Spontaneous scale-free structure in adaptive networks with synchronously dynamical linking
NASA Astrophysics Data System (ADS)
Yuan, Wu-Jie; Zhou, Jian-Fang; Li, Qun; Chen, De-Bao; Wang, Zhen
2013-08-01
Inspired by the anti-Hebbian learning rule in neural systems, we study how the feedback from dynamical synchronization shapes network structure by adding new links. Through extensive numerical simulations, we find that an adaptive network spontaneously forms scale-free structure, as confirmed in many real systems. Moreover, the adaptive process produces two nontrivial power-law behaviors of deviation strength from mean activity of the network and negative degree correlation, which exists widely in technological and biological networks. Importantly, these scalings are robust to variation of the adaptive network parameters, which may have meaningful implications in the scale-free formation and manipulation of dynamical networks. Our study thus suggests an alternative adaptive mechanism for the formation of scale-free structure with negative degree correlation, which means that nodes of high degree tend to connect, on average, with others of low degree and vice versa. The relevance of the results to structure formation and dynamical property in neural networks is briefly discussed as well.
Scale-Free Networks and Commercial Air Carrier Transportation in the United States
NASA Technical Reports Server (NTRS)
Conway, Sheila R.
2004-01-01
Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.
How the initial level of visibility and limited resource affect the evolution of cooperation
NASA Astrophysics Data System (ADS)
Han, Dun; Li, Dandan; Sun, Mei
2016-06-01
This work sheds important light on how the initial level of visibility and limited resource might affect the evolution of the players’ strategies under different network structure. We perform the prisoner’s dilemma game in the lattice network and the scale-free network, the simulation results indicate that the average density of death in lattice network decreases with the increases of the initial proportion of visibility. However, the contrary phenomenon is observed in the scale-free network. Further results reflect that the individuals’ payoff in lattice network is significantly larger than the one in the scale-free network. In the lattice network, the visibility individuals could earn much more than the invisibility one. However, the difference is not apparent in the scale-free network. We also find that a high Successful-Defection-Payoff (SDB) and a rich natural environment have relatively larger deleterious cooperation effects. A high SDB is beneficial to raising the level of visibility in the heterogeneous network, however, that has adverse visibility consequences in homogeneous network. Our result reveals that players are more likely to cooperate voluntarily under homogeneous network structure.
Growing optimal scale-free networks via likelihood
NASA Astrophysics Data System (ADS)
Small, Michael; Li, Yingying; Stemler, Thomas; Judd, Kevin
2015-04-01
Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the existing nodes' degree, has become the standard growth model for scale-free networks, where the asymptotic probability of a node having degree k is proportional to k-γ. However, the motivation for this model is entirely ad hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to one of the nodes of degree k with probability proportional to 1/N +ζ (γ ) (k+1 ) γ (in a N node network): a stronger bias toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks with a given degree exponent γ . We generate viable realization with finite N for 1 ≪γ <2 as well as γ >2 . We observe an apparently discontinuous transition at γ ≈2 between so-called superstar networks and more treelike realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment process and introduce alternative measures of network entropy. Our approach is generic and can also be applied to an arbitrary degree distribution.
Optimal topologies for maximizing network transmission capacity
NASA Astrophysics Data System (ADS)
Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.
2018-04-01
It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.
Structural and functional properties of spatially embedded scale-free networks.
Emmerich, Thorsten; Bunde, Armin; Havlin, Shlomo
2014-06-01
Scale-free networks have been studied mostly as non-spatially embedded systems. However, in many realistic cases, they are spatially embedded and these constraints should be considered. Here, we study the structural and functional properties of a model of scale-free (SF) spatially embedded networks. In our model, both the degree and the length of links follow power law distributions as found in many real networks. We show that not all SF networks can be embedded in space and that the largest degree of a node in the network is usually smaller than in nonembedded SF networks. Moreover, the spatial constraints (each node has only few neighboring nodes) introduce degree-degree anticorrelations (disassortativity) since two high degree nodes cannot stay close in space. We also find significant effects of space embedding on the hopping distances (chemical distance) and the vulnerability of the networks.
Vaccination intervention on epidemic dynamics in networks
NASA Astrophysics Data System (ADS)
Peng, Xiao-Long; Xu, Xin-Jian; Fu, Xinchu; Zhou, Tao
2013-02-01
Vaccination is an important measure available for preventing or reducing the spread of infectious diseases. In this paper, an epidemic model including susceptible, infected, and imperfectly vaccinated compartments is studied on Watts-Strogatz small-world, Barabási-Albert scale-free, and random scale-free networks. The epidemic threshold and prevalence are analyzed. For small-world networks, the effective vaccination intervention is suggested and its influence on the threshold and prevalence is analyzed. For scale-free networks, the threshold is found to be strongly dependent both on the effective vaccination rate and on the connectivity distribution. Moreover, so long as vaccination is effective, it can linearly decrease the epidemic prevalence in small-world networks, whereas for scale-free networks it acts exponentially. These results can help in adopting pragmatic treatment upon diseases in structured populations.
Inference of scale-free networks from gene expression time series.
Daisuke, Tominaga; Horton, Paul
2006-04-01
Quantitative time-series observation of gene expression is becoming possible, for example by cell array technology. However, there are no practical methods with which to infer network structures using only observed time-series data. As most computational models of biological networks for continuous time-series data have a high degree of freedom, it is almost impossible to infer the correct structures. On the other hand, it has been reported that some kinds of biological networks, such as gene networks and metabolic pathways, may have scale-free properties. We hypothesize that the architecture of inferred biological network models can be restricted to scale-free networks. We developed an inference algorithm for biological networks using only time-series data by introducing such a restriction. We adopt the S-system as the network model, and a distributed genetic algorithm to optimize models to fit its simulated results to observed time series data. We have tested our algorithm on a case study (simulated data). We compared optimization under no restriction, which allows for a fully connected network, and under the restriction that the total number of links must equal that expected from a scale free network. The restriction reduced both false positive and false negative estimation of the links and also the differences between model simulation and the given time-series data.
Trapping in scale-free networks with hierarchical organization of modularity.
Zhang, Zhongzhi; Lin, Yuan; Gao, Shuyang; Zhou, Shuigeng; Guan, Jihong; Li, Mo
2009-11-01
A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior and modular organization, and it is natural and important to study how these two features affect the dynamical processes taking place on such networks. In this paper, we investigate a simple stochastic process--trapping problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case with the immobile trap positioned at the hub node having the largest degree. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping problem, which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks under consideration have more efficient structure for transport by diffusion in contrast with other analytically soluble media including some previously studied scale-free networks. We argue that the scale-free and modular topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.
Exploring network operations for data and information networks
NASA Astrophysics Data System (ADS)
Yao, Bing; Su, Jing; Ma, Fei; Wang, Xiaomin; Zhao, Xiyang; Yao, Ming
2017-01-01
Barabási and Albert, in 1999, formulated scale-free models based on some real networks: World-Wide Web, Internet, metabolic and protein networks, language or sexual networks. Scale-free networks not only appear around us, but also have high qualities in the world. As known, high quality information networks can transfer feasibly and efficiently data, clearly, their topological structures are very important for data safety. We build up network operations for constructing large scale of dynamic networks from smaller scale of network models having good property and high quality. We focus on the simplest operators to formulate complex operations, and are interesting on the closeness of operations to desired network properties.
Epidemic Threshold in Structured Scale-Free Networks
NASA Astrophysics Data System (ADS)
EguíLuz, VíCtor M.; Klemm, Konstantin
2002-08-01
We analyze the spreading of viruses in scale-free networks with high clustering and degree correlations, as found in the Internet graph. For the susceptible-infected-susceptible model of epidemics the prevalence undergoes a phase transition at a finite threshold of the transmission probability. Comparing with the absence of a finite threshold in networks with purely random wiring, our result suggests that high clustering (modularity) and degree correlations protect scale-free networks against the spreading of viruses. We introduce and verify a quantitative description of the epidemic threshold based on the connectivity of the neighborhoods of the hubs.
Network rewiring dynamics with convergence towards a star network
Dick, G.; Parry, M.
2016-01-01
Network rewiring as a method for producing a range of structures was first introduced in 1998 by Watts & Strogatz (Nature 393, 440–442. (doi:10.1038/30918)). This approach allowed a transition from regular through small-world to a random network. The subsequent interest in scale-free networks motivated a number of methods for developing rewiring approaches that converged to scale-free networks. This paper presents a rewiring algorithm (RtoS) for undirected, non-degenerate, fixed size networks that transitions from regular, through small-world and scale-free to star-like networks. Applications of the approach to models for the spread of infectious disease and fixation time for a simple genetics model are used to demonstrate the efficacy and application of the approach. PMID:27843396
Network rewiring dynamics with convergence towards a star network.
Whigham, P A; Dick, G; Parry, M
2016-10-01
Network rewiring as a method for producing a range of structures was first introduced in 1998 by Watts & Strogatz ( Nature 393 , 440-442. (doi:10.1038/30918)). This approach allowed a transition from regular through small-world to a random network. The subsequent interest in scale-free networks motivated a number of methods for developing rewiring approaches that converged to scale-free networks. This paper presents a rewiring algorithm (RtoS) for undirected, non-degenerate, fixed size networks that transitions from regular, through small-world and scale-free to star-like networks. Applications of the approach to models for the spread of infectious disease and fixation time for a simple genetics model are used to demonstrate the efficacy and application of the approach.
From scale-free to Erdos-Rényi networks.
Gómez-Gardeñes, Jesús; Moreno, Yamir
2006-05-01
We analyze a model that interpolates between scale-free and Erdos-Rényi networks. The model introduced generates a one-parameter family of networks and allows one to analyze the role of structural heterogeneity. Analytical calculations are compared with extensive numerical simulations in order to describe the transition between these two important classes of networks. Finally, an application of the proposed model to the study of the percolation transition is presented.
Disease spreading in real-life networks
NASA Astrophysics Data System (ADS)
Gallos, Lazaros; Argyrakis, Panos
2002-08-01
In recent years the scientific community has shown a vivid interest in the network structure and dynamics of real-life organized systems. Many such systems, covering an extremely wide range of applications, have been recently shown to exhibit scale-free character in their connectivity distribution, meaning that they obey a power law. Modeling of epidemics on lattices and small-world networks suffers from the presence of a critical infection threshold, above which the entire population is infected. For scale-free networks, the original assumption was that the formation of a giant cluster would lead to an epidemic spreading in the same way as in simpler networks. Here we show that modeling epidemics on a scale-free network can greatly improve the predictions on the rate and efficiency of spreading, as compared to lattice models and small-world networks. We also show that the dynamics of a disease are greatly influenced by the underlying population structure. The exact same model can describe a plethora of networks, such as social networks, virus spreading in the Web, rumor spreading, signal transmission etc.
NASA Astrophysics Data System (ADS)
Anghel, M.; Toroczkai, Zoltán; Bassler, Kevin E.; Korniss, G.
2004-02-01
Using the minority game as a model for competition dynamics, we investigate the effects of interagent communications across a network on the global evolution of the game. Agent communication across this network leads to the formation of an influence network, which is dynamically coupled to the evolution of the game, and it is responsible for the information flow driving the agents' actions. We show that the influence network spontaneously develops hubs with a broad distribution of in-degrees, defining a scale-free robust leadership structure. Furthermore, in realistic parameter ranges, facilitated by information exchange on the network, agents can generate a high degree of cooperation making the collective almost maximally efficient.
The architecture of dynamic reservoir in the echo state network
NASA Astrophysics Data System (ADS)
Cui, Hongyan; Liu, Xiang; Li, Lixiang
2012-09-01
Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.
Scale-free models for the structure of business firm networks.
Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H Eugene
2010-03-01
We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a "nucleus," which is a small well-connected subgraph, "tendrils," which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body," which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution lambda increases, and disappear for lambda>or=3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.
Nonequilibrium transitions in complex networks: A model of social interaction
NASA Astrophysics Data System (ADS)
Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; San Miguel, Maxi
2003-02-01
We analyze the nonequilibrium order-disorder transition of Axelrod’s model of social interaction in several complex networks. In a small-world network, we find a transition between an ordered homogeneous state and a disordered state. The transition point is shifted by the degree of spatial disorder of the underlying network, the network disorder favoring ordered configurations. In random scale-free networks the transition is only observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.
Traffic-driven epidemic spreading on scale-free networks with tunable degree distribution
NASA Astrophysics Data System (ADS)
Yang, Han-Xin; Wang, Bing-Hong
2016-04-01
We study the traffic-driven epidemic spreading on scale-free networks with tunable degree distribution. The heterogeneity of networks is controlled by the exponent γ of power-law degree distribution. It is found that the epidemic threshold is minimized at about γ=2.2. Moreover, we find that nodes with larger algorithmic betweenness are more likely to be infected. We expect our work to provide new insights in to the effect of network structures on traffic-driven epidemic spreading.
Emergence of cooperation in non-scale-free networks
NASA Astrophysics Data System (ADS)
Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Zhou, Shi; Wang, Wenting
2014-06-01
Evolutionary game theory is one of the key paradigms behind many scientific disciplines from science to engineering. Previous studies proposed a strategy updating mechanism, which successfully demonstrated that the scale-free network can provide a framework for the emergence of cooperation. Instead, individuals in random graphs and small-world networks do not favor cooperation under this updating rule. However, a recent empirical result shows the heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma. In this paper, we propose a strategy updating rule with payoff memory. We observe that the random graphs and small-world networks can provide even better frameworks for cooperation than the scale-free networks in this scenario. Our observations suggest that the degree heterogeneity may be neither a sufficient condition nor a necessary condition for the widespread cooperation in complex networks. Also, the topological structures are not sufficed to determine the level of cooperation in complex networks.
Topology-dependent rationality and quantal response equilibria in structured populations
NASA Astrophysics Data System (ADS)
Roman, Sabin; Brede, Markus
2017-05-01
Given that the assumption of perfect rationality is rarely met in the real world, we explore a graded notion of rationality in socioecological systems of networked actors. We parametrize an actors' rationality via their place in a social network and quantify system rationality via the average Jensen-Shannon divergence between the games Nash and logit quantal response equilibria. Previous work has argued that scale-free topologies maximize a system's overall rationality in this setup. Here we show that while, for certain games, it is true that increasing degree heterogeneity of complex networks enhances rationality, rationality-optimal configurations are not scale-free. For the Prisoner's Dilemma and Stag Hunt games, we provide analytic arguments complemented by numerical optimization experiments to demonstrate that core-periphery networks composed of a few dominant hub nodes surrounded by a periphery of very low degree nodes give strikingly smaller overall deviations from rationality than scale-free networks. Similarly, for the Battle of the Sexes and the Matching Pennies games, we find that the optimal network structure is also a core-periphery graph but with a smaller difference in the average degrees of the core and the periphery. These results provide insight on the interplay between the topological structure of socioecological systems and their collective cognitive behavior, with potential applications to understanding wealth inequality and the structural features of the network of global corporate control.
Topology-dependent rationality and quantal response equilibria in structured populations.
Roman, Sabin; Brede, Markus
2017-05-01
Given that the assumption of perfect rationality is rarely met in the real world, we explore a graded notion of rationality in socioecological systems of networked actors. We parametrize an actors' rationality via their place in a social network and quantify system rationality via the average Jensen-Shannon divergence between the games Nash and logit quantal response equilibria. Previous work has argued that scale-free topologies maximize a system's overall rationality in this setup. Here we show that while, for certain games, it is true that increasing degree heterogeneity of complex networks enhances rationality, rationality-optimal configurations are not scale-free. For the Prisoner's Dilemma and Stag Hunt games, we provide analytic arguments complemented by numerical optimization experiments to demonstrate that core-periphery networks composed of a few dominant hub nodes surrounded by a periphery of very low degree nodes give strikingly smaller overall deviations from rationality than scale-free networks. Similarly, for the Battle of the Sexes and the Matching Pennies games, we find that the optimal network structure is also a core-periphery graph but with a smaller difference in the average degrees of the core and the periphery. These results provide insight on the interplay between the topological structure of socioecological systems and their collective cognitive behavior, with potential applications to understanding wealth inequality and the structural features of the network of global corporate control.
Brain modularity controls the critical behavior of spontaneous activity.
Russo, R; Herrmann, H J; de Arcangelis, L
2014-03-13
The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.
Network structure of production
Atalay, Enghin; Hortaçsu, Ali; Roberts, James; Syverson, Chad
2011-01-01
Complex social networks have received increasing attention from researchers. Recent work has focused on mechanisms that produce scale-free networks. We theoretically and empirically characterize the buyer–supplier network of the US economy and find that purely scale-free models have trouble matching key attributes of the network. We construct an alternative model that incorporates realistic features of firms’ buyer–supplier relationships and estimate the model’s parameters using microdata on firms’ self-reported customers. This alternative framework is better able to match the attributes of the actual economic network and aids in further understanding several important economic phenomena. PMID:21402924
Scale-free models for the structure of business firm networks
NASA Astrophysics Data System (ADS)
Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H. Eugene
2010-03-01
We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a “nucleus,” which is a small well-connected subgraph, “tendrils,” which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a “bulk body,” which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution λ increases, and disappear for λ≥3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.
Scale-Free Distribution of Avian Influenza Outbreaks
NASA Astrophysics Data System (ADS)
Small, Michael; Walker, David M.; Tse, Chi Kong
2007-11-01
Using global case data for the period from 25 November 2003 to 10 March 2007, we construct a network of plausible transmission pathways for the spread of avian influenza among domestic and wild birds. The network structure we obtain is complex and exhibits scale-free (although not necessarily small-world) properties. Communities within this network are connected with a distribution of links with infinite variance. Hence, the disease transmission model does not exhibit a threshold and so the infection will continue to propagate even with very low transmissibility. Consequentially, eradication with methods applicable to locally homogeneous populations is not possible. Any control measure needs to focus explicitly on the hubs within this network structure.
Sparse cliques trump scale-free networks in coordination and competition
Gianetto, David A.; Heydari, Babak
2016-01-01
Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game. PMID:26899456
Sparse cliques trump scale-free networks in coordination and competition
NASA Astrophysics Data System (ADS)
Gianetto, David A.; Heydari, Babak
2016-02-01
Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game.
Multiplex congruence network of natural numbers.
Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua
2016-03-31
Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.
Multiplex congruence network of natural numbers
NASA Astrophysics Data System (ADS)
Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua
2016-03-01
Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.
The brainstem reticular formation is a small-world, not scale-free, network
Humphries, M.D; Gurney, K; Prescott, T.J
2005-01-01
Recently, it has been demonstrated that several complex systems may have simple graph-theoretic characterizations as so-called ‘small-world’ and ‘scale-free’ networks. These networks have also been applied to the gross neural connectivity between primate cortical areas and the nervous system of Caenorhabditis elegans. Here, we extend this work to a specific neural circuit of the vertebrate brain—the medial reticular formation (RF) of the brainstem—and, in doing so, we have made three key contributions. First, this work constitutes the first model (and quantitative review) of this important brain structure for over three decades. Second, we have developed the first graph-theoretic analysis of vertebrate brain connectivity at the neural network level. Third, we propose simple metrics to quantitatively assess the extent to which the networks studied are small-world or scale-free. We conclude that the medial RF is configured to create small-world (implying coherent rapid-processing capabilities), but not scale-free, type networks under assumptions which are amenable to quantitative measurement. PMID:16615219
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra
2009-03-01
In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.
Food-web structure and network theory: The role of connectance and size
Dunne, Jennifer A.; Williams, Richard J.; Martinez, Neo D.
2002-01-01
Networks from a wide range of physical, biological, and social systems have been recently described as “small-world” and “scale-free.” However, studies disagree whether ecological networks called food webs possess the characteristic path lengths, clustering coefficients, and degree distributions required for membership in these classes of networks. Our analysis suggests that the disagreements are based on selective use of relatively few food webs, as well as analytical decisions that obscure important variability in the data. We analyze a broad range of 16 high-quality food webs, with 25–172 nodes, from a variety of aquatic and terrestrial ecosystems. Food webs generally have much higher complexity, measured as connectance (the fraction of all possible links that are realized in a network), and much smaller size than other networks studied, which have important implications for network topology. Our results resolve prior conflicts by demonstrating that although some food webs have small-world and scale-free structure, most do not if they exceed a relatively low level of connectance. Although food-web degree distributions do not display a universal functional form, observed distributions are systematically related to network connectance and size. Also, although food webs often lack small-world structure because of low clustering, we identify a continuum of real-world networks including food webs whose ratios of observed to random clustering coefficients increase as a power–law function of network size over 7 orders of magnitude. Although food webs are generally not small-world, scale-free networks, food-web topology is consistent with patterns found within those classes of networks. PMID:12235364
Network geometry with flavor: From complexity to quantum geometry
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ -dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ .
Network geometry with flavor: From complexity to quantum geometry.
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ-dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ.
Effects of maximum node degree on computer virus spreading in scale-free networks
NASA Astrophysics Data System (ADS)
Bamaarouf, O.; Ould Baba, A.; Lamzabi, S.; Rachadi, A.; Ez-Zahraouy, H.
2017-10-01
The increase of the use of the Internet networks favors the spread of viruses. In this paper, we studied the spread of viruses in the scale-free network with different topologies based on the Susceptible-Infected-External (SIE) model. It is found that the network structure influences the virus spreading. We have shown also that the nodes of high degree are more susceptible to infection than others. Furthermore, we have determined a critical maximum value of node degree (Kc), below which the network is more resistible and the computer virus cannot expand into the whole network. The influence of network size is also studied. We found that the network with low size is more effective to reduce the proportion of infected nodes.
Impact of degree heterogeneity on the behavior of trapping in Koch networks
NASA Astrophysics Data System (ADS)
Zhang, Zhongzhi; Gao, Shuyang; Xie, Wenlei
2010-12-01
Previous work shows that the mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) in uncorrelated random scale-free networks is closely related to the exponent γ of power-law degree distribution P(k )˜k-γ, which describes the extent of heterogeneity of scale-free network structure. However, extensive empirical research indicates that real networked systems also display ubiquitous degree correlations. In this paper, we address the trapping issue on the Koch networks, which is a special random walk with one trap fixed at a hub node. The Koch networks are power-law with the characteristic exponent γ in the range between 2 and 3, they are either assortative or disassortative. We calculate exactly the MFPT that is the average of first-passage time from all other nodes to the trap. The obtained explicit solution shows that in large networks the MFPT varies lineally with node number N, which is obviously independent of γ and is sharp contrast to the scaling behavior of MFPT observed for uncorrelated random scale-free networks, where γ influences qualitatively the MFPT of trapping problem.
Structural Preferential Attachment: Network Organization beyond the Link
NASA Astrophysics Data System (ADS)
Hébert-Dufresne, Laurent; Allard, Antoine; Marceau, Vincent; Noël, Pierre-André; Dubé, Louis J.
2011-10-01
We introduce a mechanism which models the emergence of the universal properties of complex networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free organization beyond the link. This brings a new perspective on network organization where communities, instead of links, are the fundamental building blocks of complex systems. We show how our simple model can reproduce social and information networks by predicting their community structure and more importantly, how their nodes or communities are interconnected, often in a self-similar manner.
Structural Controllability and Controlling Centrality of Temporal Networks
Pan, Yujian; Li, Xiang
2014-01-01
Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With the evidence of ubiquity of temporal networks in our economy, nature and society, it's urgent and significant to focus on its structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node's controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness and heterogeneity of the controlling centrality of nodes within temporal networks. PMID:24747676
Effects of behavioral patterns and network topology structures on Parrondo’s paradox
Ye, Ye; Cheong, Kang Hao; Cen, Yu-wan; Xie, Neng-gang
2016-01-01
A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed. PMID:27845430
Exploring the spiral of silence in adjustable social networks
NASA Astrophysics Data System (ADS)
Wu, Yue; Du, Ya-Jun; Li, Xian-Yong; Chen, Xiao-Liang
2015-03-01
This study extends the understanding of the spiral of silence theory by taking into account four factors, including the topology of networks, the time factor of information transmission, the node degree of individuals and the freedom of expression. Simulation experiments analyze the silencers, public opinion in steady state and relaxation time in small-world networks, scale-free networks and community-structured networks by adjusting the initial conditions. Results highlight that individuals are easier to keep silent in scale-free network, especially when the individual with big degree and minority opinion starts the discussion. Conversely, there are only a few individuals keep silent in the community-structured network when the two communities hold opposite opinions. Moreover, the number of silencers grows as the degree of coupling increases, and it decreases as the freedom of expression goes up. By analyzing the public opinion evolution, we also find some important conditions, such as the network topology, the potential public opinion distribution, and the status and sides of the first speaker, can drive the minority reversal.
Effects of behavioral patterns and network topology structures on Parrondo’s paradox
NASA Astrophysics Data System (ADS)
Ye, Ye; Cheong, Kang Hao; Cen, Yu-Wan; Xie, Neng-Gang
2016-11-01
A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed.
Complex networks with scale-free nature and hierarchical modularity
NASA Astrophysics Data System (ADS)
Shekatkar, Snehal M.; Ambika, G.
2015-09-01
Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.
Emergence of Super Cooperation of Prisoner’s Dilemma Games on Scale-Free Networks
Li, Angsheng; Yong, Xi
2015-01-01
Recently, the authors proposed a quantum prisoner’s dilemma game based on the spatial game of Nowak and May, and showed that the game can be played classically. By using this idea, we proposed three generalized prisoner’s dilemma (GPD, for short) games based on the weak Prisoner’s dilemma game, the full prisoner’s dilemma game and the normalized Prisoner’s dilemma game, written by GPDW, GPDF and GPDN respectively. Our games consist of two players, each of which has three strategies: cooperator (C), defector (D) and super cooperator (denoted by Q), and have a parameter γ to measure the entangled relationship between the two players. We found that our generalised prisoner’s dilemma games have new Nash equilibrium principles, that entanglement is the principle of emergence and convergence (i.e., guaranteed emergence) of super cooperation in evolutions of our generalised prisoner’s dilemma games on scale-free networks, that entanglement provides a threshold for a phase transition of super cooperation in evolutions of our generalised prisoner’s dilemma games on scale-free networks, that the role of heterogeneity of the scale-free networks in cooperations and super cooperations is very limited, and that well-defined structures of scale-free networks allow coexistence of cooperators and super cooperators in the evolutions of the weak version of our generalised prisoner’s dilemma games. PMID:25643279
The temporal structures and functional significance of scale-free brain activity
He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.
2010-01-01
SUMMARY Scale-free dynamics, with a power spectrum following P ∝ f-β, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with β being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349
Social power and opinion formation in complex networks
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2013-02-01
In this paper we investigate the effects of social power on the evolution of opinions in model networks as well as in a number of real social networks. A continuous opinion formation model is considered and the analysis is performed through numerical simulation. Social power is given to a proportion of agents selected either randomly or based on their degrees. As artificial network structures, we consider scale-free networks constructed through preferential attachment and Watts-Strogatz networks. Numerical simulations show that scale-free networks with degree-based social power on the hub nodes have an optimal case where the largest number of the nodes reaches a consensus. However, given power to a random selection of nodes could not improve consensus properties. Introducing social power in Watts-Strogatz networks could not significantly change the consensus profile.
Offdiagonal complexity: A computationally quick complexity measure for graphs and networks
NASA Astrophysics Data System (ADS)
Claussen, Jens Christian
2007-02-01
A vast variety of biological, social, and economical networks shows topologies drastically differing from random graphs; yet the quantitative characterization remains unsatisfactory from a conceptual point of view. Motivated from the discussion of small scale-free networks, a biased link distribution entropy is defined, which takes an extremum for a power-law distribution. This approach is extended to the node-node link cross-distribution, whose nondiagonal elements characterize the graph structure beyond link distribution, cluster coefficient and average path length. From here a simple (and computationally cheap) complexity measure can be defined. This offdiagonal complexity (OdC) is proposed as a novel measure to characterize the complexity of an undirected graph, or network. While both for regular lattices and fully connected networks OdC is zero, it takes a moderately low value for a random graph and shows high values for apparently complex structures as scale-free networks and hierarchical trees. The OdC approach is applied to the Helicobacter pylori protein interaction network and randomly rewired surrogates.
Cascading failures in complex networks with community structure
NASA Astrophysics Data System (ADS)
Lin, Guoqiang; di, Zengru; Fan, Ying
2014-12-01
Much empirical evidence shows that when attacked with cascading failures, scale-free or even random networks tend to collapse more extensively when the initially deleted node has higher betweenness. Meanwhile, in networks with strong community structure, high-betweenness nodes tend to be bridge nodes that link different communities, and the removal of such nodes will reduce only the connections among communities, leaving the networks fairly stable. Understanding what will affect cascading failures and how to protect or attack networks with strong community structure is therefore of interest. In this paper, we have constructed scale-free Community Networks (SFCN) and Random Community Networks (RCN). We applied these networks, along with the Lancichinett-Fortunato-Radicchi (LFR) benchmark, to the cascading-failure scenario to explore their vulnerability to attack and the relationship between cascading failures and the degree distribution and community structure of a network. The numerical results show that when the networks are of a power-law distribution, a stronger community structure will result in the failure of fewer nodes. In addition, the initial removal of the node with the highest betweenness will not lead to the worst cascading, i.e. the largest avalanche size. The Betweenness Overflow (BOF), an index that we developed, is an effective indicator of this tendency. The RCN, however, display a different result. In addition, the avalanche size of each node can be adopted as an index to evaluate the importance of the node.
A method of examining the structure and topological properties of public-transport networks
NASA Astrophysics Data System (ADS)
Dimitrov, Stavri Dimitri; Ceder, Avishai (Avi)
2016-06-01
This work presents a new method of examining the structure of public-transport networks (PTNs) and analyzes their topological properties through a combination of computer programming, statistical data and large-network analyses. In order to automate the extraction, processing and exporting of data, a software program was developed allowing to extract the needed data from General Transit Feed Specification, thus overcoming difficulties occurring in accessing and collecting data. The proposed method was applied to a real-life PTN in Auckland, New Zealand, with the purpose of examining whether it showed characteristics of scale-free networks and exhibited features of ;small-world; networks. As a result, new regression equations were derived analytically describing observed, strong, non-linear relationships among the probabilities of randomly chosen stops in the PTN to be serviced by a given number of routes. The established dependence is best fitted by an exponential rather than a power-law function, showing that the PTN examined is neither random nor scale-free, but a mixture of the two. This finding explains the presence of hubs that are not typical of exponential networks and simultaneously not highly connected to the other nodes as is the case with scale-free networks. On the other hand, the observed values of the topological properties of the network show that although it is highly clustered, owing to its representation as a directed graph, it differs slightly from ;small-world; networks, which are characterized by strong clustering and a short average path length.
Self-Healing Networks: Redundancy and Structure
Quattrociocchi, Walter; Caldarelli, Guido; Scala, Antonio
2014-01-01
We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. We then analyze the effect of the level of redundancy on the resilience to multiple failures; in particular, we measure the fraction of nodes still served for increasing levels of network damages. Finally, we study the effects of redundancy under different connectivity patterns—from planar grids, to small-world, up to scale-free networks—on healing performances. Small-world topologies show that introducing some long-range connections in planar grids greatly enhances the resilience to multiple failures with performances comparable to the case of the most resilient (and least realistic) scale-free structures. Obvious applications of self-healing are in the important field of infrastructural networks like gas, power, water, oil distribution systems. PMID:24533065
Sealable femtoliter chamber arrays for cell-free biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retterer, Scott T.; Fowlkes, Jason Davidson; Collier, Charles Patrick
Cell-free systems provide a flexible platform for probing specific networks of biological reactions isolated from the complex resource sharing (e.g. global gene expression, cell division) encountered within living cells. However, such systems, used in conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and efficiencies characteristic of their living micro-scale counterparts. Understanding the impact of internal cell structure and scale on reaction dynamics is crucial to understanding complex gene networks. Here we report a microfabricated device that confines cell-free reactions in cellular scale volumes while allowing flexible characterization of the enclosed molecular system. This multilayered poly(dimethylsiloxane) (PDMS) devicemore » contains femtoliter-scale reaction chambers on an elastomeric membrane which can be actuated (open and closed). When actuated, the chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a fluorescent protein, allowing for the visualization of the reaction kinetics over time using time-lapse fluorescent microscopy. Lastly, we demonstrate how this device may be used to measure the noise structure of CFPS reactions in a manner that is directly analogous to those used to characterize cellular systems, thereby enabling the use of noise biology techniques to characterize CFPS gene circuits and their interactions with the cell-free environment.« less
Sealable femtoliter chamber arrays for cell-free biology
Retterer, Scott T.; Fowlkes, Jason Davidson; Collier, Charles Patrick; ...
2015-03-11
Cell-free systems provide a flexible platform for probing specific networks of biological reactions isolated from the complex resource sharing (e.g. global gene expression, cell division) encountered within living cells. However, such systems, used in conventional macro-scale bulk reactors, often fail to exhibit the dynamic behaviors and efficiencies characteristic of their living micro-scale counterparts. Understanding the impact of internal cell structure and scale on reaction dynamics is crucial to understanding complex gene networks. Here we report a microfabricated device that confines cell-free reactions in cellular scale volumes while allowing flexible characterization of the enclosed molecular system. This multilayered poly(dimethylsiloxane) (PDMS) devicemore » contains femtoliter-scale reaction chambers on an elastomeric membrane which can be actuated (open and closed). When actuated, the chambers confine Cell-Free Protein Synthesis (CFPS) reactions expressing a fluorescent protein, allowing for the visualization of the reaction kinetics over time using time-lapse fluorescent microscopy. Lastly, we demonstrate how this device may be used to measure the noise structure of CFPS reactions in a manner that is directly analogous to those used to characterize cellular systems, thereby enabling the use of noise biology techniques to characterize CFPS gene circuits and their interactions with the cell-free environment.« less
Approximating natural connectivity of scale-free networks based on largest eigenvalue
NASA Astrophysics Data System (ADS)
Tan, S.-Y.; Wu, J.; Li, M.-J.; Lu, X.
2016-06-01
It has been recently proposed that natural connectivity can be used to efficiently characterize the robustness of complex networks. The natural connectivity has an intuitive physical meaning and a simple mathematical formulation, which corresponds to an average eigenvalue calculated from the graph spectrum. However, as a network model close to the real-world system that widely exists, the scale-free network is found difficult to obtain its spectrum analytically. In this article, we investigate the approximation of natural connectivity based on the largest eigenvalue in both random and correlated scale-free networks. It is demonstrated that the natural connectivity of scale-free networks can be dominated by the largest eigenvalue, which can be expressed asymptotically and analytically to approximate natural connectivity with small errors. Then we show that the natural connectivity of random scale-free networks increases linearly with the average degree given the scaling exponent and decreases monotonically with the scaling exponent given the average degree. Moreover, it is found that, given the degree distribution, the more assortative a scale-free network is, the more robust it is. Experiments in real networks validate our methods and results.
Systemic risk on different interbank network topologies
NASA Astrophysics Data System (ADS)
Lenzu, Simone; Tedeschi, Gabriele
2012-09-01
In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.
Effects of substrate network topologies on competition dynamics
NASA Astrophysics Data System (ADS)
Lee, Sang Hoon; Jeong, Hawoong
2006-08-01
We study a competition dynamics, based on the minority game, endowed with various substrate network structures. We observe the effects of the network topologies by investigating the volatility of the system and the structure of follower networks. The topology of substrate structures significantly influences the system efficiency represented by the volatility and such substrate networks are shown to amplify the herding effect and cause inefficiency in most cases. The follower networks emerging from the leadership structure show a power-law incoming degree distribution. This study shows the emergence of scale-free structures of leadership in the minority game and the effects of the interaction among players on the networked version of the game.
Emergence of scale-free close-knit friendship structure in online social networks.
Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan
2012-01-01
Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks.
Emergence of Scale-Free Close-Knit Friendship Structure in Online Social Networks
Cui, Ai-Xiang; Zhang, Zi-Ke; Tang, Ming; Hui, Pak Ming; Fu, Yan
2012-01-01
Although the structural properties of online social networks have attracted much attention, the properties of the close-knit friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees. We propose a simple directed network model that captures the observed properties. The model incorporates two mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations. Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and compared with each of the four real networks. This work helps understand the interplay between structures on different scales in online social networks. PMID:23272067
Community structure and scale-free collections of Erdős-Rényi graphs.
Seshadhri, C; Kolda, Tamara G; Pinar, Ali
2012-05-01
Community structure plays a significant role in the analysis of social networks and similar graphs, yet this structure is little understood and not well captured by most models. We formally define a community to be a subgraph that is internally highly connected and has no deeper substructure. We use tools of combinatorics to show that any such community must contain a dense Erdős-Rényi (ER) subgraph. Based on mathematical arguments, we hypothesize that any graph with a heavy-tailed degree distribution and community structure must contain a scale-free collection of dense ER subgraphs. These theoretical observations corroborate well with empirical evidence. From this, we propose the Block Two-Level Erdős-Rényi (BTER) model, and demonstrate that it accurately captures the observable properties of many real-world social networks.
Scale-free networks which are highly assortative but not small world
NASA Astrophysics Data System (ADS)
Small, Michael; Xu, Xiaoke; Zhou, Jin; Zhang, Jie; Sun, Junfeng; Lu, Jun-An
2008-06-01
Uncorrelated scale-free networks are necessarily small world (and, in fact, smaller than small world). Nonetheless, for scale-free networks with correlated degree distribution this may not be the case. We describe a mechanism to generate highly assortative scale-free networks which are not small world. We show that it is possible to generate scale-free networks, with arbitrary degree exponent γ>1 , such that the average distance between nodes in the network is large. To achieve this, nodes are not added to the network with preferential attachment. Instead, we greedily optimize the assortativity of the network. The network generation scheme is physically motivated, and we show that the recently observed global network of Avian Influenza outbreaks arises through a mechanism similar to what we present here. Simulations show that this network exhibits very similar physical characteristics (very high assortativity, clustering, and path length).
Emergence of Scale-Free Leadership Structure in Social Recommender Systems
Zhou, Tao; Medo, Matúš; Cimini, Giulio; Zhang, Zi-Ke; Zhang, Yi-Cheng
2011-01-01
The study of the organization of social networks is important for the understanding of opinion formation, rumor spreading, and the emergence of trends and fashion. This paper reports empirical analysis of networks extracted from four leading sites with social functionality (Delicious, Flickr, Twitter and YouTube) and shows that they all display a scale-free leadership structure. To reproduce this feature, we propose an adaptive network model driven by social recommending. Artificial agent-based simulations of this model highlight a “good get richer” mechanism where users with broad interests and good judgments are likely to become popular leaders for the others. Simulations also indicate that the studied social recommendation mechanism can gradually improve the user experience by adapting to tastes of its users. Finally we outline implications for real online resource-sharing systems. PMID:21857891
GENERAL: Epidemic spreading on networks with vaccination
NASA Astrophysics Data System (ADS)
Shi, Hong-Jing; Duan, Zhi-Sheng; Chen, Guan-Rong; Li, Rong
2009-08-01
In this paper, a new susceptible-infected-susceptible (SIS) model on complex networks with imperfect vaccination is proposed. Two types of epidemic spreading patterns (the recovered individuals have or have not immunity) on scale-free networks are discussed. Both theoretical and numerical analyses are presented. The epidemic thresholds related to the vaccination rate, the vaccination-invalid rate and the vaccination success rate on scale-free networks are demonstrated, showing different results from the reported observations. This reveals that whether or not the epidemic can spread over a network under vaccination control is determined not only by the network structure but also by the medicine's effective duration. Moreover, for a given infective rate, the proportion of individuals to vaccinate can be calculated theoretically for the case that the recovered nodes have immunity. Finally, simulated results are presented to show how to control the disease prevalence.
NASA Astrophysics Data System (ADS)
Chang, Wen-Li
2010-01-01
We investigate the influence of blurred ways on pattern recognition of a Barabási-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/langlekrangle) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network P/N is less than 0. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function.
Synchronization of two coupled turbulent fires
NASA Astrophysics Data System (ADS)
Takagi, Kazushi; Gotoda, Hiroshi; Miyano, Takaya; Murayama, Shogo; Tokuda, Isao T.
2018-04-01
We numerically study the scale-free nature of a buoyancy-induced turbulent fire and synchronization of two coupled turbulent fires. A scale-free structure is detected in weighted networks between vortices, while its lifetime obeys a clear power law, indicating intermittent appearances, disappearances, and reappearances of the scale-free property. A significant decrease in the distance between the two fire sources gives rise to a synchronized state in the near field dominated by the unstable motion of large-scale of transverse vortex rings. The synchronized state vanishes in the far field forming well-developed turbulent plumes, regardless of the distance between the two fire sources.
Endogenous network of firms and systemic risk
NASA Astrophysics Data System (ADS)
Ma, Qianting; He, Jianmin; Li, Shouwei
2018-02-01
We construct an endogenous network characterized by commercial credit relationships connecting the upstream and downstream firms. Simulation results indicate that the endogenous network model displays a scale-free property which exists in real-world firm systems. In terms of the network structure, with the expansion of the scale of network nodes, the systemic risk increases significantly, while the heterogeneities of network nodes have no effect on systemic risk. As for firm micro-behaviors, including the selection range of trading partners, actual output, labor requirement, price of intermediate products and employee salaries, increase of all these parameters will lead to higher systemic risk.
The connectivity structure, giant strong component and centrality of metabolic networks.
Ma, Hong-Wu; Zeng, An-Ping
2003-07-22
Structural and functional analysis of genome-based large-scale metabolic networks is important for understanding the design principles and regulation of the metabolism at a system level. The metabolic network is conventionally considered to be highly integrated and very complex. A rational reduction of the metabolic network to its core structure and a deeper understanding of its functional modules are important. In this work, we show that the metabolites in a metabolic network are far from fully connected. A connectivity structure consisting of four major subsets of metabolites and reactions, i.e. a fully connected sub-network, a substrate subset, a product subset and an isolated subset is found to exist in metabolic networks of 65 fully sequenced organisms. The largest fully connected part of a metabolic network, called 'the giant strong component (GSC)', represents the most complicated part and the core of the network and has the feature of scale-free networks. The average path length of the whole network is primarily determined by that of the GSC. For most of the organisms, GSC normally contains less than one-third of the nodes of the network. This connectivity structure is very similar to the 'bow-tie' structure of World Wide Web. Our results indicate that the bow-tie structure may be common for large-scale directed networks. More importantly, the uncovered structure feature makes a structural and functional analysis of large-scale metabolic network more amenable. As shown in this work, comparing the closeness centrality of the nodes in the GSC can identify the most central metabolites of a metabolic network. To quantitatively characterize the overall connection structure of the GSC we introduced the term 'overall closeness centralization index (OCCI)'. OCCI correlates well with the average path length of the GSC and is a useful parameter for a system-level comparison of metabolic networks of different organisms. http://genome.gbf.de/bioinformatics/
Scale-free network provides an optimal pattern for knowledge transfer
NASA Astrophysics Data System (ADS)
Lin, Min; Li, Nan
2010-02-01
We study numerically the knowledge innovation and diffusion process on four representative network models, such as regular networks, small-world networks, random networks and scale-free networks. The average knowledge stock level as a function of time is measured and the corresponding growth diffusion time, τ is defined and computed. On the four types of networks, the growth diffusion times all depend linearly on the network size N as τ∼N, while the slope for scale-free network is minimal indicating the fastest growth and diffusion of knowledge. The calculated variance and spatial distribution of knowledge stock illustrate that optimal knowledge transfer performance is obtained on scale-free networks. We also investigate the transient pattern of knowledge diffusion on the four networks, and a qualitative explanation of this finding is proposed.
Principal Component Analysis Based Measure of Structural Holes
NASA Astrophysics Data System (ADS)
Deng, Shiguo; Zhang, Wenqing; Yang, Huijie
2013-02-01
Based upon principal component analysis, a new measure called compressibility coefficient is proposed to evaluate structural holes in networks. This measure incorporates a new effect from identical patterns in networks. It is found that compressibility coefficient for Watts-Strogatz small-world networks increases monotonically with the rewiring probability and saturates to that for the corresponding shuffled networks. While compressibility coefficient for extended Barabasi-Albert scale-free networks decreases monotonically with the preferential effect and is significantly large compared with that for corresponding shuffled networks. This measure is helpful in diverse research fields to evaluate global efficiency of networks.
Impact of reduced scale free network on wireless sensor network
NASA Astrophysics Data System (ADS)
Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar
2016-12-01
In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.
NASA Astrophysics Data System (ADS)
Ma, Fei; Yao, Bing
2017-10-01
It is always an open, demanding and difficult task for generating available model to simulate dynamical functions and reveal inner principles from complex systems and networks. In this article, due to lots of real-life and artificial networks are built from series of simple and small groups (components), we discuss some interesting and helpful network-operation to generate more realistic network models. In view of community structure (modular topology), we present a class of sparse network models N(t , m) . At the moment, we capture the fact the N(t , 4) has not only scale-free feature, which means that the probability that a randomly selected vertex with degree k decays as a power-law, following P(k) ∼k-γ, where γ is the degree exponent, but also small-world property, which indicates that the typical distance between two uniform randomly chosen vertices grows proportionally to logarithm of the order of N(t , 4) , namely, relatively shorter diameter and lower average path length, simultaneously displays higher clustering coefficient. Next, as a new topological parameter correlating to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees over a network is studied in more detail, an exact analytical solution for the number of spanning trees of the N(t , 4) is obtained. Based on the network-operation, part hub-vertex linking with each other will be helpful for structuring various network models and investigating the rules related with real-life networks.
Some scale-free networks could be robust under selective node attacks
NASA Astrophysics Data System (ADS)
Zheng, Bojin; Huang, Dan; Li, Deyi; Chen, Guisheng; Lan, Wenfei
2011-04-01
It is a mainstream idea that scale-free network would be fragile under the selective attacks. Internet is a typical scale-free network in the real world, but it never collapses under the selective attacks of computer viruses and hackers. This phenomenon is different from the deduction of the idea above because this idea assumes the same cost to delete an arbitrary node. Hence this paper discusses the behaviors of the scale-free network under the selective node attack with different cost. Through the experiments on five complex networks, we show that the scale-free network is possibly robust under the selective node attacks; furthermore, the more compact the network is, and the larger the average degree is, then the more robust the network is; with the same average degrees, the more compact the network is, the more robust the network is. This result would enrich the theory of the invulnerability of the network, and can be used to build robust social, technological and biological networks, and also has the potential to find the target of drugs.
Scale-free Graphs for General Aviation Flight Schedules
NASA Technical Reports Server (NTRS)
Alexandov, Natalia M. (Technical Monitor); Kincaid, Rex K.
2003-01-01
In the late 1990s a number of researchers noticed that networks in biology, sociology, and telecommunications exhibited similar characteristics unlike standard random networks. In particular, they found that the cummulative degree distributions of these graphs followed a power law rather than a binomial distribution and that their clustering coefficients tended to a nonzero constant as the number of nodes, n, became large rather than O(1/n). Moreover, these networks shared an important property with traditional random graphs as n becomes large the average shortest path length scales with log n. This latter property has been coined the small-world property. When taken together these three properties small-world, power law, and constant clustering coefficient describe what are now most commonly referred to as scale-free networks. Since 1997 at least six books and over 400 articles have been written about scale-free networks. In this manuscript an overview of the salient characteristics of scale-free networks. Computational experience will be provided for two mechanisms that grow (dynamic) scale-free graphs. Additional computational experience will be given for constructing (static) scale-free graphs via a tabu search optimization approach. Finally, a discussion of potential applications to general aviation networks is given.
On the topology of the world exchange arrangements web
NASA Astrophysics Data System (ADS)
Li, Xiang; Jin, Yu Ying; Chen, Guanrong
2004-11-01
Exchange arrangements among different countries over the world are foundations of the world economy, which generally stand behind the daily economic evolution. As the first study of the world exchange arrangements web (WEAW), we built a bipartite network with countries as one type of nodes and currencies as the other, and found it to have a prominent scale-free feature with a power-law degree distribution. In a further empirical study of the currency section of the WEAW, we calculated the clustering coefficients, average nearest-neighbors degree, and average shortest distance. As an essential economic network, the WEAW is found to be a correlated disassortative network with a hierarchical structure, possessing a more prominent scale-free feature than the world trade web (WTW).
Coupling effects on turning points of infectious diseases epidemics in scale-free networks.
Kim, Kiseong; Lee, Sangyeon; Lee, Doheon; Lee, Kwang Hyung
2017-05-31
Pandemic is a typical spreading phenomenon that can be observed in the human society and is dependent on the structure of the social network. The Susceptible-Infective-Recovered (SIR) model describes spreading phenomena using two spreading factors; contagiousness (β) and recovery rate (γ). Some network models are trying to reflect the social network, but the real structure is difficult to uncover. We have developed a spreading phenomenon simulator that can input the epidemic parameters and network parameters and performed the experiment of disease propagation. The simulation result was analyzed to construct a new marker VRTP distribution. We also induced the VRTP formula for three of the network mathematical models. We suggest new marker VRTP (value of recovered on turning point) to describe the coupling between the SIR spreading and the Scale-free (SF) network and observe the aspects of the coupling effects with the various of spreading and network parameters. We also derive the analytic formulation of VRTP in the fully mixed model, the configuration model, and the degree-based model respectively in the mathematical function form for the insights on the relationship between experimental simulation and theoretical consideration. We discover the coupling effect between SIR spreading and SF network through devising novel marker VRTP which reflects the shifting effect and relates to entropy.
Community structure from spectral properties in complex networks
NASA Astrophysics Data System (ADS)
Servedio, V. D. P.; Colaiori, F.; Capocci, A.; Caldarelli, G.
2005-06-01
We analyze the spectral properties of complex networks focusing on their relation to the community structure, and develop an algorithm based on correlations among components of different eigenvectors. The algorithm applies to general weighted networks, and, in a suitably modified version, to the case of directed networks. Our method allows to correctly detect communities in sharply partitioned graphs, however it is useful to the analysis of more complex networks, without a well defined cluster structure, as social and information networks. As an example, we test the algorithm on a large scale data-set from a psychological experiment of free word association, where it proves to be successful both in clustering words, and in uncovering mental association patterns.
The large-scale organization of metabolic networks
NASA Astrophysics Data System (ADS)
Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z. N.; Barabási, A.-L.
2000-10-01
In a cell or microorganism, the processes that generate mass, energy, information transfer and cell-fate specification are seamlessly integrated through a complex network of cellular constituents and reactions. However, despite the key role of these networks in sustaining cellular functions, their large-scale structure is essentially unknown. Here we present a systematic comparative mathematical analysis of the metabolic networks of 43 organisms representing all three domains of life. We show that, despite significant variation in their individual constituents and pathways, these metabolic networks have the same topological scaling properties and show striking similarities to the inherent organization of complex non-biological systems. This may indicate that metabolic organization is not only identical for all living organisms, but also complies with the design principles of robust and error-tolerant scale-free networks, and may represent a common blueprint for the large-scale organization of interactions among all cellular constituents.
Theory of rumour spreading in complex social networks
NASA Astrophysics Data System (ADS)
Nekovee, M.; Moreno, Y.; Bianconi, G.; Marsili, M.
2007-01-01
We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular, those mediated by the Internet). We use analytical and numerical solutions of these equations to examine the threshold behaviour and dynamics of the model on several models of such networks: random graphs, uncorrelated scale-free networks and scale-free networks with assortative degree correlations. We show that in both homogeneous networks and random graphs the model exhibits a critical threshold in the rumour spreading rate below which a rumour cannot propagate in the system. In the case of scale-free networks, on the other hand, this threshold becomes vanishingly small in the limit of infinite system size. We find that the initial rate at which a rumour spreads is much higher in scale-free networks than in random graphs, and that the rate at which the spreading proceeds on scale-free networks is further increased when assortative degree correlations are introduced. The impact of degree correlations on the final fraction of nodes that ever hears a rumour, however, depends on the interplay between network topology and the rumour spreading rate. Our results show that scale-free social networks are prone to the spreading of rumours, just as they are to the spreading of infections. They are relevant to the spreading dynamics of chain emails, viral advertising and large-scale information dissemination algorithms on the Internet.
NASA Astrophysics Data System (ADS)
Pan, Xiaoliang; Schwartz, Steven
2015-03-01
It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.
Pan, Xiaoliang; Schwartz, Steven D
2015-04-30
It has long been recognized that the structure of a protein creates a hierarchy of conformations interconverting on multiple time scales. The conformational heterogeneity of the Michaelis complex is of particular interest in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD(+)). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they show a strong variance in their propensity toward the on-enzyme chemical step. In this study, microsecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network of the Michaelis complex and the structures of the substates at atomistic scales. They also shed light on the complete picture of the catalytic mechanism of LDH.
Dynamics of an epidemic model with quarantine on scale-free networks
NASA Astrophysics Data System (ADS)
Kang, Huiyan; Liu, Kaihui; Fu, Xinchu
2017-12-01
Quarantine strategies are frequently used to control or reduce the transmission risks of epidemic diseases such as SARS, tuberculosis and cholera. In this paper, we formulate a susceptible-exposed-infected-quarantined-recovered model on a scale-free network incorporating the births and deaths of individuals. Considering that the infectivity is related to the degrees of infectious nodes, we introduce quarantined rate as a function of degree into the model, and quantify the basic reproduction number, which is shown to be dependent on some parameters, such as quarantined rate, infectivity and network structures. A theoretical result further indicates the heterogeneity of networks and higher infectivity will raise the disease transmission risk while quarantine measure will contribute to the prevention of epidemic spreading. Meanwhile, the contact assumption between susceptibles and infectives may impact the disease transmission. Furthermore, we prove that the basic reproduction number serves as a threshold value for the global stability of the disease-free and endemic equilibria and the uniform persistence of the disease on the network by constructing appropriate Lyapunov functions. Finally, some numerical simulations are illustrated to perform and complement our analytical results.
A mixing evolution model for bidirectional microblog user networks
NASA Astrophysics Data System (ADS)
Yuan, Wei-Guo; Liu, Yun
2015-08-01
Microblogs have been widely used as a new form of online social networking. Based on the user profile data collected from Sina Weibo, we find that the number of microblog user bidirectional friends approximately corresponds with the lognormal distribution. We then build two microblog user networks with real bidirectional relationships, both of which have not only small-world and scale-free but also some special properties, such as double power-law degree distribution, disassortative network, hierarchical and rich-club structure. Moreover, by detecting the community structures of the two real networks, we find both of their community scales follow an exponential distribution. Based on the empirical analysis, we present a novel evolution network model with mixed connection rules, including lognormal fitness preferential and random attachment, nearest neighbor interconnected in the same community, and global random associations in different communities. The simulation results show that our model is consistent with real network in many topology features.
Weighted Scaling in Non-growth Random Networks
NASA Astrophysics Data System (ADS)
Chen, Guang; Yang, Xu-Hua; Xu, Xin-Li
2012-09-01
We propose a weighted model to explain the self-organizing formation of scale-free phenomenon in non-growth random networks. In this model, we use multiple-edges to represent the connections between vertices and define the weight of a multiple-edge as the total weights of all single-edges within it and the strength of a vertex as the sum of weights for those multiple-edges attached to it. The network evolves according to a vertex strength preferential selection mechanism. During the evolution process, the network always holds its total number of vertices and its total number of single-edges constantly. We show analytically and numerically that a network will form steady scale-free distributions with our model. The results show that a weighted non-growth random network can evolve into scale-free state. It is interesting that the network also obtains the character of an exponential edge weight distribution. Namely, coexistence of scale-free distribution and exponential distribution emerges.
Structural Behavioral Study on the General Aviation Network Based on Complex Network
NASA Astrophysics Data System (ADS)
Zhang, Liang; Lu, Na
2017-12-01
The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.
Scale-free effect of substitution networks
NASA Astrophysics Data System (ADS)
Li, Ziyu; Yu, Zhouyu; Xi, Lifeng
2018-02-01
In this paper, we construct the growing networks in terms of substitution rule. Roughly speaking, we replace edges of different colors with different initial graphs. Then the evolving networks are constructed. We obtained the free-scale effect of our substitution networks.
Why do Scale-Free Networks Emerge in Nature? From Gradient Networks to Transport Efficiency
NASA Astrophysics Data System (ADS)
Toroczkai, Zoltan
2004-03-01
It has recently been recognized [1,2,3] that a large number of complex networks are scale-free (having a power-law degree distribution). Examples include citation networks [4], the internet [5], the world-wide-web [6], cellular metabolic networks [7], protein interaction networks [8], the sex-web [9] and alliance networks in the U.S. biotechnology industry [10]. The existence of scale-free networks in such diverse systems suggests that there is a simple underlying common reason for their development. Here, we propose that scale-free networks emerge because they ensure efficient transport of some entity. We show that for flows generated by gradients of a scalar "potential'' distributed on a network, non scale-free networks, e.g., random graphs [11], will become maximally congested, while scale-free networks will ensure efficient transport in the large network size limit. [1] R. Albert and A.-L. Barabási, Rev.Mod.Phys. 74, 47 (2002). [2] M.E.J. Newman, SIAM Rev. 45, 167 (2003). [3] S.N. Dorogovtsev and J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford Univ. Press, Oxford, 2003. [4] S. Redner, Eur.Phys.J. B, 4, 131 (1998). [5] M. Faloutsos, P. Faloutsos and C. Faloutsos Comp.Comm.Rev. 29, 251 (1999). [6] R. Albert, H. Jeong, and A.L. Barabási, Nature 401, 130 (1999). [7] H. Jeong et.al. Nature 407, 651 (2000). [8] H. Jeong, S. Mason, A.-L. Barabási and Z. N. Oltvai, Nature 411, 41 (2001). [9] F. Liljeros et. al. Nature 411 907 (2000). [10] W. W. Powell, D. R. White, K. W. Koput and J. Owen-Smith Am.J.Soc. in press. [11] B. Bollobás, Random Graphs, Second Edition, Cambridge University Press (2001).
Distribution of shortest path lengths in a class of node duplication network models
NASA Astrophysics Data System (ADS)
Steinbock, Chanania; Biham, Ofer; Katzav, Eytan
2017-09-01
We present analytical results for the distribution of shortest path lengths (DSPL) in a network growth model which evolves by node duplication (ND). The model captures essential properties of the structure and growth dynamics of social networks, acquaintance networks, and scientific citation networks, where duplication mechanisms play a major role. Starting from an initial seed network, at each time step a random node, referred to as a mother node, is selected for duplication. Its daughter node is added to the network, forming a link to the mother node, and with probability p to each one of its neighbors. The degree distribution of the resulting network turns out to follow a power-law distribution, thus the ND network is a scale-free network. To calculate the DSPL we derive a master equation for the time evolution of the probability Pt(L =ℓ ) , ℓ =1 ,2 ,⋯ , where L is the distance between a pair of nodes and t is the time. Finding an exact analytical solution of the master equation, we obtain a closed form expression for Pt(L =ℓ ) . The mean distance 〈L〉 t and the diameter Δt are found to scale like lnt , namely, the ND network is a small-world network. The variance of the DSPL is also found to scale like lnt . Interestingly, the mean distance and the diameter exhibit properties of a small-world network, rather than the ultrasmall-world network behavior observed in other scale-free networks, in which 〈L〉 t˜lnlnt .
Mean field analysis of algorithms for scale-free networks in molecular biology
2017-01-01
The sampling of scale-free networks in Molecular Biology is usually achieved by growing networks from a seed using recursive algorithms with elementary moves which include the addition and deletion of nodes and bonds. These algorithms include the Barabási-Albert algorithm. Later algorithms, such as the Duplication-Divergence algorithm, the Solé algorithm and the iSite algorithm, were inspired by biological processes underlying the evolution of protein networks, and the networks they produce differ essentially from networks grown by the Barabási-Albert algorithm. In this paper the mean field analysis of these algorithms is reconsidered, and extended to variant and modified implementations of the algorithms. The degree sequences of scale-free networks decay according to a powerlaw distribution, namely P(k) ∼ k−γ, where γ is a scaling exponent. We derive mean field expressions for γ, and test these by numerical simulations. Generally, good agreement is obtained. We also found that some algorithms do not produce scale-free networks (for example some variant Barabási-Albert and Solé networks). PMID:29272285
Mean field analysis of algorithms for scale-free networks in molecular biology.
Konini, S; Janse van Rensburg, E J
2017-01-01
The sampling of scale-free networks in Molecular Biology is usually achieved by growing networks from a seed using recursive algorithms with elementary moves which include the addition and deletion of nodes and bonds. These algorithms include the Barabási-Albert algorithm. Later algorithms, such as the Duplication-Divergence algorithm, the Solé algorithm and the iSite algorithm, were inspired by biological processes underlying the evolution of protein networks, and the networks they produce differ essentially from networks grown by the Barabási-Albert algorithm. In this paper the mean field analysis of these algorithms is reconsidered, and extended to variant and modified implementations of the algorithms. The degree sequences of scale-free networks decay according to a powerlaw distribution, namely P(k) ∼ k-γ, where γ is a scaling exponent. We derive mean field expressions for γ, and test these by numerical simulations. Generally, good agreement is obtained. We also found that some algorithms do not produce scale-free networks (for example some variant Barabási-Albert and Solé networks).
The analysis of HIV/AIDS drug-resistant on networks
NASA Astrophysics Data System (ADS)
Liu, Maoxing
2014-01-01
In this paper, we present an Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) drug-resistant model using an ordinary differential equation (ODE) model on scale-free networks. We derive the threshold for the epidemic to be zero in infinite scale-free network. We also prove the stability of disease-free equilibrium (DFE) and persistence of HIV/AIDS infection. The effects of two immunization schemes, including proportional scheme and targeted vaccination, are studied and compared. We find that targeted strategy compare favorably to a proportional condom using has prominent effect to control HIV/AIDS spread on scale-free networks.
Effect of edge pruning on structural controllability and observability of complex networks
Mengiste, Simachew Abebe; Aertsen, Ad; Kumar, Arvind
2015-01-01
Controllability and observability of complex systems are vital concepts in many fields of science. The network structure of the system plays a crucial role in determining its controllability and observability. Because most naturally occurring complex systems show dynamic changes in their network connectivity, it is important to understand how perturbations in the connectivity affect the controllability of the system. To this end, we studied the control structure of different types of artificial, social and biological neuronal networks (BNN) as their connections were progressively pruned using four different pruning strategies. We show that the BNNs are more similar to scale-free networks than to small-world networks, when comparing the robustness of their control structure to structural perturbations. We introduce a new graph descriptor, ‘the cardinality curve’, to quantify the robustness of the control structure of a network to progressive edge pruning. Knowing the susceptibility of control structures to different pruning methods could help design strategies to destroy the control structures of dangerous networks such as epidemic networks. On the other hand, it could help make useful networks more resistant to edge attacks. PMID:26674854
Mathematics and the Internet: A Source of Enormous Confusion and Great Potential
2009-05-01
free Internet Myth The story recounted below of the scale-free nature of the Internet seems convincing, sound, and al- most too good to be true ...models. In fact, much of the initial excitement in the nascent field of network science can be attributed to an ear- ly and appealingly simple class...this new class of networks, com- monly referred to as scale-free networks. The term scale-free derives from the simple observation that power-law node
Scale free effects in world currency exchange network
NASA Astrophysics Data System (ADS)
Górski, A. Z.; Drożdż, S.; Kwapień, J.
2008-11-01
A large collection of daily time series for 60 world currencies' exchange rates is considered. The correlation matrices are calculated and the corresponding Minimal Spanning Tree (MST) graphs are constructed for each of those currencies used as reference for the remaining ones. It is shown that multiplicity of the MST graphs' nodes to a good approximation develops a power like, scale free distribution with the scaling exponent similar as for several other complex systems studied so far. Furthermore, quantitative arguments in favor of the hierarchical organization of the world currency exchange network are provided by relating the structure of the above MST graphs and their scaling exponents to those that are derived from an exactly solvable hierarchical network model. A special status of the USD during the period considered can be attributed to some departures of the MST features, when this currency (or some other tied to it) is used as reference, from characteristics typical to such a hierarchical clustering of nodes towards those that correspond to the random graphs. Even though in general the basic structure of the MST is robust with respect to changing the reference currency some trace of a systematic transition from somewhat dispersed - like the USD case - towards more compact MST topology can be observed when correlations increase.
Epidemic spreading on complex networks with overlapping and non-overlapping community structure
NASA Astrophysics Data System (ADS)
Shang, Jiaxing; Liu, Lianchen; Li, Xin; Xie, Feng; Wu, Cheng
2015-02-01
Many real-world networks exhibit community structure where vertices belong to one or more communities. Recent studies show that community structure plays an import role in epidemic spreading. In this paper, we investigate how the extent of overlap among communities affects epidemics. In order to experiment on the characteristic of overlapping communities, we propose a rewiring algorithm that can change the community structure from overlapping to non-overlapping while maintaining the degree distribution of the network. We simulate the Susceptible-Infected-Susceptible (SIS) epidemic process on synthetic scale-free networks and real-world networks by applying our rewiring algorithm. Experiments show that epidemics spread faster on networks with higher level of overlapping communities. Furthermore, overlapping communities' effect interacts with the average degree's effect. Our work further illustrates the important role of overlapping communities in the process of epidemic spreading.
Multiscale unfolding of real networks by geometric renormalization
NASA Astrophysics Data System (ADS)
García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles
2018-06-01
Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.
Popularity versus similarity in growing networks
NASA Astrophysics Data System (ADS)
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Kitsak, Maksim; Serrano, Mariangeles; Boguna, Marian
2012-02-01
Preferential attachment is a powerful mechanism explaining the emergence of scaling in growing networks. If new connections are established preferentially to more popular nodes in a network, then the network is scale-free. Here we show that not only popularity but also similarity is a strong force shaping the network structure and dynamics. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which preferential attachment emerges from local optimization processes. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.
Effects of topology on network evolution
NASA Astrophysics Data System (ADS)
Oikonomou, Panos; Cluzel, Philippe
2006-08-01
The ubiquity of scale-free topology in nature raises the question of whether this particular network design confers an evolutionary advantage. A series of studies has identified key principles controlling the growth and the dynamics of scale-free networks. Here, we use neuron-based networks of boolean components as a framework for modelling a large class of dynamical behaviours in both natural and artificial systems. Applying a training algorithm, we characterize how networks with distinct topologies evolve towards a pre-established target function through a process of random mutations and selection. We find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. Whereas homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously. Remarkably, this latter property is robust to variations of the degree exponent. In contrast, homogeneous random networks require a specific tuning of their connectivity to optimize their ability to evolve. These results highlight an organizing principle that governs the evolution of complex networks and that can improve the design of engineered systems.
Generating clustered scale-free networks using Poisson based localization of edges
NASA Astrophysics Data System (ADS)
Türker, İlker
2018-05-01
We introduce a variety of network models using a Poisson-based edge localization strategy, which result in clustered scale-free topologies. We first verify the success of our localization strategy by realizing a variant of the well-known Watts-Strogatz model with an inverse approach, implying a small-world regime of rewiring from a random network through a regular one. We then apply the rewiring strategy to a pure Barabasi-Albert model and successfully achieve a small-world regime, with a limited capacity of scale-free property. To imitate the high clustering property of scale-free networks with higher accuracy, we adapted the Poisson-based wiring strategy to a growing network with the ingredients of both preferential attachment and local connectivity. To achieve the collocation of these properties, we used a routine of flattening the edges array, sorting it, and applying a mixing procedure to assemble both global connections with preferential attachment and local clusters. As a result, we achieved clustered scale-free networks with a computational fashion, diverging from the recent studies by following a simple but efficient approach.
Scale-free networks of the earth’s surface
NASA Astrophysics Data System (ADS)
Liu, Gang; He, Jing; Luo, Kaitian; Gao, Peichao; Ma, Lei
2016-06-01
Studying the structure of real complex systems is of paramount importance in science and engineering. Despite our understanding of lots of real systems, we hardly cognize our unique living environment — the earth. The structural complexity of the earth’s surface is, however, still unknown in detail. Here, we define the modeling of graph topology for the earth’s surface, using the satellite images of the earth’s surface under different spatial resolutions derived from Google Earth. We find that the graph topologies of the earth’s surface are scale-free networks regardless of the spatial resolutions. For different spatial resolutions, the exponents of power-law distributions and the modularity are both quite different; however, the average clustering coefficient is approximately equal to a constant. We explore the morphology study of the earth’s surface, which enables a comprehensive understanding of the morphological feature of the earth’s surface.
Modular synchronization in complex networks.
Oh, E; Rho, K; Hong, H; Kahng, B
2005-10-01
We study the synchronization transition (ST) of a modified Kuramoto model on two different types of modular complex networks. It is found that the ST depends on the type of intermodular connections. For the network with decentralized (centralized) intermodular connections, the ST occurs at finite coupling constant (behaves abnormally). Such distinct features are found in the yeast protein interaction network and the Internet, respectively. Moreover, by applying the finite-size scaling analysis to an artificial network with decentralized intermodular connections, we obtain the exponent associated with the order parameter of the ST to be beta approximately 1 different from beta(MF) approximately 1/2 obtained from the scale-free network with the same degree distribution but the absence of modular structure, corresponding to the mean field value.
Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang
2013-01-01
Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.
Self-organization in multilayer network with adaptation mechanisms based on competition
NASA Astrophysics Data System (ADS)
Pitsik, Elena N.; Makarov, Vladimir V.; Nedaivozov, Vladimir O.; Kirsanov, Daniil V.; Goremyko, Mikhail V.
2018-04-01
The paper considers the phenomena of competition in multiplex network whose structure evolves corresponding to dynamics of it's elements, forming closed loop of self-learning with the aim to reach the optimal topology. Numerical analysis of proposed model shows that it is possible to obtain scale-invariant structures for corresponding parameters as well as the structures with homogeneous distribution of connections in the layers. Revealed phenomena emerges as the consequence of the self-organization processes related to structure-dynamical selflearning based on homeostasis and homophily, as well as the result of the competition between the network's layers for optimal topology. It was shown that in the mode of partial and cluster synchronization the network reaches scale-free topology of complex nature that is different from layer to layer. However, in the mode of global synchronization the homogeneous topologies on all layer of the network are observed. This phenomenon is tightly connected with the competitive processes that represent themselves as the natural mechanism of reaching the optimal topology of the links in variety of real-world systems.
Ma, Athen; Mondragón, Raúl J.
2015-01-01
A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively. PMID:25799585
Ma, Athen; Mondragón, Raúl J
2015-01-01
A core comprises of a group of central and densely connected nodes which governs the overall behaviour of a network. It is recognised as one of the key meso-scale structures in complex networks. Profiling this meso-scale structure currently relies on a limited number of methods which are often complex and parameter dependent or require a null model. As a result, scalability issues are likely to arise when dealing with very large networks together with the need for subjective adjustment of parameters. The notion of a rich-club describes nodes which are essentially the hub of a network, as they play a dominating role in structural and functional properties. The definition of a rich-club naturally emphasises high degree nodes and divides a network into two subgroups. Here, we develop a method to characterise a rich-core in networks by theoretically coupling the underlying principle of a rich-club with the escape time of a random walker. The method is fast, scalable to large networks and completely parameter free. In particular, we show that the evolution of the core in World Trade and C. elegans networks correspond to responses to historical events and key stages in their physical development, respectively.
Yao, Chenggui; Zhan, Meng; Shuai, Jianwei; Ma, Jun; Kurths, Jürgen
2017-12-01
It has been generally believed that both time delay and network structure could play a crucial role in determining collective dynamical behaviors in complex systems. In this work, we study the influence of coupling strength, time delay, and network topology on synchronization behavior in delay-coupled networks of chaotic pendulums. Interestingly, we find that the threshold value of the coupling strength for complete synchronization in such networks strongly depends on the time delay in the coupling, but appears to be insensitive to the network structure. This lack of sensitivity was numerically tested in several typical regular networks, such as different locally and globally coupled ones as well as in several complex networks, such as small-world and scale-free networks. Furthermore, we find that the emergence of a synchronous periodic state induced by time delay is of key importance for the complete synchronization.
Semantic networks based on titles of scientific papers
NASA Astrophysics Data System (ADS)
Pereira, H. B. B.; Fadigas, I. S.; Senna, V.; Moret, M. A.
2011-03-01
In this paper we study the topological structure of semantic networks based on titles of papers published in scientific journals. It discusses its properties and presents some reflections on how the use of social and complex network models can contribute to the diffusion of knowledge. The proposed method presented here is applied to scientific journals where the titles of papers are in English or in Portuguese. We show that the topology of studied semantic networks are small-world and scale-free.
Parameters affecting the resilience of scale-free networks to random failures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, Hamilton E.; LaViolette, Randall A.; Lane, Terran
2005-09-01
It is commonly believed that scale-free networks are robust to massive numbers of random node deletions. For example, Cohen et al. in (1) study scale-free networks including some which approximate the measured degree distribution of the Internet. Their results suggest that if each node in this network failed independently with probability 0.99, most of the remaining nodes would still be connected in a giant component. In this paper, we show that a large and important subclass of scale-free networks are not robust to massive numbers of random node deletions. In particular, we study scale-free networks which have minimum node degreemore » of 1 and a power-law degree distribution beginning with nodes of degree 1 (power-law networks). We show that, in a power-law network approximating the Internet's reported distribution, when the probability of deletion of each node is 0.5 only about 25% of the surviving nodes in the network remain connected in a giant component, and the giant component does not persist beyond a critical failure rate of 0.9. The new result is partially due to improved analytical accommodation of the large number of degree-0 nodes that result after node deletions. Our results apply to power-law networks with a wide range of power-law exponents, including Internet-like networks. We give both analytical and empirical evidence that such networks are not generally robust to massive random node deletions.« less
Topology of the conceptual network of language
NASA Astrophysics Data System (ADS)
Motter, Adilson E.; de Moura, Alessandro P.; Lai, Ying-Cheng; Dasgupta, Partha
2002-06-01
We define two words in a language to be connected if they express similar concepts. The network of connections among the many thousands of words that make up a language is important not only for the study of the structure and evolution of languages, but also for cognitive science. We study this issue quantitatively, by mapping out the conceptual network of the English language, with the connections being defined by the entries in a Thesaurus dictionary. We find that this network presents a small-world structure, with an amazingly small average shortest path, and appears to exhibit an asymptotic scale-free feature with algebraic connectivity distribution.
The network of concepts in written texts
NASA Astrophysics Data System (ADS)
Caldeira, S. M. G.; Petit Lobão, T. C.; Andrade, R. F. S.; Neme, A.; Miranda, J. G. V.
2006-02-01
Complex network theory is used to investigate the structure of meaningful concepts in written texts of individual authors. Networks have been constructed after a two phase filtering, where words with less meaning contents are eliminated and all remaining words are set to their canonical form, without any number, gender or time flexion. Each sentence in the text is added to the network as a clique. A large number of written texts have been scrutinised, and it is found that texts have small-world as well as scale-free structures. The growth process of these networks has also been investigated, and a universal evolution of network quantifiers have been found among the set of texts written by distinct authors. Further analyses, based on shuffling procedures taken either on the texts or on the constructed networks, provide hints on the role played by the word frequency and sentence length distributions to the network structure.
Assortativeness and information in scale-free networks
NASA Astrophysics Data System (ADS)
Piraveenan, M.; Prokopenko, M.; Zomaya, A. Y.
2009-02-01
We analyze Shannon information of scale-free networks in terms of their assortativeness, and identify classes of networks according to the dependency of the joint remaining degree distribution on the assortativeness. We conjecture that these classes comprise minimalistic and maximalistic networks in terms of Shannon information. For the studied classes, the information is shown to depend non-linearly on the absolute value of the assortativeness, with the dominant term of the relationship being a power-law. We exemplify this dependency using a range of real-world networks. Optimization of scale-free networks according to information they contain depends on the landscape of parameters’ search-space, and we identify two regions of interest: a slope region and a stability region. In the slope region, there is more freedom to generate and evaluate candidate networks since the information content can be changed easily by modifying only the assortativeness, while even a small change in the power-law’s scaling exponent brings a reward in a higher rate of information change. This feature may explain why the exponents of real-world scale-free networks are within a certain range, defined by the slope and stability regions.
Emergence of Soft Communities from Geometric Preferential Attachment
Zuev, Konstantin; Boguñá, Marián; Bianconi, Ginestra; Krioukov, Dmitri
2015-01-01
All real networks are different, but many have some structural properties in common. There seems to be no consensus on what the most common properties are, but scale-free degree distributions, strong clustering, and community structure are frequently mentioned without question. Surprisingly, there exists no simple generative mechanism explaining all the three properties at once in growing networks. Here we show how latent network geometry coupled with preferential attachment of nodes to this geometry fills this gap. We call this mechanism geometric preferential attachment (GPA), and validate it against the Internet. GPA gives rise to soft communities that provide a different perspective on the community structure in networks. The connections between GPA and cosmological models, including inflation, are also discussed. PMID:25923110
Dynamics Behaviors of Scale-Free Networks with Elastic Demand
NASA Astrophysics Data System (ADS)
Li, Yan-Lai; Sun, Hui-Jun; Wu, Jian-Jun
Many real-world networks, such as transportation networks and Internet, have the scale-free properties. It is important to study the bearing capacity of such networks. Considering the elastic demand condition, we analyze load distributions and bearing capacities with different parameters through artificially created scale-free networks. The simulation results show that the load distribution follows a power-law form, which means some ordered pairs, playing the dominant role in the transportation network, have higher demand than other pairs. We found that, with the decrease of perceptual error, the total and average ordered pair demand will decrease and then stay in a steady state. However, with the increase of the network size, the average demand of each ordered pair will decrease, which is particularly interesting for the network design problem.
Catchment organisation, free energy dynamics and network control on critical zone water flows
NASA Astrophysics Data System (ADS)
Zehe, E.; Ehret, U.; Kleidon, A.; Jackisch, C.; Scherer, U.; Blume, T.
2012-04-01
From a functional point of view the catchment system is compiled by patterns of permeable and less permeable textural elements - soils and mother rock. Theses textural elements provide a mechanical stabile matrix for growth of terrestrial biota and soil formation. They furthermore organize subsurface storage of water against gravity, dissolved nutrients and heat. Storage against gravity is only possible because water acts as wetting fluid and is thus attracted by capillary forces in the pores space. Capillarity increases non-linearly with decreasing pore size and is zero at local saturation. The pore size distribution of a soil is thus characteristic of its capability to store water against losses such as drainage, evaporation and root extraction and at the same time a fingerprint of the work that has been performed by physical, chemical and biological processes to weather solid mother rock and form a soil. A strong spatial covariance of soil hydraulic properties within the same soil type is due to a fingerprint of strong spatial organization at small scales. Spatial organization at the hillslope scale implies the existence of a typical soil catena i.e. that hillslopes exhibit the same/ downslope sequence of different soils types. Textural storage elements are separated by strikingly self-similar network like structures, we name them flow structures. These flow structures are created in a self-reinforcing manner by work performed either by biota like earth worms and plant roots or by dissipative processes such as soil cracking and water/fluvial erosion. Regardless of their different origin connected flow structures exhibit a highly similar functioning and similar characteristics: they allow for high mass flows at small driving potential gradients because specific flow resistance along the network is continuously very small. This implies temporal stability even during small extremes, due to the small amount of local momentum dissipation per unit mass flow, as well as that these flow structures organize and dominate flows of water, dissolved matter and sediments during rainfall driven conditions at various scales: - Surface connected vertical flow structures of anecic worm burrows or soil cracks organize and dominated vertical flows at the plot scale - this is usually referred to as preferential flow; - Rill networks at the soil surface organise and dominate hillslope scale overland flow response and sediment yields; - Subsurface pipe networks at the bedrock interface organize and dominate hillslope scale lateral subsurface water and tracer flows; - The river net organizes and dominates flows of water, dissolved matter and sediments to the catchment outlet and finally across continental gradients to the sea. Fundamental progress with respect to the parameterization of hydrological models, subscale flow networks and to understand the adaptation of hydro-geo ecosystems to change could be achieved by discovering principles that govern the organization of catchments flow networks in particular at least during steady state conditions. This insight has inspired various scientists to suggest principles for organization of ecosystems, landscapes and flow networks; as Bejans constructural law, Minimum Energy Expenditure , Maximum Entropy Production. In line with these studies we suggest that a thermodynamic/energetic treatment of the catchment is might be a key for understanding the underlying principles that govern organisation of flow and transport. Our approach is to employ a) physically based hydrological model that address at least all the relevant hydrological processes in the critical zone in a coupled way, behavioural representations of the observed organisation of flow structures and textural elements, that are consistent with observations in two well investigated research catchments and have been tested against distributed observations of soil moisture and catchment scale discharge; to simulate the full concert of hydrological processes using the behavioural system architecture and small perturbations and compare them with respect to their efficiency to dissipate free energy which is equivalent to produce entropy. The study will present the underlying theory and discuss simulation results with respect to the following core hypotheses: H1: A macro scale configuration of a hydro-geo-ecosystem, is in stationary non equilibrium closer to a functional optimum as other possible configurations, if it "dissipates" more of the available free energy to maintain the stationary cycles that redistribute and export mass and energy within/from the system. This implies (I1) that the system approaches faster a dynamic equilibrium state characterised by a minimum in free energy, and less free energy from persistent gradients is available to perform work in the system. H2: Macroscopically connected flow networks enhance redistribution of mass against macroscale gradients and thus dissipation of free energy, because they minimise local energy dissipation per unit mass flow along the flow path. This implies (I2) mechanic stability of the flow network, of the textural storage elements and thus of the entire system against frequent disturbances under stationary conditions.
Dense power-law networks and simplicial complexes
NASA Astrophysics Data System (ADS)
Courtney, Owen T.; Bianconi, Ginestra
2018-05-01
There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.
Cooperation-Induced Topological Complexity: A Promising Road to Fault Tolerance and Hebbian Learning
2012-03-16
topological complexity a way to compare the efficiency of a scale-free network to the random network of Erdos and Renyi . All this is extensively dis- cussed in...an excellent review paper byArenas et al. (2008) showing very interesting comparisons of Erdos– Renyi networks and scale- free networks as a function
Weighted and directed interactions in evolving large-scale epileptic brain networks
NASA Astrophysics Data System (ADS)
Dickten, Henning; Porz, Stephan; Elger, Christian E.; Lehnertz, Klaus
2016-10-01
Epilepsy can be regarded as a network phenomenon with functionally and/or structurally aberrant connections in the brain. Over the past years, concepts and methods from network theory substantially contributed to improve the characterization of structure and function of these epileptic networks and thus to advance understanding of the dynamical disease epilepsy. We extend this promising line of research and assess—with high spatial and temporal resolution and using complementary analysis approaches that capture different characteristics of the complex dynamics—both strength and direction of interactions in evolving large-scale epileptic brain networks of 35 patients that suffered from drug-resistant focal seizures with different anatomical onset locations. Despite this heterogeneity, we find that even during the seizure-free interval the seizure onset zone is a brain region that, when averaged over time, exerts strongest directed influences over other brain regions being part of a large-scale network. This crucial role, however, manifested by averaging on the population-sample level only - in more than one third of patients, strongest directed interactions can be observed between brain regions far off the seizure onset zone. This may guide new developments for individualized diagnosis, treatment and control.
Evolution of Controllability in Interbank Networks
NASA Astrophysics Data System (ADS)
Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido
2013-04-01
The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected ``hub'' institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S.; Alam, Maksudul
A novel parallel algorithm is presented for generating random scale-free networks using the preferential-attachment model. The algorithm, named cuPPA, is custom-designed for single instruction multiple data (SIMD) style of parallel processing supported by modern processors such as graphical processing units (GPUs). To the best of our knowledge, our algorithm is the first to exploit GPUs, and also the fastest implementation available today, to generate scale free networks using the preferential attachment model. A detailed performance study is presented to understand the scalability and runtime characteristics of the cuPPA algorithm. In one of the best cases, when executed on an NVidiamore » GeForce 1080 GPU, cuPPA generates a scale free network of a billion edges in less than 2 seconds.« less
Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings
NASA Astrophysics Data System (ADS)
Zhang, Jianbao; Ma, Zhongjun; Zhang, Gang
2013-12-01
This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme is confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network.
Flow interaction based propagation model and bursty influence behavior analysis of Internet flows
NASA Astrophysics Data System (ADS)
Wu, Xiao-Yu; Gu, Ren-Tao; Ji, Yue-Feng
2016-11-01
QoS (quality of service) fluctuations caused by Internet bursty flows influence the user experience in the Internet, such as the increment of packet loss and transmission time. In this paper, we establish a mathematical model to study the influence propagation behavior of the bursty flow, which is helpful for developing a deep understanding of the network dynamics in the Internet complex system. To intuitively reflect the propagation process, a data flow interaction network with a hierarchical structure is constructed, where the neighbor order is proposed to indicate the neighborhood relationship between the bursty flow and other flows. The influence spreads from the bursty flow to each order of neighbors through flow interactions. As the influence spreads, the bursty flow has negative effects on the odd order neighbors and positive effects on the even order neighbors. The influence intensity of bursty flow decreases sharply between two adjacent orders and the decreasing degree can reach up to dozens of times in the experimental simulation. Moreover, the influence intensity increases significantly when network congestion situation becomes serious, especially for the 1st order neighbors. Network structural factors are considered to make a further study. Simulation results show that the physical network scale expansion can reduce the influence intensity of bursty flow by decreasing the flow distribution density. Furthermore, with the same network scale, the influence intensity in WS small-world networks is 38.18% and 18.40% lower than that in ER random networks and BA scale-free networks, respectively, due to a lower interaction probability between flows. These results indicate that the macro-structural changes such as network scales and styles will affect the inner propagation behaviors of the bursty flow.
Network evolution by nonlinear preferential rewiring of edges
NASA Astrophysics Data System (ADS)
Xu, Xin-Jian; Hu, Xiao-Ming; Zhang, Li-Jie
2011-06-01
The mathematical framework for small-world networks proposed in a seminal paper by Watts and Strogatz sparked a widespread interest in modeling complex networks in the past decade. However, most of research contributing to static models is in contrast to real-world dynamic networks, such as social and biological networks, which are characterized by rearrangements of connections among agents. In this paper, we study dynamic networks evolved by nonlinear preferential rewiring of edges. The total numbers of vertices and edges of the network are conserved, but edges are continuously rewired according to the nonlinear preference. Assuming power-law kernels with exponents α and β, the network structures in stationary states display a distinct behavior, depending only on β. For β>1, the network is highly heterogeneous with the emergence of starlike structures. For β<1, the network is widely homogeneous with a typical connectivity. At β=1, the network is scale free with an exponential cutoff.
Co-occurrence network analysis of Chinese and English poems
NASA Astrophysics Data System (ADS)
Liang, Wei; Wang, Yanli; Shi, Yuming; Chen, Guanrong
2015-02-01
A total of 572 co-occurrence networks of Chinese characters and words as well as English words are constructed from both Chinese and English poems. It is found that most of the networks have small-world features; more Chinese networks have scale-free properties and hierarchical structures as compared with the English networks; all the networks are disassortative, and the disassortativeness of the Chinese word networks is more prominent than those of the English networks; the spectral densities of the Chinese word networks and English networks are similar, but they are different from those of the ER, BA, and WS networks. For the above observed phenomena, analysis is provided with interpretation from a linguistic perspective.
Structurally Dynamic Spin Market Networks
NASA Astrophysics Data System (ADS)
Horváth, Denis; Kuscsik, Zoltán
The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.
Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.
Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich
2004-03-01
By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.
Graph properties of synchronized cortical networks during visual working memory maintenance.
Palva, Satu; Monto, Simo; Palva, J Matias
2010-02-15
Oscillatory synchronization facilitates communication in neuronal networks and is intimately associated with human cognition. Neuronal activity in the human brain can be non-invasively imaged with magneto- (MEG) and electroencephalography (EEG), but the large-scale structure of synchronized cortical networks supporting cognitive processing has remained uncharacterized. We combined simultaneous MEG and EEG (MEEG) recordings with minimum-norm-estimate-based inverse modeling to investigate the structure of oscillatory phase synchronized networks that were active during visual working memory (VWM) maintenance. Inter-areal phase-synchrony was quantified as a function of time and frequency by single-trial phase-difference estimates of cortical patches covering the entire cortical surfaces. The resulting networks were characterized with a number of network metrics that were then compared between delta/theta- (3-6 Hz), alpha- (7-13 Hz), beta- (16-25 Hz), and gamma- (30-80 Hz) frequency bands. We found several salient differences between frequency bands. Alpha- and beta-band networks were more clustered and small-world like but had smaller global efficiency than the networks in the delta/theta and gamma bands. Alpha- and beta-band networks also had truncated-power-law degree distributions and high k-core numbers. The data converge on showing that during the VWM-retention period, human cortical alpha- and beta-band networks have a memory-load dependent, scale-free small-world structure with densely connected core-like structures. These data further show that synchronized dynamic networks underlying a specific cognitive state can exhibit distinct frequency-dependent network structures that could support distinct functional roles. Copyright 2009 Elsevier Inc. All rights reserved.
A review of structural and functional brain networks: small world and atlas.
Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang
2015-03-01
Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.
Velocity and Hierarchical Spread of Epidemic Outbreaks in Scale-Free Networks
NASA Astrophysics Data System (ADS)
Barthélemy, Marc; Barrat, Alain; Pastor-Satorras, Romualdo; Vespignani, Alessandro
2004-04-01
We study the effect of the connectivity pattern of complex networks on the propagation dynamics of epidemics. The growth time scale of outbreaks is inversely proportional to the network degree fluctuations, signaling that epidemics spread almost instantaneously in networks with scale-free degree distributions. This feature is associated with an epidemic propagation that follows a precise hierarchical dynamics. Once the highly connected hubs are reached, the infection pervades the network in a progressive cascade across smaller degree classes. The present results are relevant for the development of adaptive containment strategies.
Immunization of complex networks
NASA Astrophysics Data System (ADS)
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2002-03-01
Complex networks such as the sexual partnership web or the Internet often show a high degree of redundancy and heterogeneity in their connectivity properties. This peculiar connectivity provides an ideal environment for the spreading of infective agents. Here we show that the random uniform immunization of individuals does not lead to the eradication of infections in all complex networks. Namely, networks with scale-free properties do not acquire global immunity from major epidemic outbreaks even in the presence of unrealistically high densities of randomly immunized individuals. The absence of any critical immunization threshold is due to the unbounded connectivity fluctuations of scale-free networks. Successful immunization strategies can be developed only by taking into account the inhomogeneous connectivity properties of scale-free networks. In particular, targeted immunization schemes, based on the nodes' connectivity hierarchy, sharply lower the network's vulnerability to epidemic attacks.
Conformity hinders the evolution of cooperation on scale-free networks
NASA Astrophysics Data System (ADS)
Peña, Jorge; Volken, Henri; Pestelacci, Enea; Tomassini, Marco
2009-07-01
We study the effects of conformity, the tendency of humans to imitate locally common behaviors, in the evolution of cooperation when individuals occupy the vertices of a graph and engage in the one-shot prisoner’s dilemma or the snowdrift game with their neighbors. Two different graphs are studied: rings (one-dimensional lattices with cyclic boundary conditions) and scale-free networks of the Barabási-Albert type. The proposed evolutionary-graph model is studied both by means of Monte Carlo simulations and an extended pair-approximation technique. We find improved levels of cooperation when evolution is carried on rings and individuals imitate according to both the traditional payoff bias and a conformist bias. More importantly, we show that scale-free networks are no longer powerful amplifiers of cooperation when fair amounts of conformity are introduced in the imitation rules of the players. Such weakening of the cooperation-promoting abilities of scale-free networks is the result of a less biased flow of information in scale-free topologies, making hubs more susceptible of being influenced by less-connected neighbors.
Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity
NASA Astrophysics Data System (ADS)
Zhou, Tao; Liu, Jian-Guo; Bai, Wen-Jie; Chen, Guanrong; Wang, Bing-Hong
2006-11-01
In this paper, we propose a susceptible-infected model with identical infectivity, in which, at every time step, each node can only contact a constant number of neighbors. We implemented this model on scale-free networks, and found that the infected population grows in an exponential form with the time scale proportional to the spreading rate. Furthermore, by numerical simulation, we demonstrated that the targeted immunization of the present model is much less efficient than that of the standard susceptible-infected model. Finally, we investigate a fast spreading strategy when only local information is available. Different from the extensively studied path-finding strategy, the strategy preferring small-degree nodes is more efficient than that preferring large-degree nodes. Our results indicate the existence of an essential relationship between network traffic and network epidemic on scale-free networks.
Evolution of cooperation on complex networks with synergistic and discounted group interactions
NASA Astrophysics Data System (ADS)
Zhou, Lei; Li, Aming; Wang, Long
2015-06-01
In the real world individuals often engage in group interactions and their payoffs are determined by many factors, including the typical nonlinear interactions, i.e., synergy and discounting. Previous literatures assume that individual payoffs are either synergistically enhanced or discounted with the additional cooperators. Such settings ignore the interplay of these two factors, which is in sharp contrast with the fact that they ubiquitously coexist. Here we investigate how the coexistence and periodical switching of synergistic and discounted group interactions affect the evolution of cooperation on various complex networks. We show that scale-free networks facilitate the emergence of cooperation in terms of fixation probability for group interactions. With nonlinear interactions the heterogeneity of the degree acts as a double-edged sword: below the neutral drift it is the best for cooperation while above the neutral drift it instead provides the least opportunity for cooperators to be fixed. The advantages of the heterogeneity fade as interactive attributes switch between synergy and discounting, which suggests that the heterogeneity of population structures cannot favor cooperators in group interactions even with simple nonlinear interactions. Nonetheless, scale-free networks always guarantee cooperators the fastest rate of fixation. Our work implies that even very simple nonlinear group interactions could greatly shape the fixation probability and fixation time of cooperators in structured populations indicated by complex networks.
The Effects of Observation Errors on the Attack Vulnerability of Complex Networks
2012-11-01
more detail, to construct a true network we select a topology (erdos- renyi (Erdos & Renyi , 1959), scale-free (Barabási & Albert, 1999), small world...Efficiency of Scale-Free Networks: Error and Attack Tolerance. Physica A, Volume 320, pp. 622-642. 6. Erdos, P. & Renyi , A., 1959. On Random Graphs, I
Node-node correlations and transport properties in scale-free networks
NASA Astrophysics Data System (ADS)
Obregon, Bibiana; Guzman, Lev
2011-03-01
We study some transport properties of complex networks. We focus our attention on transport properties of scale-free and small-world networks and compare two types of transport: Electric and max-flow cases. In particular, we construct scale-free networks, with a given degree sequence, to estimate the distribution of conductances for different values of assortative/dissortative mixing. For the electric case we find that the distributions of conductances are affect ed by the assortative mixing of the network whereas for the max-flow case, the distributions almost do not show changes when node-node correlations are altered. Finally, we compare local and global transport in terms of the average conductance for the small-world (Watts-Strogatz) model
A probabilistic dynamic energy model for ad-hoc wireless sensors network with varying topology
NASA Astrophysics Data System (ADS)
Al-Husseini, Amal
In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the degree distribution and evolution perspective. In specific, we focus on implementation of a scale-free degree distribution topology for energy efficient WSNs. WSNs is an emerging technology that finds its applications in different areas such as environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous chemical monitoring in war zones. This technology allows us to collect data without human presence or intervention. Energy conservation/efficiency is one of the major issues in prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology control algorithms have been presented, but there is dearth of research focused on energy conservation/efficiency of WSNs. Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution and evolution perspective. Self-organization observed in natural and biological systems has been directly linked to their degree distribution. It is widely known that scale-free distribution bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these properties, we propose two complex network theoretic self-organizing models for adaptive WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into the constraints and limitations of WSNs. We developed simulation models to conduct numerical experiments and network analysis. The main objective of studying these models is to find ways to reducing energy usage of each node and balancing the overall network energy disrupted by faulty communication among nodes. The first model constructs the wireless sensor network relative to the degree (connectivity) and remaining energy of every individual node. We observed that it results in a scale-free network structure which has good fault tolerance properties in face of random node failures. The second model considers additional constraints on the maximum degree of each node as well as the energy consumption relative to degree changes. This gives more realistic results from a dynamical network perspective. It results in balanced network-wide energy consumption. The results show that networks constructed using the proposed approach have good properties for different centrality measures. The outcomes of the presented research are beneficial to building WSN control models with greater self-organization properties which leads to optimal energy consumption.
Yun, Anthony J; Lee, Patrick Y; Doux, John D
2006-01-01
A network constitutes an abstract description of the relationships among entities, respectively termed links and nodes. If a power law describes the probability distribution of the number of links per node, the network is said to be scale-free. Scale-free networks feature link clustering around certain hubs based on preferential attachments that emerge due either to merit or legacy. Biologic systems ranging from sub-atomic to ecosystems represent scale-free networks in which energy efficiency forms the basis of preferential attachments. This paradigm engenders a novel scale-free network theory of evolution based on energy efficiency. As environmental flux induces fitness dislocations and compels a new meritocracy, new merit-based hubs emerge, previously merit-based hubs become legacy hubs, and network recalibration occurs to achieve system optimization. To date, Darwinian evolution, characterized by innovation sampling, variation, and selection through filtered termination, has enabled biologic progress through optimization of energy efficiency. However, as humans remodel their environment, increasing the level of unanticipated fitness dislocations and inducing evolutionary stress, the tendency of networks to exhibit inertia and retain legacy hubs engender maladaptations. Many modern diseases may fundamentally derive from these evolutionary displacements. Death itself may constitute a programmed adaptation, terminating individuals who represent legacy hubs and recalibrating the network. As memes replace genes as the basis of innovation, death itself has become a legacy hub. Post-Darwinian evolution may favor indefinite persistence to optimize energy efficiency. We describe strategies to reprogram or decommission legacy hubs that participate in human disease and death.
Irreversible opinion spreading on scale-free networks
NASA Astrophysics Data System (ADS)
Candia, Julián
2007-02-01
We study the dynamical and critical behavior of a model for irreversible opinion spreading on Barabási-Albert (BA) scale-free networks by performing extensive Monte Carlo simulations. The opinion spreading within an inhomogeneous society is investigated by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. The deposition dynamics, which is studied as a function of the degree of the occupied sites, shows evidence for the leading role played by hubs in the growth process. Systems of finite size grow either ordered or disordered, depending on the temperature. By means of standard finite-size scaling procedures, the effective order-disorder phase transitions are found to persist in the thermodynamic limit. This critical behavior, however, is absent in related equilibrium spin systems such as the Ising model on BA scale-free networks, which in the thermodynamic limit only displays a ferromagnetic phase. The dependence of these results on the degree exponent is also discussed for the case of uncorrelated scale-free networks.
Utilizing Maximal Independent Sets as Dominating Sets in Scale-Free Networks
NASA Astrophysics Data System (ADS)
Derzsy, N.; Molnar, F., Jr.; Szymanski, B. K.; Korniss, G.
Dominating sets provide key solution to various critical problems in networked systems, such as detecting, monitoring, or controlling the behavior of nodes. Motivated by graph theory literature [Erdos, Israel J. Math. 4, 233 (1966)], we studied maximal independent sets (MIS) as dominating sets in scale-free networks. We investigated the scaling behavior of the size of MIS in artificial scale-free networks with respect to multiple topological properties (size, average degree, power-law exponent, assortativity), evaluated its resilience to network damage resulting from random failure or targeted attack [Molnar et al., Sci. Rep. 5, 8321 (2015)], and compared its efficiency to previously proposed dominating set selection strategies. We showed that, despite its small set size, MIS provides very high resilience against network damage. Using extensive numerical analysis on both synthetic and real-world (social, biological, technological) network samples, we demonstrate that our method effectively satisfies four essential requirements of dominating sets for their practical applicability on large-scale real-world systems: 1.) small set size, 2.) minimal network information required for their construction scheme, 3.) fast and easy computational implementation, and 4.) resiliency to network damage. Supported by DARPA, DTRA, and NSF.
Modeling the coevolution of topology and traffic on weighted technological networks
NASA Astrophysics Data System (ADS)
Xie, Yan-Bo; Wang, Wen-Xu; Wang, Bing-Hong
2007-02-01
For many technological networks, the network structures and the traffic taking place on them mutually interact. The demands of traffic increment spur the evolution and growth of the networks to maintain their normal and efficient functioning. In parallel, a change of the network structure leads to redistribution of the traffic. In this paper, we perform an extensive numerical and analytical study, extending results of Wang [Phys. Rev. Lett. 94, 188702 (2005)]. By introducing a general strength-coupling interaction driven by the traffic increment between any pair of vertices, our model generates networks of scale-free distributions of strength, weight, and degree. In particular, the obtained nonlinear correlation between vertex strength and degree, and the disassortative property demonstrate that the model is capable of characterizing weighted technological networks. Moreover, the generated graphs possess both dense clustering structures and an anticorrelation between vertex clustering and degree, which are widely observed in real-world networks. The corresponding theoretical predictions are well consistent with simulation results.
Evolution of Controllability in Interbank Networks
Delpini, Danilo; Battiston, Stefano; Riccaboni, Massimo; Gabbi, Giampaolo; Pammolli, Fabio; Caldarelli, Guido
2013-01-01
The Statistical Physics of Complex Networks has recently provided new theoretical tools for policy makers. Here we extend the notion of network controllability to detect the financial institutions, i.e. the drivers, that are most crucial to the functioning of an interbank market. The system we investigate is a paradigmatic case study for complex networks since it undergoes dramatic structural changes over time and links among nodes can be observed at several time scales. We find a scale-free decay of the fraction of drivers with increasing time resolution, implying that policies have to be adjusted to the time scales in order to be effective. Moreover, drivers are often not the most highly connected “hub” institutions, nor the largest lenders, contrary to the results of other studies. Our findings contribute quantitative indicators which can support regulators in developing more effective supervision and intervention policies. PMID:23568033
Bizhani, Golnoosh; Grassberger, Peter; Paczuski, Maya
2011-12-01
We study the statistical behavior under random sequential renormalization (RSR) of several network models including Erdös-Rényi (ER) graphs, scale-free networks, and an annealed model related to ER graphs. In RSR the network is locally coarse grained by choosing at each renormalization step a node at random and joining it to all its neighbors. Compared to previous (quasi-)parallel renormalization methods [Song et al., Nature (London) 433, 392 (2005)], RSR allows a more fine-grained analysis of the renormalization group (RG) flow and unravels new features that were not discussed in the previous analyses. In particular, we find that all networks exhibit a second-order transition in their RG flow. This phase transition is associated with the emergence of a giant hub and can be viewed as a new variant of percolation, called agglomerative percolation. We claim that this transition exists also in previous graph renormalization schemes and explains some of the scaling behavior seen there. For critical trees it happens as N/N(0) → 0 in the limit of large systems (where N(0) is the initial size of the graph and N its size at a given RSR step). In contrast, it happens at finite N/N(0) in sparse ER graphs and in the annealed model, while it happens for N/N(0) → 1 on scale-free networks. Critical exponents seem to depend on the type of the graph but not on the average degree and obey usual scaling relations for percolation phenomena. For the annealed model they agree with the exponents obtained from a mean-field theory. At late times, the networks exhibit a starlike structure in agreement with the results of Radicchi et al. [Phys. Rev. Lett. 101, 148701 (2008)]. While degree distributions are of main interest when regarding the scheme as network renormalization, mass distributions (which are more relevant when considering "supernodes" as clusters) are much easier to study using the fast Newman-Ziff algorithm for percolation, allowing us to obtain very high statistics.
Entanglement percolation on a quantum internet with scale-free and clustering characters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Liang; Zhu Shiqun
The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.
Entanglement percolation on a quantum internet with scale-free and clustering characters
NASA Astrophysics Data System (ADS)
Wu, Liang; Zhu, Shiqun
2011-11-01
The applicability of entanglement percolation protocol to real Internet structure is investigated. If the current Internet can be used directly in the quantum regime, the protocol can provide a way to establish long-distance entanglement when the links are pure nonmaximally entangled states. This applicability is primarily due to the combination of scale-free degree distribution and a high level of clustering, both of which are widely observed in many natural and artificial networks including the current Internet. It suggests that the topology of real Internet may play an important role in entanglement establishment.
Cluster synchronization induced by one-node clusters in networks with asymmetric negative couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianbao; Ma, Zhongjun, E-mail: mzj1234402@163.com; Zhang, Gang
2013-12-15
This paper deals with the problem of cluster synchronization in networks with asymmetric negative couplings. By decomposing the coupling matrix into three matrices, and employing Lyapunov function method, sufficient conditions are derived for cluster synchronization. The conditions show that the couplings of multi-node clusters from one-node clusters have beneficial effects on cluster synchronization. Based on the effects of the one-node clusters, an effective and universal control scheme is put forward for the first time. The obtained results may help us better understand the relation between cluster synchronization and cluster structures of the networks. The validity of the control scheme ismore » confirmed through two numerical simulations, in a network with no cluster structure and in a scale-free network.« less
NASA Astrophysics Data System (ADS)
Wang, Xiao Juan; Guo, Shi Ze; Jin, Lei; Chen, Mo
We study the structural robustness of the scale free network against the cascading failure induced by overload. In this paper, a failure mechanism based on betweenness-degree ratio distribution is proposed. In the cascading failure model we built the initial load of an edge which is proportional to the node betweenness of its ends. During the edge random deletion, we find a phase transition. Then based on the phase transition, we divide the process of the cascading failure into two parts: the robust area and the vulnerable area, and define the corresponding indicator to measure the performance of the networks in both areas. From derivation, we find that the vulnerability of the network is determined by the distribution of betweenness-degree ratio. After that we use the connection between the node ability coefficient and distribution of betweenness-degree ratio to explain the cascading failure mechanism. In simulations, we verify the correctness of our derivations. By changing connecting preferences, we find scale free networks with a slight assortativity, which performs better both in robust area and vulnerable area.
Scale-free characteristics of random networks: the topology of the world-wide web
NASA Astrophysics Data System (ADS)
Barabási, Albert-László; Albert, Réka; Jeong, Hawoong
2000-06-01
The world-wide web forms a large directed graph, whose vertices are documents and edges are links pointing from one document to another. Here we demonstrate that despite its apparent random character, the topology of this graph has a number of universal scale-free characteristics. We introduce a model that leads to a scale-free network, capturing in a minimal fashion the self-organization processes governing the world-wide web.
Emergence of Scale-Free Syntax Networks
NASA Astrophysics Data System (ADS)
Corominas-Murtra, Bernat; Valverde, Sergi; Solé, Ricard V.
The evolution of human language allowed the efficient propagation of nongenetic information, thus creating a new form of evolutionary change. Language development in children offers the opportunity of exploring the emergence of such complex communication system and provides a window to understanding the transition from protolanguage to language. Here we present the first analysis of the emergence of syntax in terms of complex networks. A previously unreported, sharp transition is shown to occur around two years of age from a (pre-syntactic) tree-like structure to a scale-free, small world syntax network. The observed combinatorial patterns provide valuable data to understand the nature of the cognitive processes involved in the acquisition of syntax, introducing a new ingredient to understand the possible biological endowment of human beings which results in the emergence of complex language. We explore this problem by using a minimal, data-driven model that is able to capture several statistical traits, but some key features related to the emergence of syntactic complexity display important divergences.
Epidemic dynamics and endemic states in complex networks
NASA Astrophysics Data System (ADS)
Pastor-Satorras, Romualdo; Vespignani, Alessandro
2001-06-01
We study by analytical methods and large scale simulations a dynamical model for the spreading of epidemics in complex networks. In networks with exponentially bounded connectivity we recover the usual epidemic behavior with a threshold defining a critical point below that the infection prevalence is null. On the contrary, on a wide range of scale-free networks we observe the absence of an epidemic threshold and its associated critical behavior. This implies that scale-free networks are prone to the spreading and the persistence of infections whatever spreading rate the epidemic agents might possess. These results can help understanding computer virus epidemics and other spreading phenomena on communication and social networks.
An optimal routing strategy on scale-free networks
NASA Astrophysics Data System (ADS)
Yang, Yibo; Zhao, Honglin; Ma, Jinlong; Qi, Zhaohui; Zhao, Yongbin
Traffic is one of the most fundamental dynamical processes in networked systems. With the traditional shortest path routing (SPR) protocol, traffic congestion is likely to occur on the hub nodes on scale-free networks. In this paper, we propose an improved optimal routing (IOR) strategy which is based on the betweenness centrality and the degree centrality of nodes in the scale-free networks. With the proposed strategy, the routing paths can accurately bypass hub nodes in the network to enhance the transport efficiency. Simulation results show that the traffic capacity as well as some other indexes reflecting transportation efficiency are further improved with the IOR strategy. Owing to the significantly improved traffic performance, this study is helpful to design more efficient routing strategies in communication or transportation systems.
Scale-free networks as an epiphenomenon of memory
NASA Astrophysics Data System (ADS)
Caravelli, F.; Hamma, A.; Di Ventra, M.
2015-01-01
Many realistic networks are scale free, with small characteristic path lengths, high clustering, and power law in their degree distribution. They can be obtained by dynamical networks in which a preferential attachment process takes place. However, this mechanism is non-local, in the sense that it requires knowledge of the whole graph in order for the graph to be updated. Instead, if preferential attachment and realistic networks occur in physical systems, these features need to emerge from a local model. In this paper, we propose a local model and show that a possible ingredient (which is often underrated) for obtaining scale-free networks with local rules is memory. Such a model can be realised in solid-state circuits, using non-linear passive elements with memory such as memristors, and thus can be tested experimentally.
Drastic disorder-induced reduction of signal amplification in scale-free networks.
Chacón, Ricardo; Martínez, Pedro J
2015-07-01
Understanding information transmission across a network is a fundamental task for controlling and manipulating both biological and manmade information-processing systems. Here we show how topological resonant-like amplification effects in scale-free networks of signaling devices are drastically reduced when phase disorder in the external signals is considered. This is demonstrated theoretically by means of a starlike network of overdamped bistable systems, and confirmed numerically by simulations of scale-free networks of such systems. The taming effect of the phase disorder is found to be sensitive to the amplification's strength, while the topology-induced amplification mechanism is robust against this kind of quenched disorder in the sense that it does not significantly change the values of the coupling strength where amplification is maximum in its absence.
Impulse-induced optimum signal amplification in scale-free networks.
Martínez, Pedro J; Chacón, Ricardo
2016-04-01
Optimizing information transmission across a network is an essential task for controlling and manipulating generic information-processing systems. Here, we show how topological amplification effects in scale-free networks of signaling devices are optimally enhanced when the impulse transmitted by periodic external signals (time integral over two consecutive zeros) is maximum. This is demonstrated theoretically by means of a star-like network of overdamped bistable systems subjected to generic zero-mean periodic signals and confirmed numerically by simulations of scale-free networks of such systems. Our results show that the enhancer effect of increasing values of the signal's impulse is due to a correlative increase of the energy transmitted by the periodic signals, while it is found to be resonant-like with respect to the topology-induced amplification mechanism.
Complex quantum network geometries: Evolution and phase transitions
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Complex quantum network geometries: Evolution and phase transitions.
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Stability and dynamical properties of material flow systems on random networks
NASA Astrophysics Data System (ADS)
Anand, K.; Galla, T.
2009-04-01
The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.
NASA Astrophysics Data System (ADS)
Scholz, Jan; Dejori, Mathäus; Stetter, Martin; Greiner, Martin
2005-05-01
The impact of observational noise on the analysis of scale-free networks is studied. Various noise sources are modeled as random link removal, random link exchange and random link addition. Emphasis is on the resulting modifications for the node-degree distribution and for a functional ranking based on betweenness centrality. The implications for estimated gene-expressed networks for childhood acute lymphoblastic leukemia are discussed.
Hub nodes inhibit the outbreak of epidemic under voluntary vaccination
NASA Astrophysics Data System (ADS)
Zhang, Haifeng; Zhang, Jie; Zhou, Changsong; Small, Michael; Wang, Binghong
2010-02-01
It is commonly believed that epidemic spreading on scale-free networks is difficult to control and that the disease can spread even with a low infection rate, lacking an epidemic threshold. In this paper, we study epidemic spreading on complex networks under the framework of game theory, in which a voluntary vaccination strategy is incorporated. In particular, individuals face the 'dilemma' of vaccination: they have to decide whether or not to vaccinate according to the trade-off between the risk and the side effects or cost of vaccination. Remarkably and quite excitingly, we find that disease outbreak can be more effectively inhibited on scale-free networks than on random networks. This is because the hub nodes of scale-free networks are more inclined to take self-vaccination after balancing the pros and cons. This result is encouraging as it indicates that real-world networks, which are often claimed to be scale free, can be favorably and easily controlled under voluntary vaccination. Our work provides a way of understanding how to prevent the outbreak of diseases under voluntary vaccination, and is expected to provide valuable information on effective disease control and appropriate decision-making.
Inefficient epidemic spreading in scale-free networks
NASA Astrophysics Data System (ADS)
Piccardi, Carlo; Casagrandi, Renato
2008-02-01
Highly heterogeneous degree distributions yield efficient spreading of simple epidemics through networks, but can be inefficient with more complex epidemiological processes. We study diseases with nonlinear force of infection whose prevalences can abruptly collapse to zero while decreasing the transmission parameters. We find that scale-free networks can be unable to support diseases that, on the contrary, are able to persist at high endemic levels in homogeneous networks with the same average degree.
Evolving Scale-Free Networks by Poisson Process: Modeling and Degree Distribution.
Feng, Minyu; Qu, Hong; Yi, Zhang; Xie, Xiurui; Kurths, Jurgen
2016-05-01
Since the great mathematician Leonhard Euler initiated the study of graph theory, the network has been one of the most significant research subject in multidisciplinary. In recent years, the proposition of the small-world and scale-free properties of complex networks in statistical physics made the network science intriguing again for many researchers. One of the challenges of the network science is to propose rational models for complex networks. In this paper, in order to reveal the influence of the vertex generating mechanism of complex networks, we propose three novel models based on the homogeneous Poisson, nonhomogeneous Poisson and birth death process, respectively, which can be regarded as typical scale-free networks and utilized to simulate practical networks. The degree distribution and exponent are analyzed and explained in mathematics by different approaches. In the simulation, we display the modeling process, the degree distribution of empirical data by statistical methods, and reliability of proposed networks, results show our models follow the features of typical complex networks. Finally, some future challenges for complex systems are discussed.
Spreading dynamics of a SIQRS epidemic model on scale-free networks
NASA Astrophysics Data System (ADS)
Li, Tao; Wang, Yuanmei; Guan, Zhi-Hong
2014-03-01
In order to investigate the influence of heterogeneity of the underlying networks and quarantine strategy on epidemic spreading, a SIQRS epidemic model on the scale-free networks is presented. Using the mean field theory the spreading dynamics of the virus is analyzed. The spreading critical threshold and equilibria are derived. Theoretical results indicate that the critical threshold value is significantly dependent on the topology of the underlying networks and quarantine rate. The existence of equilibria is determined by threshold value. The stability of disease-free equilibrium and the permanence of the disease are proved. Numerical simulations confirmed the analytical results.
Extortion provides alternative routes to the evolution of cooperation in structured populations
NASA Astrophysics Data System (ADS)
Xu, Xiongrui; Rong, Zhihai; Wu, Zhi-Xi; Zhou, Tao; Tse, Chi Kong
2017-05-01
In this paper, we study the evolution of cooperation in structured populations (individuals are located on either a regular lattice or a scale-free network) in the context of repeated games by involving three types of strategies, namely, unconditional cooperation, unconditional defection, and extortion. The strategy updating of the players is ruled by the replicator-like dynamics. We find that extortion strategies can act as catalysts to promote the emergence of cooperation in structured populations via different mechanisms. Specifically, on regular lattice, extortioners behave as both a shield, which can enwrap cooperators inside and keep them away from defectors, and a spear, which can defeat those surrounding defectors with the help of the neighboring cooperators. Particularly, the enhancement of cooperation displays a resonance-like behavior, suggesting the existence of optimal extortion strength mostly favoring the evolution of cooperation, which is in good agreement with the predictions from the generalized mean-field approximation theory. On scale-free network, the hubs, who are likely occupied by extortioners or defectors at the very beginning, are then prone to be conquered by cooperators on small-degree nodes as time elapses, thus establishing a bottom-up mechanism for the emergence and maintenance of cooperation.
Epidemic outbreaks in growing scale-free networks with local structure
NASA Astrophysics Data System (ADS)
Ni, Shunjiang; Weng, Wenguo; Shen, Shifei; Fan, Weicheng
2008-09-01
The class of generative models has already attracted considerable interest from researchers in recent years and much expanded the original ideas described in BA model. Most of these models assume that only one node per time step joins the network. In this paper, we grow the network by adding n interconnected nodes as a local structure into the network at each time step with each new node emanating m new edges linking the node to the preexisting network by preferential attachment. This successfully generates key features observed in social networks. These include power-law degree distribution pk∼k, where μ=(n-1)/m is a tuning parameter defined as the modularity strength of the network, nontrivial clustering, assortative mixing, and modular structure. Moreover, all these features are dependent in a similar way on the parameter μ. We then study the susceptible-infected epidemics on this network with identical infectivity, and find that the initial epidemic behavior is governed by both of the infection scheme and the network structure, especially the modularity strength. The modularity of the network makes the spreading velocity much lower than that of the BA model. On the other hand, increasing the modularity strength will accelerate the propagation velocity.
Complexity analysis on public transport networks of 97 large- and medium-sized cities in China
NASA Astrophysics Data System (ADS)
Tian, Zhanwei; Zhang, Zhuo; Wang, Hongfei; Ma, Li
2018-04-01
The traffic situation in Chinese urban areas is continuing to deteriorate. To make a better planning and designing of the public transport system, it is necessary to make profound research on the structure of urban public transport networks (PTNs). We investigate 97 large- and medium-sized cities’ PTNs in China, construct three types of network models — bus stop network, bus transit network and bus line network, then analyze the structural characteristics of them. It is revealed that bus stop network is small-world and scale-free, bus transit network and bus line network are both small-world. Betweenness centrality of each city’s PTN shows similar distribution pattern, although these networks’ size is various. When classifying cities according to the characteristics of PTNs or economic development level, the results are similar. It means that the development of cities’ economy and transport network has a strong correlation, PTN expands in a certain model with the development of economy.
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia (Technical Monitor); Kuby, Michael; Tierney, Sean; Roberts, Tyler; Upchurch, Christopher
2005-01-01
This report reviews six classes of models that are used for studying transportation network topologies. The report is motivated by two main questions. First, what can the "new science" of complex networks (scale-free, small-world networks) contribute to our understanding of transport network structure, compared to more traditional methods? Second, how can geographic information systems (GIS) contribute to studying transport networks? The report defines terms that can be used to classify different kinds of models by their function, composition, mechanism, spatial and temporal dimensions, certainty, linearity, and resolution. Six broad classes of models for analyzing transport network topologies are then explored: GIS; static graph theory; complex networks; mathematical programming; simulation; and agent-based modeling. Each class of models is defined and classified according to the attributes introduced earlier. The paper identifies some typical types of research questions about network structure that have been addressed by each class of model in the literature.
Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains
NASA Astrophysics Data System (ADS)
Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi
2013-03-01
We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.
Bio-Inspired Computation: Clock-Free, Grid-Free, Scale-Free and Symbol Free
2015-06-11
for Prediction Tasks in Spiking Neural Networks ." Artificial Neural Networks and Machine Learning–ICANN 2014. Springer, 2014. pp 635-642. Gibson, T...Henderson, JA and Wiles, J. "Predicting temporal sequences using an event-based spiking neural network incorporating learnable delays." IEEE...Adelaide (2014 Jan). Gibson, T and Wiles, J "Predicting temporal sequences using an event-based spiking neural network incorporating learnable delays" at
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Lu, Lan; Cao, Ke-Cai; Zhang, Si-Ying
2010-04-01
In this paper, the relations of the network topology and the moving consensus of multi-agent systems are studied. A consensus-prestissimo scale-free network model with the static preferential-consensus attachment is presented on the rewired link of the regular network. The effects of the static preferential-consensus BA network on the algebraic connectivity of the topology graph are compared with the regular network. The robustness gain to delay is analyzed for variable network topology with the same scale. The time to reach the consensus is studied for the dynamic network with and without communication delays. By applying the computer simulations, it is validated that the speed of the convergence of multi-agent systems can be greatly improved in the preferential-consensus BA network model with different configuration.
Bret, Céline; Sueur, Cédric; Ngoubangoye, Barthélémy; Verrier, Delphine; Deneubourg, Jean-Louis; Petit, Odile
2013-01-01
The difficulty involved in following mandrills in the wild means that very little is known about social structure in this species. Most studies initially considered mandrill groups to be an aggregation of one-male/multifemale units, with males occupying central positions in a structure similar to those observed in the majority of baboon species. However, a recent study hypothesized that mandrills form stable groups with only two or three permanent males, and that females occupy more central positions than males within these groups. We used social network analysis methods to examine how a semi-free ranging group of 19 mandrills is structured. We recorded all dyads of individuals that were in contact as a measure of association. The betweenness and the eigenvector centrality for each individual were calculated and correlated to kinship, age and dominance. Finally, we performed a resilience analysis by simulating the removal of individuals displaying the highest betweenness and eigenvector centrality values. We found that related dyads were more frequently associated than unrelated dyads. Moreover, our results showed that the cumulative distribution of individual betweenness and eigenvector centrality followed a power function, which is characteristic of scale-free networks. This property showed that some group members, mostly females, occupied a highly central position. Finally, the resilience analysis showed that the removal of the two most central females split the network into small subgroups and increased the network diameter. Critically, this study confirms that females appear to occupy more central positions than males in mandrill groups. Consequently, these females appear to be crucial for group cohesion and probably play a pivotal role in this species.
Bret, Céline; Sueur, Cédric; Ngoubangoye, Barthélémy; Verrier, Delphine; Deneubourg, Jean-Louis; Petit, Odile
2013-01-01
The difficulty involved in following mandrills in the wild means that very little is known about social structure in this species. Most studies initially considered mandrill groups to be an aggregation of one-male/multifemale units, with males occupying central positions in a structure similar to those observed in the majority of baboon species. However, a recent study hypothesized that mandrills form stable groups with only two or three permanent males, and that females occupy more central positions than males within these groups. We used social network analysis methods to examine how a semi-free ranging group of 19 mandrills is structured. We recorded all dyads of individuals that were in contact as a measure of association. The betweenness and the eigenvector centrality for each individual were calculated and correlated to kinship, age and dominance. Finally, we performed a resilience analysis by simulating the removal of individuals displaying the highest betweenness and eigenvector centrality values. We found that related dyads were more frequently associated than unrelated dyads. Moreover, our results showed that the cumulative distribution of individual betweenness and eigenvector centrality followed a power function, which is characteristic of scale-free networks. This property showed that some group members, mostly females, occupied a highly central position. Finally, the resilience analysis showed that the removal of the two most central females split the network into small subgroups and increased the network diameter. Critically, this study confirms that females appear to occupy more central positions than males in mandrill groups. Consequently, these females appear to be crucial for group cohesion and probably play a pivotal role in this species. PMID:24340074
Evolving network with different edges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Jie; Department of Mathematics and Computer Science, Clarkson University, Potsdam, New York 13699; Ge Yizhi
2007-10-15
We propose a scale-free network similar to Barabasi-Albert networks but with two different types of edges. This model is based on the idea that in many cases there are more than one kind of link in a network and when a new node enters the network both old nodes and different kinds of links compete to obtain it. The degree distribution of both the total degree and the degree of each type of edge is analyzed and found to be scale-free. Simulations are shown to confirm these results.
Okada, D; Endo, S; Matsuda, H; Ogawa, S; Taniguchi, Y; Katsuta, T; Watanabe, T; Iwaisaki, H
2018-05-12
Genome-wide association studies (GWAS) of quantitative traits have detected numerous genetic associations, but they encounter difficulties in pinpointing prominent candidate genes and inferring gene networks. The present study used a systems genetics approach integrating GWAS results with external RNA-expression data to detect candidate gene networks in feed utilization and growth traits of Japanese Black cattle, which are matters of concern. A SNP co-association network was derived from significant correlations between SNPs with effects estimated by GWAS across seven phenotypic traits. The resulting network genes contained significant numbers of annotations related to the traits. Using bovine transcriptome data from a public database, an RNA co-expression network was inferred based on the similarity of expression patterns across different tissues. An intersection network was then generated by superimposing the SNP and RNA networks and extracting shared interactions. This intersection network contained four tissue-specific modules: nervous system, reproductive system, muscular system, and glands. To characterize the structure (topographical properties) of the three networks, their scale-free properties were evaluated, which revealed that the intersection network was the most scale-free. In the sub-network containing the most connected transcription factors (URI1, ROCK2 and ETV6), most genes were widely expressed across tissues, and genes previously shown to be involved in the traits were found. Results indicated that the current approach might be used to construct a gene network that better reflects biological information, providing encouragement for the genetic dissection of economically important quantitative traits.
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
Error-correcting codes on scale-free networks
NASA Astrophysics Data System (ADS)
Kim, Jung-Hoon; Ko, Young-Jo
2004-06-01
We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-density parity-check codes with the highest performance known to date have degree distributions well fitted by a power-law function p (k) ˜ k-γ with γ close to 2, which suggests that codes built on scale-free networks with appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the form p (k) = C (k+α)-γ , with k⩾2 and suitable selection of the parameters α and γ , indeed have very good error-correction capabilities.
Insensitive dependence of delay-induced oscillation death on complex networks
NASA Astrophysics Data System (ADS)
Zou, Wei; Zheng, Xing; Zhan, Meng
2011-06-01
Oscillation death (also called amplitude death), a phenomenon of coupling induced stabilization of an unstable equilibrium, is studied for an arbitrary symmetric complex network with delay-coupled oscillators, and the critical conditions for its linear stability are explicitly obtained. All cases including one oscillator, a pair of oscillators, regular oscillator networks, and complex oscillator networks with delay feedback coupling, can be treated in a unified form. For an arbitrary symmetric network, we find that the corresponding smallest eigenvalue of the Laplacian λN (0 >λN ≥ -1) completely determines the death island, and as λN is located within the insensitive parameter region for nearly all complex networks, the death island keeps nearly the largest and does not sensitively depend on the complex network structures. This insensitivity effect has been tested for many typical complex networks including Watts-Strogatz (WS) and Newman-Watts (NW) small world networks, general scale-free (SF) networks, Erdos-Renyi (ER) random networks, geographical networks, and networks with community structures and is expected to be helpful for our understanding of dynamics on complex networks.
Networks as Renormalized Models for Emergent Behavior in Physical Systems
NASA Astrophysics Data System (ADS)
Paczuski, Maya
2005-09-01
Networks are paradigms for describing complex biological, social and technological systems. Here I argue that networks provide a coherent framework to construct coarsegrained models for many different physical systems. To elucidate these ideas, I discuss two long-standing problems. The first concerns the structure and dynamics of magnetic fields in the solar corona, as exemplified by sunspots that startled Galileo almost 400 years ago. We discovered that the magnetic structure of the corona embodies a scale free network, with spots at all scales. A network model representing the three-dimensional geometry of magnetic fields, where links rewire and nodes merge when they collide in space, gives quantitative agreement with available data, and suggests new measurements. Seismicity is addressed in terms of relations between events without imposing space-time windows. A metric estimates the correlation between any two earthquakes. Linking strongly correlated pairs, and ignoring pairs with weak correlation organizes the spatio-temporal process into a sparse, directed, weighted network. New scaling laws for seismicity are found. For instance, the aftershock decay rate decreases as ~ 1/t in time up to a correlation time, tomori. An estimate from the data gives tomori to be about one year for small magnitude 3 earthquakes, about 1400 years for the Landers event, and roughly 26,000 years for the earthquake causing the 2004 Asian tsunami. Our results confirm Kagan's conjecture that aftershocks can rumble on for centuries.
Expanding protein universe and its origin from the biological Big Bang.
Dokholyan, Nikolay V; Shakhnovich, Boris; Shakhnovich, Eugene I
2002-10-29
The bottom-up approach to understanding the evolution of organisms is by studying molecular evolution. With the large number of protein structures identified in the past decades, we have discovered peculiar patterns that nature imprints on protein structural space in the course of evolution. In particular, we have discovered that the universe of protein structures is organized hierarchically into a scale-free network. By understanding the cause of these patterns, we attempt to glance at the very origin of life.
Criticality of forcing directions on the fragmentation and resilience of grid networks.
Abundo, Cheryl; Monterola, Christopher; Legara, Erika Fille
2014-08-27
A general framework for probing the dynamic evolution of spatial networks comprised of nodes applying force amongst each other is presented. Aside from the already reported magnitude of forces and elongation thresholds, we show that preservation of links in a network is also crucially dependent on how nodes are connected and how edges are directed. We demonstrate that the time it takes for the networks to reach its equilibrium network structure follows a robust power law relationship consistent with Basquin's law with an exponent that can be tuned by changing only the force directions. Further, we illustrate that networks with different connection structures, node positions and edge directions have different Basquin's exponent which can be used to distinguish spatial directed networks from each other. Using an extensive waiting time simulation that spans up to over 16 orders of magnitude, we establish that the presence of memory combined with the scale-free bursty dynamics of edge breaking at the micro level leads to the evident macroscopic power law distribution of network lifetime.
Emergence of structural patterns out of synchronization in networks with competitive interactions
NASA Astrophysics Data System (ADS)
Assenza, Salvatore; Gutiérrez, Ricardo; Gómez-Gardeñes, Jesús; Latora, Vito; Boccaletti, Stefano
2011-09-01
Synchronization is a collective phenomenon occurring in systems of interacting units, and is ubiquitous in nature, society and technology. Recent studies have enlightened the important role played by the interaction topology on the emergence of synchronized states. However, most of these studies neglect that real world systems change their interaction patterns in time. Here, we analyze synchronization features in networks in which structural and dynamical features co-evolve. The feedback of the node dynamics on the interaction pattern is ruled by the competition of two mechanisms: homophily (reinforcing those interactions with other correlated units in the graph) and homeostasis (preserving the value of the input strength received by each unit). The competition between these two adaptive principles leads to the emergence of key structural properties observed in real world networks, such as modular and scale-free structures, together with a striking enhancement of local synchronization in systems with no global order.
Modeling structure and resilience of the dark network.
De Domenico, Manlio; Arenas, Alex
2017-02-01
While the statistical and resilience properties of the Internet are no longer changing significantly across time, the Darknet, a network devoted to keep anonymous its traffic, still experiences rapid changes to improve the security of its users. Here we study the structure of the Darknet and find that its topology is rather peculiar, being characterized by a nonhomogeneous distribution of connections, typical of scale-free networks; very short path lengths and high clustering, typical of small-world networks; and lack of a core of highly connected nodes. We propose a model to reproduce such features, demonstrating that the mechanisms used to improve cybersecurity are responsible for the observed topology. Unexpectedly, we reveal that its peculiar structure makes the Darknet much more resilient than the Internet (used as a benchmark for comparison at a descriptive level) to random failures, targeted attacks, and cascade failures, as a result of adaptive changes in response to the attempts of dismantling the network across time.
Modeling structure and resilience of the dark network
NASA Astrophysics Data System (ADS)
De Domenico, Manlio; Arenas, Alex
2017-02-01
While the statistical and resilience properties of the Internet are no longer changing significantly across time, the Darknet, a network devoted to keep anonymous its traffic, still experiences rapid changes to improve the security of its users. Here we study the structure of the Darknet and find that its topology is rather peculiar, being characterized by a nonhomogeneous distribution of connections, typical of scale-free networks; very short path lengths and high clustering, typical of small-world networks; and lack of a core of highly connected nodes. We propose a model to reproduce such features, demonstrating that the mechanisms used to improve cybersecurity are responsible for the observed topology. Unexpectedly, we reveal that its peculiar structure makes the Darknet much more resilient than the Internet (used as a benchmark for comparison at a descriptive level) to random failures, targeted attacks, and cascade failures, as a result of adaptive changes in response to the attempts of dismantling the network across time.
A simple model clarifies the complicated relationships of complex networks
Zheng, Bojin; Wu, Hongrun; Kuang, Li; Qin, Jun; Du, Wenhua; Wang, Jianmin; Li, Deyi
2014-01-01
Real-world networks such as the Internet and WWW have many common traits. Until now, hundreds of models were proposed to characterize these traits for understanding the networks. Because different models used very different mechanisms, it is widely believed that these traits origin from different causes. However, we find that a simple model based on optimisation can produce many traits, including scale-free, small-world, ultra small-world, Delta-distribution, compact, fractal, regular and random networks. Moreover, by revising the proposed model, the community-structure networks are generated. By this model and the revised versions, the complicated relationships of complex networks are illustrated. The model brings a new universal perspective to the understanding of complex networks and provide a universal method to model complex networks from the viewpoint of optimisation. PMID:25160506
Bidirectional selection between two classes in complex social networks.
Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong
2014-12-19
The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.
The emergence of overlapping scale-free genetic architecture in digital organisms.
Gerlee, P; Lundh, T
2008-01-01
We have studied the evolution of genetic architecture in digital organisms and found that the gene overlap follows a scale-free distribution, which is commonly found in metabolic networks of many organisms. Our results show that the slope of the scale-free distribution depends on the mutation rate and that the gene development is driven by expansion of already existing genes, which is in direct correspondence to the preferential growth algorithm that gives rise to scale-free networks. To further validate our results we have constructed a simple model of gene development, which recapitulates the results from the evolutionary process and shows that the mutation rate affects the tendency of genes to cluster. In addition we could relate the slope of the scale-free distribution to the genetic complexity of the organisms and show that a high mutation rate gives rise to a more complex genetic architecture.
An Adaptive Complex Network Model for Brain Functional Networks
Gomez Portillo, Ignacio J.; Gleiser, Pablo M.
2009-01-01
Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902
New scaling relation for information transfer in biological networks
Kim, Hyunju; Davies, Paul; Walker, Sara Imari
2015-01-01
We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781–4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös–Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties. PMID:26701883
Epidemic spreading on adaptively weighted scale-free networks.
Sun, Mengfeng; Zhang, Haifeng; Kang, Huiyan; Zhu, Guanghu; Fu, Xinchu
2017-04-01
We introduce three modified SIS models on scale-free networks that take into account variable population size, nonlinear infectivity, adaptive weights, behavior inertia and time delay, so as to better characterize the actual spread of epidemics. We develop new mathematical methods and techniques to study the dynamics of the models, including the basic reproduction number, and the global asymptotic stability of the disease-free and endemic equilibria. We show the disease-free equilibrium cannot undergo a Hopf bifurcation. We further analyze the effects of local information of diseases and various immunization schemes on epidemic dynamics. We also perform some stochastic network simulations which yield quantitative agreement with the deterministic mean-field approach.
The Mathematics of Networks Science: Scale-Free, Power-Law Graphs and Continuum Theoretical Analysis
ERIC Educational Resources Information Center
Padula, Janice
2012-01-01
When hoping to initiate or sustain students' interest in mathematics teachers should always consider relevance, relevance to students' lives and in the middle and later years of instruction in high school and university, accessibility. A topic such as the mathematics behind networks science, more specifically scale-free graphs, is up-to-date,…
Enhanced storage capacity with errors in scale-free Hopfield neural networks: An analytical study.
Kim, Do-Hyun; Park, Jinha; Kahng, Byungnam
2017-01-01
The Hopfield model is a pioneering neural network model with associative memory retrieval. The analytical solution of the model in mean field limit revealed that memories can be retrieved without any error up to a finite storage capacity of O(N), where N is the system size. Beyond the threshold, they are completely lost. Since the introduction of the Hopfield model, the theory of neural networks has been further developed toward realistic neural networks using analog neurons, spiking neurons, etc. Nevertheless, those advances are based on fully connected networks, which are inconsistent with recent experimental discovery that the number of connections of each neuron seems to be heterogeneous, following a heavy-tailed distribution. Motivated by this observation, we consider the Hopfield model on scale-free networks and obtain a different pattern of associative memory retrieval from that obtained on the fully connected network: the storage capacity becomes tremendously enhanced but with some error in the memory retrieval, which appears as the heterogeneity of the connections is increased. Moreover, the error rates are also obtained on several real neural networks and are indeed similar to that on scale-free model networks.
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Andresen, Juan Carlos; Moore, M. A.; Katzgraber, Helmut G.
2014-02-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free networks in an external bias (magnetic field). Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First, we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show that the system has a spin-glass phase in a field, i.e., exhibits a de Almeida-Thouless line. Furthermore, we study avalanche distributions when the system is driven by a field at zero temperature to test if the system displays self-organized criticality. Numerical results suggest that avalanches (damage) can spread across the whole system with nonzero probability when the decay exponent of the interaction degree is less than or equal to 2, i.e., that Boolean decision problems on scale-free networks with competing interactions can be fragile when not in thermal equilibrium.
Structural and topological phase transitions on the German Stock Exchange
NASA Astrophysics Data System (ADS)
Wiliński, M.; Sienkiewicz, A.; Gubiec, T.; Kutner, R.; Struzik, Z. R.
2013-12-01
We find numerical and empirical evidence for dynamical, structural and topological phase transitions on the (German) Frankfurt Stock Exchange (FSE) in the temporal vicinity of the worldwide financial crash. Using the Minimal Spanning Tree (MST) technique, a particularly useful canonical tool of the graph theory, two transitions of the topology of a complex network representing the FSE were found. The first transition is from a hierarchical scale-free MST representing the stock market before the recent worldwide financial crash, to a superstar-like MST decorated by a scale-free hierarchy of trees representing the market’s state for the period containing the crash. Subsequently, a transition is observed from this transient, (meta)stable state of the crash to a hierarchical scale-free MST decorated by several star-like trees after the worldwide financial crash. The phase transitions observed are analogous to the ones we obtained earlier for the Warsaw Stock Exchange and more pronounced than those found by Onnela-Chakraborti-Kaski-Kertész for the S&P 500 index in the vicinity of Black Monday (October 19, 1987) and also in the vicinity of January 1, 1998. Our results provide an empirical foundation for the future theory of dynamical, structural and topological phase transitions on financial markets.
Statistical mechanics of scale-free gene expression networks
NASA Astrophysics Data System (ADS)
Gross, Eitan
2012-12-01
The gene co-expression networks of many organisms including bacteria, mice and man exhibit scale-free distribution. This heterogeneous distribution of connections decreases the vulnerability of the network to random attacks and thus may confer the genetic replication machinery an intrinsic resilience to such attacks, triggered by changing environmental conditions that the organism may be subject to during evolution. This resilience to random attacks comes at an energetic cost, however, reflected by the lower entropy of the scale-free distribution compared to the more homogenous, random network. In this study we found that the cell cycle-regulated gene expression pattern of the yeast Saccharomyces cerevisiae obeys a power-law distribution with an exponent α = 2.1 and an entropy of 1.58. The latter is very close to the maximal value of 1.65 obtained from linear optimization of the entropy function under the constraint of a constant cost function, determined by the average degree connectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitani, Akira; Tsubota, Makoto
2006-07-01
The energy spectrum of decaying quantum turbulence at T=0 obeys Kolmogorov's law. In addition to this, recent studies revealed that the vortex-length distribution (VLD), meaning the size distribution of the vortices, in decaying Kolmogorov quantum turbulence also obeys a power law. This power-law VLD suggests that the decaying turbulence has scale-free structure in real space. Unfortunately, however, there has been no practical study that answers the following important question: why can quantum turbulence acquire a scale-free VLD? We propose here a model to study the origin of the power law of the VLD from a generic point of view. Themore » nature of quantized vortices allows one to describe the decay of quantum turbulence with a simple model that is similar to the Barabasi-Albert model, which explains the scale-invariance structure of large networks. We show here that such a model can reproduce the power law of the VLD well.« less
Interplay between Functional Connectivity and Scale-Free Dynamics in Intrinsic fMRI Networks
Ciuciu, Philippe; Abry, Patrice; He, Biyu J.
2014-01-01
Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra – a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework – a multivariate extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired from healthy young adults at rest and performing a visual detection task. First, we found that scale-invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity, with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-temporal dynamics, inducing a larger contribution of the highest frequencies within the scale-free range to global correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to inter-regional connectivity was associated with better task performance manifesting as shorter and less variable reaction times. These findings bring together two related fields that have hitherto been studied separately – resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity manifest in cross-regional interactions as well. PMID:24675649
Mechanisms and dynamics of cooperation and competition emergence in complex networked systems
NASA Astrophysics Data System (ADS)
Gianetto, David A.
Cooperative behavior is a pervasive phenomenon in human interactions and yet how it can evolve and become established, through the selfish process of natural selection, is an enduring puzzle. These behaviors emerge when agents interact in a structured manner; even so, the key structural factors that affect cooperation are not well understood. Moreover, the literature often considers cooperation a single attribute of primitive agents who do not react to environmental changes but real-world actors are more perceptive. The present work moves beyond these assumptions by evolving more realistic game participants, with memories of the past, on complex networks. Agents play repeated games with a three-part Markovian strategy that allows us to separate the cooperation phenomenon into trust, reciprocity, and forgiveness characteristics. Our results show that networks matter most when agents gain the most by acting in a selfish manner, irrespective of how much they may lose by cooperating; since the context provided by neighborhoods inhibits greedy impulses that agents otherwise succumb to in isolation. Network modularity is the most important driver of cooperation emergence in these high-stakes games. However, modularity fails to tell the complete story. Modular scale-free graphs impede cooperation when close coordination is required, partially due to the acyclic nature of scale-free network models. To achieve the highest cooperation in diverse social conditions, both high modularity, low connectivity within modules, and a rich network of long cycles become important. With these findings in hand, we study the influence of networks on coordination and competition within the federal health care insurance exchange. In this applied study, we show that systemic health care coordination is encouraged by the emergent insurance network. The network helps underpin the viability of the exchange and provides an environment of stronger competition once a critical-mass of insurers have entered the market.
Pheromone Static Routing Strategy for Complex Networks
NASA Astrophysics Data System (ADS)
Hu, Mao-Bin; Henry, Y. K. Lau; Ling, Xiang; Jiang, Rui
2012-12-01
We adopt the concept of using pheromones to generate a set of static paths that can reach the performance of global dynamic routing strategy [Phys. Rev. E 81 (2010) 016113]. The path generation method consists of two stages. In the first stage, a pheromone is dropped to the nodes by packets forwarded according to the global dynamic routing strategy. In the second stage, pheromone static paths are generated according to the pheromone density. The output paths can greatly improve traffic systems' overall capacity on different network structures, including scale-free networks, small-world networks and random graphs. Because the paths are static, the system needs much less computational resources than the global dynamic routing strategy.
Epidemic spreading on one-way-coupled networks
NASA Astrophysics Data System (ADS)
Wang, Lingna; Sun, Mengfeng; Chen, Shanshan; Fu, Xinchu
2016-09-01
Numerous real-world networks (e.g., social, communicational, and biological networks) have been observed to depend on each other, and this results in interconnected networks with different topology structures and dynamics functions. In this paper, we focus on the scenario of epidemic spreading on one-way-coupled networks comprised of two subnetworks, which can manifest the transmission of some zoonotic diseases. By proposing a mathematical model through mean-field approximation approach, we prove the global stability of the disease-free and endemic equilibria of this model. Through the theoretical and numerical analysis, we obtain interesting results: the basic reproduction number R0 of the whole network is the maximum of the basic reproduction numbers of the two subnetworks; R0 is independent of the cross-infection rate and cross contact pattern; R0 increases rapidly with the growth of inner infection rate if the inner contact pattern is scale-free; in order to eradicate zoonotic diseases from human beings, we must simultaneously eradicate them from animals; bird-to-bird infection rate has bigger impact on the human's average infected density than bird-to-human infection rate.
Network approach to patterns in stratocumulus clouds
NASA Astrophysics Data System (ADS)
Glassmeier, Franziska; Feingold, Graham
2017-10-01
Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth’s climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis’s Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav-Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes.
Network approach to patterns in stratocumulus clouds.
Glassmeier, Franziska; Feingold, Graham
2017-10-03
Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth's climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis's Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav-Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes.
Network approach to patterns in stratocumulus clouds
Feingold, Graham
2017-01-01
Stratocumulus clouds (Sc) have a significant impact on the amount of sunlight reflected back to space, with important implications for Earth’s climate. Representing Sc and their radiative impact is one of the largest challenges for global climate models. Sc fields self-organize into cellular patterns and thus lend themselves to analysis and quantification in terms of natural cellular networks. Based on large-eddy simulations of Sc fields, we present a first analysis of the geometric structure and self-organization of Sc patterns from this network perspective. Our network analysis shows that the Sc pattern is scale-invariant as a consequence of entropy maximization that is known as Lewis’s Law (scaling parameter: 0.16) and is largely independent of the Sc regime (cloud-free vs. cloudy cell centers). Cells are, on average, hexagonal with a neighbor number variance of about 2, and larger cells tend to be surrounded by smaller cells, as described by an Aboav–Weaire parameter of 0.9. The network structure is neither completely random nor characteristic of natural convection. Instead, it emerges from Sc-specific versions of cell division and cell merging that are shaped by cell expansion. This is shown with a heuristic model of network dynamics that incorporates our physical understanding of cloud processes. PMID:28904097
Cascading failure in the wireless sensor scale-free networks
NASA Astrophysics Data System (ADS)
Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li
2015-05-01
In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).
Evidence for dynamically organized modularity in the yeast protein-protein interaction network
NASA Astrophysics Data System (ADS)
Han, Jing-Dong J.; Bertin, Nicolas; Hao, Tong; Goldberg, Debra S.; Berriz, Gabriel F.; Zhang, Lan V.; Dupuy, Denis; Walhout, Albertha J. M.; Cusick, Michael E.; Roth, Frederick P.; Vidal, Marc
2004-07-01
In apparently scale-free protein-protein interaction networks, or `interactome' networks, most proteins interact with few partners, whereas a small but significant proportion of proteins, the `hubs', interact with many partners. Both biological and non-biological scale-free networks are particularly resistant to random node removal but are extremely sensitive to the targeted removal of hubs. A link between the potential scale-free topology of interactome networks and genetic robustness seems to exist, because knockouts of yeast genes encoding hubs are approximately threefold more likely to confer lethality than those of non-hubs. Here we investigate how hubs might contribute to robustness and other cellular properties for protein-protein interactions dynamically regulated both in time and in space. We uncovered two types of hub: `party' hubs, which interact with most of their partners simultaneously, and `date' hubs, which bind their different partners at different times or locations. Both in silico studies of network connectivity and genetic interactions described in vivo support a model of organized modularity in which date hubs organize the proteome, connecting biological processes-or modules -to each other, whereas party hubs function inside modules.
Effect of correlations on controllability transition in network control
Nie, Sen; Wang, Xu-Wen; Wang, Bing-Hong; Jiang, Luo-Luo
2016-01-01
The network control problem has recently attracted an increasing amount of attention, owing to concerns including the avoidance of cascading failures of power-grids and the management of ecological networks. It has been proven that numerical control can be achieved if the number of control inputs exceeds a certain transition point. In the present study, we investigate the effect of degree correlation on the numerical controllability in networks whose topological structures are reconstructed from both real and modeling systems, and we find that the transition point of the number of control inputs depends strongly on the degree correlation in both undirected and directed networks with moderately sparse links. More interestingly, the effect of the degree correlation on the transition point cannot be observed in dense networks for numerical controllability, which contrasts with the corresponding result for structural controllability. In particular, for directed random networks and scale-free networks, the influence of the degree correlation is determined by the types of correlations. Our approach provides an understanding of control problems in complex sparse networks. PMID:27063294
Towards effective payoffs in the prisoner’s dilemma game on scale-free networks
NASA Astrophysics Data System (ADS)
Szolnoki, Attila; Perc, Matjaž; Danku, Zsuzsa
2008-03-01
We study the transition towards effective payoffs in the prisoner's dilemma game on scale-free networks by introducing a normalization parameter guiding the system from accumulated payoffs to payoffs normalized with the connectivity of each agent. We show that during this transition the heterogeneity-based ability of scale-free networks to facilitate cooperative behavior deteriorates continuously, eventually collapsing with the results obtained on regular graphs. The strategy donations and adaptation probabilities of agents with different connectivities are studied. Results reveal that strategies generally spread from agents with larger towards agents with smaller degree. However, this strategy adoption flow reverses sharply in the fully normalized payoff limit. Surprisingly, cooperators occupy the hubs even if the averaged cooperation level due to partly normalized payoffs is moderate.
Spread of hospital-acquired infections: A comparison of healthcare networks
Astagneau, Pascal; Crépey, Pascal
2017-01-01
Hospital-acquired infections (HAIs), including emerging multi-drug resistant organisms, threaten healthcare systems worldwide. Efficient containment measures of HAIs must mobilize the entire healthcare network. Thus, to best understand how to reduce the potential scale of HAI epidemic spread, we explore patient transfer patterns in the French healthcare system. Using an exhaustive database of all hospital discharge summaries in France in 2014, we construct and analyze three patient networks based on the following: transfers of patients with HAI (HAI-specific network); patients with suspected HAI (suspected-HAI network); and all patients (general network). All three networks have heterogeneous patient flow and demonstrate small-world and scale-free characteristics. Patient populations that comprise these networks are also heterogeneous in their movement patterns. Ranking of hospitals by centrality measures and comparing community clustering using community detection algorithms shows that despite the differences in patient population, the HAI-specific and suspected-HAI networks rely on the same underlying structure as that of the general network. As a result, the general network may be more reliable in studying potential spread of HAIs. Finally, we identify transfer patterns at both the French regional and departmental (county) levels that are important in the identification of key hospital centers, patient flow trajectories, and regional clusters that may serve as a basis for novel wide-scale infection control strategies. PMID:28837555
NASA Astrophysics Data System (ADS)
Xie, Pinchen; Yang, Bingjia; Zhang, Zhongzhi; Andrade, Roberto F. S.
2018-07-01
A deterministic network with tree structure is considered, for which the spectrum of its adjacency matrix can be exactly evaluated by a recursive renormalization approach. It amounts to successively increasing number of contributions at any finite step of construction of the tree, resulting in a causal chain. The resulting eigenvalues can be related the full energy spectrum of a nearest-neighbor tight-binding model defined on this structure. Given this association, it turns out that further properties of the eigenvectors can be evaluated, like the degree of quantum localization of the tight-binding eigenstates, expressed by the inverse participation ratio (IPR). It happens that, for the current model, the IPR's are also suitable to be analytically expressed in terms in corresponding eigenvalue chain. The resulting IPR scaling behavior is expressed by the tails of eigenvalue chains as well.
Non-universal critical exponents in earthquake complex networks
NASA Astrophysics Data System (ADS)
Pastén, Denisse; Torres, Felipe; Toledo, Benjamín A.; Muñoz, Víctor; Rogan, José; Valdivia, Juan Alejandro
2018-02-01
The problem of universality of critical exponents in complex networks is studied based on networks built from seismic data sets. Using two data sets corresponding to Chilean seismicity (northern zone, including the 2014 Mw = 8 . 2 earthquake in Iquique; and central zone without major earthquakes), directed networks for each set are constructed. Connectivity and betweenness centrality distributions are calculated and found to be scale-free, with respective exponents γ and δ. The expected relation between both characteristic exponents, δ >(γ + 1) / 2, is verified for both data sets. However, unlike the expectation for certain scale-free analytical complex networks, the value of δ is found to be non-universal.
Design of chemical space networks on the basis of Tversky similarity
NASA Astrophysics Data System (ADS)
Wu, Mengjun; Vogt, Martin; Maggiora, Gerald M.; Bajorath, Jürgen
2016-01-01
Chemical space networks (CSNs) have been introduced as a coordinate-free representation of chemical space. In CSNs, nodes represent compounds and edges pairwise similarity relationships. These network representations are mostly used to navigate sections of biologically relevant chemical space. Different types of CSNs have been designed on the basis of alternative similarity measures including continuous numerical similarity values or substructure-based similarity criteria. CSNs can be characterized and compared on the basis of statistical concepts from network science. Herein, a new CSN design is introduced that is based upon asymmetric similarity assessment using the Tversky coefficient and termed TV-CSN. Compared to other CSNs, TV-CSNs have unique features. While CSNs typically contain separate compound communities and exhibit small world character, many TV-CSNs are also scale-free in nature and contain hubs, i.e., extensively connected central compounds. Compared to other CSNs, these hubs are a characteristic of TV-CSN topology. Hub-containing compound communities are of particular interest for the exploration of structure-activity relationships.
Weak signal transmission in complex networks and its application in detecting connectivity.
Liang, Xiaoming; Liu, Zonghua; Li, Baowen
2009-10-01
We present a network model of coupled oscillators to study how a weak signal is transmitted in complex networks. Through both theoretical analysis and numerical simulations, we find that the response of other nodes to the weak signal decays exponentially with their topological distance to the signal source and the coupling strength between two neighboring nodes can be figured out by the responses. This finding can be conveniently used to detect the topology of unknown network, such as the degree distribution, clustering coefficient and community structure, etc., by repeatedly choosing different nodes as the signal source. Through four typical networks, i.e., the regular one dimensional, small world, random, and scale-free networks, we show that the features of network can be approximately given by investigating many fewer nodes than the network size, thus our approach to detect the topology of unknown network may be efficient in practical situations with large network size.
Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Posse, Christian
2005-09-15
The reliability of electric transmission systems is examined using a scale-free model of network topology and failure propagation. The topologies of the North American eastern and western electric grids are analyzed to estimate their reliability based on the Barabási-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using other methods and they suggest that scale-free network models are usable to estimate aggregate electric grid reliability.
Evaluating North American Electric Grid Reliability Using the Barabasi-Albert Network Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Posse, Christian
2005-09-15
The reliability of electric transmission systems is examined using a scale-free model of network topology and failure propagation. The topologies of the North American eastern and western electric grids are analyzed to estimate their reliability based on the Barabasi-Albert network model. A commonly used power system reliability index is computed using a simple failure propagation model. The results are compared to the values of power system reliability indices previously obtained using standard power engineering methods, and they suggest that scale-free network models are usable to estimate aggregate electric grid reliability.
Social dilemmas in an online social network: The structure and evolution of cooperation
NASA Astrophysics Data System (ADS)
Fu, Feng; Chen, Xiaojie; Liu, Lianghuan; Wang, Long
2007-11-01
We investigate two paradigms for studying the evolution of cooperation—Prisoner's Dilemma and Snowdrift game in an online friendship network, obtained from a social networking site. By structural analysis, it is revealed that the empirical social network has small-world and scale-free properties. Besides, it exhibits assortative mixing pattern. Then, we study the evolutionary version of the two types of games on it. It is found that cooperation is substantially promoted with small values of game matrix parameters in both games. Whereas the competent cooperators induced by the underlying network of contacts will be dramatically inhibited with increasing values of the game parameters. Further, we explore the role of assortativity in evolution of cooperation by random edge rewiring. We find that increasing amount of assortativity will to a certain extent diminish the cooperation level. We also show that connected large hubs are capable of maintaining cooperation. The evolution of cooperation on empirical networks is influenced by various network effects in a combined manner, compared with that on model networks. Our results can help understand the cooperative behaviors in human groups and society.
NASA Astrophysics Data System (ADS)
Toroczkai, Zoltan; Anghel, Marian; Bassler, Kevin; Korniss, Gyorgy
2003-03-01
The dynamics of human, and most biological populations is characterized by competition for resources. By its own nature, this dynamics creates the group of "elites", formed by those agents who have strategies that are the most successful in the given situation, and therefore the rest of the agents will tend to follow, imitate, or interact with them, creating a social structure of leadership in the agent society. These inter-agent communications generate a complex social network with small-world character which itself forms the substrate for a second network, the action network. The latter is a highly dynamic, adaptive, directed network, defined by those inter-agent communication links on the substrate along which the passed information /prediction is acted upon by the other agents. By using the minority game for competition dynamics, here we show that when the substrate network is highly connected, the action network spontaneously develops hubs with a broad distribution of out-degrees, defining a robust leadership structure that is scale-free. Furthermore, in certain, realistic parameter ranges, facilitated by information passing on the action network, agents can spontaneously generate a high degree of cooperation making the collective almost maximally efficient.
Synchronization in scale-free networks: The role of finite-size effects
NASA Astrophysics Data System (ADS)
Torres, D.; Di Muro, M. A.; La Rocca, C. E.; Braunstein, L. A.
2015-06-01
Synchronization problems in complex networks are very often studied by researchers due to their many applications to various fields such as neurobiology, e-commerce and completion of tasks. In particular, scale-free networks with degree distribution P(k)∼ k-λ , are widely used in research since they are ubiquitous in Nature and other real systems. In this paper we focus on the surface relaxation growth model in scale-free networks with 2.5< λ <3 , and study the scaling behavior of the fluctuations, in the steady state, with the system size N. We find a novel behavior of the fluctuations characterized by a crossover between two regimes at a value of N=N* that depends on λ: a logarithmic regime, found in previous research, and a constant regime. We propose a function that describes this crossover, which is in very good agreement with the simulations. We also find that, for a system size above N* , the fluctuations decrease with λ, which means that the synchronization of the system improves as λ increases. We explain this crossover analyzing the role of the network's heterogeneity produced by the system size N and the exponent of the degree distribution.
Energy harvesting: small scale energy production from ambient sources
NASA Astrophysics Data System (ADS)
Yeatman, Eric M.
2009-03-01
Energy harvesting - the collection of otherwise unexploited energy in the local environment - is attracting increasing attention for the powering of electronic devices. While the power levels that can be reached are typically modest (microwatts to milliwatts), the key motivation is to avoid the need for battery replacement or recharging in portable or inaccessible devices. Wireless sensor networks are a particularly important application: the availability of essentially maintenance free sensor nodes, as enabled by energy harvesting, will greatly increase the feasibility of large scale networks, in the paradigm often known as pervasive sensing. Such pervasive sensing networks, used to monitor buildings, structures, outdoor environments or the human body, offer significant benefits for large scale energy efficiency, health and safety, and many other areas. Sources of energy for harvesting include light, temperature differences, and ambient motion, and a wide range of miniature energy harvesters based on these sources have been proposed or demonstrated. This paper reviews the principles and practice in miniature energy harvesters, and discusses trends, suitable applications, and possible future developments.
Robustness of Controllability for Networks Based on Edge-Attack
Nie, Sen; Wang, Xuwen; Zhang, Haifeng; Li, Qilang; Wang, Binghong
2014-01-01
We study the controllability of networks in the process of cascading failures under two different attacking strategies, random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erdős-Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges amount in strongly connected components. PMID:24586507
Robustness of controllability for networks based on edge-attack.
Nie, Sen; Wang, Xuwen; Zhang, Haifeng; Li, Qilang; Wang, Binghong
2014-01-01
We study the controllability of networks in the process of cascading failures under two different attacking strategies, random and intentional attack, respectively. For the highest-load edge attack, it is found that the controllability of Erdős-Rényi network, that with moderate average degree, is less robust, whereas the Scale-free network with moderate power-law exponent shows strong robustness of controllability under the same attack strategy. The vulnerability of controllability under random and intentional attacks behave differently with the increasing of removal fraction, especially, we find that the robustness of control has important role in cascades for large removal fraction. The simulation results show that for Scale-free networks with various power-law exponents, the network has larger scale of cascades do not mean that there will be more increments of driver nodes. Meanwhile, the number of driver nodes in cascading failures is also related to the edges amount in strongly connected components.
Evolution of imitation networks in Minority Game model
NASA Astrophysics Data System (ADS)
Lavička, H.; Slanina, F.
2007-03-01
The Minority Game is adapted to study the “imitation dilemma”, i.e. the tradeoff between local benefit and global harm coming from imitation. The agents are placed on a substrate network and are allowed to imitate more successful neighbours. Imitation domains, which are oriented trees, are formed. We investigate size distribution of the domains and in-degree distribution within the trees. We use four types of substrate: one-dimensional chain; Erdös-Rényi graph; Barabási-Albert scale-free graph; Barabási-Albert 'model A' graph. The behaviour of some features of the imitation network strongly depend on the information cost epsilon, which is the percentage of gain the imitators must pay to the imitated. Generally, the system tends to form a few domains of equal size. However, positive epsilon makes the system stay in a long-lasting metastable state with complex structure. The in-degree distribution is found to follow a power law in two cases of those studied: for Erdös-Rényi substrate for any epsilon and for Barabási-Albert scale-free substrate for large enough epsilon. A brief comparison with empirical data is provided.
Nonequilibrium phase transition in a self-activated biological network.
Berry, Hugues
2003-03-01
We present a lattice model for a two-dimensional network of self-activated biological structures with a diffusive activating agent. The model retains basic and simple properties shared by biological systems at various observation scales, so that the structures can consist of individuals, tissues, cells, or enzymes. Upon activation, a structure emits a new mobile activator and remains in a transient refractory state before it can be activated again. Varying the activation probability, the system undergoes a nonequilibrium second-order phase transition from an active state, where activators are present, to an absorbing, activator-free state, where each structure remains in the deactivated state. We study the phase transition using Monte Carlo simulations and evaluate the critical exponents. As they do not seem to correspond to known values, the results suggest the possibility of a separate universality class.
Cortical Entropy, Mutual Information and Scale-Free Dynamics in Waking Mice.
Fagerholm, Erik D; Scott, Gregory; Shew, Woodrow L; Song, Chenchen; Leech, Robert; Knöpfel, Thomas; Sharp, David J
2016-10-01
Some neural circuits operate with simple dynamics characterized by one or a few well-defined spatiotemporal scales (e.g. central pattern generators). In contrast, cortical neuronal networks often exhibit richer activity patterns in which all spatiotemporal scales are represented. Such "scale-free" cortical dynamics manifest as cascades of activity with cascade sizes that are distributed according to a power-law. Theory and in vitro experiments suggest that information transmission among cortical circuits is optimized by scale-free dynamics. In vivo tests of this hypothesis have been limited by experimental techniques with insufficient spatial coverage and resolution, i.e., restricted access to a wide range of scales. We overcame these limitations by using genetically encoded voltage imaging to track neural activity in layer 2/3 pyramidal cells across the cortex in mice. As mice recovered from anesthesia, we observed three changes: (a) cortical information capacity increased, (b) information transmission among cortical regions increased and (c) neural activity became scale-free. Our results demonstrate that both information capacity and information transmission are maximized in the awake state in cortical regions with scale-free network dynamics. © The Author 2016. Published by Oxford University Press.
Supercooperation in evolutionary games on correlated weighted networks.
Buesser, Pierre; Tomassini, Marco
2012-01-01
In this work we study the behavior of classical two-person, two-strategies evolutionary games on a class of weighted networks derived from Barabási-Albert and random scale-free unweighted graphs. Using customary imitative dynamics, our numerical simulation results show that the presence of link weights that are correlated in a particular manner with the degree of the link end points leads to unprecedented levels of cooperation in the whole games' phase space, well above those found for the corresponding unweighted complex networks. We provide intuitive explanations for this favorable behavior by transforming the weighted networks into unweighted ones with particular topological properties. The resulting structures help us to understand why cooperation can thrive and also give ideas as to how such supercooperative networks might be built.
Cascading failure in scale-free networks with tunable clustering
NASA Astrophysics Data System (ADS)
Zhang, Xue-Jun; Gu, Bo; Guan, Xiang-Min; Zhu, Yan-Bo; Lv, Ren-Li
2016-02-01
Cascading failure is ubiquitous in many networked infrastructure systems, such as power grids, Internet and air transportation systems. In this paper, we extend the cascading failure model to a scale-free network with tunable clustering and focus on the effect of clustering coefficient on system robustness. It is found that the network robustness undergoes a nonmonotonic transition with the increment of clustering coefficient: both highly and lowly clustered networks are fragile under the intentional attack, and the network with moderate clustering coefficient can better resist the spread of cascading. We then provide an extensive explanation for this constructive phenomenon via the microscopic point of view and quantitative analysis. Our work can be useful to the design and optimization of infrastructure systems.
Optimizing Dynamical Network Structure for Pinning Control
NASA Astrophysics Data System (ADS)
Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo
2016-04-01
Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.
Vertex centrality as a measure of information flow in Italian Corporate Board Networks
NASA Astrophysics Data System (ADS)
Grassi, Rosanna
2010-06-01
The aim of this article is to investigate the governance models of companies listed on the Italian Stock Exchange by using a network approach, which describes the interlinks between boards of directors. Following mainstream literature, I construct a weighted graph representing the listed companies (vertices) and their relationships (weighted edges), the Corporate Board Network; I then apply three different vertex centrality measures: degree, betweenness and flow betweenness. What emerges from the network construction and by applying the degree centrality is a structure with a large number of connections but not particularly dense, where the presence of a small number of highly connected nodes (hubs) is evident. Then I focus on betweenness and flow betweenness; indeed I expect that these centrality measures may give a representation of the intensity of the relationship between companies, capturing the volume of information flowing from one vertex to another. Finally, I investigate the possible scale-free structure of the network.
Stability and Topology of Scale-Free Networks under Attack and Defense Strategies
NASA Astrophysics Data System (ADS)
Gallos, Lazaros K.; Cohen, Reuven; Argyrakis, Panos; Bunde, Armin; Havlin, Shlomo
2005-05-01
We study tolerance and topology of random scale-free networks under attack and defense strategies that depend on the degree k of the nodes. This situation occurs, for example, when the robustness of a node depends on its degree or in an intentional attack with insufficient knowledge of the network. We determine, for all strategies, the critical fraction pc of nodes that must be removed for disintegrating the network. We find that, for an intentional attack, little knowledge of the well-connected sites is sufficient to strongly reduce pc. At criticality, the topology of the network depends on the removal strategy, implying that different strategies may lead to different kinds of percolation transitions.
NASA Astrophysics Data System (ADS)
Yang, Hong-Yong; Zhang, Shun; Zong, Guang-Deng
2011-01-01
In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned.
Reconstruction of the experimentally supported human protein interactome: what can we learn?
Klapa, Maria I; Tsafou, Kalliopi; Theodoridis, Evangelos; Tsakalidis, Athanasios; Moschonas, Nicholas K
2013-10-02
Understanding the topology and dynamics of the human protein-protein interaction (PPI) network will significantly contribute to biomedical research, therefore its systematic reconstruction is required. Several meta-databases integrate source PPI datasets, but the protein node sets of their networks vary depending on the PPI data combined. Due to this inherent heterogeneity, the way in which the human PPI network expands via multiple dataset integration has not been comprehensively analyzed. We aim at assembling the human interactome in a global structured way and exploring it to gain insights of biological relevance. First, we defined the UniProtKB manually reviewed human "complete" proteome as the reference protein-node set and then we mined five major source PPI datasets for direct PPIs exclusively between the reference proteins. We updated the protein and publication identifiers and normalized all PPIs to the UniProt identifier level. The reconstructed interactome covers approximately 60% of the human proteome and has a scale-free structure. No apparent differentiating gene functional classification characteristics were identified for the unrepresented proteins. The source dataset integration augments the network mainly in PPIs. Polyubiquitin emerged as the highest-degree node, but the inclusion of most of its identified PPIs may be reconsidered. The high number (>300) of connections of the subsequent fifteen proteins correlates well with their essential biological role. According to the power-law network structure, the unrepresented proteins should mainly have up to four connections with equally poorly-connected interactors. Reconstructing the human interactome based on the a priori definition of the protein nodes enabled us to identify the currently included part of the human "complete" proteome, and discuss the role of the proteins within the network topology with respect to their function. As the network expansion has to comply with the scale-free theory, we suggest that the core of the human interactome has essentially emerged. Thus, it could be employed in systems biology and biomedical research, despite the considerable number of currently unrepresented proteins. The latter are probably involved in specialized physiological conditions, justifying the scarcity of related PPI information, and their identification can assist in designing relevant functional experiments and targeted text mining algorithms.
Application of stochastic processes in random growth and evolutionary dynamics
NASA Astrophysics Data System (ADS)
Oikonomou, Panagiotis
We study the effect of power-law distributed randomness on the dynamical behavior of processes such as stochastic growth patterns and evolution. First, we examine the geometrical properties of random shapes produced by a generalized stochastic Loewner Evolution driven by a superposition of a Brownian motion and a stable Levy process. The situation is defined by the usual stochastic Loewner Evolution parameter, kappa, as well as alpha which defines the power-law tail of the stable Levy distribution. We show that the properties of these patterns change qualitatively and singularly at critical values of kappa and alpha. It is reasonable to call such changes "phase transitions". These transitions occur as kappa passes through four and as alpha passes through one. Numerical simulations are used to explore the global scaling behavior of these patterns in each "phase". We show both analytically and numerically that the growth continues indefinitely in the vertical direction for alpha greater than 1, goes as logarithmically with time for alpha equals to 1, and saturates for alpha smaller than 1. The probability density has two different scales corresponding to directions along and perpendicular to the boundary. Scaling functions for the probability density are given for various limiting cases. Second, we study the effect of the architecture of biological networks on their evolutionary dynamics. In recent years, studies of the architecture of large networks have unveiled a common topology, called scale-free, in which a majority of the elements are poorly connected except for a small fraction of highly connected components. We ask how networks with distinct topologies can evolve towards a pre-established target phenotype through a process of random mutations and selection. We use networks of Boolean components as a framework to model a large class of phenotypes. Within this approach, we find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. While homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously towards the target phenotype. Moreover, we show that scale-free networks always evolve faster than homogeneous random networks; remarkably, this property does not depend on the precise value of the topological parameter. By contrast, homogeneous random networks require a specific tuning of their topological parameter in order to optimize their fitness. This model suggests that the evolutionary paths of biological networks, punctuated or continuous, may solely be determined by the network topology.
Emergence of scale-free characteristics in socio-ecological systems with bounded rationality
Kasthurirathna, Dharshana; Piraveenan, Mahendra
2015-01-01
Socio–ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback–-Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio–ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems. PMID:26065713
Emergence of scale-free characteristics in socio-ecological systems with bounded rationality.
Kasthurirathna, Dharshana; Piraveenan, Mahendra
2015-06-11
Socio-ecological systems are increasingly modelled by games played on complex networks. While the concept of Nash equilibrium assumes perfect rationality, in reality players display heterogeneous bounded rationality. Here we present a topological model of bounded rationality in socio-ecological systems, using the rationality parameter of the Quantal Response Equilibrium. We argue that system rationality could be measured by the average Kullback--Leibler divergence between Nash and Quantal Response Equilibria, and that the convergence towards Nash equilibria on average corresponds to increased system rationality. Using this model, we show that when a randomly connected socio-ecological system is topologically optimised to converge towards Nash equilibria, scale-free and small world features emerge. Therefore, optimising system rationality is an evolutionary reason for the emergence of scale-free and small-world features in socio-ecological systems. Further, we show that in games where multiple equilibria are possible, the correlation between the scale-freeness of the system and the fraction of links with multiple equilibria goes through a rapid transition when the average system rationality increases. Our results explain the influence of the topological structure of socio-ecological systems in shaping their collective cognitive behaviour, and provide an explanation for the prevalence of scale-free and small-world characteristics in such systems.
How mutation alters the evolutionary dynamics of cooperation on networks
NASA Astrophysics Data System (ADS)
Ichinose, Genki; Satotani, Yoshiki; Sayama, Hiroki
2018-05-01
Cooperation is ubiquitous at every level of living organisms. It is known that spatial (network) structure is a viable mechanism for cooperation to evolve. A recently proposed numerical metric, average gradient of selection (AGoS), a useful tool for interpreting and visualizing evolutionary dynamics on networks, allows simulation results to be visualized on a one-dimensional phase space. However, stochastic mutation of strategies was not considered in the analysis of AGoS. Here we extend AGoS so that it can analyze the evolution of cooperation where mutation may alter strategies of individuals on networks. We show that our extended AGoS correctly visualizes the final states of cooperation with mutation in the individual-based simulations. Our analyses revealed that mutation always has a negative effect on the evolution of cooperation regardless of the payoff functions, fraction of cooperators, and network structures. Moreover, we found that scale-free networks are the most vulnerable to mutation and thus the dynamics of cooperation are altered from bistability to coexistence on those networks, undergoing an imperfect pitchfork bifurcation.
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabási, A. L.; Jeong, H.; Néda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T.
2002-08-01
The co-authorship network of scientists represents a prototype of complex evolving networks. In addition, it offers one of the most extensive database to date on social networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an 8-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. Three complementary approaches allow us to obtain a detailed characterization. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. In some limits the model can be solved analytically, predicting a two-regime scaling in agreement with the measurements. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically. The combined numerical and analytical results underline the important role internal links play in determining the observed scaling behavior and network topology. The results and methodologies developed in the context of the co-authorship network could be useful for a systematic study of other complex evolving networks as well, such as the world wide web, Internet, or other social networks.
NASA Astrophysics Data System (ADS)
Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui
2018-01-01
Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are weak, especially when more stringent conditions are imposed (i.e. when T is very high), except at the monthly scale.
Cascading failures in interconnected networks with dynamical redistribution of loads
NASA Astrophysics Data System (ADS)
Zhao, Zhuang; Zhang, Peng; Yang, Hujiang
2015-09-01
Cascading failures of loads in isolated networks and coupled networks have been studied in the past few years. In most of the corresponding results, the topologies of the networks are destroyed. Here, we present an interconnected network model considering cascading failures based on the dynamic redistribution of flow in the networks. Compared with the results of single scale-free networks, we find that interconnected scale-free networks have higher vulnerability. Additionally, the network heterogeneity plays an important role in the robustness of interconnected networks under intentional attacks. Considering the effects of various coupling preferences, the results show that there are almost no differences. Finally, the application of our model to the Beijing interconnected traffic network, which consists of a subway network and a bus network, shows that the subway network suffers more damage under the attack. Moreover, the interconnected traffic network may be more exposed to damage after initial attacks on the bus network. These discussions are important for the design and optimization of interconnected networks.
Evolving network simulation study. From regular lattice to scale free network
NASA Astrophysics Data System (ADS)
Makowiec, D.
2005-12-01
The Watts-Strogatz algorithm of transferring the square lattice to a small world network is modified by introducing preferential rewiring constrained by connectivity demand. The evolution of the network is two-step: sequential preferential rewiring of edges controlled by p and updating the information about changes done. The evolving system self-organizes into stationary states. The topological transition in the graph structure is noticed with respect to p. Leafy phase a graph formed by multiple connected vertices (graph skeleton) with plenty of leaves attached to each skeleton vertex emerges when p is small enough to pretend asynchronous evolution. Tangling phase where edges of a graph circulate frequently among low degree vertices occurs when p is large. There exist conditions at which the resulting stationary network ensemble provides networks which degree distribution exhibit power-law decay in large interval of degrees.
Investigation of a protein complex network
NASA Astrophysics Data System (ADS)
Mashaghi, A. R.; Ramezanpour, A.; Karimipour, V.
2004-09-01
The budding yeast Saccharomyces cerevisiae is the first eukaryote whose genome has been completely sequenced. It is also the first eukaryotic cell whose proteome (the set of all proteins) and interactome (the network of all mutual interactions between proteins) has been analyzed. In this paper we study the structure of the yeast protein complex network in which weighted edges between complexes represent the number of shared proteins. It is found that the network of protein complexes is a small world network with scale free behavior for many of its distributions. However we find that there are no strong correlations between the weights and degrees of neighboring complexes. To reveal non-random features of the network we also compare it with a null model in which the complexes randomly select their proteins. Finally we propose a simple evolutionary model based on duplication and divergence of proteins.
Graph theoretical analysis of complex networks in the brain
Stam, Cornelis J; Reijneveld, Jaap C
2007-01-01
Since the discovery of small-world and scale-free networks the study of complex systems from a network perspective has taken an enormous flight. In recent years many important properties of complex networks have been delineated. In particular, significant progress has been made in understanding the relationship between the structural properties of networks and the nature of dynamics taking place on these networks. For instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph spectral analysis. These developments in the theory of complex networks have inspired new applications in the field of neuroscience. Graph analysis has been used in the study of models of neural networks, anatomical connectivity, and functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain can be modelled as a complex network, and may have a small-world structure both at the level of anatomical as well as functional connectivity. This small-world structure is hypothesized to reflect an optimal situation associated with rapid synchronization and information transfer, minimal wiring costs, as well as a balance between local processing and global integration. The topological structure of functional networks is probably restrained by genetic and anatomical factors, but can be modified during tasks. There is also increasing evidence that various types of brain disease such as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with deviations of the functional network topology from the optimal small-world pattern. PMID:17908336
Teschendorff, Andrew E; Banerji, Christopher R S; Severini, Simone; Kuehn, Reimer; Sollich, Peter
2015-04-28
One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology.
Teschendorff, Andrew E.; Banerji, Christopher R. S.; Severini, Simone; Kuehn, Reimer; Sollich, Peter
2015-01-01
One of the key characteristics of cancer cells is an increased phenotypic plasticity, driven by underlying genetic and epigenetic perturbations. However, at a systems-level it is unclear how these perturbations give rise to the observed increased plasticity. Elucidating such systems-level principles is key for an improved understanding of cancer. Recently, it has been shown that signaling entropy, an overall measure of signaling pathway promiscuity, and computable from integrating a sample's gene expression profile with a protein interaction network, correlates with phenotypic plasticity and is increased in cancer compared to normal tissue. Here we develop a computational framework for studying the effects of network perturbations on signaling entropy. We demonstrate that the increased signaling entropy of cancer is driven by two factors: (i) the scale-free (or near scale-free) topology of the interaction network, and (ii) a subtle positive correlation between differential gene expression and node connectivity. Indeed, we show that if protein interaction networks were random graphs, described by Poisson degree distributions, that cancer would generally not exhibit an increased signaling entropy. In summary, this work exposes a deep connection between cancer, signaling entropy and interaction network topology. PMID:25919796
Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta
NASA Astrophysics Data System (ADS)
Zeng, Y.
2017-09-01
Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.
Efficient weighting strategy for enhancing synchronizability of complex networks
NASA Astrophysics Data System (ADS)
Wang, Youquan; Yu, Feng; Huang, Shucheng; Tu, Juanjuan; Chen, Yan
2018-04-01
Networks with high propensity to synchronization are desired in many applications ranging from biology to engineering. In general, there are two ways to enhance the synchronizability of a network: link rewiring and/or link weighting. In this paper, we propose a new link weighting strategy based on the concept of the neighborhood subgroup. The neighborhood subgroup of a node i through node j in a network, i.e. Gi→j, means that node u belongs to Gi→j if node u belongs to the first-order neighbors of j (not include i). Our proposed weighting schema used the local and global structural properties of the networks such as the node degree, betweenness centrality and closeness centrality measures. We applied the method on scale-free and Watts-Strogatz networks of different structural properties and show the good performance of the proposed weighting scheme. Furthermore, as model networks cannot capture all essential features of real-world complex networks, we considered a number of undirected and unweighted real-world networks. To the best of our knowledge, the proposed weighting strategy outperformed the previously published weighting methods by enhancing the synchronizability of these real-world networks.
Goekoop, Rutger; Goekoop, Jaap G
2014-01-01
The vast number of psychopathological syndromes that can be observed in clinical practice can be described in terms of a limited number of elementary syndromes that are differentially expressed. Previous attempts to identify elementary syndromes have shown limitations that have slowed progress in the taxonomy of psychiatric disorders. To examine the ability of network community detection (NCD) to identify elementary syndromes of psychopathology and move beyond the limitations of current classification methods in psychiatry. 192 patients with unselected mental disorders were tested on the Comprehensive Psychopathological Rating Scale (CPRS). Principal component analysis (PCA) was performed on the bootstrapped correlation matrix of symptom scores to extract the principal component structure (PCS). An undirected and weighted network graph was constructed from the same matrix. Network community structure (NCS) was optimized using a previously published technique. In the optimal network structure, network clusters showed a 89% match with principal components of psychopathology. Some 6 network clusters were found, including "Depression", "Mania", "Anxiety", "Psychosis", "Retardation", and "Behavioral Disorganization". Network metrics were used to quantify the continuities between the elementary syndromes. We present the first comprehensive network graph of psychopathology that is free from the biases of previous classifications: a 'Psychopathology Web'. Clusters within this network represent elementary syndromes that are connected via a limited number of bridge symptoms. Many problems of previous classifications can be overcome by using a network approach to psychopathology.
An improved global dynamic routing strategy for scale-free network with tunable clustering
NASA Astrophysics Data System (ADS)
Sun, Lina; Huang, Ning; Zhang, Yue; Bai, Yannan
2016-08-01
An efficient routing strategy can deliver packets quickly to improve the network capacity. Node congestion and transmission path length are inevitable real-time factors for a good routing strategy. Existing dynamic global routing strategies only consider the congestion of neighbor nodes and the shortest path, which ignores other key nodes’ congestion on the path. With the development of detection methods and techniques, global traffic information is readily available and important for the routing choice. Reasonable use of this information can effectively improve the network routing. So, an improved global dynamic routing strategy is proposed, which considers the congestion of all nodes on the shortest path and incorporates the waiting time of the most congested node into the path. We investigate the effectiveness of the proposed routing for scale-free network with different clustering coefficients. The shortest path routing strategy and the traffic awareness routing strategy only considering the waiting time of neighbor node are analyzed comparatively. Simulation results show that network capacity is greatly enhanced compared with the shortest path; congestion state increase is relatively slow compared with the traffic awareness routing strategy. Clustering coefficient increase will not only reduce the network throughput, but also result in transmission average path length increase for scale-free network with tunable clustering. The proposed routing is favorable to ease network congestion and network routing strategy design.
Optimal control strategy for a novel computer virus propagation model on scale-free networks
NASA Astrophysics Data System (ADS)
Zhang, Chunming; Huang, Haitao
2016-06-01
This paper aims to study the combined impact of reinstalling system and network topology on the spread of computer viruses over the Internet. Based on scale-free network, this paper proposes a novel computer viruses propagation model-SLBOSmodel. A systematic analysis of this new model shows that the virus-free equilibrium is globally asymptotically stable when its spreading threshold is less than one; nevertheless, it is proved that the viral equilibrium is permanent if the spreading threshold is greater than one. Then, the impacts of different model parameters on spreading threshold are analyzed. Next, an optimally controlled SLBOS epidemic model on complex networks is also studied. We prove that there is an optimal control existing for the control problem. Some numerical simulations are finally given to illustrate the main results.
Evolution of the social network of scientific collaborations
NASA Astrophysics Data System (ADS)
Barabasi, Albert-Laszlo; Jeong, Hawoong; Neda, Zoltan; Ravasz, Erzsebet; Schubert, Andras; Vicsek, Tamas
2002-03-01
The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.
Dynamics of epidemic spreading model with drug-resistant variation on scale-free networks
NASA Astrophysics Data System (ADS)
Wan, Chen; Li, Tao; Zhang, Wu; Dong, Jing
2018-03-01
Considering the influence of the virus' drug-resistant variation, a novel SIVRS (susceptible-infected-variant-recovered-susceptible) epidemic spreading model with variation characteristic on scale-free networks is proposed in this paper. By using the mean-field theory, the spreading dynamics of the model is analyzed in detail. Then, the basic reproductive number R0 and equilibriums are derived. Studies show that the existence of disease-free equilibrium is determined by the basic reproductive number R0. The relationships between the basic reproductive number R0, the variation characteristic and the topology of the underlying networks are studied in detail. Furthermore, our studies prove the global stability of the disease-free equilibrium, the permanence of epidemic and the global attractivity of endemic equilibrium. Numerical simulations are performed to confirm the analytical results.
Dominating Scale-Free Networks Using Generalized Probabilistic Methods
Molnár,, F.; Derzsy, N.; Czabarka, É.; Székely, L.; Szymanski, B. K.; Korniss, G.
2014-01-01
We study ensemble-based graph-theoretical methods aiming to approximate the size of the minimum dominating set (MDS) in scale-free networks. We analyze both analytical upper bounds of dominating sets and numerical realizations for applications. We propose two novel probabilistic dominating set selection strategies that are applicable to heterogeneous networks. One of them obtains the smallest probabilistic dominating set and also outperforms the deterministic degree-ranked method. We show that a degree-dependent probabilistic selection method becomes optimal in its deterministic limit. In addition, we also find the precise limit where selecting high-degree nodes exclusively becomes inefficient for network domination. We validate our results on several real-world networks, and provide highly accurate analytical estimates for our methods. PMID:25200937
Network topology analysis approach on China's QFII stock investment behavior
NASA Astrophysics Data System (ADS)
Zhang, Yongjie; Cao, Xing; He, Feng; Zhang, Wei
2017-05-01
In this paper, the investment behavior of QFII in China stock market from 2004 to 2015 is studied with the network topology method. Based on the nodes topological characteristics, stock holding fluctuations correlation is studied from the micro network level. We conclude that the QFII mutual stock holding network have both scale free and small world properties, which presented mainly small world characteristics from 2005 to 2011, and scale free characteristics from 2012 to 2015. Moreover, fluctuations correlation is different with different nodes topological characteristics. In different economic periods, QFII represented different connection patterns and they reacted to the market crash spontaneously. Thus, this paper provides the first evidence of complex network research on QFII' investment behavior in China as an emerging market.
Evolutionary dynamics of division of labor games with selfish agents
NASA Astrophysics Data System (ADS)
Zhang, Jianlei; Li, Qiaoyu; Zhang, Chunyan
2017-11-01
The division of labor is one of the most basic and widely studied aspects of collective behavior in natural systems. Studies of division of labor are concerned with the integration of the individual worker behavior into a colony level task organization and with the question of how the regulation of the division of labor may contribute to the colony efficiency. This paper investigates the evolution of the division of labor with three strategies by employing the evolutionary game theory. Thus, these available strategies are, respectively, strategy A (performing task A), strategy B (performing task B), and strategy D (not performing any task but only free riding others' contributions). And, two typical networks (i.e., BA scale-free network and lattice network) are employed here for describing the interaction structure among agents. The theoretical analysis together with simulation results reveal that the division of labor can evolve and leads to players that differ in their tendency to take on a given task. The conditions under which the division of labor evolves depend on the costs for performing the task, the benefits led by performing the task, and the interaction structures among the players who are involved with division of labor games.
Unifying Inference of Meso-Scale Structures in Networks.
Tunç, Birkan; Verma, Ragini
2015-01-01
Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).
Network Reliability: The effect of local network structure on diffusive processes
Youssef, Mina; Khorramzadeh, Yasamin; Eubank, Stephen
2014-01-01
This paper re-introduces the network reliability polynomial – introduced by Moore and Shannon in 1956 – for studying the effect of network structure on the spread of diseases. We exhibit a representation of the polynomial that is well-suited for estimation by distributed simulation. We describe a collection of graphs derived from Erdős-Rényi and scale-free-like random graphs in which we have manipulated assortativity-by-degree and the number of triangles. We evaluate the network reliability for all these graphs under a reliability rule that is related to the expected size of a connected component. Through these extensive simulations, we show that for positively or neutrally assortative graphs, swapping edges to increase the number of triangles does not increase the network reliability. Also, positively assortative graphs are more reliable than neutral or disassortative graphs with the same number of edges. Moreover, we show the combined effect of both assortativity-by-degree and the presence of triangles on the critical point and the size of the smallest subgraph that is reliable. PMID:24329321
Correlating Free-Volume Hole Distribution to the Glass Transition Temperature of Epoxy Polymers.
Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A
2017-09-07
A new algorithm is developed to quantify the free-volume hole distribution and its evolution in coarse-grained molecular dynamics simulations of polymeric networks. This is achieved by analyzing the geometry of the network rather than a voxelized image of the structure to accurately and efficiently find and quantify free-volume hole distributions within large scale simulations of polymer networks. The free-volume holes are quantified by fitting the largest ellipsoids and spheres in the free-volumes between polymer chains. The free-volume hole distributions calculated from this algorithm are shown to be in excellent agreement with those measured from positron annihilation lifetime spectroscopy (PALS) experiments at different temperature and pressures. Based on the results predicted using this algorithm, an evolution model is proposed for the thermal behavior of an individual free-volume hole. This model is calibrated such that the average radius of free-volumes holes mimics the one predicted from the simulations. The model is then employed to predict the glass-transition temperature of epoxy polymers with different degrees of cross-linking and lengths of prepolymers. Comparison between the predicted glass-transition temperatures and those measured from simulations or experiments implies that this model is capable of successfully predicting the glass-transition temperature of the material using only a PDF of the initial free-volume holes radii of each microstructure. This provides an effective approach for the optimized design of polymeric systems on the basis of the glass-transition temperature, degree of cross-linking, and average length of prepolymers.
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Andresen, Juan Carlos; Janzen, Katharina; Katzgraber, Helmut G.
2013-03-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free graphs in a magnetic field. Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show, in agreement with analytical calculations, that the system exhibits a de Almeida-Thouless line. Furthermore, we study avalanches in the system at zero temperature to see if the system displays self-organized criticality. This would suggest that damage (avalanches) can spread across the whole system with nonzero probability, i.e., that Boolean decision problems on scale-free networks with competing interactions are fragile when not in thermal equilibrium.
The complexity of classical music networks
NASA Astrophysics Data System (ADS)
Rolla, Vitor; Kestenberg, Juliano; Velho, Luiz
2018-02-01
Previous works suggest that musical networks often present the scale-free and the small-world properties. From a musician's perspective, the most important aspect missing in those studies was harmony. In addition to that, the previous works made use of outdated statistical methods. Traditionally, least-squares linear regression is utilised to fit a power law to a given data set. However, according to Clauset et al. such a traditional method can produce inaccurate estimates for the power law exponent. In this paper, we present an analysis of musical networks which considers the existence of chords (an essential element of harmony). Here we show that only 52.5% of music in our database presents the scale-free property, while 62.5% of those pieces present the small-world property. Previous works argue that music is highly scale-free; consequently, it sounds appealing and coherent. In contrast, our results show that not all pieces of music present the scale-free and the small-world properties. In summary, this research is focused on the relationship between musical notes (Do, Re, Mi, Fa, Sol, La, Si, and their sharps) and accompaniment in classical music compositions. More information about this research project is available at https://eden.dei.uc.pt/~vitorgr/MS.html.
Constraints and entropy in a model of network evolution
NASA Astrophysics Data System (ADS)
Tee, Philip; Wakeman, Ian; Parisis, George; Dawes, Jonathan; Kiss, István Z.
2017-11-01
Barabási-Albert's "Scale Free" model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent γ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a number of real world networks it has values between 1.2 and 2.9. In addition, the degree distributions of real networks exhibit cut offs at high node degree, which indicates the existence of maximal node degrees for these networks. In this paper we propose a simple extension to the "Scale Free" model, which offers better agreement with the experimental data. This improvement is satisfying, but the model still does not explain why the attachment probabilities should favor high degree nodes, or indeed how constraints arrive in non-physical networks. Using recent advances in the analysis of the entropy of graphs at the node level we propose a first principles derivation for the "Scale Free" and "constraints" model from thermodynamic principles, and demonstrate that both preferential attachment and constraints could arise as a natural consequence of the second law of thermodynamics.
Naming Game with Multiple Hearers
NASA Astrophysics Data System (ADS)
Li, Bing; Chen, Guanrong; Chow, Tommy W. S.
2013-05-01
A new model called Naming Game with Multiple Hearers (NGMH) is proposed in this paper. A naming game over a population of individuals aims to reach consensus on the name of an object through pair-wise local interactions among all the individuals. The proposed NGMH model describes the learning process of a new word, in a population with one speaker and multiple hearers, at each interaction towards convergence. The characteristics of NGMH are examined on three types of network topologies, namely ER random-graph network, WS small-world network, and BA scale-free network. Comparative analysis on the convergence time is performed, revealing that the topology with a larger average (node) degree can reach consensus faster than the others over the same population. It is found that, for a homogeneous network, the average degree is the limiting value of the number of hearers, which reduces the individual ability of learning new words, consequently decreasing the convergence time; for a scale-free network, this limiting value is the deviation of the average degree. It is also found that a network with a larger clustering coefficient takes longer time to converge; especially a small-word network with smallest rewiring possibility takes longest time to reach convergence. As more new nodes are being added to scale-free networks with different degree distributions, their convergence time appears to be robust against the network-size variation. Most new findings reported in this paper are different from that of the single-speaker/single-hearer naming games documented in the literature.
NASA Astrophysics Data System (ADS)
Esquivel-Gómez, Jose de Jesus; Barajas-Ramírez, Juan Gonzalo
2018-01-01
One of the most effective mechanisms to contain the spread of an infectious disease through a population is the implementation of quarantine policies. However, its efficiency is affected by different aspects, for example, the structure of the underlining social network where highly connected individuals are more likely to become infected; therefore, the speed of the transmission of the decease is directly determined by the degree distribution of the network. Another aspect that influences the effectiveness of the quarantine is the self-protection processes of the individuals in the population, that is, they try to avoid contact with potentially infected individuals. In this paper, we investigate the efficiency of quarantine and self-protection processes in preventing the spreading of infectious diseases over complex networks with a power-law degree distribution [ P ( k ) ˜ k - ν ] for different ν values. We propose two alternative scale-free models that result in power-law degree distributions above and below the exponent ν = 3 associated with the conventional Barabási-Albert model. Our results show that the exponent ν determines the effectiveness of these policies in controlling the spreading process. More precisely, we show that for the ν exponent below three, the quarantine mechanism loses effectiveness. However, the efficiency is improved if the quarantine is jointly implemented with a self-protection process driving the number of infected individuals significantly lower.
Sampling saddle points on a free energy surface
NASA Astrophysics Data System (ADS)
Samanta, Amit; Chen, Ming; Yu, Tang-Qing; Tuckerman, Mark; E, Weinan
2014-04-01
Many problems in biology, chemistry, and materials science require knowledge of saddle points on free energy surfaces. These saddle points act as transition states and are the bottlenecks for transitions of the system between different metastable states. For simple systems in which the free energy depends on a few variables, the free energy surface can be precomputed, and saddle points can then be found using existing techniques. For complex systems, where the free energy depends on many degrees of freedom, this is not feasible. In this paper, we develop an algorithm for finding the saddle points on a high-dimensional free energy surface "on-the-fly" without requiring a priori knowledge the free energy function itself. This is done by using the general strategy of the heterogeneous multi-scale method by applying a macro-scale solver, here the gentlest ascent dynamics algorithm, with the needed force and Hessian values computed on-the-fly using a micro-scale model such as molecular dynamics. The algorithm is capable of dealing with problems involving many coarse-grained variables. The utility of the algorithm is illustrated by studying the saddle points associated with (a) the isomerization transition of the alanine dipeptide using two coarse-grained variables, specifically the Ramachandran dihedral angles, and (b) the beta-hairpin structure of the alanine decamer using 20 coarse-grained variables, specifically the full set of Ramachandran angle pairs associated with each residue. For the alanine decamer, we obtain a detailed network showing the connectivity of the minima obtained and the saddle-point structures that connect them, which provides a way to visualize the gross features of the high-dimensional surface.
The complexity and robustness of metro networks
NASA Astrophysics Data System (ADS)
Derrible, Sybil; Kennedy, Christopher
2010-09-01
Transportation systems, being real-life examples of networks, are particularly interesting to analyze from the viewpoint of the new and rapidly emerging field of network science. Two particular concepts seem to be particularly relevant: scale-free patterns and small-worlds. By looking at 33 metro systems in the world, this paper adapts network science methodologies to the transportation literature, and offers one application to the robustness of metros; here, metro refers to urban rail transit with exclusive right-of-way, whether it is underground, at grade or elevated. We find that most metros are indeed scale-free (with scaling factors ranging from 2.10 to 5.52) and small-worlds; they show atypical behaviors, however, with increasing size. In particular, the presence of transfer-hubs (stations hosting more than three lines) results in relatively large scaling factors. The analysis provides insights/recommendations for increasing the robustness of metro networks. Smaller networks should focus on creating transfer stations, thus generating cycles to offer alternative routes. For larger networks, few stations seem to detain a certain monopole on transferring, it is therefore important to create additional transfers, possibly at the periphery of city centers; the Tokyo system seems to remarkably incorporate these properties.
NASA Astrophysics Data System (ADS)
Kyeyune-Nyombi, Eru; Morone, Flaviano; Liu, Wenwei; Li, Shuiqing; Gilchrist, M. Lane; Makse, Hernán A.
2018-01-01
Understanding the structural properties of random packings of jammed colloids requires an unprecedented high-resolution determination of the contact network providing mechanical stability to the packing. Here, we address the determination of the contact network by a novel strategy based on fluorophore signal exclusion of quantum dot nanoparticles from the contact points. We use fluorescence labeling schemes on particles inspired by biology and biointerface science in conjunction with fluorophore exclusion at the contact region. The method provides high-resolution contact network data that allows us to measure structural properties of the colloidal packing near marginal stability. We determine scaling laws of force distributions, soft modes, correlation functions, coordination number and free volume that define the universality class of jammed colloidal packings and can be compared with theoretical predictions. The contact detection method opens up further experimental testing at the interface of jamming and glass physics.
Brain Network Analysis from High-Resolution EEG Signals
NASA Astrophysics Data System (ADS)
de Vico Fallani, Fabrizio; Babiloni, Fabio
Over the last decade, there has been a growing interest in the detection of the functional connectivity in the brain from different neuroelectromagnetic and hemodynamic signals recorded by several neuro-imaging devices such as the functional Magnetic Resonance Imaging (fMRI) scanner, electroencephalography (EEG) and magnetoencephalography (MEG) apparatus. Many methods have been proposed and discussed in the literature with the aim of estimating the functional relationships among different cerebral structures. However, the necessity of an objective comprehension of the network composed by the functional links of different brain regions is assuming an essential role in the Neuroscience. Consequently, there is a wide interest in the development and validation of mathematical tools that are appropriate to spot significant features that could describe concisely the structure of the estimated cerebral networks. The extraction of salient characteristics from brain connectivity patterns is an open challenging topic, since often the estimated cerebral networks have a relative large size and complex structure. Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory. Since a graph is a mathematical representation of a network, which is essentially reduced to nodes and connections between them, the use of a theoretical graph approach seems relevant and useful as firstly demonstrated on a set of anatomical brain networks. In those studies, the authors have employed two characteristic measures, the average shortest path L and the clustering index C, to extract respectively the global and local properties of the network structure. They have found that anatomical brain networks exhibit many local connections (i.e. a high C) and few random long distance connections (i.e. a low L). These values identify a particular model that interpolate between a regular lattice and a random structure. Such a model has been designated as "small-world" network in analogy with the concept of the small-world phenomenon observed more than 30 years ago in social systems. In a similar way, many types of functional brain networks have been analyzed according to this mathematical approach. In particular, several studies based on different imaging techniques (fMRI, MEG and EEG) have found that the estimated functional networks showed small-world characteristics. In the functional brain connectivity context, these properties have been demonstrated to reflect an optimal architecture for the information processing and propagation among the involved cerebral structures. However, the performance of cognitive and motor tasks as well as the presence of neural diseases has been demonstrated to affect such a small-world topology, as revealed by the significant changes of L and C. Moreover, some functional brain networks have been mostly found to be very unlike the random graphs in their degree-distribution, which gives information about the allocation of the functional links within the connectivity pattern. It was demonstrated that the degree distributions of these networks follow a power-law trend. For this reason those networks are called "scale-free". They still exhibit the small-world phenomenon but tend to contain few nodes that act as highly connected "hubs". Scale-free networks are known to show resistance to failure, facility of synchronization and fast signal processing. Hence, it would be important to see whether the scaling properties of the functional brain networks are altered under various pathologies or experimental tasks. The present Chapter proposes a theoretical graph approach in order to evaluate the functional connectivity patterns obtained from high-resolution EEG signals. In this way, the "Brain Network Analysis" (in analogy with the Social Network Analysis that has emerged as a key technique in modern sociology) represents an effective methodology improving the comprehension of the complex interactions in the brain.
Inference of neuronal network spike dynamics and topology from calcium imaging data
Lütcke, Henry; Gerhard, Felipe; Zenke, Friedemann; Gerstner, Wulfram; Helmchen, Fritjof
2013-01-01
Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP) occurrence (“spike trains”) from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties. PMID:24399936
Toward cost-efficient sampling methods
NASA Astrophysics Data System (ADS)
Luo, Peng; Li, Yongli; Wu, Chong; Zhang, Guijie
2015-09-01
The sampling method has been paid much attention in the field of complex network in general and statistical physics in particular. This paper proposes two new sampling methods based on the idea that a small part of vertices with high node degree could possess the most structure information of a complex network. The two proposed sampling methods are efficient in sampling high degree nodes so that they would be useful even if the sampling rate is low, which means cost-efficient. The first new sampling method is developed on the basis of the widely used stratified random sampling (SRS) method and the second one improves the famous snowball sampling (SBS) method. In order to demonstrate the validity and accuracy of two new sampling methods, we compare them with the existing sampling methods in three commonly used simulation networks that are scale-free network, random network, small-world network, and also in two real networks. The experimental results illustrate that the two proposed sampling methods perform much better than the existing sampling methods in terms of achieving the true network structure characteristics reflected by clustering coefficient, Bonacich centrality and average path length, especially when the sampling rate is low.
Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres.
Wu, Dan; Kendrick, Keith M; Levitin, Daniel J; Li, Chaoyi; Yao, Dezhong
2015-01-01
Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach's harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.
Cognitive strategies take advantage of the cooperative potential of heterogeneous networks
NASA Astrophysics Data System (ADS)
Vukov, Jeromos; Santos, Francisco C.; Pacheco, Jorge M.
2012-06-01
Understanding the emergence and maintenance of cooperation is one of the most challenging topics of our time. Evolutionary game theory offers a very flexible framework within which to address this challenge. Here we use the prisoner's dilemma game to investigate the performance of individuals who are capable of adopting reactive strategies in communities structurally organized by means of Barabási-Albert scale-free networks. We find that basic cognitive abilities, such as the capability to distinguish their partners and act according to their previous actions, enable cooperation to thrive. This result is particularly significant whenever fear is the leading social tension, as this fosters retaliation, thus enforcing and sustaining cooperation. Being able to simultaneously reward fellow cooperators and punish defectors proves instrumental in achieving cooperation and the welfare of the community. As a result, central individuals can successfully lead the community and turn defective players into cooperative ones. Finally, even when participation costs—known to be detrimental to cooperation in scale-free networks—are explicitly included, we find that basic cognitive abilities have enough potential to help cooperation to prevail.
Balance of excitation and inhibition determines 1/f power spectrum in neuronal networks.
Lombardi, F; Herrmann, H J; de Arcangelis, L
2017-04-01
The 1/f-like decay observed in the power spectrum of electro-physiological signals, along with scale-free statistics of the so-called neuronal avalanches, constitutes evidence of criticality in neuronal systems. Recent in vitro studies have shown that avalanche dynamics at criticality corresponds to some specific balance of excitation and inhibition, thus suggesting that this is a basic feature of the critical state of neuronal networks. In particular, a lack of inhibition significantly alters the temporal structure of the spontaneous avalanche activity and leads to an anomalous abundance of large avalanches. Here, we study the relationship between network inhibition and the scaling exponent β of the power spectral density (PSD) of avalanche activity in a neuronal network model inspired in Self-Organized Criticality. We find that this scaling exponent depends on the percentage of inhibitory synapses and tends to the value β = 1 for a percentage of about 30%. More specifically, β is close to 2, namely, Brownian noise, for purely excitatory networks and decreases towards values in the interval [1, 1.4] as the percentage of inhibitory synapses ranges between 20% and 30%, in agreement with experimental findings. These results indicate that the level of inhibition affects the frequency spectrum of resting brain activity and suggest the analysis of the PSD scaling behavior as a possible tool to study pathological conditions.
Balance of excitation and inhibition determines 1/f power spectrum in neuronal networks
NASA Astrophysics Data System (ADS)
Lombardi, F.; Herrmann, H. J.; de Arcangelis, L.
2017-04-01
The 1/f-like decay observed in the power spectrum of electro-physiological signals, along with scale-free statistics of the so-called neuronal avalanches, constitutes evidence of criticality in neuronal systems. Recent in vitro studies have shown that avalanche dynamics at criticality corresponds to some specific balance of excitation and inhibition, thus suggesting that this is a basic feature of the critical state of neuronal networks. In particular, a lack of inhibition significantly alters the temporal structure of the spontaneous avalanche activity and leads to an anomalous abundance of large avalanches. Here, we study the relationship between network inhibition and the scaling exponent β of the power spectral density (PSD) of avalanche activity in a neuronal network model inspired in Self-Organized Criticality. We find that this scaling exponent depends on the percentage of inhibitory synapses and tends to the value β = 1 for a percentage of about 30%. More specifically, β is close to 2, namely, Brownian noise, for purely excitatory networks and decreases towards values in the interval [1, 1.4] as the percentage of inhibitory synapses ranges between 20% and 30%, in agreement with experimental findings. These results indicate that the level of inhibition affects the frequency spectrum of resting brain activity and suggest the analysis of the PSD scaling behavior as a possible tool to study pathological conditions.
Multiscale Embedded Gene Co-expression Network Analysis
Song, Won-Min; Zhang, Bin
2015-01-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778
Multiscale Embedded Gene Co-expression Network Analysis.
Song, Won-Min; Zhang, Bin
2015-11-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.
Synchronization properties of heterogeneous neuronal networks with mixed excitability type
NASA Astrophysics Data System (ADS)
Leone, Michael J.; Schurter, Brandon N.; Letson, Benjamin; Booth, Victoria; Zochowski, Michal; Fink, Christian G.
2015-03-01
We study the synchronization of neuronal networks with dynamical heterogeneity, showing that network structures with the same propensity for synchronization (as quantified by master stability function analysis) may develop dramatically different synchronization properties when heterogeneity is introduced with respect to neuronal excitability type. Specifically, we investigate networks composed of neurons with different types of phase response curves (PRCs), which characterize how oscillating neurons respond to excitatory perturbations. Neurons exhibiting type 1 PRC respond exclusively with phase advances, while neurons exhibiting type 2 PRC respond with either phase delays or phase advances, depending on when the perturbation occurs. We find that Watts-Strogatz small world networks transition to synchronization gradually as the proportion of type 2 neurons increases, whereas scale-free networks may transition gradually or rapidly, depending upon local correlations between node degree and excitability type. Random placement of type 2 neurons results in gradual transition to synchronization, whereas placement of type 2 neurons as hubs leads to a much more rapid transition, showing that type 2 hub cells easily "hijack" neuronal networks to synchronization. These results underscore the fact that the degree of synchronization observed in neuronal networks is determined by a complex interplay between network structure and the dynamical properties of individual neurons, indicating that efforts to recover structural connectivity from dynamical correlations must in general take both factors into account.
Construction of multi-scale consistent brain networks: methods and applications.
Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.
Spectrum of walk matrix for Koch network and its application
NASA Astrophysics Data System (ADS)
Xie, Pinchen; Lin, Yuan; Zhang, Zhongzhi
2015-06-01
Various structural and dynamical properties of a network are encoded in the eigenvalues of walk matrix describing random walks on the network. In this paper, we study the spectra of walk matrix of the Koch network, which displays the prominent scale-free and small-world features. Utilizing the particular architecture of the network, we obtain all the eigenvalues and their corresponding multiplicities. Based on the link between the eigenvalues of walk matrix and random target access time defined as the expected time for a walker going from an arbitrary node to another one selected randomly according to the steady-state distribution, we then derive an explicit solution to the random target access time for random walks on the Koch network. Finally, we corroborate our computation for the eigenvalues by enumerating spanning trees in the Koch network, using the connection governing eigenvalues and spanning trees, where a spanning tree of a network is a subgraph of the network, that is, a tree containing all the nodes.
Empirical analysis of online social networks in the age of Web 2.0
NASA Astrophysics Data System (ADS)
Fu, Feng; Liu, Lianghuan; Wang, Long
2008-01-01
Today the World Wide Web is undergoing a subtle but profound shift to Web 2.0, to become more of a social web. The use of collaborative technologies such as blogs and social networking site (SNS) leads to instant online community in which people communicate rapidly and conveniently with each other. Moreover, there are growing interest and concern regarding the topological structure of these new online social networks. In this paper, we present empirical analysis of statistical properties of two important Chinese online social networks-a blogging network and an SNS open to college students. They are both emerging in the age of Web 2.0. We demonstrate that both networks possess small-world and scale-free features already observed in real-world and artificial networks. In addition, we investigate the distribution of topological distance. Furthermore, we study the correlations between degree (in/out) and degree (in/out), clustering coefficient and degree, popularity (in terms of number of page views) and in-degree (for the blogging network), respectively. We find that the blogging network shows disassortative mixing pattern, whereas the SNS network is an assortative one. Our research may help us to elucidate the self-organizing structural characteristics of these online social networks embedded in technical forms.
Xu, Zhijing; Zu, Zhenghu; Zheng, Tao; Zhang, Wendou; Xu, Qing; Liu, Jinjie
2014-01-01
The study analyses the role of long-distance travel behaviours on the large-scale spatial spreading of directly transmitted infectious diseases, focusing on two different travel types in terms of the travellers travelling to a specific group or not. For this purpose, we have formulated and analysed a metapopulation model in which the individuals in each subpopulation are organised into a scale-free contact network. The long-distance travellers between the subpopulations will temporarily change the network structure of the destination subpopulation through the "merging effects (MEs)," which indicates that the travellers will be regarded as either connected components or isolated nodes in the contact network. The results show that the presence of the MEs has constantly accelerated the transmission of the diseases and aggravated the outbreaks compared to the scenario in which the diversity of the long-distance travel types is arbitrarily discarded. Sensitivity analyses show that these results are relatively constant regarding a wide range variation of several model parameters. Our study has highlighted several important causes which could significantly affect the spatiotemporal disease dynamics neglected by the present studies.
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2015-09-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces.
A Novel BA Complex Network Model on Color Template Matching
Han, Risheng; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching. PMID:25243235
A novel BA complex network model on color template matching.
Han, Risheng; Shen, Shigen; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching.
Bright-White Beetle Scales Optimise Multiple Scattering of Light
NASA Astrophysics Data System (ADS)
Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia
2014-08-01
Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.
Simulating the wealth distribution with a Richest-Following strategy on scale-free network
NASA Astrophysics Data System (ADS)
Hu, Mao-Bin; Jiang, Rui; Wu, Qing-Song; Wu, Yong-Hong
2007-07-01
In this paper, we investigate the wealth distribution with agents playing evolutionary games on a scale-free social network adopting the Richest-Following strategy. Pareto's power-law distribution (1897) of wealth is demonstrated with power factor in agreement with that of US or Japan. Moreover, the agent's personal wealth is proportional to its number of contacts (connectivity), and this leads to the phenomenon that the rich gets richer and the poor gets relatively poorer, which agrees with the Matthew Effect.
Goekoop, Rutger; Goekoop, Jaap G.
2014-01-01
Introduction The vast number of psychopathological syndromes that can be observed in clinical practice can be described in terms of a limited number of elementary syndromes that are differentially expressed. Previous attempts to identify elementary syndromes have shown limitations that have slowed progress in the taxonomy of psychiatric disorders. Aim To examine the ability of network community detection (NCD) to identify elementary syndromes of psychopathology and move beyond the limitations of current classification methods in psychiatry. Methods 192 patients with unselected mental disorders were tested on the Comprehensive Psychopathological Rating Scale (CPRS). Principal component analysis (PCA) was performed on the bootstrapped correlation matrix of symptom scores to extract the principal component structure (PCS). An undirected and weighted network graph was constructed from the same matrix. Network community structure (NCS) was optimized using a previously published technique. Results In the optimal network structure, network clusters showed a 89% match with principal components of psychopathology. Some 6 network clusters were found, including "DEPRESSION", "MANIA", “ANXIETY”, "PSYCHOSIS", "RETARDATION", and "BEHAVIORAL DISORGANIZATION". Network metrics were used to quantify the continuities between the elementary syndromes. Conclusion We present the first comprehensive network graph of psychopathology that is free from the biases of previous classifications: a ‘Psychopathology Web’. Clusters within this network represent elementary syndromes that are connected via a limited number of bridge symptoms. Many problems of previous classifications can be overcome by using a network approach to psychopathology. PMID:25427156
Masè, Michela; Cristoforetti, Alessandro; Avogaro, Laura; Tessarolo, Francesco; Piccoli, Federico; Caola, Iole; Pederzolli, Carlo; Graffigna, Angelo; Ravelli, Flavia
2015-01-01
The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.
Visibility graph approach to exchange rate series
NASA Astrophysics Data System (ADS)
Yang, Yue; Wang, Jianbo; Yang, Huijie; Mang, Jingshi
2009-10-01
By means of a visibility graph, we investigate six important exchange rate series. It is found that the series convert into scale-free and hierarchically structured networks. The relationship between the scaling exponents of the degree distributions and the Hurst exponents obeys the analytical prediction for fractal Brownian motions. The visibility graph can be used to obtain reliable values of Hurst exponents of the series. The characteristics are explained by using the multifractal structures of the series. The exchange rate of EURO to Japanese Yen is widely used to evaluate risk and to estimate trends in speculative investments. Interestingly, the hierarchies of the visibility graphs for the exchange rate series of these two currencies are significantly weak compared with that of the other series.
Cascade phenomenon against subsequent failures in complex networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng
2018-06-01
Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.
Discretized kinetic theory on scale-free networks
NASA Astrophysics Data System (ADS)
Bertotti, Maria Letizia; Modanese, Giovanni
2016-10-01
The network of interpersonal connections is one of the possible heterogeneous factors which affect the income distribution emerging from micro-to-macro economic models. In this paper we equip our model discussed in [1, 2] with a network structure. The model is based on a system of n differential equations of the kinetic discretized-Boltzmann kind. The network structure is incorporated in a probabilistic way, through the introduction of a link density P(α) and of correlation coefficients P(β|α), which give the conditioned probability that an individual with α links is connected to one with β links. We study the properties of the equations and give analytical results concerning the existence, normalization and positivity of the solutions. For a fixed network with P(α) = c/α q , we investigate numerically the dependence of the detailed and marginal equilibrium distributions on the initial conditions and on the exponent q. Our results are compatible with those obtained from the Bouchaud-Mezard model and from agent-based simulations, and provide additional information about the dependence of the individual income on the level of connectivity.
Epidemic spreading in a hierarchical social network.
Grabowski, A; Kosiński, R A
2004-09-01
A model of epidemic spreading in a population with a hierarchical structure of interpersonal interactions is described and investigated numerically. The structure of interpersonal connections is based on a scale-free network. Spatial localization of individuals belonging to different social groups, and the mobility of a contemporary community, as well as the effectiveness of different interpersonal interactions, are taken into account. Typical relations characterizing the spreading process, like a range of epidemic and epidemic curves, are discussed. The influence of preventive vaccinations on the spreading process is investigated. The critical value of preventively vaccinated individuals that is sufficient for the suppression of an epidemic is calculated. Our results are compared with solutions of the master equation for the spreading process and good agreement of the character of this process is found.
Wake-up transceivers for structural health monitoring of bridges
NASA Astrophysics Data System (ADS)
Kumberg, T.; Kokert, J.; Younesi, V.; Koenig, S.; Reindl, L. M.
2016-04-01
In this article we present a wireless sensor network to monitor the structural health of a large-scale highway bridge in Germany. The wireless sensor network consists of several sensor nodes that use wake-up receivers to realize latency free and low-power communication. The sensor nodes are either equipped with very accurate tilt sensor developed by Northrop Grumman LITEF GmbH or with a Novatel OEM615 GNSS receiver. Relay nodes are required to forward measurement data to a base station located on the bridge. The base station is a gateway that transmits the local measurement data to a remote server where it can be further analyzed and processed. Further on, we present an energy harvesting system to supply the energy demanding GNSS sensor nodes to realize long term monitoring.
Growing trees in internet news groups and forums
NASA Astrophysics Data System (ADS)
Kujawski, B.; Hołyst, J.; Rodgers, G. J.
2007-09-01
We present an empirical study of the networks created by users within internet news groups and forums and show that they organize themselves into scale-free trees. The structure of these trees depends on the topic under discussion; specialist topics have trees with a short shallow structure whereas more universal topics are discussed widely and have a deeper tree structure. For news groups we find that the distribution of the time intervals between when a message is posted and when it receives a response exhibits a composite power-law behavior. From our statistics we can see if the news group or forum is free or is overseen by a moderator. The correlation function of activity, the number of messages posted in a given time, shows long-range correlations connected with the users’ daily routines. The distribution of distances between each message and its root is exponential for most news groups and power law for the forums. For both formats we find that the relation between the supremacy (the total number of nodes that are under the node i , including node i ) and the degree is linear s(k)˜k , in contrast to the analytical relation for the Barabási-Albert network.
Relationship between microscopic dynamics in traffic flow and complexity in networks.
Li, Xin-Gang; Gao, Zi-You; Li, Ke-Ping; Zhao, Xiao-Mei
2007-07-01
Complex networks are constructed in the evolution process of traffic flow, and the states of traffic flow are represented by nodes in the network. The traffic dynamics can then be studied by investigating the statistical properties of those networks. According to Kerner's three-phase theory, there are two different phases in congested traffic, synchronized flow and wide moving jam. In the framework of this theory, we study different properties of synchronized flow and moving jam in relation to complex network. Scale-free network is constructed in stop-and-go traffic, i.e., a sequence of moving jams [Chin. Phys. Lett. 10, 2711 (2005)]. In this work, the networks generated in synchronized flow are investigated in detail. Simulation results show that the degree distribution of the networks constructed in synchronized flow has two power law regions, so the distinction in topological structure can really reflect the different dynamics in traffic flow. Furthermore, the real traffic data are investigated by this method, and the results are consistent with the simulations.
Spreading dynamics of an e-commerce preferential information model on scale-free networks
NASA Astrophysics Data System (ADS)
Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding
2017-02-01
In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.
NASA Astrophysics Data System (ADS)
Kim, Yup; Cho, Minsoo; Yook, Soon-Hyung
2011-10-01
We study the effects of the underlying topologies on a single feature perturbation imposed to the Axelrod model of consensus formation. From the numerical simulations we show that there are successive updates which are similar to avalanches in many self-organized criticality systems when a perturbation is imposed. We find that the distribution of avalanche size satisfies the finite-size scaling (FSS) ansatz on two-dimensional lattices and random networks. However, on scale-free networks with the degree exponent γ≤3 we show that the avalanche size distribution does not satisfy the FSS ansatz. The results indicate that the disordered configurations on two-dimensional lattices or on random networks are still stable against the perturbation in the limit N (network size) →∞. However, on scale-free networks with γ≤3 the perturbation always drives the disordered phase into an ordered phase. The possible relationship between the properties of phase transition of the Axelrod model and the avalanche distribution is also discussed.
Topology of foreign exchange markets using hierarchical structure methods
NASA Astrophysics Data System (ADS)
Naylor, Michael J.; Rose, Lawrence C.; Moyle, Brendan J.
2007-08-01
This paper uses two physics derived hierarchical techniques, a minimal spanning tree and an ultrametric hierarchical tree, to extract a topological influence map for major currencies from the ultrametric distance matrix for 1995-2001. We find that these two techniques generate a defined and robust scale free network with meaningful taxonomy. The topology is shown to be robust with respect to method, to time horizon and is stable during market crises. This topology, appropriately used, gives a useful guide to determining the underlying economic or regional causal relationships for individual currencies and to understanding the dynamics of exchange rate price determination as part of a complex network.
Chaos of radiative heat-loss-induced flame front instability.
Kinugawa, Hikaru; Ueda, Kazuhiro; Gotoda, Hiroshi
2016-03-01
We are intensively studying the chaos via the period-doubling bifurcation cascade in radiative heat-loss-induced flame front instability by analytical methods based on dynamical systems theory and complex networks. Significant changes in flame front dynamics in the chaotic region, which cannot be seen in the bifurcation diagrams, were successfully extracted from recurrence quantification analysis and nonlinear forecasting and from the network entropy. The temporal dynamics of the fuel concentration in the well-developed chaotic region is much more complicated than that of the flame front temperature. It exhibits self-affinity as a result of the scale-free structure in the constructed visibility graph.
Research on cascading failure in multilayer network with different coupling preference
NASA Astrophysics Data System (ADS)
Zhang, Yong; Jin, Lei; Wang, Xiao Juan
This paper is aimed at constructing robust multilayer networks against cascading failure. Considering link protection strategies in reality, we design a cascading failure model based on load distribution and extend it to multilayer. We use the cascading failure model to deduce the scale of the largest connected component after cascading failure, from which we can find that the performance of four kinds of load distribution strategies associates with the load ratio of the current edge to its adjacent edge. Coupling preference is a typical characteristic in multilayer networks which corresponds to the network robustness. The coupling preference of multilayer networks is divided into two forms: the coupling preference in layers and the coupling preference between layers. To analyze the relationship between the coupling preference and the multilayer network robustness, we design a construction algorithm to generate multilayer networks with different coupling preferences. Simulation results show that the load distribution based on the node betweenness performs the best. When the coupling coefficient in layers is zero, the scale-free network is the most robust. In the random network, the assortative coupling in layers is more robust than the disassortative coupling. For the coupling preference between layers, the assortative coupling between layers is more robust than the disassortative coupling both in the scale free network and the random network.
Chai, Bian-fang; Yu, Jian; Jia, Cai-Yan; Yang, Tian-bao; Jiang, Ya-wen
2013-07-01
Latent community discovery that combines links and contents of a text-associated network has drawn more attention with the advance of social media. Most of the previous studies aim at detecting densely connected communities and are not able to identify general structures, e.g., bipartite structure. Several variants based on the stochastic block model are more flexible for exploring general structures by introducing link probabilities between communities. However, these variants cannot identify the degree distributions of real networks due to a lack of modeling of the differences among nodes, and they are not suitable for discovering communities in text-associated networks because they ignore the contents of nodes. In this paper, we propose a popularity-productivity stochastic block (PPSB) model by introducing two random variables, popularity and productivity, to model the differences among nodes in receiving links and producing links, respectively. This model has the flexibility of existing stochastic block models in discovering general community structures and inherits the richness of previous models that also exploit popularity and productivity in modeling the real scale-free networks with power law degree distributions. To incorporate the contents in text-associated networks, we propose a combined model which combines the PPSB model with a discriminative model that models the community memberships of nodes by their contents. We then develop expectation-maximization (EM) algorithms to infer the parameters in the two models. Experiments on synthetic and real networks have demonstrated that the proposed models can yield better performances than previous models, especially on networks with general structures.
NASA Astrophysics Data System (ADS)
Chai, Bian-fang; Yu, Jian; Jia, Cai-yan; Yang, Tian-bao; Jiang, Ya-wen
2013-07-01
Latent community discovery that combines links and contents of a text-associated network has drawn more attention with the advance of social media. Most of the previous studies aim at detecting densely connected communities and are not able to identify general structures, e.g., bipartite structure. Several variants based on the stochastic block model are more flexible for exploring general structures by introducing link probabilities between communities. However, these variants cannot identify the degree distributions of real networks due to a lack of modeling of the differences among nodes, and they are not suitable for discovering communities in text-associated networks because they ignore the contents of nodes. In this paper, we propose a popularity-productivity stochastic block (PPSB) model by introducing two random variables, popularity and productivity, to model the differences among nodes in receiving links and producing links, respectively. This model has the flexibility of existing stochastic block models in discovering general community structures and inherits the richness of previous models that also exploit popularity and productivity in modeling the real scale-free networks with power law degree distributions. To incorporate the contents in text-associated networks, we propose a combined model which combines the PPSB model with a discriminative model that models the community memberships of nodes by their contents. We then develop expectation-maximization (EM) algorithms to infer the parameters in the two models. Experiments on synthetic and real networks have demonstrated that the proposed models can yield better performances than previous models, especially on networks with general structures.
Reciprocity and the Emergence of Power Laws in Social Networks
NASA Astrophysics Data System (ADS)
Schnegg, Michael
Research in network science has shown that many naturally occurring and technologically constructed networks are scale free, that means a power law degree distribution emerges from a growth model in which each new node attaches to the existing network with a probability proportional to its number of links (= degree). Little is known about whether the same principles of local attachment and global properties apply to societies as well. Empirical evidence from six ethnographic case studies shows that complex social networks have significantly lower scaling exponents γ ~ 1 than have been assumed in the past. Apparently humans do not only look for the most prominent players to play with. Moreover cooperation in humans is characterized through reciprocity, the tendency to give to those from whom one has received in the past. Both variables — reciprocity and the scaling exponent — are negatively correlated (r = -0.767, sig = 0.075). If we include this effect in simulations of growing networks, degree distributions emerge that are much closer to those empirically observed. While the proportion of nodes with small degrees decreases drastically as we introduce reciprocity, the scaling exponent is more robust and changes only when a relatively large proportion of attachment decisions follow this rule. If social networks are less scale free than previously assumed this has far reaching implications for policy makers, public health programs and marketing alike.
Generic patterns in the evolution of urban water networks: Evidence from a large Asian city
NASA Astrophysics Data System (ADS)
Krueger, Elisabeth; Klinkhamer, Christopher; Urich, Christian; Zhan, Xianyuan; Rao, P. Suresh C.
2017-03-01
We examine high-resolution urban infrastructure data using every pipe for the water distribution network (WDN) and sanitary sewer network (SSN) in a large Asian city (≈4 million residents) to explore the structure as well as the spatial and temporal evolution of these infrastructure networks. Network data were spatially disaggregated into multiple subnets to examine intracity topological differences for functional zones of the WDN and SSN, and time-stamped SSN data were examined to understand network evolution over several decades as the city expanded. Graphs were generated using a dual-mapping technique (Hierarchical Intersection Continuity Negotiation), which emphasizes the functional attributes of these networks. Network graphs for WDNs and SSNs are characterized by several network topological metrics, and a double Pareto (power-law) model approximates the node-degree distributions of both water infrastructure networks (WDN and SSN), across spatial and hierarchical scales relevant to urban settings, and throughout their temporal evolution over several decades. These results indicate that generic mechanisms govern the networks' evolution, similar to those of scale-free networks found in nature. Deviations from the general topological patterns are indicative of (1) incomplete establishment of network hierarchies and functional network evolution, (2) capacity for growth (expansion) or densification (e.g., in-fill), and (3) likely network vulnerabilities. We discuss the implications of our findings for the (re-)design of urban infrastructure networks to enhance their resilience to external and internal threats.
Opinion formation of free speech on the directed social network
NASA Astrophysics Data System (ADS)
Su, Jiongming; Ma, Hongxu; Liu, Baohong; Li, Qi
2014-12-01
A dynamical model with continuous opinion is proposed to study how the speech order and the topology of directed social network affect the opinion formation of free speech. In the model, agents express their opinions one by one with random order (RO) or probability order (PO), other agents paying attentions to the speaking agent, receive provider's opinion, update their opinions and then express their new opinions in their turns. It is proved that with the same agent j repeats its opinion more, other agents who pay their attentions to j and include j's opinion in their confidence level at initial time, will continue approaching j's opinion. Simulation results reveal that on directed scale-free network: (1) the model for PO forms fewer opinion clusters, larger maximum cluster (MC), smaller standard deviation (SD), and needs less waiting time to reach a middle level of consensus than RO; (2) as the parameter of scale-free degree distribution decreases or the confidence level increases, the results often get better for both speech orders; (3) the differences between PO and RO get smaller as the size of network decreases.
Mining protein-protein interaction networks: denoising effects
NASA Astrophysics Data System (ADS)
Marras, Elisabetta; Capobianco, Enrico
2009-01-01
A typical instrument to pursue analysis in complex network studies is the analysis of the statistical distributions. They are usually computed for measures which characterize network topology, and are aimed at capturing both structural and dynamics aspects. Protein-protein interaction networks (PPIN) have also been studied through several measures. It is in general observed that a power law is expected to characterize scale-free networks. However, mixing the original noise cover with outlying information and other system-dependent fluctuations makes the empirical detection of the power law a difficult task. As a result the uncertainty level increases when looking at the observed sample; in particular, one may wonder whether the computed features may be sufficient to explain the interactome. We then address noise problems by implementing both decomposition and denoising techniques that reduce the impact of factors known to affect the accuracy of power law detection.
Jimena: efficient computing and system state identification for genetic regulatory networks.
Karl, Stefan; Dandekar, Thomas
2013-10-11
Boolean networks capture switching behavior of many naturally occurring regulatory networks. For semi-quantitative modeling, interpolation between ON and OFF states is necessary. The high degree polynomial interpolation of Boolean genetic regulatory networks (GRNs) in cellular processes such as apoptosis or proliferation allows for the modeling of a wider range of node interactions than continuous activator-inhibitor models, but suffers from scaling problems for networks which contain nodes with more than ~10 inputs. Many GRNs from literature or new gene expression experiments exceed those limitations and a new approach was developed. (i) As a part of our new GRN simulation framework Jimena we introduce and setup Boolean-tree-based data structures; (ii) corresponding algorithms greatly expedite the calculation of the polynomial interpolation in almost all cases, thereby expanding the range of networks which can be simulated by this model in reasonable time. (iii) Stable states for discrete models are efficiently counted and identified using binary decision diagrams. As application example, we show how system states can now be sampled efficiently in small up to large scale hormone disease networks (Arabidopsis thaliana development and immunity, pathogen Pseudomonas syringae and modulation by cytokinins and plant hormones). Jimena simulates currently available GRNs about 10-100 times faster than the previous implementation of the polynomial interpolation model and even greater gains are achieved for large scale-free networks. This speed-up also facilitates a much more thorough sampling of continuous state spaces which may lead to the identification of new stable states. Mutants of large networks can be constructed and analyzed very quickly enabling new insights into network robustness and behavior.
Improved Efficient Routing Strategy on Scale-Free Networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liang, Man-Gui
Since the betweenness of nodes in complex networks can theoretically represent the traffic load of nodes under the currently used routing strategy, we propose an improved efficient (IE) routing strategy to enhance to the network traffic capacity based on the betweenness centrality. Any node with the highest betweenness is susceptible to traffic congestion. An efficient way to improve the network traffic capacity is to redistribute the heavy traffic load from these central nodes to non-central nodes, so in this paper, we firstly give a path cost function by considering the sum of node betweenness with a tunable parameter β along the actual path. Then, by minimizing the path cost, our IE routing strategy achieved obvious improvement on the network transport efficiency. Simulations on scale-free Barabási-Albert (BA) networks confirmed the effectiveness of our strategy, when compared with the efficient routing (ER) and the shortest path (SP) routing.
Statistical properties of world investment networks
NASA Astrophysics Data System (ADS)
Song, Dong-Ming; Jiang, Zhi-Qiang; Zhou, Wei-Xing
2009-06-01
We have performed a detailed investigation on the world investment networks constructed from the Coordinated Portfolio Investment Survey (CPIS) data of the International Monetary Fund, ranging from 2001 to 2006. The distributions of degrees and node strengths are scale-free. The weight distributions can be well modeled by the Weibull distribution. The maximum flow spanning trees of the world investment networks possess two universal allometric scaling relations, independent of time and the investment type. The topological scaling exponent is 1.17±0.02 and the flow scaling exponent is 1.03±0.01.
Reconstruction of the experimentally supported human protein interactome: what can we learn?
2013-01-01
Background Understanding the topology and dynamics of the human protein-protein interaction (PPI) network will significantly contribute to biomedical research, therefore its systematic reconstruction is required. Several meta-databases integrate source PPI datasets, but the protein node sets of their networks vary depending on the PPI data combined. Due to this inherent heterogeneity, the way in which the human PPI network expands via multiple dataset integration has not been comprehensively analyzed. We aim at assembling the human interactome in a global structured way and exploring it to gain insights of biological relevance. Results First, we defined the UniProtKB manually reviewed human “complete” proteome as the reference protein-node set and then we mined five major source PPI datasets for direct PPIs exclusively between the reference proteins. We updated the protein and publication identifiers and normalized all PPIs to the UniProt identifier level. The reconstructed interactome covers approximately 60% of the human proteome and has a scale-free structure. No apparent differentiating gene functional classification characteristics were identified for the unrepresented proteins. The source dataset integration augments the network mainly in PPIs. Polyubiquitin emerged as the highest-degree node, but the inclusion of most of its identified PPIs may be reconsidered. The high number (>300) of connections of the subsequent fifteen proteins correlates well with their essential biological role. According to the power-law network structure, the unrepresented proteins should mainly have up to four connections with equally poorly-connected interactors. Conclusions Reconstructing the human interactome based on the a priori definition of the protein nodes enabled us to identify the currently included part of the human “complete” proteome, and discuss the role of the proteins within the network topology with respect to their function. As the network expansion has to comply with the scale-free theory, we suggest that the core of the human interactome has essentially emerged. Thus, it could be employed in systems biology and biomedical research, despite the considerable number of currently unrepresented proteins. The latter are probably involved in specialized physiological conditions, justifying the scarcity of related PPI information, and their identification can assist in designing relevant functional experiments and targeted text mining algorithms. PMID:24088582
Amith, Muhammad; Cunningham, Rachel; Savas, Lara S; Boom, Julie; Schvaneveldt, Roger; Tao, Cui; Cohen, Trevor
2017-10-01
This study demonstrates the use of distributed vector representations and Pathfinder Network Scaling (PFNETS) to represent online vaccine content created by health experts and by laypeople. By analyzing a target audience's conceptualization of a topic, domain experts can develop targeted interventions to improve the basic health knowledge of consumers. The underlying assumption is that the content created by different groups reflects the mental organization of their knowledge. Applying automated text analysis to this content may elucidate differences between the knowledge structures of laypeople (heath consumers) and professionals (health experts). This paper utilizes vaccine information generated by laypeople and health experts to investigate the utility of this approach. We used an established technique from cognitive psychology, Pathfinder Network Scaling to infer the structure of the associational networks between concepts learned from online content using methods of distributional semantics. In doing so, we extend the original application of PFNETS to infer knowledge structures from individual participants, to infer the prevailing knowledge structures within communities of content authors. The resulting graphs reveal opportunities for public health and vaccination education experts to improve communication and intervention efforts directed towards health consumers. Our efforts demonstrate the feasibility of using an automated procedure to examine the manifestation of conceptual models within large bodies of free text, revealing evidence of conflicting understanding of vaccine concepts among health consumers as compared with health experts. Additionally, this study provides insight into the differences between consumer and expert abstraction of domain knowledge, revealing vaccine-related knowledge gaps that suggest opportunities to improve provider-patient communication. Copyright © 2017 Elsevier Inc. All rights reserved.
Scale-Free and Multifractal Time Dynamics of fMRI Signals during Rest and Task
Ciuciu, P.; Varoquaux, G.; Abry, P.; Sadaghiani, S.; Kleinschmidt, A.
2012-01-01
Scaling temporal dynamics in functional MRI (fMRI) signals have been evidenced for a decade as intrinsic characteristics of ongoing brain activity (Zarahn et al., 1997). Recently, scaling properties were shown to fluctuate across brain networks and to be modulated between rest and task (He, 2011): notably, Hurst exponent, quantifying long memory, decreases under task in activating and deactivating brain regions. In most cases, such results were obtained: First, from univariate (voxelwise or regionwise) analysis, hence focusing on specific cognitive systems such as Resting-State Networks (RSNs) and raising the issue of the specificity of this scale-free dynamics modulation in RSNs. Second, using analysis tools designed to measure a single scaling exponent related to the second order statistics of the data, thus relying on models that either implicitly or explicitly assume Gaussianity and (asymptotic) self-similarity, while fMRI signals may significantly depart from those either of those two assumptions (Ciuciu et al., 2008; Wink et al., 2008). To address these issues, the present contribution elaborates on the analysis of the scaling properties of fMRI temporal dynamics by proposing two significant variations. First, scaling properties are technically investigated using the recently introduced Wavelet Leader-based Multifractal formalism (WLMF; Wendt et al., 2007). This measures a collection of scaling exponents, thus enables a richer and more versatile description of scale invariance (beyond correlation and Gaussianity), referred to as multifractality. Also, it benefits from improved estimation performance compared to tools previously used in the literature. Second, scaling properties are investigated in both RSN and non-RSN structures (e.g., artifacts), at a broader spatial scale than the voxel one, using a multivariate approach, namely the Multi-Subject Dictionary Learning (MSDL) algorithm (Varoquaux et al., 2011) that produces a set of spatial components that appear more sparse than their Independent Component Analysis (ICA) counterpart. These tools are combined and applied to a fMRI dataset comprising 12 subjects with resting-state and activation runs (Sadaghiani et al., 2009). Results stemming from those analysis confirm the already reported task-related decrease of long memory in functional networks, but also show that it occurs in artifacts, thus making this feature not specific to functional networks. Further, results indicate that most fMRI signals appear multifractal at rest except in non-cortical regions. Task-related modulation of multifractality appears only significant in functional networks and thus can be considered as the key property disentangling functional networks from artifacts. These finding are discussed in the light of the recent literature reporting scaling dynamics of EEG microstate sequences at rest and addressing non-stationarity issues in temporally independent fMRI modes. PMID:22715328
Robust-yet-fragile nature of interdependent networks
NASA Astrophysics Data System (ADS)
Tan, Fei; Xia, Yongxiang; Wei, Zhi
2015-05-01
Interdependent networks have been shown to be extremely vulnerable based on the percolation model. Parshani et al. [Europhys. Lett. 92, 68002 (2010), 10.1209/0295-5075/92/68002] further indicated that the more intersimilar networks are, the more robust they are to random failures. When traffic load is considered, how do the coupling patterns impact cascading failures in interdependent networks? This question has been largely unexplored until now. In this paper, we address this question by investigating the robustness of interdependent Erdös-Rényi random graphs and Barabási-Albert scale-free networks under either random failures or intentional attacks. It is found that interdependent Erdös-Rényi random graphs are robust yet fragile under either random failures or intentional attacks. Interdependent Barabási-Albert scale-free networks, however, are only robust yet fragile under random failures but fragile under intentional attacks. We further analyze the interdependent communication network and power grid and achieve similar results. These results advance our understanding of how interdependency shapes network robustness.
The circadian rhythm induced by the heterogeneous network structure of the suprachiasmatic nucleus
NASA Astrophysics Data System (ADS)
Gu, Changgui; Yang, Huijie
2016-05-01
In mammals, the master clock is located in the suprachiasmatic nucleus (SCN), which is composed of about 20 000 nonidentical neuronal oscillators expressing different intrinsic periods. These neurons are coupled through neurotransmitters to form a network consisting of two subgroups, i.e., a ventrolateral (VL) subgroup and a dorsomedial (DM) subgroup. The VL contains about 25% SCN neurons that receive photic input from the retina, and the DM comprises the remaining 75% SCN neurons which are coupled to the VL. The synapses from the VL to the DM are evidently denser than that from the DM to the VL, in which the VL dominates the DM. Therefore, the SCN is a heterogeneous network where the neurons of the VL are linked with a large number of SCN neurons. In the present study, we mimicked the SCN network based on Goodwin model considering four types of networks including an all-to-all network, a Newman-Watts (NW) small world network, an Erdös-Rényi (ER) random network, and a Barabási-Albert (BA) scale free network. We found that the circadian rhythm was induced in the BA, ER, and NW networks, while the circadian rhythm was absent in the all-to-all network with weak cellular coupling, where the amplitude of the circadian rhythm is largest in the BA network which is most heterogeneous in the network structure. Our finding provides an alternative explanation for the induction or enhancement of circadian rhythm by the heterogeneity of the network structure.
Lee, Kyuyoung; Polson, Dale; Lowe, Erin; Main, Rodger; Holtkamp, Derald; Martínez-López, Beatriz
2017-03-01
The analysis of the pork value chain is becoming key to understanding the risk of infectious disease dissemination in the swine industry. In this study, we used social network analysis to characterize the swine shipment network structure and properties in a typical multisite swine production system in the US. We also aimed to evaluate the association between network properties and porcine respiratory and reproductive syndrome virus (PRRSV) transmission between production sites. We analyzed the 109,868 swine shipments transporting over 93 million swine between more than 500 production sites from 2012 to 2014. A total of 248 PRRSV positive occurrences were reported from 79 production sites during those 3 years. The temporal dynamics of swine shipments was evaluated by computing network properties in one-month and three-month networks. The association of PRRS occurrence in sow farms with centrality properties from one-month and three-month networks was assessed by using the multilevel logistic regression. All monthly networks showed a scale-free network topology with positive degree assortativity. The regression model revealed that out-degree centrality had a negative association with PRRS occurrence in sow farms in both one-month and three-month networks [OR=0.79 (95% CI, 0.63-0.99) in one-month network and 0.56 (95% CI, 0.36, 0.88) in three-month network] and in-closeness centrality model was positively associated with PRRS occurrence in sow farms in the three-month network [OR=2.45 (95% CI, 1.14-5.26)]. We also describe how the occurrence of porcine epidemic diarrheac (PED) outbreaks severely affected the network structure as well as the PRRS occurrence reports and its association with centrality measures in sow farms. The structure of the swine shipment network and the connectivity between production sites influenced on the PRRSV transmission. The use of network topology and characteristics combining with spatial analysis based on fine scale geographical location of production sites will be useful to inform the design of more cost-efficient, risk-based surveillance and control measures for PRRSV as well as other diseases in the US swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Kawamata, H.; Kuwaki, S.; Mishina, T.; Ikoma, T.; Tanaka, J.; Nozaki, R.
2017-01-01
Aqueous solutions of biomolecules such as proteins are very important model systems for understanding the functions of biomolecules in actual life processes because interactions between biomolecules and the surrounding water molecules are considered to be important determinants of biomolecules’ functions. Globule proteins have been extensively studied via dielectric spectroscopy; the results indicate three relaxation processes originating from fluctuations in the protein molecule, the bound water and the bulk water. However, the characteristics of aqueous solutions of collagens have rarely been investigated. In this work, based on broadband dielectric measurements between 500 MHz and 2.5 THz, we demonstrate that the high viscosity of a collagen aqueous solution is due to the network structure being constructed of rod-like collagen molecules surrounding free water molecules and that the water molecules are not responsible for the viscosity. We determine that the macroscopic viscosity is related to the mean lifetime of the collagen-collagen interactions supporting the networks and that the local viscosity of the water surrounded by the networks is governed by the viscosity of free water as in the bulk. This hierarchical structure in the dynamics of the aqueous solution of biomolecules has been revealed for the first time. PMID:28345664
A generative model of whole-brain effective connectivity.
Frässle, Stefan; Lomakina, Ekaterina I; Kasper, Lars; Manjaly, Zina M; Leff, Alex; Pruessmann, Klaas P; Buhmann, Joachim M; Stephan, Klaas E
2018-05-25
The development of whole-brain models that can infer effective (directed) connection strengths from fMRI data represents a central challenge for computational neuroimaging. A recently introduced generative model of fMRI data, regression dynamic causal modeling (rDCM), moves towards this goal as it scales gracefully to very large networks. However, large-scale networks with thousands of connections are difficult to interpret; additionally, one typically lacks information (data points per free parameter) for precise estimation of all model parameters. This paper introduces sparsity constraints to the variational Bayesian framework of rDCM as a solution to these problems in the domain of task-based fMRI. This sparse rDCM approach enables highly efficient effective connectivity analyses in whole-brain networks and does not require a priori assumptions about the network's connectivity structure but prunes fully (all-to-all) connected networks as part of model inversion. Following the derivation of the variational Bayesian update equations for sparse rDCM, we use both simulated and empirical data to assess the face validity of the model. In particular, we show that it is feasible to infer effective connection strengths from fMRI data using a network with more than 100 regions and 10,000 connections. This demonstrates the feasibility of whole-brain inference on effective connectivity from fMRI data - in single subjects and with a run-time below 1 min when using parallelized code. We anticipate that sparse rDCM may find useful application in connectomics and clinical neuromodeling - for example, for phenotyping individual patients in terms of whole-brain network structure. Copyright © 2018. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Huang, Ailing; Zang, Guangzhi; He, Zhengbing; Guan, Wei
2017-05-01
Urban public transit system is a typical mixed complex network with dynamic flow, and its evolution should be a process coupling topological structure with flow dynamics, which has received little attention. This paper presents the R-space to make a comparative empirical analysis on Beijing’s flow-weighted transit route network (TRN) and we found that both the Beijing’s TRNs in the year of 2011 and 2015 exhibit the scale-free properties. As such, we propose an evolution model driven by flow to simulate the development of TRNs with consideration of the passengers’ dynamical behaviors triggered by topological change. The model simulates that the evolution of TRN is an iterative process. At each time step, a certain number of new routes are generated driven by travel demands, which leads to dynamical evolution of new routes’ flow and triggers perturbation in nearby routes that will further impact the next round of opening new routes. We present the theoretical analysis based on the mean-field theory, as well as the numerical simulation for this model. The results obtained agree well with our empirical analysis results, which indicate that our model can simulate the TRN evolution with scale-free properties for distributions of node’s strength and degree. The purpose of this paper is to illustrate the global evolutional mechanism of transit network that will be used to exploit planning and design strategies for real TRNs.
Deep Visual Attention Prediction
NASA Astrophysics Data System (ADS)
Wang, Wenguan; Shen, Jianbing
2018-05-01
In this work, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although Convolutional Neural Networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve CNN based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark datasets demonstrate our method yields state-of-the-art performance with competitive inference time.
NASA Astrophysics Data System (ADS)
Ma, Fei; Su, Jing; Yao, Bing
2018-05-01
The problem of determining and calculating the number of spanning trees of any finite graph (model) is a great challenge, and has been studied in various fields, such as discrete applied mathematics, theoretical computer science, physics, chemistry and the like. In this paper, firstly, thank to lots of real-life systems and artificial networks built by all kinds of functions and combinations among some simpler and smaller elements (components), we discuss some helpful network-operation, including link-operation and merge-operation, to design more realistic and complicated network models. Secondly, we present a method for computing the total number of spanning trees. As an accessible example, we apply this method to space of trees and cycles respectively, and our results suggest that it is indeed a better one for such models. In order to reflect more widely practical applications and potentially theoretical significance, we study the enumerating method in some existing scale-free network models. On the other hand, we set up a class of new models displaying scale-free feature, that is to say, following P(k) k-γ, where γ is the degree exponent. Based on detailed calculation, the degree exponent γ of our deterministic scale-free models satisfies γ > 3. In the rest of our discussions, we not only calculate analytically the solutions of average path length, which indicates our models have small-world property being prevailing in amounts of complex systems, but also derive the number of spanning trees by means of the recursive method described in this paper, which clarifies our method is convenient to research these models.
Structure and organization of Stratocumulus fields: A network approach
NASA Astrophysics Data System (ADS)
Glassmeier, Franziska; Feingold, Graham
2017-04-01
The representation of Stratocumulus (Sc) clouds and their radiative impact is one of the large challenges for global climate models. Aerosol-cloud-precipitation interactions greatly contribute to this challenge by influencing the morphology of Sc fields: In the absence of rain, Sc are arranged in a relatively regular pattern of cloudy cells separated by cloud-free rings of down welling air ('closed cells'). Raining cloud fields, in contrast, exhibit an oscillating pattern of cloudy rings surrounding cloud free cells of negatively buoyant air caused by sedimentation and evaporation of rain ('open cells'). Surprisingly, these regular structures of open and closed cellular Sc fields and their potential for the development of new parameterizations have hardly been explored. In this contribution, we approach the organization of Sc from the perspective of a 2-dimensional random network. We find that cellular networks derived from LES simulations of open- and closed-cell Sc cases are almost indistinguishable and share the following features: (i) The distributions of nearest neighbors, or cell degree, are centered at six. This corresponds to approximately hexagonal cloud cells and is a direct mathematical consequence (Euler formula) of the triple junctions featured by Sc organization. (ii) The degree of individual cells is found to be proportional to the normalized size of the cells. This means that cell arrangement is independent of the typical cell size. (iii) Reflecting the continuously renewing dynamics of Sc fields, large (high-degree) cells tend to be neighbored by small (low-degree) cells and vice versa. These macroscopic network properties emerge independent of the state of the Sc field because the different processes governing the evolution of closed as compared to open cells correspond to topologically equivalent network dynamics. By developing a heuristic model, we show that open and closed cell dynamics can both be mimicked by versions of cell division and cell disappearance and are biased towards the expansion of smaller cells. As a conclusion of our network analysis, Sc organization can be characterized by a typical length scale and a scale-independent cell arrangement. While the typical length scale emerges from the full complexity of aerosol-cloud-precipitation-radiation interactions, cell arrangement is independent of cloud processes and its evolution could be parameterized based on our heuristic model.
Managing Network Partitions in Structured P2P Networks
NASA Astrophysics Data System (ADS)
Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif
Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.
Local versus global knowledge in the Barabási-Albert scale-free network model.
Gómez-Gardeñes, Jesús; Moreno, Yamir
2004-03-01
The scale-free model of Barabási and Albert (BA) gave rise to a burst of activity in the field of complex networks. In this paper, we revisit one of the main assumptions of the model, the preferential attachment (PA) rule. We study a model in which the PA rule is applied to a neighborhood of newly created nodes and thus no global knowledge of the network is assumed. We numerically show that global properties of the BA model such as the connectivity distribution and the average shortest path length are quite robust when there is some degree of local knowledge. In contrast, other properties such as the clustering coefficient and degree-degree correlations differ and approach the values measured for real-world networks.
Local communities obstruct global consensus: Naming game on multi-local-world networks
NASA Astrophysics Data System (ADS)
Lou, Yang; Chen, Guanrong; Fan, Zhengping; Xiang, Luna
2018-02-01
Community structure is essential for social communications, where individuals belonging to the same community are much more actively interacting and communicating with each other than those in different communities within the human society. Naming game, on the other hand, is a social communication model that simulates the process of learning a name of an object within a community of humans, where the individuals can generally reach global consensus asymptotically through iterative pair-wise conversations. The underlying network indicates the relationships among the individuals. In this paper, three typical topologies, namely random-graph, small-world and scale-free networks, are employed, which are embedded with the multi-local-world community structure, to study the naming game. Simulations show that (1) the convergence process to global consensus is getting slower as the community structure becomes more prominent, and eventually might fail; (2) if the inter-community connections are sufficiently dense, neither the number nor the size of the communities affects the convergence process; and (3) for different topologies with the same (or similar) average node-degree, local clustering of individuals obstruct or prohibit global consensus to take place. The results reveal the role of local communities in a global naming game in social network studies.
Persistence paves the way for cooperation in evolutionary games
NASA Astrophysics Data System (ADS)
Huang, Chang-Wei; Dai, Qiong-Lin
2017-04-01
Cooperation is an effective way to maximize collective benefits, especially in modern human society. The issues on the emergence and maintenance of cooperation have attracted much attention in recent years. Here, we introduce the persistence parameter τ to characterize the time duration of choices held by individuals and consider the effects of τ on cooperation. We find that persistence could promote cooperation in a population no matter what the network structure is. Furthermore, the results on heterogeneous networks show that individuals with larger τ are more inclined to cooperate than those with smaller τ. Moreover, we investigate the effects of correlations between degree and persistence in scale-free networks and find that assortative matching could remarkably enhance cooperation whereas disassortative matching has adverse impacts on the evolution of cooperation.
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free
Bianconi, Ginestra; Rahmede, Christoph
2015-01-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces. PMID:26356079
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free.
Bianconi, Ginestra; Rahmede, Christoph
2015-09-10
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension d. We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the δ-faces of the d-dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the δ-faces.
Spatial analysis of bus transport networks using network theory
NASA Astrophysics Data System (ADS)
Shanmukhappa, Tanuja; Ho, Ivan Wang-Hei; Tse, Chi Kong
2018-07-01
In this paper, we analyze the bus transport network (BTN) structure considering the spatial embedding of the network for three cities, namely, Hong Kong (HK), London (LD), and Bengaluru (BL). We propose a novel approach called supernode graph structuring for modeling the bus transport network. A static demand estimation procedure is proposed to assign the node weights by considering the points of interests (POIs) and the population distribution in the city over various localized zones. In addition, the end-to-end delay is proposed as a parameter to measure the topological efficiency of the bus networks instead of the shortest distance measure used in previous works. With the aid of supernode graph representation, important network parameters are analyzed for the directed, weighted and geo-referenced bus transport networks. It is observed that the supernode concept has significant advantage in analyzing the inherent topological behavior. For instance, the scale-free and small-world behavior becomes evident with supernode representation as compared to conventional or regular graph representation for the Hong Kong network. Significant improvement in clustering, reduction in path length, and increase in centrality values are observed in all the three networks with supernode representation. The correlation between topologically central nodes and the geographically central nodes reveals the interesting fact that the proposed static demand estimation method for assigning node weights aids in better identifying the geographically significant nodes in the network. The impact of these geographically significant nodes on the local traffic behavior is demonstrated by simulation using the SUMO (Simulation of Urban Mobility) tool which is also supported by real-world empirical data, and our results indicate that the traffic speed around a particular bus stop can reach a jammed state from a free flow state due to the presence of these geographically important nodes. A comparison of the simulation and the empirical data provides useful information on how bus operators can better plan their routes and deploy stops considering the geographically significant nodes.
A Complex Network Approach to Distributional Semantic Models
Utsumi, Akira
2015-01-01
A number of studies on network analysis have focused on language networks based on free word association, which reflects human lexical knowledge, and have demonstrated the small-world and scale-free properties in the word association network. Nevertheless, there have been very few attempts at applying network analysis to distributional semantic models, despite the fact that these models have been studied extensively as computational or cognitive models of human lexical knowledge. In this paper, we analyze three network properties, namely, small-world, scale-free, and hierarchical properties, of semantic networks created by distributional semantic models. We demonstrate that the created networks generally exhibit the same properties as word association networks. In particular, we show that the distribution of the number of connections in these networks follows the truncated power law, which is also observed in an association network. This indicates that distributional semantic models can provide a plausible model of lexical knowledge. Additionally, the observed differences in the network properties of various implementations of distributional semantic models are consistently explained or predicted by considering the intrinsic semantic features of a word-context matrix and the functions of matrix weighting and smoothing. Furthermore, to simulate a semantic network with the observed network properties, we propose a new growing network model based on the model of Steyvers and Tenenbaum. The idea underlying the proposed model is that both preferential and random attachments are required to reflect different types of semantic relations in network growth process. We demonstrate that this model provides a better explanation of network behaviors generated by distributional semantic models. PMID:26295940
Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H
2010-03-01
The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.
Enhancing the transmission efficiency by edge deletion in scale-free networks
NASA Astrophysics Data System (ADS)
Zhang, Guo-Qing; Wang, Di; Li, Guo-Jie
2007-07-01
How to improve the transmission efficiency of Internet-like packet switching networks is one of the most important problems in complex networks as well as for the Internet research community. In this paper we propose a convenient method to enhance the transmission efficiency of scale-free networks dramatically by kicking out the edges linking to nodes with large betweenness, which we called the “black sheep.” The advantages of our method are of facility and practical importance. Since the black sheep edges are very costly due to their large bandwidth, our method could decrease the cost as well as gain higher throughput of networks. Moreover, we analyze the curve of the largest betweenness on deleting more and more black sheep edges and find that there is a sharp transition at the critical point where the average degree of the nodes ⟨k⟩→2 .
Efficient Construction of Mesostate Networks from Molecular Dynamics Trajectories.
Vitalis, Andreas; Caflisch, Amedeo
2012-03-13
The coarse-graining of data from molecular simulations yields conformational space networks that may be used for predicting the system's long time scale behavior, to discover structural pathways connecting free energy basins in the system, or simply to represent accessible phase space regions of interest and their connectivities in a two-dimensional plot. In this contribution, we present a tree-based algorithm to partition conformations of biomolecules into sets of similar microstates, i.e., to coarse-grain trajectory data into mesostates. On account of utilizing an architecture similar to that of established tree-based algorithms, the proposed scheme operates in near-linear time with data set size. We derive expressions needed for the fast evaluation of mesostate properties and distances when employing typical choices for measures of similarity between microstates. Using both a pedagogically useful and a real-word application, the algorithm is shown to be robust with respect to tree height, which in addition to mesostate threshold size is the main adjustable parameter. It is demonstrated that the derived mesostate networks can preserve information regarding the free energy basins and barriers by which the system is characterized.
Understanding the implementation of evidence-based care: a structural network approach.
Parchman, Michael L; Scoglio, Caterina M; Schumm, Phillip
2011-02-24
Recent study of complex networks has yielded many new insights into phenomenon such as social networks, the internet, and sexually transmitted infections. The purpose of this analysis is to examine the properties of a network created by the 'co-care' of patients within one region of the Veterans Health Affairs. Data were obtained for all outpatient visits from 1 October 2006 to 30 September 2008 within one large Veterans Integrated Service Network. Types of physician within each clinic were nodes connected by shared patients, with a weighted link representing the number of shared patients between each connected pair. Network metrics calculated included edge weights, node degree, node strength, node coreness, and node betweenness. Log-log plots were used to examine the distribution of these metrics. Sizes of k-core networks were also computed under multiple conditions of node removal. There were 4,310,465 encounters by 266,710 shared patients between 722 provider types (nodes) across 41 stations or clinics resulting in 34,390 edges. The number of other nodes to which primary care provider nodes have a connection (172.7) is 42% greater than that of general surgeons and two and one-half times as high as cardiology. The log-log plot of the edge weight distribution appears to be linear in nature, revealing a 'scale-free' characteristic of the network, while the distributions of node degree and node strength are less so. The analysis of the k-core network sizes under increasing removal of primary care nodes shows that about 10 most connected primary care nodes play a critical role in keeping the k-core networks connected, because their removal disintegrates the highest k-core network. Delivery of healthcare in a large healthcare system such as that of the US Department of Veterans Affairs (VA) can be represented as a complex network. This network consists of highly connected provider nodes that serve as 'hubs' within the network, and demonstrates some 'scale-free' properties. By using currently available tools to explore its topology, we can explore how the underlying connectivity of such a system affects the behavior of providers, and perhaps leverage that understanding to improve quality and outcomes of care.
Parenclitic Network Analysis of Methylation Data for Cancer Identification
Karsakov, Alexander; Bartlett, Thomas; Ryblov, Artem; Meyerov, Iosif; Ivanchenko, Mikhail; Zaikin, Alexey
2017-01-01
We make use of ideas from the theory of complex networks to implement a machine learning classification of human DNA methylation data, that carry signatures of cancer development. The data were obtained from patients with various kinds of cancers and represented as parenclictic networks, wherein nodes correspond to genes, and edges are weighted according to pairwise variation from control group subjects. We demonstrate that for the 10 types of cancer under study, it is possible to obtain a high performance of binary classification between cancer-positive and negative samples based on network measures. Remarkably, an accuracy as high as 93−99% is achieved with only 12 network topology indices, in a dramatic reduction of complexity from the original 15295 gene methylation levels. Moreover, it was found that the parenclictic networks are scale-free in cancer-negative subjects, and deviate from the power-law node degree distribution in cancer. The node centrality ranking and arising modular structure could provide insights into the systems biology of cancer. PMID:28107365
Spatiotemporal Dynamics and Fitness Analysis of Global Oil Market: Based on Complex Network
Wang, Minggang; Fang, Guochang; Shao, Shuai
2016-01-01
We study the overall topological structure properties of global oil trade network, such as degree, strength, cumulative distribution, information entropy and weight clustering. The structural evolution of the network is investigated as well. We find the global oil import and export networks do not show typical scale-free distribution, but display disassortative property. Furthermore, based on the monthly data of oil import values during 2005.01–2014.12, by applying random matrix theory, we investigate the complex spatiotemporal dynamic from the country level and fitness evolution of the global oil market from a demand-side analysis. Abundant information about global oil market can be obtained from deviating eigenvalues. The result shows that the oil market has experienced five different periods, which is consistent with the evolution of country clusters. Moreover, we find the changing trend of fitness function agrees with that of gross domestic product (GDP), and suggest that the fitness evolution of oil market can be predicted by forecasting GDP values. To conclude, some suggestions are provided according to the results. PMID:27706147
A new multi-scale method to reveal hierarchical modular structures in biological networks.
Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin
2016-11-15
Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.
NASA Astrophysics Data System (ADS)
Kato, Katsuya; Nakamura, Hitomi; Nakanishi, Kazuma
2014-02-01
Baker's yeast (BY) encapsulated in silica materials was synthesized using a yeast cell suspension and its cell-free extract during a sol-gel reaction of tetramethoxysilane with nitric acid as a catalyst. The synthesized samples were fully characterized using various methods, such as scanning electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared spectroscopy, thermogravimetry, and differential thermal analysis. The BY cells were easily encapsulated inside silica-gel networks, and the ratio of the cells in the silica gel was approximately 75 wt%, which indicated that a large volume of BY was trapped with a small amount of silica. The enzyme activity (asymmetric reduction of prochiral ketones) of BY and its cell-free extract encapsulated in silica gel was investigated in detail. The activities and enantioselectivities of free and encapsulated BY were similar to those of acetophenone and its fluorine derivatives, which indicated that the conformation structure of BY enzymes inside silica-gel networks did not change. In addition, the encapsulated BY exhibited considerably better solvent (methanol) stability and recyclability compared to free BY solution. We expect that the development of BY encapsulated in sol-gel silica materials will significantly impact the industrial-scale advancement of high-efficiency and low-cost biocatalysts for the synthesis of valuable chiral alcohols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.
The quiet Sun (QS) magnetic network is known to contain dynamics which are indicative of non-potential fields. Non-potential magnetic fields forming ''S-shaped'' loop arcades can lead to the breakdown of static activity and have only been observed in high temperature X-ray coronal structures—some of which show eruptive behavior. Thus, analysis of this type of atmospheric structuring has been restricted to large-scale coronal fields. Here we provide the first identification of non-potential loop arcades exclusive to the QS supergranulation network. High-resolution Atmospheric Imaging Assembly data from the Solar Dynamics Observatory have allowed for the first observations of fine-scale ''S-shaped'' loop arcadesmore » spanning the network. We have investigated the magnetic footpoint flux evolution of these arcades from Heliospheric and Magnetic Imager data and find evidence of evolving footpoint flux imbalances accompanying the formation of these non-potential fields. The existence of such non-potentiality confirms that magnetic field dynamics leading to the build up of helicity exist at small scales. QS non-potentiality also suggests a self-similar formation process between the QS network and high temperature corona and the existence of self-organized criticality (SOC) in the form of loop-pair reconnection and helicity dissipation. We argue that this type of behavior could lead to eruptive forms of SOC as seen in active region (AR) and X-ray sigmoids if sufficient free magnetic energy is available. QS magnetic network dynamics may be considered as a coronal proxy at supergranular scales, and events confined to the network can even mimic those in coronal ARs.« less
PREFACE: Complex Networks: from Biology to Information Technology
NASA Astrophysics Data System (ADS)
Barrat, A.; Boccaletti, S.; Caldarelli, G.; Chessa, A.; Latora, V.; Motter, A. E.
2008-06-01
The field of complex networks is one of the most active areas in contemporary statistical physics. Ten years after seminal work initiated the modern study of networks, interest in the field is in fact still growing, as indicated by the ever increasing number of publications in network science. The reason for such a resounding success is most likely the simplicity and broad significance of the approach that, through graph theory, allows researchers to address a variety of different complex systems within a common framework. This special issue comprises a selection of contributions presented at the workshop 'Complex Networks: from Biology to Information Technology' held in July 2007 in Pula (Cagliari), Italy as a satellite of the general conference STATPHYS23. The contributions cover a wide range of problems that are currently among the most important questions in the area of complex networks and that are likely to stimulate future research. The issue is organised into four sections. The first two sections describe 'methods' to study the structure and the dynamics of complex networks, respectively. After this methodological part, the issue proceeds with a section on applications to biological systems. The issue closes with a section concentrating on applications to the study of social and technological networks. The first section, entitled Methods: The Structure, consists of six contributions focused on the characterisation and analysis of structural properties of complex networks: The paper Motif-based communities in complex networks by Arenas et al is a study of the occurrence of characteristic small subgraphs in complex networks. These subgraphs, known as motifs, are used to define general classes of nodes and their communities by extending the mathematical expression of the Newman-Girvan modularity. The same line of research, aimed at characterising network structure through the analysis of particular subgraphs, is explored by Bianconi and Gulbahce in Algorithm for counting large directed loops. This work proposes a belief-propagation algorithm for counting long loops in directed networks, which is then applied to networks of different sizes and loop structure. In The anatomy of a large query graph, Baeza-Yates and Tiberi show that scale invariance is present also in the structure of a graph derived from query logs. This graph is determined not only by the queries but also by the subsequent actions of the users. The graph analysed in this study is generated by more than twenty million queries and is less sparse than suggested by previous studies. A different class of networks is considered by Travençolo and da F Costa in Hierarchical spatial organisation of geographical networks. This work proposes a hierarchical extension of the polygonality index as a means to characterise geographical planar networks and, in particular, to obtain more complete information about the spatial order of the network at progressive spatial scales. The paper Border trees of complex networks by Villas Boas et al focuses instead on the statistical properties of the boundary of graphs, constituted by the vertices of degree one (the leaves of border trees). The authors study the local properties, the depth, and the number of leaves of these border trees, finding that in some real networks more than half of the nodes belong to the border trees. The last contribution to the first section is The generation of random directed networks with prescribed 1-node and 2-node degree correlations by Zamora-López et al. This study deals with the generation of random directed networks and shows that often a large number of links cannot be 'randomised' without altering the degree correlations. This permits fast generation of ensembles of maximally random networks. In the section Methods: The Dynamics, significant attention is given to the study of synchronisation processes on networks: Díaz-Guilera's contribution Dynamics towards synchronisation in hierarchical networks consists of an overview of recent studies on hierarchical networks of phase oscillators. By analysing the evolution of the synchronous dynamics, one can infer details about the underlying network topology. Thus a connection between the dynamical and topological properties of the system is established. The paper Network synchronisation: optimal and pessimal scale-free topologies by Donetti et al explores an optimisation algorithm to study the properties of optimally synchronisable unweighted networks with scale-free degree distribution. It is shown that optimisation leads to a tendency towards disassortativity while networks that are optimally 'un-synchronisable' have a highly assortative string-like structure. The paper Critical line in undirected Kauffman Boolean networks—the role of percolation by Fronczak and Fronczak demonstrates that the percolation underlying the process of damage spreading impacts the position of the critical line in random boolean networks. The critical line results from the fact that the ordered behaviour of small clusters shields the chaotic behaviour of the giant component. In Impact of the updating scheme on stationary states of networks, Radicchi et al explore an interpolation between synchronous and asynchronous updating in a one-dimensional chain of Ising spins to locate a phase transition between phases with an absorbing and a fluctuating stationary state. The properties of attractors in the yeast cell-cycle network are also shown to depend sensitively on the updating mode. As this last contribution shows, a large part of the theoretical activity in the field can be applied to the study of biological systems. The section Biological Applications brings together the following contributions: In Applying weighted network measures to microarray distance matrices, Ahnert et al present a new approach to the analysis of weighted networks, which provides a generalisation to any network measure defined on unweighted networks. The clustering coefficient constructed using this approach is used to identify a number of biologically significant genes in data sets from microarray experiments. The paper Quantifying the taxonomic diversity in real species communities by Caretta Cartozo et al reports on universal statistical properties in taxonomic trees. The results, which are obtained by sampling a large pool of species from all over the world, suggest that it is possible to quantitatively distinguish real species assemblage from random collections. In the contribution Insights into biological information processing: structural and dynamical analysis of a human protein signalling network, de la Fuente et al investigate the dynamical properties of a human protein signalling network while accounting for edge directionality and topological properties both at the local and global scale. The relationship between the node degrees and the distribution of signals through the network is characterised using degree correlation profiles. A study of a brain network is presented by de Vico Fallani et al in Persistent patterns of interconnection in time-varying cortical networks estimated from high-resolution EEG recordings in humans during a simple motor act. The authors introduce an approach based on the estimate of time-varying graph indexes that allows the capture of schemes of communication within the network. The method is applied to a set of high resolution EEG data recorded from a group of subjects performing a simple foot movement. The last section, devoted to Social and Technological Applications, includes nine contributions in the broad area of infrastructure, economic, and social systems: The paper Uncovering individual and collective human dynamics from mobile phone records by Cándia et al explores extensive phone records resolved in both time and space to study collective behaviour and the occurrence of anomalous events. At the individual level, it is shown that the distribution of time intervals between consecutive calls is heavy tailed, which agrees with results previously reported on other human activities. In Mining the inner structure of the Web graph, Donato et al present a series of measurements of the Web, which offer a better understanding of the individual components of its bow-tie structure. The scale-free properties permeate all bow-tie components although they do not exhibit self-similarity and their inner structure is quite distinct. Effects of network topology on wealth distributions, by Garlaschelli and Loffredo, shows that a networked economic system self-organises towards a stationary state whose associated wealth distribution depends crucially on the underlying interaction network. In particular, this study implies that first-order topological properties alone (such as the scale-free property) are not enough to explain the emergence of the empirically observed mixed form of the wealth distribution. In the paper Resource allocation pattern in infrastructure networks, Kim and Motter show that real communication and transportation networks tend to exhibit larger load-to-capacity ratio in nodes and links with larger capacities. This surprising pattern, which is a consequence of decentralised evolution and network traffic fluctuations, suggests that infrastructure networks have evolved to prevent local failures but not necessarily large-scale failures that can be caused by cascading processes. The paper Consensus formation on coevolving networks: groups' formation and structure by Kozma and Barrat addresses the effect of adaptivity on a social model of opinion dynamics and consensus formation. The authors find that on adaptive networks the rewiring process fosters group formation by enhancing communication between agents of similar opinion, though it also makes possible the division of clusters. This result is significantly different from the percolation phenomena observed to govern the process in static networks. Capocci and Caldarelli, in the paper Folksonomies and clustering in the collaborative system CiteULike, analyse an online collaborative tagging system where users bookmark and annotate scientific papers. Such a system can be naturally represented as a tripartite graph whose nodes represent papers, users and tags connected by individual tag assignments. The semantics of tags is studied in order to uncover hidden relationships between tags. The authors find that the clustering coefficient reflects the semantical patterns among tags. Lambiotte's contribution, Majority rule on heterogeneous networks, focuses on the majority rule model for opinion formation when the agents interact through a complex network. It is shown that on networks with modular structures the system may exhibit an asymmetric regime, where nodes in different communities reach opposite average opinions. In addition, the node degree heterogeneity is shown to play an important role in the emergence of collective behaviour. In Structural analysis of behavioural networks from the Internet, Meiss et al analyse the structure of the Internet. The authors present a characterisation of the properties of the behavioural networks generated by several million users of the Abilene (Internet2) network. Structural features of these networks offer new insights into scaling properties of network activity and ways of distinguishing particular patterns of traffic. The final contribution, A social network's changing statistical properties and the quality of human innovation by Uzzi, is an analysis of the collaboration network of artists that made Broadway musicals in the post World War II period. It is shown that when the clustering coefficient in this network is low or high, the financial and artistic success of the industry is low while an intermediate level of clustering is associated with successful shows. We hope that this special issue will serve as a reference of the state of the knowledge in this exciting area of interdisciplinary research and that it will appeal to both experts and newcomers to the field. Finally, we would like to thank all participants of the workshop for their very significant contributions and the IOP Publishing team, particularly Rebecca Gillan, for the careful production of this special issue.
Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.
Wen, Haiguang; Liu, Zhongming
2016-06-01
Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed with resting-state fMRI, respectively. Copyright © 2016 the authors 0270-6474/16/366030-11$15.00/0.
Attack Vulnerability of Network Controllability
2016-01-01
Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability. PMID:27588941
Attack Vulnerability of Network Controllability.
Lu, Zhe-Ming; Li, Xin-Feng
2016-01-01
Controllability of complex networks has attracted much attention, and understanding the robustness of network controllability against potential attacks and failures is of practical significance. In this paper, we systematically investigate the attack vulnerability of network controllability for the canonical model networks as well as the real-world networks subject to attacks on nodes and edges. The attack strategies are selected based on degree and betweenness centralities calculated for either the initial network or the current network during the removal, among which random failure is as a comparison. It is found that the node-based strategies are often more harmful to the network controllability than the edge-based ones, and so are the recalculated strategies than their counterparts. The Barabási-Albert scale-free model, which has a highly biased structure, proves to be the most vulnerable of the tested model networks. In contrast, the Erdős-Rényi random model, which lacks structural bias, exhibits much better robustness to both node-based and edge-based attacks. We also survey the control robustness of 25 real-world networks, and the numerical results show that most real networks are control robust to random node failures, which has not been observed in the model networks. And the recalculated betweenness-based strategy is the most efficient way to harm the controllability of real-world networks. Besides, we find that the edge degree is not a good quantity to measure the importance of an edge in terms of network controllability.
The origin of asymmetric behavior of money flow in the business firm network
NASA Astrophysics Data System (ADS)
Miura, W.; Takayasu, H.; Takayasu, M.
2012-09-01
In the business firm network, the number of in-degrees and out-degrees show the same scale-free property, however, the distribution of authorities and hubs show asymmetric behavior. Here we show the result of an analysis of the two-link structure of the network to find the origin of this asymmetric behavior. We find the tendency for big construction firms intermediating small subcontracting firms to have higher hub degrees. By measuring the strength of preferential attachment rate of new companies, we also find a abnormally strong preferential attachment for which the exponent is 1.4 with respect to out-degree when a new company forms a business partnership with a construction company. We propose a new model that reproduces the asymmetric behavior of the degrees of authorities and hubs by changing the preferential attachment rate between the in-degree and the out-degree in the business firm network.
Quantum Google in a Complex Network
Paparo, Giuseppe Davide; Müller, Markus; Comellas, Francesc; Martin-Delgado, Miguel Angel
2013-01-01
We investigate the behaviour of the recently proposed Quantum PageRank algorithm, in large complex networks. We find that the algorithm is able to univocally reveal the underlying topology of the network and to identify and order the most relevant nodes. Furthermore, it is capable to clearly highlight the structure of secondary hubs and to resolve the degeneracy in importance of the low lying part of the list of rankings. The quantum algorithm displays an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance, as compared to the classical algorithm. We test the performance and confirm the listed features by applying it to real world examples from the WWW. Finally, we raise and partially address whether the increased sensitivity of the quantum algorithm persists under coordinated attacks in scale-free and random networks. PMID:24091980
Coverage centralities for temporal networks*
NASA Astrophysics Data System (ADS)
Takaguchi, Taro; Yano, Yosuke; Yoshida, Yuichi
2016-02-01
Structure of real networked systems, such as social relationship, can be modeled as temporal networks in which each edge appears only at the prescribed time. Understanding the structure of temporal networks requires quantifying the importance of a temporal vertex, which is a pair of vertex index and time. In this paper, we define two centrality measures of a temporal vertex based on the fastest temporal paths which use the temporal vertex. The definition is free from parameters and robust against the change in time scale on which we focus. In addition, we can efficiently compute these centrality values for all temporal vertices. Using the two centrality measures, we reveal that distributions of these centrality values of real-world temporal networks are heterogeneous. For various datasets, we also demonstrate that a majority of the highly central temporal vertices are located within a narrow time window around a particular time. In other words, there is a bottleneck time at which most information sent in the temporal network passes through a small number of temporal vertices, which suggests an important role of these temporal vertices in spreading phenomena. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-60498-7
Selection for territory acquisition is modulated by social network structure in a wild songbird
Farine, D R; Sheldon, B C
2015-01-01
The social environment may be a key mediator of selection that operates on animals. In many cases, individuals may experience selection not only as a function of their phenotype, but also as a function of the interaction between their phenotype and the phenotypes of the conspecifics they associate with. For example, when animals settle after dispersal, individuals may benefit from arriving early, but, in many cases, these benefits will be affected by the arrival times of other individuals in their local environment. We integrated a recently described method for calculating assortativity on weighted networks, which is the correlation between an individual's phenotype and that of its associates, into an existing framework for measuring the magnitude of social selection operating on phenotypes. We applied this approach to large-scale data on social network structure and the timing of arrival into the breeding area over three years. We found that late-arriving individuals had a reduced probability of breeding. However, the probability of breeding was also influenced by individuals’ social networks. Associating with late-arriving conspecifics increased the probability of successfully acquiring a breeding territory. Hence, social selection could offset the effects of nonsocial selection. Given parallel theoretical developments of the importance of local network structure on population processes, and increasing data being collected on social networks in free-living populations, the integration of these concepts could yield significant insights into social evolution. PMID:25611344
Kwon, Sungchul; Kim, Yup
2013-01-01
We investigate epidemic spreading in annealed directed scale-free networks with the in-degree (k) distribution P(in)(k)~k(-γ(in)) and the out-degree (ℓ) distribution, P(out)(ℓ)~ℓ(-γ(out)). The correlation
Autoscoring Essays Based on Complex Networks
ERIC Educational Resources Information Center
Ke, Xiaohua; Zeng, Yongqiang; Luo, Haijiao
2016-01-01
This article presents a novel method, the Complex Dynamics Essay Scorer (CDES), for automated essay scoring using complex network features. Texts produced by college students in China were represented as scale-free networks (e.g., a word adjacency model) from which typical network features, such as the in-/out-degrees, clustering coefficient (CC),…
Cooperation in scale-free networks with limited associative capacities
NASA Astrophysics Data System (ADS)
Poncela, Julia; Gómez-Gardeñes, Jesús; Moreno, Yamir
2011-05-01
In this work we study the effect of limiting the number of interactions (the associative capacity) that a node can establish per round of a prisoner’s dilemma game. We focus on the way this limitation influences the level of cooperation sustained by scale-free networks. We show that when the game includes cooperation costs, limiting the associative capacity of nodes to a fixed quantity renders in some cases larger values of cooperation than in the unrestricted scenario. This allows one to define an optimum capacity for which cooperation is maximally enhanced. Finally, for the case without cooperation costs, we find that even a tight limitation of the associative capacity of nodes yields the same levels of cooperation as in the original network.
Hierarchical coefficient of a multifractal based network
NASA Astrophysics Data System (ADS)
Moreira, Darlan A.; Lucena, Liacir dos Santos; Corso, Gilberto
2014-02-01
The hierarchical property for a general class of networks stands for a power-law relation between clustering coefficient, CC and connectivity k: CC∝kβ. This relation is empirically verified in several biologic and social networks, as well as in random and deterministic network models, in special for hierarchical networks. In this work we show that the hierarchical property is also present in a Lucena network. To create a Lucena network we use the dual of a multifractal lattice ML, the vertices are the sites of the ML and links are established between neighbouring lattices, therefore this network is space filling and planar. Besides a Lucena network shows a scale-free distribution of connectivity. We deduce a relation for the maximal local clustering coefficient CCimax of a vertex i in a planar graph. This condition expresses that the number of links among neighbour, N△, of a vertex i is equal to its connectivity ki, that means: N△=ki. The Lucena network fulfils the condition N△≃ki independent of ki and the anisotropy of ML. In addition, CCmax implies the threshold β=1 for the hierarchical property for any scale-free planar network.
Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe
2010-01-01
The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...
Yang, Q; Siganos, G; Faloutsos, M; Lonardi, S
2006-01-01
Recent research efforts have made available genome-wide, high-throughput protein-protein interaction (PPI) maps for several model organisms. This has enabled the systematic analysis of PPI networks, which has become one of the primary challenges for the system biology community. In this study, we attempt to understand better the topological structure of PPI networks by comparing them against man-made communication networks, and more specifically, the Internet. Our comparative study is based on a comprehensive set of graph metrics. Our results exhibit an interesting dichotomy. On the one hand, both networks share several macroscopic properties such as scale-free and small-world properties. On the other hand, the two networks exhibit significant topological differences, such as the cliqueishness of the highest degree nodes. We attribute these differences to the distinct design principles and constraints that both networks are assumed to satisfy. We speculate that the evolutionary constraints that favor the survivability and diversification are behind the building process of PPI networks, whereas the leading force in shaping the Internet topology is a decentralized optimization process geared towards efficient node communication.
Evolution of individual versus social learning on social networks
Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo
2015-01-01
A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of ‘cultural models’ exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. PMID:25631568
Evolution of individual versus social learning on social networks.
Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo
2015-03-06
A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of 'cultural models' exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs
NASA Astrophysics Data System (ADS)
Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J. B.
2010-10-01
The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.
Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs.
Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J B
2010-10-01
The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.
Autonomous smart sensor network for full-scale structural health monitoring
NASA Astrophysics Data System (ADS)
Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.
2010-04-01
The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.
ERIC Educational Resources Information Center
Ghosh, Jaideep; Kshitij, Avinash
2017-01-01
This article introduces a number of methods that can be useful for examining the emergence of large-scale structures in collaboration networks. The study contributes to sociological research by investigating how clusters of research collaborators evolve and sometimes percolate in a collaboration network. Typically, we find that in our networks,…
Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity
Dunne, Jennifer A.; Lafferty, Kevin D.; Dobson, Andrew P.; Hechinger, Ryan F.; Kuris, Armand M.; Martinez, Neo D.; McLaughlin, John P.; Mouritsen, Kim N.; Poulin, Robert; Reise, Karsten; Stouffer, Daniel B.; Thieltges, David W.; Williams, Richard J.; Zander, Claus Dieter
2013-01-01
Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites “dominate” food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization, identifies limitations of current food web models, and provides direction for future structural and dynamical models. PMID:23776404
Parasites affect food web structure primarily through increased diversity and complexity
Dunne, Jennifer A.; Lafferty, Kevin D.; Dobson, Andrew P.; Hechinger, Ryan F.; Kuris, Armand M.; Martinez, Neo D.; McLaughlin, John P.; Mouritsen, Kim N.; Poulin, Robert; Reise, Karsten; Stouffer, Daniel B.; Thieltges, David W.; Williams, Richard J.; Zander, Claus Dieter
2013-01-01
Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites ‘‘dominate’’ food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites’ roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites’ feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization, identifies limitations of current food web models, and provides direction for future structural and dynamical models.
Parasites affect food web structure primarily through increased diversity and complexity.
Dunne, Jennifer A; Lafferty, Kevin D; Dobson, Andrew P; Hechinger, Ryan F; Kuris, Armand M; Martinez, Neo D; McLaughlin, John P; Mouritsen, Kim N; Poulin, Robert; Reise, Karsten; Stouffer, Daniel B; Thieltges, David W; Williams, Richard J; Zander, Claus Dieter
2013-01-01
Comparative research on food web structure has revealed generalities in trophic organization, produced simple models, and allowed assessment of robustness to species loss. These studies have mostly focused on free-living species. Recent research has suggested that inclusion of parasites alters structure. We assess whether such changes in network structure result from unique roles and traits of parasites or from changes to diversity and complexity. We analyzed seven highly resolved food webs that include metazoan parasite data. Our analyses show that adding parasites usually increases link density and connectance (simple measures of complexity), particularly when including concomitant links (links from predators to parasites of their prey). However, we clarify prior claims that parasites "dominate" food web links. Although parasites can be involved in a majority of links, in most cases classic predation links outnumber classic parasitism links. Regarding network structure, observed changes in degree distributions, 14 commonly studied metrics, and link probabilities are consistent with scale-dependent changes in structure associated with changes in diversity and complexity. Parasite and free-living species thus have similar effects on these aspects of structure. However, two changes point to unique roles of parasites. First, adding parasites and concomitant links strongly alters the frequency of most motifs of interactions among three taxa, reflecting parasites' roles as resources for predators of their hosts, driven by trophic intimacy with their hosts. Second, compared to free-living consumers, many parasites' feeding niches appear broader and less contiguous, which may reflect complex life cycles and small body sizes. This study provides new insights about generic versus unique impacts of parasites on food web structure, extends the generality of food web theory, gives a more rigorous framework for assessing the impact of any species on trophic organization, identifies limitations of current food web models, and provides direction for future structural and dynamical models.
Effects of spatial scale of sampling on food web structure
Wood, Spencer A; Russell, Roly; Hanson, Dieta; Williams, Richard J; Dunne, Jennifer A
2015-01-01
This study asks whether the spatial scale of sampling alters structural properties of food webs and whether any differences are attributable to changes in species richness and connectance with scale. Understanding how different aspects of sampling effort affect ecological network structure is important for both fundamental ecological knowledge and the application of network analysis in conservation and management. Using a highly resolved food web for the marine intertidal ecosystem of the Sanak Archipelago in the Eastern Aleutian Islands, Alaska, we assess how commonly studied properties of network structure differ for 281 versions of the food web sampled at five levels of spatial scale representing six orders of magnitude in area spread across the archipelago. Species (S) and link (L) richness both increased by approximately one order of magnitude across the five spatial scales. Links per species (L/S) more than doubled, while connectance (C) decreased by approximately two-thirds. Fourteen commonly studied properties of network structure varied systematically with spatial scale of sampling, some increasing and others decreasing. While ecological network properties varied systematically with sampling extent, analyses using the niche model and a power-law scaling relationship indicate that for many properties, this apparent sensitivity is attributable to the increasing S and decreasing C of webs with increasing spatial scale. As long as effects of S and C are accounted for, areal sampling bias does not have a special impact on our understanding of many aspects of network structure. However, attention does need be paid to some properties such as the fraction of species in loops, which increases more than expected with greater spatial scales of sampling. PMID:26380704
NASA Astrophysics Data System (ADS)
Markovic, Rene
This doctor thesis is both theoretical and applicative. In the theoretical part of the thesis, we examine how the interplay of dynamical features of oscillators and structural properties of complex networks affect the collective behavior of the system. We show, that weakly dissipative and flexible oscillators synchronize best in a broad scale network topology, whereas on the other hand strongly dissipative and rigid oscillators exhibit maximal synchronization in a scale-free network topology. We provide an analytical explanation for this phenomenon and validate it by implementing various continuous as well as discrete mathematical models that exhibit different levels of dynamical complexity. In the continuation, we additionally investigate how speed of signal transmission in the network affects the collective dynamic of the system. Our results show that besides an optimal network topology, also an optimal information transmission speed exists, at which the system reaches the highest degree of global synchronization. In the second part we apply the findings and the methodology from our theoretical studies to the examination of the collective pancreatic beta cell activity in the islets of Langerhans, which represents the main mechanism for the regulation of blood glucose homeostasis by the secretion of the hormone insulin. We show that the beta cells dynamics is not synchronized on the global scale of the whole islets. Instead, the cells form local clusters of synchronized activity which tend to get less segregated under higher stimulatory glucose concentrations. Furthermore, higher glucose concentrations also lead to the presence of broad scale small world connectivity patterns in the functional beta cell network. The main findings thereby shed light on the physiology and collective behavior of the islets of Langerhans and point out the possibilities of pathological changes associated with changes in the intercellular communication pathways.
Complex network analysis of brain functional connectivity under a multi-step cognitive task
NASA Astrophysics Data System (ADS)
Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun
2017-01-01
Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.
Tilocca, Antonio
2015-01-28
Molecular dynamics simulations of Na(+)/H(+)-exchanged 45S5 Bioglass® models reveal that a large fraction of the hydroxyl groups introduced into the proton-exchanged, hydrated glass structure do not initially form covalent bonds with Si and P network formers but remain free and stabilised by the modifier metal cations, whereas substantial Si-OH and P-OH bonding is observed only at higher Na(+)/H(+) exchange levels. The strong affinity between free OH groups and modifier cations in the highly fragmented 45S5 glass structure appears to represent the main driving force for this effect. This suggests an alternative direct route for the formation of a repolymerised silica-rich gel in the early stages of the bioactive mechanism, not considered before, which does not require sequential repeated breakings of Si-O-Si bonds and silanol condensations.
“Guilt by Association” Is the Exception Rather Than the Rule in Gene Networks
Gillis, Jesse; Pavlidis, Paul
2012-01-01
Gene networks are commonly interpreted as encoding functional information in their connections. An extensively validated principle called guilt by association states that genes which are associated or interacting are more likely to share function. Guilt by association provides the central top-down principle for analyzing gene networks in functional terms or assessing their quality in encoding functional information. In this work, we show that functional information within gene networks is typically concentrated in only a very few interactions whose properties cannot be reliably related to the rest of the network. In effect, the apparent encoding of function within networks has been largely driven by outliers whose behaviour cannot even be generalized to individual genes, let alone to the network at large. While experimentalist-driven analysis of interactions may use prior expert knowledge to focus on the small fraction of critically important data, large-scale computational analyses have typically assumed that high-performance cross-validation in a network is due to a generalizable encoding of function. Because we find that gene function is not systemically encoded in networks, but dependent on specific and critical interactions, we conclude it is necessary to focus on the details of how networks encode function and what information computational analyses use to extract functional meaning. We explore a number of consequences of this and find that network structure itself provides clues as to which connections are critical and that systemic properties, such as scale-free-like behaviour, do not map onto the functional connectivity within networks. PMID:22479173
Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.
2014-01-01
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089
Gossip spread in social network Models
NASA Astrophysics Data System (ADS)
Johansson, Tobias
2017-04-01
Gossip almost inevitably arises in real social networks. In this article we investigate the relationship between the number of friends of a person and limits on how far gossip about that person can spread in the network. How far gossip travels in a network depends on two sets of factors: (a) factors determining gossip transmission from one person to the next and (b) factors determining network topology. For a simple model where gossip is spread among people who know the victim it is known that a standard scale-free network model produces a non-monotonic relationship between number of friends and expected relative spread of gossip, a pattern that is also observed in real networks (Lind et al., 2007). Here, we study gossip spread in two social network models (Toivonen et al., 2006; Vázquez, 2003) by exploring the parameter space of both models and fitting them to a real Facebook data set. Both models can produce the non-monotonic relationship of real networks more accurately than a standard scale-free model while also exhibiting more realistic variability in gossip spread. Of the two models, the one given in Vázquez (2003) best captures both the expected values and variability of gossip spread.
Effects of frustration on explosive synchronization
NASA Astrophysics Data System (ADS)
Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can
2016-12-01
In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.
A unified framework for the pareto law and Matthew effect using scale-free networks
NASA Astrophysics Data System (ADS)
Hu, M.-B.; Wang, W.-X.; Jiang, R.; Wu, Q.-S.; Wang, B.-H.; Wu, Y.-H.
2006-09-01
We investigate the accumulated wealth distribution by adopting evolutionary games taking place on scale-free networks. The system self-organizes to a critical Pareto distribution (1897) of wealth P(m)˜m-(v+1) with 1.6 < v <2.0 (which is in agreement with that of U.S. or Japan). Particularly, the agent's personal wealth is proportional to its number of contacts (connectivity), and this leads to the phenomenon that the rich gets richer and the poor gets relatively poorer, which is consistent with the Matthew Effect present in society, economy, science and so on. Though our model is simple, it provides a good representation of cooperation and profit accumulation behavior in economy, and it combines the network theory with econophysics.
NASA Astrophysics Data System (ADS)
Tian, Lin-Lin; Li, Ming-Chu; Wang, Zhen
2016-11-01
With the growing interest in social Peer-to-Peer (P2P) applications, relationships of individuals are further exploited to improve the performances of reputation systems. It is an on-going challenge to investigate how spatial reciprocity aids indirect reciprocity in sustaining cooperation in practical P2P environments. This paper describes the construction of an extended prisoner's dilemma game on square lattice networks with three strategies, i.e., defection, unconditional cooperation, and reciprocal cooperation. Reciprocators discriminate partners according to their reputations based on image scoring, where mistakes in judgment of reputations may occur. The independent structures of interaction and learning neighborhood are discussed, with respect to the situation in which learning environments differ from interaction networks. The simulation results have indicated that the incentive mechanism enhances cooperation better in structured peers than among a well-mixed population. Given the realistic condition of inaccurate reputation scores, defection is still successfully held down when the players interact and learn within the unified neighborhoods. Extensive simulations have further confirmed the positive impact of spatial structure on cooperation with different sizes of lattice neighborhoods. And similar conclusions can also be drawn on regular random networks and scale-free networks. Moreover, for the separated structures of the neighborhoods, the interaction network has a critical effect on the evolution dynamics of cooperation and learning environments only have weaker impacts on the process. Our findings further provide some insights concerning the evolution of collective behaviors in social systems.
Percolation on bipartite scale-free networks
NASA Astrophysics Data System (ADS)
Hooyberghs, H.; Van Schaeybroeck, B.; Indekeu, J. O.
2010-08-01
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual-contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with a probability proportional to (, where α is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.
Relating the large-scale structure of time series and visibility networks.
Rodríguez, Miguel A
2017-06-01
The structure of time series is usually characterized by means of correlations. A new proposal based on visibility networks has been considered recently. Visibility networks are complex networks mapped from surfaces or time series using visibility properties. The structures of time series and visibility networks are closely related, as shown by means of fractional time series in recent works. In these works, a simple relationship between the Hurst exponent H of fractional time series and the exponent of the distribution of edges γ of the corresponding visibility network, which exhibits a power law, is shown. To check and generalize these results, in this paper we delve into this idea of connected structures by defining both structures more properly. In addition to the exponents used before, H and γ, which take into account local properties, we consider two more exponents that, as we will show, characterize global properties. These are the exponent α for time series, which gives the scaling of the variance with the size as var∼T^{2α}, and the exponent κ of their corresponding network, which gives the scaling of the averaged maximum of the number of edges, 〈k_{M}〉∼N^{κ}. With this representation, a more precise connection between the structures of general time series and their associated visibility network is achieved. Similarities and differences are more clearly established, and new scaling forms of complex networks appear in agreement with their respective classes of time series.
Studies of infrasound propagation using the USArray seismic network (Invited)
NASA Astrophysics Data System (ADS)
Hedlin, M. A.; Degroot-Hedlin, C. D.; Walker, K. T.
2010-12-01
Although there are currently ~ 100 infrasound arrays worldwide, more than ever before, the station density is still insufficient to provide validation for detailed propagation modeling. Much structure in the atmosphere is short-lived and occurs at spatial scales much smaller than the average distance between infrasound stations. Relatively large infrasound signals can be observed on seismic channels due to coupling at the Earth's surface. Recent research, using data from the 70-km spaced 400-station USArray and other seismic network deployments, has shown the value of dense seismic network data for filling in the gaps between infrasound arrays. The dense sampling of the infrasound wavefield has allowed us to observe complete travel-time branches of infrasound signals and shed more light on the nature of infrasound propagation. We present early results from our studies of impulsive atmospheric sources, such as series of UTTR rocket motor detonations in Utah. The Utah blasts have been well recorded by USArray seismic stations and infrasound arrays in Nevada and Washington State. Recordings of seismic signals from a series of six events in 2007 are used to pinpoint the shot times to < 1 second. Variations in the acoustic branches and signal arrival times at the arrays are used to probe variations in atmospheric structure. Although we currently use coupled signals we anticipate studying dense acoustic network recordings as the USArray is currently being upgraded with infrasound microphones. These new sensors will allow us to make semi-continental scale network recordings of infrasound signals free of concerns about how the signals observed on seismic channels were modified when being coupled to seismic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesny, D. L.; Oluseyi, H. M.; Orange, N. B.
We report on the identification of dynamic flaring non-potential structures on quiet Sun (QS) supergranular network scales. Data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory allow for the high spatial and temporal resolution of this diverse class of compact structures. The rapidly evolving non-potential events presented here, with lifetimes <10 minutes, are on the order of 10″ in length. Thus, they contrast significantly with well-known active region (AR) non-potential structures such as high-temperature X-ray and EUV sigmoids (>100″) and micro-sigmoids (>10″) with lifetimes on the order of hours to days. The photospheric magnetic field environment derivedmore » from the Helioseismic and Magnetic Imager shows a lack of evidence for these flaring non-potential fields being associated with significant concentrations of bipolar magnetic elements. Of much interest to our events is the possibility of establishing them as precursor signatures of eruptive dynamics, similar to notions for AR sigmoids and micro-sigmoids, but associated with uneventful magnetic network regions. We suggest that the mixed network flux of QS-like magnetic environments, though unresolved, can provide sufficient free magnetic energy for flaring non-potential plasma structuring. The appearance of non-potential magnetic fields could be a fundamental process leading to self-organized criticality in the QS-like supergranular network and contribute to coronal heating, as these events undergo rapid helicial and vortical relaxations.« less
A statistical physics approach to scale-free networks and their behaviors
NASA Astrophysics Data System (ADS)
Wu, Fang
This thesis studies five problems of network properties from a unified local-to-global viewpoint of statistical physics: (1) We propose an algorithm that allows the discovery of communities within graphs of arbitrary size, based on Kirchhoff theory of electric networks. Its time complexity scales linearly with the network size. We additionally show how this algorithm allows for the swift discovery of the community surrounding a given node without having to extract all the communities out of a graph. (2) We present a dynamical theory of opinion formation that takes explicitly into account the structure of the social network in which individuals are embedded. We show that the weighted fraction of the population that holds a certain opinion is a martingale. We show that the importance of a given node is proportional to its degree. We verify our predictions by simulations. (3) We show that, when the information transmissibility decays with distance, the epidemic spread on a scale-free network has a finite threshold. We test our predictions by measuring the spread of messages in an organization and by numerical experiments. (4) Suppose users can switch between two behaviors when entering a queueing system: one that never restarts an initial request and one that restarts infinitely often. We show the existence of two thresholds. When the system load is below the lower threshold, it is always better off to be impatient. When above, it is always better off to be patient. Between the two thresholds there exists a homogeneous Nash equilibrium with non-trivial properties. We obtain exact solutions for the two thresholds. (5) We study the endogenous dynamics of reputations in a system consisting of firms with long horizons that provide services with varying levels of quality, and customers who assign to them reputations on the basis of the quality levels that they experience when interacting with them. We show that the dynamics can lead to either well defined equilibria or persistent nonlinear oscillations in the number of customers visiting a firm, implying unstable reputations. We establish the stable criteria.
Spread of information and infection on finite random networks
NASA Astrophysics Data System (ADS)
Isham, Valerie; Kaczmarska, Joanna; Nekovee, Maziar
2011-04-01
The modeling of epidemic-like processes on random networks has received considerable attention in recent years. While these processes are inherently stochastic, most previous work has been focused on deterministic models that ignore important fluctuations that may persist even in the infinite network size limit. In a previous paper, for a class of epidemic and rumor processes, we derived approximate models for the full probability distribution of the final size of the epidemic, as opposed to only mean values. In this paper we examine via direct simulations the adequacy of the approximate model to describe stochastic epidemics and rumors on several random network topologies: homogeneous networks, Erdös-Rényi (ER) random graphs, Barabasi-Albert scale-free networks, and random geometric graphs. We find that the approximate model is reasonably accurate in predicting the probability of spread. However, the position of the threshold and the conditional mean of the final size for processes near the threshold are not well described by the approximate model even in the case of homogeneous networks. We attribute this failure to the presence of other structural properties beyond degree-degree correlations, and in particular clustering, which are present in any finite network but are not incorporated in the approximate model. In order to test this “hypothesis” we perform additional simulations on a set of ER random graphs where degree-degree correlations and clustering are separately and independently introduced using recently proposed algorithms from the literature. Our results show that even strong degree-degree correlations have only weak effects on the position of the threshold and the conditional mean of the final size. On the other hand, the introduction of clustering greatly affects both the position of the threshold and the conditional mean. Similar analysis for the Barabasi-Albert scale-free network confirms the significance of clustering on the dynamics of rumor spread. For this network, though, with its highly skewed degree distribution, the addition of positive correlation had a much stronger effect on the final size distribution than was found for the simple random graph.
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688
The topology and dynamics of complex networks
NASA Astrophysics Data System (ADS)
Dezso, Zoltan
We start with a brief introduction about the topological properties of real networks. Most real networks are scale-free, being characterized by a power-law degree distribution. The scale-free nature of real networks leads to unexpected properties such as the vanishing epidemic threshold. Traditional methods aiming to reduce the spreading rate of viruses cannot succeed on eradicating the epidemic on a scale-free network. We demonstrate that policies that discriminate between the nodes, curing mostly the highly connected nodes, can restore a finite epidemic threshold and potentially eradicate the virus. We find that the more biased a policy is towards the hubs, the more chance it has to bring the epidemic threshold above the virus' spreading rate. We continue by studying a large Web portal as a model system for a rapidly evolving network. We find that the visitation pattern of a news document decays as a power law, in contrast with the exponential prediction provided by simple models of site visitation. This is rooted in the inhomogeneous nature of the browsing pattern characterizing individual users: the time interval between consecutive visits by the same user to the site follows a power law distribution, in contrast with the exponential expected for Poisson processes. We show that the exponent characterizing the individual user's browsing patterns determines the power-law decay in a document's visitation. Finally, we turn our attention to biological networks and demonstrate quantitatively that protein complexes in the yeast, Saccharomyces cerevisiae, are comprised of a core in which subunits are highly coexpressed, display the same deletion phenotype (essential or non-essential) and share identical functional classification and cellular localization. The results allow us to define the deletion phenotype and cellular task of most known complexes, and to identify with high confidence the biochemical role of hundreds of proteins with yet unassigned functionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiang; Lu, Yang; Lee, Jongho
2016-01-04
Tuning low resistance state is crucial for resistance random access memory (RRAM) that aims to achieve optimal read margin and design flexibility. By back-to-back stacking two nanometallic bipolar RRAMs with different thickness into a complementary structure, we have found that its low resistance can be reliably tuned over several orders of magnitude. Such high tunability originates from the exponential thickness dependence of the high resistance state of nanometallic RRAM, in which electron wave localization in a random network gives rise to the unique scaling behavior. The complementary nanometallic RRAM provides electroforming-free, multi-resistance-state, sub-100 ns switching capability with advantageous characteristics formore » memory arrays.« less
Ab initio nanostructure determination
NASA Astrophysics Data System (ADS)
Gujarathi, Saurabh
Reconstruction of complex structures is an inverse problem arising in virtually all areas of science and technology, from protein structure determination to bulk heterostructure solar cells and the structure of nanoparticles. This problem is cast as a complex network problem where the edges in a network have weights equal to the Euclidean distance between their endpoints. A method, called Tribond, for the reconstruction of the locations of the nodes of the network given only the edge weights of the Euclidean network is presented. The timing results indicate that the algorithm is a low order polynomial in the number of nodes in the network in two dimensions. Reconstruction of Euclidean networks in two dimensions of about one thousand nodes in approximately twenty four hours on a desktop computer using this implementation is done. In three dimensions, the computational cost for the reconstruction is a higher order polynomial in the number of nodes and reconstruction of small Euclidean networks in three dimensions is shown. If a starting network of size five is assumed to be given, then for a network of size 100, the remaining reconstruction can be done in about two hours on a desktop computer. In situations when we have less precise data, modifications of the method may be necessary and are discussed. A related problem in one dimension known as the Optimal Golomb ruler (OGR) is also studied. A statistical physics Hamiltonian to describe the OGR problem is introduced and the first order phase transition from a symmetric low constraint phase to a complex symmetry broken phase at high constraint is studied. Despite the fact that the Hamiltonian is not disordered, the asymmetric phase is highly irregular with geometric frustration. The phase diagram is obtained and it is seen that even at a very low temperature T there is a phase transition at finite and non-zero value of the constraint parameter gamma/mu. Analytic calculations for the scaling of the density and free energy of the ruler are done and they are compared with those from the mean field approach. A scaling law is also derived for the length of OGR, which is consistent with Erdos conjecture and with numerical results.
Park, Hyo Seon; Shin, Yunah; Choi, Se Woon; Kim, Yousok
2013-01-01
In this study, a practical and integrative SHM system was developed and applied to a large-scale irregular building under construction, where many challenging issues exist. In the proposed sensor network, customized energy-efficient wireless sensing units (sensor nodes, repeater nodes, and master nodes) were employed and comprehensive communications from the sensor node to the remote monitoring server were conducted through wireless communications. The long-term (13-month) monitoring results recorded from a large number of sensors (75 vibrating wire strain gauges, 10 inclinometers, and three laser displacement sensors) indicated that the construction event exhibiting the largest influence on structural behavior was the removal of bents that were temporarily installed to support the free end of the cantilevered members during their construction. The safety of each member could be confirmed based on the quantitative evaluation of each response. Furthermore, it was also confirmed that the relation between these responses (i.e., deflection, strain, and inclination) can provide information about the global behavior of structures induced from specific events. Analysis of the measurement results demonstrates the proposed sensor network system is capable of automatic and real-time monitoring and can be applied and utilized for both the safety evaluation and precise implementation of buildings under construction. PMID:23860317
Global stability of an SIR model with differential infectivity on complex networks
NASA Astrophysics Data System (ADS)
Yuan, Xinpeng; Wang, Fang; Xue, Yakui; Liu, Maoxing
2018-06-01
In this paper, an SIR model with birth and death on complex networks is analyzed, where infected individuals are divided into m groups according to their infection and contact between human is treated as a scale-free social network. We obtain the basic reproduction number R0 as well as the effects of various immunization schemes. The results indicate that the disease-free equilibrium is locally and globally asymptotically stable in some conditions, otherwise disease-free equilibrium is unstable and exists an unique endemic equilibrium that is globally asymptotically stable. Our theoretical results are confirmed by numerical simulations and a promising way for infectious diseases control is suggested.
Infectious disease control using contact tracing in random and scale-free networks
Kiss, Istvan Z; Green, Darren M; Kao, Rowland R
2005-01-01
Contact tracing aims to identify and isolate individuals that have been in contact with infectious individuals. The efficacy of contact tracing and the hierarchy of traced nodes—nodes with higher degree traced first—is investigated and compared on random and scale-free (SF) networks with the same number of nodes N and average connection K. For values of the transmission rate larger than a threshold, the final epidemic size on SF networks is smaller than that on corresponding random networks. While in random networks new infectious and traced nodes from all classes have similar average degrees, in SF networks the average degree of nodes that are in more advanced stages of the disease is higher at any given time. On SF networks tracing removes possible sources of infection with high average degree. However a higher tracing effort is required to control the epidemic than on corresponding random networks due to the high initial velocity of spread towards the highly connected nodes. An increased latency period fails to significantly improve contact tracing efficacy. Contact tracing has a limited effect if the removal rate of susceptible nodes is relatively high, due to the fast local depletion of susceptible nodes. PMID:16849217
Self-avoiding walks on scale-free networks
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.
2005-01-01
Several kinds of walks on complex networks are currently used to analyze search and navigation in different systems. Many analytical and computational results are known for random walks on such networks. Self-avoiding walks (SAW’s) are expected to be more suitable than unrestricted random walks to explore various kinds of real-life networks. Here we study long-range properties of random SAW’s on scale-free networks, characterized by a degree distribution P (k) ˜ k-γ . In the limit of large networks (system size N→∞ ), the average number sn of SAW’s starting from a generic site increases as μn , with μ= < k2 > /
Inference and Analysis of Population Structure Using Genetic Data and Network Theory
Greenbaum, Gili; Templeton, Alan R.; Bar-David, Shirli
2016-01-01
Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition’s modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). PMID:26888080
Inference and Analysis of Population Structure Using Genetic Data and Network Theory.
Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli
2016-04-01
Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of prior conditions. The method is implemented in the software NetStruct (available at https://giligreenbaum.wordpress.com/software/). Copyright © 2016 by the Genetics Society of America.
Honeycomb: Visual Analysis of Large Scale Social Networks
NASA Astrophysics Data System (ADS)
van Ham, Frank; Schulz, Hans-Jörg; Dimicco, Joan M.
The rise in the use of social network sites allows us to collect large amounts of user reported data on social structures and analysis of this data could provide useful insights for many of the social sciences. This analysis is typically the domain of Social Network Analysis, and visualization of these structures often proves invaluable in understanding them. However, currently available visual analysis tools are not very well suited to handle the massive scale of this network data, and often resolve to displaying small ego networks or heavily abstracted networks. In this paper, we present Honeycomb, a visualization tool that is able to deal with much larger scale data (with millions of connections), which we illustrate by using a large scale corporate social networking site as an example. Additionally, we introduce a new probability based network metric to guide users to potentially interesting or anomalous patterns and discuss lessons learned during design and implementation.
Quantifying the Structure of Free Association Networks across the Life Span
ERIC Educational Resources Information Center
Dubossarsky, Haim; De Deyne, Simon; Hills, Thomas T.
2017-01-01
We investigate how the mental lexicon changes over the life span using free association data from over 8,000 individuals, ranging from 10 to 84 years of age, with more than 400 cue words per age group. Using network analysis, with words as nodes and edges defined by the strength of shared associations, we find that associative networks evolve in a…
Spatial structures of stream and hillslope drainage networks following gully erosion after wildfire
Moody, J.A.; Kinner, D.A.
2006-01-01
The drainage networks of catchment areas burned by wildfire were analysed at several scales. The smallest scale (1-1000 m2) representative of hillslopes, and the small scale (1000 m2 to 1 km2), representative of small catchments, were characterized by the analysis of field measurements. The large scale (1-1000 km2), representative of perennial stream networks, was derived from a 30-m digital elevation model and analysed by computer analysis. Scaling laws used to describe large-scale drainage networks could be extrapolated to the small scale but could not describe the smallest scale of drainage structures observed in the hillslope region. The hillslope drainage network appears to have a second-order effect that reduces the number of order 1 and order 2 streams predicted by the large-scale channel structure. This network comprises two spatial patterns of rills with width-to-depth ratios typically less than 10. One pattern is parallel rills draining nearly planar hillslope surfaces, and the other pattern is three to six converging rills draining the critical source area uphill from an order 1 channel head. The magnitude of this critical area depends on infiltration, hillslope roughness and critical shear stress for erosion of sediment, all of which can be substantially altered by wildfire. Order 1 and 2 streams were found to constitute the interface region, which is altered by a disturbance, like wildfire, from subtle unchannelized drainages in unburned catchments to incised drainages. These drainages are characterized by gullies also with width-to-depth ratios typically less than 10 in burned catchments. The regions (hillslope, interface and chanel) had different drainage network structures to collect and transfer water and sediment. Copyright ?? 2005 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Clariana, Roy B.; Wolfe, Michael B.; Kim, Kyung
2014-01-01
This investigation applies two approaches for representing and comparing text structures as undirected network graphs to describe the influence of narrative and expository lesson texts on readers' knowledge structure elicited as free recall. Narrative and expository lesson texts and undergraduate participants' free recall essays (n = 90)…
Mocanu, Decebal Constantin; Mocanu, Elena; Stone, Peter; Nguyen, Phuong H; Gibescu, Madeleine; Liotta, Antonio
2018-06-19
Through the success of deep learning in various domains, artificial neural networks are currently among the most used artificial intelligence methods. Taking inspiration from the network properties of biological neural networks (e.g. sparsity, scale-freeness), we argue that (contrary to general practice) artificial neural networks, too, should not have fully-connected layers. Here we propose sparse evolutionary training of artificial neural networks, an algorithm which evolves an initial sparse topology (Erdős-Rényi random graph) of two consecutive layers of neurons into a scale-free topology, during learning. Our method replaces artificial neural networks fully-connected layers with sparse ones before training, reducing quadratically the number of parameters, with no decrease in accuracy. We demonstrate our claims on restricted Boltzmann machines, multi-layer perceptrons, and convolutional neural networks for unsupervised and supervised learning on 15 datasets. Our approach has the potential to enable artificial neural networks to scale up beyond what is currently possible.
Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A; Stafstrom, Carl E; Hermann, Bruce P; Lin, Jack J
2014-08-01
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared with controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. Copyright © 2014 Wiley Periodicals, Inc.
Miao, Wang; Luo, Jun; Di Lucente, Stefano; Dorren, Harm; Calabretta, Nicola
2014-02-10
We propose and demonstrate an optical flat datacenter network based on scalable optical switch system with optical flow control. Modular structure with distributed control results in port-count independent optical switch reconfiguration time. RF tone in-band labeling technique allowing parallel processing of the label bits ensures the low latency operation regardless of the switch port-count. Hardware flow control is conducted at optical level by re-using the label wavelength without occupying extra bandwidth, space, and network resources which further improves the performance of latency within a simple structure. Dynamic switching including multicasting operation is validated for a 4 x 4 system. Error free operation of 40 Gb/s data packets has been achieved with only 1 dB penalty. The system could handle an input load up to 0.5 providing a packet loss lower that 10(-5) and an average latency less that 500 ns when a buffer size of 16 packets is employed. Investigation on scalability also indicates that the proposed system could potentially scale up to large port count with limited power penalty.
Unimodular lattice triangulations as small-world and scale-free random graphs
NASA Astrophysics Data System (ADS)
Krüger, B.; Schmidt, E. M.; Mecke, K.
2015-02-01
Real-world networks, e.g., the social relations or world-wide-web graphs, exhibit both small-world and scale-free behaviour. We interpret lattice triangulations as planar graphs by identifying triangulation vertices with graph nodes and one-dimensional simplices with edges. Since these triangulations are ergodic with respect to a certain Pachner flip, applying different Monte Carlo simulations enables us to calculate average properties of random triangulations, as well as canonical ensemble averages, using an energy functional that is approximately the variance of the degree distribution. All considered triangulations have clustering coefficients comparable with real-world graphs; for the canonical ensemble there are inverse temperatures with small shortest path length independent of system size. Tuning the inverse temperature to a quasi-critical value leads to an indication of scale-free behaviour for degrees k≥slant 5. Using triangulations as a random graph model can improve the understanding of real-world networks, especially if the actual distance of the embedded nodes becomes important.
NASA Astrophysics Data System (ADS)
Yang, Junbo; Yang, Jiankun; Li, Xiujian; Chang, Shengli; Su, Xianyu; Ping, Xu
2011-04-01
The clos network is one of the earliest multistage interconnection networks. Recently, it has been widely studied in parallel optical information processing systems, and there have been many efforts to develop this network. In this paper, a smart and compact Clos network, including Clos(2,3,2) and Clos(2,4,2), is proposed by using polarizing beam-splitters (PBS), phase spatial light modulators (PSLM), and mirrors. PBS features that are s-component (perpendicular to the incident plane) of the incident light beam is reflected, and the p-component (parallel to the incident plane) passes through it. According to switching logic, under control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e., the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. This new type of configuration grants the features of less optical components, compact in structure, efficient in performance, and insensitive to polarization of signal beam. In addition, the straight, the exchange, and the broadcast functions of the basic switch element are implemented bidirectionally in free-space. Furthermore, the new optical experimental module of 2×3 and 2×4 optical switch is also presented by a cascading polarization-independent bidirectional 2×2 optical switch. Simultaneously, the routing state-table of 2×3 and 2×4 optical switch to perform all permutation output and nonblocking switch for the input signal beam, is achieved. Since the proposed optical setup consists of only optical polarization elements, it is compact in structure, and possesses a low energy loss, a high signal-to-ratio, and an available large number of optical channels. Finally, the discussions and the experimental results show that the Clos network proposed here should be helpful in the design of large-scale network matrix, and may be used in optical communication and optical information processing.
Crista Supraventricularis Purkinje Network and Its Relation to Intraseptal Purkinje Network.
De Almeida, Marcos C; Araujo, Mayssa; Duque, Mathias; Vilhena, Virginia
2017-10-01
Using transparent specimens with a dual color injection, microscopy, and computer tomography, this report shows that the right and left ventricular subendocardial Purkinje networks are connected by an extensive septal network in the bovine heart. The septal network is present along the entire septum except at a free zone below ventricular valves. Being the only communication of the basal right septum with the right free wall, the supraventricular crest is an enigmatic but not, by any means, hidden muscular structure. It is one of the last structures to be activated in human heart. It is shown here that the supraventricular crest Purkinje network connects the anterosuperior right ventricular basal free wall Purkinje network to anterior right ventricular basal septal Purkinje network. It is suggested that the stimulus initiated at middle left ventricular endocardium will activate the supraventricular crest. The intraseptal connection found between the basal left ventricular subendocardial septal Purkinje network and the right ventricular basal septal Purkinje network is, probably, the pathway for the stimulus. An anatomic basis is provided to explain why the inflow tract contracts earlier than the outflow tract in the right ventricle systole. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:1793-1801, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wave models for turbulent free shear flows
NASA Technical Reports Server (NTRS)
Liou, W. W.; Morris, P. J.
1991-01-01
New predictive closure models for turbulent free shear flows are presented. They are based on an instability wave description of the dominant large scale structures in these flows using a quasi-linear theory. Three model were developed to study the structural dynamics of turbulent motions of different scales in free shear flows. The local characteristics of the large scale motions are described using linear theory. Their amplitude is determined from an energy integral analysis. The models were applied to the study of an incompressible free mixing layer. In all cases, predictions are made for the development of the mean flow field. In the last model, predictions of the time dependent motion of the large scale structure of the mixing region are made. The predictions show good agreement with experimental observations.
Robustness and structure of complex networks
NASA Astrophysics Data System (ADS)
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks are much more vulnerable to localized attack compared with random attack. In the second part, we extend the tree-like generating function method to incorporating clustering structure in complex networks. We study the robustness of a complex network system, especially a network of networks (NON) with clustering structure in each network. We find that the system becomes less robust as we increase the clustering coefficient of each network. For a partially dependent network system, we also find that the influence of the clustering coefficient on network robustness decreases as we decrease the coupling strength, and the critical coupling strength qc, at which the first-order phase transition changes to second-order, increases as we increase the clustering coefficient.
Risk perception in epidemic modeling
NASA Astrophysics Data System (ADS)
Bagnoli, Franco; Liò, Pietro; Sguanci, Luca
2007-12-01
We investigate the effects of risk perception in a simple model of epidemic spreading. We assume that the perception of the risk of being infected depends on the fraction of neighbors that are ill. The effect of this factor is to decrease the infectivity, that therefore becomes a dynamical component of the model. We study the problem in the mean-field approximation and by numerical simulations for regular, random, and scale-free networks. We show that for homogeneous and random networks, there is always a value of perception that stops the epidemics. In the “worst-case” scenario of a scale-free network with diverging input connectivity, a linear perception cannot stop the epidemics; however, we show that a nonlinear increase of the perception risk may lead to the extinction of the disease. This transition is discontinuous, and is not predicted by the mean-field analysis.
NASA Astrophysics Data System (ADS)
Gao, Dongyue; Wang, Yishou; Wu, Zhanjun; Rahim, Gorgin; Bai, Shengbao
2014-05-01
The detection capability of a given structural health monitoring (SHM) system strongly depends on its sensor network placement. In order to minimize the number of sensors while maximizing the detection capability, optimal design of the PZT sensor network placement is necessary for structural health monitoring (SHM) of a full-scale composite horizontal tail. In this study, the sensor network optimization was simplified as a problem of determining the sensor array placement between stiffeners to achieve the desired the coverage rate. First, an analysis of the structural layout and load distribution of a composite horizontal tail was performed. The constraint conditions of the optimal design were presented. Then, the SHM algorithm of the composite horizontal tail under static load was proposed. Based on the given SHM algorithm, a sensor network was designed for the full-scale composite horizontal tail structure. Effective profiles of cross-stiffener paths (CRPs) and uncross-stiffener paths (URPs) were estimated by a Lamb wave propagation experiment in a multi-stiffener composite specimen. Based on the coverage rate and the redundancy requirements, a seven-sensor array-network was chosen as the optimal sensor network for each airfoil. Finally, a preliminary SHM experiment was performed on a typical composite aircraft structure component. The reliability of the SHM result for a composite horizontal tail structure under static load was validated. In the result, the red zone represented the delamination damage. The detection capability of the optimized sensor network was verified by SHM of a full-scale composite horizontal tail; all the diagnosis results were obtained in two minutes. The result showed that all the damage in the monitoring region was covered by the sensor network.
Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation
NASA Astrophysics Data System (ADS)
Joo, Jaewook; Lebowitz, Joel L.
2004-06-01
We investigate saturation effects in susceptible-infected-susceptible models of the spread of epidemics in heterogeneous populations. The structure of interactions in the population is represented by networks with connectivity distribution P(k) , including scale-free (SF) networks with power law distributions P(k)˜ k-γ . Considering cases where the transmission of infection between nodes depends on their connectivity, we introduce a saturation function C(k) which reduces the infection transmission rate λ across an edge going from a node with high connectivity k . A mean-field approximation with the neglect of degree-degree correlation then leads to a finite threshold λc >0 for SF networks with 2<γ⩽3 . We also find, in this approximation, the fraction of infected individuals among those with degree k for λ close to λc . We investigate via computer simulation the contact process on a heterogeneous regular lattice and compare the results with those obtained from mean-field theory with and without neglect of degree-degree correlations.
A pathway-based network analysis of hypertension-related genes
NASA Astrophysics Data System (ADS)
Wang, Huan; Hu, Jing-Bo; Xu, Chuan-Yun; Zhang, De-Hai; Yan, Qian; Xu, Ming; Cao, Ke-Fei; Zhang, Xu-Sheng
2016-02-01
Complex network approach has become an effective way to describe interrelationships among large amounts of biological data, which is especially useful in finding core functions and global behavior of biological systems. Hypertension is a complex disease caused by many reasons including genetic, physiological, psychological and even social factors. In this paper, based on the information of biological pathways, we construct a network model of hypertension-related genes of the salt-sensitive rat to explore the interrelationship between genes. Statistical and topological characteristics show that the network has the small-world but not scale-free property, and exhibits a modular structure, revealing compact and complex connections among these genes. By the threshold of integrated centrality larger than 0.71, seven key hub genes are found: Jun, Rps6kb1, Cycs, Creb312, Cdk4, Actg1 and RT1-Da. These genes should play an important role in hypertension, suggesting that the treatment of hypertension should focus on the combination of drugs on multiple genes.
Ising-based model of opinion formation in a complex network of interpersonal interactions
NASA Astrophysics Data System (ADS)
Grabowski, A.; Kosiński, R. A.
2006-03-01
In our work the process of opinion formation in the human population, treated as a scale-free network, is modeled and investigated numerically. The individuals (nodes of the network) are characterized by their authorities, which influence the interpersonal interactions in the population. Hierarchical, two-level structures of interpersonal interactions and spatial localization of individuals are taken into account. The effect of the mass media, modeled as an external stimulation acting on the social network, on the process of opinion formation is investigated. It was found that in the time evolution of opinions of individuals critical phenomena occur. The first one is observed in the critical temperature of the system TC and is connected with the situation in the community, which may be described by such quantifiers as the economic status of people, unemployment or crime wave. Another critical phenomenon is connected with the influence of mass media on the population. As results from our computations, under certain circumstances the mass media can provoke critical rebuilding of opinions in the population.
Djurfeldt, Mikael
2012-07-01
The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.
The Buildup of a Scale-free Photospheric Magnetic Network
NASA Astrophysics Data System (ADS)
Thibault, K.; Charbonneau, P.; Crouch, A. D.
2012-10-01
We use a global Monte Carlo simulation of the formation of the solar photospheric magnetic network to investigate the origin of the scale invariance characterizing magnetic flux concentrations visible on high-resolution magnetograms. The simulations include spatially and temporally homogeneous injection of small-scale magnetic elements over the whole photosphere, as well as localized episodic injection associated with the emergence and decay of active regions. Network elements form in response to cumulative pairwise aggregation or cancellation of magnetic elements, undergoing a random walk on the sphere and advected on large spatial scales by differential rotation and a poleward meridional flow. The resulting size distribution of simulated network elements is in very good agreement with observational inferences. We find that the fractal index and size distribution of network elements are determined primarily by these post-emergence surface mechanisms, and carry little or no memory of the scales at which magnetic flux is injected in the simulation. Implications for models of dynamo action in the Sun are briefly discussed.
Cooperation among cancer cells as public goods games on Voronoi networks.
Archetti, Marco
2016-05-07
Cancer cells produce growth factors that diffuse and sustain tumour proliferation, a form of cooperation that can be studied using mathematical models of public goods in the framework of evolutionary game theory. Cell populations, however, form heterogeneous networks that cannot be described by regular lattices or scale-free networks, the types of graphs generally used in the study of cooperation. To describe the dynamics of growth factor production in populations of cancer cells, I study public goods games on Voronoi networks, using a range of non-linear benefits that account for the known properties of growth factors, and different types of diffusion gradients. The results are surprisingly similar to those obtained on regular graphs and different from results on scale-free networks, revealing that network heterogeneity per se does not promote cooperation when public goods diffuse beyond one-step neighbours. The exact shape of the diffusion gradient is not crucial, however, whereas the type of non-linear benefit is an essential determinant of the dynamics. Public goods games on Voronoi networks can shed light on intra-tumour heterogeneity, the evolution of resistance to therapies that target growth factors, and new types of cell therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cao, Shaomei; Feng, Xin; Song, Yuanyuan; Xue, Xin; Liu, Hongjiang; Miao, Miao; Fang, Jianhui; Shi, Liyi
2015-05-27
A free-standing lithium titanate (Li4Ti5O12)/carbon nanotube/cellulose nanofiber hybrid network film is successfully assembled by using a pressure-controlled aqueous extrusion process, which is highly efficient and easily to scale up from the perspective of disposable and recyclable device production. This hybrid network film used as a lithium-ion battery (LIB) electrode has a dual-layer structure consisting of Li4Ti5O12/carbon nanotube/cellulose nanofiber composites (hereinafter referred to as LTO/CNT/CNF), and carbon nanotube/cellulose nanofiber composites (hereinafter referred to as CNT/CNF). In the heterogeneous fibrous network of the hybrid film, CNF serves simultaneously as building skeleton and a biosourced binder, which substitutes traditional toxic solvents and synthetic polymer binders. Of importance here is that the CNT/CNF layer is used as a lightweight current collector to replace traditional heavy metal foils, which therefore reduces the total mass of the electrode while keeping the same areal loading of active materials. The free-standing network film with high flexibility is easy to handle, and has extremely good conductivity, up to 15.0 S cm(-1). The flexible paper-electrode for LIBs shows very good high rate cycling performance, and the specific charge/discharge capacity values are up to 142 mAh g(-1) even at a current rate of 10 C. On the basis of the mild condition and fast assembly process, a CNF template fulfills multiple functions in the fabrication of paper-electrode for LIBs, which would offer an ever increasing potential for high energy density, low cost, and environmentally friendly flexible electronics.
Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A
2018-07-01
Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.
Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks
NASA Astrophysics Data System (ADS)
Kachan, Devin Michael
Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain-stiffening behavior and compare this behavior to the yield stress flow seen in soft glassy fluids. I extend this theory to account for coordination number inhomogeneities and predict a breakdown of universal scaling near the critical point at sufficiently high disorder, and discuss the utility for this type of model in describing biopolymer networks.
Consensus between Pipelines in Structural Brain Networks
Parker, Christopher S.; Deligianni, Fani; Cardoso, M. Jorge; Daga, Pankaj; Modat, Marc; Dayan, Michael; Clark, Chris A.
2014-01-01
Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with atlases at different node scales. The binary network properties of these core connections were similar between pipelines but showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural network reconstrution pipelines to diffusion data in order to identify the most important connections for further study. PMID:25356977
Functional network alterations and their structural substrate in drug-resistant epilepsy
Caciagli, Lorenzo; Bernhardt, Boris C.; Hong, Seok-Jun; Bernasconi, Andrea; Bernasconi, Neda
2014-01-01
The advent of MRI has revolutionized the evaluation and management of drug-resistant epilepsy by allowing the detection of the lesion associated with the region that gives rise to seizures. Recent evidence indicates marked chronic alterations in the functional organization of lesional tissue and large-scale cortico-subcortical networks. In this review, we focus on recent methodological developments in functional MRI (fMRI) analysis techniques and their application to the two most common drug-resistant focal epilepsies, i.e., temporal lobe epilepsy related to mesial temporal sclerosis and extra-temporal lobe epilepsy related to focal cortical dysplasia. We put particular emphasis on methodological developments in the analysis of task-free or “resting-state” fMRI to probe the integrity of intrinsic networks on a regional, inter-regional, and connectome-wide level. In temporal lobe epilepsy, these techniques have revealed disrupted connectivity of the ipsilateral mesiotemporal lobe, together with contralateral compensatory reorganization and striking reconfigurations of large-scale networks. In cortical dysplasia, initial observations indicate functional alterations in lesional, peri-lesional, and remote neocortical regions. While future research is needed to critically evaluate the reliability, sensitivity, and specificity, fMRI mapping promises to lend distinct biomarkers for diagnosis, presurgical planning, and outcome prediction. PMID:25565942
Borge-Holthoefer, Javier; Rivero, Alejandro; García, Iñigo; Cauhé, Elisa; Ferrer, Alfredo; Ferrer, Darío; Francos, David; Iñiguez, David; Pérez, María Pilar; Ruiz, Gonzalo; Sanz, Francisco; Serrano, Fermín; Viñas, Cristina; Tarancón, Alfonso; Moreno, Yamir
2011-01-01
The number of people using online social networks in their everyday life is continuously growing at a pace never saw before. This new kind of communication has an enormous impact on opinions, cultural trends, information spreading and even in the commercial success of new products. More importantly, social online networks have revealed as a fundamental organizing mechanism in recent country-wide social movements. In this paper, we provide a quantitative analysis of the structural and dynamical patterns emerging from the activity of an online social network around the ongoing May 15th (15M) movement in Spain. Our network is made up by users that exchanged tweets in a time period of one month, which includes the birth and stabilization of the 15M movement. We characterize in depth the growth of such dynamical network and find that it is scale-free with communities at the mesoscale. We also find that its dynamics exhibits typical features of critical systems such as robustness and power-law distributions for several quantities. Remarkably, we report that the patterns characterizing the spreading dynamics are asymmetric, giving rise to a clear distinction between information sources and sinks. Our study represents a first step towards the use of data from online social media to comprehend modern societal dynamics. PMID:21886834
Quantum statistics in complex networks
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra
The Barabasi-Albert (BA) model for a complex network shows a characteristic power law connectivity distribution typical of scale free systems. The Ising model on the BA network shows that the ferromagnetic phase transition temperature depends logarithmically on its size. We have introduced a fitness parameter for the BA network which describes the different abilities of nodes to compete for links. This model predicts the formation of a scale free network where each node increases its connectivity in time as a power-law with an exponent depending on its fitness. This model includes the fact that the node connectivity and growth rate do not depend on the node age alone and it reproduces non trivial correlation properties of the Internet. We have proposed a model of bosonic networks by a generalization of the BA model where the properties of quantum statistics can be applied. We have introduced a fitness eta i = e-bei where the temperature T = 1/ b is determined by the noise in the system and the energy ei accounts for qualitative differences of each node for acquiring links. The results of this work show that a power law network with exponent gamma = 2 can give a Bose condensation where a single node grabs a finite fraction of all the links. In order to address the connection with self-organized processes we have introduced a model for a growing Cayley tree that generalizes the dynamics of invasion percolation. At each node we associate a parameter ei (called energy) such that the probability to grow for each node is given by pii ∝ ebei where T = 1/ b is a statistical parameter of the system determined by the noise called the temperature. This model has been solved analytically with a similar mathematical technique as the bosonic scale-free networks and it shows the self organization of the low energy nodes at the interface. In the thermodynamic limit the Fermi distribution describes the probability of the energy distribution at the interface.
Energy Spectral Behaviors of Communication Networks of Open-Source Communities
Yang, Jianmei; Yang, Huijie; Liao, Hao; Wang, Jiangtao; Zeng, Jinqun
2015-01-01
Large-scale online collaborative production activities in open-source communities must be accompanied by large-scale communication activities. Nowadays, the production activities of open-source communities, especially their communication activities, have been more and more concerned. Take CodePlex C # community for example, this paper constructs the complex network models of 12 periods of communication structures of the community based on real data; then discusses the basic concepts of quantum mapping of complex networks, and points out that the purpose of the mapping is to study the structures of complex networks according to the idea of quantum mechanism in studying the structures of large molecules; finally, according to this idea, analyzes and compares the fractal features of the spectra in different quantum mappings of the networks, and concludes that there are multiple self-similarity and criticality in the communication structures of the community. In addition, this paper discusses the insights and application conditions of different quantum mappings in revealing the characteristics of the structures. The proposed quantum mapping method can also be applied to the structural studies of other large-scale organizations. PMID:26047331
Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R
2012-01-01
In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.
Value of peripheral nodes in controlling multilayer scale-free networks
NASA Astrophysics Data System (ADS)
Zhang, Yan; Garas, Antonios; Schweitzer, Frank
2016-01-01
We analyze the controllability of a two-layer network, where driver nodes can be chosen randomly only from one layer. Each layer contains a scale-free network with directed links and the node dynamics depends on the incoming links from other nodes. We combine the in-degree and out-degree values to assign an importance value w to each node, and distinguish between peripheral nodes with low w and central nodes with high w . Based on numerical simulations, we find that the controllable part of the network is larger when choosing low w nodes to connect the two layers. The control is as efficient when peripheral nodes are driver nodes as it is for the case of more central nodes. However, if we assume a cost to utilize nodes that is proportional to their overall degree, utilizing peripheral nodes to connect the two layers or to act as driver nodes is not only the most cost-efficient solution, it is also the one that performs best in controlling the two-layer network among the different interconnecting strategies we have tested.
Ghafoorian, Mohsen; Karssemeijer, Nico; Heskes, Tom; Bergkamp, Mayra; Wissink, Joost; Obels, Jiri; Keizer, Karlijn; de Leeuw, Frank-Erik; Ginneken, Bram van; Marchiori, Elena; Platel, Bram
2017-01-01
Lacunes of presumed vascular origin (lacunes) are associated with an increased risk of stroke, gait impairment, and dementia and are a primary imaging feature of the small vessel disease. Quantification of lacunes may be of great importance to elucidate the mechanisms behind neuro-degenerative disorders and is recommended as part of study standards for small vessel disease research. However, due to the different appearance of lacunes in various brain regions and the existence of other similar-looking structures, such as perivascular spaces, manual annotation is a difficult, elaborative and subjective task, which can potentially be greatly improved by reliable and consistent computer-aided detection (CAD) routines. In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN). We show that this method has good performance and can considerably benefit readers. We first use a fully convolutional neural network to detect initial candidates. In the second step, we employ a 3D CNN as a false positive reduction tool. As the location information is important to the analysis of candidate structures, we further equip the network with contextual information using multi-scale analysis and integration of explicit location features. We trained, validated and tested our networks on a large dataset of 1075 cases obtained from two different studies. Subsequently, we conducted an observer study with four trained observers and compared our method with them using a free-response operating characteristic analysis. Shown on a test set of 111 cases, the resulting CAD system exhibits performance similar to the trained human observers and achieves a sensitivity of 0.974 with 0.13 false positives per slice. A feasibility study also showed that a trained human observer would considerably benefit once aided by the CAD system.
Promotion of cooperation induced by two-sided players in prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Su, Zhen; Li, Lixiang; Xiao, Jinghua; Podobnik, B.; Stanley, H. Eugene
2018-01-01
We examine how real-world individuals and companies can either reach an agreement or fail to reach an agreement after several stages of negotiation. We use a modified prisoner's dilemma game with two-sided players who can either cooperate or not cooperate with their neighbors. We find that the presence of even a small number of these two-sided players substantially promotes the cooperation because, unlike the rock-paper-scissors scenario, when the cooperators change to the non-cooperators to gain a payoff, they can turn to the two-sided players and continue negotiating. We find that the network structure influences the spread of strategies. Lattice and regular-random (RR) networks benefit the spread of both non-cooperation and two-sided strategies, but scale-free (SF) networks stop both strategies. We also find that the Erdös-R e ´ nyi (ER) network promotes the two-sided strategy and blocks the spread of non-cooperation. As the ER network density decreases, and the network degree is lowered the lifetime of non-cooperators increases. Our results expand our understanding of the role played by the two-sided strategy in the growth of the cooperative behavior in networks.
Narimani, Zahra; Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger
2017-01-01
Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods.
Physics textbooks from the viewpoint of network structures
NASA Astrophysics Data System (ADS)
Králiková, Petra; Teleki, Aba
2017-01-01
We can observe self-organized networks all around us. These networks are, in general, scale invariant networks described by the Bianconi-Barabasi model. The self-organized networks (networks formed naturally when feedback acts on the system) show certain universality. These networks, in simplified models, have scale invariant distribution (Pareto distribution type I) and parameter α has value between 2 and 5. The textbooks are extremely important in the learning process and from this reason we studied physics textbook at the level of sentences and physics terms (bipartite network). The nodes represent physics terms, sentences, and pictures, tables, connected by links (by physics terms and transitional words and transitional phrases). We suppose that learning process are more robust and goes faster and easier if the physics textbook has a structure similar to structures of self-organized networks.
Molecular ecological network analyses.
Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong
2012-05-30
Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA). The RMT-based molecular ecological network analysis provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes, which are fundamentally important for research in microbial ecology and environmental microbiology.
Emergence, evolution and scaling of online social networks.
Wang, Le-Zhi; Huang, Zi-Gang; Rong, Zhi-Hai; Wang, Xiao-Fan; Lai, Ying-Cheng
2014-01-01
Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.
Self-organization, preferential flow and rainfall runoff behavior - is there a connection?
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Blume, Theresa; Kleidon, Axel; Ehret, Uwe; Scherer, Ulrike; Westhoff, Martijn
2013-04-01
In line with the studies of Kleidon et al. (2012) and Zehe et al. (2010) the proposed study analyzes mass flow related flows of free energy in open hydrological systems - hillslopes and small catchments - using thermodynamics methods. Why a thermodynamic treatment? A small part of the kinetic energy input from incoming rainfall is dissipated into heat and to break up soil aggregates. Depending on the partitioning of the incoming rainfall into overland flow and soil water, the remaining part of the incoming kinetic energy is partly transformed into potential energy of surface water and subsequently partly exported as kinetic energy of overland flow from the system; the rest is dissipated by frictional losses. The other part of rainfall infiltrates thereby increasing potential energy of soil water but depleting at the same time (gradients in) capillary binding energy of soil water, which again comprises energy dissipation into heat of immersion. Although, these mass fluxes are not associated with large heat fluxes, they reflect the overall conservation of energy as well as the second law of thermodynamics. They require thus a thermodynamic treatment, because tiny amounts of kinetic energy, surface energy and potential energy are dissipated into heat: this implies irreversibility and explains why water does not flow uphill. Soil hydraulic equilibrium (HE), arising from a balance in potential and capillary binding energy in soil, can be interpreted as a state of maximum entropy in soil. Soil water potential, defined as sum of matric potential and gravity potential, is in HE equal to zero along the soil profile. This corresponds to a state of maximum entropy due to a zero potential gradient, which implies due to Zehe et al. (2010) a state of minimum (Helmholtz) free energy. Our first main objective is to quantify to which extent connected preferential flow path, in our case vertical macropores and the river network enhance flow velocities at a given driving gradient and thus power in the associated mass fluxes. This implies either an enhanced export of free energy in form of kinetic energy in case of the river net, or an accelerated reduction of potential energy of infiltrating surface water which implies a reduction free energy in form of capillary binding energy of soil water. We hypothesize (H1) that network like structures act as dissipative structures "serving the purpose" of reducing the relaxation time to a state of lower "free" energy in the entire system. This is because they minimize dissipative losses of kinetic energy along their extent. This faster relaxation towards a state of smaller free energy is deemed to be favorable for mechanic stability of the entire hydrological system because a) mass flows perform due to the enhanced export of kinetic energy less work on the system itself and b) mechanical stress from ponded surface water is quickly reduced by fast infiltration and preferential flow. Our second main objective is, in line with the study of Zehe et al. (2010), the search for thermodynamic optimal hillslope architectures both with respect to the surface density of vertical macropores in soil and with respect to the spatial arrangement of soil types and macropores at the hillslope scale. In line with H1 we suggest (H2) that a hydro-geo-ecosystem is closer to a functional optimum than other possible configurations if it dissipates and exports more of the kinetic energy input from incoming rainfall by redistributing water against internal gradients and exporting water against macroscale geo-potential gradients. Note that H2 does not postulate that functionally optimal hillslope architectures necessarily exist, if they exist H2 implies however that they maximize entropy production and thus reduction of total free energy of the system at a "wisely" selected time scale. The surface density of apparent macropores does for instance control the tradeoff between Hortonian overland flow formation and infiltration, which implies a tradeoff between the amount of kinetic energy input from rainfall that is converted in to power associated with overland flow and power associated with soil water flows depleting gradients in soil water potential. Does this tradeoff imply an optimum surface density of macropores at the hillslope scale in the sense that power in soil water flow is maximized or reduction of free energy is maximized? In case such an optimum hillslope architecture existed, and in case that the evolution of the hydrological systems of interested was indeed in accordance with hypothesis H2, this optimal architecture should allow an acceptable uncalibrated simulation of the systems rainfall -runoff behavior (if the selected model structure can properly represent this architecture). We will address these questions and test the main implications of our hypotheses by means of numerical experiments with the physically based hydrological model CATFLOW. We use behavioral model structures as basic model setup, which have been shown to closely portray system behavior and its architecture in a sense that they reproduce distributed observations of soil moisture and catchment scale discharge and represent the observed structural and textural signatures of soils, flow networks and vegetation. Our test areas are the Weiherbach (Germany) and the Malalcahuello research headwaters (Chile), which are located in distinctly different hydro-climatic and hydro-pedological settings. Within the numerical experiments we will simulate the full concert of hydrological processes at the hillslope and headwater scales for meaningful perturbations of the behavioral model structure and compare them with respect to dynamics of free energy and production of power. These perturbations affect a) the river network and the geomorphology of the Weiherbach catchment, b) surface density of macropores in both catchments c) the spatial arrangement of soils and preferential pathways at the hillslope scale in the Weiherbach catchment. References: Kleidon, A., Zehe, E., Ehret, U., and Scherer, U.: Thermodynamics, maximum power, and the dynamics of preferential river flow structures on continents, Hydrol. Earth Syst. Sci. Discuss., 9, 7317-7378, 10.5194/hessd-9-7317-2012, 2012. Zehe, E., Blume, T., and Blöschl, G.: The principle of 'maximum energy dissipation': a novel thermodynamic perspective on rapid water flow in connected soil structures, Phil. Trans. R. Soc. B, 1-10, doi:10.1098/rstb.2009.0308, 2010.
Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks.
Li, Qiang; Chen, Minyou; Perc, Matjaž; Iqbal, Azhar; Abbott, Derek
2013-10-15
We study the impact of adaptive degrees of trust on the evolution of cooperation in the quantum prisoner's dilemma game. In addition to the strategies, links between players are also subject to evolution. Starting with a scale-free interaction network, players adjust trust towards their neighbors based on received payoffs. The latter governs the strategy adoption process, while trust governs the rewiring of links. As soon as the degree of trust towards a neighbor drops to zero, the link is rewired to another randomly chosen player within the network. We find that for small temptations to defect cooperators always dominate, while for intermediate and strong temptations a single quantum strategy is able to outperform all other strategies. In general, reciprocal trust remains within close relationships and favors the dominance of a single strategy. Due to coevolution, the power-law degree distributions transform to Poisson distributions.
Effects of adaptive degrees of trust on coevolution of quantum strategies on scale-free networks
NASA Astrophysics Data System (ADS)
Li, Qiang; Chen, Minyou; Perc, Matjaž; Iqbal, Azhar; Abbott, Derek
2013-10-01
We study the impact of adaptive degrees of trust on the evolution of cooperation in the quantum prisoner's dilemma game. In addition to the strategies, links between players are also subject to evolution. Starting with a scale-free interaction network, players adjust trust towards their neighbors based on received payoffs. The latter governs the strategy adoption process, while trust governs the rewiring of links. As soon as the degree of trust towards a neighbor drops to zero, the link is rewired to another randomly chosen player within the network. We find that for small temptations to defect cooperators always dominate, while for intermediate and strong temptations a single quantum strategy is able to outperform all other strategies. In general, reciprocal trust remains within close relationships and favors the dominance of a single strategy. Due to coevolution, the power-law degree distributions transform to Poisson distributions.
Superinfection Behaviors on Scale-Free Networks with Competing Strains
NASA Astrophysics Data System (ADS)
Wu, Qingchu; Small, Michael; Liu, Huaxiang
2013-02-01
This paper considers the epidemiology of two strains ( I, J) of a disease spreading through a population represented by a scale-free network. The epidemiological model is SIS and the two strains have different reproductive numbers. Superinfection means that strain I can infect individuals already infected with strain J, replacing the strain J infection. Individuals infected with strain I cannot be infected with strain J. The model is set up as a system of ordering differential equations and stability of the disease free, marginal strain I and strain J, and coexistence equilibria are assessed using linear stability analysis, supported by simulations. The main conclusion is that superinfection, as modeled in this paper, can allow strain I to coexist with strain J even when it has a lower basic reproductive number. Most strikingly, it can allow strain I to persist even when its reproductive number is less than 1.
Model-free distributed learning
NASA Technical Reports Server (NTRS)
Dembo, Amir; Kailath, Thomas
1990-01-01
Model-free learning for synchronous and asynchronous quasi-static networks is presented. The network weights are continuously perturbed, while the time-varying performance index is measured and correlated with the perturbation signals; the correlation output determines the changes in the weights. The perturbation may be either via noise sources or orthogonal signals. The invariance to detailed network structure mitigates large variability between supposedly identical networks as well as implementation defects. This local, regular, and completely distributed mechanism requires no central control and involves only a few global signals. Thus it allows for integrated on-chip learning in large analog and optical networks.
FireFly: reconfigurable optical wireless networking data centers
NASA Astrophysics Data System (ADS)
Kavehrad, Mohsen; Deng, Peng; Gupta, H.; Longtin, J.; Das, S. R.; Sekar, V.
2017-01-01
We explore a novel, free-space optics based approach for building data center interconnects. Data centers (DCs) are a critical piece of today's networked applications in both private and public sectors. The key factors that have driven this trend are economies of scale, reduced management costs, better utilization of hardware via statistical multiplexing, and the ability to elastically scale applications in response to changing workload patterns. A robust DC network fabric is fundamental to the success of DCs and to ensure that the network does not become a bottleneck for high-performance applications. In this context, DC network design must satisfy several goals: high performance (e.g., high throughput and low latency), low equipment and management cost, robustness to dynamic traffic patterns, incremental expandability to add new servers or racks, and other practical concerns such as cabling complexity, and power and cooling costs. Current DC network architectures do not seem to provide a satisfactory solution, with respect to the above requirements. In particular, traditional static (wired) networks are either overprovisioned or oversubscribed. Recent works have tried to overcome the above limitations by augmenting a static (wired) "core" with some flexible links (RF-wireless or optical). These augmented architectures show promise, but offer only incremental improvement in performance. Specifically, RFwireless based augmented solutions also offer only limited performance improvement, due to inherent interference and range constraints of RF links. This paper explores an alternative design point—a fully flexible and all-wireless DC interrack network based on free-space optical (FSO) links. We call this FireFly as in; Free-space optical Inter-Rack nEtwork with high FLexibilitY. We will present our designs and tests using various configurations that can help the performance and reliability of the FSO links.
Statistical Mechanics of Temporal and Interacting Networks
NASA Astrophysics Data System (ADS)
Zhao, Kun
In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide a new framework to quantify the information encoded in these networks and to answer a fundamental problem in network science: how complex are temporal and growing networks. Finally, we consider two examples of critical phenomena in interacting networks. In particular, on one side we investigate the percolation of interacting networks by introducing antagonistic interactions. On the other side, we investigate a model of political election based on the percolation of antagonistic networks. The aim of this research is to show how antagonistic interactions change the physics of critical phenomena on interacting networks. We believe that the work presented in these thesis offers the possibility to appreciate the large variability of problems that can be addressed in the new framework of temporal and interacting networks.
Simulating market dynamics: interactions between consumer psychology and social networks.
Janssen, Marco A; Jager, Wander
2003-01-01
Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).
NASA Astrophysics Data System (ADS)
Scholz-Reiter, B.; Wirth, F.; Dashkovskiy, S.; Makuschewitz, T.; Schönlein, M.; Kosmykov, M.
2011-12-01
We investigate the problem of model reduction with a view to large-scale logistics networks, specifically supply chains. Such networks are modeled by means of graphs, which describe the structure of material flow. An aim of the proposed model reduction procedure is to preserve important features within the network. As a new methodology we introduce the LogRank as a measure for the importance of locations, which is based on the structure of the flows within the network. We argue that these properties reflect relative importance of locations. Based on the LogRank we identify subgraphs of the network that can be neglected or aggregated. The effect of this is discussed for a few motifs. Using this approach we present a meta algorithm for structure-preserving model reduction that can be adapted to different mathematical modeling frameworks. The capabilities of the approach are demonstrated with a test case, where a logistics network is modeled as a Jackson network, i.e., a particular type of queueing network.
Local self-uniformity in photonic networks.
Sellers, Steven R; Man, Weining; Sahba, Shervin; Florescu, Marian
2017-02-17
The interaction of a material with light is intimately related to its wavelength-scale structure. Simple connections between structure and optical response empower us with essential intuition to engineer complex optical functionalities. Here we develop local self-uniformity (LSU) as a measure of a random network's internal structural similarity, ranking networks on a continuous scale from crystalline, through glassy intermediate states, to chaotic configurations. We demonstrate that complete photonic bandgap structures possess substantial LSU and validate LSU's importance in gap formation through design of amorphous gyroid structures. Amorphous gyroid samples are fabricated via three-dimensional ceramic printing and the bandgaps experimentally verified. We explore also the wing-scale structuring in the butterfly Pseudolycaena marsyas and show that it possesses substantial amorphous gyroid character, demonstrating the subtle order achieved by evolutionary optimization and the possibility of an amorphous gyroid's self-assembly.
Local self-uniformity in photonic networks
NASA Astrophysics Data System (ADS)
Sellers, Steven R.; Man, Weining; Sahba, Shervin; Florescu, Marian
2017-02-01
The interaction of a material with light is intimately related to its wavelength-scale structure. Simple connections between structure and optical response empower us with essential intuition to engineer complex optical functionalities. Here we develop local self-uniformity (LSU) as a measure of a random network's internal structural similarity, ranking networks on a continuous scale from crystalline, through glassy intermediate states, to chaotic configurations. We demonstrate that complete photonic bandgap structures possess substantial LSU and validate LSU's importance in gap formation through design of amorphous gyroid structures. Amorphous gyroid samples are fabricated via three-dimensional ceramic printing and the bandgaps experimentally verified. We explore also the wing-scale structuring in the butterfly Pseudolycaena marsyas and show that it possesses substantial amorphous gyroid character, demonstrating the subtle order achieved by evolutionary optimization and the possibility of an amorphous gyroid's self-assembly.
Drainage networks after wildfire
Kinner, D.A.; Moody, J.A.
2005-01-01
Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.
Huang, Lei; Liao, Li; Wu, Cathy H.
2016-01-01
Revealing the underlying evolutionary mechanism plays an important role in understanding protein interaction networks in the cell. While many evolutionary models have been proposed, the problem about applying these models to real network data, especially for differentiating which model can better describe evolutionary process for the observed network urgently remains as a challenge. The traditional way is to use a model with presumed parameters to generate a network, and then evaluate the fitness by summary statistics, which however cannot capture the complete network structures information and estimate parameter distribution. In this work we developed a novel method based on Approximate Bayesian Computation and modified Differential Evolution (ABC-DEP) that is capable of conducting model selection and parameter estimation simultaneously and detecting the underlying evolutionary mechanisms more accurately. We tested our method for its power in differentiating models and estimating parameters on the simulated data and found significant improvement in performance benchmark, as compared with a previous method. We further applied our method to real data of protein interaction networks in human and yeast. Our results show Duplication Attachment model as the predominant evolutionary mechanism for human PPI networks and Scale-Free model as the predominant mechanism for yeast PPI networks. PMID:26357273
Energy scaling and reduction in controlling complex networks
Chen, Yu-Zhong; Wang, Le-Zhi; Wang, Wen-Xu; Lai, Ying-Cheng
2016-01-01
Recent works revealed that the energy required to control a complex network depends on the number of driving signals and the energy distribution follows an algebraic scaling law. If one implements control using a small number of drivers, e.g. as determined by the structural controllability theory, there is a high probability that the energy will diverge. We develop a physical theory to explain the scaling behaviour through identification of the fundamental structural elements, the longest control chains (LCCs), that dominate the control energy. Based on the LCCs, we articulate a strategy to drastically reduce the control energy (e.g. in a large number of real-world networks). Owing to their structural nature, the LCCs may shed light on energy issues associated with control of nonlinear dynamical networks. PMID:27152220
The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth
ERIC Educational Resources Information Center
Steyvers, Mark; Tenenbaum, Joshua B.
2005-01-01
We present statistical analyses of the large-scale structure of 3 types of semantic networks: word associations, WordNet, and Roget's Thesaurus. We show that they have a small-world structure, characterized by sparse connectivity, short average path lengths between words, and strong local clustering. In addition, the distributions of the number of…
A Network Design Approach to Countering Terrorism
2015-09-01
2003). More and more scale-free networks have been discovered. How can such diverse systems have the same architecture and properties? Part of the...Rabei Ousmane Sayed Ahmed (a.k.a. the Egyptian ) convinced the group to pursuit jihad at home, where they had the material resources to act (Atran, 2010
Multifractal analysis and topological properties of a new family of weighted Koch networks
NASA Astrophysics Data System (ADS)
Huang, Da-Wen; Yu, Zu-Guo; Anh, Vo
2017-03-01
Weighted complex networks, especially scale-free networks, which characterize real-life systems better than non-weighted networks, have attracted considerable interest in recent years. Studies on the multifractality of weighted complex networks are still to be undertaken. In this paper, inspired by the concepts of Koch networks and Koch island, we propose a new family of weighted Koch networks, and investigate their multifractal behavior and topological properties. We find some key topological properties of the new networks: their vertex cumulative strength has a power-law distribution; there is a power-law relationship between their topological degree and weight strength; the networks have a high weighted clustering coefficient of 0.41004 (which is independent of the scaling factor c) in the limit of large generation t; the second smallest eigenvalue μ2 and the maximum eigenvalue μn are approximated by quartic polynomials of the scaling factor c for the general Laplacian operator, while μ2 is approximately a quartic polynomial of c and μn= 1.5 for the normalized Laplacian operator. Then, we find that weighted koch networks are both fractal and multifractal, their fractal dimension is influenced by the scaling factor c. We also apply these analyses to six real-world networks, and find that the multifractality in three of them are strong.
Dynamics of tax evasion through an epidemic-like model
NASA Astrophysics Data System (ADS)
Brum, Rafael M.; Crokidakis, Nuno
In this work, we study a model of tax evasion. We considered a fixed population divided in three compartments, namely honest tax payers, tax evaders and a third class between the mentioned two, which we call susceptibles to become evaders. The transitions among those compartments are ruled by probabilities, similarly to a model of epidemic spreading. These probabilities model social interactions among the individuals, as well as the government’s fiscalization. We simulate the model on fully-connected graphs, as well as on scale-free and random complex networks. For the fully-connected and random graph cases, we observe that the emergence of tax evaders in the population is associated with an active-absorbing nonequilibrium phase transition, that is absent in scale-free networks.
NASA Astrophysics Data System (ADS)
Li, Wei; Gu, Jiao; Cai, Xu
2008-06-01
We study message spreading on a scale-free network, by introducing a novel forget-remember mechanism. Message, a general term which can refer to email, news, rumor or disease, etc, can be forgotten and remembered by its holder. The way the message is forgotten and remembered is governed by the forget and remember function, F and R, respectively. Both F and R are functions of history time t concerning individual's previous states, namely being active (with message) or inactive (without message). Our systematic simulations show at the low transmission rate whether or not the spreading can be efficient is primarily determined by the corresponding parameters for F and R.
Impact analysis of two kinds of failure strategies in Beijing road transportation network
NASA Astrophysics Data System (ADS)
Zhang, Zundong; Xu, Xiaoyang; Zhang, Zhaoran; Zhou, Huijuan
The Beijing road transportation network (BRTN), as a large-scale technological network, exhibits very complex and complicate features during daily periods. And it has been widely highlighted that how statistical characteristics (i.e. average path length and global network efficiency) change while the network evolves. In this paper, by using different modeling concepts, three kinds of network models of BRTN namely the abstract network model, the static network model with road mileage as weights and the dynamic network model with travel time as weights — are constructed, respectively, according to the topological data and the real detected flow data. The degree distribution of the three kinds of network models are analyzed, which proves that the urban road infrastructure network and the dynamic network behavior like scale-free networks. By analyzing and comparing the important statistical characteristics of three models under random attacks and intentional attacks, it shows that the urban road infrastructure network and the dynamic network of BRTN are both robust and vulnerable.
Large-Scale Coronal Heating from the Solar Magnetic Network
NASA Technical Reports Server (NTRS)
Falconer, David A.; Moore, Ronald L.; Porter, Jason G.; Hathaway, David H.
1999-01-01
In Fe 12 images from SOHO/EIT, the quiet solar corona shows structure on scales ranging from sub-supergranular (i.e., bright points and coronal network) to multi- supergranular. In Falconer et al 1998 (Ap.J., 501, 386) we suppressed the large-scale background and found that the network-scale features are predominantly rooted in the magnetic network lanes at the boundaries of the supergranules. The emission of the coronal network and bright points contribute only about 5% of the entire quiet solar coronal Fe MI emission. Here we investigate the large-scale corona, the supergranular and larger-scale structure that we had previously treated as a background, and that emits 95% of the total Fe XII emission. We compare the dim and bright halves of the large- scale corona and find that the bright half is 1.5 times brighter than the dim half, has an order of magnitude greater area of bright point coverage, has three times brighter coronal network, and has about 1.5 times more magnetic flux than the dim half These results suggest that the brightness of the large-scale corona is more closely related to the large- scale total magnetic flux than to bright point activity. We conclude that in the quiet sun: (1) Magnetic flux is modulated (concentrated/diluted) on size scales larger than supergranules. (2) The large-scale enhanced magnetic flux gives an enhanced, more active, magnetic network and an increased incidence of network bright point formation. (3) The heating of the large-scale corona is dominated by more widespread, but weaker, network activity than that which heats the bright points. This work was funded by the Solar Physics Branch of NASA's office of Space Science through the SR&T Program and the SEC Guest Investigator Program.
Beckett, Stephen J.; Williams, Hywel T. P.
2013-01-01
Phage and their bacterial hosts are the most diverse and abundant biological entities in the oceans, where their interactions have a major impact on marine ecology and ecosystem function. The structure of interaction networks for natural phage–bacteria communities offers insight into their coevolutionary origin. At small phylogenetic scales, observed communities typically show a nested structure, in which both hosts and phages can be ranked by their range of resistance and infectivity, respectively. A qualitatively different multi-scale structure is seen at larger phylogenetic scales; a natural assemblage sampled from the Atlantic Ocean displays large-scale modularity and local nestedness within each module. Here, we show that such ‘nested-modular’ interaction networks can be produced by a simple model of host–phage coevolution in which infection depends on genetic matching. Negative frequency-dependent selection causes diversification of hosts (to escape phages) and phages (to track their evolving hosts). This creates a diverse community of bacteria and phage, maintained by kill-the-winner ecological dynamics. When the resulting communities are visualized as bipartite networks of who infects whom, they show the nested-modular structure characteristic of the Atlantic sample. The statistical significance and strength of this observation varies depending on whether the interaction networks take into account the density of the interacting strains, with implications for interpretation of interaction networks constructed by different methods. Our results suggest that the apparently complex community structures associated with marine bacteria and phage may arise from relatively simple coevolutionary origins. PMID:24516719
A scale-free systems theory of motivation and addiction.
Chambers, R Andrew; Bickel, Warren K; Potenza, Marc N
2007-01-01
Scale-free organizations, characterized by uneven distributions of linkages between nodal elements, describe the structure and function of many life-based complex systems developing under evolutionary pressures. We explore motivated behavior as a scale-free map toward a comprehensive translational theory of addiction. Motivational and behavioral repertoires are reframed as link and nodal element sets, respectively, comprising a scale-free structure. These sets are generated by semi-independent information-processing streams within cortical-striatal circuits that cooperatively provide decision-making and sequential processing functions necessary for traversing maps of motivational links connecting behavioral nodes. Dopamine modulation of cortical-striatal plasticity serves a central-hierarchical mechanism for survival-adaptive sculpting and development of motivational-behavioral repertoires by guiding a scale-free design. Drug-induced dopamine activity promotes drug taking as a highly connected behavioral hub at the expense of natural-adaptive motivational links and behavioral nodes. Conceptualizing addiction as pathological alteration of scale-free motivational-behavioral repertoires unifies neurobiological, neurocomputational and behavioral research while addressing addiction vulnerability in adolescence and psychiatric illness. This model may inform integrative research in defining more effective prevention and treatment strategies for addiction.
A Scale-Free Systems Theory of Motivation and Addiction
Bickel, Warren K.; Potenza, Marc N.
2007-01-01
Scale-free organizations, characterized by uneven distributions of linkages between nodal elements, describe the structure and function of many life-based complex systems developing under evolutionary pressures. We explore motivated behavior as a scale-free map toward a comprehensive translational theory of addiction. Motivational and behavioral repertoires are reframed as link and nodal element sets, respectively, comprising a scale-free structure. These sets are generated by semi-independent information-processing streams within cortical-striatal circuits that cooperatively provide decision-making and sequential processing functions necessary for traversing maps of motivational links connecting behavioral nodes. Dopamine modulation of cortical-striatal plasticity serves a central-hierarchical mechanism for survival-adaptive sculpting and development of motivational-behavioral repertoires by guiding a scale-free design. Drug-induced dopamine activity promotes drug-taking as a highly connected behavioral hub at the expense of natural-adaptive motivational links and behavioral nodes. Conceptualizing addiction as pathological alteration of scale-free motivational-behavioral repertoires unifies neurobiological, neurocomputational and behavioral research while addressing addiction vulnerability in adolescence and psychiatric illness. This model may inform integrative research in defining more effective prevention and treatment strategies for addiction. PMID:17574673
Global mean first-passage times of random walks on complex networks.
Tejedor, V; Bénichou, O; Voituriez, R
2009-12-01
We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-called global mean first-passage time (GMFPT). This bound is simply expressed in terms of the equilibrium distribution at the target and implies a minimal scaling of the GMFPT with the network size. We show that this minimal scaling, which can be arbitrarily slow, is realized under the simple condition that the random walk is transient at the target site and independently of the small-world, scale-free, or fractal properties of the network. Last, we put forward that the GMFPT to a specific target is not a representative property of the network since the target averaged GMFPT satisfies much more restrictive bounds.
Wang, Tao; Wang, Kangcheng; Qu, Hang; Zhou, Jingjing; Li, Qi; Deng, Zhou; Du, Xue; Lv, Fajin; Ren, Gaoping; Guo, Jing; Qiu, Jiang; Xie, Peng
2016-01-01
Major depressive disorder is associated with abnormal anatomical and functional connectivity, yet alterations in whole cortical thickness topology remain unknown. Here, we examined cortical thickness in medication-free adult depression patients (n = 76) and matched healthy controls (n = 116). Inter-regional correlation was performed to construct brain networks. By applying graph theory analysis, global (i.e., small-worldness) and regional (centrality) topology was compared between major depressive disorder patients and healthy controls. We found that in depression patients, topological organization of the cortical thickness network shifted towards randomness, and lower small-worldness was driven by a decreased clustering coefficient. Consistently, altered nodal centrality was identified in the isthmus of the cingulate cortex, insula, supra-marginal gyrus, middle temporal gyrus and inferior parietal gyrus, all of which are components within the default mode, salience and central executive networks. Disrupted nodes anchored in the default mode and executive networks were associated with depression severity. The brain systems involved sustain core symptoms in depression and implicate a structural basis for depression. Our results highlight the possibility that developmental and genetic factors are crucial to understand the neuropathology of depression. PMID:27302485
A complex network description on traditional Chinese medicine system
NASA Astrophysics Data System (ADS)
Sun, Anzheng; Zhang, Peipei; He, Yue; Su, Beibei; He, Da-Ren
2004-03-01
Chinese traditional philosophy believes that a healthy body can adjust itself to reach a dynamic equilibrium with the environment. At an ill state the equilibrium is lost. Any single medicine can only attack one problem and cannot recover the whole equilibrium. A prescription formulation (PF) usually contains an "emperor" or principal medicine, several "minister" or assistant medicines, some accessorial medicines, and one or two inducting or harmonizing edicines. Therefore different traditional Chinese medicine (TCM) appears in different number of PFs. The whole TCM system may be viewed as a network set composed of many complete graphs (PFs). The TCMs, which have the highest node degrees in the network, serve as the "bridges" between the complete graphs for forming the network. While the TCMs, which have lowest node degrees in the network, serve as the "emperors" in each complete graph. According to this idea we have performed a manual statistical investigation on approximately 1000 PFs and computed 8 different tatistical properties of the network. The results show that TCM system is a scale-free one and has a nice clustering structure. We are suggesting a dynamical model to describe the development of TCM system.
Kim, Sang-Yoon; Lim, Woochang
2016-07-01
We investigate the effect of network architecture on burst and spike synchronization in a directed scale-free network (SFN) of bursting neurons, evolved via two independent α- and β-processes. The α-process corresponds to a directed version of the Barabási-Albert SFN model with growth and preferential attachment, while for the β-process only preferential attachments between pre-existing nodes are made without addition of new nodes. We first consider the "pure" α-process of symmetric preferential attachment (with the same in- and out-degrees), and study emergence of burst and spike synchronization by varying the coupling strength J and the noise intensity D for a fixed attachment degree. Characterizations of burst and spike synchronization are also made by employing realistic order parameters and statistical-mechanical measures. Next, we choose appropriate values of J and D where only burst synchronization occurs, and investigate the effect of the scale-free connectivity on the burst synchronization by varying (1) the symmetric attachment degree and (2) the asymmetry parameter (representing deviation from the symmetric case) in the α-process, and (3) the occurrence probability of the β-process. In all these three cases, changes in the type and the degree of population synchronization are studied in connection with the network topology such as the degree distribution, the average path length Lp, and the betweenness centralization Bc. It is thus found that just taking into consideration Lp and Bc (affecting global communication between nodes) is not sufficient to understand emergence of population synchronization in SFNs, but in addition to them, the in-degree distribution (affecting individual dynamics) must also be considered to fully understand for the effective population synchronization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Long-Range Correlation in alpha-Wave Predominant EEG in Human
NASA Astrophysics Data System (ADS)
Sharif, Asif; Chyan Lin, Der; Kwan, Hon; Borette, D. S.
2004-03-01
The background noise in the alpha-predominant EEG taken from eyes-open and eyes-closed neurophysiological states is studied. Scale-free characteristic is found in both cases using the wavelet approach developed by Simonsen and Nes [1]. The numerical results further show the scaling exponent during eyes-closed is consistently lower than eyes-open. We conjecture the origin of this difference is related to the temporal reconfiguration of the neural network in the brain. To further investigate the scaling structure of the EEG background noise, we extended the second order statistics to higher order moments using the EEG increment process. We found that the background fluctuation in the alpha-predominant EEG is predominantly monofractal. Preliminary results are given to support this finding and its implication in brain functioning is discussed. [1] A.H. Simonsen and O.M. Nes, Physical Review E, 58, 2779¡V2748 (1998).
Community Detection in Signed Networks: the Role of Negative ties in Different Scales
Esmailian, Pouya; Jalili, Mahdi
2015-01-01
Extracting community structure of complex network systems has many applications from engineering to biology and social sciences. There exist many algorithms to discover community structure of networks. However, it has been significantly under-explored for networks with positive and negative links as compared to unsigned ones. Trying to fill this gap, we measured the quality of partitions by introducing a Map Equation for signed networks. It is based on the assumption that negative relations weaken positive flow from a node towards a community, and thus, external (internal) negative ties increase the probability of staying inside (escaping from) a community. We further extended the Constant Potts Model, providing a map spectrum for signed networks. Accordingly, a partition is selected through balancing between abridgment and expatiation of a signed network. Most importantly, multi-scale spectrum of signed networks revealed how informative are negative ties in different scales, and quantified the topological placement of negative ties between dense positive ones. Moreover, an inconsistency was found in the signed Modularity: as the number of negative ties increases, the density of positive ties is neglected more. These results shed lights on the community structure of signed networks. PMID:26395815
Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks.
Sendiña-Nadal, I; Danziger, M M; Wang, Z; Havlin, S; Boccaletti, S
2016-02-18
Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph's hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.
Assortativity and leadership emerge from anti-preferential attachment in heterogeneous networks
NASA Astrophysics Data System (ADS)
Sendiña-Nadal, I.; Danziger, M. M.; Wang, Z.; Havlin, S.; Boccaletti, S.
2016-02-01
Real-world networks have distinct topologies, with marked deviations from purely random networks. Many of them exhibit degree-assortativity, with nodes of similar degree more likely to link to one another. Though microscopic mechanisms have been suggested for the emergence of other topological features, assortativity has proven elusive. Assortativity can be artificially implanted in a network via degree-preserving link permutations, however this destroys the graph’s hierarchical clustering and does not correspond to any microscopic mechanism. Here, we propose the first generative model which creates heterogeneous networks with scale-free-like properties in degree and clustering distributions and tunable realistic assortativity. Two distinct populations of nodes are incrementally added to an initial network by selecting a subgraph to connect to at random. One population (the followers) follows preferential attachment, while the other population (the potential leaders) connects via anti-preferential attachment: they link to lower degree nodes when added to the network. By selecting the lower degree nodes, the potential leader nodes maintain high visibility during the growth process, eventually growing into hubs. The evolution of links in Facebook empirically validates the connection between the initial anti-preferential attachment and long term high degree. In this way, our work sheds new light on the structure and evolution of social networks.
Parrondo's games based on complex networks and the paradoxical effect.
Ye, Ye; Wang, Lu; Xie, Nenggang
2013-01-01
Parrondo's games were first constructed using a simple tossing scenario, which demonstrates the following paradoxical situation: in sequences of games, a winning expectation may be obtained by playing the games in a random order, although each game (game A or game B) in the sequence may result in losing when played individually. The available Parrondo's games based on the spatial niche (the neighboring environment) are applied in the regular networks. The neighbors of each node are the same in the regular graphs, whereas they are different in the complex networks. Here, Parrondo's model based on complex networks is proposed, and a structure of game B applied in arbitrary topologies is constructed. The results confirm that Parrondo's paradox occurs. Moreover, the size of the region of the parameter space that elicits Parrondo's paradox depends on the heterogeneity of the degree distributions of the networks. The higher heterogeneity yields a larger region of the parameter space where the strong paradox occurs. In addition, we use scale-free networks to show that the network size has no significant influence on the region of the parameter space where the strong or weak Parrondo's paradox occurs. The region of the parameter space where the strong Parrondo's paradox occurs reduces slightly when the average degree of the network increases.
Scaling phenomena in the Internet: Critically examining criticality
Willinger, Walter; Govindan, Ramesh; Jamin, Sugih; Paxson, Vern; Shenker, Scott
2002-01-01
Recent Internet measurements have found pervasive evidence of some surprising scaling properties. The two we focus on in this paper are self-similar scaling in the burst patterns of Internet traffic and, in some contexts, scale-free structure in the network's interconnection topology. These findings have led to a number of proposed models or “explanations” of such “emergent” phenomena. Many of these explanations invoke concepts such as fractals, chaos, or self-organized criticality, mainly because these concepts are closely associated with scale invariance and power laws. We examine these criticality-based explanations of self-similar scaling behavior—of both traffic flows through the Internet and the Internet's topology—to see whether they indeed explain the observed phenomena. To do so, we bring to bear a simple validation framework that aims at testing whether a proposed model is merely evocative, in that it can reproduce the phenomenon of interest but does not necessarily capture and incorporate the true underlying cause, or indeed explanatory, in that it also captures the causal mechanisms (why and how, in addition to what). We argue that the framework can provide a basis for developing a useful, consistent, and verifiable theory of large networks such as the Internet. Applying the framework, we find that, whereas the proposed criticality-based models are able to produce the observed “emergent” phenomena, they unfortunately fail as sound explanations of why such scaling behavior arises in the Internet. PMID:11875212
Covariance, correlation matrix, and the multiscale community structure of networks.
Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing
2010-07-01
Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.
Transformations in Air Transportation Systems For the 21st Century
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.
2004-01-01
Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness, resilience, and other metrics. The lecture offers an air transportation system topology and a scale-free network linkage graphic as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system topologies, and airspace architectures and procedural concepts. These new paradigms could support scalable alternatives for the expansion of future air mobility to more consumers in more parts of the world.
Label-free, multi-scale imaging of ex-vivo mouse brain using spatial light interference microscopy
NASA Astrophysics Data System (ADS)
Min, Eunjung; Kandel, Mikhail E.; Ko, Chemyong J.; Popescu, Gabriel; Jung, Woonggyu; Best-Popescu, Catherine
2016-12-01
Brain connectivity spans over broad spatial scales, from nanometers to centimeters. In order to understand the brain at multi-scale, the neural network in wide-field has been visualized in detail by taking advantage of light microscopy. However, the process of staining or addition of fluorescent tags is commonly required, and the image contrast is insufficient for delineation of cytoarchitecture. To overcome this barrier, we use spatial light interference microscopy to investigate brain structure with high-resolution, sub-nanometer pathlength sensitivity without the use of exogenous contrast agents. Combining wide-field imaging and a mosaic algorithm developed in-house, we show the detailed architecture of cells and myelin, within coronal olfactory bulb and cortical sections, and from sagittal sections of the hippocampus and cerebellum. Our technique is well suited to identify laminar characteristics of fiber tract orientation within white matter, e.g. the corpus callosum. To further improve the macro-scale contrast of anatomical structures, and to better differentiate axons and dendrites from cell bodies, we mapped the tissue in terms of its scattering property. Based on our results, we anticipate that spatial light interference microscopy can potentially provide multiscale and multicontrast perspectives of gross and microscopic brain anatomy.
False Positive and False Negative Effects on Network Attacks
NASA Astrophysics Data System (ADS)
Shang, Yilun
2018-01-01
Robustness against attacks serves as evidence for complex network structures and failure mechanisms that lie behind them. Most often, due to detection capability limitation or good disguises, attacks on networks are subject to false positives and false negatives, meaning that functional nodes may be falsely regarded as compromised by the attacker and vice versa. In this work, we initiate a study of false positive/negative effects on network robustness against three fundamental types of attack strategies, namely, random attacks (RA), localized attacks (LA), and targeted attack (TA). By developing a general mathematical framework based upon the percolation model, we investigate analytically and by numerical simulations of attack robustness with false positive/negative rate (FPR/FNR) on three benchmark models including Erdős-Rényi (ER) networks, random regular (RR) networks, and scale-free (SF) networks. We show that ER networks are equivalently robust against RA and LA only when FPR equals zero or the initial network is intact. We find several interesting crossovers in RR and SF networks when FPR is taken into consideration. By defining the cost of attack, we observe diminishing marginal attack efficiency for RA, LA, and TA. Our finding highlights the potential risk of underestimating or ignoring FPR in understanding attack robustness. The results may provide insights into ways of enhancing robustness of network architecture and improve the level of protection of critical infrastructures.
Panebianco, Daria; Gallupe, Owen; Carrington, Peter J; Colozzi, Ivo
2016-01-01
The success of treatment for substance use issues varies with personal and social factors, including the composition and structure of the individual's personal support network. This paper describes the personal support networks and social capital of a sample of Italian adults after long-term residential therapeutic treatment for substance use issues, and analyses network correlates of post-treatment substance use (relapse). Using a social network analysis approach, data were obtained from structured interviews (90-120 min long) with 80 former clients of a large non-governmental therapeutic treatment agency in Italy providing voluntary residential treatments and rehabilitation services for substance use issues. Participants had concluded the program at least six months prior. Data were collected on socio-demographic variables, addiction history, current drug use status (drug-free or relapsed), and the composition and structure of personal support networks. Factors related to risk of relapse were assessed using bivariate and multivariate logistic regression models. A main goal of this study was to identify differences between the support network profiles of drug free and relapsed participants. Drug free participants had larger, less dense, more heterogeneous and reciprocal support networks, and more brokerage social capital than relapsed participants. Additionally, a lower risk of relapse was associated with higher socio-economic status, being married/cohabiting, and having network members with higher socio-economic status, who have greater occupational heterogeneity, and reciprocate support. Post-treatment relapse was found to be negatively associated with the socioeconomic status and occupational heterogeneity of ego's support network, reciprocity in the ties between ego and network members, and a support network in which the members are relatively loosely connected with one another (i.e., ego possesses "brokerage social capital"). These findings suggest the incorporation into therapeutic programming of interventions that address those aspects of clients' personal support networks. Copyright © 2015 Elsevier B.V. All rights reserved.
Public authority control strategy for opinion evolution in social networks
NASA Astrophysics Data System (ADS)
Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei
2016-08-01
This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.
Public authority control strategy for opinion evolution in social networks.
Chen, Xi; Xiong, Xi; Zhang, Minghong; Li, Wei
2016-08-01
This paper addresses the need to deal with and control public opinion and rumors. Existing strategies to control public opinion include degree, random, and adaptive bridge control strategies. In this paper, we use the HK model to present a public opinion control strategy based on public authority (PA). This means utilizing the influence of expert or high authority individuals whose opinions we control to obtain the optimum effect in the shortest time possible and thus reach a consensus of public opinion. Public authority (PA) is only influenced by individuals' attributes (age, economic status, and education level) and not their degree distribution; hence, in this paper, we assume that PA complies with two types of public authority distribution (normal and power-law). According to the proposed control strategy, our experiment is based on random, degree, and public authority control strategies in three different social networks (small-world, scale-free, and random) and we compare and analyze the strategies in terms of convergence time (T), final number of controlled agents (C), and comprehensive efficiency (E). We find that different network topologies and the distribution of the PA in the network can influence the final controlling effect. While the effect of PA strategy differs in different network topology structures, all structures achieve comprehensive efficiency with any kind of public authority distribution in any network. Our findings are consistent with several current sociological phenomena and show that in the process of public opinion/rumor control, considerable attention should be paid to high authority individuals.
Structure of a reattaching supersonic shear flow
NASA Technical Reports Server (NTRS)
Samimy, M.; Abu-Hijleh, B. A. K.
1988-01-01
A Mach 1.83 fully developed turbulent boundary layer with boundary layer thickness, free stream velocity, and Reynolds number of 7.5 mm, 476 m/s, and 6.2 x 10 to the 7th/m, respectively, was separated at a 25.4-mm backward step and formed a shear layer. Fast-response pressure transducers, schlieren photography, and LDV were used to study the structure of this reattaching shear flow. The preliminary results show that large-scale relatively organized structures with limited spanwise extent form in the free shear layer. Some of these structures appear to survive the recompression and reattachment processes, while others break down into smaller scales and the flow becomes increasingly three-dimensional. The survived large-scale structures lose their organization through recompression/reattachment, but regain it after reattachment. The structures after reattachment form a 40-45-degree angle relative to the free stream and deteriorate gradually as they move downstream.
NASA Astrophysics Data System (ADS)
di Bernardo, Diego
2016-07-01
The review by Martin et al. deals with a long standing problem at the interface of complex systems and molecular biology, that is the relationship between the topology of a complex network and its function. In biological terms the problem translates to relating the topology of gene regulatory networks (GRNs) to specific cellular functions. GRNs control the spatial and temporal activity of the genes encoded in the cell's genome by means of specialised proteins called Transcription Factors (TFs). A TF is able to recognise and bind specifically to a sequence (TF biding site) of variable length (order of magnitude of 10) found upstream of the sequence encoding one or more genes (at least in prokaryotes) and thus activating or repressing their transcription. TFs can thus be distinguished in activator and repressor. The picture can become more complex since some classes of TFs can form hetero-dimers consisting of a protein complex whose subunits are the individual TFs. Heterodimers can have completely different binding sites and activity compared to their individual parts. In this review the authors limit their attention to prokaryotes where the complexity of GRNs is somewhat reduced. Moreover they exploit a unique feature of living systems, i.e. evolution, to understand whether function can shape network topology. Indeed, prokaryotes such as bacteria are among the oldest living systems that have become perfectly adapted to their environment over geological scales and thus have reached an evolutionary steady-state where the fitness of the population has reached a plateau. By integrating in silico analysis and comparative evolution, the authors show that indeed function does tend to shape the structure of a GRN, however this trend is not always present and depends on the properties of the network being examined. Interestingly, the trend is more apparent for sparse networks, i.e. where the density of edges is very low. Sparsity is indeed one of the most prominent features of natural occurring GRNs, and more specifically GRNs have been found to approximate a power-law ;scale-free; degree distribution by Barabasi and Albert [2]. Why sparsity arises is still under debate, but Price in 1976 proposed a model [1], later renamed ;preferential attachment; by Barabasi and Albert [2], able to give rise to sparse scale-free networks. In this model, a network grows over time (such as GRN during evolution) by sequential addition of new nodes (caused by genome duplications) that attach with higher probability to nodes with higher degree. In this review, Martin et al. propose that sparsity could also be caused phenotypic constrains even in the absence of genome duplications, in order for the network to be robust against random mutations in the genome sequence, which in turn affect the specificity of TF binding sites. The authors also found that network motifs, i.e. subnetworks consisting of 3 or 4 nodes with a specific topology that are over-represented in the network, are also shaped by phenotypic constrains. Theoretical and computational approaches to understand the forces that shape network topology are of extreme interest in biology, although at this stage their impact has been limited. Neverteless, these approaches may soon have important practical applications. The era of synthetic biology is upon us, novel organisms with ;minimal genomes; are being built with the dual aim of simplifying engineering of new functions useful to humans and to understand which is the minimal set of genes needed to support life [3]. The first minimal organism has just been created [3] by randomly deleting genes and genomic regions until a minimal set supporting cell growth and replication was found. The GRN of this minimal organism has not been investigated yet, but it will be of limited complexity. What is the GRN structure in this organism? Will the cell phenotypes be robust to mutations? Is it possible to re-engineer the GRN in order to find an optimal structure that confers phenotypic robustness to the cell? All of these questions can be tackled only by understanding the guiding principles linking network topology to network function.
Koda, Satoru; Onda, Yoshihiko; Matsui, Hidetoshi; Takahagi, Kotaro; Yamaguchi-Uehara, Yukiko; Shimizu, Minami; Inoue, Komaki; Yoshida, Takuhiro; Sakurai, Tetsuya; Honda, Hiroshi; Eguchi, Shinto; Nishii, Ryuei; Mochida, Keiichi
2017-01-01
We report the comprehensive identification of periodic genes and their network inference, based on a gene co-expression analysis and an Auto-Regressive eXogenous (ARX) model with a group smoothly clipped absolute deviation (SCAD) method using a time-series transcriptome dataset in a model grass, Brachypodium distachyon . To reveal the diurnal changes in the transcriptome in B. distachyon , we performed RNA-seq analysis of its leaves sampled through a diurnal cycle of over 48 h at 4 h intervals using three biological replications, and identified 3,621 periodic genes through our wavelet analysis. The expression data are feasible to infer network sparsity based on ARX models. We found that genes involved in biological processes such as transcriptional regulation, protein degradation, and post-transcriptional modification and photosynthesis are significantly enriched in the periodic genes, suggesting that these processes might be regulated by circadian rhythm in B. distachyon . On the basis of the time-series expression patterns of the periodic genes, we constructed a chronological gene co-expression network and identified putative transcription factors encoding genes that might be involved in the time-specific regulatory transcriptional network. Moreover, we inferred a transcriptional network composed of the periodic genes in B. distachyon , aiming to identify genes associated with other genes through variable selection by grouping time points for each gene. Based on the ARX model with the group SCAD regularization using our time-series expression datasets of the periodic genes, we constructed gene networks and found that the networks represent typical scale-free structure. Our findings demonstrate that the diurnal changes in the transcriptome in B. distachyon leaves have a sparse network structure, demonstrating the spatiotemporal gene regulatory network over the cyclic phase transitions in B. distachyon diurnal growth.
Efficiency of prompt quarantine measures on a susceptible-infected-removed model in networks.
Hasegawa, Takehisa; Nemoto, Koji
2017-08-01
This study focuses on investigating the manner in which a prompt quarantine measure suppresses epidemics in networks. A simple and ideal quarantine measure is considered in which an individual is detected with a probability immediately after it becomes infected and the detected one and its neighbors are promptly isolated. The efficiency of this quarantine in suppressing a susceptible-infected-removed (SIR) model is tested in random graphs and uncorrelated scale-free networks. Monte Carlo simulations are used to show that the prompt quarantine measure outperforms random and acquaintance preventive vaccination schemes in terms of reducing the number of infected individuals. The epidemic threshold for the SIR model is analytically derived under the quarantine measure, and the theoretical findings indicate that prompt executions of quarantines are highly effective in containing epidemics. Even if infected individuals are detected with a very low probability, the SIR model under a prompt quarantine measure has finite epidemic thresholds in fat-tailed scale-free networks in which an infected individual can always cause an outbreak of a finite relative size without any measure. The numerical simulations also demonstrate that the present quarantine measure is effective in suppressing epidemics in real networks.
Efficiency of prompt quarantine measures on a susceptible-infected-removed model in networks
NASA Astrophysics Data System (ADS)
Hasegawa, Takehisa; Nemoto, Koji
2017-08-01
This study focuses on investigating the manner in which a prompt quarantine measure suppresses epidemics in networks. A simple and ideal quarantine measure is considered in which an individual is detected with a probability immediately after it becomes infected and the detected one and its neighbors are promptly isolated. The efficiency of this quarantine in suppressing a susceptible-infected-removed (SIR) model is tested in random graphs and uncorrelated scale-free networks. Monte Carlo simulations are used to show that the prompt quarantine measure outperforms random and acquaintance preventive vaccination schemes in terms of reducing the number of infected individuals. The epidemic threshold for the SIR model is analytically derived under the quarantine measure, and the theoretical findings indicate that prompt executions of quarantines are highly effective in containing epidemics. Even if infected individuals are detected with a very low probability, the SIR model under a prompt quarantine measure has finite epidemic thresholds in fat-tailed scale-free networks in which an infected individual can always cause an outbreak of a finite relative size without any measure. The numerical simulations also demonstrate that the present quarantine measure is effective in suppressing epidemics in real networks.
Fractional parentage analysis and a scale-free reproductive network of brown trout.
Koyano, Hitoshi; Serbezov, Dimitar; Kishino, Hirohisa; Schweder, Tore
2013-11-07
In this study, we developed a method of fractional parentage analysis using microsatellite markers. We propose a method for calculating parentage probability, which considers missing data and genotyping errors due to null alleles and other causes, by regarding observed alleles as realizations of random variables which take values in the set of alleles at the locus and developing a method for simultaneously estimating the true and null allele frequencies of all alleles at each locus. We then applied our proposed method to a large sample collected from a wild population of brown trout (Salmo trutta). On analyzing the data using our method, we found that the reproductive success of brown trout obeyed a power law, indicating that when the parent-offspring relationship is regarded as a link, the reproductive system of brown trout is a scale-free network. Characteristics of the reproductive network of brown trout include individuals with large bodies as hubs in the network and different power exponents of degree distributions between males and females. © 2013 Elsevier Ltd. All rights reserved.
Synchrony in broadband fluctuation and the 2008 financial crisis.
Lin, Der Chyan
2013-01-01
We propose phase-like characteristics in scale-free broadband processes and consider fluctuation synchrony based on the temporal signature of significant amplitude fluctuation. Using wavelet transform, successful captures of similar fluctuation pattern between such broadband processes are demonstrated. The application to the financial data leading to the 2008 financial crisis reveals the transition towards a qualitatively different dynamical regime with many equity price in fluctuation synchrony. Further analysis suggests an underlying scale free "price fluctuation network" with large clustering coefficient.
Dun, Wang-Huan; Yang, Jing; Yang, Ling; Ding, Dun; Ma, Xue-Ying; Liang, Feng-Li; von Deneen, Karen M; Ma, Shao-Hui; Xu, Xiao-Ling; Liu, Jixin; Zhang, Ming
2017-12-01
Neuroimaging studies have demonstrated the critical role of the insula in pain pathways and its close relation with the perceived intensity of nociceptive stimuli. We aimed to identify the structural and functional characteristics of the insula during periovulatory phase in women with primary dysmenorrhea (PDM), and further investigate its association with the intensity of perceived pain during menstruation. Optimized voxel-based morphometry and functional connectivity (FC) analyses were applied by using 3-dimensional T1-weighted and resting functional magnetic resonance imaging (fMRI) in 36 patients at the peri-ovulation phase and 29 age-, education-, and gender-matched healthy controls (HC). A visual analogue scale (VAS) was used to examine the intensity of the abdominal pain at periovulation and menstruation. In our results, PDM patients had significant higher VAS-rating during menstruaion than periovulation. Compared with the HC, PDM patients had lower gray matter density in the left anterior insula (aINS). Taken the left aINS as a seed region, we further found hypoconnectivity between aINS and medial prefrontal cortex (mPFC), which showed negative relation with the VAS during menstruation. As the aINS is a key site of the salience network (SN) and the mPFC is a critical region in the default mode network (DMN), it's implicated a trait-related central-alteration that communications between pain attention and perception networks were disrupted without the ongoing menstrual pain. Moreover, result of correlation analysis, at least in part, suggested a possible role of altered FC (pain-free period) in predicting pain perception (menstruation).
Wang, Xuebin; Zhang, Yuanjian; Zhi, Chunyi; Wang, Xi; Tang, Daiming; Xu, Yibin; Weng, Qunhong; Jiang, Xiangfen; Mitome, Masanori; Golberg, Dmitri; Bando, Yoshio
2013-01-01
Three-dimensional graphene architectures in the macroworld can in principle maintain all the extraordinary nanoscale properties of individual graphene flakes. However, current 3D graphene products suffer from poor electrical conductivity, low surface area and insufficient mechanical strength/elasticity; the interconnected self-supported reproducible 3D graphenes remain unavailable. Here we report a sugar-blowing approach based on a polymeric predecessor to synthesize a 3D graphene bubble network. The bubble network consists of mono- or few-layered graphitic membranes that are tightly glued, rigidly fixed and spatially scaffolded by micrometre-scale graphitic struts. Such a topological configuration provides intimate structural interconnectivities, freeway for electron/phonon transports, huge accessible surface area, as well as robust mechanical properties. The graphene network thus overcomes the drawbacks of presently available 3D graphene products and opens up a wide horizon for diverse practical usages, for example, high-power high-energy electrochemical capacitors, as highlighted in this work. PMID:24336225
NASA Astrophysics Data System (ADS)
Wang, Xuebin; Zhang, Yuanjian; Zhi, Chunyi; Wang, Xi; Tang, Daiming; Xu, Yibin; Weng, Qunhong; Jiang, Xiangfen; Mitome, Masanori; Golberg, Dmitri; Bando, Yoshio
2013-12-01
Three-dimensional graphene architectures in the macroworld can in principle maintain all the extraordinary nanoscale properties of individual graphene flakes. However, current 3D graphene products suffer from poor electrical conductivity, low surface area and insufficient mechanical strength/elasticity; the interconnected self-supported reproducible 3D graphenes remain unavailable. Here we report a sugar-blowing approach based on a polymeric predecessor to synthesize a 3D graphene bubble network. The bubble network consists of mono- or few-layered graphitic membranes that are tightly glued, rigidly fixed and spatially scaffolded by micrometre-scale graphitic struts. Such a topological configuration provides intimate structural interconnectivities, freeway for electron/phonon transports, huge accessible surface area, as well as robust mechanical properties. The graphene network thus overcomes the drawbacks of presently available 3D graphene products and opens up a wide horizon for diverse practical usages, for example, high-power high-energy electrochemical capacitors, as highlighted in this work.
Percolation and Reinforcement on Complex Networks
NASA Astrophysics Data System (ADS)
Yuan, Xin
Complex networks appear in almost every aspect of our daily life and are widely studied in the fields of physics, mathematics, finance, biology and computer science. This work utilizes percolation theory in statistical physics to explore the percolation properties of complex networks and develops a reinforcement scheme on improving network resilience. This dissertation covers two major parts of my Ph.D. research on complex networks: i) probe--in the context of both traditional percolation and k-core percolation--the resilience of complex networks with tunable degree distributions or directed dependency links under random, localized or targeted attacks; ii) develop and propose a reinforcement scheme to eradicate catastrophic collapses that occur very often in interdependent networks. We first use generating function and probabilistic methods to obtain analytical solutions to percolation properties of interest, such as the giant component size and the critical occupation probability. We study uncorrelated random networks with Poisson, bi-Poisson, power-law, and Kronecker-delta degree distributions and construct those networks which are based on the configuration model. The computer simulation results show remarkable agreement with theoretical predictions. We discover an increase of network robustness as the degree distribution broadens and a decrease of network robustness as directed dependency links come into play under random attacks. We also find that targeted attacks exert the biggest damage to the structure of both single and interdependent networks in k-core percolation. To strengthen the resilience of interdependent networks, we develop and propose a reinforcement strategy and obtain the critical amount of reinforced nodes analytically for interdependent Erdḧs-Renyi networks and numerically for scale-free and for random regular networks. Our mechanism leads to improvement of network stability of the West U.S. power grid. This dissertation provides us with a deeper understanding of the effects of structural features on network stability and fresher insights into designing resilient interdependent infrastructure networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ba, Qian; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing; Li, Junyang
2015-03-01
Benzo(a)pyrene is a common environmental and foodborne pollutant that has been identified as a human carcinogen. Although the carcinogenicity of benzo(a)pyrene has been extensively reported, its precise molecular mechanisms and the influence on system-level protein networks are not well understood. To investigate the system-level influence of benzo(a)pyrene on protein interactions and regulatory networks, a benzo(a)pyrene-rewired protein interaction network was constructed based on 769 key proteins derived from more than 500 literature reports. The protein interaction network rewired by benzo(a)pyrene was a scale-free, highly-connected biological system. Ten modules were identified, and 25 signaling pathways were enriched, most of which belong tomore » the human diseases category, especially cancer and infectious disease. In addition, two lung-specific and two liver-specific pathways were identified. Three pathways were specific in short and medium-term networks (< 48 h), and five pathways were enriched only in the medium-term network (6 h–48 h). Finally, the expression of linker genes in the network was validated by Western blotting. These findings establish the overall, tissue- and time-specific benzo(a)pyrene-rewired protein interaction networks and provide insights into the biological effects and molecular mechanisms of action of benzo(a)pyrene. - Highlights: • Benzo(a)pyrene induced scale-free, highly-connected protein interaction networks. • 25 signaling pathways were enriched through modular analysis. • Tissue- and time-specific pathways were identified.« less
Networks and plant disease management: concepts and applications.
Shaw, M W; Pautasso, M
2014-01-01
A network is a natural structure with which to describe many aspects of a plant pathosystem. The article seeks to set out in a nonmathematical way some of the network concepts that promise to be useful in managing plant disease. The field has been stimulated by developments designed to help understand and manage animal and human disease, and by technical infrastructures, such as the internet. It overlaps partly with landscape ecology. The study of networks has helped identify likely ways to reduce the flow of disease in traded plants, to find the best sites to monitor as warning sites for annually reinvading diseases, and to understand the fundamentals of how a pathogen spreads in different structures. A tension between the free flow of goods or species down communication channels and free flow of pathogens down the same pathways is highlighted.
Symbols, Relations, and Structural Complexity.
ERIC Educational Resources Information Center
Reich, Peter A.
This paper discusses an alternate formalism for context-free phrase structure grammar. The author feels that if a grammar is stated completely explicitly it can be represented in the form of a relational network of the type proposed by Lamb. He discusses some formal properties of such networks and makes some revisions to Lamb's formulation which…
Cooperation in N-person evolutionary snowdrift game in scale-free Barabási Albert networks
NASA Astrophysics Data System (ADS)
Lee, K. H.; Chan, Chun-Him; Hui, P. M.; Zheng, Da-Fang
2008-09-01
Cooperation in the N-person evolutionary snowdrift game (NESG) is studied in scale-free Barabási-Albert (BA) networks. Due to the inhomogeneity of the network, two versions of NESG are proposed and studied. In a model where the size of the competing group varies from agent to agent, the fraction of cooperators drops as a function of the payoff parameter. The networking effect is studied via the fraction of cooperative agents for nodes with a particular degree. For small payoff parameters, it is found that the small- k agents are dominantly cooperators, while large- k agents are of non-cooperators. Studying the spatial correlation reveals that cooperative agents will avoid to be nearest neighbors and the correlation disappears beyond the next-nearest neighbors. The behavior can be explained in terms of the networking effect and payoffs. In another model with a fixed size of competing groups, the fraction of cooperators could show a non-monotonic behavior in the regime of small payoff parameters. This non-trivial behavior is found to be a combined effect of the many agents with the smallest degree in the BA network and the increasing fraction of cooperators among these agents with the payoff for small payoffs.
Shin, Jeong-Hyeon; Um, Yu Hyun; Lee, Chang Uk; Lim, Hyun Kook; Seong, Joon-Kyung
2018-03-15
Coordinated and pattern-wise changes in large scale gray matter structural networks reflect neural circuitry dysfunction in late life depression (LLD), which in turn is associated with emotional dysregulation and cognitive impairments. However, due to methodological limitations, there have been few attempts made to identify individual-level structural network properties or sub-networks that are involved in important brain functions in LLD. In this study, we sought to construct individual-level gray matter structural networks using average cortical thicknesses of several brain areas to investigate the characteristics of the gray matter structural networks in normal controls and LLD patients. Additionally, we investigated the structural sub-networks correlated with several clinical measurements including cognitive impairment and depression severity. We observed that small worldness, clustering coefficients, global and local efficiency, and hub structures in the brains of LLD patients were significantly different from healthy controls. We further found that a sub-network including the anterior cingulate, dorsolateral prefrontal cortex and superior prefrontal cortex is significantly associated with attention control and executive function. The severity of depression was associated with the sub-networks comprising the salience network, including the anterior cingulate and insula. We investigated cortico-cortical connectivity, but omitted the subcortical structures such as the striatum and thalamus. We report differences in patterns between several clinical measurements and sub-networks from large-scale and individual-level cortical thickness networks in LLD. Copyright © 2018 Elsevier B.V. All rights reserved.
Hybrid modeling and empirical analysis of automobile supply chain network
NASA Astrophysics Data System (ADS)
Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying
2017-05-01
Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.
Controllability of multiplex, multi-time-scale networks
NASA Astrophysics Data System (ADS)
Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.
2016-09-01
The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling how our ability to control real interacting complex systems is affected by a variety of sources of complexity.
Core-periphery structure requires something else in the network
NASA Astrophysics Data System (ADS)
Kojaku, Sadamori; Masuda, Naoki
2018-04-01
A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to a community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti–Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the node’s degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the node’s degree. We illustrate our algorithm using various empirical networks.
Surveying traffic congestion based on the concept of community structure of complex networks
NASA Astrophysics Data System (ADS)
Ma, Lili; Zhang, Zhanli; Li, Meng
2016-07-01
In this paper, taking the traffic of Beijing city as an instance, we study city traffic states, especially traffic congestion, based on the concept of network community structure. Concretely, using the floating car data (FCD) information of vehicles gained from the intelligent transport system (ITS) of the city, we construct a new traffic network model which is with floating cars as network nodes and time-varying. It shows that this traffic network has Gaussian degree distributions at different time points. Furthermore, compared with free traffic situations, our simulations show that the traffic network generally has more obvious community structures with larger values of network fitness for congested traffic situations, and through the GPSspg web page, we show that all of our results are consistent with the reality. Then, it indicates that network community structure should be an available way for investigating city traffic congestion problems.
Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory
NASA Astrophysics Data System (ADS)
Wang, Na; Li, Dong; Wang, Qiwen
2012-12-01
The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government policies in China on the changes of dynamics of GDP and the three industries adjustment. The work in our paper provides a new way to understand the dynamics of economic development.
Non-consensus opinion model with a neutral view on complex networks
NASA Astrophysics Data System (ADS)
Tian, Zihao; Dong, Gaogao; Du, Ruijin; Ma, Jing
2016-05-01
A nonconsensus opinion (NCO) model was introduced recently, which allows the stable coexistence of minority and majority opinions. However, due to disparities in the knowledge, experiences, and personality or self-protection of agents, they often remain neutral when faced with some opinions in real scenarios. To address this issue, we propose a general non-consensus opinion model with neutral view (NCON) and we define the dynamic opinion change process. We applied the NCON model to different topological networks and studied the formation of opinion clusters. In the case of random graphs, random regular networks, and scale-free (SF) networks, we found that the system moved from a continuous phase transition to a discontinuous phase transition as the connectivity density and exponent of the SF network λ decreased and increased in the steady state, respectively. Moreover, the initial proportions of neutral opinions were found to have little effect on the proportional structure of opinions at the steady state. These results suggest that the majority choice between positive and negative opinions depends on the initial proportion of each opinion. The NCON model may have potential applications for decision makers.
PREMER: a Tool to Infer Biological Networks.
Villaverde, Alejandro F; Becker, Kolja; Banga, Julio R
2017-10-04
Inferring the structure of unknown cellular networks is a main challenge in computational biology. Data-driven approaches based on information theory can determine the existence of interactions among network nodes automatically. However, the elucidation of certain features - such as distinguishing between direct and indirect interactions or determining the direction of a causal link - requires estimating information-theoretic quantities in a multidimensional space. This can be a computationally demanding task, which acts as a bottleneck for the application of elaborate algorithms to large-scale network inference problems. The computational cost of such calculations can be alleviated by the use of compiled programs and parallelization. To this end we have developed PREMER (Parallel Reverse Engineering with Mutual information & Entropy Reduction), a software toolbox that can run in parallel and sequential environments. It uses information theoretic criteria to recover network topology and determine the strength and causality of interactions, and allows incorporating prior knowledge, imputing missing data, and correcting outliers. PREMER is a free, open source software tool that does not require any commercial software. Its core algorithms are programmed in FORTRAN 90 and implement OpenMP directives. It has user interfaces in Python and MATLAB/Octave, and runs on Windows, Linux and OSX (https://sites.google.com/site/premertoolbox/).
Shelton, Zachary R.; Braga, Roberto R.; Windmoller, Dario; Machado, José C.
2011-01-01
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by 1H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/1H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60–40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. PMID:21499538
Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W
2011-02-01
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials.
Observation time scale, free-energy landscapes, and molecular symmetry
Wales, David J.; Salamon, Peter
2014-01-01
When structures that interconvert on a given time scale are lumped together, the corresponding free-energy surface becomes a function of the observation time. This view is equivalent to grouping structures that are connected by free-energy barriers below a certain threshold. We illustrate this time dependence for some benchmark systems, namely atomic clusters and alanine dipeptide, highlighting the connections to broken ergodicity, local equilibrium, and “feasible” symmetry operations of the molecular Hamiltonian. PMID:24374625
A new way to improve the robustness of complex communication networks by allocating redundancy links
NASA Astrophysics Data System (ADS)
Shi, Chunhui; Peng, Yunfeng; Zhuo, Yue; Tang, Jieying; Long, Keping
2012-03-01
We investigate the robustness of complex communication networks on allocating redundancy links. The protecting key nodes (PKN) strategy is proposed to improve the robustness of complex communication networks against intentional attack. Our numerical simulations show that allocating a few redundant links among key nodes using the PKN strategy will significantly increase the robustness of scale-free complex networks. We have also theoretically proved and demonstrated the effectiveness of the PKN strategy. We expect that our work will help achieve a better understanding of communication networks.
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Ma, Jian-Feng
Existing routing strategies such as the global dynamic routing [X. Ling, M. B. Hu, R. Jiang and Q. S. Wu, Phys. Rev. E 81, 016113 (2010)] can achieve very high traffic capacity at the cost of extremely long packet traveling delay. In many real complex networks, especially for real-time applications such as the instant communication software, extremely long packet traveling time is unacceptable. In this work, we propose to assign a finite Time-to-Live (TTL) parameter for each packet. To guarantee every packet to arrive at its destination within its TTL, we assume that a packet is retransmitted by its source once its TTL expires. We employ source routing mechanisms in the traffic model to avoid the routing-flaps induced by the global dynamic routing. We compose extensive simulations to verify our proposed mechanisms. With small TTL, the effects of packet retransmission on network traffic capacity are obvious, and the phase transition from flow free state to congested state occurs. For the purpose of reducing the computation frequency of the routing table, we employ a computing cycle Tc within which the routing table is recomputed once. The simulation results show that the traffic capacity decreases with increasing Tc. Our work provides a good insight into the understanding of effects of packet retransmission with finite packet lifetime on traffic capacity in scale-free networks.
Critical behavior of the contact process in a multiscale network
NASA Astrophysics Data System (ADS)
Ferreira, Silvio C.; Martins, Marcelo L.
2007-09-01
Inspired by dengue and yellow fever epidemics, we investigated the contact process (CP) in a multiscale network constituted by one-dimensional chains connected through a Barabási-Albert scale-free network. In addition to the CP dynamics inside the chains, the exchange of individuals between connected chains (travels) occurs at a constant rate. A finite epidemic threshold and an epidemic mean lifetime diverging exponentially in the subcritical phase, concomitantly with a power law divergence of the outbreak’s duration, were found. A generalized scaling function involving both regular and SF components was proposed for the quasistationary analysis and the associated critical exponents determined, demonstrating that the CP on this hybrid network and nonvanishing travel rates establishes a new universality class.
Carré, Clément; Mas, André; Krouk, Gabriel
2017-01-01
Inferring transcriptional gene regulatory networks from transcriptomic datasets is a key challenge of systems biology, with potential impacts ranging from medicine to agronomy. There are several techniques used presently to experimentally assay transcription factors to target relationships, defining important information about real gene regulatory networks connections. These techniques include classical ChIP-seq, yeast one-hybrid, or more recently, DAP-seq or target technologies. These techniques are usually used to validate algorithm predictions. Here, we developed a reverse engineering approach based on mathematical and computer simulation to evaluate the impact that this prior knowledge on gene regulatory networks may have on training machine learning algorithms. First, we developed a gene regulatory networks-simulating engine called FRANK (Fast Randomizing Algorithm for Network Knowledge) that is able to simulate large gene regulatory networks (containing 10 4 genes) with characteristics of gene regulatory networks observed in vivo. FRANK also generates stable or oscillatory gene expression directly produced by the simulated gene regulatory networks. The development of FRANK leads to important general conclusions concerning the design of large and stable gene regulatory networks harboring scale free properties (built ex nihilo). In combination with supervised (accepting prior knowledge) support vector machine algorithm we (i) address biologically oriented questions concerning our capacity to accurately reconstruct gene regulatory networks and in particular we demonstrate that prior-knowledge structure is crucial for accurate learning, and (ii) draw conclusions to inform experimental design to performed learning able to solve gene regulatory networks in the future. By demonstrating that our predictions concerning the influence of the prior-knowledge structure on support vector machine learning capacity holds true on real data ( Escherichia coli K14 network reconstruction using network and transcriptomic data), we show that the formalism used to build FRANK can to some extent be a reasonable model for gene regulatory networks in real cells.
Jin, Huiyuan; Liu, Haitao
2016-01-01
Deaf or hard-of-hearing individuals usually face a greater challenge to learn to write than their normal-hearing counterparts. Due to the limitations of traditional research methods focusing on microscopic linguistic features, a holistic characterization of the writing linguistic features of these language users is lacking. This study attempts to fill this gap by adopting the methodology of linguistic complex networks. Two syntactic dependency networks are built in order to compare the macroscopic linguistic features of deaf or hard-of-hearing students and those of their normal-hearing peers. One is transformed from a treebank of writing produced by Chinese deaf or hard-of-hearing students, and the other from a treebank of writing produced by their Chinese normal-hearing counterparts. Two major findings are obtained through comparison of the statistical features of the two networks. On the one hand, both linguistic networks display small-world and scale-free network structures, but the network of the normal-hearing students' exhibits a more power-law-like degree distribution. Relevant network measures show significant differences between the two linguistic networks. On the other hand, deaf or hard-of-hearing students tend to have a lower language proficiency level in both syntactic and lexical aspects. The rigid use of function words and a lower vocabulary richness of the deaf or hard-of-hearing students may partially account for the observed differences.
Emergence of fractal scaling in complex networks
NASA Astrophysics Data System (ADS)
Wei, Zong-Wen; Wang, Bing-Hong
2016-09-01
Some real-world networks are shown to be fractal or self-similar. It is widespread that such a phenomenon originates from the repulsion between hubs or disassortativity. Here we show that this common belief fails to capture the causality. Our key insight to address it is to pinpoint links critical to fractality. Those links with small edge betweenness centrality (BC) constitute a special architecture called fractal reference system, which gives birth to the fractal structure of those reported networks. In contrast, a small amount of links with high BC enable small-world effects, hiding the intrinsic fractality. With enough of such links removed, fractal scaling spontaneously arises from nonfractal networks. Our results provide a multiple-scale view on the structure and dynamics and place fractality as a generic organizing principle of complex networks on a firmer ground.
Optimal topology to minimizing congestion in connected communication complex network
NASA Astrophysics Data System (ADS)
Benyoussef, M.; Ez-Zahraouy, H.; Benyoussef, A.
In this paper, a new model of the interdependent complex network is proposed, based on two assumptions that (i) the capacity of a node depends on its degree, and (ii) the traffic load depends on the distribution of the links in the network. Based on these assumptions, the presented model proposes a method of connection not based on the node having a higher degree but on the region containing hubs. It is found that the final network exhibits two kinds of degree distribution behavior, depending on the kind and the way of the connection. This study reveals a direct relation between network structure and traffic flow. It is found that pc the point of transition between the free flow and the congested phase depends on the network structure and the degree distribution. Moreover, this new model provides an improvement in the traffic compared to the results found in a single network. The same behavior of degree distribution found in a BA network and observed in the real world is obtained; except for this model, the transition point between the free phase and congested phase is much higher than the one observed in a network of BA, for both static and dynamic protocols.
NASA Astrophysics Data System (ADS)
Loppini, Alessandro
2018-03-01
Complex network theory represents a comprehensive mathematical framework to investigate biological systems, ranging from sub-cellular and cellular scales up to large-scale networks describing species interactions and ecological systems. In their exhaustive and comprehensive work [1], Gosak et al. discuss several scenarios in which the network approach was able to uncover general properties and underlying mechanisms of cells organization and regulation, tissue functions and cell/tissue failure in pathology, by the study of chemical reaction networks, structural networks and functional connectivities.
Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models
Cowley, Benjamin R.; Doiron, Brent; Kohn, Adam
2016-01-01
Recent studies have applied dimensionality reduction methods to understand how the multi-dimensional structure of neural population activity gives rise to brain function. It is unclear, however, how the results obtained from dimensionality reduction generalize to recordings with larger numbers of neurons and trials or how these results relate to the underlying network structure. We address these questions by applying factor analysis to recordings in the visual cortex of non-human primates and to spiking network models that self-generate irregular activity through a balance of excitation and inhibition. We compared the scaling trends of two key outputs of dimensionality reduction—shared dimensionality and percent shared variance—with neuron and trial count. We found that the scaling properties of networks with non-clustered and clustered connectivity differed, and that the in vivo recordings were more consistent with the clustered network. Furthermore, recordings from tens of neurons were sufficient to identify the dominant modes of shared variability that generalize to larger portions of the network. These findings can help guide the interpretation of dimensionality reduction outputs in regimes of limited neuron and trial sampling and help relate these outputs to the underlying network structure. PMID:27926936
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Thurner, Stefan; Rodgers, G. J.
2004-03-01
We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cree, Johnathan Vee; Delgado-Frias, Jose
Large scale wireless sensor networks have been proposed for applications ranging from anomaly detection in an environment to vehicle tracking. Many of these applications require the networks to be distributed across a large geographic area while supporting three to five year network lifetimes. In order to support these requirements large scale wireless sensor networks of duty-cycled devices need a method of efficient and effective autonomous configuration/maintenance. This method should gracefully handle the synchronization tasks duty-cycled networks. Further, an effective configuration solution needs to recognize that in-network data aggregation and analysis presents significant benefits to wireless sensor network and should configuremore » the network in a way such that said higher level functions benefit from the logically imposed structure. NOA, the proposed configuration and maintenance protocol, provides a multi-parent hierarchical logical structure for the network that reduces the synchronization workload. It also provides higher level functions with significant inherent benefits such as but not limited to: removing network divisions that are created by single-parent hierarchies, guarantees for when data will be compared in the hierarchy, and redundancies for communication as well as in-network data aggregation/analysis/storage.« less
Detto, Matteo; Muller-Landau, Helene C; Mascaro, Joseph; Asner, Gregory P
2013-01-01
An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10-1000 m using high-resolution maps of LiDAR-derived mean canopy profile height (MCH) and elevation for 4930 ha of tropical forest in central Panama. MCH was strongly associated with the hydrological network: canopy height was highest in areas of positive convexity (valleys, depressions) close to channels draining 1 ha or more. Average MCH declined strongly with decreasing convexity (transition to ridges, hilltops) and increasing distance from the nearest channel. Spectral analysis, performed with wavelet decomposition, showed that the variance in MCH had fractal similarity at scales of ∼30-600 m, and was strongly associated with variation in elevation, with peak correlations at scales of ∼250 m. Whereas previous studies of topographic correlates of tropical forest structure conducted analyses at just one or a few spatial grains, our study found that correlations were strongly scale-dependent. Multi-scale analyses of correlations of MCH with slope, aspect, curvature, and Laplacian convexity found that MCH was most strongly related to convexity measured at scales of 20-300 m, a topographic variable that is a good proxy for position with respect to the hydrological network. Overall, our results support the idea that, even in these mesic forests, hydrological networks and associated topographical variation serve as templates upon which vegetation is organized over specific ranges of scales. These findings constitute an important step towards a mechanistic understanding of these patterns, and can guide upscaling and downscaling.
Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.
Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao
2017-01-01
Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.
Classification of epilepsy types through global network analysis of scalp electroencephalograms
NASA Astrophysics Data System (ADS)
Lee, Uncheol; Kim, Seunghwan; Jung, Ki-Young
2006-04-01
Epilepsy is a dynamic disease in which self-organization and emergent structures occur dynamically at multiple levels of neuronal integration. Therefore, the transient relationship within multichannel electroencephalograms (EEGs) is crucial for understanding epileptic processes. In this paper, we show that the global relationship within multichannel EEGs provides us with more useful information in classifying two different epilepsy types than pairwise relationships such as cross correlation. To demonstrate this, we determine the global network structure within channels of the scalp EEG based on the minimum spanning tree method. The topological dissimilarity of the network structures from different types of temporal lobe epilepsy is described in the form of the divergence rate and is computed for 11 patients with left (LTLE) and right temporal lobe epilepsy (RTLE). We find that patients with LTLE and RTLE exhibit different large scale network structures, which emerge at the epoch immediately before the seizure onset, not in the preceding epochs. Our results suggest that patients with the two different epilepsy types display distinct large scale dynamical networks with characteristic epileptic network structures.
Coevolution of strategy-selection time scale and cooperation in spatial prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Rong, Zhihai; Wu, Zhi-Xi; Chen, Guanrong
2013-06-01
In this paper, we investigate a networked prisoner's dilemma game where individuals' strategy-selection time scale evolves based on their historical learning information. We show that the more times the current strategy of an individual is learnt by his neighbors, the longer time he will stick on the successful behavior by adaptively adjusting the lifetime of the adopted strategy. Through characterizing the extent of success of the individuals with normalized payoffs, we show that properly using the learned information can form a positive feedback mechanism between cooperative behavior and its lifetime, which can boost cooperation on square lattices and scale-free networks.
NASA Astrophysics Data System (ADS)
OświÈ©cimka, Paweł; Livi, Lorenzo; DroŻdŻ, Stanisław
2016-10-01
We investigate the scaling of the cross-correlations calculated for two-variable time series containing vertex properties in the context of complex networks. Time series of such observables are obtained by means of stationary, unbiased random walks. We consider three vertex properties that provide, respectively, short-, medium-, and long-range information regarding the topological role of vertices in a given network. In order to reveal the relation between these quantities, we applied the multifractal cross-correlation analysis technique, which provides information about the nonlinear effects in coupling of time series. We show that the considered network models are characterized by unique multifractal properties of the cross-correlation. In particular, it is possible to distinguish between Erdös-Rényi, Barabási-Albert, and Watts-Strogatz networks on the basis of fractal cross-correlation. Moreover, the analysis of protein contact networks reveals characteristics shared with both scale-free and small-world models.
Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.
Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin
2015-09-23
The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor
2014-01-01
Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790
Hébert-Dufresne, Laurent; Grochow, Joshua A; Allard, Antoine
2016-08-18
We introduce a network statistic that measures structural properties at the micro-, meso-, and macroscopic scales, while still being easy to compute and interpretable at a glance. Our statistic, the onion spectrum, is based on the onion decomposition, which refines the k-core decomposition, a standard network fingerprinting method. The onion spectrum is exactly as easy to compute as the k-cores: It is based on the stages at which each vertex gets removed from a graph in the standard algorithm for computing the k-cores. Yet, the onion spectrum reveals much more information about a network, and at multiple scales; for example, it can be used to quantify node heterogeneity, degree correlations, centrality, and tree- or lattice-likeness. Furthermore, unlike the k-core decomposition, the combined degree-onion spectrum immediately gives a clear local picture of the network around each node which allows the detection of interesting subgraphs whose topological structure differs from the global network organization. This local description can also be leveraged to easily generate samples from the ensemble of networks with a given joint degree-onion distribution. We demonstrate the utility of the onion spectrum for understanding both static and dynamic properties on several standard graph models and on many real-world networks.