropic systems (such as epitaxial layered materials (ELMs), showed that the symmetric morphology is necessary in order to model these systems with the Bruggeman theory.

  19. Photonic crystal digital alloys and their band structure properties.

    PubMed

    Lee, Jeongkug; Kim, Dong-Uk; Jeon, Heonsu

    2011-09-26

    We investigated semi-disordered photonic crystals (PCs), digital alloys, and made thorough comparisons with their counterparts, random alloys. A set of diamond lattice PC digital alloys operating in a microwave regime were prepared by alternately stacking two kinds of sub-PC systems composed of alumina and silica spheres of the same size. Measured transmission spectra as well as calculated band structures revealed that when the digital alloy period is short, band-gaps of the digital alloys are practically the same as those of the random alloys. This study indicates that the concept of digital alloys holds for photons in PCs as well.

  20. A Study: The Relationship of Personality Type to Vocabulary Development.

    ERIC Educational Resources Information Center

    Covner, Thelma Crockin

    To test the hypothesis that aspects of one's personality are associated with expansion of his or her vocabulary, a study focused on thirteen students of various ages who constituted a vocabulary development class. Students were taught techniques for discovering meaning through context or extracting meaning through word structure. Considerable time…

  1. Magnetic phases and structural properties in Co/Ru superlattices

    NASA Astrophysics Data System (ADS)

    Alayo, W.; Tafur, Miguel; Baggio-Saitovitch, E.; Pelegrini, F.; Nascimento, V. P.

    2009-05-01

    We report studies by x-ray diffraction, ferromagnetic resonance (FMR), and x-ray magnetic circular dichroism (XMCD) in Co/Ru superlattices grown by magnetron sputtering. We studied the [Co(50Å)/Ru(tRu)]20 samples, which were deposited at room temperature on Si substrates with the Ru thicknesses, tRu, varying between 9 and 33 Å. The main and secondary uniform absorption modes, observed in the FMR spectra, are associated with the Co/Ru interfaces and the bulk Co regions, respectively. The main mode becomes more intense than the secondary one for increasing tRu. This is attributed to the roughness and/or atomic interdiffusion, which leads, with increasing tRu, to an increasing volume of Co/Ru interfacial regions and a decreasing volume of pure Co regions. The XMCD measurements provide Co spin magnetic moments lower than the bulk Co value, confirming the presence of a Co magnetic region with a lower local effective magnetization attributed to the Co/Ru interfaces.

  2. Preparation and Structural Properties of InIII–H Complexes

    PubMed Central

    Sickerman, Nathaniel S.; Henry, Renée M.; Ziller, Joseph W.

    2013-01-01

    The use of the tripodal ligands tris[(N'-tert-butylureaylato)-N-ethyl]aminato ([H3buea]3−) and the sulfonamide-based N,N',N"-[2,2',2"-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzene-sulfonamidato) ([MST]3−) has led to the synthesis of two structurally distinct In(III)–OH complexes. The first example of a five-coordinate indium(III) complex with a terminal hydroxide ligand, K[InIIIH3buea(OH)], was prepared by addition of In(OAc)3 and water to a deprotonated solution of H6buea. X-ray diffraction analysis, as well as FTIR and 1H NMR spectroscopic methods, provided evidence for the formation of a monomeric In(III)–OH complex. The complex contains an intramolecular hydrogen bonding (H-bonding) network involving the In(III)–OH unit and [H3buea]3− ligand, which aided in isolation of the complex. Isotope labeling studies verified the source of the hydroxo ligand as water. Treatment of the [InIIIMST] complex with a mixture of 15-crown-5 ether and NaOH led to isolation of the complex [15-crown-5⊃NaI-(μ-OH)-InIIIMST], whose solid-state structure was confirmed using X-ray diffraction methods. Nuclear magnetic resonance studies on this complex suggest it retains its heterobimetallic structure in solution. PMID:25309019

  3. Brain white matter structural properties predict transition to chronic pain.

    PubMed

    Mansour, Ali R; Baliki, Marwan N; Huang, Lejian; Torbey, Souraya; Herrmann, Kristi M; Schnitzer, Thomas J; Apkarian, A Vania

    2013-10-01

    Neural mechanisms mediating the transition from acute to chronic pain remain largely unknown. In a longitudinal brain imaging study, we followed up patients with a single sub-acute back pain (SBP) episode for more than 1 year as their pain recovered (SBPr), or persisted (SBPp) representing a transition to chronic pain. We discovered brain white matter structural abnormalities (n=24 SBP patients; SBPp=12 and SBPr=12), as measured by diffusion tensor imaging (DTI), at entry into the study in SBPp in comparison to SBPr. These white matter fractional anisotropy (FA) differences accurately predicted pain persistence over the next year, which was validated in a second cohort (n=22 SBP patients; SBPp=11 and SBPr=11), and showed no further alterations over a 1-year period. Tractography analysis indicated that abnormal regional FA was linked to differential structural connectivity to medial vs lateral prefrontal cortex. Local FA was correlated with functional connectivity between medial prefrontal cortex and nucleus accumbens in SBPr. As we have earlier shown that the latter functional connectivity accurately predicts transition to chronic pain, we can conclude that brain structural differences, most likely existing before the back pain-inciting event and independent of the back pain, predispose subjects to pain chronification.

  4. The influence of relationships on personhood in dementia care: a qualitative, hermeneutic study

    PubMed Central

    2013-01-01

    Background In dementia personhood can be understood as increasingly concealed rather than lost. The sense of being a person evolves in relationships with others. The aim of this study was to increase the understanding of the nature and quality of relationships between persons with dementia, family carers and professional caregivers and how these relationships influenced personhood in people with dementia. Methods This Norwegian study had a qualitative hermeneutical design based on ten cases. Each case consisted of a triad: the person with dementia, the family carer and the professional caregiver. Inclusion criteria for persons with dementia were (1) 67 years or older (2) diagnosed with dementia (3) Clinical Dementia Rating score 2 ie. moderate dementia (4) able to communicate verbally. A semi-structured interview guide was used in interviews with family carers and professional caregivers. Field notes were written after participant observation of interactions between persons with dementia and professional caregivers during morning care or activities at a day care centre. Data were analysed in two steps: (1) inductive analysis with an interpretive approach and (2) deductive analysis, applying a theoretical framework for person-centred care. Results Relationships that sustained personhood were close emotional bonds between family carers and persons with dementia and professional relationships between caregivers and persons with dementia. Relationships that diminished personhood were task-centred relationships and reluctant helping relationships between family carers and persons with dementia and unprofessional relationships between caregivers and persons with dementia. Conclusions A broad range of relationships was identified. Understanding the complex nature and quality of these relationships added insight as to how they influenced the provision of care and the personhood of persons with dementia. Personhood was not only bestowed upon them by family carers and

  5. Serological, Biochemical and Structural Properties of Three Bovine Picornaviruses

    PubMed Central

    Woods, G. T.; Watrach, A. M.; Feorino, P.; Zinzilieta, Marcella

    1970-01-01

    Three viral agents isolated from nasal exudate of Illinois cattle affected with respiratory disease were studied. The agents were classified as picornaviruses on the basis of their resistance to ether, stability at pH 3.0, and morphological characteristics. Magnesium chloride at 1 M concentration protected the viruses from reduction of infectivity by exposure to 50°C for one and two hours. None of the viruses was pathogenic for mice. Replication of one of the viruses was not affected by the DNA inhibitor, 5 fluorodeoxyuridine. That two of the agents were closely related serologically was demonstrated by serum neutralization tests. As revealed by electron microscopy, viral particles were spherical or hexagonal and ranged in size from 280 Å to 290 Å. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4. PMID:4246835

  6. Structural properties of Fe-doped lanthanum gallate

    NASA Astrophysics Data System (ADS)

    Mori, Kazuhiro; Fukunaga, Toshiharu; Shibata, Koji; Iwase, Kenji; Harjo, Stefanus; Hoshikawa, Akinori; Itoh, Keiji; Kamiyama, Takashi; Ishigaki, Toru

    2004-10-01

    Structural characteristics of Fe-doped LaGaO3-δ were studied by differential scanning calorimeter, neutron and high-temperature X-ray powder diffraction measurements. It was found that a phase transition temperature increases in proportion to an amount of Fe. The crystal structure could be described as a low-temperature orthorhombic phase (Pnma) and a high-temperature rhombohedral one (R 3 bar c), respectively. Lattice parameters and bond lengths between M (=Ga/Fe) and O are monotonically expand with increasing Fe-content on both orthorhombic and rhombohedral phases. This means that a substitution of Ga3+ with Fe3+ leads to an electronic configuration of t2g3eg2 (high-spin state, HS).

  7. Phosphorylation of lamins determine their structural properties and signaling functions

    PubMed Central

    Torvaldson, Elin; Kochin, Vitaly; Eriksson, John E

    2015-01-01

    Lamin A/C is part of the nuclear lamina, a meshwork of intermediate filaments underlying the inner nuclear membrane. The lamin network is anchoring a complex set of structural and linker proteins and is either directly or through partner proteins also associated or interacting with a number of signaling protein and transcription factors. During mitosis the nuclear lamina is dissociated by well established phosphorylation- dependent mechanisms. A-type lamins are, however, also phosphorylated during interphase. A recent study identified 20 interphase phosphorylation sites on lamin A/C and explored their functions related to lamin dynamics; movements, localization and solubility. Here we discuss these findings in the light of lamin functions in health and disease. PMID:25793944

  8. Relationship between Study Habits and Test Anxiety of Higher Secondary Students

    ERIC Educational Resources Information Center

    Lawrence, Arul A. S.

    2014-01-01

    The present study aims to probe the relationship between study habits and test anxiety of higher secondary students. In this normative study survey method was employed. The population for the present study consisted of higher secondary students studying in Tirunelveli district. The investigator used the simple random sampling technique. The sample…

  9. The relationship between study strategies and academic performance

    PubMed Central

    Graham, Lori; West, Courtney

    2016-01-01

    Objectives To investigate if and to what extent the Learning and Study Strategy Inventory (LASSI) and the Self-Directed Learning Readiness Scale (SDLRS) yield academic performance predictors; To examine if LASSI findings are consistent with previous research. Methods Medical school students completed the LASSI and SDLRS before their first and second years (n = 168). Correlational and regression analyses were used to determine the predictive value of the LASSI and the SDLRS. Paired t-tests were used to test if the two measurement points differed. Bivariate correlations and R2s were compared with five other relevant studies. Results The SDLRS was moderately correlated with all LASSI subscales in both measures (r(152) =.255, p=.001) to (r(152) =.592, p =.000). The first SDLRS, nor the first LASSI, were predictive of academic performance. The second LASSI measure was a significant predictor of academic performance (R2(138) = 0.188, p = .003). Six prior LASSI studies yielded a range of R2s from 10-49%. Conclusions The SDLRS is moderately correlated with all LASSI subscales. However, the predictive value of the SDLRS and LASSI differ. The SDLRS does not appear to be directly related to academic performance, but LASSI subscales: Concentration, Motivation, Time Management, and Test Strategies tend to be correlated. The explained LASSI variance ranges from 10% to 49%, indicating a small to substantial effect. Utilizing the LASSI to provide medical school students with information about their strengths and weaknesses and implementing targeted support in specific study strategies may yield positive academic performance outcomes. PMID:27718497

  10. Aircraft Airframe Cost Estimating Relationships. Study Approach and Conclusions

    DTIC Science & Technology

    1987-12-01

    e.g., tighter, bomber/transport, and attack aircraft) is examined. Addi- tionally, for the fighter subsample, the possible benefit of incorporating an...technology index itself, another benefit of the technology study to this analysis was the identification of several individual explanatory variables which...aircraft type benefit the current program? (e.g., Does recent experience with attack aircraft help fighter development? Does recent experience with

  11. Headquarters Air Force Material Command Customer Relationship Study

    DTIC Science & Technology

    2006-03-01

    First and foremost, I would like to thank God for helping me complete this research study. “I can do all things through Christ that strengthens me...especially business to business ( B2B ) organizations, do not provide products and/or services directly to end customers. This makes it even more...customer as that customer through any channel, at any time, during every product purchase and service request, and over time • Remembering things for

  12. Characteristics of Successful and Failed Mentoring Relationships: A Qualitative Study Across Two Academic Health Centers

    PubMed Central

    Straus, Sharon E.; Johnson, Mallory O.; Marquez, Christine; Feldman, Mitchell D.

    2013-01-01

    Purpose To explore the mentor–mentee relationship with a focus on determining the characteristics of effective mentors and mentees and understanding the factors influencing successful and failed mentoring relationships. Method The authors completed a qualitative study through the Departments of Medicine at the University of Toronto Faculty of Medicine and the University of California, San Francisco, School of Medicine between March 2010 and January 2011. They conducted individual, semistructured interviews with faculty members from different career streams and ranks and analyzed transcripts of the interviews, drawing on grounded theory. Results The authors completed interviews with 54 faculty members and identified a number of themes, including the characteristics of effective mentors and mentees, actions of effective mentors, characteristics of successful and failed mentoring relationships, and tactics for successful mentoring relationships. Successful mentoring relationships were characterized by reciprocity, mutual respect, clear expectations, personal connection, and shared values. Failed mentoring relationships were characterized by poor communication, lack of commitment, personality differences, perceived (or real) competition, conflicts of interest, and the mentor’s lack of experience. Conclusions Successful mentorship is vital to career success and satisfaction for both mentors and mentees. Yet challenges continue to inhibit faculty members from receiving effective mentorship. Given the importance of mentorship on faculty members’ careers, future studies must address the association between a failed mentoring relationship and a faculty member’s career success, how to assess different approaches to mediating failed mentoring relationships, and how to evaluate strategies for effective mentorship throughout a faculty member’s career. PMID:23165266

  13. Characteristics of natural mentoring relationships and adolescent adjustment: evidence from a national study.

    PubMed

    DuBois, David L; Silverthorn, Naida

    2005-03-01

    This research investigated characteristics of natural mentoring relationships (mentor role, frequency of contact, closeness, duration) as predictors of adjustment outcomes among older adolescents and young adults (N = 2,053) in the Add Health study. Outcomes were assessed in the domains of education/work, problem behavior, psychological well-being, and physical health. Mentoring relationships with persons in roles outside of the family predicted greater likelihood of favorable outcomes in all domains except psychological well-being, relative to mentoring relationships with family members. Greater reported closeness in relationships was predictive of several favorable outcomes, particularly those in the domain of psychological well-being. These findings indicate that strategies to promote mentoring of adolescents may be more effective if particular categories of adults are targeted and an effort is made to cultivate relationships with strong emotional bonds. Editors' Strategic Implications: These data suggest that the cultivation of natural (especially non-familial) mentoring relationships during adolescence may be a promising strategy for prevention and health promotion. This study is impressive due to its large, nationally representative sample, the examination of relationship characteristics and multiple mentors, and the links to a variety of outcomes (controlling for earlier functioning). School officials and mentoring programs must consider how to capitalize on - and promote - naturally occurring mentor relationships.

  14. The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior

    SciTech Connect

    Kucukgok, Bahadir; Lu, Na; Wu, Xuewang; Wang, Xiaojia; Liu, Zhiqiang; Ferguson, Ian T.

    2016-02-15

    The III-Nitrides are promising candidate for high efficiency thermoelectric (TE) materials and devices due to their unique features which includes high thermal stability. A systematic study of the room temperature TE properties of metalorganic chemical vapor deposition grown In{sub x}Ga{sub 1-x}N were investigated for x =  0.07 to 0.24. This paper investigated the role of indium composition on the TE properties of InGaN alloys in particular the structural properties for homogenous material that did not show significant phase separation. The highest Seebeck and power factor values of 507 μV K{sup −1} and 21.84 × 10{sup −4} Wm{sup −1}K{sup −1} were observed, respectively for In{sub 0.07}Ga{sub 0.93}N at room temperature. The highest value of figure-of-merit (ZT) was calculated to be 0.072 for In{sub 0.20}Ga{sub 0.80}N alloy at room temperature.

  15. Melting curves and structural properties of tantalum from the modified-Z method

    SciTech Connect

    Liu, C. M. E-mail: ycheng@scu.edu.cn; Xu, C.; Cheng, Y. E-mail: ycheng@scu.edu.cn; Chen, X. R.; Cai, L. C.

    2015-12-21

    The melting curves and structural properties of tantalum (Ta) are investigated by molecular dynamics simulations combining with potential model developed by Ravelo et al. [Phys. Rev. B 88, 134101 (2013)]. Before calculations, five potentials are systematically compared with their abilities of producing reasonable compressional and equilibrium mechanical properties of Ta. We have improved the modified-Z method introduced by Wang et al. [J. Appl. Phys. 114, 163514 (2013)] by increasing the sizes in L{sub x} and L{sub y} of the rectangular parallelepiped box (L{sub x} = L{sub y} ≪ L{sub z}). The influences of size and aspect ratio of the simulation box to melting curves are also fully tested. The structural differences between solid and liquid are detected by number density and local-order parameters Q{sub 6}. Moreover, the atoms' diffusion with simulation time, defects, and vacancies formations in the sample are all studied by comparing situations in solid, solid-liquid coexistence, and liquid state.

  16. Influence of deposition rate on the structural properties of plasma-enhanced CVD epitaxial silicon

    PubMed Central

    Chen, Wanghua; Cariou, Romain; Hamon, Gwenaëlle; Léal, Ronan; Maurice, Jean-Luc; Cabarrocas, Pere Roca i

    2017-01-01

    Solar cells based on epitaxial silicon layers as the absorber attract increasing attention because of the potential cost reduction. In this work, we studied the influence of the deposition rate on the structural properties of epitaxial silicon layers produced by plasma-enhanced chemical vapor deposition (epi-PECVD) using silane as a precursor and hydrogen as a carrier gas. We found that the crystalline quality of epi-PECVD layers depends on their thickness and deposition rate. Moreover, increasing the deposition rate may lead to epitaxy breakdown. In that case, we observe the formation of embedded amorphous silicon cones in the epi-PECVD layer. To explain this phenomenon, we develop a model based on the coupling of hydrogen and built-in strain. By optimizing the deposition conditions to avoid epitaxy breakdown, including substrate temperatures and plasma potential, we have been able to synthesize epi-PECVD layers up to a deposition rate of 8.3 Å/s. In such case, we found that the incorporation of hydrogen in the hydrogenated crystalline silicon can reach 4 at. % at a substrate temperature of 350 °C. PMID:28262840

  17. Electronic Structure Properties of Early Transition Metal Mononitrides and their Superhard Nanolayered Structures^1

    NASA Astrophysics Data System (ADS)

    Stampfl, Catherine; Freeman, Arthur J.

    2000-03-01

    The transition metal nitrides belong to the group of the so-called hard refractory metals, most of which crystallize in the NaCl structure. These materials exhibit an exceptional combination of physical properties; i.e., those typical for metals, like metallic conductivity and high Tc superconductivity, and those of compounds with strong covalent bonds, like great hardness, brittleness and high melting point. When two of these materials are arranged as an epitaxial nanolayered superlattice, extreme hardness can result. Such superhard nanomaterials are currently of intense fundamental and technological interest. We performed first-principles density-functional theory calculations using the full-potential linearized augmented plane wave (FLAPW) method^2 within the local density approximation, for a series of early transition metal nitrides, namely, ScN, TiN, VN, YN, NbN, and TaN, as well as AlN and report herein the bulk physical and electronic structure properties. We also studied selected superlattices of these materials, addressing in particular their relative stability in terms of interfacial energy. Where possible we compare with experimental results. ^1 Supported by the NSF (through the NU MRC). ^2 E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24 (1981) 864.

  18. Water absorption characteristics and structural properties of rice for sake brewing.

    PubMed

    Mizuma, Tomochika; Kiyokawa, Yoshifumi; Wakai, Yoshinori

    2008-09-01

    This study investigated the water absorption curve characteristics and structural properties of rice used for sake brewing. The parameter values in the water absorption rate equation were calculated using experimental data. Differences between sample parameters for rice used for sake brewing and typical rice were confirmed. The water absorption curve for rice suitable for sake brewing showed a quantitatively sharper turn in the S-shaped water absorption curve than that of typical rice. Structural characteristics, including specific volume, grain density, and powdered density of polished rice, were measured by a liquid substitution method using a Gay-Lussac pycnometer. In addition, we calculated internal porosity from whole grain and powdered grain densities. These results showed that a decrease in internal porosity resulted from invasion of water into the rice grain, and that a decrease in the grain density affected expansion during the water absorption process. A characteristic S-shape water absorption curve for rice suitable for sake brewing was related to the existence of an invisible Shinpaku-like structure.

  19. Structural properties of the human corpus callosum: Multimodal assessment and sex differences.

    PubMed

    Björnholm, L; Nikkinen, J; Kiviniemi, V; Nordström, T; Niemelä, S; Drakesmith, M; Evans, J C; Pike, G B; Veijola, J; Paus, T

    2017-02-22

    A number of structural properties of white matter can be assessed in vivo using multimodal magnetic resonance imaging (MRI). We measured profiles of R1 and R2 relaxation rates, myelin water fraction (MWF) and diffusion tensor measures (fractional anisotropy [FA], mean diffusivity [MD]) across the mid-sagittal section of the corpus callosum in two samples of young individuals. In Part 1, we compared histology-derived axon diameter (Aboitiz et al., 1992) to MRI measures obtained in 402 young men (19.55 ± 0.84 years) recruited from the Avon Longitudinal Study on Parents and Children. In Part 2, we examined sex differences in FA, MD and magnetization transfer ratio (MTR) across the corpus callosum in 433 young (26.50 ± 0.51 years) men and women recruited from the Northern Finland Birth Cohort 1986. We found that R1, R2, and MWF follow the anterior-to-posterior profile of small-axon density. Sex differences in mean MTR were similar across the corpus callosum (males > females) while these in FA differed by the callosal segment (Body: M>F; Splenium: F>M). We suggest that the values of R1, R2 and MWF are driven by high surface area of myelin in regions with high density of "small axons".

  20. Structure-property coupling in Sr3(Ru1 xMnx)2O7

    SciTech Connect

    Hu, Biao; McCandless, Gregory; Garlea, Vasile O; Stadler, S.; Xiong, Yimin; Chan, Julia; Plummer, E. Ward; Jin, R.

    2011-01-01

    Layered ruthenates are prototype materials for the study of structure-property correlations. We report the structural and physical properties of double-layered perovskite Sr3(Ru1 xMnx )2O7 single crystals with 0 < x < 0.7. Single-crystal x-ray diffraction refinements reveal that Mn doping on the Ru site leads to the shrinkage of unit-cell volume and the disappearance of (Ru/Mn)O6 octahedron rotation when x > 0.16, but the crystal structure remains tetragonal. Upon doping, the electrical resistivity reveals a metallic character (d /dT > 0) at high temperatures but insulating behavior (d /dT < 0) below a characteristic temperature TMIT. Interestingly, TMIT is different from TM, at which magnetic susceptibility reaches maximum. While TMIT increases monotonically with increasing x,TM displays a nonmonotonic dependence with x even though the effective spin increases from S 1 (x = 0) to 3/2 (x = 0.7). The phase diagram consists of three distinct magnetic ground states due to local structure change.