Synthesis of novel sulfosalt materials with curved crystalline habits
NASA Astrophysics Data System (ADS)
Crawford, Guy Moore
Minerals and man-made materials with circular crystalline habit are very rare. A group of the complex iron-containing sulfosalt minerals exhibit a non-commensurate layered crystalline structure and are found with curved crystals. Cylindrite, named because of its cylindrical crystal habit, is the most easily recognized member of the group. The other members of the family, franckeite, incaite and potosiite, have similar compositions and are all lamellar. The two incommensurate interpenetrating sublattices have different but definite structures. One sublattice is PbS-type pseudotetragonal and the other SnS 2-type pseudohexagonal. Iron is found in both sublattices. The detailed crystal structures of these minerals remains unsolved. With the exception of a few phase studies, little is known about the chemistry of the minerals or the mechanism that prompts the formation of these misfit-layered materials. As sulfides, these minerals are of interest for their potential electronic and magnetic applications. A series of synthesis reactions were carried out to examine the effects on the properties and structures of the sulfosalts that are induced by the substitutions into the crystal lattice. Other transition metals were substituted in the place of iron in the incommensurate minerals, and selenium and tellurium replaced sulfur in cylindrite. The structure and properties were evaluated by environmental scanning electron microscopy, X-ray diffraction and differential thermal analysis. Curved and lamellar features were observed in several phases of the synthetic substitutional products. No correlations were immediately evident relating the composition to the propensity to form curved features.* *This dissertation is multimedia (contains text and other applications not available in printed format). The CD requires the following system application: Microsoft Office.
Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia
NASA Astrophysics Data System (ADS)
Pour, Amin Beiranvand; Hashim, Mazlan
2014-08-01
The application of optical remote sensing data for geological mapping is difficult in the tropical environment. The persistent cloud coverage, dominated vegetation in the landscape and limited bedrock exposures are constraints imposed by the tropical climate. Structural geology investigations that are searching for epithermal or polymetallic vein-type ore deposits can be developed using Synthetic Aperture Radar (SAR) remote sensing data in tropical/sub-tropical regions. The Bau gold mining district in the State of Sarawak, East Malaysia, on the island of Borneo has been selected for this study. The Bau is a gold field similar to Carlin style gold deposits, but gold mineralization at Bau is much more structurally controlled. Geological analyses coupled with the Phased Array type L-band Synthetic Aperture Radar (PALSAR) remote sensing data were used to detect structural elements associated with gold mineralization. The PALSAR data were used to perform lithological-structural mapping of mineralized zones in the study area and surrounding terrain. Structural elements were detected along the SSW to NNE trend of the Tuban fault zone and Tai Parit fault that corresponds to the areas of occurrence of the gold mineralization in the Bau Limestone. Most of quartz-gold bearing veins occur in high-angle faults, fractures and joints within massive units of the Bau Limestone. The results show that four deformation events (D1-D4) in the structures of the Bau district and structurally controlled gold mineralization indicators, including faults, joints and fractures are detectable using PALSAR data at both regional and district scales. The approach used in this study can be more broadly applicable to provide preliminary information for exploration potentially interesting areas of epithermal or polymetallic vein-type mineralization using the PALSAR data in the tropical/sub-tropical regions.
Micro-structural integrity of dental enamel subjected to two tooth whitening regimes.
Tanaka, Reina; Shibata, Yo; Manabe, Atsufumi; Miyazaki, Takashi
2010-04-01
Colour modification of tooth enamel has proven successful, but it is unclear how various bleaching applications affect micro-structural integrity of the whitened enamel. To investigate the internal structural integrity of human intact tooth enamel with the application of two commonly used whitening regimes (in-office power bleaching with 35% hydrogen peroxide and home bleaching with 10% carbamide peroxide), evaluations were performed on teeth of identical colour classification. After the bleaching applications, the enamel mineral density was quantified and visualised with micro-computed tomography. The micro-structural differences between the whitened tooth enamel samples were distinctive, though the colour parameter changes within the samples were equivalent. Home bleaching achieved colour modification by demineralisation, whereas in-office bleaching depended on redistribution of the minerals after treatment and subsequent enhanced mineralisation.
Chemical Bonding in Sulfide Minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, David J.; Rosso, Kevin M.
An understanding of chemical bonding and electronic structure in sulfide minerals is central to any attempt at understanding their crystal structures, stabilities and physical properties. It is also an essential precursor to understanding reactivity through modeling surface structure at the molecular scale. In recent decades, there have been remarkable advances in first principles (ab initio) methods for the quantitative calculation of electronic structure. These advances have been made possible by the very rapid development of high performance computers. Several review volumes that chart the applications of these developments in mineralogy and geochemistry are available (Tossell and Vaughan, 1992; Cygan andmore » Kubicki, 2001). An important feature of the sulfide minerals is the diversity of their electronic structures, as evidenced by their electrical and magnetic properties (see Pearce et al. 2006, this volume). Thus, sulfide minerals range from insulators through semiconductors to metals, and exhibit every type of magnetic behavior. This has presented problems for those attempting to develop bonding models for sulfides, and also led to certain misconceptions regarding the kinds of models that may be appropriate. In this chapter, chemical bonding and electronic structure models for sulfides are reviewed with emphasis on more recent developments. Although the fully ab initio quantitative methods are now capable of a remarkable degree of sophistication in terms of agreement with experiment and potential to interpret and predict behavior with varying conditions, both qualitative and more simplistic quantitative approaches will also be briefly discussed. This is because we believe that the insights which they provide are still helpful to those studying sulfide minerals. In addition to the application of electronic structure models and calculations to solid sulfides, work on sulfide mineral surfaces (Rosso and Vaughan 2006a,b) and solution complexes and clusters (Rickard and Luther, 2006) are discussed in detail later in this volume.« less
NASA Astrophysics Data System (ADS)
Jia, D.; Feng, Y.; Liu, J.; Yao, X.; Zhang, Z.; Ye, T.
2017-12-01
1. Working BackgroundCurrent Status of Geological Prospecting: Detecting boundaries and bottoms, making ore search nearby; Seeing the stars, not seeing the Moon; Deep prospecting, undesirable results. The reasons of these problems are the regional metallogenic backgroud unclear and the metallogenic backgroud of the exploration regions unknown. Accordingly, Development and Research Center, CGS organized a geological setting research, in detail investigate metallogenic geological features and acquire mineralization information. 2. Technical SchemeCore research content is prediction elements of Metallogenic Structure. Adopt unified technical requirements from top to bottom, and technical route from bottom to top; Divide elements of mineral forecast and characteristics of geological structure into five elements for research and expression; Make full use of geophysical, geochemical and remote sensing inferences for the interpretation of macro information. After eight years the great project was completed. 3. Main AchievementsInnovation of basic maps compilation content of geological background, reinforce of geological structure data base of potentiality valuation. Preparation of geotectonic facies maps in different scales and professions, providing brand-new geologic background for potentiality assessment, promoting Chinese geotectonic research to the new height. Preparation of 3,375 geological structure thematic base maps of detecting working area in 6 kinds of prediction methods, providing base working maps, rock assemblage, structure of the protolith of geologic body / mineralization / ore controlling for mineral prediction of 25 ores. Enrichment and development of geotectonic facies analysis method, establishment of metallogenic background research thoughts and approach system for assessment of national mineral resources potentiality for the first time. 4. Application EffectOrientation——More and better results with less effort. Positioning——Have a definite object in view. Heart calm down——Confidence.
Standard Practice for the Selection and Application of Marine Deck Coverings
1992-07-01
floors to reduce the transmission of noise and vibrations. These typically consist of layers of mineral wool or mineral wool panel sections with a...crew efficiency. Floating deck systems are generally composed of an insulating material such as mineral wool that are laid loose on the structural...Chapter II-2, Part A, Regulation 3(c). Sound Reduction Index - 44 dB Sound Insulation Index (Ia) - 47 dB Density of Mineral Wool - 10 pounds per
NASA Astrophysics Data System (ADS)
Chen, Cen; Kong, Xiangdong; Zhang, Sheng-Min; Lee, In-Seop
2015-04-01
Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants.
Frank S. Gilliam; Christopher A. Walter; Mary Beth Adams; William T. Peterjohn
2018-01-01
The structure and function of terrestrial ecosystemsare maintained by processes that vary with temporal and spatial scale. This study examined temporal and spatial patterns of net nitrogen (N) mineralization and nitrification in mineral soil of three watersheds at the Fernow Experimental Forest, WV: 2 untreated watersheds and 1 watershed receiving aerial applications...
Geological applications of LANDSAT-1 imagery to the Great Salt Lake area
NASA Technical Reports Server (NTRS)
Anderson, A. T.; Smith, A. F.
1975-01-01
The ERTS program has been designed as a research and development tool to demonstrate that remote sensing from orbital altitudes is a feasible and practical approach to efficient management of earth resources. From this synoptic view and repetitive coverage provided by ERTS imagery of the Great Salt Lake area, large geological and structural features, trends, and patterns have been identified and mapped. A comparative analysis of lineaments observed in September and December data was conducted, existing mineral locations were plotted, and areas considered prospective for mineralization based on apparent structure-mineralization relationships were defined. The additional information obtained using ERTS data provides an added source of information to aid in the development of more effective mineral exploration programs.
Remote sensing as a mineral prospecting technique
NASA Technical Reports Server (NTRS)
Meneses, P. R. (Principal Investigator)
1984-01-01
Remote sensing and its application as an alternative technique to mineral resource exploration are reviewed. Emphasis is given here to the analysis of the three basic attributes of remote sensing, i.e., spatial attributes related to regional structural mapping, spectral attributes related to rock discrimination and seasonal attributes related to geobotanic anomalies mapping, all of which are employed in mineral exploration. Special emphasis is given to new developments of the Thematic Mapper of the LANDSAT-5, principally with reference to the application of the bands 1.6 and 2.2 microns to map hydrothermally altered rocks and the band of red and blue shift to geobotanical anomalies mapping.
Liu, Wenying; Yeh, Yi-Chun; Lipner, Justin; Xie, Jingwei; Sung, Hsing-Wen; Thomopoulos, Stavros; Xia, Younan
2011-01-01
A new method was developed to coat hydroxyapatite (HAp) onto electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers for tendon-to-bone insertion site repair applications. Prior to mineralization, chitosan and heparin were covalently immobilized onto the surface of the fibers to accelerate the nucleation of bone-like HAp crystals. Uniform coatings of HAp were obtained by immersing the nanofiber scaffolds into a modified 10 times concentrated simulated body fluid (m10SBF) for different periods of time. The new method resulted in thicker and denser coatings of mineral on the fibers compared to previously reported methods. Scanning electron microscopy measurements confirmed the formation of nanoscale HAp particles on the fibers. Mechanical property assessment demonstrated higher stiffness with respect to previous coating methods. A combination of the nanoscale fibrous structure and bone-like mineral coating could mimic the structure, composition, and function of mineralized tissues. PMID:21710996
Multifaceted role of clay minerals in pharmaceuticals
Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur
2015-01-01
The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelling capacity, reactivity to acids and inconsiderable toxicity. Of course, these are highly cost effectual. This special report on clay minerals provides a bird's eye view of the chemical composition and structure of these minerals and their influence on the release properties of active medicinal agents. Endeavor has been made to rope in myriad applications depicting the wide acceptability of these clay minerals. PMID:28031881
Li, Xuan Qi; Feng, Zhiwei; Xia, Yinyan; Zeng, Hua Chun
2012-02-13
Calcium carbonate (CaCO(3)) is one of the most abundant and important biominerals in nature. Due to its biocompatibility, biodegradability and nontoxicity, CaCO(3) has been investigated extensively in recent years for various fundamental properties and technological applications. Inspired by basic wall structures of cells, we report a protein-assisted approach to synthesize CaCO(3) into a double-shelled structural configuration. Due to varying reactivities of outer and inner shells, the CaCO(3) microcapsules exhibit different sorption capacities and various resultant structures toward different kinds of heavy metal ions, analogical to biologically controlled mineralization (BCM) processes. Surprisingly, three mineralization modes resembling those found in BCM were found with these bacterium-like "CaCO(3) cells". Our investigation of the cytotoxicity (MTT assay protocol) also indicates that the CaCO(3) microcapsules have almost no cytotoxicity against HepG2 cells, and they might be useful for future application of detoxifying heavy metal ions after further study. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recent advances in clay mineral-containing nanocomposite hydrogels.
Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao
2015-12-28
Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.
ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.
Beiranvand Pour, Amin; Hashim, Mazlan
2014-01-01
This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory.
Mineral resources, geologic structure, and landform surveys
NASA Technical Reports Server (NTRS)
Lattman, L. H.
1973-01-01
The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.
Interactive and Versatile Navigation of Structural Databases.
Korb, Oliver; Kuhn, Bernd; Hert, Jérôme; Taylor, Neil; Cole, Jason; Groom, Colin; Stahl, Martin
2016-05-12
We present CSD-CrossMiner, a novel tool for pharmacophore-based searches in crystal structure databases. Intuitive pharmacophore queries describing, among others, protein-ligand interaction patterns, ligand scaffolds, or protein environments can be built and modified interactively. Matching crystal structures are overlaid onto the query and visualized as soon as they are available, enabling the researcher to quickly modify a hypothesis on the fly. We exemplify the utility of the approach by showing applications relevant to real-world drug discovery projects, including the identification of novel fragments for a specific protein environment or scaffold hopping. The ability to concurrently search protein-ligand binding sites extracted from the Protein Data Bank (PDB) and small organic molecules from the Cambridge Structural Database (CSD) using the same pharmacophore query further emphasizes the flexibility of CSD-CrossMiner. We believe that CSD-CrossMiner closes an important gap in mining structural data and will allow users to extract more value from the growing number of available crystal structures.
NASA Astrophysics Data System (ADS)
Duer, Melinda J.
2015-04-01
Solid-state NMR spectroscopy has had a major impact on our understanding of the structure of mineralized tissues, in particular bone. Bone exemplifies the organic-inorganic composite structure inherent in mineralized tissues. The organic component of the extracellular matrix in bone is primarily composed of ordered fibrils of collagen triple-helical molecules, in which the inorganic component, calcium phosphate particles, composed of stacks of mineral platelets, are arranged around the fibrils. This perspective argues that key factors in our current structural model of bone mineral have come about through NMR spectroscopy and have yielded the primary information on how the mineral particles interface and bind with the underlying organic matrix. The structure of collagen within the organic matrix of bone or any other structural tissue has yet to be determined, but here too, this perspective shows there has been real progress made through application of solid-state NMR spectroscopy in conjunction with other techniques. In particular, NMR spectroscopy has highlighted the fact that even within these structural proteins, there is considerable dynamics, which suggests that one should be cautious when using inherently static structural models, such as those arising from X-ray diffraction analyses, to gain insight into molecular roles. It is clear that the NMR approach is still in its infancy in this area, and that we can expect many more developments in the future, particularly in understanding the molecular mechanisms of bone diseases and ageing.
Applications for special-purpose minerals at a lunar base
NASA Technical Reports Server (NTRS)
Ming, Douglas W.
1992-01-01
Maintaining a colony on the Moon will require the use of lunar resources to reduce the number of launches necessary to transport goods from the Earth. It may be possible to alter lunar materials to produce minerals or other materials that can be used for applications in life support systems at a lunar base. For example, mild hydrothermal alteration of lunar basaltic glasses can produce special-purpose minerals (e.g., zeolites, smectites, and tobermorites) that in turn may be used in life support, construction, waste renovation, and chemical processes. Zeolites, smectites, and tobermorites have a number of potential applications at a lunar base. Zeolites are hydrated aluminosilicates of alkali and alkaline earth cations that possess infinite, three-dimensional crystal structures. They are further characterized by an ability to hydrate and dehydrate reversibly and to exchange some of their constituent cations, both without major change of structure. Based on their unique absorption, cation exchange, molecular sieving, and catalytic properties, zeolites may be used as a solid support medium for the growth of plants, as an adsorption medium for separation of various gases (e.g., N2 from O2), as catalysts, as molecular sieves, and as a cation exchanger in sewage-effluent treatment, in radioactive waste disposal, and in pollution control. Smectites are crystalline, hydrated 2:1 layered aluminosilicates that also have the ability to exchange some of their constituent cations. Like zeolites, smectites may be used as an adsorption medium for waste renovation, as adsorption sites for important essential plant growth cations in solid support plant growth mediums (i.e., 'soils'), as cation exchangers, and in other important application. Tobermorites are cystalline, hydrated single-chained layered silicates that have cation-exchange and selectivity properties between those of smectites and most zeolites. Tobermorites may be used as a cement in building lunar base structures, as catalysts, as media for nuclear and hazardous waste disposal, as exchange media for waste-water treatment, and in other potential applications. Special-purpose minerals synthesized at a lunar base may also have important applications at a space station and for other planetary missions. New technologies will be required at a lunar base to develop life support systems that are self-sufficient, and the use of special-purpose minerals may help achieve this self-sufficiency.
Some new trends in the ionoluminescence of minerals.
Calvo del Castillo, H; Ruvalcaba, J L; Calderón, T
2007-02-01
Ionoluminescence (IL) has mainly been used to detect impurities or defects inside synthetic materials. This paper gives a summary of new applications of IL to natural minerals that might be found in ancient pieces of jewellery or decorative artefacts (affreschi, stucchi, mosaics). Some relevant examples of its use for archaeometrical purposes are given to highlight the potential of the technique. Chemical information can be obtained by luminescent characterization of minerals. IL spectra act as digital imprint for elements or defects inside each material, enabling differentiation of natural specimens from imitations and/or synthetic analogues. Crystal field theory indicates it is the coordination number of the emitter inside the crystalline structure that gives information on its valence. Historical confusion between rubies and red spinel can easily be resolved by analysis of IL spectra. Modern synthetic diamonds can also be discriminated and blue sapphire can be distinguished from blue kyanite, a silicate that is currently being sold as its imitation. The technique can also differentiate between the synthetic and the natural gems. Polymorphs can be identified, and it is possible to recognize minerals from isomorphic series (from the same chemical group with the same structure) even when they share the same light emitter (e.g. Mn(2+), in carbonates). High-quality glasses (e.g. laser glasses) which are normally used for faking gemstones can be also detected. We fully believe IL will, in the future, be a powerful technique for determining the crystallinity of solids. This paper gives an overview of possible applications of IL to archaeometry for mineral characterization; this is a new application that still requires further study.
HYPGEO - A collaboration between geophysics and remote sensing for mineral exploration
NASA Astrophysics Data System (ADS)
Meyer, Uwe; Frei, Michaela; Petersen, Hauke; Papenfuß, Anne; Ibs-von Seht, Malte; Stolz, Ronny; Queitsch, Matthias; Buchholz, Peter; Siemon, Bernhard
2017-04-01
The German Federal Institute for Geosciences and Natural Resources (BGR) aims to promote and design application oriented, generic techniques for the detection and 3D-characterisation of mineral deposits. Most newly developed mineral mining structures are still exploiting near surface sources. Since exploration and exploitation of mineral resources are increasingly under public review concerning environmental issues and social acceptance, non-invasive methods using satellites, fixed-wing aircraft, helicopters or unmanned aerial vehicles are preferred techniques within this investigation. Therefore, a data combination of helicopter-borne gamma ray spectrometry, hyperspectral imagery and full tensor gradient magnetometry is being evaluated. Test areas are open pit mining structures in Aznalcollar and Tharsis within the Pyrite Belt of southern Spain. First test flights using gamma-ray spectrometry and gradient magnetometry using SQUID-based sensors have been performed. Hyperspectral imagery has been applied on ground. Rock and core samples from the mines have been taken or investigated for further analysis. The basic idea is to combine surface triggered signals from gamma-ray spectrometry and hyperspectral imagery to enhance the detection of shallow mineralisation structures. In order to investigate whether these structures are connected with near-surface ore veins, gradient magnetometry was applied to model subsurface formations. To verify that good correlations between the applied methods are given, open pit mining structures were chosen, where the mineral content and the local to regional geology is well known.
NASA Astrophysics Data System (ADS)
Milovsky, G. A.; Ishmukhametova, V. T.; Orlyankin, V. N.; Shemyakina, E. M.
2017-12-01
The differentiated Bushveld complex is studied by remote-space and gravimagnetic methods. The syncline of Western Bushveld is recognized in the southwestern part of the complex, which is characterized by a radial and ring structure of the higher order. The structures, which control the localization of Pt mineralization, are revealed and the possible use of the Landsat 7 ETM+ multizonal space survey is shown for recognizing the rocks of the Basal, Critical, Main, and Upper zones of the norite complex of Western Bushveld.
NASA Astrophysics Data System (ADS)
Morrison, S. M.; Downs, R. T.; Golden, J. J.; Pires, A.; Fox, P. A.; Ma, X.; Zednik, S.; Eleish, A.; Prabhu, A.; Hummer, D. R.; Liu, C.; Meyer, M.; Ralph, J.; Hystad, G.; Hazen, R. M.
2016-12-01
We have developed a comprehensive database of copper (Cu) mineral characteristics. These data include crystallographic, paragenetic, chemical, locality, age, structural complexity, and physical property information for the 689 Cu mineral species approved by the International Mineralogical Association (rruff.info/ima). Synthesis of this large, varied dataset allows for in-depth exploration of statistical trends and visualization techniques. With social network analysis (SNA) and cluster analysis of minerals, we create sociograms and chord diagrams. SNA visualizations illustrate the relationships and connectivity between mineral species, which often form cliques associated with rock type and/or geochemistry. Using mineral ecology statistics, we analyze mineral-locality frequency distribution and predict the number of missing mineral species, visualized with accumulation curves. By assembly of 2-dimensional KLEE diagrams of co-existing elements in minerals, we illustrate geochemical trends within a mineral system. To explore mineral age and chemical oxidation state, we create skyline diagrams and compare trends with varying chemistry. These trends illustrate mineral redox changes through geologic time and correlate with significant geologic occurrences, such as the Great Oxidation Event (GOE) or Wilson Cycles.
Potassium-argon (argon-argon), structural fabrics
Cosca, Michael A.; Rink, W. Jack; Thompson, Jereon
2014-01-01
Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...
Diffraction Studies from Minerals to Organics - Lessons Learned from Materials Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, Pamela S
2014-01-01
In many regards the study of materials and minerals by powder diffraction techniques are complimentary, with techniques honed in one field equally applicable to the other. As a long-time materials researcher many of the examples are of techniques developed for materials analysis applied to minerals. However in a couple of cases the study of new minerals was the initiation into techniques later used in materials-based studies. Hopefully they will show that the study of new minerals structures can provide opportunities to add new methodologies and approaches to future problems. In keeping with the AXAA many of the examples have anmore » Australian connection, the materials ranging from organics to battery materials.« less
Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael
2015-07-01
Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.
Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael
2015-01-01
Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant ‘seed bank'. PMID:25535940
Frost, Ray L; Xi, Yunfei; Scholz, Ricardo; Belotti, Fernanda M
2013-02-15
The objective of this work is to analyze ludlamite (Fe,Mn,Mg)(3)(PO(4))(2)⋅4H(2)O from Boa Vista mine, Galiléia, Brazil and to assess the molecular structure of the mineral. The phosphate mineral ludlamite has been characterized by EMP-WDS, Raman and infrared spectroscopic measurements. The mineral is shown to be a ferrous phosphate with some minor substitution of Mg and Mn. Raman bands at 917 and 950 cm(-1) are assigned to the symmetric stretching mode of HOPO(3)(2-) and PO(4)(3-) units. Raman bands at 548, 564, 599 and 634 cm(-1) are assigned to the ν(4)PO(4)(3-) bending modes. Raman bands at 2605, 2730, 2896 and 3190 cm(-1) and infrared bands at 2623, 2838, 3136 and 3185 cm(-1) are attributed to water stretching vibrations. By using a Libowitzky empirical function, hydrogen bond distances are calculated from the OH stretching wavenumbers. Strong hydrogen bonds in the structure of ludlamite are observed as determined by their hydrogen bond distances. The application of infrared and Raman spectroscopy to the study of ludlamite enables the molecular structure of the pegmatite mineral ludlamite to be assessed. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kedar, E. Y.
1973-01-01
Two major earth's resources management problems, the application of ERTS-1 imagery for geomorphotectonics, and subsequently seismic-risk, earthquake, and mineral exploration applications are discussed. Case studies are presented for Los Angeles, California, and New Jersey coastal plain.
30 CFR 773.9 - Review of applicant, operator, and ownership and control information.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operator's organizational structure and ownership or control relationships. (b) We must conduct the review... and control information. 773.9 Section 773.9 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION....9 Review of applicant, operator, and ownership and control information. (a) We, the regulatory...
Remote sensing of geologic mineral occurrences for the Colorado mineral belt using LANDSAT data
NASA Technical Reports Server (NTRS)
Carpenter, R. H. (Principal Investigator); Trexler, D. W.
1976-01-01
The author has identified the following significant results. LANDSAT imagery was examined as a practical and productive tool for mineral exploration along the Colorado Mineral Belt. An attempt was made to identify all large, active and/or abandoned mining districts on the imagery which initially were discovered by surface manifestations. A number of strong photolinements, circular features, and color anomalies were identified. Some of these form a part of the structural and igneous volcanic framework in which mineral deposits occur. No specific mineral deposits such as veins or porphyries were identified. Promising linear and concentric features were field checked at several locations. Some proved to be fault zones and calderas; others were strictly topographic features related to stream or glacial entrenchment. The Silverton Caldera region and the Idaho Springs-Central City district were chosen and studied as case histories to evaluate the application of LANDSAT imagery to mineral exploration. Evidence of specific mineralization related to ore deposits in these two areas were observed only on low level photography.
Mineral Facilities of Latin America and Canada
Bernstein, Rachel; Eros, Mike; Quintana-Velazquez, Meliany
2006-01-01
This data set consists of records for over 900 mineral facilities in Latin America and Canada. The mineral facilities include mines, plants, smelters, or refineries of aluminum, cement, coal, copper, diamond, gold, iron and steel, nickel, platinum-group metals, salt, and silver, among others. Records include attributes such as commodity, country, location, company name, facility type and capacity if applicable, and generalized coordinates. The data were compiled from multiple sources, including the 2003 and 2004 USGS Minerals Yearbooks (Latin America and Candada volume), data to be published in the 2005 Minerals Yearbook Latin America and Canada Volume, minerals statistics and information from the USGS minerals information Web site (minerals.usgs.gov/minerals), and data collected by USGS minerals information country specialists. Data reflect the most recent published table of industry structure for each country. Other sources include statistical publications of individual countries, annual reports and press releases of operating companies,and trade journals. Due to the sensitivity of some energy commodity data, the quality of these data should be evaluated on a country-by-country basis. Additional information and explanation is available from the country specialists.
Exploration for fossil and nuclear fuels from orbital altitudes
NASA Technical Reports Server (NTRS)
Short, N. M.
1977-01-01
The paper discusses the application of remotely sensed data from orbital satellites to the exploration for fossil and nuclear fuels. Geological applications of Landsat data are described including map editing, lithologic identification, structural geology, and mineral exploration. Specific results in fuel exploration are reviewed and a series of related Landsat images is included.
ESRI applications of GIS technology: Mineral resource development
NASA Technical Reports Server (NTRS)
Derrenbacher, W.
1981-01-01
The application of geographic information systems technology to large scale regional assessment related to mineral resource development, identifying candidate sites for related industry, and evaluating sites for waste disposal is discussed. Efforts to develop data bases were conducted at scales ranging from 1:3,000,000 to 1:25,000. In several instances, broad screening was conducted for large areas at a very general scale with more detailed studies subsequently undertaken in promising areas windowed out of the generalized data base. Increasingly, the systems which are developed are structured as the spatial framework for the long-term collection, storage, referencing, and retrieval of vast amounts of data about large regions. Typically, the reconnaissance data base for a large region is structured at 1:250,000 scale, data bases for smaller areas being structured at 1:25,000, 1:50,000 or 1:63,360. An integrated data base for the coterminous US was implemented at a scale of 1:3,000,000 for two separate efforts.
Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral.
Marisa, Mary E; Zhou, Shiliang; Melot, Brent C; Peaslee, Graham F; Neilson, James R
2016-12-05
Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in these materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.
Chu, Haiyan; Fujii, Takeshi; Morimoto, Sho; Lin, Xiangui; Yagi, Kazuyuki; Hu, Junli; Zhang, Jiabao
2007-01-01
The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the alpha subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils.
Chu, Haiyan; Fujii, Takeshi; Morimoto, Sho; Lin, Xiangui; Yagi, Kazuyuki; Hu, Junli; Zhang, Jiabao
2007-01-01
The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the α subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils. PMID:17098920
Beryllium—A critical mineral commodity—Resources, production, and supply chain
Lederer, Graham W.; Foley, Nora K.; Jaskula, Brian W.; Ayuso, Robert A.
2016-11-14
Beryllium is a lightweight metallic element used in a wide variety of specialty and industrial applications. As a function of its unique chemical and physical properties, such as a high stiffness-to-weight ratio, resistance to temperature extremes, and high thermal conductivity, beryllium cannot be easily replaced by substitute materials in applications where combinations of these properties make it the material of choice. Because the number of beryllium producers is limited and the use of substitute materials in specific defense-related applications that are vital to national security is inadequate, several studies have categorized beryllium as a critical and strategic material. This categorization has led to the United States Government recommending that beryllium be stockpiled for use in the event of a national emergency. As of December 31, 2015, the National Defense Stockpile inventory of hot-pressed beryllium metal powder, structured beryllium metal powder, and vacuum-cast beryllium metal totaled 78 metric tons (t).The U.S. Geological Survey (USGS) Mineral Resources Program supports research on the occurrence, quality, quantity, and availability of mineral resources vital to the economy and national security. The USGS, through its National Minerals Information Center (NMIC), collects, analyzes, and disseminates information on more than 90 nonfuel mineral commodities from more than 180 countries. This fact sheet provides information on the production, consumption, supply chain, geology, and resource availability of beryllium in a global context.
Nanostructured Mineral Coatings Stabilize Proteins for Therapeutic Delivery.
Yu, Xiaohua; Biedrzycki, Adam H; Khalil, Andrew S; Hess, Dalton; Umhoefer, Jennifer M; Markel, Mark D; Murphy, William L
2017-09-01
Proteins tend to lose their biological activity due to their fragile structural conformation during formulation, storage, and delivery. Thus, the inability to stabilize proteins in controlled-release systems represents a major obstacle in drug delivery. Here, a bone mineral inspired protein stabilization strategy is presented, which uses nanostructured mineral coatings on medical devices. Proteins bound within the nanostructured coatings demonstrate enhanced stability against extreme external stressors, including organic solvents, proteases, and ethylene oxide gas sterilization. The protein stabilization effect is attributed to the maintenance of protein conformational structure, which is closely related to the nanoscale feature sizes of the mineral coatings. Basic fibroblast growth factor (bFGF) released from a nanostructured mineral coating maintains its biological activity for weeks during release, while it maintains activity for less than 7 d during release from commonly used polymeric microspheres. Delivery of the growth factors bFGF and vascular endothelial growth factor using a mineral coated surgical suture significantly improves functional Achilles tendon healing in a rabbit model, resulting in increased vascularization, more mature collagen fiber organization, and a two fold improvement in mechanical properties. The findings of this study demonstrate that biomimetic interactions between proteins and nanostructured minerals provide a new, broadly applicable mechanism to stabilize proteins in the context of drug delivery and regenerative medicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Gong G; Zhu, Li Q; Liu, Hui C; Li, Wei P
2011-10-18
Inspired from fouling self-mineralization in geothermal water, a novel biomimetic cactuslike CaCO(3) coating with superhydrophobic features is reported in this letter. The structure, morphologies, and phases of the CaCO(3) coating were characterized by X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, and infrared spectrophotometry. After prenucleation treatment, a continuous cactuslike CaCO(3) coating with hierarchical nano- and microstructures was self-assembled on stainless steel surfaces after immersion in simulated geothermal water at 50 °C for 48 h. After being modified with a low-surface-energy monolayer of sodium stearate, the as-prepared coating exhibited superhydrophobic properties with a water contact angle of 158.9° and a sliding angle of 2°. Therefore, this work might open up a new application field of geothermal resources and provide insight into designing multidimensional structures with functional applications, including superhydrophobic surfaces. © 2011 American Chemical Society
Cui, Kai; Sun, Shanshan; Xiao, Meng; Liu, Tongjing; Xu, Quanshu; Dong, Honghong; Wang, Di; Gong, Yejing; Sha, Te; Hou, Jirui; Zhang, Zhongzhi; Fu, Pengcheng
2018-05-11
Microbial mineral illization has been investigated for its role in the extraction and recovery of metals from ores. Here we report our application of mineral bioillization for the microbial enhanced oil recovery in low-permeability oil reservoirs. It aimed to reveal the etching mechanism of the four Fe (III)-reducing microbial strains under anaerobic growth conditions on the Ca-montmorillonite. The mineralogical characterization of the Ca-montmorillonite was performed by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and energy dispersive spectrometer. Results showed that the microbial strains could efficiently reduce Fe (III) at an optimal rate of 71 %, and alter the crystal lattice structure of the lamella to promote the interlayer cation exchange, and to efficiently inhibit the Ca-montmorillonite swelling at an inhibitory rate of 48.9 %. Importance Microbial mineral illization is ubiquitous in the natural environment. Microbes in low-permeability reservoirs are able to enable the alteration of the structure and phase of the Fe-poor minerals by reducing Fe (III) and inhibiting clay swelling which is still poorly studied. This study aimed to reveal the interaction mechanism between Fe (III)-reducing bacterial strains and Ca-montmorillonite under anaerobic atmosphere, and to investigate the extent and rates of Fe (III) reduction and phase changes with their activities. Application of Fe (III)-reducing bacteria will provide a new way to inhibit clay swelling, to elevate reservoir permeability, and to reduce pore throat resistance after water flooding for enhanced oil recovery in low-permeability reservoirs. Copyright © 2018 American Society for Microbiology.
Aghazadeh, Sajjad; Mousavinezhad, Seyed Kamal; Gharabaghi, Mahdi
2015-11-01
Flotation has been widely used for separation of valuable minerals from gangues based on their surface characterizations and differences in hydrophobicity on mineral surfaces. As hydrophobicity of minerals widely differs from each other, their separation by flotation will become easier. Collectors are chemical materials which are supposed to make selectively valuable minerals hydrophobic. In addition, there are some minerals which based on their surface and structural features are intrinsically hydrophobic. However, their hydrophobicities are not strong enough to be floatable in the flotation cell without collectors such as sulfide minerals, coal, stibnite, and so forth. To float these minerals in a flotation cell, their hydrophobicity should be increased in specific conditions. Various parameters including pH, Eh, size distribution, mill types, mineral types, ore characterization, and type of reaction in flotation cells affect the hydrophobicity of minerals. Surface analysis results show that when sulfide minerals experience specific flotation conditions, the reactions on the surface of these minerals increase the amount of sulfur on the surface. These phenomenons improve the hydrophobicity of these minerals due to strong hydrophobic feature of sulfurs. Collectorless flotation reduces chemical material consumption amount, increases flotation selectivity (grade increases), and affects the equipment quantities; however, it can also have negative effects. Some minerals with poor surface floatability can be increased by adding some ions to the flotation system. Depressing undesirable minerals in flotation is another application of collectorless flotation.
43 CFR 3583.3 - Applications for hardrock mineral leases.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Applications for hardrock mineral leases... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS Shasta and... hardrock mineral leases. No specific form is required. An application shall include the applicant's name...
43 CFR 3583.3 - Applications for hardrock mineral leases.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Applications for hardrock mineral leases... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS Shasta and... hardrock mineral leases. No specific form is required. An application shall include the applicant's name...
43 CFR 3583.3 - Applications for hardrock mineral leases.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Applications for hardrock mineral leases... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS Shasta and... hardrock mineral leases. No specific form is required. An application shall include the applicant's name...
43 CFR 3583.3 - Applications for hardrock mineral leases.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Applications for hardrock mineral leases... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS Shasta and... hardrock mineral leases. No specific form is required. An application shall include the applicant's name...
NASA Astrophysics Data System (ADS)
Ayling, B.; Rose, P. E.; Zemach, E.; Drakos, P. S.; Petty, S.
2011-12-01
Fractures are important conduits for fluids in geothermal systems, and the creation and maintenance of fracture permeability is a fundamental aspect of EGS (Engineered Geothermal System) development. Hydraulic or chemical stimulation techniques are often employed to achieve this. In the case of chemical stimulation, an understanding of the minerals present in the fractures themselves is desirable to better design a stimulation effort (i.e. which chemical to use and how much). Borehole televiewer surveys provide important information about regional and local stress regimes and fracture characteristics (e.g. fracture aperture), and XRD is useful for examining bulk rock mineralogy, but neither technique is able to quantify the distribution of these minerals in fractures. QEMSCAN° is a fully-automated micro-analysis system that enables quantitative chemical analysis of materials and generation of high-resolution mineral maps and images as well as porosity structure. It uses a scanning electron microscopy platform (SEM) with an electron beam source in combination with four energy-dispersive X-ray spectrometers (EDS). The measured backscattered electron and electron-induced secondary X-ray emission spectra are used to classify sample mineralogy. Initial applications of QEMSCAN° technology were predominantly in the minerals industry and application to geothermal problems has remained limited to date. In this pilot study, the potential application of QEMSCAN° technology to fracture characterization was evaluated using samples of representative mineralized fractures in two geothermal systems (Newberry Volcano, Oregon and Brady's geothermal field, Nevada). QEMSCAN° results were compared with XRD and petrographic techniques. Nine samples were analyzed from each field, collected from the drill core in the 1000-1500 m depth range in two shallow wells (GEO-N2 at Newberry Volcano and BCH-3 at Brady's). The samples were prepared as polished thin sections for QEMSCAN° analysis. Results indicate that a sampling resolution of 10 μm is sufficient to resolve fracture morphology and mineral zonation (where multiple episodes of mineralization occurred), and enables relatively fast data acquisition (3 cm2 can be analyzed in approximately 3 hours). Finer resolutions (down to 2.5 μm) take significantly longer, but can be used to provide additional spatial detail in areas of interest after a low resolution (10 μm) scan. Use of XRD data in conjunction with QEMSCAN° data is sometimes needed to distinguish geothermal alteration minerals with similar chemical compositions (clay minerals, micas and chlorite), however overall the technique appears to have excellent potential for geothermal applications.
Zhang, Y Q; Sanati-Nezhad, A; Hejazi, S H
2018-01-16
A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 μm, depth of 40-100 μm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.
Changes in soil nematode communities under the impact of fertilizers
NASA Astrophysics Data System (ADS)
Gruzdeva, L. I.; Matveeva, E. M.; Kovalenko, T. E.
2007-06-01
Changes taking place in the communities of soil nematodes of an artificially sown meadow under the impact of annually applied mineral fertilizers have been studied in a field experiment for nine years. It is shown that changes in the species composition, trophic structure, and numbers of nematodes from different genera depend on the fertilizer applied and on the competitiveness of the plant species grown. The spectra of nematode genera sensitive to the complete mineral fertilizer (NPK) and to the particular nutrients have been identified with the use of a number of parameters, including the maturity index of nematode communities, the biotope preferences of the particular nematode genera, and the general pattern of nematode habitats. The results obtained in this study can be used to assess the effect of mineral fertilizers on the soil fauna and to suggest optimum application rates of mineral fertilizers ensuring the sustainable development of meadow herbs. The use of the data on the trophic structure of nematode communities for predicting the ways of organic matter decomposition in the soil is discussed.
NASA Astrophysics Data System (ADS)
Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Belotti, Fernanda Maria; Cândido Filho, Mauro
2013-04-01
Colemanite CaB3O4(OH)3·H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.
Paracrystalline Disorder from Phosphate Ion Orientation and Substitution in Synthetic Bone Mineral
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marisa, Mary E.; Zhou, Shiliang; Melot, Brent C.
Hydroxyapatite is an inorganic mineral closely resembling the mineral phase in bone. However, as a biological mineral, it is highly disordered, and its composition and atomistic structure remain poorly understood. Here, synchrotron X-ray total scattering and pair distribution function analysis methods provide insight into the nature of atomistic disorder in a synthetic bone mineral analogue, chemically substituted hydroxyapatite. By varying the effective hydrolysis rate and/or carbonate concentration during growth of the mineral, compounds with varied degrees of paracrystallinity are prepared. From advanced simulations constrained by the experimental pair distribution function and density functional theory, the paracrystalline disorder prevalent in thesemore » materials appears to result from accommodation of carbonate in the lattice through random displacement of the phosphate groups. Though many substitution modalities are likely to occur in concert, the most predominant substitution places carbonate into the mirror plane of an ideal phosphate site. Understanding the mineralogical imperfections of a biologically analogous hydroxyapatite is important not only to potential bone grafting applications but also to biological mineralization processes themselves.« less
Huang, Chichao; Liu, Sha; Li, Ruizhi; Sun, Fusheng; Zhou, Ying; Yu, Guanghui
2016-01-01
Mineral elements in soil solutions are thought to be the precursor of the formation of reactive minerals, which play an important role in global carbon (C) cycling. However, information regarding the regulation of mineral elements release in soil is scarce. Here, we examined the long-term (i.e., 23 yrs) effects of fertilisation practices on Fe minerals in a red soil in Southern China. The results from chemical analysis and Fourier-transform infrared spectroscopy showed that long-term swine manure (M) treatment released greater amounts of minerals into soil solutions than chemical fertilisers (NPK) treatment, and Fe played a dominant role in the preservation of dissolved organic C. Furthermore, Fe K-edge X-ray absorption near-edge fine structure spectroscopy demonstrated that reactive Fe minerals were mainly composed of less crystalline ferrihydrite in the M-treated soil and more crystalline goethite in the NPK-treated soil. In conclusion, this study reported spectroscopic evidence of the improvement of reactive Femineral content in the M-treated soil colloids when compared to NPK-treated soil colloids. PMID:26752419
NASA Astrophysics Data System (ADS)
Adib, Ahmad; Afzal, Peyman; Mirzaei Ilani, Shapour; Aliyari, Farhang
2017-10-01
The aim of this study is to determine a relationship between zinc mineralization and a major fault in the Behabad area, central Iran, using the Concentration-Distance to Major Fault (C-DMF), Area of Mineralized Zone-Distance to Major Fault (AMZ-DMF), and Concentration-Area (C-A) fractal models for Zn deposit/mine classification according to their distance from the Behabad fault. Application of the C-DMF and the AMZ-DMF models for Zn mineralization classification in the Behabad fault zone reveals that the main Zn deposits have a good correlation with the major fault in the area. The distance from the known zinc deposits/mines with Zn values higher than 29% and the area of the mineralized zone of more than 900 m2 to the major fault is lower than 1 km, which shows a positive correlation between Zn mineralization and the structural zone. As a result, the AMZ-DMF and C-DMF fractal models can be utilized for the delineation and the recognition of different mineralized zones in different types of magmatic and hydrothermal deposits.
NASA Technical Reports Server (NTRS)
Saunders, D. F.; Thomas, G. E. (Principal Investigator); Kinsman, F. E.; Beatty, D. F.
1973-01-01
The author has identified the following significant results. This study was performed to investigate applications of ERTS-1 imagery in commercial reconnaissance for mineral and hydrocarbon resources. ERTS-1 imagery collected over five areas in North America (Montana; Colorado; New Mexico-West Texas; Superior Province, Canada; and North Slope, Alaska) has been analyzed for data content including linears, lineaments, and curvilinear anomalies. Locations of these features were mapped and compared with known locations of mineral and hydrocarbon accumulations. Results were analyzed in the context of a simple-shear, block-coupling model. Data analyses have resulted in detection of new lineaments, some of which may be continental in extent, detection of many curvilinear patterns not generally seen on aerial photos, strong evidence of continental regmatic fracture patterns, and realization that geological features can be explained in terms of a simple-shear, block-coupling model. The conculsions are that ERTS-1 imagery is of great value in photogeologic/geomorphic interpretations of regional features, and the simple-shear, block-coupling model provides a means of relating data from ERTS imagery to structures that have controlled emplacement of ore deposits and hydrocarbon accumulations, thus providing a basis for a new approach for reconnaissance for mineral, uranium, gas, and oil deposits and structures.
Reconstruction of a digital core containing clay minerals based on a clustering algorithm.
He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling
2017-10-01
It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.
NASA Astrophysics Data System (ADS)
Luz, Gisela M.; Mano, João F.
2012-09-01
Bioactive particles have been widely used in a series of biomedical applications due to their ability to promote bone-bonding and elicit favorable biological responses in therapies associated with the replacement and regeneration of mineralized tissues. In this work hierarchical architectures are prepared by an innovative methodology using SiO2-CaO sol-gel based nanoparticles. Inspired by colloidal crystals, spherical aggregates were formed on biomimetic superhydrophobic surfaces using bioactive glass nanoparticles (BG-NPs) able to promote bone regeneration. A highly ordered organization, a common feature of mineralized structures in Nature, was achieved at both nano- and microlevels, being the crystallization degree of the structures controlled by the evaporation rates taking place at room temperature (RT) or at 4 °C. The crystallization degree of the structures influenced the Ca/P ratio of the apatitic film formed at their surface, after 7 days of immersion in SBF. This allows the regulation of bioactive properties and the ability to release potential additives that could be also incorporated in such particles with a high efficiency. Such a versatile method to produce bioactive particles with controlled size and internal structure could open new possibilities in designing new spherical devices for orthopaedic applications, including tissue engineering.
NASA Astrophysics Data System (ADS)
Asha, S.; Ananth, A. Nimrodh; Jose, Sujin P.; Rajan, M. A. Jothi
2018-05-01
Reduced Graphene Oxide aerogels (A-RGO), functionalized with chitosan, were found to induce and/or accelerate the mineralization of hydroxyapatite. The functionalized chitosan acts as a soft interfacial template on the surface of A-RGO assisting the growth of hydroxyapatite particles. The mineralization on these soft aerogel networks was performed by soaking the aerogels in simulated body fluid, relative to time. Polymer-induced mineralization exhibited an ordered arrangement of hydroxyapatite particles on reduced graphene oxide aerogel networks with a higher crystalline index (IC) of 1.7, which mimics the natural bone formation indicating the importance of the polymeric interfacial template. These mineralized aerogels which mimic the structure and composition of natural bone exhibit relatively higher rate of cell proliferation, osteogenic differentiation and osteoid matrix formation proving it to be a potential scaffold for bone tissue regeneration.
Masica, David L; Ash, Jason T; Ndao, Moise; Drobny, Gary P; Gray, Jeffrey J
2010-12-08
Protein-biomineral interactions are paramount to materials production in biology, including the mineral phase of hard tissue. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution nuclear magnetic resonance (NMR). Here we report a method for determining the structure of biomineral-associated proteins. The method combines solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. In addition, the algorithm is able to identify lattice geometries most compatible with ssNMR constraints, representing a quantitative, novel method for investigating crystal-face binding specificity. We use this method to determine most of the structure of human salivary statherin interacting with the mineral phase of tooth enamel. Computation and experiment converge on an ensemble of related structures and identify preferential binding at three crystal surfaces. The work represents a significant advance toward determining structure of biomineral-adsorbed protein using experimentally biased structure prediction. This method is generally applicable to proteins that can be chemically synthesized. Copyright © 2010 Elsevier Ltd. All rights reserved.
43 CFR 2720.1 - Application to purchase federally-owned mineral interests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... mineral interests. 2720.1 Section 2720.1 Public Lands: Interior Regulations Relating to Public Lands... OF FEDERALLY-OWNED MINERAL INTERESTS Conveyance of Federally-Owned Mineral Interests § 2720.1 Application to purchase federally-owned mineral interests. ...
43 CFR 2720.1 - Application to purchase federally-owned mineral interests.
Code of Federal Regulations, 2014 CFR
2014-10-01
... mineral interests. 2720.1 Section 2720.1 Public Lands: Interior Regulations Relating to Public Lands... OF FEDERALLY-OWNED MINERAL INTERESTS Conveyance of Federally-Owned Mineral Interests § 2720.1 Application to purchase federally-owned mineral interests. ...
43 CFR 2720.1 - Application to purchase federally-owned mineral interests.
Code of Federal Regulations, 2013 CFR
2013-10-01
... mineral interests. 2720.1 Section 2720.1 Public Lands: Interior Regulations Relating to Public Lands... OF FEDERALLY-OWNED MINERAL INTERESTS Conveyance of Federally-Owned Mineral Interests § 2720.1 Application to purchase federally-owned mineral interests. ...
43 CFR 2720.1 - Application to purchase federally-owned mineral interests.
Code of Federal Regulations, 2012 CFR
2012-10-01
... mineral interests. 2720.1 Section 2720.1 Public Lands: Interior Regulations Relating to Public Lands... OF FEDERALLY-OWNED MINERAL INTERESTS Conveyance of Federally-Owned Mineral Interests § 2720.1 Application to purchase federally-owned mineral interests. ...
43 CFR 3872.1 - Protest against mineral applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Protest against mineral applications. 3872... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ADVERSE CLAIMS, PROTESTS AND CONFLICTS Protests, Contests and Conflicts § 3872.1 Protest against mineral applications. (a) At any time...
43 CFR 3872.1 - Protest against mineral applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Protest against mineral applications. 3872... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ADVERSE CLAIMS, PROTESTS AND CONFLICTS Protests, Contests and Conflicts § 3872.1 Protest against mineral applications. (a) At any time...
43 CFR 3872.1 - Protest against mineral applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Protest against mineral applications. 3872... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ADVERSE CLAIMS, PROTESTS AND CONFLICTS Protests, Contests and Conflicts § 3872.1 Protest against mineral applications. (a) At any time...
43 CFR 3872.1 - Protest against mineral applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Protest against mineral applications. 3872... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) ADVERSE CLAIMS, PROTESTS AND CONFLICTS Protests, Contests and Conflicts § 3872.1 Protest against mineral applications. (a) At any time...
Xu, Xiaoyun; Zhao, Yinghao; Sima, Jingke; Zhao, Ling; Mašek, Ondřej; Cao, Xinde
2017-10-01
Biochar typically consists of both carbon and mineral fractions, and the carbon fraction has been generally considered to determine its properties and applications. Recently, an increasing body of research has demonstrated that mineral components inherent in biochar, such as alkali or alkaline earth metals in the form of carbonates, phosphates, or oxides, could also influence the properties and thus the applications. The review articles published thus far have mainly focused on multiple environmental and agronomic applications of biochar, including carbon sequestration, soil improvement, environmental remediation, etc. This review aims to highlight the indispensable role of the mineral fraction of biochar in these different applications, especially in environmental applications. Specifically, it provides a critical review of current research findings related to the mineral composition of biochar and the effect of the mineral fraction on the physicochemical properties, contaminant sorption, carbon retention and stability, and nutrient bioavailability of biochar. Furthermore, the role of minerals in the emerging applications of biochar, as a precursor for fuel cells, supercapacitors, and photoactive components, is also summarized. Overall, inherent minerals should be fully considered while determining the most appropriate application for any given biochar. A thorough understanding of the role of biochar-bound minerals in different applications will also allow the design or selection of the most suitable biochar for specific applications based on the consideration of feedstock composition, production parameters, and post-treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the asphaltic mineral subcategory. The...
40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the asphaltic mineral subcategory. The...
NASA Technical Reports Server (NTRS)
King, Trude V. V.; Ridley, W. Ian
1987-01-01
High-resolution visible and near-IR diffuse spectral reflectance are used to systematically investigate apparent wavelength shifts as a function of mineral chemistry in the Fe/Mg olivine series from Fo(11) to Fo(91). The study also shows that trace amounts of nickel can be spectrally detected in the olivine structure. Significant compositional information can only be extracted at relatively high resolution, because the overall spectral characteristics of the olivines change only subtly as a function of the Fe/Mg ratio. This laboratory study is expected to aid in the interpretation of remotely sensed data from both terrestrial and extraterrestrial bodies. Terrestrial applications may include the recognition of ultramafic, ultrabasic, and basaltic terrains which in themselves may have mineral potential. Among extraterrestrial applications, the asteroids are obvious candidates for further examination. Some permutations of Fe-Mg-Ni relations in olivines are discussed as they apply to the interpretation of asteroid surfaces and other extraterrestrial bodies.
Organic Matrix-related mineralization of sea urchin spicules, spines, test and teeth
Veis, Arthur
2012-01-01
The camarodont echinoderms have five distinct mineralized skeletal elements: the embryonic spicules and mature test; spines, lantern stereom and teeth. The embryonic spicules are transient structural elements of the larval skeleton whereas the spines and test plates are permanent structural elements. The teeth are continuously growing structures, matching wear at the incisal adoral end to the rate of new production at the aboral plumula. The mineral in all cases is a high magnesium calcite, but the magnesium content, crystal shape and growth pattern is different in each type of skeletal element. The crystal shape and organization into macro structures depends on the presence of an organic matrix which creates the spaces and controls the environments for crystal initiation and growth. The detailed mechanisms of crystal regulation are not known, but much work has been done on defining the proteins which appear to be involved. Phosphorylated matrix proteins may be of special importance. Biochemical isolation of proteins, construction and analysis of cDNA libraries, and most recently high-throughput proteomic analysis in conjunction with the sequencing of the complete genome have yielded a detailed list of protein components likely to be involved in the mineralization processes. However, the proteome-genome analyses have not yet provided insight into the mechanisms of crystallization, calcite composition, and orientation applicable to all skeletal elements. Although the embryonic pluteus and their spicules are the best studied system, it appears that spicule is not representative of the mature skeletal elements. Now armed with the compositions of most of the proteins involved, the next phase of research will have to focus on the specific localization of the proteins and individual biochemistries of each system with regard to mineral content and placement. PMID:21622194
Review of data on the dermal penetration of mineral oils and waxes used in cosmetic applications.
Petry, T; Bury, D; Fautz, R; Hauser, M; Huber, B; Markowetz, A; Mishra, S; Rettinger, K; Schuh, W; Teichert, T
2017-10-05
Mineral oils and waxes used in cosmetic products, also referred to as "personal care products" outside the European Union, are mixtures of predominantly saturated hydrocarbons consisting of straight-chain, branched and ring structures with carbon chain lengths greater than C16. They are used in skin and lip care cosmetic products due to their excellent skin tolerance as well as their high protecting and cleansing performance and broad viscosity options. Recently, concerns have been raised regarding potential adverse health effects of mineral oils and waxes from dermal application of cosmetics. In order to be able to assess the risk for the consumer the dermal penetration potential of these ingredients has to be evaluated. The scope and objective of this review are to identify and summarize publicly available literature on the dermal penetration of mineral oils and waxes as used in cosmetic products. For this purpose, a comprehensive literature search was conducted. A total of 13 in vivo (human, animal) and in vitro studies investigating the dermal penetration of mineral oils and waxes has been identified and analysed. The majority of the substances were dermally adsorbed to the stratum corneum and only a minor fraction reached deeper skin layers. Overall, there is no evidence from the various studies that mineral oils and waxes are percutaneously absorbed and become systemically available. Thus, given the absence of dermal uptake, mineral oils and waxes as used in cosmetic products do not present a risk to the health of the consumer. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov
2016-06-15
The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. Copyright © 2016 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... Action; Application for Conveyance of Federally- Owned Mineral Interests, California AGENCY: Bureau of... December 16, 2008, by the surface owner, for the conveyance of the federally-owned mineral interests in the... the mineral interests in the land covered by the application from appropriation under the public land...
Bai, Zhiyong; Wang, Jianlong; Yang, Qi
2018-04-01
Sulfonamide antibiotics are ubiquitous pollutants in aquatic environments due to their large production and extensive application. In this paper, the iron doped fibrous-structured silica (KCC-1) nanospheres (Fe-KCC-1) was prepared, characterized, and applied as a catalyst for catalytic ozonation of sulfamethazine (SMT). The effects of ozone dosage, catalyst dosage, and initial concentration of SMT were examined. The experimental results showed that Fe-KCC-1 had large surface area (464.56 m2 g -1 ) and iron particles were well dispersed on the catalyst. The catalyst had high catalytic performance especially for the mineralization of SMT, with mineralization ratio of about 40% in a wide pH range. With addition of Fe-KCC-1, the ozone utilization increased nearly two times than single ozonation. The enhancement of SMT degradation was mainly due to the surface reaction, and the increased mineralization of SMT was due to radical mechanism. Fe-KCC-1 was an efficient catalyst for SMT degradation in catalytic ozonation system.
Soil Organic Matter (SOM): Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Amity
Molecular simulation is a powerful tool used to gain an atomistic, molecular, and nanoscale level understanding of the structure, dynamics, and interactions from adsorption on minerals and assembly in aggregates of soil organic matter (SOM). Given the importance of SOM fate and persistence in soils and the current knowledge gaps, applications of atomistic scale simulations to study the complex compounds in SOM and their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types common in soils are few and far between. Here, we describe various molecular simulation methods that are currently inmore » use in various areas and applicable to SOM research, followed by a brief survey of specific applications to SOM research and an illustration with our own recent efforts in this area. We conclude with an outlook and the challenges for future research in this area.« less
30 CFR 285.906 - What must my decommissioning application include?
Code of Federal Regulations, 2011 CFR
2011-07-01
... include? 285.906 Section 285.906 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... or marine mammals at the structure site. (i) Mitigation measures you will use to protect...
NASA Astrophysics Data System (ADS)
Sibi, N.; Subodh, G.
2017-12-01
Garnets are naturally occurring minerals with the general formula X3Y2Z3O12 having various applications. In the present study, the structural and physical properties of a garnet mineral obtained from Indian Rare Earth Ltd., Manavalakurichi, Tamil Nadu, India were comprehensively investigated. The compositional analysis using electron probe micro analysis (EPMA) revealed that the mineral belongs to almandine-pyrope solid solution (Al70Py29) with the chemical formula (Fe1.72Mg0.8Mn0.01Ca0.02) (Fe0.04Al2.36) Si2.93O12. Rietveld refinement of the x-ray diffraction pattern confirms that the space group is Ia{ - }\\overline{3} d with refined cubic lattice parameter a = 11.550(4) Å. The refined occupancy values of multiple cations in the dodecahedral and octahedral sites are in agreement with the EPMA data. Fourier transform infrared and FT Raman spectra show bands corresponding to almandine-pyrope solid solution. Peak splitting of IR and Raman bands confirms presence of multiple cations in the dodecahedral site. Thermogravimetric/differential thermal analysis shows that the mineral is stable up to 600°C in spite of the presence of Fe2+ ions. Low temperature magnetic susceptibility data is in agreement with the amount of Fe2+ ions present in the mineral. The dielectric constant of the mineral varied from 6 to 16.5 when sintered at temperatures ranging from 600°C to 1250°C.
NASA Astrophysics Data System (ADS)
Gaafar, Ibrahim
2015-12-01
This study is an attempt to use the gamma ray spectrometric measurements and VLF-EM data to identify the subsurface structure and map uranium mineralization along El Sela shear zone, South Eastern Desert of Egypt. Many injections more or less mineralized with uranium and associated with alteration processes were recorded in El Sela shear zone. As results from previous works, the emplacement of these injections is structurally controlled and well defined by large shear zones striking in an ENE-WSW direction and crosscut by NW-SE to NNW-SSE fault sets. VLF method has been applied to map the structure and the presence of radioactive minerals that have been delineated by the detection of high uranium mineralization. The electromagnetic survey was carried out to detect the presence of shallow and deep conductive zones that cross the granites along ENE-WSW fracturing directions and to map its spatial distribution. The survey comprised seventy N-S spectrometry and VLF-EM profiles with 20 m separation. The resulted data were displayed as composite maps for K, eU and eTh as well as VLF-Fraser map. Twelve profiles with 100 m separation were selected for detailed description. The VLF-EM data were interpreted qualitatively as well as quantitatively using the Fraser and the Karous-Hjelt filters. Fraser filtered data and relative current density pseudo-sections indicate the presence of shallow and deep conductive zones that cross the granites along ENE-WSW shearing directions. High uranium concentrations found just above the higher apparent current-density zones that coincide with El-Sela shear zone indicate a positive relation between conductivity and uranium minerals occurrence. This enables to infer that the anomalies detected by VLF-EM data are due to the highly conductive shear zone enriched with uranium mineralization extending for more than 80 m.
Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.
Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M
2015-03-03
Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.
Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong
2018-01-01
Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0–10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals for long-term soil C stabilization. PMID:29668702
Li, Jing; Wu, Xueping; Gebremikael, Mesfin Tsegaye; Wu, Huijun; Cai, Dianxiong; Wang, Bisheng; Li, Baoguo; Zhang, Jiancheng; Li, Yongshan; Xi, Jilong
2018-01-01
Microbial mechanisms associated with soil organic carbon (SOC) decomposition are poorly understood. We aim to determine the effects of inorganic and organic fertilizers on soil labile carbon (C) pools, microbial community structure and C mineralization rate under an intensive wheat-maize double cropping system in Northern China. Soil samples in 0-10 cm layer were collected from a nine-year field trial involved four treatments: no fertilizer, CK; nitrogen (N) and phosphorus (P) fertilizers, NP; maize straw combined with NP fertilizers, NPS; and manure plus straw and NP fertilizers, NPSM. Soil samples were analyzed to determine labile C pools (including dissolved organic C, DOC; light free organic C, LFOC; and microbial biomass C, MBC), microbial community composition (using phospholipid fatty acid (PLFA) profiles) and SOC mineralization rate (from a 124-day incubation experiment). This study demonstrated that the application of chemical fertilizers (NP) alone did not alter labile C fractions, soil microbial communities and SOC mineralization rate from those observed in the CK treatment. Whereas the use of straw in conjunction with chemical fertilizers (NPS) became an additional labile substrate supply that decreased C limitation, stimulated growth of all PLFA-related microbial communities, and resulted in 53% higher cumulative mineralization of C compared to that of CK. The SOC and its labile fractions explained 78.7% of the variance of microbial community structure. Further addition of manure on the top of straw in the NPSM treatment did not significantly increase microbial community abundances, but it did alter microbial community structure by increasing G+/G- ratio compared to that of NPS. The cumulative mineralization of C was 85% higher under NPSM fertilization compared to that of CK. Particularly, the NPSM treatment increased the mineralization rate of the resistant pool. This has to be carefully taken into account when setting realistic and effective goals for long-term soil C stabilization.
Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; ...
2015-11-16
The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to comparemore » the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm –1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba 2+ and Mg 2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs + and Na +), which have relatively small hydration enthalpies.« less
Structural Chemistry of Functional Nano-Materials for Environmental Remediation
NASA Astrophysics Data System (ADS)
John, Jesse
Nano minerals and materials have become a focal point of Geoscience research due to the unique physical, chemical, optical, magnetic, electronic, and reactive properties. Many of these desired properties in Nano technology have the potential to impact society by improving remediation, photovoltaics, medicine and the sustainability limits on Earth for an expanding population. Despite the progress made on the discovery, synthesis, and manufacturing of numerous nano-materials, the atomistic cause of their desired properties is poorly understood. To gain a better understanding of the atomic structure of nano materials and their bulk counterparts we combined several crystallographic techniques to solve the crystal structure and performed formative characterization to ascertain the atomistic source of the desired application. These strategies and tools can be used to expedite discovery, development and the goals of the National Nanotechnology Initiative (NNI). This thesis will cover the optimization of the reaction conditions and resolve the atomic structure to produce pure synthetic nano nolanite (SNN) Fe2V3O7OH. The complete structural model of nolanite was described from a bulk mineral to the nano-regime using a combination of single crystal X-ray diffraction (SC-XRD), pair distribution function analysis (PDF) and neutron powder diffraction from synthetic material. Nolanite is isostructural to ferrihydrite, a ubiquitous nano-mineral, both of these mineral structures have been the subject for debate for the last half of century. A comparative study of the isostructural minerals nolanite, akdalaite and ferrihydrite was utilized to address the discrepancies and consolidate the structural models. Lastly, we developed a structural model for nano-crystalline titanium-based material; mono sodium titanate (MST) using high energy total X-ray scattering and PDF coupled with scanning transmission electron microscope (STEM). In the USA we have accumulated over 76000 metric tons of nuclear waste and the nuclear industry continues to generate an additional 2000 tons every year. MST is the baseline material used for to effectively remove 90Sr and alpha-emitting actinides from strongly alkaline, high-level nuclear waste solutions at the Savannah River site. Despite the success of MST in the remediation of high-level radioactive waste (HLW) the process by which the metals are structurally incorporated is still poorly understood, and there is still no structural model. This study aims to better understand the ion exchange mechanism of MST by generating a structural model derived from synchrotron X-ray powder diffraction data.
Application of Natural Mineral Additives in Construction
NASA Astrophysics Data System (ADS)
Linek, Malgorzata; Nita, Piotr; Wolka, Paweł; Zebrowski, Wojciech
2017-12-01
The article concerns the idea of using selected mineral additives in the pavement quality concrete composition. The basis of the research paper was the modification of cement concrete intended for airfield pavements. The application of the additives: metakaolonite and natural zeolite was suggested. Analyses included the assessment of basic physical properties of modifiers. Screening analysis, assessment of micro structure and chemical microanalysis were conducted in case of these materials. The influence of the applied additives on the change of concrete mix parameters was also presented. The impact of zeolite and metakaolinite on the mix density, oxygen content and consistency class was analysed. The influence of modifiers on physical and mechanical changes of the hardened cement concrete was discussed (concrete density, compressive strength and bending strength during fracturing) in diversified research periods. The impact of the applied additives on the changes of internal structure of cement concrete was discussed. Observation of concrete micro structure was conducted using the scanning electron microscope. According to the obtained lab test results, parameters of the applied modifiers and their influence on changes of internal structure of cement concrete are reflected in the increase of mechanical properties of pavement quality concrete. The increase of compressive and bending strength in case of all analysed research periods was proved.
Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric
2010-01-01
This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.
Mineral facilities of Northern and Central Eurasia
Baker, Michael S.; Elias, Nurudeen; Guzman, Eric; Soto-Viruet, Yadira
2010-01-01
This map displays almost 900 records of mineral facilities within the countries that formerly constituted the Union of Soviet Socialist Republics (USSR). Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recent published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2
Structure and stability of hydrous minerals at high pressure
NASA Technical Reports Server (NTRS)
Duffy, T. S.; Fei, Y.; Meade, C.; Hemley, R. J.; Mao, H. K.
1994-01-01
The presence of even small amounts of hydrogen in the Earth's deep interior may have profound effects on mantle melting, rheology, and electrical conductivity. The recent discovery of a large class of high-pressure H-bearing silicates further underscores the potentially important role for hydrous minerals in the Earth's mantle. Hydrogen may also be a significant component of the Earth's core, as has been recently documented by studies of iron hydride at high pressure. In this study, we explore the role of H in crystal structures at high pressure through detailed Raman spectroscopic and x ray diffraction studies of hydrous minerals compressed in diamond anvil cells. Brucite, Mg(OH)2, has a simple structure and serves as an analogue for the more complex hydrous silicates. Over the past five years, this material has been studied at high pressure using shock-compression, powder x ray diffraction, infrared spectroscopy, Raman spectroscopy, and neutron diffraction. In addition, we have recently carried out single-crystal synchrotron x-ray diffraction on Mg(OH)2 and Raman spectroscopy on Mg(OD)2 at elevated pressure. From all these studies, an interesting picture of the crystal chemical behavior of this material at high pressure is beginning to emerge. Some of the primary conclusions are as follows: First, hydrogen bonding is enhanced by the application of pressure. Second, layered minerals which are elastically anisotropic at low pressure may not be so at high pressure. Furthermore, the brucite data place constraints on the effect of hydrogen on seismic velocities and density at very high pressure. Third, the stability of hydrous minerals may be enhanced at high P by subtle structural rearrangements that are difficult to detect using traditional probes and require detailed spectroscopic analyses. Finally, brucite appears to be unique in that it undergoes pressure-induced disordering that is confined solely to the H-containing layers of the structure.
Decorrelation distance of snow in the Colorado River Basin
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Chiu, L. S.
1989-01-01
The problem of estimating areal averages from point measurement has been extensively studied by mining engineers and hydrologists. Its application to satellite measurements has recently been introduced. The semivariaogram has been used in many geostatistical applications to estimate spatial structures of observed properties, such as mineral distributions. An examination is made of snow variations in Colorado from daily snow data collected in 11 SNOTEL stations. The associated semivariogram is estimated. The objective is to estimate the spatial structure of the snow field so that the point data can be used for comparison with, and validation for, satellite measurements.
43 CFR 3814.2 - Mineral reservation in patent; conditions to be noted on mineral applications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Mineral reservation in patent; conditions to be noted on mineral applications. 3814.2 Section 3814.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS...
43 CFR 3814.2 - Mineral reservation in patent; conditions to be noted on mineral applications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Mineral reservation in patent; conditions to be noted on mineral applications. 3814.2 Section 3814.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS...
43 CFR 3814.2 - Mineral reservation in patent; conditions to be noted on mineral applications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mineral reservation in patent; conditions to be noted on mineral applications. 3814.2 Section 3814.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS...
43 CFR 3814.2 - Mineral reservation in patent; conditions to be noted on mineral applications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mineral reservation in patent; conditions to be noted on mineral applications. 3814.2 Section 3814.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS...
Remote sensing of geobotanical relations in Georgia
NASA Technical Reports Server (NTRS)
Arden, D. D., Jr.; Westra, R. N.
1977-01-01
The application of remote sensing to geological investigations, with special attention to geobotanical factors, was evaluated. The general areas of investigation included: (1) recognition of mineral deposits; (2) geological mapping; (3) delineation of geological structure, including areas of complex tectonics; and (4) limestone areas where ground withdrawal had intensified surface collapse.
30 CFR 585.906 - What must my decommissioning application include?
Code of Federal Regulations, 2014 CFR
2014-07-01
... include? 585.906 Section 585.906 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... conducted in the vicinity of the structure and recent observations of turtles or marine mammals at the...
30 CFR 585.906 - What must my decommissioning application include?
Code of Federal Regulations, 2013 CFR
2013-07-01
... include? 585.906 Section 585.906 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... conducted in the vicinity of the structure and recent observations of turtles or marine mammals at the...
30 CFR 585.906 - What must my decommissioning application include?
Code of Federal Regulations, 2012 CFR
2012-07-01
... include? 585.906 Section 585.906 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY AND ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF... conducted in the vicinity of the structure and recent observations of turtles or marine mammals at the...
40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the asphaltic...
40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the asphaltic...
40 CFR 436.60 - Applicability; description of the asphaltic mineral subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... asphaltic mineral subcategory. 436.60 Section 436.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Asphaltic Mineral Subcategory § 436.60 Applicability; description of the asphaltic...
Contaminant Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satish C. B. Myneni
2005-12-13
Siderophores are biological macromolecules (400-2000 Da) released by bacteria in iron limiting situations to sequester Fe from iron oxyhydroxides and silicates in the natural environment. These molecules contain hydroxamate and phenolate functional groups, and exhibit very high affinity for Fe{sup 3+}. While several studies were conducted to understand the behavior of siderophores and their application to the metal sequestration and mineral dissolution, only a few of them have examined the molecular structure of siderophores and their interactions with metals and mineral surfaces in aqueous solutions. Improved understanding of the chemical state of different functional moieties in siderophores can assist inmore » the application of these biological molecules in actinide separation, sequestration and decontamination processes. The focus of our research group is to evaluate the (a) functional group chemistry of selected siderophores and their metal complexes in aqueous solutions, and (b) the nature of siderophore interactions at the mineral-water interfaces. We selected desferrioxamine B (desB), a hydroxamate siderophore, and its small structural analogue, acetohydroxamic acid (aHa), for this investigation. We examined the functional group chemistry of these molecules as a function of pH, and their complexation with aqueous and solid phase Fe(III). For solid phase Fe, we synthesized all naturally occurring Fe(III)-oxyhydroxides (goethite, lepidocrocite, akaganeite, feroxyhite) and hematite. We also synthesized Fe-oxides (goethite and hematite) of different sizes to evaluate the influence of particle size on mineral dissolution kinetics. We used a series of molecular techniques to explore the functional group chemistry of these molecules and their complexes. Infrared spectroscopy is used to specifically identify the variations in oxime group as a function of pH and Fe(III) complexation. Resonance Raman spectroscopy was used to evaluate the nature of hydroxamate binding in the case of Fe(III)-siderophore complexes and model ligands. Soft and hard X-ray spectroscopy techniques were used to examine the electronic structure of binding groups, and their local structural environment. The synchrotron X-ray studies were conducted at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (Lawrence Berkeley National Laboratory). These experimental vibrational and X-ray spectroscopy studies were complemented with density functional theory calculations. The highlight of this study is the evaluation of the fundamental electronic state information of the hydroxamate moiety in siderophores during deprotonation and Fe(III) complexation. The applications of soft X-ray studies are also new, and were applied, for the first time, to examine the chemistry of organic macromolecules in aqueous solutions.« less
Clay-based polymer nanocomposites: research and commercial development.
Zeng, Q H; Yu, A B; Lu, G Q; Paul, D R
2005-10-01
This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.
Citrate bridges between mineral platelets in bone
Davies, Erika; Müller, Karin H.; Wong, Wai Ching; Pickard, Chris J.; Reid, David G.; Skepper, Jeremy N.; Duer, Melinda J.
2014-01-01
We provide evidence that citrate anions bridge between mineral platelets in bone and hypothesize that their presence acts to maintain separate platelets with disordered regions between them rather than gradual transformations into larger, more ordered blocks of mineral. To assess this hypothesis, we take as a model for a citrate bridging between layers of calcium phosphate mineral a double salt octacalcium phosphate citrate (OCP-citrate). We use a combination of multinuclear solid-state NMR spectroscopy, powder X-ray diffraction, and first principles electronic structure calculations to propose a quantitative structure for this material, in which citrate anions reside in a hydrated layer, bridging between apatitic layers. To assess the relevance of such a structure in native bone mineral, we present for the first time, to our knowledge, 17O NMR data on bone and compare them with 17O NMR data for OCP-citrate and other calcium phosphate minerals relevant to bone. The proposed structural model that we deduce from this work for bone mineral is a layered structure with thin apatitic platelets sandwiched between OCP-citrate–like hydrated layers. Such a structure can explain a number of known structural features of bone mineral: the thin, plate-like morphology of mature bone mineral crystals, the presence of significant quantities of strongly bound water molecules, and the relatively high concentration of hydrogen phosphate as well as the maintenance of a disordered region between mineral platelets. PMID:24706850
NASA Technical Reports Server (NTRS)
Demendonca, F. (Principal Investigator); Correa, A. C.; Liu, C. C.
1975-01-01
The author has identified the following significant results. Sao Domingos Range, Pocos de Caldas, and Araguaia and Tocantins Rivers in Brazil were selected as test sites for LANDSAT imagery. The satellite images were analyzed using conventional photointerpretation techniques, and the results indicate the application of small scale image data in regional structural data analysis, geological mapping, and mineral exploration.
Evolution of ribozymes in the presence of a mineral surface
Stephenson, James D.; Popović, Milena; Bristow, Thomas F.
2016-01-01
Mineral surfaces are often proposed as the sites of critical processes in the emergence of life. Clay minerals in particular are thought to play significant roles in the origin of life including polymerizing, concentrating, organizing, and protecting biopolymers. In these scenarios, the impact of minerals on biopolymer folding is expected to influence evolutionary processes. These processes include both the initial emergence of functional structures in the presence of the mineral and the subsequent transition away from the mineral-associated niche. The initial evolution of function depends upon the number and distribution of sequences capable of functioning in the presence of the mineral, and the transition to new environments depends upon the overlap between sequences that evolve on the mineral surface and sequences that can perform the same functions in the mineral's absence. To examine these processes, we evolved self-cleaving ribozymes in vitro in the presence or absence of Na-saturated montmorillonite clay mineral particles. Starting from a shared population of random sequences, RNA populations were evolved in parallel, along separate evolutionary trajectories. Comparative sequence analysis and activity assays show that the impact of this clay mineral on functional structure selection was minimal; it neither prevented common structures from emerging, nor did it promote the emergence of new structures. This suggests that montmorillonite does not improve RNA's ability to evolve functional structures; however, it also suggests that RNAs that do evolve in contact with montmorillonite retain the same structures in mineral-free environments, potentially facilitating an evolutionary transition away from a mineral-associated niche. PMID:27793980
Multi-Functions of Carbonated Calcium Deficient Hydroxyapatite (CDHA)
NASA Astrophysics Data System (ADS)
Zhou, Huan
Natural bone is a complex composite mainly constituted of inorganic minerals and organic collagen molecules. Calcium phosphate (CaP) based materials have been proposed as the predominant bone substitute for bone tissue engineering applications due to their chemical similarity to bone mineral. Amorphous carbonated calcium deficient hydroxyapatite (CDHA) is an important compound among CaP materials because of the amorphous crystallite structure. The presence of extra ions in its lattice structure not only influences cell attachment and proliferation of osteoblasts, but also helps in bone metabolism. Biomimetic coating approach is the most widely used approach to produce CDHA coatings to implant. It is a process using simulated body fluid (SBF) to deposit bone-like CDHA coating to various material surfaces. The CDHA formation mechanism, SBF compositions and reacting conditions of biomimetic coating have already been sufficiently studied and compared in the past 20 years. It is an attempt in this thesis to explore new applications of SBF in biomedical research, focusing on different biomaterial applications: 1) based on the low temperature reaction condition of SBF, bisphosphonate incorporated CDHA coatings were deposited onto Ti6Al4V surface for the treatment of osteoporosis; 2) amorphous calcium phosphate nanospheres with extra elements in the lattice structure were prepared by a novel microwave assisted approach, providing a new potential of CaP materials production; 3) CDHA particles formed in SBF can be used as great fillers with biopolymers for preparing biocomposites for biomedical applications; 4) based on the high activity of CDHA amorphous structure and the stabilization ability of ethanol, yttrium and europium doped calcium phosphates were prepared using CDHA as a sacrificing template. In the end, future work based on these observations in the thesis is addressed, including areas of drug delivery, biocomposite fabrication and preparation of functionalized calcium phosphate materials.
26 CFR 1.614-5 - Special rules as to aggregating nonoperating mineral interests.
Code of Federal Regulations, 2010 CFR
2010-04-01
... section. (b) Manner and scope of election—(1) Time for filing application for permission to aggregate separate nonoperating mineral interests under paragraph (a) of this section. The application for permission... and returns under permission. The application for permission to aggregate nonoperating mineral...
NASA Astrophysics Data System (ADS)
Andersen, A.; Govind, N.; Washton, N.; Reardon, P.; Chacon, S. S.; Burton, S.; Lipton, A.; Kleber, M.; Qafoku, N. P.
2014-12-01
Carbon cycling among the three major Earth's pools, i.e., atmosphere, terrestrial systems and oceans, has received increased attention because the concentration of CO2 in the atmosphere has increased significantly in recent years reaching concentrations greater than 400 ppm that have never been recorded before, warming the planet and changing the climate. Within the terrestrial system, soil organic matter (SOM) represents an important sub-pool of carbon. The associations of SOM with soil mineral interfaces and particles, creating micro-aggregates, are believed to regulate the bioavailability of the associated organic carbon by protecting it from transformations and mineralization to carbon dioxide. Nevertheless, the molecular scale interactions of different types of SOM with a variety of soil minerals and the controls on the extent and rate of SOM transformation and mineralization are not well documented in the current literature. Given the importance of SOM fate and persistence in soils and the current knowledge gaps, the application of atomistic scale simulations to study SOM/mineral associations in abiotic model systems offers rich territory for original and impactful science. Molecular modeling and simulation of SOM is a burgeoning and challenging avenue for aiding the characterization of these complex compounds and chemical systems and for studying their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types and common in soils, which are thought to contribute to their reactive properties including recalcitrance potential and resistance to mineralization. Here, we will discuss our large-scale molecular dynamics simulation efforts to explore the interaction of proteins with clay minerals (i.e., phyllosilicates such as kaolinite, smectite and micas), including the potential physical and chemical structural changes of proteins, protein adsorption by polar and permanently charged mineral surfaces and variably charged edges, and the potential role of amphiphilic proteins in providing adsorptive layers for SOM-mineral interfaces. Our efforts at characterizing these systems through combined modeling and simulation and NMR will also be discussed.
Hamdous, Yasmina; Chebbi, Imène; Mandawala, Chalani; Le Fèvre, Raphael; Guyot, François; Seksek, Olivier; Alphandéry, Edouard
2017-10-17
Biologics magnetics nanoparticles, magnetosomes, attract attention because of their magnetic characteristics and potential applications. The aim of the present study was to develop and characterize novel magnetosomes, which were extracted from magnetotactic bacteria, purified to produce apyrogen magnetosome minerals, and then coated with Chitosan, Neridronate, or Polyethyleneimine. It yielded stable magnetosomes designated as M-Chi, M-Neri, and M-PEI, respectively. Nanoparticle biocompatibility was evaluated on mouse fibroblast cells (3T3), mouse glioblastoma cells (GL-261) and rat glioblastoma cells (RG-2). We also tested these nanoparticles for magnetic hyperthermia treatment of tumor in vitro on two tumor cell lines GL-261 and RG-2 under the application of an alternating magnetic field. Heating, efficacy and internalization properties were then evaluated. Nanoparticles coated with chitosan, polyethyleneimine and neridronate are apyrogen, biocompatible and stable in aqueous suspension. The presence of a thin coating in M-Chi and M-PEI favors an arrangement in chains of the magnetosomes, similar to that observed in magnetosomes directly extracted from magnetotactic bacteria, while the thick matrix embedding M-Neri leads to structures with an average thickness of 3.5 µm 2 per magnetosome mineral. In the presence of GL-261 cells and upon the application of an alternating magnetic field, M-PEI and M-Chi lead to the highest specific absorption rates of 120-125 W/g Fe . Furthermore, while M-Chi lead to rather low rates of cellular internalization, M-PEI strongly associate to cells, a property modulated by the application of an alternating magnetic field. Coating of purified magnetosome minerals can therefore be chosen to control the interactions of nanoparticles with cells, organization of the minerals, as well as heating and cytotoxicity properties, which are important parameters to be considered in the design of a magnetic hyperthermia treatment of tumor.
The review of recent carbonate minerals processing technology
NASA Astrophysics Data System (ADS)
Solihin
2018-02-01
Carbonate is one of the groups of minerals that can be found in relatively large amount in the earth crust. The common carbonate minerals are calcium carbonate (calcite, aragonite, depending on its crystal structure), magnesium carbonate (magnesite), calcium-magnesium carbonate (dolomite), and barium carbonate (barite). A large amount of calcite can be found in many places in Indonesia such as Padalarang, Sukabumi, and Tasikmalaya (West Java Provence). Dolomite can be found in a large amount in Gresik, Lamongan, and Tuban (East Java Provence). Magnesite is quite rare in Indonesia, and up to the recent years it can only be found in Padamarang Island (South East Sulawesi Provence). The carbonate has been being exploited through open pit mining activity. Traditionally, calcite can be ground to produce material for brick production, be carved to produce craft product, or be roasted to produce lime for many applications such as raw materials for cement, flux for metal smelting, etc. Meanwhile, dolomite has traditionally been used as a raw material to make brick for local buildings and to make fertilizer for coconut oil plant. Carbonate minerals actually consist of important elements needed by modern application. Calcium is one of the elements needed in artificial bone formation, slow release fertilizer synthesis, dielectric material production, etc. Magnesium is an important material in automotive industry to produce the alloy for vehicle main parts. It is also used as alloying element in the production of special steel for special purpose. Magnesium oxide can be used to produce slow release fertilizer, catalyst and any other modern applications. The aim of this review article is to present in brief the recent technology in processing carbonate minerals. This review covers both the technology that has been industrially proven and the technology that is still in research and development stage. One of the industrially proven technologies to process carbonate mineral is the production of magnesium metals from dolomite. The discussion is emphasized to the requirements of certain aspects prior to the application of this technology in Indonesia. Other technologies that are still in research and development stage are also presented and discussed. The discussion is aimed to find further possible research and development in carbonate processing.
GeoSciML version 3: A GML application for geologic information
NASA Astrophysics Data System (ADS)
International Union of Geological Sciences., I. C.; Richard, S. M.
2011-12-01
After 2 years of testing and development, XML schema for GeoSciML version 3 are now ready for application deployment. GeoSciML draws from many geoscience data modelling efforts to establish a common suite of feature types to represent information associated with geologic maps (materials, structures, and geologic units) and observations including structure data, samples, and chemical analyses. After extensive testing and use case analysis, in December 2008 the CGI Interoperability Working Group (IWG) released GeoSciML 2.0 as an application schema for basic geological information. GeoSciML 2.0 is in use to deliver geologic data by the OneGeology Europe portal, the Geological Survey of Canada Groundwater Information Network (wet GIN), and the Auscope Mineral Resources portal. GeoSciML to version 3.0 is updated to OGC Geography Markup Language v3.2, re-engineered patterns for association of element values with controlled vocabulary concepts, incorporation of ISO19156 Observation and Measurement constructs for representing numeric and categorical values and for representing analytical data, incorporation of EarthResourceML to represent mineral occurrences and mines, incorporation of the GeoTime model to represent GSSP and stratigraphic time scale, and refactoring of the GeoSciML namespace to follow emerging ISO practices for decoupling of dependencies between standardized namespaces. These changes will make it easier for data providers to link to standard vocabulary and registry services. The depth and breadth of GeoSciML remains largely unchanged, covering the representation of geologic units, earth materials and geologic structures. ISO19156 elements and patterns are used to represent sampling features such as boreholes and rock samples, as well as geochemical and geochronologic measurements. Geologic structures include shear displacement structures (brittle faults and ductile shears), contacts, folds, foliations, lineations and structures with no preferred orientation (e.g. 'miarolitic cavities'). The Earth material package allows for the description of both individual components, such as minerals, and compound materials, such as rocks or unconsolidated materials. Provision is made for alteration, weathering, metamorphism, particle geometry, fabric, and petrophysical descriptions. Mapped features describe the shape of the geological features using standard GML geometries, such as polygons, lines, points or 3D volumes. Geological events provide the age, process and environment of formation of geological features. The Earth Resource section includes features to represent mineral occurrences and mines and associated human activities independently. This addition allows description of resources and reserves that can comply with national and internationally accepted reporting codes. GeoSciML v3 is under consideration as the data model for INSPIRE annex 2 geologic reporting in Europe.
Hardwood biochar and manure co-application to a calcareous soil.
Ippolito, J A; Stromberger, M E; Lentz, R D; Dungan, R S
2016-01-01
Biochar may affect the mineralization rate of labile organic C sources such as manures via microbial community shifts, and subsequently affect nutrient release. In order to ascertain the positive or negative priming effect of biochar on manure, dairy manure (2% by wt.) and a hardwood-based, fast pyrolysis biochar were applied (0%, 1%, 2%, and 10% by wt.) to a calcareous soil. Destructive sampling occurred at 1, 2, 3, 4, 6 and 12 months to monitor for changes in soil chemistry, water content, microbial respiration, bacterial populations, and microbial community structure. Overall results showed that increasing biochar application rate improved the soil water content, which may be beneficial in limited irrigation or rainfall areas. Biochar application increased soil organic C content and plant-available Fe and Mn, while a synergistic biochar-manure effect increased plant-available Zn. Compared to the other rates, the 10% biochar application lowered concentrations of NO3-N; effects appeared masked at lower biochar rates due to manure application. Over time, soil NO3-N increased likely due to manure N mineralization, yet soil NO3-N in the 10% biochar rate remained lower as compared to other treatments. In the presence of manure, only the 10% biochar application caused subtle microbial community structure shifts by increasing the relative amounts of two fatty acids associated with Gram-negative bacteria and decreasing Gram-positive bacterial fatty acids, each by ∼1%. Our previous findings with biochar alone suggested an overall negative priming effect with increasing biochar application rates, yet when co-applied with manure the negative priming effect was eliminated. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Basu, Probal; Saha, Nabanita; Bandyopadhyay, Smarak; Saha, Petr
2017-05-01
Bacterial cellulose (BC) based hydrogels (BC-PVP and BC-CMC) are modified with β-tri-calcium phosphate (β-TCP) and hydroxyapatite (HA) to improve the structural and functional properties of the existing hydrogel scaffolds. The modified hydrogels are then biomineralized with CaCO3 following liquid diffusion technique, where salt solutions of Na2CO3 (5.25 g/100 mL) and CaCl2 (7.35 g/100 mL) were involved. The BC-PVP and BC-CMC are being compared with the non-mineralized (BC-PVP-β-TCP/HA and BC-CMC-β-TCP/HA) and biomineralized (BC-PVP-β-TCP/HA-CaCO3 and BC-CMC-β-TCP/HA-CaCO3) hydrogels on the basis of their structural and rheological properties. The Fourier Transform Infrared (FTIR) spectral analysis demonstrated the presence of BC, CMC, PVP, β-TCP, HA in the non-mineralized and BC, CMC, PVP, β-TCP, HA and CaCO3 in the biomineralized samples. Interestingly, the morphological property of non-mineralized and biomineralized, hydrogels are different than that of BC-PVP and BC-CMC based novel biomaterials. The Scanning Electron Microscopic (SEM) images of the before mentioned samples reveal the denser structures than BC-PVP and BC-CMC, which exhibits the changes in their pore sizes. Concerning rheological analysis point of view, all the non-mineralized and biomineralized hydrogel scaffolds have shown significant elastic property. Additionally, the complex viscosity (η*) values have also found in decreasing order with the increase of angular frequency (ω) 0.1 rad.sec-1 to 100 rad.sec-1. All these BC based hydrogel scaffolds are elastic in nature, can be recommended for their application as an implant for bone tissue engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.
Fluidized Bed Steam Reforming (FBSR) is a robust technology for the immobilization of a wide variety of radioactive wastes. Applications have been tested at the pilot scale for the high sodium, sulfate, halide, organic and nitrate wastes at the Hanford site, the Idaho National Laboratory (INL), and the Savannah River Site (SRS). Due to the moderate processing temperatures, halides, sulfates, and technetium are retained in mineral phases of the feldspathoid family (nepheline, sodalite, nosean, carnegieite, etc). The feldspathoid minerals bind the contaminants such as Tc-99 in cage (sodalite, nosean) or ring (nepheline) structures to surrounding aluminosilicate tetrahedra in the feldspathoidmore » structures. The granular FBSR mineral waste form that is produced has a comparable durability to LAW glass based on the short term PCT testing in this study, the INL studies, SPFT and PUF testing from previous studies as given in the columns in Table 1-3 that represent the various durability tests. Monolithing of the granular product was shown to be feasible in a separate study. Macro-encapsulating the granular product provides a decrease in leaching compared to the FBSR granular product when the geopolymer is correctly formulated.« less
First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts
NASA Technical Reports Server (NTRS)
Balla, Vamsi Krishna; Roberson, Luke B.; OConnor, Gregory W. O.; Trigwell, Stephen; Bose, Susmita; Bandyopadhyay, Amit
2010-01-01
Establishment of a lunar or Martian outpost necessitates the development of methods to utilize in situ mineral resources for various construction and resource extraction applications. Fabrication technologies are critical for habitat structure development, as well as repair and replacement of tools and parts at the outpost. Herein we report the direct fabrication of lunar regolith simulant parts, in freeform environment, using lasers. We show that raw lunar regolith can be processed at laser energy levels as a low as 2.12 J mm-2 resulting in nanocrystalline and/or amorphous microstructures. Potential applications of laser based fabrication technologies to make useful regolith parts for various applications including load bearing composite structures, radiation shielding, and solar cell substrates is described.
Interaction of inorganic anions with iron-mineral adsorbents in aqueous media--a review.
Kumar, Eva; Bhatnagar, Amit; Hogland, William; Marques, Marcia; Sillanpää, Mika
2014-01-01
A number of inorganic anions (e.g., nitrate, fluoride, bromate, phosphate, and perchlorate) have been reported in alarming concentrations in numerous drinking water sources around the world. Their presence even in very low concentrations may cause serious environmental and health related problems. Due to the presence and significance of iron minerals in the natural aquatic environment and increasing application of iron in water treatment, the knowledge of the structure of iron and iron minerals and their interactions with aquatic pollutants, especially inorganic anions in water are of great importance. Iron minerals have been known since long as potential adsorbents for the removal of inorganic anions from aqueous phase. The chemistry of iron and iron minerals reactions in water is complex. The adsorption ability of iron and iron minerals towards inorganic anions is influenced by several factors such as, surface characteristics of the adsorbent (surface area, density, pore volume, porosity, pore size distribution, pHpzc, purity), pH of the solution, and ionic strength. Furthermore, the physico-chemical properties of inorganic anions (pore size, ionic radius, bulk diffusion coefficient) also significantly influence the adsorption process. The aim of this paper is to provide an overview of the properties of iron and iron minerals and their reactivity with some important inorganic anionic contaminants present in water. It also summarizes the usage of iron and iron minerals in water treatment technology. © 2013.
43 CFR 3101.4 - Lands covered by application to close lands to mineral leasing.
Code of Federal Regulations, 2013 CFR
2013-10-01
... lands to mineral leasing. 3101.4 Section 3101.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Issuance of Leases § 3101.4 Lands covered by application to close lands to mineral...
43 CFR 3101.4 - Lands covered by application to close lands to mineral leasing.
Code of Federal Regulations, 2011 CFR
2011-10-01
... lands to mineral leasing. 3101.4 Section 3101.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Issuance of Leases § 3101.4 Lands covered by application to close lands to mineral...
43 CFR 3101.4 - Lands covered by application to close lands to mineral leasing.
Code of Federal Regulations, 2014 CFR
2014-10-01
... lands to mineral leasing. 3101.4 Section 3101.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL AND GAS LEASING Issuance of Leases § 3101.4 Lands covered by application to close lands to mineral...
Wynn, J.; Williamson, M.; Urquhart, S.; Fleming, J.
2011-01-01
A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium-and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. ?? 2011 MTS.
Chemical analysis of extracting transition metal oxides from polymetallic ore by sulphate process
NASA Astrophysics Data System (ADS)
Enkh-Uyanga, Otgon-Uul; Munkhtsetseg, Baatar; Urangoo, Urtnasan; Tserendulam, Enkhtur; Agiimaa, Davaadorj
2017-06-01
In this research work we attempt to improve the purity of polymetallic ores in Mongolia whilst developing practical applications of its refinement processes and this paper presents the results of chemical research of extracting transition metal titanium oxides, ferrous oxide and rare earth oxides from polymetallic ore. Thereby, chemical and mineral analysis of polymetallic ore is carried out basis of responses to the support process at various degrees of water whereas transition metal sulphates solubility differ. As a result of sulphate and resulphurization process we have extracted anatase with 62.5 percent titanium dioxide and brookite mineral with 89.6 percent of titanium dioxide as well as mineral with 83.8 percent of ferrous oxide hematite and rare earth oxides with 57.6 percent of cerium oxide. These oxides are identified under various conditions in the thermal processing. The morphology structure and chemical content compound of the mineral has been verified as a result of the XRF, XRD, SEM-EDX analysis.
Organic matrix-related mineralization of sea urchin spicules, spines, test and teeth.
Veis, Arthur
2011-06-01
The camarodont echinoderms have five distinct mineralized skeletal elements: embryonic spicules, mature test, spines, lantern stereom and teeth. The spicules are transient structural elements whereas the spines, and test plates are permanent. The teeth grow continuously. The mineral is a high magnesium calcite, but the magnesium content is different in each type of skeletal element, varying from 5 to 40 mole% Mg. The organic matrix creates the spaces and environments for crystal initiation and growth. The detailed mechanisms of crystal regulation are not known, but acidic and phosphorylated matrix proteins may be of special importance. Biochemical studies, sequencing of the complete genome, and high-throughput proteomic analysis have not yet provided insight into the mechanisms of crystallization, calcite composition, and orientation applicable to all skeletal elements. The embryonic spicules are not representative of the mature skeletal elements. The next phase of research will have to focus on the specific localization of the proteins and individual biochemistries of each system with regard to mineral content and placement.
Gneisses of Brazil's cultural heritage buildings and its most frequent degradations
NASA Astrophysics Data System (ADS)
Gilberto Costa, Antônio
2017-04-01
Macroscopic descriptions of cultural heritage buildings constructed using gneisses in the cities of Rio de Janeiro, Belo Horizonte and Ouro Preto, Brazil, allowed to identify alterations and degradations, in part conditioned by the mineralogical composition and the structures present in these stone materials. It is important to emphasize that: - some changes still begin in the environments where these materials were formed, experiencing an intensification from the processes of extraction, processing and application; - modifications occurring after the applications are understood herein as degradations. The studied gneisses present banding consisting of parts with different thicknesses and mineralogical contents. Due to these differentiated contents, clear bands were identified and constituted essentially by felsic minerals, such as feldspars and quartz, as well as dark bands formed by mafic minerals represented by: biotite, garnets, amphiboles, such as hornblende or pyroxene (hyperstene). In addition to these minerals, low contents of oxides and sulphides were found. Also under the influence of this distribution of minerals, planar structures or foliations, more or less developed, that can be very penetrative have been identified, mainly when these rocks were submitted to the performance of milonitization processes. From the set of changes and degradations observed stand out those related to the decomposition of minerals that make up these materials. In these cases, feldspars and other silicates, such as micas, amphiboles and pyroxenes, were decomposed due to the hydrolysis and products were generated which compromised the resistance of these stone materials, leading to their consequent disintegration. On the other hand, the presence of expansive clays in these products, caused volume increases which also contributed to the expansion of the weathered surface layer (blistering). This process may result detachments in the form of scales to cavities in cases of significant loss of components. Still related to minerals of these rocks, degradations occurred due to the oxidation of the iron present in these rocks in the silicates and oxides. This process, which was more intense in hot, tropical regions, was responsible for chromatic alterations with predominance of reddish color. When the action of this process occurs in conjunction with hydration, it becomes much more effective and manifests itself in much more extensive areas. In these cases, minerals containing iron, for example, have changed to hematite or limonite, causing important chromatic variations identified by the appearance of a yellow-brown coloration in the studied materials. In relation to the structural arrangements, the influence of these in the degradation processes was verified. Here we highlight the exfoliations and detachments parallel to the structures of these materials. Other detachments observed result from the formation of black crusts that end up leading to the appearance of bubbles or spells that eventually evolve into the detachments. Contrary to what is observed for others rocks with feldspar quartz composition, but with hypidiomorphic granular texture, rounding is not frequent.
Microorganisms meet solid minerals: interactions and biotechnological applications.
Ng, Daphne H P; Kumar, Amit; Cao, Bin
2016-08-01
In natural and engineered environments, microorganisms often co-exist and interact with various minerals or mineral-containing solids. Microorganism-mineral interactions contribute significantly to environmental processes, including biogeochemical cycles in natural ecosystems and biodeterioration of materials in engineered environments. In this mini-review, we provide a summary of several key mechanisms involved in microorganism-mineral interactions, including the following: (i) solid minerals serve as substrata for biofilm development; (ii) solid minerals serve as an electron source or sink for microbial respiration; (iii) solid minerals provide microorganisms with macro or micronutrients for cell growth; and (iv) (semi)conductive solid minerals serve as extracellular electron conduits facilitating cell-to-cell interactions. We also highlight recent developments in harnessing microbe-mineral interactions for biotechnological applications.
NASA Technical Reports Server (NTRS)
Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.
1993-01-01
An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.
Development and application of an instrument for analysis of bone structure on radiographs.
Xu, S; Liu, S; Bao, K
1997-01-01
An instrument used for quantitative assessment of trabecular structure of radius on radiograph including trabecular number and trabecular width was developed using a microdensitometer and a single-chip microcomputer. The device is characterized by its high sensitivity, good reproducibility, convenience and economy. The results obtained with the instrument were significantly correlated to actual bone mineral content. This device can be used for the diagnosis of osteoporosis, fluorosis, rickets and bone damages caused by cadmium.
Clay Mineral Structure Similar to Clays Observed in Mudstone on Mars
2013-12-09
This schematic shows the atomic structure of the smallest units that make up the layers and interlayer region of clay minerals. This structure is similar to the clay mineral in drilled rock powder collected by NASA Curiosity Mars rover.
NASA Astrophysics Data System (ADS)
Koohzare, A.; Rezaeian, M.; McIntosh, A.
2009-05-01
The Kerr Sulphurets property in North Western British Columbia has been explored primarily as a placer gold holding since the 1880s; and, potentially includes one of Canada's largest gold deposits (e.g. the Mitchell Zone). The Sulphurets camp has been classified by Taylor in 2007 as a prominent global epithermal high-sulphidation subtype with 10 million tonnes of ore (reserves + production) containing approximately 10 g/t gold. The geological and geophysical observations of this deposit indicate intrusion- related mineralized veins which are known to overlap as the result of structural complexities. Faulting predates mineralization and alteration and dramatically dominates the location of the mineralization for this porphyry- epithermal high-sulphidation deposit (Britton and Alldrick 1988, British Columbia Ministry of Energy, Mines and Petroleum Resources, 1992; Margolis, 1993). However, the surface trace of these structures and lineaments within the site is obscured by vegetation, glacial cover and steep topographic relief. We used high resolution LiDAR airborne bare-earth sensing (vegetative data deleted) in an effort to detect the surface geological features and lineaments in the Kerr Sulphurets site. The LiDAR flight was designed to acquire high density data with 2 points per square meter using a 150 kHz multipulse system. High resolution LiDAR data provides a level of detail not achievable by other digital terrain modelling techniques, whether extracted from aerial photography, low-resolution topographic contour maps, 10-30 meter USGS, or SRTM digital elevation models. LiDAR bare-earth data spectacularly revealed hidden geological structures within the property district, which in turn assisted in identifying the high potential zones for mineralization in Sulphurets.
NASA Astrophysics Data System (ADS)
Brandelik, Andreas
2009-07-01
CALCMIN, an open source Visual Basic program, was implemented in EXCEL™. The program was primarily developed to support geoscientists in their routine task of calculating structural formulae of minerals on the basis of chemical analysis mainly obtained by electron microprobe (EMP) techniques. Calculation programs for various minerals are already included in the form of sub-routines. These routines are arranged in separate modules containing a minimum of code. The architecture of CALCMIN allows the user to easily develop new calculation routines or modify existing routines with little knowledge of programming techniques. By means of a simple mouse-click, the program automatically generates a rudimentary framework of code using the object model of the Visual Basic Editor (VBE). Within this framework simple commands and functions, which are provided by the program, can be used, for example, to perform various normalization procedures or to output the results of the computations. For the clarity of the code, element symbols are used as variables initialized by the program automatically. CALCMIN does not set any boundaries in complexity of the code used, resulting in a wide range of possible applications. Thus, matrix and optimization methods can be included, for instance, to determine end member contents for subsequent thermodynamic calculations. Diverse input procedures are provided, such as the automated read-in of output files created by the EMP. Furthermore, a subsequent filter routine enables the user to extract specific analyses in order to use them for a corresponding calculation routine. An event-driven, interactive operating mode was selected for easy application of the program. CALCMIN leads the user from the beginning to the end of the calculation process.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... of Realty Action: Notice of Receipt of Conveyance of Mineral Interest Application, Santa Clara County... of the federally owned mineral interests underlying a 1,148.68 acre tract of land in Santa Clara County, California. Publication of this notice temporarily segregates the mineral interests in the land...
Block Copolymer Directed Biomimetic Mineral Formation for Polymer Nanocomposites
NASA Astrophysics Data System (ADS)
Gleeson, Sarah; Yu, Tony; Chen, Xi; Marcolongo, Michele; Li, Christopher
Bone is a hierarchically structured biocomposite comprised of mineralized collagen fibrils. The mechanical properties of bone can be precisely tuned by the structure and morphology of the mineral nanocrystals as well as the organic collagen fibrils. Synthetic materials that can mimic the nanostructure of natural bone show promise to replicate bone's structural function, yet little is known about the mechanism of mineral formation. We previously have shown that hierarchically ordered polymer fibers control the distribution and orientation of hydroxyapatite, enhancing mechanical properties and biocompatibility. We demonstrate a new method for mineralization by forming block copolymer single crystal films of polycaprolactone-block-poly(acrylic acid) (PCL- b-PAA) so that lamellar anionic PAA nanodomains recruit mineral ions and provide one-dimensional confinement to induce orientation. The effect of the anionic domain dimensions on mineral content, orientation, and structure within the polymer matrix is shown. The mechanical properties of the nanocomposite are evaluated to determine the role of mineral orientation and crystallinity in composite strength. These results can be used to tailor the physical mineralization environment to create a more biomimetic bone material.
Weil, Marcel; Jeske, Udo; Schebek, Liselotte
2006-06-01
Recycling of construction and demolition waste contributes decisively to the saving of natural mineral resources. In Germany, processed mineral construction and demolition waste from structural engineering is used nearly exclusively in civil engineering (earthwork and road construction sector) as open-loop recycling. Due to the planned stricter limit values for the protection of soil and water, however, this recycling path in civil engineering may no longer be applicable in the future. According to some new guidelines and standards adopted recently, recycled aggregates may also be used for concrete production in the structural engineering sector (closed-loop recycling). Wastes from the structural engineering sector can thus be kept in a closed cycle, and their disposal on a landfill can be avoided. The present report focuses on the determination of maximum waste volumes that may be handled by this new recycling option. Potential adverse effects on the saving of resources and climate protection have been analysed. For this purpose, materials flow analysis and ecobalancing methods have been used.
NASA Astrophysics Data System (ADS)
Dill, Harald G.
2010-06-01
Economic geology is a mixtum compositum of all geoscientific disciplines focused on one goal, finding new mineral depsosits and enhancing their exploitation. The keystones of this mixtum compositum are geology and mineralogy whose studies are centered around the emplacement of the ore body and the development of its minerals and rocks. In the present study, mineralogy and geology act as x- and y-coordinates of a classification chart of mineral resources called the "chessboard" (or "spreadsheet") classification scheme. Magmatic and sedimentary lithologies together with tectonic structures (1 -D/pipes, 2 -D/veins) are plotted along the x-axis in the header of the spreadsheet diagram representing the columns in this chart diagram. 63 commodity groups, encompassing minerals and elements are plotted along the y-axis, forming the lines of the spreadsheet. These commodities are subjected to a tripartite subdivision into ore minerals, industrial minerals/rocks and gemstones/ornamental stones. Further information on the various types of mineral deposits, as to the major ore and gangue minerals, the current models and the mode of formation or when and in which geodynamic setting these deposits mainly formed throughout the geological past may be obtained from the text by simply using the code of each deposit in the chart. This code can be created by combining the commodity (lines) shown by numbers plus lower caps with the host rocks or structure (columns) given by capital letters. Each commodity has a small preface on the mineralogy and chemistry and ends up with an outlook into its final use and the supply situation of the raw material on a global basis, which may be updated by the user through a direct link to databases available on the internet. In this case the study has been linked to the commodity database of the US Geological Survey. The internal subdivision of each commodity section corresponds to the common host rock lithologies (magmatic, sedimentary, and metamorphic) and structures. Cross sections and images illustrate the common ore types of each commodity. Ore takes priority over the mineral. The minerals and host rocks are listed by their chemical and mineralogical compositions, respectively, separated from the text but supplemented with cross-references to the columns and lines, where they prevalently occur. A metallogenetic-geodynamic overview is given at the bottom of each column in the spreadsheet. It may be taken as the "sum" or the " mean" of a number of geodynamic models and ideas put forward by the various researchers for all the deposits pertaining to a certain clan of lithology or structure. This classical or conservative view of metallotects related to the common plate tectonic settings is supplemented by an approach taken for the first time for such a number of deposits, using the concepts of sequence stratigraphy. This paper, so as to say, is a "launch pad" for a new mindset in metallogenesis rather than the final result. The relationship supergene-hypogene and syngenetic-epigenetic has been the topic of many studies for ages but to keep them as separate entities is often unworkable in practice, especially in the so-called epithermal or near-surface/shallow deposits. Vein-type and stratiform ore bodies are generally handled also very differently. To get these different structural elements (space) and various mineralizing processes (time) together and to allow for a forward modeling in mineral exploration, architectural elements of sequence stratigraphy are adapted to mineral resources. Deposits are geological bodies which need accommodation space created by the environment of formation and the tectonic/geodynamic setting through time. They are controlled by horizontal to subhorizontal reference planes and/or vertical structures. Prerequisites for the deposits to evolve are thermal and/or mechanical gradients. Thermal energy is for most of the settings under consideration deeply rooted in the mantle. A perspective on how this concept might work is given in the text by a pilot project on mineral deposits in Central Europe and in the spreadsheet classification scheme by providing a color-coded categorization into 1. mineralization mainly related to planar architectural elements, e.g. sequence boundaries subaerial and unconformities 2. mineralization mainly related to planar architectural elements, e.g. sequence boundaries submarine, transgressive surfaces and maximum flooding zones/surfaces) 3. mineralization mainly controlled by system tracts (lowstand system tracts transgressive system tracts, highstand system tracts) 4. mineralization of subvolcanic or intermediate level to be correlated with the architectural elements of basin evolution 5. mineralization of deep level to be correlated with the deep-seated structural elements. There are several squares on the chessboard left blank mainly for lack of information on sequence stratigraphy of mineral deposits. This method has not found many users yet in mineral exploration. This review is designed as an "interactive paper" open, for amendments in the electronic spreadsheet version and adjustable to the needs and wants of application, research and training in geosciences. Metamorphic host rock lithologies and commodities are addressed by different color codes in the chessboard classification scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherer, Michelle
2016-08-31
During this project, we investigated Fe electron transfer and atom exchange between aqueous Fe(II) and structural Fe(III) in clay minerals. We used selective chemical extractions, enriched Fe isotope tracer experiments, computational molecular modeling, and Mössbauer spectroscopy. Our findings indicate that structural Fe(III) in clay minerals is reduced by aqueous Fe(II) and that electron transfer occurs when Fe(II) is sorbed to either basal planes and edge OH-groups of clay mineral. Findings from highly enriched isotope experiments suggest that up to 30 % of the Fe atoms in the structure of some clay minerals exhanges with aqueous Fe(II). First principles calculations usingmore » a small polaron hopping approach suggest surprisingly fast electron mobility at room temperature in a nontronite clay mineral and are consistent with temperature dependent Mössbauer data Fast electron mobility suggests that electrons may be able to conduct through the mineral fast enough to enable exchange of Fe between the aqueous phase and clay mineral structure. over the time periods we observed. Our findings suggest that Fe in clay minerals is not as stable as previously thought.« less
Bibliography of articles and reports on mineral-separation techniques, processes, and applications
NASA Technical Reports Server (NTRS)
Harmon, R. S.
1971-01-01
A bibliography of published articles and reports on mineral-separation techniques, processes, and applications is presented along with an author and subject index. This information is intended for use in the mineral-separation facility of the Lunar Receiving Laboratory at the NASA Manned Spacecraft Center and as an aid and reference to persons involved or interested in mineral separation.
Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals
NASA Astrophysics Data System (ADS)
Li, Huan; Hu, Shuijin; Polizzotto, Matthew L.; Chang, Xiaoli; Shen, Qirong; Ran, Wei; Yu, Guanghui
2016-10-01
Highly reactive nano-scale minerals, e.g., short-range-ordered minerals (SROs) and other nanoparticles, play an important role in soil carbon (C) retention. Yet, the mechanisms that govern biomineralization from bulk minerals to highly reactive nano-scale minerals remain largely unexplored, which critically hinders our efforts toward managing nano-scale minerals for soil C retention. Here we report the results from a study that explores structural changes during Aspergillus fumigatus Z5 transformation of montmorillonite and goethite to SROs. We examined the morphology and structure of nano-scale minerals, using high-resolution transmission electron microscopy, time-resolved solid-state 27Al and 29Si NMR, and Fe K-edge X-ray absorption fine structure spectroscopy combined with two dimensional correlation spectroscopy (2D COS) analysis. Our results showed that after a 48-h cultivation of montmorillonite and goethite with Z5, new biogenic intracellular and extracellular reactive nano-scale minerals with a size of 3-5 nm became abundant. Analysis of 2D COS further suggested that montmorillonite and goethite were the precursors of the dominant biogenic nano-scale minerals. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectra and their deconvolution results demonstrated that during fungus Z5 growth, carboxylic C (288.4-289.1 eV) was the dominant organic group, accounting for approximately 34% and 59% in the medium and aggregates, respectively. This result suggested that high percentage of the production of organic acids during the growth of Z5 was the driving factor for structural changes during biomineralization. This is, to the best of our knowledge, the first report of the structural characterization of nano-scale minerals by 2D COS, highlighting its potential to elucidate biomineralization pathways and thus identify the precursors of nano-scale minerals.
NASA Technical Reports Server (NTRS)
Everett, J. R.; Sheffield, C.; Dykstra, J.
1985-01-01
The role data from the first three LANDSAT satellites have in geologic exploration and their current level of acceptance is reviewed and the advantages of LANDSAT 4 TM data over MSS data are discussed. Specially enhanced Thematic Mapper imager can make a very significant contribution to the oil and gas and mineral exploration industries. The TM's increased spatial resolution enables the production of larger scale imagery, which greatly increases the amount of geomorphic and structural information interpretable. TM's greater spectral resolution, combined with the smaller, more homogeneous pixels, should enable a far greater confidence in mapping lithologies and detecting geobotanical anomalies from space. The results from its applications to hydrocarbon and mineral exploration promise to bring the majority of the geologic exploration community into that final stage of acceptance and routine application of the satellite data.
43 CFR 3863.1-1 - Application for patent.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Application for patent. 3863.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Placer Mining Claim Patent Applications § 3863.1-1 Application for patent. ...
43 CFR 3863.1-1 - Application for patent.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Application for patent. 3863.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Placer Mining Claim Patent Applications § 3863.1-1 Application for patent. ...
43 CFR 3862.1 - Lode claim patent applications: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Lode claim patent applications: General... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.1 Lode claim patent applications: General. ...
43 CFR 3862.1 - Lode claim patent applications: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Lode claim patent applications: General... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.1 Lode claim patent applications: General. ...
43 CFR 3863.1-1 - Application for patent.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Application for patent. 3863.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Placer Mining Claim Patent Applications § 3863.1-1 Application for patent. ...
43 CFR 3862.1 - Lode claim patent applications: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Lode claim patent applications: General... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.1 Lode claim patent applications: General. ...
43 CFR 3862.1 - Lode claim patent applications: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Lode claim patent applications: General... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.1 Lode claim patent applications: General. ...
43 CFR 3863.1-1 - Application for patent.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Application for patent. 3863.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Placer Mining Claim Patent Applications § 3863.1-1 Application for patent. ...
43 CFR 3601.30 - Pre-application activities-how and when may I sample and test mineral materials?
Code of Federal Regulations, 2013 CFR
2013-10-01
... Sampling and Testing § 3601.30 Pre-application activities—how and when may I sample and test mineral... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Pre-application activities-how and when may I sample and test mineral materials? 3601.30 Section 3601.30 Public Lands: Interior Regulations...
43 CFR 3601.30 - Pre-application activities-how and when may I sample and test mineral materials?
Code of Federal Regulations, 2012 CFR
2012-10-01
... Sampling and Testing § 3601.30 Pre-application activities—how and when may I sample and test mineral... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Pre-application activities-how and when may I sample and test mineral materials? 3601.30 Section 3601.30 Public Lands: Interior Regulations...
43 CFR 3601.30 - Pre-application activities-how and when may I sample and test mineral materials?
Code of Federal Regulations, 2011 CFR
2011-10-01
... Sampling and Testing § 3601.30 Pre-application activities—how and when may I sample and test mineral... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Pre-application activities-how and when may I sample and test mineral materials? 3601.30 Section 3601.30 Public Lands: Interior Regulations...
43 CFR 3601.30 - Pre-application activities-how and when may I sample and test mineral materials?
Code of Federal Regulations, 2014 CFR
2014-10-01
... Sampling and Testing § 3601.30 Pre-application activities—how and when may I sample and test mineral... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Pre-application activities-how and when may I sample and test mineral materials? 3601.30 Section 3601.30 Public Lands: Interior Regulations...
Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.
Landis, W J
1979-01-01
The use of electron probe x-ray microanalysis in previous studies of bone and cartilage has been reviewed with emphasis on the results which have contributed to some of the current concepts of the mechanism of mineralization in these tissues. A number of investigations continuing in the author's laboratory utilizing high spatial resolution x-ray microanalysis and anhydrous methods of specimen preparation are described, including aspects concerning the derivation of calibration curves from synthetic calcium phosphate solids, qualitative and quantitative analyses of calcium and phosphorus in bone from embryonic chicks and in growth plate cartilage from rats, and the role of organically-bound phosphorus in mineralizing tissues. The data obtained have helped identify brushite, CaHPO4-2H2O, as the major crystalline solid phase of calcium phosphate in the earliest mineral deposits of bone tissue, brushite and poorly crystalline hydroxyapatite in bone mineral of increasing age, and poorly crystalline hydroxyapatite in the most mature mineral portions of the tissue. Growth plate cartilage examination has revealed calcium and phosphorus in single mitochondrial granules within chondrocytes and in certain extracellular particles distinct from matrix vesicles. These results have provided important information about the possible roles of cells, extracellular components, and the organic matrix in the regulation of mineralization and about the composition, structure, and organization of the mineral phase as a function of progressively increasing age and maturation of the tissues studied.
Localized tissue mineralization regulated by bone remodelling: A computational approach
Decco, Oscar; Adams, George; Cook, Richard B.; García Aznar, José Manuel
2017-01-01
Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent–material density curve. Numerical results are discussed pointing to potential clinical applications. PMID:28306746
Characterization and Thermodynamics Studies of Feldspar and Feldspathoid Minerals
NASA Astrophysics Data System (ADS)
Rudow, M.; Lilova, K.
2015-12-01
The application of thermal analysis and calorimetry for the studies of minerals has a history as long as the existence of the thermal methods themselves. New advanced calorimetric techniques have been developed for more accurate characterization of both bulk and nano materials thus impacting their design, processing, and applications. TG-DTA and TG-DSC are used to characterize the composition of complex minerals (e.g. [KxNa1-x(AlSi3)O8]) based on the weight changes and phase transformations observed with temperature increase. Additionally, those techniques allow to determine the quantity of the different types of water contained in natural feldspars and feldspathoids (absorbed, interlayer, structural). The results for several clays will be discussed. The geochemical properties and thermal stability of another class of minerals - aluminosilicate frameworks (alkali sodalities, natrolites, etc.) as related to high-level nuclear waste treatment facilities, radioactive waste storage and management were studied. The natural sodalite Na8[Al6Si6O24]Cl2 and similar frameworks with different anions are part of sodium-aluminosilicate (NAS) low activity radioactive waste produced during steam reforming process treatment. The enthalpies and entropies of formation and the hydration enthalpies of the above-mentioned feltspathoids are obtained and the effect of the different cations and anions on the thermodynamic stability was studied. The results will allow to predict the long term behavior of the compounds in the environment under different conditions.
Overman, Allen R.; Scholtz, Richard V.
2011-01-01
The expanded growth model is developed to describe accumulation of plant biomass (Mg ha−1) and mineral elements (kg ha−1) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation. PMID:22194842
NASA Astrophysics Data System (ADS)
Solihin; Mursito, Anggoro Tri; Dida, Eki N.; Erlangga, Bagus D.; Widodo
2017-07-01
Silica mineral, which comes along with geothermal fluid in Dieng, is a product of erosion, decomposition and dissolution of silicon oxide based mineral, which is followed by precipitation to form silica mineral. This silica cell structure is non crystalline, and it contains 85,60 % silicon oxide, 6.49 volatile elements, and also other oxide elements. Among the direct potential application of this silica is as raw material in slow release fertilizer. Silica in compacted slow release fertilizer is able control the release rate of fertilizer elements. Two type of slow release fertilizer has been made by using silica as the matrix in these slow release fertilizer. The first type is the mixing of ordinary solid fertilizer with Dieng silica, whereas the second one is the mixing of disposal leach water with Dieng silica. The release test shows that both of these modified fertilizers have slow release fertilizer characteristic. The release rate of fertilizer elements (magnesium, potassium, ammonium, and phosphate) can be significantly reduced. The addition of kaolin in the first type of slow release fertilizer makes the release rate of fertilizer elements can be more slowed down. Meanwhile in the second type of slow release fertilizer, the release rate is determined by ratio of silica/hydrogel. The lowest release rate is achieved by sample that has highest ratio of silica/hydrogel.
Moraes, Jemima Daniela Dias; Bertolino, Silvana Raquel Alina; Cuffini, Silvia Lucia; Ducart, Diego Fernando; Bretzke, Pedro Eriberto; Leonardi, Gislaine Ricci
2017-12-20
Clay minerals are layered materials with a number of peculiar properties, which find many relevant applications in various industries. Since they are easily found everywhere, they are particularly attractive due to their economic viability. In the cosmetic industry, clay minerals are often used as excipients to stabilize emulsions or suspensions and to modify the rheological behavior of these systems. They also play an important role as adsorbents or absorbents, not only in cosmetics but also in other industries, such as pharmaceuticals. This reviewer believes that since this manuscript is presented as covering topical applications that include pharmaceuticals, some types of clay minerals should be considered as a potential material to be used as drug delivery systems. We review several applications of clay minerals to dermocosmetic products, relating them to the underlying properties of these materials and exemplifying with a number of clay minerals available in the market. We also discuss the use of clay minerals in topically-applied products for therapeutic purposes, specially for skin treatment and protection. Copyright © 2017 Elsevier B.V. All rights reserved.
A new model to simulate the elastic properties of mineralized collagen fibril.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, F.; Stock, S.R.; Haeffner, D.R.
Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric dimensions aligned within a protein matrix, and emphasize the relationship between the structure and elastic properties of a mineralized collagen fibril. We create two- and three-dimensional representative volume elements to represent the structure of the fibril and evaluate the importance of the parameters defining its structure and properties of the constituent mineral and collagen phase. Elasticmore » stiffnesses are calculated by the finite element method and compared with experimental data obtained by synchrotron X-ray diffraction. The computational results match the experimental data well, and provide insight into the role of the phases and morphology on the elastic deformation characteristics. Also, the effects of water, imperfections in the mineral phase and mineral content outside the mineralized collagen fibril upon its elastic properties are discussed.« less
A new model to simulate the elastic properties of mineralized collagen fibril
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, F.; Stock, S.R.; Haeffner, D.R.
Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric dimensions aligned within a protein matrix, and emphasize the relationship between the structure and elastic properties of a mineralized collagen fibril. We create two- and three-dimensional representative volume elements to represent the structure of the fibril and evaluate the importance of the parameters defining its structure and properties of the constituent mineral and collagen phase. Elasticmore » stiffnesses are calculated by the finite element method and compared with experimental data obtained by synchrotron X-ray diffraction. The computational results match the experimental data well, and provide insight into the role of the phases and morphology on the elastic deformation characteristics. Also, the effects of water, imperfections in the mineral phase and mineral content outside the mineralized collagen fibril upon its elastic properties are discussed.« less
Clay Mineral Crystal Structure Tied to Composition
2016-12-13
This diagram illustrates how the dimensions of clay minerals' crystal structure are affected by which ions are present in the composition of the mineral. Different clay minerals were identified this way at two sites in Mars' Gale Crater: "Murray Buttes" and "Yellowknife Bay." In otherwise identical clay minerals, a composition that includes aluminum and ferric iron ions (red dots) results in slightly smaller crystalline unit cells than one that instead includes magnesium and ferrous iron ions (green dots). Ferric iron is more highly oxidized than ferrous iron. Crystalline cell units are the basic repeating building blocks that define minerals. X-ray diffraction analysis, a capability of the Chemistry and Mineralogy (CheMin) instrument on NASA's Curiosity Mars rover, identifies minerals from their crystalline structure. http://photojournal.jpl.nasa.gov/catalog/PIA21148
Geologic hypotheses of Lake Tanganyika region, Zaire, drawn from ERTS imagery
NASA Technical Reports Server (NTRS)
Wolyce, U.; Ilunga, S.
1974-01-01
Based on initial work in the Lake Tanganyika area of eastern Zaire, it has been concluded that ERTS imagery is extremely useful for reconnaissance level geologic mapping and analysis in this region of the humid tropics. In particular, ERTS imagery has proven useful for recognizing and mapping regional structural units, for recognizing major structural features, and for arriving at some preliminary hypotheses about the mineral potential of the area. Results so far indicate that ERTS imagery can make a major contribution to the development of the mineral resources of the country. Research has concentrated on applications of ERTS imagery in the field of cartography, geology, forestry, hydrology and agriculture. For the work in geology, a test site was chosen in eastern Zaire on the shore of Lake Tanganyika in the vicinity of the Lukuga River. This area was selected because of its varied geology and the existence of two frames of cloud-free ERTS imagery.
Integrierter Ansatz zur Beurteilung eines Aufsuchungsantrages auf Schiefergas in Hessen
NASA Astrophysics Data System (ADS)
Fritsche, Johann-Gerhard; Brodsky, Jan; Heggemann, Heiner; Hoffmann, Michaela; Hottenrott, Martin; Kracht, Matthias; Reischmann, Thomas; Rosenberg, Fred; Schlösser-Kluger, Inga
2016-06-01
In the context of an application for a shale gas exploration license including hydraulic fracturing, the Geological Survey of Hessen (HLNUG) has grouped and ranked structural geological regions in terms of their shale gas potential and the function of overlying rocks as barriers. Tectonic and structural features as well as the type of reservoir have been examined. Rock units overlying the shale gas layers have been classified as hydrogeological units and divided into aquifers and hydraulic barriers. Possible effects on drinking water abstraction facilities, mineral springs and water for industrial use have also been estimated, followed by an analysis of competing requirements for land use. A potential for shale gas can only be identified in a region north of Kassel, covering about 16 % of the claim area. Approximately 65 % of this region is overlapped by protection areas for drinking water and mineral springs, nature reserves and many other areas of public interest.
Lactic acid bacterial extract as a biogenic mineral growth modifier
NASA Astrophysics Data System (ADS)
Borah, Ballav M.; Singh, Atul K.; Ramesh, Aiyagari; Das, Gopal
2009-04-01
The formation of minerals and mechanisms by which bacteria could control their formation in natural habitats is now of current interest for material scientists to have an insight of the mechanism of in vivo mineralization, as well as to seek industrial and technological applications. Crystalline uniform structures of calcium and barium minerals formed micron-sized building blocks when synthesized in the presence of an organic matrix consisting of secreted protein extracts from three different lactic acid bacteria (LAB) viz.: Lactobacillus plantarum MTCC 1325, Lactobacillus acidophilus NRRL B4495 and Pediococcus acidilactici CFR K7. LABs are not known to form organic matrix in biological materialization processes. The influence of these bacterial extracts on the crystallization behavior was investigated in details to test the basic coordination behavior of the acidic protein. In this report, varied architecture of the mineral crystals obtained in presence of high molecular weight protein extracts of three different LAB strains has been discussed. The role of native form of high molecular weight bacterial protein extracts in the generation of nucleation centers for crystal growth was clearly established. A model for the formation of organic matrix-cation complex and the subsequent events leading to crystal growth is proposed.
Liu, D.; Dong, H.; Bishop, M.E.; Zhang, Jiahua; Wang, Hongfang; Xie, S.; Wang, Shaoming; Huang, L.; Eberl, D.D.
2012-01-01
Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate-reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu-2, mixed-layer illite-smectite RAr-1 and ISCz-1, and illite IMt-1) were exposed to D. vulgaris in a non-growth medium with and without anthraquinone-2,6-disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X-ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals. ?? 2011 Blackwell Publishing Ltd.
43 CFR 3861.3 - Mineral surveyors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mineral surveyors. 3861.3 Section 3861.3..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.3 Mineral surveyors. ...
43 CFR 3861.3 - Mineral surveyors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Mineral surveyors. 3861.3 Section 3861.3..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.3 Mineral surveyors. ...
43 CFR 3861.3 - Mineral surveyors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Mineral surveyors. 3861.3 Section 3861.3..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.3 Mineral surveyors. ...
43 CFR 3861.3 - Mineral surveyors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mineral surveyors. 3861.3 Section 3861.3..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.3 Mineral surveyors. ...
Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx.
Romano, Christine A; Zhou, Mowei; Song, Yang; Wysocki, Vicki H; Dohnalkova, Alice C; Kovarik, Libor; Paša-Tolić, Ljiljana; Tebo, Bradley M
2017-09-29
Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.Significant challenges exist for structural characterization of enzymes responsible for biomineralization. Here the authors show that native mass spectrometry and high resolution electron microscopy can define the subunit topology and copper binding of a manganese oxidizing complex, and describe early stage formation of its mineral products.
30 CFR 203.64 - How many applications may I file on a field or a development project?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How many applications may I file on a field or a development project? 203.64 Section 203.64 Mineral Resources MINERALS MANAGEMENT SERVICE... § 203.64 How many applications may I file on a field or a development project? You may file one complete...
Micro-CT and FE-SEM enamel analyses of calcium-based agent application after bleaching.
Gomes, Mauricio Neves; Rodrigues, Flávia Pires; Silikas, Nick; Francci, Carlos Eduardo
2018-03-01
The objective of the present study is to evaluate the effects of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on bleached enamel. A bleaching agent (35% hydrogen peroxide) was applied, 4 × 8 min on premolar teeth (n = 8). A CPP-ACP paste was applied for 7 days. Prior and post-treatment, microtomography images were obtained and 3D regions of interest (ROIs) were selected, from outer enamel, extending to 110.2-μm depth. CT parameters of structure: thickness (St.Th), separation (St.Sp), and fragmentation index (Fr.I.) were calculated for each (ROI). Data was submitted to paired t tests at a 95% confidence level. The samples were evaluated at 3000 to 100,000 magnification. Quantitative analysis of enamel mineral content was also determined by SEM EDX. There was a significant increase in structure thickness and calcium content. The phosphorus content increased after bleaching. There was also a decreased separation and fragmentation index on the outer enamel to a depth of 56.2 μm (p < 0.05). There were no changes at 110.2-μm depth for the bleaching CPP-ACP association. A covering layer and decreased spaces between the hydroxyapatite crystals appeared around the enamel prisms, 7 days after the CPP-ACP application. The application of a CPP-ACP provides a compact structure on the enamel's outer surface, for 7 days, due to calcium deposition. CT parameters seem to be a useful tool for mineralizing and remineralizing future studies. CPP-ACP neutralizes any adverse effects on enamel surface when applied during a week after bleaching and minimizes any side effects of the bleaching treatment due to a more compact structure.
Tectono-metallogenetic evolution of the Fe-Cu deposit of Dominga, northern Chile
NASA Astrophysics Data System (ADS)
Veloso, E.; Cembrano, J.; Arancibia, G.; Heuser, G.; Neira, S.; Siña, A.; Garrido, I.; Vermeesch, P.; Selby, D.
2017-04-01
The Dominga district in northern Chile (2082 Mt at 23.3 % Fe, 0.07 % Cu) shows a spatial and genetic affinity among distinctive structural elements and Fe-Cu-rich paragenetic mineral assemblages. Deep seated, NE-to-E striking structural elements form a right-lateral duplex-like structural system (early structural system, ESS) that cuts a regionally extensive alteration (stage I) zone. The EES system served as a locus and as path for the emplacement of biotite-magnetite alteration/mineralization (stage IIa) as veins and Fe-bearing layers following altered volcano sedimentary strata. NW-striking actinolite-magnetite hydrothermal breccias, coeval with and part of the ESS, include apatite (stage IIb) crystallized at 127 ± 15 Ma (U-Pb, 2σ). The ESS was also the locus of subsequent alteration/mineralization represented by K-feldspar, epidote, and albite (stage IIIa) and Fe-Cu-rich (vermiculite-anhydrite-chalcopyrite, stage IIIb) mineral associations. Shallowly developed, NNE-striking, left-lateral structural elements defining the El Tofo Structural System (ETSS)—probably part of the Atacama Fault System—clearly crosscut the ESS. Minerals associated with alteration/mineralization stage IIIb also occur as veins and as part of hydrothermal breccias of the ETSS, marking the transition from the ESS to ETSS. Molybdenite associated with alteration/mineralization stage IIIb yielded a Re-Os age of 127.1 ± 0.7 Ma (2σ). Both the ESS and ETSS were cut by left-lateral, NW- to E-striking shallowly developed structural elements (Intermediate Structural System, ISS) on which a hematite-calcite assemblage (stage IV) occurs mostly as infill material of veins and fault veins. The ISS is cut by N-striking, left-lateral, and shallowly developed structural elements (Late Structural System, LSS) showing no evidence of alteration/mineralization. Estimated strain and stress fields indicate an overall NW-trending shortening/compression and NE-trending stretching/tension strike-slip regime probably due to oblique subduction during the Mesozoic. However, the orientations of the stress and strain fields calculated for each structural system suggest a back-and-forth rotation pattern during transition from one structural system to the other—as they change between transtension and transpression—and between alteration/mineralization stages.
Campbell, Wallace H.
1995-01-01
The social uses of geomagnetism include the physics of the space environment, satellite damage, pipeline corrosion, electric power-grid failure, communication interference, global positioning disruption, mineral-resource detection, interpretation of the Earth's formation and structure, navigation, weather, and magnetoreception in organisms. The need for continuing observations of the geomagnetic field, together with careful archiving of these records and mechanisms for dissemination of these data, is emphasized.
The historical development of the magnetic method in exploration
Nabighian, M.N.; Grauch, V.J.S.; Hansen, R.O.; LaFehr, T.R.; Li, Y.; Peirce, J.W.; Phillips, J.D.; Ruder, M.E.
2005-01-01
The magnetic method, perhaps the oldest of geophysical exploration techniques, blossomed after the advent of airborne surveys in World War II. With improvements in instrumentation, navigation, and platform compensation, it is now possible to map the entire crustal section at a variety of scales, from strongly magnetic basement at regional scale to weakly magnetic sedimentary contacts at local scale. Methods of data filtering, display, and interpretation have also advanced, especially with the availability of low-cost, high-performance personal computers and color raster graphics. The magnetic method is the primary exploration tool in the search for minerals. In other arenas, the magnetic method has evolved from its sole use for mapping basement structure to include a wide range of new applications, such as locating intrasedimentary faults, defining subtle lithologic contacts, mapping salt domes in weakly magnetic sediments, and better defining targets through 3D inversion. These new applications have increased the method's utility in all realms of exploration - in the search for minerals, oil and gas, geothermal resources, and groundwater, and for a variety of other purposes such as natural hazards assessment, mapping impact structures, and engineering and environmental studies. ?? 2005 Society of Exploration Geophysicists. All rights reserved.
Investigation of Mineral Transformations in Wet Supercritical CO2 by Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arey, Bruce W.; Kovarik, Libor; Wang, Zheming
2011-10-10
The capture and storage of carbon dioxide and other greenhouse gases in deep geologic formations represents one of the most promising options for mitigating the impacts of greenhouse gases on global warming. In this regard, mineral-fluid interactions are of prime importance since such reactions can result in the long term sequestration of CO2 by trapping in mineral phases. Recently it has been recognized that interactions with neat to water-saturated non-aqueous fluids are of prime importance in understanding mineralization reactions since the introduced CO2 is likely to contain water initially or soon after injection and the supercritical CO2 (scCO2) is lessmore » dense than the aqueous phase which can result in a buoyant scCO2 plume contacting the isolating caprock. As a result, unraveling the molecular/microscopic mechanisms of mineral transformation in neat to water saturated scCO2 has taken on an added important. In this study, we are examining the interfacial reactions of the olivine mineral forsterite (Mg2SiO4) over a range of water contents up to and including complete water saturation in scCO2. The surface precipitates that form on the reacted forsterite grains are extremely fragile and difficult to experimentally characterize. In order to address this issue we have developed experimental protocols for preparing and imaging electron-transparent samples from fragile structures. These electron-transparent samples are then examined using a combination of STEM/EDX, FIB-TEM, and helium ion microscope (HIM) imaging (Figures 1-3). This combination of capabilities has provided unique insight into the geochemical processes that occur on scCO2 reacted mineral surfaces. The experimental procedures and protocols that have been developed also have useful applications for examining fragile structures on a wide variety of materials. This research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory.« less
30 CFR 285.906 - What must my decommissioning application include?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must my decommissioning application include? 285.906 Section 285.906 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...
Code of Federal Regulations, 2013 CFR
2013-10-01
... MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.20 If BLM approves my application for a use...
Code of Federal Regulations, 2012 CFR
2012-10-01
... MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.20 If BLM approves my application for a use...
Code of Federal Regulations, 2011 CFR
2011-10-01
... MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.20 If BLM approves my application for a use...
Code of Federal Regulations, 2014 CFR
2014-10-01
... MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Leasing of Solid Minerals Other Than Coal and Oil Shale-General § 3501.20 If BLM approves my application for a use...
43 CFR 3862.1-1 - Application for patent.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Application for patent. 3862.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.1-1 Application for patent. (a) At the time the proof of posting is...
43 CFR 3862.1-1 - Application for patent.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Application for patent. 3862.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.1-1 Application for patent. (a) At the time the proof of posting is...
43 CFR 3862.1-1 - Application for patent.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Application for patent. 3862.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.1-1 Application for patent. (a) At the time the proof of posting is...
NASA Astrophysics Data System (ADS)
Petrie, E. S.; Evans, J. P.; Richey, D.; Flores, S.; Barton, C.; Mozley, P.
2015-12-01
Sedimentary rocks in the San Rafael Swell, Utah, were deformed by Laramide compression and subsequent Neogene extension. We evaluate the effect of fault damage zone morphology as a function of structural position, and changes in mechanical stratigraphy on the distribution of secondary minerals across the reservoir-seal pair of the Navajo Sandstone and overlying Carmel Formation. We decipher paleo-fluid migration and examine the effect faults and fractures have on reservoir permeability and efficacy of top seal for a range of geo-engineering applications. Map-scale faults have an increased probability of allowing upward migration of fluids along the fault plane and within the damage zone, potentially bypassing the top seal. Field mapping, mesoscopic structural analyses, petrography, and geochemical observations demonstrate that fault zone thickness increases at structural intersections, fault relay zones, fault-related folds, and fault tips. Higher densities of faults with meters of slip and dense fracture populations are present in relay zones relative to single, discrete faults. Curvature analysis of the San Rafael monocline and fracture density data show that fracture density is highest where curvature is highest in the syncline hinge and near faults. Fractures cross the reservoir-seal interface where fracture density is highest and structural diagensis includes mineralization events and bleaching and calcite and gypsum mineralization. The link between fracture distributions and structural setting implys that transmissive fractures have predictable orientations and density distributions. At the m- to cm- scale, deformation-band faults and joints in the Navajo Sandstone penetrate the reservoir-seal interface and transition into open-mode fractures in the caprock seal. Scanline analysis and petrography of veins provide evidence for subsurface mineralization and fracture reactivation, suggesting that the fractures act as loci for fluid flow through time. Heterolithic caprock seals with variable fracture distributions and morphology highlight the strong link between the variation in material properties and the response to changing stress conditions. The variable connectivity of fractures and the changes in fracture density plays a critical role in subsurface fluid flow.
30 CFR 285.907 - How will MMS process my decommissioning application?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS process my decommissioning application? 285.907 Section 285.907 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...
30 CFR 285.905 - When must I submit my decommissioning application?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When must I submit my decommissioning application? 285.905 Section 285.905 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF...
30 CFR 702.12 - Contents of application for exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Contents of application for exemption. 702.12 Section 702.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.12...
30 CFR 702.12 - Contents of application for exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Contents of application for exemption. 702.12 Section 702.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL EXEMPTION FOR COAL EXTRACTION INCIDENTAL TO THE EXTRACTION OF OTHER MINERALS § 702.12...
Phosphorus Sorption Capacity of Gray Forest Soil as Dependent on Fertilization System
NASA Astrophysics Data System (ADS)
Rogova, O. B.; Kolobova, N. A.; Ivanov, A. L.
2018-05-01
In this paper, the results of the study of changes in the phosphorus sorption capacity of gray forest soils of Vladimir opolie under the impact of different fertilization systems are discussed. The quantitative parameters of the potential buffer capacity of soils for phosphorus (PBCP) and Langmuir sorption isotherms have been calculated. It is shown that the application of organic fertilizers results in a stronger decrease in PBCP than the application of mineral fertilizers. The portion of phosphorus of mineral compounds considerably increases, and the high content of available phosphates is maintained. In the variants with application of mineral phosphorus in combination with manure, the portions of organic and mineral phosphorus are at the level typical of unfertilized soils. The energy of phosphate bonds with the soil is minimal upon the application of a double rate of mineral phosphorus at the maximum capacity in relation to phosphate ions.
Kiilsgaard, Thor H.
1996-01-01
Introduction This report and accompanying map (plate 1) presents information on the Defense Minerals Administration (DMA), Defense Minerals Exploration Administration (DMEA), and Office of Minerals Exploration (OME) mineral exploration programs in Montana. Under these programs, the federal government participated in the exploration costs for certain strategic and critical minerals. Federal funds for mineral exploration under the programs were available from 1950 to 1974, although limited funds for OME administrative work were continued until 1979. Federal consideration for exploration at a particular property was initiated by submittal of an application for financial assistance by the owner or operator of the property. Each application received was assigned a docket number and all subsequent correspondence and information resulting from the application was filed under that docket number. The report reviews the three programs and some of the associated regulations and procedures. It also describes the various types of information generated by the programs, presents information on mining properties in Montana that were involved in the exploration programs, and advises on location of compiled mineral exploration information that resulted from the work.
CellMiner Companion: an interactive web application to explore CellMiner NCI-60 data.
Wang, Sufang; Gribskov, Michael; Hazbun, Tony R; Pascuzzi, Pete E
2016-08-01
The NCI-60 human tumor cell line panel is an invaluable resource for cancer researchers, providing drug sensitivity, molecular and phenotypic data for a range of cancer types. CellMiner is a web resource that provides tools for the acquisition and analysis of quality-controlled NCI-60 data. CellMiner supports queries of up to 150 drugs or genes, but the output is an Excel file for each drug or gene. This output format makes it difficult for researchers to explore the data from large queries. CellMiner Companion is a web application that facilitates the exploration and visualization of output from CellMiner, further increasing the accessibility of NCI-60 data. The web application is freely accessible at https://pul-bioinformatics.shinyapps.io/CellMinerCompanion The R source code can be downloaded at https://github.com/pepascuzzi/CellMinerCompanion.git ppascuzz@purdue.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang
2016-01-20
In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Watanabe, Masami; Ohta, Yuko; Licang, Sun; Motoyama, Naoki; Kikuchi, Jun
2015-02-15
In this study, the contents of water-soluble metabolites and mineral nutrients were measured in tomatoes cultured using organic and chemical fertilizers, with or without pesticides. Mineral nutrients and water-soluble metabolites were determined by inductively coupled plasma-atomic emission spectrometry and (1)H nuclear magnetic resonance spectrometry, respectively, and results were analysed by principal components analysis (PCA). The mineral nutrient and water-soluble metabolite profiles differed between organic and chemical fertilizer applications, which accounted for 88.0% and 55.4%, respectively, of the variation. (1)H-(13)C-hetero-nuclear single quantum coherence experiments identified aliphatic protons that contributed to the discrimination of PCA. Pesticide application had little effect on mineral nutrient content (except Fe and P), but affected the correlation between mineral nutrients and metabolites. Differences in the content of mineral nutrients and water-soluble metabolites resulting from different fertilizer and pesticide applications probably affect tomato quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
30 CFR 402.10 - Research-project applications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Research-project applications. 402.10 Section 402.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH... Procedures § 402.10 Research-project applications. (a) Only those applications for grants that are in...
30 CFR 402.10 - Research-project applications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Research-project applications. 402.10 Section 402.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH... Procedures § 402.10 Research-project applications. (a) Only those applications for grants that are in...
30 CFR 402.10 - Research-project applications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Research-project applications. 402.10 Section 402.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH... Procedures § 402.10 Research-project applications. (a) Only those applications for grants that are in...
30 CFR 402.10 - Research-project applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Research-project applications. 402.10 Section 402.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH... Procedures § 402.10 Research-project applications. (a) Only those applications for grants that are in...
30 CFR 402.10 - Research-project applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Research-project applications. 402.10 Section 402.10 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH... Procedures § 402.10 Research-project applications. (a) Only those applications for grants that are in...
NASA Astrophysics Data System (ADS)
Nehrke, G.; Nouet, J.
2011-12-01
Marine biogenic carbonates formed by invertebrates (e.g. corals and mollusks) represent complex composites of one or more mineral phases and organic molecules. This complexity ranges from the macroscopic structures observed with the naked eye down to sub micrometric structures only revealed by micro analytical techniques. Understanding to what extent and how organisms can control the formation of these structures requires that the mineral and organic phases can be identified and their spatial distribution related. Here we demonstrate the capability of confocal Raman microscopy applied to cross sections of a shell of Nerita undata to describe the distribution of calcite and aragonite including their crystallographic orientation with high lateral resolution (~300 nm). Moreover, spatial distribution of functional groups of organic compounds can be simultaneously acquired, allowing to specifically relate them to the observed microstructures. The data presented in this case study highlights the possible new contributions of this method to the description of modalities of Nerita undata shell formation, and what could be expected of its application to other marine biogenic carbonates. Localization of areas of interest would also allow further investigations using more localized methods, such as TEM that would provide complementary information on the relation between organic molecules and crystal lattice.
NASA Astrophysics Data System (ADS)
Nehrke, G.; Nouet, J.
2011-06-01
Marine biogenic carbonates formed by invertebrates (e.g. corals and mollusk shells) represent complex composites of one or more mineral phases and organic molecules. This complexity ranges from the macroscopic structures observed with the naked eye down to sub micrometric structures only revealed by micro analytical techniques. Understanding to what extent and how organisms can control the formation of these structures requires that the mineral and organic phases can be identified and their spatial distribution related. Here we demonstrate the capability of confocal Raman microscopy applied to cross sections of a shell of Nerita undata to describe the distribution of calcite and aragonite including their crystallographic orientation with high lateral resolution (∼300 nm). Moreover, spatial distribution of functional groups of organic compounds can be simultaneously acquired, allowing to specifically relate them to the observed microstructures. The data presented in this case study highlights the possible new contributions of this method to the description of modalities of Nerita undata shell formation, and what could be expected of its application to other marine biogenic carbonates. Localization of areas of interest would also allow further investigations using more localized methods, such as TEM that would provide complementary information on the relation between organic molecules and crystallographic lattice.
Luo, Yongxiang; Lode, Anja; Wu, Chengtie; Chang, Jiang; Gelinsky, Michael
2015-04-01
Composite scaffolds, especially polymer/hydroxyapatite (HAP) composite scaffolds with predesigned structures, are promising materials for bone tissue engineering. Various methods including direct mixing of HAP powder with polymers or incubating polymer scaffolds in simulated body fluid for preparing polymer/HAP composite scaffolds are either uncontrolled or require long times of incubation. In this work, alginate/nano-HAP composite scaffolds with designed pore parameters and core/shell structures were fabricated using 3D plotting technique and in situ mineralization under mild conditions (at room temperature and without the use of any organic solvents). Light microscopy, scanning electron microscopy, microcomputer tomography, X-ray diffraction, and Fourier transform infrared spectroscopy were applied to characterize the fabricated scaffolds. Mechanical properties and protein delivery of the scaffolds were evaluated, as well as the cell response to the scaffolds by culturing human bone-marrow-derived mesenchymal stem cells (hBMSC). The obtained data indicate that this method is suitable to fabricate alginate/nano-HAP composite scaffolds with a layer of nano-HAP, coating the surface of the alginate strands homogeneously and completely. The surface mineralization enhanced the mechanical properties and improved the cell attachment and spreading, as well as supported sustaining protein release, compared to pure alginate scaffolds without nano-HAP shell layer. The results demonstrated that the method provides an interesting option for bone tissue engineering application.
Ab initio thermodynamic model for magnesium carbonates and hydrates.
Chaka, Anne M; Felmy, Andrew R
2014-09-04
An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first-principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogues of Ca-based hydrated carbonates monohydrocalcite and ikaite, which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.
Liu, D; Dong, H; Bishop, M E; Zhang, J; Wang, H; Xie, S; Wang, S; Huang, L; Eberl, D D
2012-03-01
Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate-reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu-2, mixed-layer illite-smectite RAr-1 and ISCz-1, and illite IMt-1) were exposed to D. vulgaris in a non-growth medium with and without anthraquinone-2,6-disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X-ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals. © 2011 Blackwell Publishing Ltd.
43 CFR 3602.10 - Applying for a mineral materials sales contract.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Applying for a mineral materials sales...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Applications § 3602.10 Applying for a mineral materials sales contract. ...
43 CFR 3602.10 - Applying for a mineral materials sales contract.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Applying for a mineral materials sales...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Applications § 3602.10 Applying for a mineral materials sales contract. ...
43 CFR 3602.10 - Applying for a mineral materials sales contract.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Applying for a mineral materials sales...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Applications § 3602.10 Applying for a mineral materials sales contract. ...
43 CFR 3602.10 - Applying for a mineral materials sales contract.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Applying for a mineral materials sales...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Applications § 3602.10 Applying for a mineral materials sales contract. ...
Structure-mechanics relationships in mineralized tendons.
Spiesz, Ewa M; Zysset, Philippe K
2015-12-01
In this paper, we review the hierarchical structure and the resulting elastic properties of mineralized tendons as obtained by various multiscale experimental and computational methods spanning from nano- to macroscale. The mechanical properties of mineralized collagen fibres are important to understand the mechanics of hard tissues constituted by complex arrangements of these fibres, like in human lamellar bone. The uniaxial mineralized collagen fibre array naturally occurring in avian tendons is a well studied model tissue for investigating various stages of tissue mineralization and the corresponding elastic properties. Some avian tendons mineralize with maturation, which results in a graded structure containing two zones of distinct morphology, circumferential and interstitial. These zones exhibit different amounts of mineral, collagen, pores and a different mineral distribution between collagen fibrillar and extrafibrillar space that lead to distinct elastic properties. Mineralized tendon cells have two phenotypes: elongated tenocytes placed between fibres in the circumferential zone and cuboidal cells with lower aspect ratios in the interstitial zone. Interestingly some regions of avian tendons seem to be predestined to mineralization, which is exhibited as specific collagen cross-linking patterns as well as distribution of minor tendon constituents (like proteoglycans) and loss of collagen crimp. Results of investigations in naturally mineralizing avian tendons may be useful in understanding the pathological mineralization occurring in some human tendons. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.
2011-08-01
The molecular structure of the mineral archerite ((K,NH 4)H 2PO 4) has been determined and compared with that of biphosphammite ((NH 4,K)H 2PO 4). Raman spectroscopy and infrared spectroscopy has been used to characterise these 'cave' minerals. Both minerals originated from the Murra-el-elevyn Cave, Eucla, Western Australia. The mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. Raman and infrared bands are assigned to HPO4-, OH and NH stretching vibrations. The Raman band at 981 cm -1 is assigned to the HOP stretching vibration. Bands in the 1200-1800 cm -1 region are associated with NH4+ bending modes. The molecular structure of the two minerals appear to be very similar, and it is therefore concluded that the two minerals are identical.
NASA Astrophysics Data System (ADS)
Gu, Chunju; Katti, Dinesh R.; Katti, Kalpana S.
2016-04-01
The molecular basis of bone disease osteogenesis imperfecta (OI) and the mineralization of hydroxyapatite in OI bone have been of significant research interest. To further investigate the mechanism of OI disease and bone mineralization, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, and x-ray diffraction (XRD) are used in the present study to describe the structural and compositional differences between OI and healthy bone. OI bone exhibits more porous, fibrous features, abnormal collagen fibrils, and abnormal mineral deposits. Likewise, photoacoustic-FTIR experiments indicate an aberrant collagen structure and an altered mineral structure in OI. In contrast, there is neither significant difference in the non-collagenous proteins (NCPs) composition observed nor apparent change in the crystal structure between OI and healthy bone minerals as shown in XRD and energy-dispersive x-ray spectroscopy (EDS) results. This observation indicates that the biomineralization process is more controlled by the bone cells and non-collagenous phosphorylated proteins. The present study also confirms that there is an orientational influence on the stoichiometry of the mineral in OI bone. Also, a larger volume of the hydrated layer in the transverse plane than the longitudinal plane of the mineral crystal structure is proposed. The appearance of a new C-S band in the FTIR spectra in OI bone suggests the substitution of glycine by cysteine in collagen molecules or/and an increased amount of cysteine-rich osteonectin that relates to mineral nucleation and mineral crystal formation.
Application and research of block caving in Pulang copper mine
NASA Astrophysics Data System (ADS)
Ge, Qifa; Fan, Wenlu; Zhu, Weigen; Chen, Xiaowei
2018-01-01
The application of block caving in mines shows significant advantages in large scale, low cost and high efficiency, thus block caving is worth promoting in the mines that meets the requirement of natural caving. Due to large scale of production and low ore grade in Pulang copper mine in China, comprehensive analysis and research were conducted on rock mechanics, mining sequence, undercutting and stability of bottom structure in terms of raising mine benefit and maximizing the recovery mineral resources. Finally this study summarizes that block caving is completely suitable for Pulang copper mine.
Methodology of remote sensing data interpretation and geological applications. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.
1982-01-01
Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.
Yang, Yi; Min, Yujia; Jun, Young-Shin
2013-11-14
A quantitative description of how the bulk properties of aluminosilicates affect their dissolution kinetics is important in helping people understand the regulation of atmospheric CO2 concentration by silicate weathering and predict the fate and transport of geologically sequestered CO2 through brine-rock interactions. In this study, we employed a structure model based on the C1 space group to illustrate how differences in crystallographic properties of aluminosilicates, such as T-O (Tetrahedral site-Oxygen) bond length and Al/Si ordering, can result in quantifiable variations in mineral dissolution rates. The dissolution rates of plagioclases were measured under representative geologic carbon sequestration (GCS) conditions (90 °C, 100 atm of CO2, 1.0 M NaCl, and pH ∼ 3.1), and used to validate the model. We found that the logarithm of the characteristic time of the breakdown of Al-O-Si linkages in plagioclases follows a good linear relation with the mineral's aluminum content (nAl). The Si release rates of plagioclases can be calculated based on an assumption of dissolution congruency or on the regularity of Al/Si distribution in the constituent tetrahedra of the mineral. We further extended the application of our approach to scenarios where dissolution incongruency arises because of different linkage reactivities in the solid matrix, and compared the model predictions with published data. The application of our results enables a significant reduction of experimental work for determining the dissolution rates of structurally related aluminosilicates, given a reaction environment.
Raman spectroscopy of selected copper minerals of significance in corrosion.
Frost, R L
2003-04-01
The Raman spectroscopy of selected minerals of the corrosion products has been measured including nantokite, eriochalcite, claringbullite, atacamite, paratacamite, clinoatacamite and brochantite and related minerals. The free energy of formation shows that each mineral is stable relative to copper metal. The mineral, which is formed in copper corrosion, depends on the kinetics and conditions of the reaction. Raman spectroscopy clearly identifies each mineral by its characteristic Raman spectrum. The Raman spectrum is related to the mineral structure and bands are assigned to CuCl stretching and bending modes and to SO stretching modes. Clinoatacamite is identified as the polymorph of atacamite and not paratacamite. Paratacamite is a separate mineral with a similar but different structure to that of atacamite.
Crystal structure of modular sodium-rich and low-iron eudialyte from Lovozero alkaline massif
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozenberg, K. A.; Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru; Aksenov, S. M.
2016-09-15
The structure of the sodium-rich representative of the eudialyte group found by A.P. Khomyakov at the Lovozero massif (Kola Peninsula) is studied by X-ray diffraction. The trigonal cell parameters are: a = 14.2032(1) and c = 60.612(1) Å, V = 10589.13 Å3, space group R3m. The structure is refined to the final R = 5.0% in the anisotropic approximation of atomic displacement parameters using 3742|F| > 3σ(F). The idealized formula (Z = 3) is Na{sub 37}Ca{sub 10}Mn{sub 2}FeZr{sub 6}Si{sub 50}(Ti, Nb){sub 2}O{sub 144}(OH){sub 5}Cl{sub 3} · H{sub 2}O. Like other 24-layer minerals of the eudialyte group, this mineral has amore » modular structure. Its structure contains two modules, namely, “alluaivite” (with an admixture of “eudialyte”) and “kentbrooksite,” called according to the main structural fragments of alluaivite, eudialyte, and kentbrooksite. The mineral found at the Lovozero alkaline massif shows some chemical and symmetry-structural distinctions from the close-in-composition labyrinthite modular mineral from the Khibiny massif. The difference between the minerals stems from different geochemical conditions of mineral formation in the two regions.« less
Synthetic Talc and Talc-Like Structures: Preparation, Features and Applications.
Claverie, Marie; Dumas, Angela; Carême, Christel; Poirier, Mathilde; Le Roux, Christophe; Micoud, Pierre; Martin, François; Aymonier, Cyril
2018-01-12
This contribution gives a comprehensive review about the progress in preparation methods, properties and applications of the different synthetic talc types: i) crystalline nanotalc synthesized by hydrothermal treatment; ii) amorphous and/or short-range order nanotalc obtained by precipitation, and iii) organic-inorganic hybrid talc-like structures obtained through a sol-gel process or a chemical grafting. Several advantages of nanotalc such as high chemical purity, high surface area, tunable submicronic size, high thermal stability, and hydrophilic character (leading to be the first fluid mineral) are emphasized. Synthetic nanotalc applications are also considered including its use as nanofiller in composite materials, as absorbers of organic compounds, as anticorrosion coatings and as agents for cosmetic applications. Regarding their high industrial application potential, intensive research has been carried out to better understand their behavior and develop processes to produce them. To facilitate further research and development, scientific and technical challenges are discussed in this Review article. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
43 CFR 3864.1-1 - Application for patent.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Application for patent. 3864.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Millsite Patents § 3864.1-1 Application for patent. (a) Land entered as a millsite must be shown to be nonmineral...
43 CFR 3864.1-1 - Application for patent.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Application for patent. 3864.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Millsite Patents § 3864.1-1 Application for patent. (a) Land entered as a millsite must be shown to be nonmineral...
43 CFR 3864.1-1 - Application for patent.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Application for patent. 3864.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Millsite Patents § 3864.1-1 Application for patent. (a) Land entered as a millsite must be shown to be nonmineral...
43 CFR 3864.1-1 - Application for patent.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Application for patent. 3864.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Millsite Patents § 3864.1-1 Application for patent. (a) Land entered as a millsite must be shown to be nonmineral...
On the neutralization of acid rock drainage by carbonate and silicate minerals
NASA Astrophysics Data System (ADS)
Sherlock, E. J.; Lawrence, R. W.; Poulin, R.
1995-02-01
The net result of acid-generating and-neutralizing reactions within mining wastes is termed acid rock drainage (ARD). The oxidation of sulfide minerals is the major contributor to acid generation. Dissolution and alteration of various minerals can contribute to the neutralization of acid. Definitions of alkalinity, acidity, and buffer capacity are reviewed, and a detailed discussion of the dissolution and neutralizing capacity of carbonate and silicate minerals related to equilibium conditions, dissolution mechanism, and kinetics is provided. Factors that determine neutralization rate by carbonate and silicate minerals include: pH, PCO 2, equilibrium conditions, temperature, mineral composition and structure, redox conditions, and the presence of “foreign” ions. Similar factors affect sulfide oxidation. Comparison of rates shows sulfides react fastest, followed by carbonates and silicates. The differences in the reaction mechanisms and kinetics of neutralization have important implications in the prediction, control, and regulation of ARD. Current static and kinetic prediction methods upon which mine permitting, ARD control, and mine closure plans are based do not consider sample mineralogy or the kinetics of the acid-generating and-neutralizing reactions. Erroneous test interpretations and predictions can result. The importance of considering mineralogy for site-specific interpretation is highlighted. Uncertainty in prediction leads to difficulties for the mine operator in developing satisfactory and cost-effective control and remediation measures. Thus, the application of regulations and guidelines for waste management planning need to beflexible.
Hamilton, D W; Wong, K S; Brunette, D M
2006-05-01
The fabrication of surfaces that stimulate increased adhesion, migration, and differentiated function of osteoblasts has been viewed as being desirable for many orthopedic applications. Previous studies have shown that microfabricated pits and grooves alter adhesion, spreading, matrix secretion, and production of mineral by rat calvarial osteoblasts (RCOs). The mechanisms underlying these effects are unknown, although microenvironment and cell alignment are considered to play a role. The aim of this work was to investigate the behavior of RCOs on microfabricated discontinuous-edge surfaces (DESs), which could provide an alternative means to control both the microenvironment and cellular alignment. Two types of discontinuous-type structures were employed, gap-cornered boxes and micron scale pillars. DES gap-cornered boxes and the pillars influenced the arrangement of F-actin, microtubules, and vinculin. Osteoblasts were guided in their direction of migration on both types of substrata. Both box DESs and pillars altered the staining intensity and localization pattern of phosphotyrosine and src-activated FAK localization. Cell multilayering, matrix deposition, and mineralization were enhanced on both discontinuous topographies when compared with smooth controls. This study shows that DESs alter adhesion, migration, and proliferative responses from osteoblasts at early time points (<1 week) and promote multilayering, matrix deposition, and mineral deposition at later times (2-6 weeks). Such topographical patterns could potentially be employed as effective surface features on bone-contacting implants or in membrane-based periodontal applications.
Mihalasky, Mark J.
2001-01-01
The distribution of 2,690 gold-silver-bearing occurrences in the Nevada Great Basin was examined in terms of spatial association with various geological phenomena. Analysis of these relationships, using GIS and weights of evidence modelling techniques, has predicted areas of high mineral potential where little or no mining activity exists. Mineral potential maps for sedimentary (?disseminated?) and volcanic (?epithermal?) rock-hosted gold-silver mineralization revealed two distinct patterns that highlight two sets of crustal-scale geologic features that likely control the regional distribution of these deposit types. The weights of evidence method is a probability-based technique for mapping mineral potential using the spatial distribution of known mineral occurrences. Mineral potential maps predicting the distribution of gold-silver-bearing occurrences were generated from structural, geochemical, geomagnetic, gravimetric, lithologic, and lithotectonic-related deposit-indicator factors. The maps successfully predicted nearly 70% of the total number of known occurrences, including ~83% of sedimentary and ~60% of volcanic rock-hosted types. Sedimentary and volcanic rockhosted mineral potential maps showed high spatial correlation (an area cross-tabulation agreement of 85% and 73%, respectively) with expert-delineated mineral permissive tracts. In blind tests, the sedimentary and volcanic rock-hosted mineral potential maps predicted 10 out of 12 and 5 out of 5 occurrences, respectively. The key mineral predictor factors, in order of importance, were determined to be: geology (including lithology, structure, and lithotectonic terrane), geochemistry (indication of alteration), and geophysics. Areas of elevated sedimentary rock-hosted mineral potential are generally confined to central, north-central, and north-eastern Nevada. These areas form a conspicuous ?V?-shape pattern that is coincident with the Battle Mountain-Eureka (Cortez) and Carlin mineral trends and a segment of the Roberts Mountain thrust front, which bridges the southern ends of the trends. This pattern appears to delineate two well-defined, sub-parallel, northwest?southeast-trending crustal-scale structural zones. These features, here termed the ?Carlin? and ?Cortez? structural zones, are believed to control the regional-scale distribution of the sedimentary rock-hosted occurrences. Mineralizing processes were focused along these structural zones and significant ore deposits exist where they intersect other tectonic zones, favorable host rock-types, and (or) where appropriate physio-chemical conditions were present. The origin and age of the Carlin and Cortez structural zones are not well constrained, however, they are considered to be transcurrent features representing a long-lived, deep-crustal or mantle-rooted zone of weakness. Areas of elevated volcanic rock-hosted mineral potential are principally distributed along two broad and diffuse belts that trend (1) northwest-southeast across southwestern Nevada, parallel to the Sierra Nevada, and (2) northeast-southwest across northern Nevada, extending diagonally from the Sierra Nevada to southern Idaho. The first belt corresponds to the Walker Lane shear zone, a wide region of complex strike-slip faulting. The second, here termed the ?Humboldt shear(?) zone?, may represent a structural zone of transcurrent movement. Together, the Walker Lane and Humboldt shear(?) zones are believed to control the regional-scale distribution of volcanic rock-hosted occurrences. Volcanic rock-hosted mineralization was closely tied to the southward and westward migration of Tertiary magmatism across the region (which may have been mantle plume-driven). Both magmatic and mineralizing processes were localized and concentrated along these structural zones. The Humboldt shear(?) zone may have also affected the distribution of sedimentary rock-hosted mineralization along the Battle Mountain?Eureka (C
43 CFR 3861.5 - Appointment and employment of mineral surveyors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Appointment and employment of mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.5 Appointment and employment of mineral surveyors. ...
43 CFR 3861.5 - Appointment and employment of mineral surveyors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Appointment and employment of mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.5 Appointment and employment of mineral surveyors. ...
43 CFR 3861.5 - Appointment and employment of mineral surveyors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Appointment and employment of mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.5 Appointment and employment of mineral surveyors. ...
43 CFR 3861.5 - Appointment and employment of mineral surveyors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Appointment and employment of mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.5 Appointment and employment of mineral surveyors. ...
NASA Astrophysics Data System (ADS)
Caldwell, W. A.; Tamura, N.; Celestre, R. S.; Padmore, H. A.; Patel, J. R.
2002-12-01
Although x-ray diffraction has been used for nearly a century as the mineralogist's definitive tool in determining crystalline structures, it has proved impossible to use this technique to spatially resolve the highly heterogeneous nature of many minerals at the mesoscopic level. Due to recent revolutions in the brightness of x-ray sources and in our ability to focus x-rays, we can now carry out conventional monochromatic rotation crystallography as well as Laue diffraction with sub-micron spatial resolution and produce maps of orientation, strain, mineral type, and even chemical speciation over tens of microns in a short amount of time. We have pioneered the development of these techniques at the 3rd generation synchrotron radiation source (Advanced Light Source) in Berkeley, and will describe their application to understanding the structure of a quartz-geode. Our results show the manner in which grain structure and texture change as a function of distance from the cavity wall and are compared with models of crystal growth in such systems. This example highlights the great utility of a synchrotron based x-ray micro-diffraction beamline and the possibilities it opens to the mineralogist.
NASA Technical Reports Server (NTRS)
King, Trude V. V.; Clark, Roger N.; Ager, Cathy; Swayze, Gregg A.
1995-01-01
We have demonstrated the unique utility of imaging spectroscopy in mapping mineral distribution. In the Summitville mining region we have shown that the mine site does not contribute clay minerals to the Alamosa River, but does contribute Fe-bearing minerals. Such minerals have the potential to carry heavy metals. This application illustrates only one specific environmental application of imaging spectroscopy data. For instance, the types of minerals we can map with confidence are those frequently associated with environmental problems related to active and abandoned mine lands. Thus, the potential utility of this technology to the field of environmental science has yet to be fully explored.
NASA Technical Reports Server (NTRS)
2002-01-01
MarketMiner(R) Products, a line of automated marketing analysis tools manufactured by MarketMiner, Inc., can benefit organizations that perform significant amounts of direct marketing. MarketMiner received a Small Business Innovation Research (SBIR) contract from NASA's Johnson Space Center to develop the software as a data modeling tool for space mission applications. The technology was then built into the company current products to provide decision support for business and marketing applications. With the tool, users gain valuable information about customers and prospects from existing data in order to increase sales and profitability. MarketMiner(R) is a registered trademark of MarketMiner, Inc.
NASA Astrophysics Data System (ADS)
Albert, Gáspár; Szentpéteri, Krisztián
2017-04-01
Remotely sensed and digital map data are useful sources for regional structural analysis, including stress calculations. If the type of a given fault is determined and is considered as Andersonian, and rather juvenile instead of a reactivated one, the tectonic stress can be calculated for each of the fault segments (Albert et al. 2016). The North Arm of Sulawesi, a west-east-trending land strip of the irregular shaped Sulawesi Island, is actively deforming and the upper plate tectonic setting is quite complex in this region since it is situated above a triple junction of the Eurasian, Pacific and Australian plates. The stress currently acting in this region not only creates neotectonics but triggers subduction-related volcanism shifting from west to east on the peninsula. The volcanic centers - adjacent to transfer faults and the colliding plates at depth - appear to be the most productive areas for epithermal-porphyry mineralization systems of economic potential (Szentpéteri et al. 2015). In this work we demonstrate how the derived stress field model helps to understand the location and clustering of various mineralization types in the NAoS. We examine if this method is applicable for mineral prospectively assessments. References Albert, G., Barancsuk, Á., and Szentpéteri, K., 2016, Stress field modelling from digital geological map data: Geophysical Research Abstracts, v. 18, EGU2016-14565. Szentpéteri, K., Albert, G., and Ungvári, Z., Plate tectonic - and stress field - modeling of the North Arm of Sulawesi, Indonesia, to better understand distribution of mineral deposits styles., in Proceedings SEG 2015 I World Class Ore Deposits: Discovery to Recovery, Wrest Point Convention Centre, Hobart, Australia, September 27 - 30. 2015.
Physicochemical characterization of mineral deposits in human ligamenta flava.
Orzechowska, Sylwia; Wróbel, Andrzej; Kozieł, Marcin; Łasocha, Wiesław; Rokita, Eugeniusz
2018-05-01
The aim of our study was the detailed characterization of calcium deposits in ligamenta flava. The use of microcomputed tomography allowed extending the routine medical investigations to characterize mineral grains in the microscopic scale. A possible connection between spinal stenosis and ligament mineralization was investigated. The studies were carried out on 24 surgically removed ligamentum flavum samples divided into control and stenosis groups. Physicochemical characterization of the inorganic material was performed using X-ray fluorescence, X-ray diffraction, and Fourier transform infrared spectroscopy. The minerals were present in 14 of 24 ligament samples, both in stenosis and control groups. The inorganic substance constitutes on average ~0.1% of the sample volume. The minerals are scattered in the soft tissue matrix without any regular pattern. It was confirmed that minerals possess an internal structure and consist of the organic material and small inorganic grains mixture. The physicochemical analyses show that the predominant crystalline phase was hydroxyapatite (HAP). In the stenosis group calcium pyrophosphate dehydrate (CPPD) was identified. Both structures were never present in a single sample. Two different crystal structures suggest two independent processes of mineralization. The formation of CPPD may be treated as a more intense process since CPPD minerals are characterized by bigger values of the structural parameters and higher density than HAP deposits. The formation of HAP minerals is a soft tissue degeneration process that begins, in some cases, at early age or may not occur at all. Various density and volume of mineral grains indicate that the mineralization process does not occur in a constant environment and proceeds with various speeds. The formation of minerals in ligamenta flava is not directly associated with diagnosed spinal canal stenosis.
30 CFR 285.110 - How do I submit plans, applications, reports, or notices required by this part?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I submit plans, applications, reports, or notices required by this part? 285.110 Section 285.110 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE...
30 CFR 250.609 - Well-workover structures on fixed platforms.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Well-workover structures on fixed platforms. 250.609 Section 250.609 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... consideration the corrosion protection, age of the platform, and previous stresses to the platform. ...
30 CFR 250.1602 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1602 Applicability. (a) The requirements of this subpart P are applicable to all exploration, development, and production operations under an...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
30 CFR 402.11 - Technology-development project applications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Technology-development project applications. 402.11 Section 402.11 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation, and...
43 CFR 3602.11 - How do I request a sale of mineral materials?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How do I request a sale of mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Applications § 3602.11 How do I request a sale of mineral materials? (a...
43 CFR 3602.11 - How do I request a sale of mineral materials?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How do I request a sale of mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Applications § 3602.11 How do I request a sale of mineral materials? (a...
43 CFR 3602.11 - How do I request a sale of mineral materials?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How do I request a sale of mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Applications § 3602.11 How do I request a sale of mineral materials? (a...
43 CFR 3602.11 - How do I request a sale of mineral materials?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How do I request a sale of mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL MATERIALS DISPOSAL Mineral Materials Sales Applications § 3602.11 How do I request a sale of mineral materials? (a...
43 CFR 3861.1-1 - Application for survey.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Application for survey. 3861.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.1-1 Application for survey. The claimant is required, in the first place, to have a correct...
43 CFR 3861.1-1 - Application for survey.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Application for survey. 3861.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.1-1 Application for survey. The claimant is required, in the first place, to have a correct...
43 CFR 3861.1-1 - Application for survey.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Application for survey. 3861.1-1 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.1-1 Application for survey. The claimant is required, in the first place, to have a correct...
30 CFR 47.1 - Purpose of a HazCom standard; applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Purpose of a HazCom standard; applicability. 47... EDUCATION AND TRAINING HAZARD COMMUNICATION (HazCom) Purpose, Scope, Applicability, and Initial Miner Training § 47.1 Purpose of a HazCom standard; applicability. The purpose of this part is to reduce injuries...
43 CFR 3861.2-5 - Amended mineral surveys.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Amended mineral surveys. 3861.2-5 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.2-5 Amended mineral surveys. (a) Inasmuch as amended surveys are ordered only by special...
43 CFR 3861.2-5 - Amended mineral surveys.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Amended mineral surveys. 3861.2-5 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.2-5 Amended mineral surveys. (a) Inasmuch as amended surveys are ordered only by special...
43 CFR 3861.2-5 - Amended mineral surveys.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Amended mineral surveys. 3861.2-5 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.2-5 Amended mineral surveys. (a) Inasmuch as amended surveys are ordered only by special...
43 CFR 3861.2-3 - Mineral surveyor's report of expenditures and improvements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mineral surveyor's report of expenditures... Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.2-3 Mineral surveyor's report of expenditures and...
43 CFR 3861.2-5 - Amended mineral surveys.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Amended mineral surveys. 3861.2-5 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.2-5 Amended mineral surveys. (a) Inasmuch as amended surveys are ordered only by special...
43 CFR 3861.2-3 - Mineral surveyor's report of expenditures and improvements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mineral surveyor's report of expenditures... Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.2-3 Mineral surveyor's report of expenditures and...
43 CFR 3861.2-3 - Mineral surveyor's report of expenditures and improvements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Mineral surveyor's report of expenditures... Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.2-3 Mineral surveyor's report of expenditures and...
X-ray K-edge absorption spectra of Fe minerals and model compounds: II. EXAFS
NASA Astrophysics Data System (ADS)
Waychunas, Glenn A.; Brown, Gordon E.; Apted, Michael J.
1986-01-01
K-edge extended X-ray absorption fine structure (EXAFS) spectra of Fe in varying environments in a suite of well-characterized silicate and oxide minerals were collected using synchrotron radiation and analyzed using single scattering approximation theory to yield nearest neighbor Fe-O distances and coordination numbers. The partial inverse character of synthetic hercynite spinal was verified in this way. Comparison of the results from all samples with structural data from X-ray diffraction crystal structure refinements indicates that EXAFS-derived first neighbor distances are generally accurate to ±0.02 Å using only theoretically generated phase information, and may be improved over this if similar model compounds are used to determine EXAFS phase functions. Coordination numbers are accurate to ±20 percent and can be similarly improved using model compound EXAFS amplitude information. However, in particular cases the EXAFS-derived distances may be shortened, and the coordination number reduced, by the effects of static and thermal disorder or by partial overlap of the longer Fe-O first neighbor distances with second neighbor distances in the EXAFS structure function. In the former case the total information available in the EXAFS is limited by the disorder, while in the latter case more accurate results can in principle be obtained by multiple neighbor EXAFS analysis. The EXAFS and XANES spectra of Fe in Nain, Labrador osumulite and Lakeview, Oregon plagioclase are also analyzed as an example of the application of X-ray absorption spectroscopy to metal ion site occupation determination in minerals.
30 CFR 250.509 - Well-completion structures on fixed platforms.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Well-completion structures on fixed platforms. 250.509 Section 250.509 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR... consideration the corrosion protection, age of platform, and previous stresses to the platform. [53 FR 10690...
Peptide Probe for Crystalline Hydroxyapatite: In Situ Detection of Biomineralization
NASA Astrophysics Data System (ADS)
Cicerone, Marcus; Becker, Matthew; Simon, Carl; Chatterjee, Kaushik
2009-03-01
While cells template mineralization in vitro and in vivo, specific detection strategies that impart chemical and structural information on this process have proven elusive. Recently we have developed an in situ based peptide probe via phage display methods that is specific to crystalline hydroxyapatite (HA). We are using this in fluorescence based assays to characterize mineralization. One application being explored is the screening of tissue engineering scaffolds for their ability to support osteogenesis. Specifically, osteoblasts are being cultured in hydrogel scaffolds possessing property gradients to provide a test bed for the HA peptide probe. Hydrogel properties that support osteogenesis and HA deposition will be identified using the probe to demonstrate its utility in optimizing design of tissue scaffolds.
Bénard, Antoine; Palle, Sabine; Doucet, Luc Serge; Ionov, Dmitri A
2011-12-01
We report the first application of multiphoton microscopy (MPM) to generate three-dimensional (3D) images of natural minerals (micron-sized sulfides) in thick (∼120 μm) rock sections. First, reflection mode (RM) using confocal laser scanning microscopy (CLSM), combined with differential interference contrast (DIC), was tested on polished sections. Second, two-photon fluorescence (TPF) and second harmonic signal (SHG) images were generated using a femtosecond-laser on the same rock section without impregnation by a fluorescent dye. CSLM results show that the silicate matrix is revealed with DIC and RM, while sulfides can be imaged in 3D at low resolution by RM. Sulfides yield strong autofluorescence from 392 to 715 nm with TPF, while SHG is only produced by the embedding medium. Simultaneous recording of TPF and SHG images enables efficient discrimination between different components of silicate rocks. Image stacks obtained with MPM enable complete reconstruction of the 3D structure of a rock slice and of sulfide morphology at submicron resolution, which has not been previously reported for 3D imaging of minerals. Our work suggests that MPM is a highly efficient tool for 3D studies of microstructures and morphologies of minerals in silicate rocks, which may find other applications in geosciences.
NASA Astrophysics Data System (ADS)
Gopi, D.; Nithiya, S.; Shinyjoy, E.; Kavitha, L.
Synthetic calcium hydroxyapatite (HAP,Ca10(PO4)6(OH)2) is a well-known bioceramic material used in orthopaedic and dental applications because of its excellent biocompatibility and bone-bonding ability. Substitution of trace elements, such as Sr, Mg and Zn ions into the structure of calcium phosphates is the subject of widespread investigation. In this paper, we have reported the synthesis of Sr, Mg and Zn co-substituted nanohydroxyapatite by soft solution freezing method. The effect of pH on the morphology of bioceramic nanomaterial was also discussed. The in vitro bioactivity of the as-synthesized bioceramic nanomaterial was determined by soaking it in SBF for various days. The as-synthesized bioceramic nanomaterial was characterized by Fourier transform infrared spectroscopy, X- ray diffraction analysis, Scanning electron microscopy and Energy dispersive X-ray analysis and Transmission electron microscopic techniques respectively. The results obtained in our study have revealed that pH 10 was identified to induce the formation of mineralized nanohydroxyapatite. It is observed that the synthesis of bioceramic nanomaterial not only support the growth of apatite layer on its surface but also accelerate the growth which is evident from the in vitro studies. Therefore, mineralized nanohydroxyapatite is a potential candidate in bone tissue engineering.
36 CFR 9.84 - Application requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... environmentally sound manner utilizing the least impacting technology suitable for the purposes of the project... MINERALS MANAGEMENT Alaska Mineral Resource Assessment Program § 9.84 Application requirements. (a) By... Director an application pursuant to § 9.84(b) for proposed AMRAP projects and activities discussed and...
36 CFR 9.84 - Application requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... environmentally sound manner utilizing the least impacting technology suitable for the purposes of the project... MINERALS MANAGEMENT Alaska Mineral Resource Assessment Program § 9.84 Application requirements. (a) By... Director an application pursuant to § 9.84(b) for proposed AMRAP projects and activities discussed and...
36 CFR 9.84 - Application requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... environmentally sound manner utilizing the least impacting technology suitable for the purposes of the project... MINERALS MANAGEMENT Alaska Mineral Resource Assessment Program § 9.84 Application requirements. (a) By... Director an application pursuant to § 9.84(b) for proposed AMRAP projects and activities discussed and...
36 CFR 9.84 - Application requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... environmentally sound manner utilizing the least impacting technology suitable for the purposes of the project... MINERALS MANAGEMENT Alaska Mineral Resource Assessment Program § 9.84 Application requirements. (a) By... Director an application pursuant to § 9.84(b) for proposed AMRAP projects and activities discussed and...
36 CFR 9.84 - Application requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... environmentally sound manner utilizing the least impacting technology suitable for the purposes of the project... MINERALS MANAGEMENT Alaska Mineral Resource Assessment Program § 9.84 Application requirements. (a) By... Director an application pursuant to § 9.84(b) for proposed AMRAP projects and activities discussed and...
Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.
Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui
2016-03-18
Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Amity; Reardon, Patrick N.; Chacon, Stephany S.
Molecular dynamics simulations, conventional and metadynamics, were performed to determine the interaction of model protein Gb1 over kaolinite (001), Na+-montmorillonite (001), Ca2+-montmorillonite (001), goethite (100), and Na+-birnessite (001) mineral surfaces. Gb1, a small (56 residue) protein with a well-characterized solution-state nuclear magnetic resonance (NMR) structure and having α-helix, four-fold β-sheet, and hydrophobic core features, is used as a model protein to study protein soil mineral interactions and gain insights on structural changes and potential degradation of protein. From our simulations, we observe little change to the hydrated Gb1 structure over the kaolinite, montmorillonite, and goethite surfaces relative to its solvatedmore » structure without these mineral surfaces present. Over the Na+-birnessite basal surface, however, the Gb1 structure is highly disturbed as a result of interaction with this birnessite surface. Unraveling of the Gb1 β-sheet at specific turns and a partial unraveling of the α-helix is observed over birnessite, which suggests specific vulnerable residue sites for oxidation or hydrolysis possibly leading to fragmentation.« less
A Model for the Ultrastructure of Bone Based on Electron Microscopy of Ion-Milled Sections
McNally, Elizabeth A.; Schwarcz, Henry P.; Botton, Gianluigi A.; Arsenault, A. Larry
2012-01-01
The relationship between the mineral component of bone and associated collagen has been a matter of continued dispute. We use transmission electron microscopy (TEM) of cryogenically ion milled sections of fully-mineralized cortical bone to study the spatial and topological relationship between mineral and collagen. We observe that hydroxyapatite (HA) occurs largely as elongated plate-like structures which are external to and oriented parallel to the collagen fibrils. Dark field images suggest that the structures (“mineral structures”) are polycrystalline. They are approximately 5 nm thick, 70 nm wide and several hundred nm long. Using energy-dispersive X-ray analysis we show that approximately 70% of the HA occurs as mineral structures external to the fibrils. The remainder is found constrained to the gap zones. Comparative studies of other species suggest that this structural motif is ubiquitous in all vertebrates. PMID:22272230
Schwarcz, Henry P; McNally, Elizabeth A; Botton, Gianluigi A
2014-12-01
In a previous study we showed that most of the mineral in bone is present in the form of "mineral structures", 5-6nm-thick, elongated plates which surround and are oriented parallel to collagen fibrils. Using dark-field transmission electron microscopy, we viewed mineral structures in ion-milled sections of cortical human bone cut parallel to the collagen fibrils. Within the mineral structures we observe single crystals of apatite averaging 5.8±2.7nm in width and 28±19nm in length, their long axes oriented parallel to the fibril axis. Some appear to be composite, co-aligned crystals as thin as 2nm. From their similarity to TEM images of crystals liberated from deproteinated bone we infer that we are viewing sections through platy crystals of apatite that are assembled together to form the mineral structures. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somasundaran, P.; Sivakumar, A.; Xu, Q.
1991-03-01
The objective of this project is to elucidate mechanisms of adsorption of structurally modified surfactants on reservoir minerals and to develop a full understanding of the effect of the surfactant structure on the nature of the adsorbed layers at the molecular level. An additional aim is to study the adsorption of surfactant mixtures on simple well-characterized minerals and on complex minerals representing real conditions. The practical goal of these studies is the identification of the optimum surfactant structures and their combinations for micellar flooding. In this work, the experiments on adsorption were focussed on the position of sulfonate and methylmore » groups on the aromatic ring of alkyl xylene sulfonates. A multi-pronged approach consisting of calorimetry, electrokinetics, wettability and spectroscopy is planned to elucidate the adsorption mechanism of surfactants and their mixtures on minerals such as alumina and kaolinite. 32 refs., 15 figs., 7 tabs.« less
Molecular mechanics of mineralized collagen fibrils in bone
Nair, Arun K.; Gautieri, Alfonso; Chang, Shu-Wei; Buehler, Markus J.
2013-01-01
Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents. PMID:23591891
NASA Astrophysics Data System (ADS)
Matsumura, T.; Masuda, T.
2017-12-01
The microboudinage structure of columnar mineral grain is an useful marker for the stress imposed on the metamorphic rock. In this presentation, we report a detailed application of the microboudin palaeopiezometer to an individual metachert specimen that includes microboudinaged tourmaline grains. The microboudin palaeostress analysis is conducted to the number of 3621 tourmaline grains divided into every 10° of their long axes on the foliation surface. The analysis revealed that the group of mean orientation ± 15° and perpendicular to the mean orientation ± 15° showed the value of σ1 - σ3 and σ1 - σ2 as 10.2 MPa and 5.3 MPa, respectively. Using both values of σ1 - σ3 and σ1 - σ2, magnitude of principal deviatoric stresses (σ'1, σ'2 and σ'3) are obtained as σ'1 = 5.3 MPa, σ'2 = -0.1 MPa and σ'3 = -5.1 MPa. In this stress state, the stress ratio (σ2 - σ3)/(σ1 - σ3) is 0.48 that indicates typical triaxial compression. As the microboudinage structure is considered to develop immediately before the matrix mineral encountered the cessation of the plastic flow, these values correspond to conditions at ≧ 300 °C on the later stage of the metamorphism.
Nourmohammadi, Jhamak; Roshanfar, Fahimeh; Farokhi, Mehdi; Haghbin Nazarpak, Masoumeh
2017-07-01
The combination of protein-polysaccharide in scaffolding together with the ability to induce bone-like apatite formation has become a promising approach to mimic extracellular matrix composition. In the present study, we developed and characterized new bioactive composite scaffolds from kappa-carrageenan/silk fibroin for bone regeneration applications. Three dimensional (3D) scaffolds were fabricated by adding various amounts of carrageenan to a silk fibroin solution, followed by freeze-drying. Various characterization techniques were applied to analyze such items as the structure, morphology, compressive strength, and bone-like apatite mineralization of the composites, which were then compared to those of pure fibroin scaffolds. The results demonstrated the formation of a highly porous structure with interconnected pores. The mean pore size and porosity both increased by increasing carrageenan content. Moreover, the addition of carrageenan to silk fibroin led to the formation of a bone-like apatite layer throughout the scaffolds after 7days of soaking them in simulated body fluid. Osteoblast-like cell (MG 63) culture experiments indicated that all scaffolds are biocompatible. The cells attached well to the surfaces of all scaffolds and tended to join their adjacent cells. However, higher carrageenan content led to better cellular proliferation and higher Alkaline phosphatase expression. Copyright © 2017 Elsevier B.V. All rights reserved.
30 CFR 27.4 - Application procedures and requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Application procedures and requirements. 27.4 Section 27.4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS General Provisions § 27.4 Application...
30 CFR 402.12 - Evaluation of applications for grants and contracts.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Evaluation of applications for grants and contracts. 402.12 Section 402.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation...
30 CFR 402.12 - Evaluation of applications for grants and contracts.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Evaluation of applications for grants and contracts. 402.12 Section 402.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation...
30 CFR 402.12 - Evaluation of applications for grants and contracts.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Evaluation of applications for grants and contracts. 402.12 Section 402.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation...
30 CFR 402.12 - Evaluation of applications for grants and contracts.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Evaluation of applications for grants and contracts. 402.12 Section 402.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation...
30 CFR 402.12 - Evaluation of applications for grants and contracts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Evaluation of applications for grants and contracts. 402.12 Section 402.12 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Application, Evaluation...
Determination of the Effects of Magnesium on the Structural Order of Amorphous Calcium Phosphate
NASA Astrophysics Data System (ADS)
Hoeher, A.; Michel, F. M.; Rakovan, J. F.; Borkiewicz, O.; Klysubun, W.
2016-12-01
Determining the pathways and mechanisms of calcium phosphate formation is important for understanding bone mineralization and advancing potential biological applications such as coatings on internal prosthetics. Studies show that amorphous calcium phosphate (ACP) is a precursor phase in the low temperature crystallization of hydroxylapatite, the primary mineral component found in bone and teeth of most modern vertebrates. ACP has been shown to have a structural order out to about 1 nm. Our recent extended x-ray absorption fine structure (EXAFS) spectroscopy analysis of synthetic ACP showed that the local structure of calcium in ACP differed from that in hydroxylapatite. Phosphorus EXAFS, however, indicated that the local structure in ACP is similar to hydroxylapatite (i.e., tetrahedrally coordinated with oxygen). EXAFS results were limited to only the first and second nearest neighbors in these samples, so the intermediate range order in ACP is yet unexplored. Furthermore, it remains unclear how ACP structure varies as a function of initial solution chemistry, how common impurities such as Mg are incorporated, and what role they play in determining the structural and physical characteristics of the final crystalline solid. We are using synchrotron x-ray total scattering for pair distribution function (PDF) analysis to investigate the influence of initial solution chemistry and Mg content on the structure of ACP. Magnesium is commonly used to stabilize the amorphous nature of the material, preventing crystallization. Ex situ samples synthesized at pH 10, with Ca:Mg ratios of 2:1, and freeze-dried are structurally similar to hydroxylapatite. Samples synthesized in identical conditions without Mg are structurally similar to another calcium phosphate mineral, brushite. In situ PDF measurements done at similar conditions in a custom mixed-flow reactor reveal that the short range order of ACP after 10 minutes of reacting is structurally different from ACP formed ex situ in the laboratory. Future analysis is aimed at quantifying the influence of these differences and to determine the validity of competing structural models proposed for ACP. This information is essential to further develop our understanding of the ACP transformation process into hydroxylapatite.
Mineralized alginate hydrogels using marine carbonates for bone tissue engineering applications.
Diaz-Rodriguez, P; Garcia-Triñanes, P; Echezarreta López, M M; Santoveña, A; Landin, M
2018-09-01
The search for an ideal bone tissue replacement has led to the development of new composite materials designed to simulate the complex inorganic/organic structure of bone. The present work is focused on the development of mineralized calcium alginate hydrogels by the addition of marine derived calcium carbonate biomineral particles. Following a novel approach, we were able to obtain calcium carbonate particles of high purity and complex micro and nanostructure dependent on the source material. Three different types of alginates were selected to develop inorganic/organic scaffolds in order to correlate alginate composition with scaffold properties and cell behavior. The incorporation of calcium carbonates into alginate networks was able to promote extracellular matrix mineralization and osteoblastic differentiation of mesenchymal stem cells when added at 7 mg/ml. We demonstrated that the selection of the alginate type and calcium carbonate origin is crucial to obtain adequate systems for bone tissue engineering as they modulate the mechanical properties and cell differentiation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rivas, Manuel; Del Valle, Luis J; Armelin, Elaine; Bertran, Oscar; Turon, Pau; Puiggalí, Jordi; Alemán, Carlos
2018-04-16
Permanently polarized hydroxyapatite (HAp) particles have been prepared by applying a constant DC of 500 V at 1000 °C for 1 h to the sintered mineral. This process causes important chemical changes, as the formation of OH - defects (vacancies), the disappearance of hydrogenophosphate ions at the mineral surface layer, and structural variations reflected by the increment of the crystallinity. As a consequence, the electrochemical properties and electrical conductivity of the polarized mineral increase noticeably compared with as-prepared and sintered samples. Moreover, these increments remain practically unaltered after several months. In addition, permanent polarization favours significantly the ability of HAp to adsorb inorganic bioadsorbates in comparison with as-prepared and sintered samples. The adsorbates cause a significant increment of the electrochemical stability and electrical conductivity with respect to bare polarized HAp, which may have many implications for biomedical applications of permanently polarized HAp. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
36 CFR 9.86 - Application review process and approval standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT Alaska Mineral Resource Assessment Program § 9.86 Application... established; and (3) Does not adversely affect the natural and cultural resources, visitor use, or...
43 CFR 3861.2-1 - Particulars to be observed in mineral surveys.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Particulars to be observed in mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.2-1 Particulars to be observed in mineral surveys. (a) The following...
43 CFR 3861.2-1 - Particulars to be observed in mineral surveys.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Particulars to be observed in mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.2-1 Particulars to be observed in mineral surveys. (a) The following...
43 CFR 3861.2-1 - Particulars to be observed in mineral surveys.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Particulars to be observed in mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.2-1 Particulars to be observed in mineral surveys. (a) The following...
43 CFR 3861.2-1 - Particulars to be observed in mineral surveys.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Particulars to be observed in mineral...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.2-1 Particulars to be observed in mineral surveys. (a) The following...
Structure of chitosan gels mineralized by sorption
NASA Astrophysics Data System (ADS)
Modrzejewska, Z.; Skwarczyńska, A.; Douglas, T. E. L.; Biniaś, D.; Maniukiewicz, W.; Sielski, J.
2015-10-01
The paper presents the structural studies of mineralized chitosan hydrogels. Hydrogels produced by using sodium beta-glycerophosphate (Na-β-GP) as a neutralizing agent. Mineralization was performed method "post loading", which consisted in sorption to the gels structure Ca ions. In order to obtain - in the structure of gels - compounds similar to the hydroxyapatites present naturally in bone tissue, gels after sorption were modified in: pH 7 buffer and sodium hydrogen phosphate. In order to determine the structural properties of the gels, the following methods were used: infrared spectroscopy with Fourier transformation, FTIR, X-ray diffractometry, XRD, scanning electron microscopy, SEM.
Krishnakumar, Gopal Shankar; Gostynska, Natalia; Campodoni, Elisabetta; Dapporto, Massimiliano; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica
2017-08-01
This study explores for the first time the application of ribose as a highly biocompatible agent for the crosslinking of hybrid mineralized constructs, obtained by bio-inspired mineralization of self-assembling Type I collagen matrix with magnesium-doped-hydroxyapatite nanophase, towards a biomimetic mineralized 3D scaffolds (MgHA/Coll) with excellent compositional and structural mimicry of bone tissue. To this aim, two different crosslinking mechanisms in terms of pre-ribose glycation (before freeze drying) and post-ribose glycation (after freeze drying) were investigated. The obtained results explicate that with controlled freeze-drying, highly anisotropic porous structures with opportune macro-micro porosity are obtained. The physical-chemical features of the scaffolds characterized by XRD, FTIR, ICP and TGA demonstrated structural mimicry analogous to the native bone. The influence of ribose greatly assisted in decreasing solubility and increased enzymatic resistivity of the scaffolds. In addition, enhanced mechanical behaviour in response to compressive forces was achieved. Preliminary cell culture experiments reported good cytocompatibility with extensive cell adhesion, proliferation and colonization. Overall, scaffolds developed by pre-ribose glycation process are preferred, as the related crosslinking technique is more facile and robust to obtain functional scaffolds. As a proof of concept, we have demonstrated that ribose crosslinking is cost-effective, safe and functionally effective. This study also offers new insights and opportunities in developing promising scaffolds for bone tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.
Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E
1994-05-01
Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)
Morais, Francisco A; Gatiboni, Luciano C
2015-01-01
The aim of this study was to evaluate P availability, P and C contained in the microbial biomass, and enzymatic activity (acid phosphatases and β-glucosidases) in a Nitisol with the application of mineral and organo-mineral fertilizers. The experiment was performed in a protected environment with control over air temperature and soil moisture. The experimental design was organized in a "5 x 4" factorial arrangement with five sources of P and four times of soil incubation. The sources were: control (without P), triple superphosphate, diammonium phosphate, natural Arad reactive rock phosphate, and organo-mineral fertilizer. The experimental units consisted of PVC columns filled with agricultural soil. The columns were incubated and broken down for analysis at 1, 20, 40, and 60 days after application of the fertilizers. In each column, samples were taken at the layers of 0-2.5, 2.5-5.0, and 5.0-15.0 cm below the zone of the fertilizers. The application of soluble phosphates and organo-mineral fertilizer temporarily increased P availability in the zone near the fertilizers (0-2.5 cm), with maximum availability occurring at approximately 32 days. Microbial immobilization showed behavior similar to P availability, and the greatest immobilizations occurred at approximately 30 days. The organo-mineral fertilizer was not different from soluble phosphates.
Ion-exchange chromatography separation applied to mineral recycle in closed systems
NASA Technical Reports Server (NTRS)
Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.
1981-01-01
As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.
36 CFR 228.46 - Application of other laws and regulations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGRICULTURE MINERALS Disposal of Mineral Materials § 228.46 Application of other laws and regulations. All... applicable Federal standards for the protection of public safety, health, and the environment, and must also... environment, to the extent that such standards are not in conflict with Federal purposes and functions...
36 CFR 228.46 - Application of other laws and regulations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGRICULTURE MINERALS Disposal of Mineral Materials § 228.46 Application of other laws and regulations. All... applicable Federal standards for the protection of public safety, health, and the environment, and must also... environment, to the extent that such standards are not in conflict with Federal purposes and functions...
36 CFR 228.46 - Application of other laws and regulations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGRICULTURE MINERALS Disposal of Mineral Materials § 228.46 Application of other laws and regulations. All... applicable Federal standards for the protection of public safety, health, and the environment, and must also... environment, to the extent that such standards are not in conflict with Federal purposes and functions...
36 CFR 228.46 - Application of other laws and regulations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGRICULTURE MINERALS Disposal of Mineral Materials § 228.46 Application of other laws and regulations. All... applicable Federal standards for the protection of public safety, health, and the environment, and must also... environment, to the extent that such standards are not in conflict with Federal purposes and functions...
36 CFR 228.46 - Application of other laws and regulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGRICULTURE MINERALS Disposal of Mineral Materials § 228.46 Application of other laws and regulations. All... applicable Federal standards for the protection of public safety, health, and the environment, and must also... environment, to the extent that such standards are not in conflict with Federal purposes and functions...
30 CFR 921.777 - General content requirements for permit applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General content requirements for permit applications. 921.777 Section 921.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... MASSACHUSETTS § 921.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 912.777 - General content requirements for permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General content requirements for permit applications. 912.777 Section 912.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 912.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 941.777 - General content requirements for permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General content requirements for permit applications. 941.777 Section 941.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... DAKOTA § 941.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 937.777 - General content requirements for permit applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General content requirements for permit applications. 937.777 Section 937.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 937.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 912.777 - General content requirements for permit applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General content requirements for permit applications. 912.777 Section 912.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 912.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 942.777 - General content requirements for permit applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General content requirements for permit applications. 942.777 Section 942.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 942.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 933.777 - General content requirements for permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General content requirements for permit applications. 933.777 Section 933.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... CAROLINA § 933.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 922.777 - General content requirements for permit applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General content requirements for permit applications. 922.777 Section 922.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 922.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 942.777 - General content requirements for permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General content requirements for permit applications. 942.777 Section 942.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 942.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 910.777 - General content requirements for permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General content requirements for permit applications. 910.777 Section 910.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 910.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 937.777 - General content requirements for permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General content requirements for permit applications. 937.777 Section 937.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 937.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 939.777 - General content requirements for permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General content requirements for permit applications. 939.777 Section 939.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... ISLAND § 939.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 910.777 - General content requirements for permit applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General content requirements for permit applications. 910.777 Section 910.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 910.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 922.777 - General content requirements for permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General content requirements for permit applications. 922.777 Section 922.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 922.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 941.777 - General content requirements for permit applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General content requirements for permit applications. 941.777 Section 941.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... DAKOTA § 941.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 947.777 - General content requirements for permit applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General content requirements for permit applications. 947.777 Section 947.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 947.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 947.777 - General content requirements for permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General content requirements for permit applications. 947.777 Section 947.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... § 947.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 921.777 - General content requirements for permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false General content requirements for permit applications. 921.777 Section 921.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... MASSACHUSETTS § 921.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 939.777 - General content requirements for permit applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General content requirements for permit applications. 939.777 Section 939.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... ISLAND § 939.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 933.777 - General content requirements for permit applications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false General content requirements for permit applications. 933.777 Section 933.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... CAROLINA § 933.777 General content requirements for permit applications. Part 777 of this chapter, General...
30 CFR 285.913 - What happens if I fail to comply with my approved decommissioning application?
Code of Federal Regulations, 2010 CFR
2010-07-01
... approved decommissioning application? 285.913 Section 285.913 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE OUTER CONTINENTAL SHELF Decommissioning Compliance with An Approved Decommissioning Application § 285.913 What...
Tufo, Ana E; Porzionato, Natalia F; Curutchet, Gustavo
2017-10-31
In this work, we report on the structural and textural changes in fluvial sediments from Reconquista River´s basin, Argentina, due to processes of contamination with organic matter and remediation by bioleaching. The original uncontaminated matrix showed quartz and phyllosilicates as the main primary mineral constituents and phases of interstratified illite-montmorillonite as secondary minerals. It was found that in contaminated sediments, the presence of organic matter in high concentration causes changes in the specific surface area, particle size distribution, size and distribution of micro and meso, and the morphology of the particles with respect to the uncontaminated sediment. After the bioleaching process, there were even greater changes in these parameters at the level of secondary mineral formation and the appearance of nanoparticles, which were confirmed by SEM. Especially, we found the formation of cementing substances such as gypsum, promoting the formation of macroporous aggregates and the weathering of clay components. Our results indicate that the bioleaching not only decreases the content of metals but also favors the formation of a material with improved characteristics for potential future applications.
NASA Technical Reports Server (NTRS)
Coyne, L.; Bishop, J.; Howard, L.; Scattergood, T. W.
1991-01-01
A feasibility study assessing the utility of the adaptation of near infrared correlation spectroscopy to quantifying iron and adsorbed water in some clay-based Mars soil analog materials (MarSAM's). The work was intended to constitute Phase 1 of an approach to identifying optical analytical wavelength regions, not only for important mineral classes, but for chemically active centers within them. Many of these centers are common to unrelated mineral classes and of disproportionate influence relative to the mineral structure as a whole in determining the surface reactivity of mineral surfaces. We previously reported linearity between reflectance and total iron and total moisture over a large range of both key variables. We also discovered interesting relationships between the intensity of iron bands and the relative humidity of the systems. These relationships were confirmed. We also show that, in the low humidity range, reflectance is linearly dependent on a different kind of water from that best representing the full humidity range (the kind of water associated, in clays, with surface acidity). These relationships and the sensitivity and capability of quantitation of near infrared data indicate high promise with the production of reactive surface intermediates of products of surface reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Alyssa A.; Larson, Jeffery C.; Garson, III, Alfred B.
2014-11-04
Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing tomore » their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Hongsheng; Zhang, Li
Recent advances in experimental techniques and data processing allow in situ determination of mineral crystal structure and chemistry up to Mbar pressures in a laser-heated diamond anvil cell (DAC), providing the fundamental information of the mineralogical constitution of our Earth's interior. This work highlights several recent breakthroughs in the field of high-pressure mineral crystallography, including the stability of bridgmanite, the single-crystal structure studies of post-perovskite and H-phase as well as the identification of hydrous minerals and iron oxides in the deep lower mantle. The future development of high-pressure crystallography is also discussed.
Colin, Y; Nicolitch, O; Turpault, M-P; Uroz, S
2017-03-01
Although minerals represent important soil constituents, their impact on the diversity and structure of soil microbial communities remains poorly documented. In this study, pure mineral particles with various chemistries (i.e., obsidian, apatite, and calcite) were considered. Each mineral type was conditioned in mesh bags and incubated in soil below different tree stands (beech, coppice with standards, and Corsican pine) for 2.5 years to determine the relative impacts of mineralogy and mineral weatherability on the taxonomic and functional diversities of mineral-associated bacterial communities. After this incubation period, the minerals and the surrounding bulk soil were collected to determine mass loss and to perform soil analyses, enzymatic assays, and cultivation-dependent and -independent analyses. Notably, our 16S rRNA gene pyrosequencing analyses revealed that after the 2.5-year incubation period, the mineral-associated bacterial communities strongly differed from those of the surrounding bulk soil for all tree stands considered. When focusing only on minerals, our analyses showed that the bacterial communities associated with calcite, the less recalcitrant mineral type, significantly differed from those that colonized obsidian and apatite minerals. The cultivation-dependent analysis revealed significantly higher abundances of effective mineral-weathering bacteria on the most recalcitrant minerals (i.e., apatite and obsidian). Together, our data showed an enrichment of Betaproteobacteria and effective mineral-weathering bacteria related to the Burkholderia and Collimonas genera on the minerals, suggesting a key role for these taxa in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. IMPORTANCE Forests are usually developed on nutrient-poor and rocky soils, while nutrient-rich soils have been dedicated to agriculture. In this context, nutrient recycling and nutrient access are key processes in such environments. Deciphering how soil mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. Copyright © 2017 American Society for Microbiology.
Colin, Y.; Nicolitch, O.; Turpault, M.-P.
2016-01-01
ABSTRACT Although minerals represent important soil constituents, their impact on the diversity and structure of soil microbial communities remains poorly documented. In this study, pure mineral particles with various chemistries (i.e., obsidian, apatite, and calcite) were considered. Each mineral type was conditioned in mesh bags and incubated in soil below different tree stands (beech, coppice with standards, and Corsican pine) for 2.5 years to determine the relative impacts of mineralogy and mineral weatherability on the taxonomic and functional diversities of mineral-associated bacterial communities. After this incubation period, the minerals and the surrounding bulk soil were collected to determine mass loss and to perform soil analyses, enzymatic assays, and cultivation-dependent and -independent analyses. Notably, our 16S rRNA gene pyrosequencing analyses revealed that after the 2.5-year incubation period, the mineral-associated bacterial communities strongly differed from those of the surrounding bulk soil for all tree stands considered. When focusing only on minerals, our analyses showed that the bacterial communities associated with calcite, the less recalcitrant mineral type, significantly differed from those that colonized obsidian and apatite minerals. The cultivation-dependent analysis revealed significantly higher abundances of effective mineral-weathering bacteria on the most recalcitrant minerals (i.e., apatite and obsidian). Together, our data showed an enrichment of Betaproteobacteria and effective mineral-weathering bacteria related to the Burkholderia and Collimonas genera on the minerals, suggesting a key role for these taxa in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. IMPORTANCE Forests are usually developed on nutrient-poor and rocky soils, while nutrient-rich soils have been dedicated to agriculture. In this context, nutrient recycling and nutrient access are key processes in such environments. Deciphering how soil mineralogy influences the diversity, structure, and function of soil bacterial communities in relation to the soil conditions is crucial to better understanding the relative role of the soil bacterial communities in nutrient cycling and plant nutrition in nutrient-poor environments. The present study determined in detail the diversity and structure of bacterial communities associated with different mineral types incubated for 2.5 years in the soil under different tree species using cultivation-dependent and -independent analyses. Our data showed an enrichment of specific bacterial taxa on the minerals, specifically on the most weathered minerals, suggesting that they play key roles in mineral weathering and nutrient cycling in nutrient-poor forest ecosystems. PMID:28003192
Activation of Peroxymonosulfate by Subsurface Minerals.
Yu, Miao; Teel, Amy L; Watts, Richard J
2016-08-01
In situ chemical oxidation (ISCO) has become a widely used technology for the remediation of soil and groundwater. Although peroxymonosulfate is not a common oxidant source for ISCO, its chemical structure is similar to the ISCO reagents hydrogen peroxide and persulfate, suggesting that peroxymonosulfate may have the beneficial properties of each of these oxidants. Peroxymonosulfate activation in the presence of subsurface minerals was examined as a basis for ISCO, and possible reactive species (hydroxyl radical, sulfate radical, and reductants+nucleophiles) generated in the mineral-activated peroxymonosulfate systems were investigated. Rates of peroxymonosulfate decomposition and generation rates of reactive species were studied in the presence of three iron oxides, one manganese oxide, and three soil fractions. The iron oxide hematite-activated peroxymonosulfate system most effectively degraded the hydroxyl radical probe nitrobenzene. Reductants+nucleophiles were not generated in mineral-activated peroxymonosulfate systems. Use of the probe compound anisole in conjunction with scavengers demonstrated that both sulfate radical and hydroxyl radical are generated in mineral-activated peroxymonosulfate systems. In order to confirm the activation of peroxymonosulfate by subsurface minerals, one natural soil and associated two soil fractions were evaluated as peroxymonosulfate catalysts. The natural soil did not effectively promote the generation of oxidants; however, the soil organic matter was found to promote the generation of reductants + nucleophiles. The results of this research show that peroxymonosulfate has potential as an oxidant source for ISCO applications, and would be most effective in treating halogenated contaminants when soil organic matter is present in the subsurface. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Ba, Xiaolan
Biomineralization is a wide-spread phenomenon in the biological systems, which is the process of mineral formation by organisms through interaction between its organic contents and the inorganic minerals. The process is essential in a broad spectrum of biological phenomena ranging from bone and tooth formation to pathological mineralization under hypoxic conditions or cancerous formations. In this thesis I studied biomineralization at the earliest stages in order to obtain a better understanding of the fundamental principals involved. This knowledge is essential if we want to engineer devices which will increase bone regeneration or prevent unwanted mineral deposits. Extracellular matrix (ECM) proteins play an essential role during biomineralization in bone and engineered tissues. In this dissertation, I present an approach to mimic the ECM in vitro to probe the interactions of these proteins with calcium phosphate mineral and with each other. Early stage of mineralization is investigated by mechanical properties of the protein fibers using Scanning Probe Microscopy (SPM) and Shear Modulation Force Microscopy (SMFM). The development of mineral crystals on the protein matrices is also characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Grazing Incidence X-ray Diffraction (GIXRD). The results demonstrate complementary actions of the two ECM proteins to collect cations and template calcium phosphate mineral, respectively. Magnets have been clinically used as an "induction source" in various bone or orthodontic treatments. However, the mechanism and effects of magnetic fields remain unclear. In this dissertation, I also undertake the present investigation to study the effects of 150 mT static magnetic fields (SMF) on ECM development and cell biomineralization using MC3T3-E1 osteobalst-like cells. Early stage of biomineralization is characterized by SPM, SMFM and confocal laser scanning microscopy (CSLM). Late stage of biomineralization is investigated by SEM, GIXRD and energy dispersive X-ray spectroscopy (EDXS). Gene expression during the exposure of SMF is also studies by RT-PCR. The results indicated that exposure to SMF induces osteoblasts to produce larger quantities of HA, with higher degree of crystalline order. The controlling and understanding of protein on the surface is of great interest in biomedical application such as implant medicine, biosensor design, food processing, and chromatographic separations. The adsorbed protein onto the surface significantly determines the performance of biomaterials in a biological environment. Recent studies have suggested that the preservation of the native secondary structure of protein adsorbed is essential for biological application. In order to manipulate protein adsorption and design biocompatible materials, the mechanisms underlying protein-surface interactions, especially how surface properties of materials induce conformational changes of adsorbed proteins, needs to be well understood. Here we demonstrated that even though SPS is a necessary condition, it is not sufficient. We show that low substrate conductivity as well as proper salt concentration are also critical in sustained protein adsorption continuously. These factors allow one to pattern regions of different conducting properties and for the first time patterns physiologically relevant protein structures. Here we show that we can achieve patterned biomineralized regimes, both with plasma proteins in a simple and robust manner without additional functionalization or application of electrochemical gradients. Since the data indicate that the patterns just need to differ in electrical conductivity, rather than surface chemistry, we propose that the creation of transient image charges, due to incomplete charge screening, may be responsible for sustain the driving force for continual protein absorption.
Leprévost, Amandine; Azaïs, Thierry; Trichet, Michael; Sire, Jean-Yves
2017-11-01
In a study aiming to improve knowledge on the mineralization of the axial skeleton in reared Siberian sturgeon (Acipenser baerii Brandt, 1869), we discovered a new mineralized tissue within the notochord. To our knowledge, such a structure has never been reported in any vertebrate species with the exception of the pathological mineralization of the notochord remains in degenerative intervertebral disks of mammals. Here, we describe this enigmatic tissue using X-ray microtomography, histological analyses and solid state NMR-spectroscopy. We also performed a 1-year monitoring of the mineral content (MC) of the notochord in relation with seasonal variations of temperature. In all specimens studied from 2-year-old juveniles onwards, this mineralized structure was found within a particular region of the notochord called funiculus. This feature first appears in the abdominal region then extends posteriorly with ageing, while the notochord MC also increases. The mineral phase is mainly composed of amorphous calcium phosphate, a small amount of which changes into hydroxyapatite with ageing. The putative role of this structure is discussed as either a store of minerals available for the phosphocalcic metabolism, or a mechanical support in a species with a poorly mineralized axial skeleton. A pathological feature putatively related to rearing conditions is also discussed. © 2017 Wiley Periodicals, Inc.
43 CFR 3861.1-3 - Plats and field notes of mineral surveys.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Plats and field notes of mineral surveys...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.1-3 Plats and field notes of mineral surveys. When the patent is issued...
43 CFR 3861.1-3 - Plats and field notes of mineral surveys.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Plats and field notes of mineral surveys...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.1-3 Plats and field notes of mineral surveys. When the patent is issued...
43 CFR 3861.1-3 - Plats and field notes of mineral surveys.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Plats and field notes of mineral surveys...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.1-3 Plats and field notes of mineral surveys. When the patent is issued...
43 CFR 3861.1-3 - Plats and field notes of mineral surveys.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Plats and field notes of mineral surveys...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Surveys and Plats § 3861.1-3 Plats and field notes of mineral surveys. When the patent is issued...
Susset, Bernd; Grathwohl, Peter
2011-02-01
In this contribution we give a first general overview of results of recent studies in Germany which focused on contaminant leaching from various materials and reactive solute transport in the unsaturated soil zone to identify the key factors for groundwater risk assessment. Based on these results we developed new and improved existing methods for groundwater risk assessment which are used to derive a new regulatory concept for the upcoming "Decree for the Requirements of the Use of Alternative Mineral Building Materials in Technical Constructions and for the Amendment of the Federal Soil Protection and Contaminated Sites Ordinance" of the German Federal Ministry of Environment. The new concept aims at a holistic and scientifically sound assessment of the use of mineral recycling materials (e.g., mineral waste, excavated soils, slag and ashes, recycling products, etc.) in technical constructions (e.g., road dams) and permanent applications (e.g., backfilling and landscaping) which is based on a mechanistic understanding of leaching and transport processes. Fundamental for risk assessment are leaching standards for the mineral recycling materials. For each application of mineral recycling materials specific maximum concentrations of a substance in the seepage water at the bottom of an application were calculated. Technical boundary conditions and policy conventions derived from the "German precautionary groundwater and soil protection policy" were accounted to prevent adverse environmental effects on the media soil and groundwater. This includes the concentration decline of highly soluble substances (e.g., chloride and sulphate), retardation or attenuation of solutes, accumulation of contaminants in sub-soils and the hydraulic properties of recycling materials used for specific applications. To decide whether the use of a mineral recycling material is possible in a specific application, the leaching qualities were evaluated based on column percolation tests with various samples and compared with application-specific maximum concentrations. In the upcoming federal decree this simplified concept is realized using detailed tables which classify the leaching quality of mineral recycling materials and demonstrate potential application. A quality assurance system will be mandatory which defines specific testing programs (material properties and limit concentrations to be tested, number and schedule of testing) for the different mineral recycling materials using standardized methods (column percolation test). Copyright © 2010 Elsevier Ltd. All rights reserved.
The flotation and adsorption of mixed collectors on oxide and silicate minerals.
Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Sun, Wei; Hu, Yuehua
2017-12-01
The analysis of flotation and adsorption of mixed collectors on oxide and silicate minerals is of great importance for both industrial applications and theoretical research. Over the past years, significant progress has been achieved in understanding the adsorption of single collectors in micelles as well as at interfaces. By contrast, the self-assembly of mixed collectors at liquid/air and solid/liquid interfaces remains a developing area as a result of the complexity of the mixed systems involved and the limited availability of suitable analytical techniques. In this work, we systematically review the processes involved in the adsorption of mixed collectors onto micelles and at interface by examining four specific points, namely, theoretical background, factors that affect adsorption, analytical techniques, and self-assembly of mixed surfactants at the mineral/liquid interface. In the first part, the theoretical background of collector mixtures is introduced, together with several core solution theories, which are classified according to their application in the analysis of physicochemical properties of mixed collector systems. In the second part, we discuss the factors that can influence adsorption, including factors related to the structure of collectors and environmental conditions. We summarize their influence on the adsorption of mixed systems, with the objective to provide guidance on the progress achieved in this field to date. Advances in measurement techniques can greatly promote our understanding of adsorption processes. In the third part, therefore, modern techniques such as optical reflectometry, neutron scattering, neutron reflectometry, thermogravimetric analysis, fluorescence spectroscopy, ultrafiltration, atomic force microscopy, analytical ultracentrifugation, X-ray photoelectron spectroscopy, Vibrational Sum Frequency Generation Spectroscopy and molecular dynamics simulations are introduced in virtue of their application. Finally, focusing on oxide and silicate minerals, we review and summarize the flotation and adsorption of three most widely used mixed surfactant systems (anionic-cationic, anionic-nonionic, and cationic-nonionic) at the liquid/mineral interface in order to fully understand the self-assembly progress. In the end, the paper gives a brief future outlook of the possible development in the mixed surfactants. Copyright © 2017 Elsevier B.V. All rights reserved.
Zbik, Marek S; Frost, Ray L
2010-06-15
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using atomic force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concentrations and larger particle diameters (up to 5 microm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 001/020 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction. 2010 Elsevier Inc. All rights reserved.
30 CFR 202.350 - Scope and definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Scope and definitions. 202.350 Section 202.350 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT ROYALTIES Geothermal Resources § 202.350 Scope and definitions. (a) This subpart is applicable to all...
NASA Astrophysics Data System (ADS)
Brethes, Anaïs; Guarnieri, Pierpaolo; Rasmussen, Thorkild Maack; Bauer, Tobias Erich
2018-01-01
This paper provides a detailed interpretation of several aeromagnetic datasets over the Jameson Land Basin in central East Greenland. The interpretation is based on texture and lineament analysis of magnetic data and derivatives of these, in combination with geological field observations. Numerous faults and Cenozoic intrusions were identified and a chronological interpretation of the events responsible for the magnetic features is proposed built on crosscutting relationships and correlated with absolute ages. Lineaments identified in enhanced magnetic data are compared with structures controlling the mineralized systems occurring in the area and form the basis for the interpretations presented in this paper. Several structures associated with base metal mineralization systems that were known at a local scale are here delineated at a larger scale; allowing the identification of areas displaying favorable geological settings for mineralization. This study demonstrates the usefulness of high-resolution airborne magnetic data for detailed structural interpretation and mineral exploration in geological contexts such as the Jameson Land Basin.
Rietveld Refinement on X-Ray Diffraction Patterns of Bioapatite in Human Fetal Bones
Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H.
2003-01-01
Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction (μ-XRD) techniques. Rietveld refinement analyses of XRD and μ-XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age. PMID:12609904
Spectral inversion of frequency-domain IP data obtained in Haenam, South Korea
NASA Astrophysics Data System (ADS)
Kim, B.; Nam, M. J.; Son, J. S.
2017-12-01
Spectral induced polarization (SIP) method using a range of source frequencies have been performed for not only exploring minerals resources, but also engineering or environmental application. SIP interpretation first makes inversion of individual frequency data to obtain complex resistivity structures, which will further analyzed employing Cole-Cole model to explain the frequency-dependent characteristics. However, due to the difficulty in fitting Cole-Cole model, there is a movement to interpret complex resistivity structure inverted only from a single frequency data: that is so-called "complex resistivity survey". Further, simultaneous inversion of multi-frequency SIP data, rather than making a single frequency SIP data, has been studied to improve ambiguity and artefacts of independent single frequency inversion in obtaining a complex resistivity structure, even though the dispersion characteristics of complex resistivity with respect to source frequency. Employing the simultaneous inversion method, this study makes inversion of field SIP data obtained over epithermal mineralized area, Haenam, in the southernmost tip of South Korea. The area has a polarizable structure because of extensive hydrothermal alteration, gold-silver deposits. After the inversion, we compare between inversion results considering multi-frequency data and single frequency data set to evaluate the performance of simultaneous inversion of multi-frequency SIP data.
43 CFR 3816.2 - Application to open lands to location.
Code of Federal Regulations, 2014 CFR
2014-10-01
... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO... the knowledge or belief that the lands contain valuable mineral deposits, giving such detail as the...
43 CFR 3503.45 - How will BLM administer information concerning other Indian minerals?
Code of Federal Regulations, 2012 CFR
2012-10-01
... concerning other Indian minerals? 3503.45 Section 3503.45 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Areas Available for Leasing Filing Applications...
43 CFR 3503.45 - How will BLM administer information concerning other Indian minerals?
Code of Federal Regulations, 2011 CFR
2011-10-01
... concerning other Indian minerals? 3503.45 Section 3503.45 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Areas Available for Leasing Filing Applications...
43 CFR 3503.45 - How will BLM administer information concerning other Indian minerals?
Code of Federal Regulations, 2013 CFR
2013-10-01
... concerning other Indian minerals? 3503.45 Section 3503.45 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Areas Available for Leasing Filing Applications...
43 CFR 3503.45 - How will BLM administer information concerning other Indian minerals?
Code of Federal Regulations, 2014 CFR
2014-10-01
... concerning other Indian minerals? 3503.45 Section 3503.45 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Areas Available for Leasing Filing Applications...
NASA Astrophysics Data System (ADS)
Klöcking, M.; White, N. J.; Maclennan, J.; Fitton, J. G.
2016-12-01
The Troodos ophiolite, Cyprus, is one of the best preserved ophiolites. Based on geochemical data a supra-subduction zone (SSZ) setting was proposed. Microtextures and fluid inclusions of veins and vesicles within the Pillow Lavas record the post-magmatic structural and geochemical evolution of this SSZ beginning at 75 Ma. Three different vein types from the Upper and Lower Pillow Lavas are distinguished and imply vein precipitation under a dominant extensional regime: (1) syntaxial calcite-, quartz- and zeolite-bearing veins are interpreted as mineralized extension fractures that were pervaded by seawater. This advective fluid flow in an open system changed later into a closed system characterized by geochemical self-organization. (2) Blocky and (3) antitaxial fibrous calcite veins are associated with brecciation due to hydrofracturing and diffusion-crystallization processes, respectively. Based on aqueous fluid inclusion chemistry with seawater salinities in all studied vein types, representative fluid inclusion isochores crossed with calculated litho- and hydrostatic pressure conditions yield mineral precipitation temperatures between 180 and 210 °C, for veins and vesicles hosted in the Upper and Lower Pillow Lavas. This points to a heat source for the circulating seawater and implies that vein and vesicle minerals precipitated shortly after pillow lava crystallization under dominant isobaric cooling conditions. Compared to previous suggestions derived from secondary mineralization a less steep geothermal gradient of 200 °C from the Sheeted Dyke Complex to the Pillow Lavas of the Troodos SSZ is proposed. Further fossil and recent SSZ like the Mirdita ophiolite, Albania, the South-Anatolian ophiolites, Turkey, and the Izu-Bonin fore arc, respectively, reveal similar volcanic sequences. Vein samples recovered during International Ocean Discovery Program expedition 351 and 352 in the Izu-Bonin back and fore arc, respectively, indicate also seawater infiltration into fractures but low-temperature (<150 °C) mineral precipitation. This comparison of spatially and temporally unrelated vein systems contributes to the understanding of post-magmatic structural and geochemical processes in SSZ. This study was granted by the Austrian Science Fund (FWF-P 27982-N29).
NASA Astrophysics Data System (ADS)
Kurz, W.; Quandt, D.; Micheuz, P.; Krenn, K.
2017-12-01
The Troodos ophiolite, Cyprus, is one of the best preserved ophiolites. Based on geochemical data a supra-subduction zone (SSZ) setting was proposed. Microtextures and fluid inclusions of veins and vesicles within the Pillow Lavas record the post-magmatic structural and geochemical evolution of this SSZ beginning at 75 Ma. Three different vein types from the Upper and Lower Pillow Lavas are distinguished and imply vein precipitation under a dominant extensional regime: (1) syntaxial calcite-, quartz- and zeolite-bearing veins are interpreted as mineralized extension fractures that were pervaded by seawater. This advective fluid flow in an open system changed later into a closed system characterized by geochemical self-organization. (2) Blocky and (3) antitaxial fibrous calcite veins are associated with brecciation due to hydrofracturing and diffusion-crystallization processes, respectively. Based on aqueous fluid inclusion chemistry with seawater salinities in all studied vein types, representative fluid inclusion isochores crossed with calculated litho- and hydrostatic pressure conditions yield mineral precipitation temperatures between 180 and 210 °C, for veins and vesicles hosted in the Upper and Lower Pillow Lavas. This points to a heat source for the circulating seawater and implies that vein and vesicle minerals precipitated shortly after pillow lava crystallization under dominant isobaric cooling conditions. Compared to previous suggestions derived from secondary mineralization a less steep geothermal gradient of 200 °C from the Sheeted Dyke Complex to the Pillow Lavas of the Troodos SSZ is proposed. Further fossil and recent SSZ like the Mirdita ophiolite, Albania, the South-Anatolian ophiolites, Turkey, and the Izu-Bonin fore arc, respectively, reveal similar volcanic sequences. Vein samples recovered during International Ocean Discovery Program expedition 351 and 352 in the Izu-Bonin back and fore arc, respectively, indicate also seawater infiltration into fractures but low-temperature (<150 °C) mineral precipitation. This comparison of spatially and temporally unrelated vein systems contributes to the understanding of post-magmatic structural and geochemical processes in SSZ. This study was granted by the Austrian Science Fund (FWF-P 27982-N29).
Bodine, M.W.
1987-01-01
The FORTRAN 77 computer program CLAYFORM apportions the constituents of a conventional chemical analysis of a silicate mineral into a user-selected structure formula. If requested, such as for a clay mineral or other phyllosilicate, the program distributes the structural formula components into appropriate default or user-specified structural sites (tetrahedral, octahedral, interlayer, hydroxyl, and molecular water sites), and for phyllosilicates calculates the layer (tetrahedral, octahedral, and interlayer) charge distribution. The program also creates data files of entered analyses for subsequent reuse. ?? 1987.
Siidra, Oleg; Nekrasova, Diana; Depmeier, Wulf; Chukanov, Nikita; Zaitsev, Anatoly; Turner, Rick
2018-04-01
White lead or basic lead carbonate, 2PbCO 3 ·Pb(OH) 2 , the synthetic analogue of hydrocerussite Pb 3 (OH) 2 (CO 3 ) 2 , has been known since antiquity as the most frequently used white paint. A number of different minerals and synthetic materials compositionally and structurally related to hydrocerussite have been described within the last two decades. Herein, a review is given of general structural principles, chemical variations and IR spectra of the rapidly growing family of hydrocerussite-related minerals and synthetic materials. Only structures containing a hydroxo- and/or oxo-component, i.e. which are compositionally directly related with hydrocerussite and `white lead', are reviewed in detail. An essential structural feature of all the considered phases is the presence of electroneutral [PbCO 3 ] 0 cerussite-type layers or sheets. Various interleaved sheets can be incorporated between the cerussite-type sheets. Different sheets are stacked into two-dimensional blocks separated by the stereochemically active 6s 2 lone electron pairs on Pb 2+ cations. Minerals and synthetic materials described herein, together with a number of still hypothetical members, constitute a family of modular structures. Hydrocerussite, abellaite and grootfonteinite can be considered to constitute a merotype family of structures. The remaining hydrocerussite-related structures discussed are built on similar principles, but are more complex. Structural architectures of somersetite and slag phase from Lavrion, Attica, Greece, are unique for oxysalt mineral structures in general. Thus, the whole family of hydrocerussite-related phases can be denoted as a plesiotype family of modular structures. The crystal structures of hydrocerussite from Merehead quarry, Somerset, England, and of its synthetic analogue, both determined from single crystals, are reported here for the first time. The results of the infrared (IR) spectroscopy show that this method is useful for distinguishing several different minerals related to hydrocerussite and their synthetic analogues.
NASA Astrophysics Data System (ADS)
Mariani, Elisabetta; Kaercher, Pamela; Mecklenburgh, Julian; Wheeler, John
2016-04-01
Perovskite minerals form an important mineral group that has applications in Earth science and emerging alternative energy technologies, however crystallographic quantification of these minerals with electron backscatter diffraction (EBSD) is not accurate due to pseudosymmetry problems. The silicate perovskite Bridgmanite, (Mg,Fe)SiO3, is understood to be the dominant phase in the Earth's lower mantle. Gaining insight into its physical and rheological properties is therefore vital to understand the dynamics of the Earth's deep interior. Rock deformation experiments on analogue perovskite phases, for example (Ca,Sr)TiO3, combined with quantitative microstructural analyses of the recovered samples by EBSD, yield datasets that can reveal what deformation mechanisms may dominate the flow of perovskite in the lower mantle. Additionally, perovskite structures have important technological applications as new, suitable cathodes for the operation of more efficient and environmentally-friendly solid oxide fuel cells (SOFC). In recent years they have also been recognised as a potential substitute for silicon in the next generation of photovoltaic cells for the construction of economic and energy efficient solar panels. EBSD has the potential to be a valuable tool for the study of crystal orientations achieved in perovskite substrates as crystal alignment has a direct control on the properties of these materials. However, perovskite structures currently present us with challenges during the automated indexing of Kikuchi bands in electron backscatter diffraction patterns (EBSPs). Such challenges are represented by the pseudosymmetric character of perovskites, where atoms are subtly displaced (0.005 nm to 0.05 nm) from their higher symmetry positions. In orthorhombic Pbnm perovskites, for example, pseudosymmetry may be evaluated from the c/a unit cell parameter ratio, which is very close to 1. Two main types of distortions from the higher symmetry structure are recognised: a tilt and a deformation of the anion octahedron. These distortions may occur together. Common misidentifications observed in EBSD data are [100] and [001] seen as equivalent solutions, whereby these dyad symmetry axes are misidentified as tetrad axes of the cubic symmetry. In this study we investigate methods that could be applied to the EBSP automated indexing algorithm to solve the pseudosymmetry problem in perovskite structures. Attention is given to subtle angular deviations between bands and to differences in pseudosymmetric Kikuchi patterns.
[Mechanism of tritium persistence in porous media like clay minerals].
Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni
2011-03-01
To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.
Rondorfite-type structure — XPS and UV–vis study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulski, M., E-mail: mateusz.dulski@smcebi.edu.pl; A.Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice; Bilewska, K., E-mail: kbilewska@us.edu.pl
2015-10-15
Highlights: • Structural and spectroscopic characterization of chlorosilicate mineral, rondorfite. • Characterization of main photoemission lines and valence band spectra. • The study of color origin’s using UV–vis spectroscopy. • Analysis of structural changes in context of origin of natural fluorescence. • Discussion of a new application possibilities of analyzed mineral - Abstract: This paper focuses on X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy of two different (green, orange) rondorfite samples. The differences in the sample color originate from various O/Cl ratios. The orange color was found to be related either to the isomorphic substitution of Fe{sup 3+}/Al{sup 3+} formore » Mg{sup 2+}, the presence of atypical [MgO{sub 4}] tetrahedrons in crystal structure or electronegativity of the sample. The tetrahedron is known to be very prone to accumulation of impurities and substitute atoms. Moreover, the XPS data showed tetrahedrally coordinated Mg{sup 2+} and isomorphic substitution of Al{sup 3+}/Fe{sup 3+} for Mg{sup 2+}, which influences local disordering and the point defects density and distribution. Non-equilibrium chlorine positions inside the crystal cages as well as Ca-Cl bonds have also been found. The XPS measurements as a function of temperature indicate occurrence of a structural transformation at about 770 K which is accompanied by a rotation of silicate tetrahedra within magnesiosilicate pentamer and luminescence disappearance.« less
Synthesis and time-resolved structural characterization of framework and mineral sulfides
NASA Astrophysics Data System (ADS)
Cahill, Christopher Langley
A new class of open-framework organic/inorganic hybrid materials based on In-S chemistry has been discovered. The compounds therein exhibit unprecedented structural diversity compared to known porous sulfides, primarily due to variation in framework building units. Further, large increases in pore dimensions (vs. zeolites, for example) are observed as these materials consist of comer and edge linked clusters, e.g. In10S20, In9S17, In4S10 and In6S 15. Choice of organic structure directing agents (templates) and careful control of reaction conditions (temperature, pH) both in the In-S and Ge-S systems is shown not only to dictate which building unit will form, but also to direct the resulting framework topology. Several of the compounds described herein crystallize either as powders, or as crystals too small for standard in-house X-ray structural analysis. Diffraction experiments have thus required synchrotron based single crystal techniques for structure determination. Further, certain reaction mixture compositions result in multi-phase end products, the formation pathways of which have been studied with time resolved, in situ synchrotron powder diffraction. An extension of the applicability of the in situ techniques investigated the role of oxygen in hydrothermal systems. Oxidation state is proposed to dictate speciation in the Ni-Ge-S system and to promote phase transformations in the Fe-S mineral system.
The supramolecular structure of bone: X-ray scattering analysis and lateral structure modeling
Zhou, Hong-Wen; Burger, Christian; Wang, Hao; Hsiao, Benjamin S.; Chu, Benjamin; Graham, Lila
2016-01-01
The evolution of vertebrates required a key development in supramolecular evolution: internally mineralized collagen fibrils. In bone, collagen molecules and mineral crystals form a nanocomposite material comparable to cast iron in tensile strength, but several times lighter and more flexible. Current understanding of the internal nanoscale structure of collagen fibrils, derived from studies of rat tail tendon (RTT), does not explain how nucleation and growth of mineral crystals can occur inside a collagen fibril. Experimental obstacles encountered in studying bone have prevented a solution to this problem for several decades. This report presents a lateral packing model for collagen molecules in bone fibrils, based on the unprecedented observation of multiple resolved equatorial reflections for bone tissue using synchrotron small-angle X-ray scattering (SAXS; ∼1 nm resolution). The deduced structure for pre-mineralized bone fibrils includes features that are not present in RTT: spatially discrete microfibrils. The data are consistent with bone microfibrils similar to pentagonal Smith microfibrils, but are not consistent with the (nondiscrete) quasi-hexagonal microfibrils reported for RTT. These results indicate that collagen fibrils in bone and tendon differ in their internal structure in a manner that allows bone fibrils, but not tendon fibrils, to internally mineralize. In addition, the unique pattern of collagen cross-link types and quantities in mineralized tissues can be can be accounted for, in structural/functional terms, based on a discrete microfibril model. PMID:27599731
Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
Wang, Junping; Valmikinathan, Chandra M; Liu, Wei; Laurencin, Cato T; Yu, Xiaojun
2010-05-01
Polymeric nanofiber matrices have already been widely used in tissue engineering. However, the fabrication of nanofibers into complex three-dimensional (3D) structures is restricted due to current manufacturing techniques. To overcome this limitation, we have incorporated nanofibers onto spiral-structured 3D scaffolds made of poly (epsilon-caprolactone) (PCL). The spiral structure with open geometries, large surface areas, and porosity will be helpful for improving nutrient transport and cell penetration into the scaffolds, which are otherwise limited in conventional tissue-engineered scaffolds for large bone defects repair. To investigate the effect of structure and fiber coating on the performance of the scaffolds, three groups of scaffolds including cylindrical PCL scaffolds, spiral PCL scaffolds (without fiber coating), and spiral-structured fibrous PCL scaffolds (with fiber coating) have been prepared. The morphology, porosity, and mechanical properties of the scaffolds have been characterized. Furthermore, human osteoblast cells are seeded on these scaffolds, and the cell attachment, proliferation, differentiation, and mineralized matrix deposition on the scaffolds are evaluated. The results indicated that the spiral scaffolds possess porosities within the range of human trabecular bone and an appropriate pore structure for cell growth, and significantly lower compressive modulus and strength than cylindrical scaffolds. When compared with the cylindrical scaffolds, the spiral-structured scaffolds demonstrated enhanced cell proliferation, differentiation, and mineralization and allowed better cellular growth and penetration. The incorporation of nanofibers onto spiral scaffolds further enhanced cell attachment, proliferation, and differentiation. These studies suggest that spiral-structured nanofibrous scaffolds may serve as promising alternatives for bone tissue engineering applications. Copyright 2009 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Li, S. H.; Chen, Y. H.
2016-12-01
The iron sulfide nano-minerals possess advantages of high abundance, low cost, and low toxicity. These advantages make them be competitive in the magnetic, electronic, and photoelectric applications. Mackinawite can be used in soil or water remediations. Greigite is very important for paleomagnetic and geochemical environment studies and the anode materials for lithium ion batteries. Besides, greigite is also utilized for hyperthermia and biomedicine. Pyrrhotite can be applied as geothermometry. Due to the above-mentioned reasons, iron sulfide minerals have specific significances and they must be further investigated, like their phase transformations, magnetic properties, and etc. In this study, the iron sulfide minerals were synthesized by using a hydrothermal method. The ex-situ and in-situ X-ray diffraction (XRD) was used to examine the crystal structure and phase transformation of iron sulfide minerals. The Transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) were carried out to investigate their morphology and magnetic properties, respectively. The results suggested that the phase transformation sequence was followed the order: mackinawite → greigite → (smythite) → pyrrhotite. Two pure mineral phases of greigite and pyrrhotite were obtained under the hydrothermal conditions. The morphology of the pure greigite is granular aggregates with a particle size of approximately 30 nm and pyrrhotite presented a hexagonal sheet stacking with a particle size of thousands nanometers. The greigite had a ferri-magnetic behavior and pyrrhotite was weak ferro-magnetic. Both of them had a pseudo-single magnetic domain (PSD) based on the Day's plot from SQUID data. The complete phase-transformation pathways and high magnetization of iron sulfide minerals are observed in this study and these kind of iron sulfide minerals are worthy to further study.
Stability of hydrated minerals on Mars
NASA Astrophysics Data System (ADS)
Cloutis, Edward A.; Craig, Michael A.; Mustard, John F.; Kruzelecky, Roman V.; Jamroz, Wes R.; Scott, Alan; Bish, David L.; Poulet, François; Bibring, Jean-Pierre; King, Penelope L.
2007-10-01
The validity of recent identification of various hydrated minerals (kieserite, gypsum, hexahydrite, nontronite, chamosite, and montmorillonite) on Mars was assessed by exposing these minerals to simulated Martian surface conditions of atmospheric composition and pressure, temperature, and ultraviolet light irradiation. When exposed to such conditions the hydrated minerals exhibit in general, greater losses of interlayer H2O than structural OH. Minerals such as gypsum that contain structural H2O are more resistant to H2O loss than phyllosilicates. The partial loss of OH in some of the phyllosilicates is not accompanied by a measurable and systematic change in the wavelength position or intensity of metal-OH absorption bands. The characteristic absorption features that allow for identification of these minerals on Mars may be reduced in intensity, but are nevertheless largely preserved.
Morgan, Elise F.; Mason, Zachary D.; Chien, Karen B.; Pfeiffer, Anthony J.; Barnes, George L.; Einhorn, Thomas A.; Gerstenfeld, Louis C.
2009-01-01
Non-invasive characterization of fracture callus structure and composition may facilitate development of surrogate measures of the regain of mechanical function. As such, quantitative computed tomography- (CT-) based analyses of fracture calluses could enable more reliable clinical assessments of bone healing. Although previous studies have used CT to quantify and predict fracture healing, it is unclear which of the many CT-derived metrics of callus structure and composition are the most predictive of callus mechanical properties. The goal of this study was to identify the changes in fracture callus structure and composition that occur over time and that are most closely related to the regain of mechanical function. Micro-computed tomography (μCT) imaging and torsion testing were performed on murine fracture calluses (n=188) at multiple post-fracture timepoints and under different experimental conditions that alter fracture healing. Total callus volume (TV), mineralized callus volume (BV), callus mineralized volume fraction (BV/TV), bone mineral content (BMC), tissue mineral density (TMD), standard deviation of mineral density (σTMD), effective polar moment of inertia (Jeff), torsional strength, and torsional rigidity were quantified. Multivariate statistical analyses, including multivariate analysis of variance, principal components analysis, and stepwise regression were used to identify differences in callus structure and composition among experimental groups and to determine which of the μCT outcome measures were the strongest predictors of mechanical properties. Although calluses varied greatly in the absolute and relative amounts of mineralized tissue (BV, BMC, and BV/TV), differences among timepoints were most strongly associated with changes in tissue mineral density. Torsional strength and rigidity were dependent on mineral density as well as the amount of mineralized tissue: TMD, BV, and σTMD explained 62% of the variation in torsional strength (p<0.001); and TMD, BMC, BV/TV, and σTMD explained 70% of the variation in torsional rigidity (p<0.001). These results indicate that fracture callus mechanical properties can be predicted by several μCT-derived measures of callus structure and composition. These findings form the basis for developing non-invasive assessments of fracture healing and for identifying biological and biomechanical mechanisms that lead to impaired or enhanced healing. PMID:19013264
30 CFR 15.4 - Application procedures and requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Mine Safety and Health Administration, Approval and Certification Center, 765 Technology Drive... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Application procedures and requirements. 15.4 Section 15.4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING...
43 CFR 3862.8 - Patents for mining claims.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Patents for mining claims. 3862.8 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.8 Patents for mining claims. ...
43 CFR 3862.8 - Patents for mining claims.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Patents for mining claims. 3862.8 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.8 Patents for mining claims. ...
43 CFR 3862.8 - Patents for mining claims.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Patents for mining claims. 3862.8 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.8 Patents for mining claims. ...
43 CFR 3862.8 - Patents for mining claims.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Patents for mining claims. 3862.8 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.8 Patents for mining claims. ...
Huang, Jing; Xi, Jun; Huang, Zhi; Wang, Qi; Zhang, Zhen-Dong
2014-01-01
Bacteria play important roles in mineral weathering and soil formation. However, few reports of mineral weathering bacteria inhabiting subsurfaces of soil profiles have been published, raising the question of whether the subsurface weathering bacteria are fundamentally distinct from those in surface communities. To address this question, we isolated and characterized mineral weathering bacteria from two contrasting soil profiles with respect to their role in the weathering pattern evolution, their place in the community structure, and their depth-related changes in these two soil profiles. The effectiveness and pattern of bacterial mineral weathering were different in the two profiles and among the horizons within the respective profiles. The abundance of highly effective mineral weathering bacteria in the Changshu profile was significantly greater in the deepest horizon than in the upper horizons, whereas in the Yanting profile it was significantly greater in the upper horizons than in the deeper horizons. Most of the mineral weathering bacteria from the upper horizons of the Changshu profile and from the deeper horizons of the Yanting profile significantly acidified the culture media in the mineral weathering process. The proportion of siderophore-producing bacteria in the Changshu profile was similar in all horizons except in the Bg2 horizon, whereas the proportion of siderophore-producing bacteria in the Yanting profile was higher in the upper horizons than in the deeper horizons. Both profiles existed in different highly depth-specific culturable mineral weathering community structures. The depth-related changes in culturable weathering communities were primarily attributable to minor bacterial groups rather than to a change in the major population structure. PMID:24077700
Code of Federal Regulations, 2011 CFR
2011-10-01
... Federal minerals underlying private surface? 3503.25 Section 3503.25 Public Lands: Interior Regulations... remove the minerals under applicable leasing laws and regulations. (b) If the Federal Government acquires... MANAGEMENT (3000) LEASING OF SOLID MINERALS OTHER THAN COAL AND OIL SHALE Areas Available for Leasing...
Molecular environmental geochemistry
NASA Astrophysics Data System (ADS)
O'Day, Peggy A.
1999-05-01
The chemistry, mobility, and bioavailability of contaminant species in the natural environment are controlled by reactions that occur in and among solid, aqueous, and gas phases. These reactions are varied and complex, involving changes in chemical form and mass transfer among inorganic, organic, and biochemical species. The field of molecular environmental geochemistry seeks to apply spectroscopic and microscopic probes to the mechanistic understanding of environmentally relevant chemical processes, particularly those involving contaminants and Earth materials. In general, empirical geochemical models have been shown to lack uniqueness and adequate predictive capability, even in relatively simple systems. Molecular geochemical tools, when coupled with macroscopic measurements, can provide the level of chemical detail required for the credible extrapolation of contaminant reactivity and bioavailability over ranges of temperature, pressure, and composition. This review focuses on recent advances in the understanding of molecular chemistry and reaction mechanisms at mineral surfaces and mineral-fluid interfaces spurred by the application of new spectroscopies and microscopies. These methods, such as synchrotron X-ray absorption and scattering techniques, vibrational and resonance spectroscopies, and scanning probe microscopies, provide direct chemical information that can elucidate molecular mechanisms, including element speciation, ligand coordination and oxidation state, structural arrangement and crystallinity on different scales, and physical morphology and topography of surfaces. Nonvacuum techniques that allow examination of reactions in situ (i.e., with water or fluids present) and in real time provide direct links between molecular structure and reactivity and measurements of kinetic rates or thermodynamic properties. Applications of these diverse probes to laboratory model systems have provided fundamental insight into inorganic and organic reactions at mineral surfaces and mineral-water interfaces. A review of recent studies employing molecular characterizations of soils, sediments, and biological samples from contaminated sites exemplifies the utility and benefits, as well as the challenge, of applying molecular probes to complicated natural materials. New techniques, technological advances, and the crossover of methods from other disciplines such as biochemistry and materials science promise better examination of environmental chemical processes in real time and at higher resolution, and will further the integration of molecular information into field-scale chemical and hydrologic models.
Frost, Ray L; Reddy, B Jagannadha; Bahfenne, Silmarilly; Graham, Jessica
2009-04-01
The proposal to remove greenhouse gases by pumping liquefied CO(2) several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals brugnatellite and coalingite are probable. Two ferric ion bearing minerals brugnatellite and coalingite with a hydrotalcite-like structure have been characterised by a combination of infrared and near-infrared (NIR) spectroscopy. The infrared spectra of the OH stretching region are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030-7235 cm(-1) and 10,490-10,570 cm(-1) regions. Intense (CO(3))(2-) symmetric and antisymmetric stretching vibrations support the concept that the carbonate ion is distorted. The position of the water bending vibration indicates the water is strongly hydrogen bonded in the mineral structure. Split NIR bands at around 8675 and 11,100 cm(-1) indicate that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred. Near-infrared spectroscopy is ideal for the assessment of the formation of carbonate minerals.
The mineral economy of Brazil--Economia mineral do Brasil
Gurmendi, Alfredo C.; Barboza, Frederico Lopes; Thorman, Charles H.
1999-01-01
This study depicts the Brazilian government structure, mineral legislation and investment policy, taxation, foreign investment policies, environmental laws and regulations, and conditions in which the mineral industry operates. The report underlines Brazil's large and diversified mineral endowment. A total of 37 mineral commodities, or groups of closely related commodities, is discussed. An overview of the geologic setting of the major mineral deposits is presented. This report is presented in English and Portuguese in pdf format.
Snee, Lawrence W.
2002-01-01
40Ar/39Ar geochronology is an experimentally robust and versatile method for constraining time and temperature in geologic processes. The argon method is the most broadly applied in mineral-deposit studies. Standard analytical methods and formulations exist, making the fundamentals of the method well defined. A variety of graphical representations exist for evaluating argon data. A broad range of minerals found in mineral deposits, alteration zones, and host rocks commonly is analyzed to provide age, temporal duration, and thermal conditions for mineralization events and processes. All are discussed in this report. The usefulness of and evolution of the applicability of the method are demonstrated in studies of the Panasqueira, Portugal, tin-tungsten deposit; the Cornubian batholith and associated mineral deposits, southwest England; the Red Mountain intrusive system and associated Urad-Henderson molybdenum deposits; and the Eastern Goldfields Province, Western Australia.
Adsorption of dextrin on hydrophobic minerals.
Beaussart, Audrey; Mierczynska-Vasilev, Agnieszka; Beattie, David A
2009-09-01
The adsorption of dextrin on talc, molybdenite, and graphite (three naturally hydrophobic minerals) has been compared. Adsorption isotherms and in situ tapping mode atomic force microscope (TMAFM) imaging have enabled polymer adsorbed amount and morphology of the adsorbed layer (area coverage and polymer domain size) to be determined and also the amount of hydration water in the structure of the adsorbed layer. The effect of the polymer on the mineral contact angles, measured by the captive bubble method on cleaved mineral surfaces, indicates clear correlations between the hydrophobicity reduction of the minerals, the adsorbed amount, and the surface coverage of the adsorbed polymer. Predictions of the flotation recovery of the treated mineral phases have been confirmed by performing batch flotation experiments. The influence of the polymer surface coverage on flotation recovery has highlighted the importance of this key parameter in the predictions of depressant efficiency. The roles of the initial hydrophobicity and the surface structure of the mineral basal plane in determining adsorption parameters and flotation response of the polymer-treated minerals are also discussed.
Moore, Diane E.; Lockner, D.A.
2004-01-01
We compare the frictional strengths of 17 sheet structure mineral powders, measured under dry and water-saturated conditions, to identify the factors that cause many of them to be relatively weak. The dry coefficient of friction ?? ranges upward from 0.2 for graphite, leveling off at 0.8 for margarite, clintonite, gibbsite, kaolinite, and lizardite. The values of ?? (dry) correlate directly with calculated (001) interlayer bond strengths of the minerals. This correlation occurs because shear becomes localized along boundary and Riedel shears and the platy minerals in them rotate into alignment with the shear planes. For those gouges with ?? (dry) < 0.8, shear occurs by breaking the interlayer bonds to form new cleavage surfaces. Where ?? (dry) = 0.8, consistent with Byerlee's law, the interlayer bonds are sufficiently strong that other frictional processes dominate. The transition in dry friction mechanisms corresponds to calculated surface energies of 2-3 J/m2. Adding water causes ?? to decrease for every mineral tested except graphite. If the minerals are separated into groups with similar crystal structures, ?? (wet) increases with increasing interlayer bond strength within each group. This relationship also holds for the swelling clay montmorillonite, whose water-saturated strength is consistent with the strengths of nonswelling clays of similar crystal structure. Water in the saturated gouges forms thin, structured films between the plate surfaces. The polar water molecules are bonded to the plate surfaces in proportion to the mineral's surface energy, and ?? (wet) reflects the stresses required to shear through the water films. Copyright 2004 by the American Geophysical Union.
Poinern, Gérrard Eddy Jai; Brundavanam, Ravi Krishna; Thi Le, Xuan; Nicholls, Philip K.; Cake, Martin A.; Fawcett, Derek
2014-01-01
Hydroxyapatite (HAP) is a biocompatible ceramic that is currently used in a number of current biomedical applications. Recently, nanometre scale forms of HAP have attracted considerable interest due to their close similarity to the inorganic mineral component of the bone matrix found in humans. In this study ultrafine nanometre scale HAP powders were prepared via a wet precipitation method under the influence of ultrasonic irradiation. The resulting powders were compacted and sintered to form a series of ceramic pellets with a sponge-like structure with varying density and porosity. The crystalline structure, size and morphology of the powders and the porous ceramic pellets were investigated using advanced characterization techniques. The pellets demonstrated good biocompatibility, including mixed cell colonisation and matrix deposition, in vivo following surgical implantation into sheep M. latissimus dorsi. PMID:25168046
NASA Astrophysics Data System (ADS)
Li, Z.; Lianwen, L.; Zhao, L.; Teng, H.
2011-12-01
Many studies of serpentine group mineral dissolution for mineral carbonation have been published in recent years. However, most of them focus mainly on either physical and chemical processes or on bacterial function, rather than fungal involvement in the bioleaching of serpentine group mineral. Due to the excessive costs of the magnesium dissolution process, finding a lower energy consumption method will be meaningful. A fungal strain Talaromyces flavus was isolated from serpentinic rock of Donghai (China). No study of its bioleaching ability is currently available. It is thus of great significance to explore the impact of T. flavus on the dissolution of serpentine group mineral. Serpentine rock-inhabiting fungi belonging to Acremonium, Alternaria, Aspergillus, Botryotinia, Cladosporium, Clavicipitaceae, Cosmospora, Fusarium, Monascus, Paecilomyces, Penicillium, Talaromyces, Trichoderma were isolated. These strains were chosen on the basis of resistance to magnesium and nickel characterized in terms of minimum inhibiting concentration (MIC). Specifically, the strain Talaromyces flavus has a high tolerance to both magnesium (1 mol/L) and nickel (10 mM/L), and we examine its bioleaching ability on serpentine group mineral. Contact and separation experiments (cut-off 8 000-14 000 Da), as well as three control experiments, were set up for 30 days. At least three repeated tests were performed for each individual experiment. The results of our experiments demonstrate that the bioleaching ability of T. flavus towards serpentine group mineral is evident. 39.39 wt% of magnesium was extracted from lizardite during the bioleaching period in the contact experiment, which showed a dissolution rate at about a constant 0.126 mM/d before reaching equilibrium in 13 days. The amount of solubilized Mg from chrysotile and antigorite were respectively 37.79 wt% and 29.78 wt% in the contact experiment. These results make clear the influence of mineral structure on mineral bioleaching. In comparison to the results from the three control experiments, the solubilized Mg from the contact and separation experiments were higher. The concentration of magnesium was pH-dependent both in the contact and separation experiments. The Mg/Si atomic ratio in the solution was about 6-8 in the contact experiments, which may indicate that T. flavus is more attracted to magnesium when deteriorating serpentine group mineral. SEM analyses of the minerals at the conclusion of experiments revealed that the minerals were extensively etched. Moreover, fungal hyphae-mineral aggregates manifest physical process accelerated the degradation of serpentine group mineral. These observations may imply that the fungal leaching of serpentine group mineral could potentially serve as a method for mineral carbonation.
Chen, Ying; Liu, Yu Xue; Chen, Chong Jun; Lyu, Hao Hao; Wa, Yu Ying; He, Li Li; Yang, Sheng Mao
2018-01-01
In recent years, studies on carbon sequestration of biochar in soil has been in spotlight owing to the specific characteristics of biochar such as strong carbon stability and well developed pore structure. However, whether biochar will ultimately increase soil carbon storage or promote soil carbon emissions when applied into the soil? This question remains controversial in current academic circles. Further research is required on priming effect of biochar on mineralization of native soil organic carbon and its mechanisms. Based on the analysis of biochar characteristics, such as its carbon composition and stability, pore structure and surface morphology, research progress on the priming effect of biochar on the decomposition of native soil organic carbon was reviewed in this paper. Furthermore, possible mechanisms of both positive and negative priming effect, that is promoting and suppressing the mineralization, were put forward. Positive priming effect is mainly due to the promotion of soil microbial activity caused by biochar, the preferential mineralization of easily decomposed components in biochar, and the co-metabolism of soil microbes. While negative priming effect is mainly based on the encapsulation and adsorption protection of soil organic matter due to the internal pore structure and the external surface of biochar. Other potential reasons for negative priming effect can be the stabilization resulted from the formation of organic-inorganic complex promoted by biochar in the soil, and the inhibition of activity of soil microbes and its enzymes by biochar. Finally, future research directions were proposed in order to provide theoretical basis for the application of biochar in soil carbon sequestration.
NASA Astrophysics Data System (ADS)
Kassem, Osama M. K.; Abd El Rahim, Said H.; El Nashar, EL Said R.; AL Kahtany, Kaled M.
2016-11-01
The use of porphyroclasts rotating in a flowing matrix to estimate mean kinematic vorticity number (Wm) is important for quantifying the relative contributions of pure and simple shear in wall rocks alterations of shear zone at Dungash gold mine. Furthermore, it shows the relationship between the gold mineralization and deformation and also detects the orientation of rigid objects during progressive deformation. The Dungash gold mine area is situated in an EW-trending quartz vein along a shear zone in metavolcanic and metasedimentary host rocks in the Eastern Desert of Egypt. These rocks are associated with the major geologic structures which are attributed to various deformational stages of the Neoproterozoic basement rocks. We conclude that finite strain in the deformed rocks is of the same order of magnitude for all units of metavolcano-sedimentary rocks. The kinematic vorticity number for the metavolcanic and metasedimentary samples in the Dungash area range from 0.80 to 0.92, and together with the strain data suggest deviations from simple shear. It is concluded that nappe stacking occurred early during the underthrusting event probably by brittle imbrication and that ductile strain was superimposed on the nappe structure during thrusting. Furthermore, we conclude that disseminated mineralization, chloritization, carbonatization and silicification of the wall rocks are associated with fluids migrating along shearing, fracturing and foliation of the metamorphosed wall rocks.
NASA Astrophysics Data System (ADS)
Gratier, J. P.; Noiriel, C. N.; Renard, F.
2014-12-01
Natural deformation of rocks is often associated with differentiation processes leading to irreversible transformations of their microstructural thus leading in turn to modifications of their rheological properties. The mechanisms of development of such processes at work during diagenesis, metamorphism or fault differentiation are poorly known as they are not easy to reproduce in the laboratory due to the long duration required for most of chemically controlled differentiation processes. Here we show that experimental compaction with layering development, similar to what happens in natural deformation, can be obtained in the laboratory by indenter techniques. Samples of plaster mixed with clay and samples of diatomite loosely interbedded with clays were loaded during several months at 40°C (plaster) and 150°C (diatomite) in presence of their saturated solutions. High-resolution X-ray tomography and SEM studies show that the layering development is a self-organized process. Stress driven dissolution of the soluble minerals (gypsum in plaster, silica in diatomite) is initiated in the zones initially richer in clays because the kinetics of diffusive mass transfer along the clay/soluble mineral interfaces is much faster than along the healed boundaries of the soluble minerals. The passive concentration of the clay minerals amplifies the localization of the dissolution along some layers oriented perpendicular to the maximum compressive stress component. Conversely, in the areas with initial low content in clay and clustered soluble minerals, dissolution is more difficult as the grain boundaries of the soluble species are healed together. These areas are less deformed and they act as rigid objects that concentrate the dissolution near their boundaries thus amplifying the differentiation. Applications to fault processes are discussed: i) localized pressure solution and sealing processes may lead to fault rheology differentiation with a partition between two end-member behaviors: seismic (in sealed zones) and aseismic (in dissolved zones); ii) tectonic layering may lead to highly anisotropic structures with a drastic decrease of the rock strength parallel to the layering.
NASA Astrophysics Data System (ADS)
Hark, R. R.; Harmon, R. S.; Remus, J. J.; East, L. J.; Wise, M. A.; Tansi, B. M.; Shughrue, K. M.; Dunsin, K. S.; Liu, C.
2012-04-01
Laser-induced breakdown spectroscopy (LIBS) offers a means of rapidly distinguishing different places of origin for a mineral because the LIBS plasma emission spectrum provides the complete chemical composition (i.e. geochemical fingerprint) of a mineral in real-time. An application of this approach with potentially significant commercial and political importance is the spectral fingerprinting of the 'conflict minerals' columbite-tantalite ("coltan"). Following a successful pilot study of three columbite-tantalite suites from the United States and Canada, a more geographically diverse set of samples from 37 locations worldwide were analyzed using a commercial laboratory LIBS system and a subset of samples also analyzed using a prototype broadband field-portable system. The spectral range from 250-490 nm was chosen for the laboratory analysis to encompass many of the intense emission lines for the major elements (Ta, Nb, Fe, Mn) and the significant trace elements (e.g., W, Ti, Zr, Sn, U, Sb, Ca, Zn, Pb, Y, Mg, and Sc) known to commonly substitute in the columbite-tantalite solid solution series crystal structure and in the columbite group minerals. The field-portable instrument offered an increased spectral range (198-1005 nm), over which all elements have spectral emission lines, and higher resolution than the laboratory instrument. In both cases, the LIBS spectra were analyzed using advanced multivariate statistical signal processing techniques. Partial Least Squares Discriminant Analysis (PLSDA) resulted in a correct place-level geographic classification at success rates between 90 and 100%. The possible role of rare-earth elements (REE's) as a factor contributing to the high levels of sample discrimination was explored. Given the fact that it can be deployed as a man-portable analytical technology, these results lend additional evidence that LIBS has the potential to be utilized in the field as a real-time tool to discriminate between columbite-tantalite ores of different provenance.
Mineral resource of the month: beryllium
Shedd, Kim B.
2006-01-01
Beryllium metal is lighter than aluminum and stiffer than steel. These and other properties, including its strength, dimensional stability, thermal properties and reflectivity, make it useful for aerospace and defense applications, such as satellite and space-vehicle structural components. Beryllium’s nuclear properties, combined with its low density, make it useful as a neutron reflector and moderator in nuclear reactors. Because it is transparent to most X rays, beryllium is used as X-ray windows in medical, industrial and analytical equipment.
Remote Sensing Applied to Geology (Latest Citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning the use of remote sensing in geological resource exploration. Technologies discussed include thermal, optical, photographic, and electronic imaging using ground-based, aerial, and satellite-borne devices. Analog and digital techniques to locate, classify, and assess geophysical features, structures, and resources are also covered. Application of remote sensing to petroleum and minerals exploration is treated in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.)
30 CFR 585.913 - What happens if I fail to comply with my approved decommissioning application?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What happens if I fail to comply with my approved decommissioning application? 585.913 Section 585.913 Mineral Resources BUREAU OF OCEAN ENERGY... § 585.913 What happens if I fail to comply with my approved decommissioning application? If you fail to...
30 CFR 585.913 - What happens if I fail to comply with my approved decommissioning application?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What happens if I fail to comply with my approved decommissioning application? 585.913 Section 585.913 Mineral Resources BUREAU OF OCEAN ENERGY... § 585.913 What happens if I fail to comply with my approved decommissioning application? If you fail to...
Bone geometry, structure and mineral distribution using Dual energy X ray Absorptiometry (DXA)
NASA Technical Reports Server (NTRS)
Whalen, Robert; Cleek, Tammy
1993-01-01
Dual energy x-ray absorptiometry (DXA) is currently the most widely used method of analyzing regional and whole body changes in bone mineral content (BMC) and areal (g/sq cm) bone mineral density (BMD). However, BMC and BMD do not provide direct measures of long bone geometry, structure, or strength nor do regional measurements detect localized changes in other regions of the same bone. The capabilities of DXA can be enhanced significantly by special processing of pixel BMC data which yields cross-sectional geometric and structural information. We have extended this method of analysis in order to develop non-uniform structural beam models of long bones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behnia, Pouran
2007-06-15
The metallogeny of Central Iran is characterized mainly by the presence of several iron, apatite, and uranium deposits of Proterozoic age. Radial Basis Function Link Networks (RBFLN) were used as a data-driven method for GIS-based predictive mapping of Proterozoic mineralization in this area. To generate the input data for RBFLN, the evidential maps comprising stratigraphic, structural, geophysical, and geochemical data were used. Fifty-eight deposits and 58 'nondeposits' were used to train the network. The operations for the application of neural networks employed in this study involve both multiclass and binary representation of evidential maps. Running RBFLN on different input datamore » showed that an increase in the number of evidential maps and classes leads to a larger classification sum of squared error (SSE). As a whole, an increase in the number of iterations resulted in the improvement of training SSE. The results of applying RBFLN showed that a successful classification depends on the existence of spatially well distributed deposits and nondeposits throughout the study area.« less
Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan
2015-01-01
Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems. PMID:26694380
Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan
2015-12-18
Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.
NASA Astrophysics Data System (ADS)
Dewi Kencana Wungu, Triati; Fauzan, Muhammad Rifqi Al; Widayani; Suprijadi
2016-08-01
In this study, we performed structural geometry and electronic properties calculations of calcium - based clay mineral for medicine application using first principles calculation by means of Density Functional Theory. Here, a kind of clay mineral used was Ca- montmorillonite and it is applied as an absorber of dangerous metal contained in a human body, such as Pb, which causes osteoporosis. Osteoporosis is a disease associated with bone mass decreases. Since montmorillonite has ability to exchange its cation (Ca+2), therefore, it plays an important role in preventing or/and cure human bone from osteoporosis. In order to understand how Ca-montmorillonite can do detoxification in the human body, we firstly investigated the mechanism of Pb adsorption on the surface of Ca-montmorillonite in an atomic level point of view. We found that the repulsive interactions between H of OH groups with Ca and Pb yielding the rotation of the H of OH groups of montmorillonite. A relatively small movement of Ca was observed when Pb is adsorbed and the band gap of Ca- montmorillonite becomes 1.87 eV narrow.
30 CFR 7.403 - Application requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Application requirements. 7.403 Section 7.403 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND...) Design standard. Specify any published consensus standard used and fully describe any deviations from it...
30 CFR 56.19000 - Application.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Application. 56.19000 Section 56.19000 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... handling ore, rock, and materials, the appropriate standards should be applied. (b) Standards 56.19021...
30 CFR 56.19000 - Application.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Application. 56.19000 Section 56.19000 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... handling ore, rock, and materials, the appropriate standards should be applied. (b) Standards 56.19021...
30 CFR 56.19000 - Application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Application. 56.19000 Section 56.19000 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... handling ore, rock, and materials, the appropriate standards should be applied. (b) Standards 56.19021...
30 CFR 57.19000 - Application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Application. 57.19000 Section 57.19000 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... handling ore, rock, and materials, the appropriate standards should be applied. (b) Standards 57.19021...
30 CFR 56.19000 - Application.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Application. 56.19000 Section 56.19000 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... handling ore, rock, and materials, the appropriate standards should be applied. (b) Standards 56.19021...
30 CFR 56.19000 - Application.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Application. 56.19000 Section 56.19000 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... handling ore, rock, and materials, the appropriate standards should be applied. (b) Standards 56.19021...
43 CFR 1882.3 - Application procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... MANAGEMENT, DEPARTMENT OF THE INTERIOR GENERAL MANAGEMENT (1000) FINANCIAL ASSISTANCE, LOCAL GOVERNMENTS Mineral Development Impact Relief Loans § 1882.3 Application procedures. No later than October 1 of the... economic impacts suffered as a result of the leasing and development of Federal mineral deposits. (e) An...
30 CFR 27.4 - Application procedures and requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Department of Labor, Mine Safety and Health Administration, Approval and Certification Center, 765 Technology... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Application procedures and requirements. 27.4 Section 27.4 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Completeness. 777.15 Section 777.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL... CONTENT REQUIREMENTS FOR PERMIT APPLICATIONS § 777.15 Completeness. An application for a permit to conduct...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Completeness. 777.15 Section 777.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL... CONTENT REQUIREMENTS FOR PERMIT APPLICATIONS § 777.15 Completeness. An application for a permit to conduct...
Effect of mineral oil, sunflower oil, and coconut oil on prevention of hair damage.
Rele, Aarti S; Mohile, R B
2003-01-01
Previously published results showed that both in vitro and in vivo coconut oil (CNO) treatments prevented combing damage of various hair types. Using the same methodology, an attempt was made to study the properties of mineral oil and sunflower oil on hair. Mineral oil (MO) was selected because it is extensively used in hair oil formulations in India, because it is non-greasy in nature, and because it is cheaper than vegetable oils like coconut and sunflower oils. The study was extended to sunflower oil (SFO) because it is the second most utilized base oil in the hair oil industry on account of its non-freezing property and its odorlessness at ambient temperature. As the aim was to cover different treatments, and the effect of these treatments on various hair types using the above oils, the number of experiments to be conducted was a very high number and a technique termed as the Taguchi Design of Experimentation was used. The findings clearly indicate the strong impact that coconut oil application has to hair as compared to application of both sunflower and mineral oils. Among three oils, coconut oil was the only oil found to reduce the protein loss remarkably for both undamaged and damaged hair when used as a pre-wash and post-wash grooming product. Both sunflower and mineral oils do not help at all in reducing the protein loss from hair. This difference in results could arise from the composition of each of these oils. Coconut oil, being a triglyceride of lauric acid (principal fatty acid), has a high affinity for hair proteins and, because of its low molecular weight and straight linear chain, is able to penetrate inside the hair shaft. Mineral oil, being a hydrocarbon, has no affinity for proteins and therefore is not able to penetrate and yield better results. In the case of sunflower oil, although it is a triglyceride of linoleic acid, because of its bulky structure due to the presence of double bonds, it does not penetrate the fiber, consequently resulting in no favorable impact on protein loss.
Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki
2011-10-01
The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.
A Raman spectroscopic comparison of calcite and dolomite.
Sun, Junmin; Wu, Zeguang; Cheng, Hongfei; Zhang, Zhanjun; Frost, Ray L
2014-01-03
Raman spectroscopy was used to characterize and differentiate the two minerals calcite and dolomite and the bands related to the mineral structure. The (CO3)(2-) group is characterized by four prominent Raman vibrational modes: (a) the symmetric stretching, (b) the asymmetric deformation, (c) asymmetric stretching and (d) symmetric deformation. These vibrational modes of the calcite and dolomite were observed at 1440, 1088, 715 and 278 cm(-1). The significant differences between the minerals calcite and dolomite are observed by Raman spectroscopy. Calcite shows the typical bands observed at 1361, 1047, 715 and 157 cm(-1), and the special bands at 1393, 1098, 1069, 1019, 299, 258 and 176 cm(-1) for dolomite are observed. The difference is explained on the basis of the structure variation of the two minerals. Calcite has a trigonal structure with two molecules per unit cell, and dolomite has a hexagonal structure. This is more likely to cause the splitting and distorting of the carbonate groups. Another cause for the difference is the cation substituting for Mg in the dolomite mineral. Copyright © 2013 Elsevier B.V. All rights reserved.
A Raman spectroscopic comparison of calcite and dolomite
NASA Astrophysics Data System (ADS)
Sun, Junmin; Wu, Zeguang; Cheng, Hongfei; Zhang, Zhanjun; Frost, Ray L.
2014-01-01
Raman spectroscopy was used to characterize and differentiate the two minerals calcite and dolomite and the bands related to the mineral structure. The (CO3)2- group is characterized by four prominent Raman vibrational modes: (a) the symmetric stretching, (b) the asymmetric deformation, (c) asymmetric stretching and (d) symmetric deformation. These vibrational modes of the calcite and dolomite were observed at 1440, 1088, 715 and 278 cm-1. The significant differences between the minerals calcite and dolomite are observed by Raman spectroscopy. Calcite shows the typical bands observed at 1361, 1047, 715 and 157 cm-1, and the special bands at 1393, 1098, 1069, 1019, 299, 258 and 176 cm-1 for dolomite are observed. The difference is explained on the basis of the structure variation of the two minerals. Calcite has a trigonal structure with two molecules per unit cell, and dolomite has a hexagonal structure. This is more likely to cause the splitting and distorting of the carbonate groups. Another cause for the difference is the cation substituting for Mg in the dolomite mineral.
Sea urchin skeleton: Structure, composition, and application as a template for biomimetic materials
NASA Astrophysics Data System (ADS)
Shapkin, Nikolay P.; Khalchenko, Irina G.; Panasenko, Alexander E.; Drozdov, Anatoly L.
2017-07-01
SEM and optical microscopy, chemical and EDX analysis, XRD, and FT-IR spectroscopy of three sea urchins skeletons (tests) show that the test is a spongy stereom, consisting of calcite with high content of magnesium. The tests are composed of mineral-organic composite of calcite-magnesite crystals, coated with organic film, containing silicon in form of polyphenylsiloxane. In the test of sea urchin pore spaces are linked into united system of regular structure with structure motive period about 20 um. This developed three-dimensional structure was used as a template for polymer material based on polyferrofenilsiloxane [OSiC6H5OH]x[OSiC6H5O]y[OFeO]z, which is chemically similar to the native film, coating sea urchins skeleton.
Effect of the morphology of adsorbed oleate on the wettability of a collophane surface
NASA Astrophysics Data System (ADS)
Ye, Junjian; Zhang, Qin; Li, Xianbo; Wang, Xianchen; Ke, Baolin; Li, Xianhai; Shen, Zhihui
2018-06-01
The adsorption of surfactants on a solid surface could alter its wettability, which offers a wide range of relevant applications such as mineral flotation, hydrophobic material preparation and nanomaterial dispersion. The morphology of adsorbed oleate on a collophane surface was visualized using the peakforce tapping mode of atomic force microscopy (AFM), and its effect on the wettability of collophane was analysed by contact angle measurements, adsorption measurements and molecular dynamics (MD) simulations. The AFM images demonstrated that the adsorbed structure varied with different oleate concentrations. First, the small cylindrical micelles with concomitant monolayer and bilayer structures were observed above the hemimicelle concentration (hmc) of 1 × 10-5 mol/L, which enhanced the hydrophobicity of the collophane surface, and the collophane surface was not completely covered with the oleate monolayer due to surface heterogeneity. Then, large cylindrical micelles with a major bilayer were formed as the critical micelle concentration (cmc) of 1 × 10-3 mol/L was approached, which decreased its hydrophobicity, and finally the formation of large cylindrical micelles with multilayer at the cmc caused the hydrophilicity of the collophane surface. Therefore, there was a suitable equilibrium concentration between the hmc and cmc for oleate as a collector during mineral flotation, and oleate could also be used as a dispersant for colloidal stability when its equilibrium concentration reached the cmc. The effect of the adsorbed structure on the wettability of collophane was also confirmed by MD simulations. This study provides a good understanding of the surface modification of particles by surfactants for flotation and dispersion applications.
From Dates to Rates: The Emergence of Integrated Geochronometry (Invited)
NASA Astrophysics Data System (ADS)
Hodges, K. V.; Adams, B. A.; Bohon, W.; Cooper, F. J.; Tripathy-Lang, A.; Van Soest, M. C.; Watson, E. B.; Young, K. E.
2013-12-01
Many applications of isotope geochemistry to telling time have involved geochronology - the measurement of the crystallization age of a mineral - or thermochronology, the measurement of the time at which a mineral cooled through an estimated closure temperature. The resulting data typically provide one or two points along an evolving temperature-time (Tt) path. Unfortunately, many problems require a richer knowledge of longer portions of the Tt path and thus the integrated application of multiple chronometers to individual minerals or suites of minerals from a particular sample or outcrop. In this presentation, we review some of the most recent advances in geochronometry, the direct dating of rates of a wide range of geologic processes on timescales ranging from seconds (in the case of bolide impact on Earth and elsewhere in the Solar System) to hundreds of millions of years (in the case of very slowly cooled Precambrian terrains). For all chronometers except those based on the production of fission tracks, our capacity to extract precise and accurate Tt paths depends on a good understanding of the kinetics of diffusive loss of radiogenic daughter isotopes. Laboratory experiments have substantially improved our understanding of nominal kinetic parameters in recent years, but our increased use of new methods for their determination (e.g., Rutherford backscattering spectroscopy, nuclear reaction analysis, and laser depth profiling) have demonstrated complexities related to compositional variations and asymmetric diffusion. At the same time, a growing number of geologic applications of these chronometers illustrate the importance of deformation history and radiation damage in modifying effective diffusion parameters. Such factors have two important implications for geochronometry. First, they suggest that studies of multiple minerals employing multiple isotopic methods - integrated geochronometry - are likely to produce more robust constraints on Tt paths than those involving the application of a single geochronometer. Second, they suggest that characterization of the chemistry and structure of minerals prior to dating may become standard procedure in most laboratories. Some of the most valuable constraints on the cooling histories of individual crystals come from microanalytical techniques that illuminate natural diffusive loss profiles, either directly (e.g., laser and ion microprobe mapping) or indirectly (e.g., 40Ar/39Ar and 4He/3He incremental heating experimentation). For most materials and most cooling histories, direct microanalytical approaches yield less spatial resolution and thus a poorer resolution of the cooling history. On the other hand, the extraction of cooling histories based on data obtained through indirect techniques requires significant simplifying assumptions regarding the three-dimensional distribution of parent isotopes that are not always warranted. Studies that integrate such techniques, rare in the literature thus far, are ushering in a new era of quantitative geochronometry.
Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.
Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua
2018-03-07
Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Landis, W. J.
1995-01-01
High-voltage electron-microscopic tomographic (3D) studies of the ultrastructural interaction between mineral and organic matrix in a variety of calcified tissues reveal different crystal structural and organizational features in association with their respective organic matrices. In brittle or weak pathologic or ectopic calcifications, including examples of osteogenesis imperfecta, calciphylaxis, calcergy, and dermatomyositis, hydroxyapatite crystals occur in various sizes and shapes and are oriented and aligned with respect to collagen in a manner which is distinct from that found in normal calcified tissues. A model of collagen-mineral interaction is proposed which may account for the observed crystal structures and organization. The results indicate that the ultimate strength, support, and other mechanical properties provided by a calcified tissue are dependent in part upon the molecular structure and arrangement of its constituent mineral crystals within their organic matrix.
Cejka, Jiří; Sejkora, Jiří; Plášil, Jakub; Bahfenne, Silmarilly; Palmer, Sara J; Frost, Ray L
2011-09-01
Raman and infrared spectra of two polymorphous minerals with the chemical formula Fe3+(SO4)(OH)·2H2O, monoclinic butlerite and orthorhombic parabutlerite, are studied and the spectra assigned. Observed bands are attributed to the (SO4)2- stretching and bending vibrations, hydrogen bonded water molecules, stretching and bending vibrations of hydroxyl ions, water librational modes, Fe-O and Fe-OH stretching vibrations, Fe-OH bending vibrations and lattice vibrations. The O-H⋯O hydrogen bond lengths in the structures of both minerals are calculated from the wavenumbers of the stretching vibrations. One symmetrically distinct (SO4)2- unit in the structure of butlerite and two symmetrically distinct (SO4)2- units in the structure of parabutlerite are inferred from the Raman and infrared spectra. This conclusion agrees with the published crystal structures of both mineral phases. Copyright © 2011 Elsevier B.V. All rights reserved.
Landis, W J
1995-05-01
High-voltage electron-microscopic tomographic (3D) studies of the ultrastructural interaction between mineral and organic matrix in a variety of calcified tissues reveal different crystal structural and organizational features in association with their respective organic matrices. In brittle or weak pathologic or ectopic calcifications, including examples of osteogenesis imperfecta, calciphylaxis, calcergy, and dermatomyositis, hydroxyapatite crystals occur in various sizes and shapes and are oriented and aligned with respect to collagen in a manner which is distinct from that found in normal calcified tissues. A model of collagen-mineral interaction is proposed which may account for the observed crystal structures and organization. The results indicate that the ultimate strength, support, and other mechanical properties provided by a calcified tissue are dependent in part upon the molecular structure and arrangement of its constituent mineral crystals within their organic matrix.
Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil.
Keith, Alexandra; Singh, Balwant; Singh, Bhupinder Pal
2011-11-15
Biochar is considered as an attractive tool for long-term carbon (C) storage in soil. However, there is limited knowledge about the effect of labile organic matter (LOM) on biochar-C mineralization in soil or the vice versa. An incubation experiment (20 °C) was conducted for 120 days to quantify the interactive priming effects of biochar-C and LOM-C mineralization in a smectitic clayey soil. Sugar cane residue (source of LOM) at a rate of 0, 1, 2, and 4% (w/w) in combination with two wood biochars (450 and 550 °C) at a rate of 2% (w/w) were applied to the soil. The use of biochars (~ -36‰) and LOM (-12.7‰) or soil (-14.3‰) with isotopically distinct δ(13)C values allowed the quantification of C mineralized from biochar and LOM/soil. A small fraction (0.4-1.1%) of the applied biochar-C was mineralized, and the mineralization of biochar-C increased significantly with increasing application rates of LOM, especially during the early stages of incubation. Concurrently, biochar application reduced the mineralization of LOM-C, and the magnitude of this effect increased with increasing rate of LOM addition. Over time, the interactive priming of biochar-C and LOM-C mineralization was stabilized. Biochar application possesses a considerable merit for long-term soil C-sequestration, and it has a stabilizing effect on LOM in soil.
Liu, Lei; Zhou, Jun; Jiang, Dong; Zhuang, Dafang; Mansaray, Lamin R.; Hu, Zhijun; Ji, Zhengbao
2016-01-01
The Hatu area, West Junggar, Xinjiang, China, is situated at a potential gold-copper mineralization zone in association with quartz veins and small granitic intrusions. In order to identify the alteration zones and mineralization occurrences in this area, the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+), Quickbird, Hyperion data and laboratory measured spectra were combined in identifying structures, alteration zones, quartz veins and small intrusions. The hue-saturation-intensity (HSI) color model transformation was applied to transform principal component analysis (PCA) combinations from R (Red), G (Green) and B (Blue) to HSI space to enhance faults. To wipe out the interference of the noise, a method, integrating Crosta technique and anomaly-overlaying selection, was proposed and implemented. Both Jet Propulsion Laboratory Spectral Library spectra and laboratory-measured spectra, combining with matched filtering method, were used to process Hyperion data. In addition, high-resolution Quickbird data were used for unraveling the quartz veins and small intrusions along the alteration zones. The Baobei fault and a SW-NE-oriented alteration zone were identified for the first time. This study eventually led to the discovery of four weak gold-copper mineralized locations through ground inspection and brought new geological knowledge of the region’s metallogeny. PMID:26911195
THE EFFECT OF IONIZING RADIATION ON U6+ -PHASES
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Utsunomiya; R.C. Ewing
2005-07-07
U{sup 6+}-minerals commonly form during the alteration of uraninite and spent nuclear fuel under oxidizing conditions. By the incorporation of actinides and fissiogenic elements into their structures, U{sup 6+}-minerals may be important in retarding the migration of radionuclides released during corrosion of spent nuclear fuel. Thus, the stability and the structural transformation of the U{sup 6+}-minerals in radiation fields are of great interest.
Zhang, Manyun; Wang, Weijin; Wang, Jun; Teng, Ying; Xu, Zhihong
2017-04-01
Agrochemical applications may have side effects on soil biochemical properties related to soil nitrogen (N) mineralization and thus affect N cycling. The present study aimed to evaluate the effects of nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) and fungicide iprodione on soil neutral protease (NPR), alkaline protease (APR), chitinase (CHI), and their functional genes (nprA, aprA, and chiA) related to soil N mineralization. The following four treatments were included: blank control (CK), single DMPP application (DAA), weekly iprodione applications (IPR), and the combined applications of DMPP and iprodione (DI). Compared with the CK treatment, DMPP application significantly inhibited the CHI activity in the first 14 days of incubation, and iprodione applications, particularly when applied alone, decreased the NPR, APR, and CHI activities. Relative to the IPR treatment, extra DMPP application had the potential to alleviate the inhibitory effects of iprodione on the activities of these enzymes. DMPP application significantly increased aprA gene abundances after 14 days of incubation. However, repeated iprodione applications, alone or with the DMPP, decreased nprA and chiA gene abundances. Relative to the CK treatment, DMPP application generated negligible effects on the positive/negative correlations between soil enzyme activities and the corresponding functional gene abundances. However, the positive correlation between the CHI activity and chiA gene abundance was changed to negative correlation by repeated iprodione applications, alone or together with the DMPP. Our results demonstrated that agrochemical applications, particularly repeated fungicide applications, can have inadvertent effects on enzyme activities and functional gene abundances associated with soil N mineralization.
Preservation of Archaeal Surface Layer Structure During Mineralization
NASA Astrophysics Data System (ADS)
Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François
2016-05-01
Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.
Nijsure, Madhura P; Pastakia, Meet; Spano, Joseph; Fenn, Michael B; Kishore, Vipuil
2017-09-01
Bone tissue engineering mandates the development of a functional scaffold that mimics the physicochemical properties of native bone. Bioglass 45S5 (BG) is a highly bioactive material known to augment bone formation and restoration. Hybrid scaffolds fabricated using collagen type I and BG resemble the organic and inorganic composition of the bone extracellular matrix and hence have been extensively investigated for bone tissue engineering applications. However, collagen-BG scaffolds developed thus far do not recapitulate the aligned structure of collagen found in native bone. In this study, an electrochemical fabrication method was employed to synthesize BG-incorporated electrochemically aligned collagen (BG-ELAC) threads that are compositionally similar to native bone. Further, aligned collagen fibrils within BG-ELAC threads mimic the anisotropic arrangement of collagen fibrils in native bone. The effect of BG incorporation on the mechanical properties and cell-mediated mineralization on ELAC threads was investigated. The results indicated that BG can be successfully incorporated within ELAC threads, without disturbing collagen fibril alignment. Further, BG incorporation significantly increased the ultimate tensile stress (UTS) and modulus of ELAC threads (p < 0.05). SBF conditioning showed extensive mineralization on BG-ELAC threads that increased over time demonstrating the bone bioactivity of BG-ELAC threads. Additionally, BG incorporation into ELAC threads resulted in increased cell proliferation (p < 0.05) and deposition of a highly dense and continuous mineralized matrix. In conclusion, incorporation of BG into ELAC threads is a viable strategy for the development of an osteoconductive material for bone tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2429-2440, 2017. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Bechtold, I. C.; Liggett, M. A.; Childs, J. F.
1973-01-01
Research based on ERTS-1 MSS imagery and field work in the southern Basin-Range Province of California, Nevada and Arizona has shown regional tectonic control of volcanism, plutonism, mineralization and faulting. This paper covers an area centered on the Colorado River between 34 15' N and 36 45' N. During the mid-Tertiary, the area was the site of plutonism and genetically related volcanism fed by fissure systems now exposed as dike swarms. Dikes, elongate plutons, and coeval normal faults trend generally northward and are believed to have resulted from east-west crustal extension. In the extensional province, gold silver mineralization is closely related to Tertiary igneous activity. Similarities in ore, structural setting, and rock types define a metallogenic district of high potential for exploration. The ERTS imagery also provides a basis for regional inventory of small faults which cut alluvium. This capability for efficient regional surveys of Recent faulting should be considered in land use planning, geologic hazards study, civil engineering and hydrology.
NASA Technical Reports Server (NTRS)
Carter, W. D. (Principal Investigator)
1976-01-01
The author has identified the following significant results. The discovery of copper mineralization along a lineament mapped in Area 7 (La Paz) has lent credence to the use of LANDSAT 1 data as a basic step in mineral exploration. In Area 9 (Copiapo Region), a number of lineaments were found to be associated with the largest copper deposits of the region. In Area 12 (Magallanes), the identification of what is believed to be a tertiary basin from LANDSAT 1 data has resulted in a new area for petroleum exploration. Band 7 images, as black and white transparencies, were found to be the most useful for geologic interpretation in both tropical vegetated areas and desert regions. Color composites made by the diazochrome process, chromaline process, and from color additive viewers provided additional information. Mosaics of LANDSAT 1 data covering 4 x 6 degrees of latitude and longitude compiled at the 1:1,000,000 scale were found to be an ideal size and format for most users.
NASA Astrophysics Data System (ADS)
Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.
2011-12-01
Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria formed extensive biofilms or flocs that contained U and V in the exopolymer, but excluded these metals from the bacteria. This suggests a specific mechanism to inhibit metal sorption to cell wall components. The example illustrates the interplay between bacteria and minerals under conditions that model oligotrophic survival, and provides insight on U mobilization from common uranium ore minerals.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
....241A; AZA 35501] Notice of Realty Action: Conveyance of Federally Owned Mineral Interests in Pinal... mineral interests of a 459.60 acre tract of land in Pinal County, Arizona. Publication of this notice temporarily segregates the Federal mineral interests in the land covered by the application from appropriation...
Zhang, Ningning; Nguyen, Anh V; Zhou, Changchun
2018-04-01
Diasporic bauxite represents one of the major aluminum resources. Its upgrading for further processing involves a separation of diaspore (the valuable mineral) from aluminosilicates (the gangue minerals) such as kaolinite, illite, and pyrophyllite. Flotation is one of the most effective ways to realize the upgrading. Since flotation is a physicochemical process based on the difference in the surface hydrophobicity of different components, determining the adsorption characteristics of various flotation surfactants on the mineral surfaces is critical. The surfactant adsorption properties of the minerals, in turn, are controlled by the surface chemistry of the minerals, while the latter is related to the mineral crystal structures. In this paper, we first discuss the crystal structures of the four key minerals of diaspore, kaolinite, illite, and pyrophyllite as well as the broken bonds on their exposed surfaces after grinding. Next, we summarize the surface chemistry properties such as surface wettability and surface electrical properties of the four minerals, and the differences in these properties are explained from the perspective of mineral crystal structures. Then we review the adsorption mechanism and adsorption characteristics of surfactants such as collectors (cationic, anionic, and mixed surfactants), depressants (inorganic and organic), dispersants, and flocculants on these mineral surfaces. The separation of diaspore and aluminosilicates by direct flotation and reverse flotation are reviewed, and the collecting properties of different types of collectors are compared. Furthermore, the abnormal behavior of the cationic flotation of kaolinite is also explained in this section. This review provides a strong theoretical support for the optimization of the upgrading of diaspore bauxite ore by flotation and the early industrialization of the reverse flotation process. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liang, B.; Weng, Y. T.; Wang, C. C.; Chiang, C. C.; Liu, C. C.; Lehmann, J.
2017-12-01
Black carbon receives increasing global wide research attention due to its role in carbon sequestration, soil fertility enhancement and remediation application. Generally considered chemically stable in bulk, the reactive surface of BC can interplays with minerals and form strong chemical bondage, which renders physical protection of BC and contributes to its long term stabilization. Using historical BC-rich Amazonian Dark Earth (ADE), we probe the in-situ organo-mineral association and transformation of BC and minerals over a millennium scale using various synchrotron-based spectroscopic (XANES, FTIR) and microscopic (TXM) methods. Higher content of SRO minerals was found in BC-rich ADE compare to adjacent tropical soils. The iron signature found in BC-rich ADE was mainly ferrihydrite/lepidocrocite, a more reactive form of Fe compared to goethite, which was dominant in adjacent soil. Abundant nano minerals particles were observed in-situ associated with BC surface, in clusters and layers. The organo-mineral interaction lowers BC bioavailability and enhances its long-term stabilization in environment, while at the same time, transforms associated minerals into more reactive forms under rapid redox/weathering environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding. The scale up application of BC/biochar into agricultural systems and natural environments have long lasting impact on the in-situ transformation of associated minerals.
Akkus, Anna; Yang, Shan; Roperto, Renato; Mustafa, Hathem; Teich, Sorin; Akkus, Ozan
2017-02-01
Measurement of tooth enamel mineralization using a clinically viable method is essential since variation of mineralization may be used to monitor caries risk or in assessing the effectiveness of remineralization therapy. Fiber optic Raman systems are becoming more affordable and popular in context of biomedical applications. However, the applicability of fiber optic Raman systems for measurement of mineral content within enamel tissue has not been elucidated significantly in the prior literature. Human teeth with varying degrees of enamel mineralization were selected. In addition alligator, boar and buffalo teeth which have increasing amount of mineral content, respectively, were also included as another set of samples. Reference Raman measurements of mineralization were performed using a high-fidelity confocal Raman microscope. Analysis of human teeth by research grade Raman system indicated a 2-fold difference in the Raman intensities of v1 symmetric-stretch bands of mineral-related phosphate bonds and 7-fold increase in mineral related Raman intensities of animal teeth. However, fiber optic system failed to resolve the differences in the mineralization of human teeth. These results indicate that the sampling volume of fiber optic systems extends to the underlying dentin and that confocal aperture modification is essential to limit the sampling volume to within the enamel. Further research efforts will focus on putting together portable Raman systems integrated with confocal fiber probe. Key words: Enamel, mineral content, raman spectroscopy.
Bioinspired Wood Nanotechnology for Functional Materials.
Berglund, Lars A; Burgert, Ingo
2018-05-01
It is a challenging task to realize the vision of hierarchically structured nanomaterials for large-scale applications. Herein, the biomaterial wood as a large-scale biotemplate for functionalization at multiple scales is discussed, to provide an increased property range to this renewable and CO 2 -storing bioresource, which is available at low cost and in large quantities. The Progress Report reviews the emerging field of functional wood materials in view of the specific features of the structural template and novel nanotechnological approaches for the development of wood-polymer composites and wood-mineral hybrids for advanced property profiles and new functions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals.
Feng, Xiong Han; Zhai, Li Mei; Tan, Wen Feng; Liu, Fan; He, Ji Zheng
2007-05-01
Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite> or =cryptomelane>todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb(2+), Cu(2+), Co(2+), Cd(2+) and Zn(2+), while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb(2+) among the tested heavy metals. Hydration tendency (pK(1)) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn(2+) varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0)>cryptomelane (422.6)>todorokite (59.7)>hausmannite (36.6).
30 CFR 795.8 - Application approval and notice.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Application approval and notice. 795.8 Section 795.8 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SMALL OPERATOR ASSISTANCE PERMANENT REGULATORY PROGRAM-SMALL OPERATOR ASSISTANCE PROGRAM § 795.8...
30 CFR 7.7 - Quality assurance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Quality assurance. 7.7 Section 7.7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY General § 7.7 Quality assurance. Applicants granted...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Permit fees. 777.17 Section 777.17 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL... CONTENT REQUIREMENTS FOR PERMIT APPLICATIONS § 777.17 Permit fees. An application for a surface coal...
30 CFR 777.11 - Format and contents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Format and contents. 777.11 Section 777.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE... GENERAL CONTENT REQUIREMENTS FOR PERMIT APPLICATIONS § 777.11 Format and contents. (a) An application...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Permit fees. 777.17 Section 777.17 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL... CONTENT REQUIREMENTS FOR PERMIT APPLICATIONS § 777.17 Permit fees. An application for a surface coal...
30 CFR 777.11 - Format and contents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Format and contents. 777.11 Section 777.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE... GENERAL CONTENT REQUIREMENTS FOR PERMIT APPLICATIONS § 777.11 Format and contents. (a) An application...
Caine, Jonathan S.; Ridley, John; Wessel, Zachary R.
2010-01-01
The eastern central Front Range of the Rocky Mountains in Colorado has long been a region of geologic interest because of Laramide-age hydrothermal polymetallic vein-related ores. The region is characterized by a well-exposed array of geologic structures associated with ductile and brittle deformation, which record crustal strain over 1.7 billion years of continental growth and evolution. The mineralized areas lie along a broad linear zone termed the Colorado Mineral Belt. This lineament has commonly been interpreted as following a fundamental boundary, such as a suture zone, in the North American Proterozoic crust that acted as a persistent zone of weakness localizing the emplacement of magmas and associated hydrothermal fluid flow. However, the details on the controls of the location, orientation, kinematics, density, permeability, and relative strength of various geological structures and their specific relationships to mineral deposit formation are not related to Proterozoic ancestry in a simple manner. The objectives of this field trip are to show key localities typical of the various types of structures present, show recently compiled and new data, offer alternative conceptual models, and foster dialogue. Topics to be discussed include: (1) structural history of the eastern Front Range; (2) characteristics, kinematics, orientations, and age of ductile and brittle structures and how they may or may not relate to one another and mineral deposit permeability; and (3) characteristics, localization, and evolution of the metal and non–metal-bearing hydrothermal systems in the eastern Colorado Mineral Belt.
Amino Acid Contents of Meteorite Mineral Separates
NASA Technical Reports Server (NTRS)
Berger, E. L.; Burton, A. S; Locke, D.
2017-01-01
Indigenous amino acids have been found indigenous all 8 carbonaceous chondrite groups. However, the abundances, structural, enantiomeric and isotopic compositions of amino acids differ significantly among meteorites of different groups and petrologic types. This suggests that parent-body conditions (thermal or aqueous alteration), mineralogy, and the preservation of amino acids are linked. Previously, elucidating specific relationships between amino acids and mineralogy was not possible because the samples analyzed for amino acids were much larger than the scale at which petrologic heterogeneity is observed (sub mm-scale differences corresponding to sub-mg samples). Recent advances in amino acid measurements and application of techniques such as high resolution X-ray diffraction (HR-XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) for mineralogical characterizations allow us to perform coordinated analyses on the scale at which mineral heterogeneity is observed.
Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits
Peters, Stephen G.
2001-01-01
Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and geothermal gradients, and tectonic warps. These concepts have practical and empirical application in most mining districts where they are of use in the exploration for ore, but are of such broad and general application that they may not represent known or inferred ore formation processes. Close spatial relation among some sedimentary rock- hosted Au deposits and their host structures suggests that the structures and the orebodies are genetically linked because they may have shared the same developmental history. Examples of probable syn-deformational genesis and structural control of sedimentary rock-hosted Au deposits are in the large Betze deposit in the Carlin trend, Nevada and in the Lannigou, Jinlongshan, and Maanqiao Au deposits, China.
Kavitha, Varadharajan; Gnanamani, Arumugam
2013-05-01
The present study emphasizes in situ transformation of soybean oil to self-assembled supramolecular multilayered biopolymer material. The said polymer material was characterized and the entrapment efficacy of both hydrophilic and hydrophobic moieties was studied. In brief, soybean oil at varying concentration was mixed with mineral medium and incubated under agitation (200 rpm) at 37 degrees C for 240 h. Physical observations were made till 240 h and the transformed biopolymer was separated and subjected to physical, chemical and functional characterization. The maximum size of the polymer material was measured as 2 cm in diameter and the cross sectional view displayed the multilayered onion rings like structures. SEM analysis illustrated the presence of multilayered honeycomb channeled structures. Thermal analysis demonstrated the thermal stability (200 degrees C) and high heat enthalpy (1999 J/g). Further, this multilayered assembly was able to entrap both hydrophilic and hydrophobic components simultaneously, suggesting the potential industrial application of this material.
30 CFR 250.609 - Well-workover structures on fixed platforms.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Well-workover structures on fixed platforms. 250.609 Section 250.609 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND..., and previous stresses to the platform. ...
Iodide uptake by negatively charged clay interlayers?
Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng
2015-09-01
Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Using Crystal Structure Groups to Understand Mössbauer parameters of Ferric Sulfates
NASA Astrophysics Data System (ADS)
Knutson, J.; Dyar, M. D.; Sklute, E. C.; Lane, M. D.; Bishop, J. L.
2008-12-01
A Mössbauer doublet assigned to ferric sulfate (Fe3D2) was identified in Paso Robles, Mars, spectra by Morris et al. (2006), who noted that its parameters are not diagnostic of any specific mineral because a number of different sulfates with varying parageneses might be responsible for this doublet. Work by Lane et al. (2008) used a multi-instrument approach based on Fe3+ sulfate spectra acquired with VNIR and midinfrared reflectance, mid-infrared emission and Mössbauer spectrometers to narrow down the possible ferric sulfate phases present at Paso Robles to ferricopiapite possibly mixed with other ferric sulfates such as butlerite, parabutlerite, fibroferrite, or metahomanite. Thus, we explore here the crystal-chemical rationale behind these interpretations of the Mössbauer results, using similarities and difference among mineral structures to explore which phases might have similar coordination polyhedra around the Fe atoms in sulfates. Work by Hawthorne et al. (2000) organizes the sulfate minerals into groups with analogous crystal structures. Mössbauer doublets assigned to ferric sulfates ubiquitously have isomer shifts (IS) of 0.40-53 mm/s so that IS is non-diagnostic. However, quadrupole splitting of doublets in these mineral groups has a wide range (0-1.4 mm/s) and the variation can be systematically correlated with different structure types. Members of the hydration series Fe2(SO4)3 · n H2O, which includes quenstedtite, coquimbite, paracoquimbite, kornelite, and lausenite have Mössbauer spectra that closely resemble singlets because of their near-zero QS. These minerals share structures involving finite clusters of sulfate tetrahedral and Fe octahedral or chains of depolymerized clusters, and all mineral species with these structures share similar Mössbauer parameters. At the other extreme, ferric sulfates with structures based on infinite sheets (hydrotalcite, alunite, jarosite), tend to have large electric field gradients at the nucleus of the Fe3+ cation, resulting in larger QS values (1-1.4 mm/s). Between these extremes of QS are two populations of structures based on finite clusters of polyhedra with QS = 0.36-0.80 mm/s (coquimbite, römerite, halotrichite, rozenite) and infinite chains with QS = 0.70-0.97 mm/s (chalcanthite, butlerite, fibroferrite, metahomanite). Our fits to the Paso Robles sol 429A data show two ferric doublets, both with IS = 0.42-0.43 mm/s but with differing QS = 0.36 and 0.93 mm/s; these parameters rule out mineral structures that have spectra with very high or very low QS. Ferric sulfates with structures composed of finite clusters and infinite chains thus provide the closest matches to the Paso Robles Mössbauer doublets, as well as spectra of other bright soils. Further constraints provided by other types of spectroscopy are then needed to determine which species within these structure groups are present. As additional sulfate structures are characterized, it will be possible to better understand the interrelationships among sulfate crystal structures and their spectral characteristics may provide additional constraints on mineral identification from ferric materials of all types. Morris et al. (2006) JGR, 111, doi: 10.1029/2005JE002584. Lane et al. (2008) Amer. Mineral., 93, 738-739. Hawthorne et al. (2000) Revs. Mineral., 40, 1-112.
Fractal-like hierarchical organization of bone begins at the nanoscale
NASA Astrophysics Data System (ADS)
Reznikov, Natalie; Bilton, Matthew; Lari, Leonardo; Stevens, Molly M.; Kröger, Roland
2018-05-01
The components of bone assemble hierarchically to provide stiffness and toughness. However, the organization and relationship between bone’s principal components—mineral and collagen—has not been clearly elucidated. Using three-dimensional electron tomography imaging and high-resolution two-dimensional electron microscopy, we demonstrate that bone mineral is hierarchically assembled beginning at the nanoscale: Needle-shaped mineral units merge laterally to form platelets, and these are further organized into stacks of roughly parallel platelets. These stacks coalesce into aggregates that exceed the lateral dimensions of the collagen fibrils and span adjacent fibrils as continuous, cross-fibrillar mineralization. On the basis of these observations, we present a structural model of hierarchy and continuity for the mineral phase, which contributes to the structural integrity of bone.
Biomimetic mineral self-organization from silica-rich spring waters.
García-Ruiz, Juan Manuel; Nakouzi, Elias; Kotopoulou, Electra; Tamborrino, Leonardo; Steinbock, Oliver
2017-03-01
Purely inorganic reactions of silica, metal carbonates, and metal hydroxides can produce self-organized complex structures that mimic the texture of biominerals, the morphology of primitive organisms, and that catalyze prebiotic reactions. To date, these fascinating structures have only been synthesized using model solutions. We report that mineral self-assembly can be also obtained from natural alkaline silica-rich water deriving from serpentinization. Specifically, we demonstrate three main types of mineral self-assembly: (i) nanocrystalline biomorphs of barium carbonate and silica, (ii) mesocrystals and crystal aggregates of calcium carbonate with complex biomimetic textures, and (iii) osmosis-driven metal silicate hydrate membranes that form compartmentalized, hollow structures. Our results suggest that silica-induced mineral self-assembly could have been a common phenomenon in alkaline environments of early Earth and Earth-like planets.
30 CFR 937.777 - General content requirements for permit applications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false General content requirements for permit applications. 937.777 Section 937.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...
30 CFR 937.777 - General content requirements for permit applications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false General content requirements for permit applications. 937.777 Section 937.777 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE OREGON...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Free use. 228.62 Section 228.62 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.62 Free use. (a) Application. An application for a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Free use. 228.62 Section 228.62 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.62 Free use. (a) Application. An application for a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Free use. 228.62 Section 228.62 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.62 Free use. (a) Application. An application for a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Free use. 228.62 Section 228.62 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.62 Free use. (a) Application. An application for a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Free use. 228.62 Section 228.62 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.62 Free use. (a) Application. An application for a...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-23
... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLWY9210000, L54100000.FR0000, WYW180014] Notice of Segregation and Possible Conveyance of Federally Owned Mineral Interests Application; Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: This notice segregates the...
43 CFR 3862.4-2 - Contents of published notice.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Contents of published notice. 3862.4-2... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.4-2 Contents of published notice. The notices published as required by...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Product testing. 7.4 Section 7.4 Mineral... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY General § 7.4 Product testing. (a) All products... to observe product testing, the applicant shall permit an MSHA official to be present at a mutually...
43 CFR 3862.8-1 - Land descriptions in patents.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Land descriptions in patents. 3862.8-1... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.8-1 Land descriptions in patents. The land description in a patent for...
43 CFR 3862.8-1 - Land descriptions in patents.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Land descriptions in patents. 3862.8-1... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.8-1 Land descriptions in patents. The land description in a patent for...
43 CFR 3862.8-1 - Land descriptions in patents.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Land descriptions in patents. 3862.8-1... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.8-1 Land descriptions in patents. The land description in a patent for...
43 CFR 3862.8-1 - Land descriptions in patents.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Land descriptions in patents. 3862.8-1... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Lode Mining Claim Patent Applications § 3862.8-1 Land descriptions in patents. The land description in a patent for...
Robach, J S; Stock, S R; Veis, A
2009-12-01
Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates, prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies.
Robach, J. S.; Stock, S. R.; Veis, A.
2009-01-01
Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates; prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies. PMID:19616101
The Influence of Abrasion on Martian Dust Grains: Evidence from a Study of Antigorite Grains
NASA Technical Reports Server (NTRS)
Bishop, Janice L.; Drief, Ahmed; Dyar, M. Darby
2003-01-01
Grinding was shown to greatly affect the structure and a number of properties of antigorite grains in a study by Drief and Nieto. Grinding is likely to influence the structure of most clay mineral grains and has been shown recently to influence the structure of kaolinite. The antigorite structure includes curved waves of layered silicate as shown by D dony et al.. Our study was performed in order to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. This project includes a combination of SEM, reflectance spectroscopy and Moessbauer spectroscopy.
IMMOBILIZATION OF HEAVY METALS IN SOILS AND WATER BY A MANGANESE MINERAL
A synthesized Mn mineral used in study on adsorption of heavy metals from water has shown a great adsorption capability for Pb, Cu, Cd, Co, Ni and Zn on this mineral over a pH range from 2 to 8. The retention of Pb on this mineral was as high as 10% of its weight. Application of ...
Mineral separation and recycle in a Controlled Ecological Life Support System (CELSS)
NASA Technical Reports Server (NTRS)
Ballou, E. V.
1982-01-01
The background of the mineral nutrition needs of plants are examined along with the applicability of mineral control and separation to a controlled ecological life support system (CELSS). Steps that may be taken in a program to analytically define and experimentally test key mineral control concepts in the nutritional and waste processing loops of a CELSS are delineated.
NASA Astrophysics Data System (ADS)
Olabanji, S. O.; Ige, O. A.; Mazzoli, C.; Ceccato, D.; Akintunde, J. A.; De Poli, M.; Moschini, G.
2005-10-01
For the first time, the complementary accelerator-based analytical technique of PIXE and electron microprobe analysis (EMPA) were employed for the characterization of some Nigeria's natural minerals namely fluorite, tourmaline and topaz. These minerals occur in different areas in Nigeria. The minerals are mainly used as gemstones and for other scientific and technological applications and therefore are very important. There is need to characterize them to know the quality of these gemstones and update the geochemical data on them geared towards useful applications. PIXE analysis was carried out using the 1.8 MeV collimated proton beam from the 2.5 MV AN 2000 Van de Graaff accelerator at INFN, LNL, Legnaro, Padova, Italy. The novel results which show many elements at different concentrations in these minerals are presented and discussed.
Vittori, Miloš; Srot, Vesna; Bussmann, Birgit; Predel, Felicitas; van Aken, Peter A; Štrus, Jasna
2018-06-09
Terrestrial isopods possess large sensory setae on their walking legs. Increased fracture resistance of these elongated structures is of crucial importance, making the exoskeleton forming the setae an interesting durable material that may inspire biomimetic designs. We studied the cuticle of the sensory setae with analytical electron microscopy in order to gain detailed insights into its structure and composition at the nanometer scale and identify features that increase the fracture resistance of these minute skeletal elements. The setae are stiff structures formed by mineralized cuticle that are connected to the leg exoskeleton by a non-mineralized joint membrane. Our results demonstrate that different layers of the setal cuticle display contrasting organizations of the chitin-protein fibers and mineral particles. While in the externally positioned exocuticle organic fibers shift their orientation helicoidally in sequential layers, the fibers are aligned axially in the internally positioned endocuticle. In the setal cuticle, layers of structurally anisotropic cuticle likely providing strength in the axial direction are combined with layers of isotropic cuticle which may allow the setae to better resist perpendicular loading. They are further strengthened with amorphous calcium phosphate, a highly fracture resistant mineral rarely observed in invertebrate skeletons. Copyright © 2018 Elsevier Ltd. All rights reserved.
Scoping Candidate Minerals for Stabilization of Arsenic-Bearing Solid Residuals
Raghav, Madhumitha; Shan, Jilei; Sáez, A. Eduardo; Ela, Wendell P.
2014-01-01
Arsenic Crystallization Technology (ACT) is a potentially eco-friendly, effective technology for stabilization of arsenic-bearing solid residuals (ABSRs). The strategy is to convert ABSRs generated by water treatment facilities into minerals with a high arsenic capacity and long-term stability in mature, municipal solid waste landfills. Candidate minerals considered in this study include scorodite, arsenate hydroxyapatites, ferrous arsenates (symplesite-type minerals), tooeleite, and arsenated-schwertmannite. These minerals were evaluated as to ease of synthesis, applicability to use of iron-based ABSRs as a starting material, and arsenic leachability. The Toxicity Characteristic Leaching Procedure (TCLP) was used for preliminary assessment of candidate mineral leaching. Minerals that passed the TCLP and whose synthesis route was promising were subjected to a more aggressive leaching test using a simulated landfill leachate (SLL) solution. Scorodite and arsenate hydroxyapatites were not considered further because their synthesis conditions were not found to be favorable for general application. Tooeleite and silica-amended tooeleite showed high TCLP arsenic leaching and were also not investigated further. The synthesis process and leaching of ferrous arsenate and arsenated-schwertmannite were promising and of these, arsenated-schwertmannite was most stable during SLL testing. The latter two candidate minerals warrant synthesis optimization and more extensive testing. PMID:24231323
Vibrational spectroscopy of the borate mineral kotoite Mg₃(BO₃)₂.
Frost, Ray L; Xi, Yunfei
2013-02-15
Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm(-1), assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm(-1) are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm(-1) is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarrow, M.N.
1982-01-01
This study explores how working-class people apprehend and analyze the class dynamics of their social world. As an exploratory empirical study of the structure and dynamics of working-class consciousness, it seeks to develop the theory of actual class consciousness by bringing previous theories into dialogue with the articulated analyses of coal miners in central Appalachia. Although changing conditions are shown to have a powerful effect on class consciousness, the respondents were found to respond differently to the changing context and to remain loyal to important elements of their earlier perspectives. Suggestions are made for how the theory could be developedmore » further. The data for the study are flexibly structured interviews which were conducted with active, retired, and disabled miners in southern West Virginia and western Virginia. A dozen miners were interviewed during the 1978 strike and again the following summer; during the summer of 1978, nineteen additional miners were interviewed.« less
Skeletal biology: Where matrix meets mineral
Young, Marian F.
2017-01-01
The skeleton is unique from all other tissues in the body because of its ability to mineralize. The incorporation of mineral into bones and teeth is essential to give them strength and structure for body support and function. For years, researchers have wondered how mineralized tissues form and repair. A major focus in this context has been on the role of the extracellular matrix, which harbors key regulators of the mineralization process. In this introductory minireview, we will review some key concepts of matrix biology as it related to mineralized tissues. Concurrently, we will highlight the subject of this special issue covering many aspects of mineralized tissues, including bones and teeth and their associated structures cartilage and tendon. Areas of emphasis are on the generation and analysis of new animal models with permutations of matrix components as well as the development of new approaches for tissue engineering for repair of damaged hard tissue. In assembling key topics on mineralized tissues written by leaders in our field, we hope the reader will get a broad view of the topic and all of its fascinating complexities. PMID:27131884
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. James Kirkpatrick; Andrey G. Kalinichev
2008-11-25
Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches tomore » important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done in collaboration with Drs. C.-K. Loong, N. de Souza, and A.I. Kolesnikov at the Intense Pulsed Neutron Source facility of the Argonne National Lab, and Dr. A. Faraone at the NIST Center for Neutron Research. A manuscript reporting the first results of these experiments, which are highly complimentary to our previous NMR, X-ray, and infra-red results for these phases, is currently in preparation. In total, in 2006-2007 our work has resulted in the publication of 14 peer-reviewed research papers. We also devoted considerable effort to making our work known to a wide range of researchers, as indicated by the 24 contributed abstracts and 14 invited presentations.« less
NASA Astrophysics Data System (ADS)
Zheng, Yongchun; Wang, Shijie; Feng, Junming; Ouyang, Ziyuan; Li, Xiongyao
2005-12-01
The complex permittivity of dry rocks and minerals varies over a very wide range, even within a sample there are variation at different temperatures and frequencies. Most rocks and minerals are inhomogeneous materials, therefore, most of the present methods of dielectric measurement designed for artificial homogeneous materials are not suitable for rocks and minerals. The resonant cavity perturbation (RCP) method is a reliable and simple technique to determine the complex permittivity of dielectric materials in the GHz range, and this method is also used extensively. However, the traditional RCP method is sensitive to the measurement of low dielectric constant (ɛ') and low loss factor (ɛ'' or tanδ) materials. The complex permittivity of most dry rocks and minerals exceeds the span vibration of the RCP method, and cannot be measured by the RCP method directly. This paper proposes a new method to measure the complex permittivity of dry rocks and minerals with the RCP method incorporated in the application of polythene (PE) dilution method and Lichtenecker's mixture formulae. Dry rocks and minerals were ground into fine powder. The powder of rocks and minerals was mixed with polythene powder in a definite volume per cent. The mixture was heated and pressed into a thin circular slice. The slice was processed into a small rectangular strip sample, the size of which was fitted to the demands of the RCP method. The complex permittivity of the strip was obtained by the RCP method. The relationship between the dielectric properties of the two-phase mixture and those of each phase in the mixture can be expressed by Lichtenecker's mixture formula. Thus the complex permittivity of dry rocks and minerals can be calculated from the complex permittivity of the mixture in case the complex permittivity of polythene is known. The presented method was verified by measurements of reference materials of various known complex permittivity and other reliable dielectric measurement methods. The results of the experiment showed that this new method is of high accuracy, small sample requirement, and convenient application. Moreover, the complex permittivity of rocks and minerals measured by this method is more reliable than the direct dielectric measurement of rocks or minerals without application of the polythene dilution method and Lichtenecker's mixture formulae.
Douglas, Timothy E L; Krawczyk, Grzegorz; Pamula, Elzbieta; Declercq, Heidi A; Schaubroeck, David; Bucko, Miroslaw M; Balcaen, Lieve; Van Der Voort, Pascal; Bliznuk, Vitaliy; van den Vreken, Natasja M F; Dash, Mamoni; Detsch, Rainer; Boccaccini, Aldo R; Vanhaecke, Frank; Cornelissen, Maria; Dubruel, Peter
2016-11-01
Mineralization of hydrogels, desirable for bone regeneration applications, may be achieved enzymatically by incorporation of alkaline phosphatase (ALP). ALP-loaded gellan gum (GG) hydrogels were mineralized by incubation in mineralization media containing calcium and/or magnesium glycerophosphate (CaGP, MgGP). Mineralization media with CaGP:MgGP concentrations 0.1:0, 0.075:0.025, 0.05:0.05, 0.025:0.075 and 0:0.1 (all values mol/dm 3 , denoted A, B, C, D and E, respectively) were compared. Mineral formation was confirmed by IR and Raman, SEM, ICP-OES, XRD, TEM, SAED, TGA and increases in the the mass fraction of the hydrogel not consisting of water. Ca was incorporated into mineral to a greater extent than Mg in samples mineralized in media A-D. Mg content and amorphicity of mineral formed increased in the order A < B < C < D. Mineral formed in media A and B was calcium-deficient hydroxyapatite (CDHA). Mineral formed in medium C was a combination of CDHA and an amorphous phase. Mineral formed in medium D was an amorphous phase. Mineral formed in medium E was a combination of crystalline and amorphous MgP. Young's moduli and storage moduli decreased in dependence of mineralization medium in the order A > B > C > D, but were significantly higher for samples mineralized in medium E. The attachment and vitality of osteoblastic MC3T3-E1 cells were higher on samples mineralized in media B-E (containing Mg) than in those mineralized in medium A (not containing Mg). All samples underwent degradation and supported the adhesion of RAW 264.7 monocytic cells, and samples mineralized in media A and B supported osteoclast-like cell formation. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Mineral commodity summaries 2017
Ober, Joyce A.
2017-01-31
This report is the earliest Government publication to furnish estimates covering 2016 nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for more than 90 individual minerals and materials.
Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument
NASA Technical Reports Server (NTRS)
Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.
2004-01-01
Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.
76 FR 81761 - Mine Safety Disclosure
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
... inspections pursuant to miners' complaints.\\18\\ If violations of safety or health standards are found, MSHA... appropriateness of proposed penalties. Other types of cases include miners' complaints of safety- or health-related discrimination and miners' applications for compensation after a mine has been idled by a closure...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Royalties. 1202.52 Section 1202.52 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE... the applicable mineral leasing laws, reduces, or in the case of OCS leases, reduces or eliminates, the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Royalties. 1202.52 Section 1202.52 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE... the applicable mineral leasing laws, reduces, or in the case of OCS leases, reduces or eliminates, the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Royalties. 1202.52 Section 1202.52 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE... the applicable mineral leasing laws, reduces, or in the case of OCS leases, reduces or eliminates, the...
Progress in bioleaching: part B: applications of microbial processes by the minerals industries.
Brierley, Corale L; Brierley, James A
2013-09-01
This review presents developments and applications in bioleaching and mineral biooxidation since publication of a previous mini review in 2003 (Olson et al. Appl Microbiol Biotechnol 63:249-257, 2003). There have been discoveries of newly identified acidophilic microorganisms that have unique characteristics for effective bioleaching of sulfidic ores and concentrates. Progress has been made in understanding and developing bioleaching of copper from primary copper sulfide minerals, chalcopyrite, covellite, and enargite. These developments point to low oxidation-reduction potential in concert with thermophilic bacteria and archaea as a potential key to the leaching of these minerals. On the commercial front, heap bioleaching of nickel has been commissioned, and the mineral biooxidation pretreatment of sulfidic-refractory gold concentrates is increasingly used on a global scale to enhance precious metal recovery. New and larger stirred-tank reactors have been constructed since the 2003 review article. One biooxidation-heap process for pretreatment of sulfidic-refractory gold ores was also commercialized. A novel reductive approach to bioleaching nickel laterite minerals has been proposed.
Morphological Dependence of Element Stoichiometry in the H. americanus Exoskeleton
NASA Astrophysics Data System (ADS)
Mergelsberg, S. T.; Ulrich, R. N.; Dove, P. M.
2016-02-01
The crustacean exoskeleton is a complex biocomposite of inorganic mineral and organic macromolecules that expresses highly divergent morphologies across different taxa. While the structures and compositions of the organic framework show complex links to environmental and developmental pressures, little is known about the mineral chemistry. Previous studies of the cuticle have assumed that magnesium, phosphorous, and other trace metals are largely contained in the inorganic mineral fraction. Due to analytical limitations of structural analyses and in situ spectroscopic methods, the stoichiometry of the organic and inorganic portions could not be resolved. For example, previous Raman and XRD studies conclude the higher concentrations of trace elements, such as P and Mg measured in reinforced structures, e.g. the claw and abdomen, are primarily determined by the mineral fraction. Using the American Lobster (Homarus americanus) as a model organism to establish relationships between body part function and cuticle composition, this study quantified the distributions of Mg and P in the mineral and organic fractions. The experiments were designed to dissolve the exoskeleton of 10 body parts using three types of solutions that were specific to extracting 1) the mineral phase, 2) protein, and 3) polysaccharide. Analysis of the solutions by ICP-OES shows the mineral phase contains magnesium and phosphorous at concentrations sufficient to support the formation of calcium-magnesium and phosphate minerals. The protein fraction of the body parts contains significantly more Mg and P than previously hypothesized, while the levels of P contained in the organic portion are fairly constant. The findings demonstrate the lobster cuticle contains a significant amount of non-mineralized P and Mg that is readily water-soluble in the protein component. However, for those body parts used for defense and food acquisition, such as the claw, the mineral component determines the overall composition of the exoskeleton.
Inorganic nanolayers: structure, preparation, and biomedical applications.
Saifullah, Bullo; Hussein, Mohd Zobir B
2015-01-01
Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.
Inorganic nanolayers: structure, preparation, and biomedical applications
Saifullah, Bullo; Hussein, Mohd Zobir B
2015-01-01
Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081
A study to examine the feasibility of using surface penetrators for mineral exploration
NASA Technical Reports Server (NTRS)
Davis, A. S.; Anderson, D. W.
1978-01-01
The feasibility of using penetrators in earth applications is examined. Penetrator applications in exploration for mineral resources only is summarized. Instrumentation for future penetrators is described. Portions of this report are incorporated into a more extensive report examining other penetrator applications in exploration for fossil fuels, geothermal resources, and in environmental and engineering problems, which is to be published as a NASA technical publication.
Effects of chemical and mineral admixtures on performance of Florida structural concrete.
DOT National Transportation Integrated Search
2016-06-21
Several mineral and chemical admixtures, commonly used in Florida structural concrete, were studied here to assess their effect on the fresh and hardened properties of cementitious systems. Pozzolans examined here were Class F fly ash, silica fume, b...
Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
NASA Astrophysics Data System (ADS)
Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min
2017-03-01
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.
Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly
Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min
2017-01-01
The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena. PMID:28266537
Niedrée, Bastian; Vereecken, Harry; Burauel, Peter
2012-07-01
After the explosion of reactor 4 in the nuclear power plant near Chernobyl, huge agricultural areas became contaminated with radionuclides. In this study, we want to elucidate whether (137)Cs and (90)Sr affect microorganisms and their community structure and functions in agricultural soil. For this purpose, the mineralization of radiolabeled wheat straw was examined in lab-scale microcosms. Native soils and autoclaved and reinoculated soils were incubated for 70 days at 20 °C. After incubation, the microbial community structure was compared via 16S and 18S rDNA denaturing gradient gel electrophoresis (DGGE). The radioactive contamination with (137)Cs and (90)Sr was found to have little effect on community structure and no effect on the straw mineralization. The autoclaving and reinoculation of soil had a strong influence on the mineralization and the community structure. Additionally we analyzed the effect of soil treatment on mineralization and community composition. It can be concluded that other environmental factors (such as changing content of dissolved organic carbon) are much stronger regulating factors in the mineralization of wheat straw and that low-level radiation only plays a minor role. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Blake, D. F.; Sarrazin, P.; Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Bar-Cohen, Y.; Sherrit, S.; Collins, S.; Boyer, B.; Bryson, C.
2003-01-01
The search for evidence of extant or extinct life on Mars will initially be a search for evidence of present or past conditions supportive of life (e.g., evidence of water), not for life itself. Definitive evidence of past or present water activity lies in the discovery of: * Hydrated minerals: The "rock type" hosting the hydrated minerals could be igneous, metamorphic, or sedimentary, with only a minor hydrated mineral phase. Therefore, the identification of minor phases is important. * Clastic sediments: Clastic sediments are commonly identified by the fact that they contain minerals of disparate origin that could only have come together as a mechanical mixture. Therefore, the identification of all minerals present in a mixture to ascertain mineralogical source regions is important. * Hydrothermal precipitates and chemical sediments: Some chemical precipitates are uniquely identified only by their structure. For example, Opal A, Opal CT, tridymite, crystobalite, high and low Quartz all have the same composition (SiO2) but different crystal structures indicative of different environments - from hydrothermal hydrothermal formation to low temperature precipitation. Other silica types such as stishovite can provide evidence of shock metamorphism. Therefore, identification of crystal structures and structural polymorphs is important. The elucidation of the nature of the Mars soil will require the identification of mineral components that can unravel its history and the history of the Mars atmosphere.
de la Rosa, José M; Paneque, Marina; Miller, Ana Z; Knicker, Heike
2014-11-15
Three pyrolysis biochars (B1: wood, B2: paper-sludge, B3: sewage-sludge) and one kiln-biochar (B4: grapevine wood) were characterized by determining different chemical and physical properties which were related to the germination rates and to the plant biomass production during a pot experiment of 79 days in which a Calcic Cambisol from SW Spain was amended with 10, 20 and 40 t ha(-1) of the four biochars. Biochar 1, B2 and B4 revealed comparable elemental composition, pH, water holding capacity and ash content. The H/C and O/C atomic ratios suggested high aromaticity of all biochars, which was confirmed by (13)C solid-state NMR spectroscopy. The FT-IR spectra confirmed the aromaticity of all the biochars as well as several specific differences in their composition. The FESEM-EDS distinguished compositional and structural differences of the studied biochars such as macropores on the surface of B1, collapsed structures in B2, high amount of mineral deposits (rich in Al, Si, Ca and Fe) and organic phases in B3 and vessel structures for B4. Biochar amendment improved germination rates and soil fertility (excepting for B4), and had no negative pH impact on the already alkaline soil. Application of B3, the richest in minerals and nitrogen, resulted in the highest soil fertility. In this case, increase of the dose went along with an enhancement of plant production. Considering costs due to production and transport of biochar, for all used chars with the exception of B3, the application of 10 t ha(-1) turned out as the most efficient for the crop and soil used in the present incubation experiment. Copyright © 2014 Elsevier B.V. All rights reserved.
New Mexico structural zone - An analogue of the Colorado mineral belt
Sims, P.K.; Stein, H.J.; Finn, C.A.
2002-01-01
Updated aeromagnetic maps of New Mexico together with current knowledge of the basement geology in the northern part of the state (Sangre de Cristo and Sandia-Manzano Mountains)-where basement rocks were exposed in Precambrian-cored uplifts-indicate that the northeast-trending Proterozoic shear zones that controlled localization of ore deposits in the Colorado mineral belt extend laterally into New Mexico. The shear zones in New Mexico coincide spatially with known epigenetic precious- and base-metal ore deposits; thus, the mineralized belts in the two states share a common inherited basement tectonic setting. Reactivation of the basement structures in Late Cretaceous-Eocene and Mid-Tertiary times provided zones of weakness for emplacement of magmas and conduits for ore-forming solutions. Ore deposits in the Colorado mineral belt are of both Late Cretaceous-Eocene and Mid-Tertiary age; those in New Mexico are predominantly Mid-Tertiary in age, but include Late Cretaceous porphyry-copper deposits in southwestern New Mexico. The mineralized belt in New Mexico, named the New Mexico structural zone, is 250-km wide. The northwest boundary is the Jemez subzone (or the approximately equivalent Globe belt), and the southeastern boundary was approximately marked by the Santa Rita belt. Three groups (subzones) of mineral deposits characterize the structural zone: (1) Mid-Tertiary porphyry molybdenite and alkaline-precious-metal deposits, in the northeast segment of the Jemez zone; (2) Mid-Tertiary epithermal precious-metal deposits in the Tijeras (intermediate) zone; and (3) Late Cretaceous porphyry-copper deposits in the Santa Rita zone. The structural zone was inferred to extend from New Mexico into adjacent Arizona. The structural zone provides favorable sites for exploration, particularly those parts of the Jemez subzone covered by Neogene volcanic and sedimentary rocks. ?? 2002 Published by Elsevier Science B.V.
NASA Technical Reports Server (NTRS)
Estep, P. A.; Kovach, J. J.; Waldstein, P.; Karr, C., Jr.
1972-01-01
Infrared and Raman vibrational spectroscopic data, yielding direct information on molecular structure, were obtained for single grains ( 150 microns) of minerals, basalts, and glasses isolated from Apollo 11, 12, 14, and 15 rock and dust samples, and for grains in Apollo 14 polished butt samples. From the vibrational data, specification substitutions were determined for the predominant silicate minerals of plagioclase, pyroxene, and olivine. Unique spectral variations for grains of K-feldspar, orthopyroxene, pyroxenoid, and ilmenite were observed to exceed the ranges of terrestrial samples, and these variations may be correlatable with formation histories. Alpha-quartz was isolated as pure single grains, in granitic grains composited with sanidine, and in unique grains that were intimately mixed with varying amounts of glass. Accessory minerals of chromite and ulvospinel were isolated as pure grains and structurally characterized from their distinctive infrared spectra. Fundamental vibrations of the SiO4 tetrahedra in silicate minerals were used to classify bulk compositions in dust sieved fractions, basalt grains and glass particles, and to compare modal characteristics for maria, highland and rille samples. No hydrated minerals were found in any of the samples studied, indicating anhydrous formation conditions.
Airflow Resistance of Loose-Fill Mineral Fiber Insulations in Retrofit Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, C. J.; Fox, M. J.; Lstiburek, J.
2015-02-01
This report expands on Building America Report 1109 by applying the experimental apparatus and test method to dense-pack retrofit applications using mineral fiber insulation materials. Three fiber glass insulation materials and one stone wool insulation material were tested, and the results compared to the cellulose results from the previous study.
43 CFR 3863.1-2 - Proof of improvements for patent.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Proof of improvements for patent. 3863.1-2... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Placer Mining Claim Patent Applications § 3863.1-2 Proof of improvements for patent. The proof of improvements must...
43 CFR 3863.1-2 - Proof of improvements for patent.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Proof of improvements for patent. 3863.1-2... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Placer Mining Claim Patent Applications § 3863.1-2 Proof of improvements for patent. The proof of improvements must...
43 CFR 3863.1-2 - Proof of improvements for patent.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Proof of improvements for patent. 3863.1-2... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Placer Mining Claim Patent Applications § 3863.1-2 Proof of improvements for patent. The proof of improvements must...
43 CFR 3863.1-2 - Proof of improvements for patent.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Proof of improvements for patent. 3863.1-2... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT APPLICATIONS Placer Mining Claim Patent Applications § 3863.1-2 Proof of improvements for patent. The proof of improvements must...
NASA Astrophysics Data System (ADS)
Frost, Ray L.; Scholz, Ricardo; López, Andrés
2015-10-01
The mineral aerinite is an interesting mineral because it contains both silicate and carbonate units which is unusual. It is also a highly colored mineral being bright blue/purple. We have studied aerinite using a combination of techniques which included scanning electron microscopy, energy dispersive X-ray analysis, Raman and infrared spectroscopy. Raman bands at 1049 and 1072 cm-1 are assigned to the carbonate symmetric stretching mode. This observation supports the concept of the non-equivalence of the carbonate units in the structure of aerinite. Multiple infrared bands at 1354, 1390 and 1450 cm-1 supports this concept. Raman bands at 933 and 974 cm-1 are assigned to silicon-oxygen stretching vibrations. Multiple hydroxyl stretching and bending vibrations show that water is in different molecular environments in the aerinite structure.
A life detection problem in a High Arctic microbial community
NASA Astrophysics Data System (ADS)
Rogers, J. D.; Perreault, N. N.; Niederberger, T. D.; Lichten, C.; Whyte, L. G.; Nadeau, J. L.
2010-03-01
Fluorescent labeling of bacterial cell walls, DNA, and metabolic processes demonstrates high (potentially single molecule) sensitivity, is non-invasive, and in some cases can differentiate strains and species. Robust microscopes such as the custom instruments presented here can provide good image quality in the field and are potentially suitable for flight. However, ambiguous or false-positive results with bacterial stains can occur and can create difficulties in interpretation even on Earth. We present a "real" life detection problem in a sample of biofilms taken from the Canadian High Arctic. The samples consisted of numerous small sulfur-oxidizing bacteria and larger structures resembling fungi or diatoms. The identity of these latter structures remained ambiguous until electron microscopy and X-ray spectroscopy were performed, indicating that they were unusual sulfur minerals probably precipitated by the bacterial communities. While such mineral structures may possibly serve as biosignatures after the cells have disappeared, it is important that they not be mistaken for cells themselves. It is also possible that unusual mineral structures will be performed under extraterrestrial conditions, so great care is needed to differentiate cell structures from minerals.
43 CFR 3863.1 - Placer mining claim patent applications: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT.... (a) The proceedings to obtain patents for placer claims, including all forms of mineral deposits excepting veins of quartz or other rock in place, are similar to the proceedings prescribed for obtaining...
43 CFR 3863.1 - Placer mining claim patent applications: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT.... (a) The proceedings to obtain patents for placer claims, including all forms of mineral deposits excepting veins of quartz or other rock in place, are similar to the proceedings prescribed for obtaining...
43 CFR 3863.1 - Placer mining claim patent applications: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT.... (a) The proceedings to obtain patents for placer claims, including all forms of mineral deposits excepting veins of quartz or other rock in place, are similar to the proceedings prescribed for obtaining...
43 CFR 3863.1 - Placer mining claim patent applications: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MINERAL PATENT.... (a) The proceedings to obtain patents for placer claims, including all forms of mineral deposits excepting veins of quartz or other rock in place, are similar to the proceedings prescribed for obtaining...
30 CFR 253.11 - Who must demonstrate OSFR?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Who must demonstrate OSFR? 253.11 Section 253.11 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL SPILL FINANCIAL RESPONSIBILITY FOR OFFSHORE FACILITIES Applicability and Amount of OSFR § 253.11 Who must...
Assessment of critical minerals: Updated application of an early-warning screening methodology
McCullough, Erin A.; Nassar, Nedal
2017-01-01
Increasing reliance on non-renewable mineral resources reinforces the need for identifying potential supply constraints before they occur. The US National Science and Technology Council recently released a report that outlines a methodology for screening potentially critical minerals based on three indicators: supply risk (R), production growth (G), and market dynamics (M). This early-warning screening was initially applied to 78 minerals across the years 1996 to 2013 and identified a subset of minerals as “potentially critical” based on the geometric average of these indicators—designated as criticality potential (C). In this study, the screening methodology has been updated to include data for 2014, as well as to incorporate revisions and modifications to the data, where applicable. Overall, C declined in 2014 for the majority of minerals examined largely due to decreases in production concentration and price volatility. However, the results vary considerably across minerals, with some minerals, such as gallium, recording increases for all three indicators. In addition to assessing magnitudinal changes, this analysis also examines the significance of the change relative to historical variation for each mineral. For example, although mined nickel’s R declined modestly in 2014 in comparison to that of other minerals, it was by far the largest annual change recorded for mined nickel across all years examined and is attributable to Indonesia’s ban on the export of unprocessed minerals. Based on the 2014 results, 20 minerals with the highest C values have been identified for further study including the rare earths, gallium, germanium, rhodium, tantalum, and tungsten.
Digital data base application to porphyry copper mineralization in Alaska; case study summary
Trautwein, Charles M.; Greenlee, David D.; Orr, Donald G.
1982-01-01
The purpose of this report is to summarize the progress in use of digital image analysis techniques in developing a conceptual model for assessing porphyry copper mineral potential. The study area consists of approximately the southern one-half of the 1? by 3? Nabesna quadrangle in east-central Alaska. The digital geologic data base consists of data compiled under the Alaskan Mineral Resource Assessment Program (AMRAP) as well as digital elevation data and Landsat spectral reflectance data from the Multispectral Scanner System. The digital data base used to develop and implement a conceptual model for porphyry-type copper mineralization consisted of 16 original data types and 18 derived data sets formatted in a grid-cell (raster) structure and registered to a map base in the Universal Transverse Mercator (UTM) projection. Minimum curvature and inverse distance squared interpolation techniques were used to generate continuous surfaces from sets of irregularly spaced data points. Processing requirements included: (1) merging or overlaying of data sets, (2) display and color coding of maps and images, (3) univariate and multivariate statistical analyses, and (4) compound overlaying operations. Data sets were merged and processed to create stereoscopic displays of continuous surfaces. The ratio of several data sets were calculated to evaluate relative variations and to enhance the display of surface alteration (gossans). Factor analysis and principal components analysis techniques were used to determine complex relationships and correlations between data sets. The resultant model consists of 10 parameters that identify three areas most likely to contain porphyry copper mineralization; two of these areas are known occurrences of mineralization and the third is not well known. Field studies confirmed that the three areas identified by the model have significant copper potential.
Hierarchical structure and mechanical properties of remineralized dentin.
Chen, Yi; Wang, Jianming; Sun, Jian; Mao, Caiyun; Wang, Wei; Pan, Haihua; Tang, Ruikang; Gu, Xinhua
2014-12-01
It is widely accepted that the mechanical properties of dentin are significantly determined by its hierarchical structure. The current correlation between the mechanical properties and the hierarchical structure was mainly established by studying altered forms of dentin, which limits the potential outcome of the research. In this study, dentins with three different hierarchical structures were obtained via two different remineralization procedures and at different remineralization stages: (1) a dentin structure with amorphous minerals incorporated into the collagen fibrils, (2) a dentin with crystallized nanominerals incorporated into the collagen fibrils, and (3) a dentin with an out-of-order mineral layer filling the collagen fibrils matrix. Nanoindentation tests were performed to investigate the mechanical behavior of the remineralized dentin slides. The results showed that the incorporation of the crystallized nanominerals into the acid-etched demineralized organic fibrils resulted in a remarkable improvement of the mechanical properties of the dentin. In contrast, for the other two structures, i.e. the amorphous minerals inside the collagen fibrils and the out-of-order mineral layer within the collagen fibrils matrix, the excellent mechanical properties of dentin could not be restored. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.
Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas
2014-09-01
This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment.
NASA Technical Reports Server (NTRS)
Gaffey, S. J.
1984-01-01
Reflection spectroscopy in the visible and near infrared (0.35 to 2.55 micron) offers a rapid, inexpensive, nondestructive tool for determining the mineralogy and investigating the minor element chemistry of the hard-to-discriminate carbonate minerals, and can, in one step, provide information previously obtainable only by the combined application of two or more analytical techniques. When light interacts with a mineral certain wavelengths are preferentially absorbed. The number, positions, widths and relative intensities of these absorptions are diagnostic of the mineralogy and chemical composition of the sample. At least seven bands due to vibrations of the carbonate radical occur between 1.60 and 2.55 micron. Positions of these bands vary from one carbonae mineral to another and can be used for mineral identification. Cation mass is the primary factor controlling band position; cation radius plays a secondary role.
Preliminary Model of Porphyry Copper Deposits
Berger, Byron R.; Ayuso, Robert A.; Wynn, Jeffrey C.; Seal, Robert R.
2008-01-01
The U.S. Geological Survey (USGS) Mineral Resources Program develops mineral-deposit models for application in USGS mineral-resource assessments and other mineral resource-related activities within the USGS as well as for nongovernmental applications. Periodic updates of models are published in order to incorporate new concepts and findings on the occurrence, nature, and origin of specific mineral deposit types. This update is a preliminary model of porphyry copper deposits that begins an update process of porphyry copper models published in USGS Bulletin 1693 in 1986. This update includes a greater variety of deposit attributes than were included in the 1986 model as well as more information about each attribute. It also includes an expanded discussion of geophysical and remote sensing attributes and tools useful in resource evaluations, a summary of current theoretical concepts of porphyry copper deposit genesis, and a summary of the environmental attributes of unmined and mined deposits.
The Role of Protein-Mineral Interactions for Protein Adsorption or Fragmentation
NASA Astrophysics Data System (ADS)
Chacon, S. S.; Reardon, P.; Washton, N.; Kleber, M.
2014-12-01
Soil exo-enzymes (EE) are proteins with the capability to catalyze the depolymerization of soil organic matter (SOM). SOM must be disassembled by EEs in order to be transported through the microbial cell wall and become metabolized. One factor determining an EE's functionality is their affinity to mineral surfaces found in the soil. Our goal was to establish the range of protein modifications, either chemical or structural, as the protein becomes associated with mineral surfaces. We hypothesized that pedogenic oxides would generate more extensive chemical alterations to the protein structure than phyllosilicates. A well-characterized protein proxy (Gb1, IEP 4.0, 6.2 kDA) was adsorbed onto functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnesite) at pH 5 and pH 7. We used 1H 15N Heteronuclear Single Quantum Coherence Nuclear Magnetic Resonance Spectroscopy (HSQC NMR) to observe structural modifications in the unadsorbed Gb1 that was allowed to equilibrate during the adsorption process for kaolinite, goethite and birnessite. Solid state NMR was used to observe the structural modifications of Gb1 while adsorbed onto kaolinite and montmorillonite. Preliminary results in the HSQC NMR spectra observed no changes in the native conformation of Gb1 when allowed to interact with goethite and kaolinite while birnessite induced strong structural modification of Gb1 at an acidic pH. Our results suggest that not all mineral surfaces in soil act as sorbents for EEs and changes in their catalytic activity upon adsorption to minerals surfaces may not just be an indication of conformational changes but of fragmentation of the protein itself.