Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates
NASA Astrophysics Data System (ADS)
Nagao, Yuki; Kubo, Takahiro
2014-12-01
Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120-670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system.
Guest-Induced Two-Way Structural Transformation in a Layered Metal-Organic Framework Thin Film.
Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2016-12-28
Fabrication of thin films made of metal-organic frameworks (MOFs) has been intensively pursued for practical applications that use the structural response of MOFs. However, to date, only physisorption-induced structural response has been studied in these films. Chemisorption can be expected to provide a remarkable structural response because of the formation of bonds between guest molecules and reactive metal sites in host MOFs. Here, we report that chemisorption-induced two-way structural transformation in a nanometer-sized MOF thin film. We prepared a two-dimensional layered-type MOF Fe[Pt(CN) 4 ] thin film using a step-by-step approach. Although the as-synthesized film showed poor crystallinity, the dehydrated form of this thin film had a highly oriented crystalline nature (Film-D) as confirmed by synchrotron X-ray diffraction (XRD). Surprisingly, under water and pyridine vapors, Film-D showed chemisorption-induced dynamic structural transformations to Fe(L) 2 [Pt(CN) 4 ] thin films [L = H 2 O (Film-H), pyridine (Film-P)], where water and pyridine coordinated to the open Fe 2+ site. Dynamic structural transformations were also confirmed by in situ XRD, sorption measurement, and infrared reflection absorption spectroscopy. This is the first report of chemisorption-induced dynamic structural response in a MOF thin film, and it provides useful insights, which would lead to future practical applications of MOFs utilizing chemisorption-induced structural responses.
Ordered organic-organic multilayer growth
Forrest, Stephen R.; Lunt, Richard R.
2016-04-05
An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.
Ordered organic-organic multilayer growth
Forrest, Stephen R; Lunt, Richard R
2015-01-13
An ordered multilayer crystalline organic thin film structure is formed by depositing at least two layers of thin film crystalline organic materials successively wherein the at least two thin film layers are selected to have their surface energies within .+-.50% of each other, and preferably within .+-.15% of each other, whereby every thin film layer within the multilayer crystalline organic thin film structure exhibit a quasi-epitaxial relationship with the adjacent crystalline organic thin film.
Deployable telescope having a thin-film mirror and metering structure
Krumel, Leslie J [Cedar Crest, NM; Martin, Jeffrey W [Albuquerque, NM
2010-08-24
A deployable thin-film mirror telescope comprises a base structure and a metering structure. The base structure houses a thin-film mirror, which can be rolled for stowage and unrolled for deployment. The metering structure is coupled to the base structure and can be folded for stowage and unfolded for deployment. In the deployed state, the unrolled thin-film mirror forms a primary minor for the telescope and the unfolded metering structure positions a secondary minor for the telescope.
Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’
2015-01-01
Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117
NASA Astrophysics Data System (ADS)
Yurjev, G. S.; Fainer, N. I.; Maximovskiy, E. A.; Kosinova, M. L.; Sheromov, M. A.; Rumyantsev, Yu. M.
1998-02-01
The structure of semiconductor and dielectric thin (100-300 nm) films was studied by diffraction of synchrotron radiation. The diffraction experiments were performed at both the station "Anomalous scattering" of the storage ring synchrotron facility VEPP-3 and DRON-4 diffractometer. The structure of CdS thin films grown on fused silica, single Si(100) and InP(100) substrates was investigated. The structure of Cu 2S thin films grown on fused silica, single Si(100) substrates and CdS/Si(100)-heterostructure was studied. The structure study was performed on Si 3N 4 films grown on GaAs(100) substrates. The structure of thin BN layers grown on single Si(100) substrates was studied. It was established that structural parameters of above-mentioned thin films coincide on the parameters of JCPDS International Centre for Diffraction Data.
A study on micro-structural and optical parameters of InxSe1-x thin film
NASA Astrophysics Data System (ADS)
Patel, P. B.; Desai, H. N.; Dhimmar, J. M.; Modi, B. P.
2018-04-01
Thin film of Indium Selenide (InSe) has been deposited by thermal evaporation technique onto pre cleaned glass substrate under high vacuum condition. The micro-structural and optical properties of InxSe1-x (x = 0.6, 1-x = 0.4) thin film have been characterized by X-ray diffractrometer (XRD) and UV-Visible spectrophotometer. The XRD spectra showed that InSe thin film has single phase hexagonal structure with preferred orientation along (1 1 0) direction. The micro-structural parameters (crystallite size, lattice strain, dislocation density, domain population) for InSe thin film have been calculated using XRD spectra. The optical parameters (absorption, transmittance, reflectance, energy band gap, Urbach energy) of InSe thin film have been evaluated from absorption spectra. The direct energy band gap and Urbach energy of InSe thin film is found to be 1.90 eV and 235 meV respectively.
NASA Astrophysics Data System (ADS)
Paul, T.; Ghosh, A.
2017-04-01
We have studied the structure and electrical properties of La2Mo2O9 thin films of different thicknesses prepared by the laser deposition technique at different substrate temperatures. The structural properties of the thin films have been investigated using XRD, XPS, AFM, TEM, SEM, and Raman spectroscopy. The electrical transport properties of the thin films have been investigated in wide temperature and frequency ranges. The cubic nature of the thin films has been confirmed from structural analysis. An enhancement of the oxygen ion conductivity of the films up to five orders of magnitude is obtained compared to that of the bulk La2Mo2O9, suggesting usefulness of the thin films as electrolytes in micro-solid oxide fuel cells. The enhanced dc ionic conductivity of the thin films has been interpreted using the rule of the mixture model, while a power law model has been used to investigate the frequency and temperature dependences of the conductivity. The analysis of the results predicts the three-dimensional oxygen ion conduction in the thin films.
Unlocking the Structure and Dynamics of Thin Polymeric Films
2016-11-13
AFRL-AFOSR-JP-TR-2016-0092 Unlocking the Structure and Dynamics of Thin Polymeric Films Andrew Whittaker THE UNIVERSITY OF QUEENSLAND Final Report 11...Final 3. DATES COVERED (From - To) 15 Jun 2015 to 16 Jun 2016 4. TITLE AND SUBTITLE Unlocking the Structure and Dynamics of Thin Polymeric Films 5a...the interfacial structure that are inherent in thin films affects how polymers behave. A number of technically relevant polymeric systems were
A general strategy for hybrid thin film fabrication and transfer onto arbitrary substrates.
Zhang, Yong; Magan, John J; Blau, Werner J
2014-04-28
The development of thin film-based structures/devices often requires thin films to be transferred onto arbitrary substrates/surfaces. Controllable and non-destructive transfer method, although highly desired, remains quite challenging. Here we report a general method for fabrication and transfer of hybrid (ultra)thin films. The proposed solution-based in-situ transfer method shows not only its robust ability for thin film transfer onto arbitrary substrates but also its highly controlled and non-destructive characteristic. With a hole structure as the support, fully-stretched free-standing thin film is prepared. The successful transfer to a curved surface demonstrates the possibility for production of thin film-coated complex optical components. Ultrathin (35 nm) hybrid film transferred onto PET (50 μm thick) shows high transparency (>90% in visible range), conductivity (1.54 × 10(4) S/m), and flexibility (radius of curvature down to mm scale). The reported transfer method would provide a powerful route towards complex thin film-based structures/devices.
A General Strategy for Hybrid Thin Film Fabrication and Transfer onto Arbitrary Substrates
Zhang, Yong; Magan, John J.; Blau, Werner J.
2014-01-01
The development of thin film-based structures/devices often requires thin films to be transferred onto arbitrary substrates/surfaces. Controllable and non-destructive transfer method, although highly desired, remains quite challenging. Here we report a general method for fabrication and transfer of hybrid (ultra)thin films. The proposed solution-based in-situ transfer method shows not only its robust ability for thin film transfer onto arbitrary substrates but also its highly controlled and non-destructive characteristic. With a hole structure as the support, fully-stretched free-standing thin film is prepared. The successful transfer to a curved surface demonstrates the possibility for production of thin film-coated complex optical components. Ultrathin (35 nm) hybrid film transferred onto PET (50 μm thick) shows high transparency (>90% in visible range), conductivity (1.54 × 104 S/m), and flexibility (radius of curvature down to mm scale). The reported transfer method would provide a powerful route towards complex thin film-based structures/devices. PMID:24769689
Microstructure and thermochromic properties of VOX-WOX-VOX ceramic thin films
NASA Astrophysics Data System (ADS)
Khamseh, S.; Araghi, H.; Ghahari, M.; Faghihi Sani, M. A.
2016-03-01
W-doped VO2 films have been synthesized via oxygen annealing of V-W-V (vanadium-tungsten-vanadium) multilayered films. The effects of middle layer's thickness of V-W-V multilayered film on structure and properties of VOX-WOX-VOX ceramic thin films were investigated. The as-deposited V-W-V multilayered film showed amorphous-like structure when mixed structure of VO2 (M) and VO2 (B) was formed in VOX-WOX-VOX ceramic thin films. Tungsten content of VOX-WOX-VOX ceramic thin films increased with increasing middle layer's thickness. With increasing middle layer's thickness, room temperature square resistance ( R sq) of VOX-WOX-VOX ceramic thin films increased from 65 to 86 kΩ/sq. The VOX-WOX-VOX ceramic thin film with the thinnest middle layer showed significant SMT (semiconductor-metal transition) when SMT became negligible on increasing middle layer's thickness.
Deposition and characterization of ZnSe nanocrystalline thin films
NASA Astrophysics Data System (ADS)
Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat
2018-02-01
ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.
Uncooled thin film pyroelectric IR detector with aerogel thermal isolation
Ruffner, Judith A.; Bullington, Jeff A.; Clem, Paul G.; Warren, William L.; Brinker, C. Jeffrey; Tuttle, Bruce A.; Schwartz, Robert W.
1999-01-01
A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.
NASA Astrophysics Data System (ADS)
Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.
2018-05-01
The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.
Ferroelectric thin-film active sensors for structural health monitoring
NASA Astrophysics Data System (ADS)
Lin, Bin; Giurgiutiu, Victor; Yuan, Zheng; Liu, Jian; Chen, Chonglin; Jiang, Jiechao; Bhalla, Amar S.; Guo, Ruyan
2007-04-01
Piezoelectric wafer active sensors (PWAS) have been proven a valuable tool in structural health monitoring. Piezoelectric wafer active sensors are able to send and receive guided Lamb/Rayleigh waves that scan the structure and detect the presence of incipient cracks and structural damage. In-situ thin-film active sensor deposition can eliminate the bonding layer to improve the durability issue and reduce the acoustic impedance mismatch. Ferroelectric thin films have been shown to have piezoelectric properties that are close to those of single-crystal ferroelectrics but the fabrication of ferroelectric thin films on structural materials (steel, aluminum, titanium, etc.) has not been yet attempted. In this work, in-situ fabrication method of piezoelectric thin-film active sensors arrays was developed using the nano technology approach. Specification for the piezoelectric thin-film active sensors arrays was based on electro-mechanical-acoustical model. Ferroelectric BaTiO3 (BTO) thin films were successfully deposited on Ni tapes by pulsed laser deposition under the optimal synthesis conditions. Microstructural studies by X-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO thin films have the nanopillar structures with an average size of approximately 80 nm in diameter and the good interface structures with no inter-diffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. The research objective is to develop the fabrication and optimum design of thin-film active sensor arrays for structural health monitoring applications. The short wavelengths of the micro phased arrays will permit the phased-array imaging of smaller parts and smaller damage than is currently not possible with existing technology.
NASA Technical Reports Server (NTRS)
Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor); Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor)
2010-01-01
A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.
Young's modulus measurement of aluminum thin film with cantilever structure
NASA Astrophysics Data System (ADS)
Lee, ByoungChan; Lee, SangHun; Lee, Hwasu; Shin, Hyungjae
2001-09-01
Micromachined cantilever structures are commonly used for measuring mechanical properties of thin film materials in MEMS. The application of conventional cantilever theory in experiment raises severe problem. The deformation of the supporting post and flange is produced by the applied electrostatic force and lead to more reduced measurement value than real Young's modulus of thin film materials. In order to determine Young's modulus of aluminum thin film robustly and reproducibly, the modified cantilever structure is proposed. Two measurement methods, which are cantilever tip deflection measurement and resonant frequency measurement, are used for confirming the reliability of the proposed cantilever structure as well. Measured results indicate that the proposed measurement scheme provides useful and credible Young's modulus value for thin film materials with sub-micron thickness. The proved validation of the proposed scheme makes sure that in addition to Young's modulus of aluminum thin film, that of other thin film materials which are aluminum alloy, metal, and so forth, can be extracted easily and clearly.
NASA Astrophysics Data System (ADS)
Fajar, M. N.; Hidayat, R.; Triwikantoro; Endarko
2018-04-01
The TiO2-SnO2 thin film with single and double-layer structure has successfully synthesized on FTO (Fluorine-doped Tin Oxide) substrate using the screen printing technique. The structural, optical, and morphological properties of the film were investigated by XRD, UV-Vis, and SEM, respectively. The results showed that the single and double-layer structure of TiO2-SnO2 thin film has mixed phase with a strong formation of casseritte phase. The acid treatment effect on TiO2-SnO2 thin film decreases the peak intensity of anatase phase formation and thin film’s absorbance values. The morphological study is also revealed that the single layer TiO2-SnO2 thin film had a more porous nature and decreased particle size distribution after acid treatment, while the double-layer TiO2-SnO2 thin film Eroded due to acid treatment.
Structural and morphological study on ZnO:Al thin films grown using DC magnetron sputtering
NASA Astrophysics Data System (ADS)
Astuti, B.; Sugianto; Mahmudah, S. N.; Zannah, R.; Putra, N. M. D.; Marwoto, P.; Aryanto, D.; Wibowo, E.
2018-03-01
ZnO doped Al (ZnO:Al ) thin film was deposited on corning glass substrate using DC magnetron sputtering method. Depositon process of the ZnO:Al thin films was kept constant at plasma power, deposition temperature and deposition time are 40 watt, 400°C and 2 hours, respectivelly. Furthermore, for annealing process has been done on the variation of oxygen pressure are 0, 50, and 100 mTorr. X-ray diffraction (XRD), and SEM was used to characterize ZnO:Al thin film was obtained. Based on XRD characterization results of the ZnO:Al thin film shows that deposited thin film has a hexagonal structure with the dominant diffraction peak at according to the orientation of the (002) plane and (101). Finally, the crystal structure of the ZnO:Al thin films that improves with an increasing the oxygen pressure at annealing process up to 100 mTorr and its revealed by narrow FWHM value and also with dense crystal structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enriquez, Erik M.; Chen, Aiping; Harrell, Zachary John
Epitaxial SrFeO 3-δ (SFO) thin films have been grown on various substrates by pulsed laser deposition. The structural and electrical properties of SFO thin films are monitored with time in different atmospheres at room temperature, showing time-dependent crystal structure and electrical conductivity. The increased out-of-plane lattice parameter and resistivity over time are associated with the increased oxygen vacancies density in SFO thin films. The epitaxial strain plays an important role in determining the initial resistivity, and the sample environment determines the trend of resistivity change over time. An amorphous Al 2O 3 passivation layer has been found to be effectivemore » in stabilizing the structure and electrical properties of SFO thin films. Lastly, this work explores time dependent structure and properties variation in oxide films and provides a way to stabilize thin film materials that are sensitive to oxygen vacancies.« less
Enriquez, Erik M.; Chen, Aiping; Harrell, Zachary John; ...
2016-10-03
Epitaxial SrFeO 3-δ (SFO) thin films have been grown on various substrates by pulsed laser deposition. The structural and electrical properties of SFO thin films are monitored with time in different atmospheres at room temperature, showing time-dependent crystal structure and electrical conductivity. The increased out-of-plane lattice parameter and resistivity over time are associated with the increased oxygen vacancies density in SFO thin films. The epitaxial strain plays an important role in determining the initial resistivity, and the sample environment determines the trend of resistivity change over time. An amorphous Al 2O 3 passivation layer has been found to be effectivemore » in stabilizing the structure and electrical properties of SFO thin films. Lastly, this work explores time dependent structure and properties variation in oxide films and provides a way to stabilize thin film materials that are sensitive to oxygen vacancies.« less
Petsagkourakis, Ioannis; Pavlopoulou, Eleni; Portale, Giuseppe; Kuropatwa, Bryan A.; Dilhaire, Stefan; Fleury, Guillaume; Hadziioannou, Georges
2016-01-01
Due to the rising need for clean energy, thermoelectricity has raised as a potential alternative to reduce dependence on fossil fuels. Specifically, thermoelectric devices based on polymers could offer an efficient path for near-room temperature energy harvesters. Thus, control over thermoelectric properties of conducting polymers is crucial and, herein, the structural, electrical and thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films doped with p-toluenesulfonate (Tos) molecules were investigated with regards to thin film processing. PEDOT:Tos thin films were prepared by in-situ polymerization of (3,4-ethylenedioxythiophene) monomers in presence of iron(III) p-toluenesulfonate with different co-solvents in order to tune the film structure. While the Seebeck coefficient remained constant, a large improvement in the electrical conductivity was observed for thin films processed with high boiling point additives. The increase of electrical conductivity was found to be solely in-plane mobility-driven. Probing the thin film structure by Grazing Incidence Wide Angle X-ray Scattering has shown that this behavior is dictated by the structural properties of the PEDOT:Tos films; specifically by the thin film crystallinity combined to the preferential edge-on orientation of the PEDOT crystallites. Consequentially enhancement of the power factor from 25 to 78.5 μW/mK2 has been readily obtained for PEDOT:Tos thin films following this methodology. PMID:27470637
Petsagkourakis, Ioannis; Pavlopoulou, Eleni; Portale, Giuseppe; Kuropatwa, Bryan A; Dilhaire, Stefan; Fleury, Guillaume; Hadziioannou, Georges
2016-07-29
Due to the rising need for clean energy, thermoelectricity has raised as a potential alternative to reduce dependence on fossil fuels. Specifically, thermoelectric devices based on polymers could offer an efficient path for near-room temperature energy harvesters. Thus, control over thermoelectric properties of conducting polymers is crucial and, herein, the structural, electrical and thermoelectric properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films doped with p-toluenesulfonate (Tos) molecules were investigated with regards to thin film processing. Tos thin films were prepared by in-situ polymerization of (3,4-ethylenedioxythiophene) monomers in presence of iron(III) p-toluenesulfonate with different co-solvents in order to tune the film structure. While the Seebeck coefficient remained constant, a large improvement in the electrical conductivity was observed for thin films processed with high boiling point additives. The increase of electrical conductivity was found to be solely in-plane mobility-driven. Probing the thin film structure by Grazing Incidence Wide Angle X-ray Scattering has shown that this behavior is dictated by the structural properties of the Tos films; specifically by the thin film crystallinity combined to the preferential edge-on orientation of the PEDOT crystallites. Consequentially enhancement of the power factor from 25 to 78.5 μW/mK(2) has been readily obtained for Tos thin films following this methodology.
Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc
NASA Astrophysics Data System (ADS)
Özen, Soner; Pat, Suat; Korkmaz, Şadan
2018-03-01
Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.
In-space fabrication of thin-film structures
NASA Technical Reports Server (NTRS)
Lippman, M. E.
1972-01-01
A conceptual study of physical vapor-deposition processes for in-space fabrication of thin-film structures is presented. Potential advantages of in-space fabrication are improved structural integrity and surface reflectivity of free-standing ultra-thin films and coatings. Free-standing thin-film structures can find use as photon propulsion devices (solar sails). Other applications of the concept involve free-standing shadow shields, or thermal control coatings of spacecraft surfaces. Use of expendables (such as booster and interstage structures) as source material for the physical vapor deposition process is considered. The practicability of producing thin, textured, aluminum films by physical vapor deposition and subsequent separation from a revolving substrate is demonstrated by laboratory experiments. Heating power requirement for the evaporation process is estimated for a specific mission.
Nanocrystalline silicon thin films and grating structures for solar cells
NASA Astrophysics Data System (ADS)
Juneja, Sucheta; Sudhakar, Selvakumar; Khonina, Svetlana N.; Skidanov, Roman V.; Porfirevb, Alexey P.; Moissev, Oleg Y.; Kazanskiy, Nikolay L.; Kumar, Sushil
2016-03-01
Enhancement of optical absorption for achieving high efficiencies in thin film silicon solar cells is a challenge task. Herein, we present the use of grating structure for the enhancement of optical absorption. We have made grating structures and same can be integrated in hydrogenated micro/nanocrystalline silicon (μc/nc-Si: H) thin films based p-i-n solar cells. μc/nc-Si: H thin films were grown using plasma enhanced chemical vapor deposition method. Grating structures integrated with μc/nc-Si: H thin film solar cells may enhance the optical path length and reduce the reflection losses and its characteristics can be probed by spectroscopic and microscopic technique with control design and experiment.
Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.
Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R
2015-10-14
Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.
NASA Astrophysics Data System (ADS)
Merakeb, Noureddine; Messai, Amel; Djelloul, Abdelkader; Ayesh, Ahmad I.
2015-11-01
In this paper, we investigate the structure, composition, magnetic, and mechanical properties of stainless steel thin films formed by thermal evaporation technique. These thin films reveal novel structural and physical properties where they were found to consist of nanocrystals that are ~90 % body-centred cubic crystal structure which holds ferromagnetic properties (α-phase), and ~10 % face-centred cubic crystal structure which is paramagnetic at room temperature (γ-phase). The presence of the above phases was quantified by X-ray diffraction, transmission electron microscopy, and conversion electron Mössbauer spectroscopy. The magnetic properties were evaluated by a superconducting quantum interference device magnetometer, and they confirmed the dual-phase crystal structure of the stainless thin films, where the presence of γ-phase reduced the magnetization of the produced thin films. In addition, the fabricated stainless steel thin films did not contain micro-cracks, and they exhibit a tensile stress of about 1.7 GPa, hardness of 7.5 GPa, and elastic modulus of 104 GPa.
Synthesis of cobalt doped BiFeO3 multiferroic thin films on p-Si substrate by sol-gel method
NASA Astrophysics Data System (ADS)
Prasannakumara, R.; Shrisha, B. V.; Naik, K. Gopalakrishna
2018-05-01
Bismuth ferrite (BiFeO3) and cobalt doped BiFeO3 (BiFe1-xCoxO3) nanostructure thin films were grown on p-silicon substrates by sol-gel spin coating method with a sequence of coating and annealing process. The post-annealing of the grown films was carried out under high pure argon atmosphere. The grown nanostructure thin films were characterized using XRD, FESEM, and AFM for the structural, morphological and topological studies, respectively. The elemental compositions of the samples were studied by EDX spectra. The PL spectra of the grown sample shows a narrow emission peak around 559 nm which corresponds to the energy band gap of BFO thin films. The XRD peaks of the BiFeO3 nanostructure thin film reveals the rhombohedral structure and transformed from rhombohedral to orthorhombic or tetragonal structure in Co doped BiFeO3 thin films. The Co substitution in BiFeO3 helped to obtain higher dense nanostructure thin films with smaller grain size than the BiFeO3 thin films.
Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films
NASA Astrophysics Data System (ADS)
Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.
2018-03-01
Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.
Moessbauer study in thin films of FeSi2 and FeSe systems
NASA Technical Reports Server (NTRS)
Escue, W. J.; Aggarwal, K.; Mendiratta, R. G.
1978-01-01
Thin films of FeSi2 and FeSe were studied using Moessbauer spectroscopy information regarding dangling bond configuration and nature of crystal structure in thin films was derived. A significant influence of crystalline aluminum substrate on film structure was observed.
Disconnecting structure and dynamics in glassy thin films
Sussman, Daniel M.; Cubuk, Ekin D.; Liu, Andrea J.
2017-01-01
Nanometrically thin glassy films depart strikingly from the behavior of their bulk counterparts. We investigate whether the dynamical differences between a bulk and thin film polymeric glass former can be understood by differences in local microscopic structure. Machine learning methods have shown that local structure can serve as the foundation for successful, predictive models of particle rearrangement dynamics in bulk systems. By contrast, in thin glassy films, we find that particles at the center of the film and those near the surface are structurally indistinguishable despite exhibiting very different dynamics. Next, we show that structure-independent processes, already present in bulk systems and demonstrably different from simple facilitated dynamics, are crucial for understanding glassy dynamics in thin films. Our analysis suggests a picture of glassy dynamics in which two dynamical processes coexist, with relative strengths that depend on the distance from an interface. One of these processes depends on local structure and is unchanged throughout most of the film, while the other is purely Arrhenius, does not depend on local structure, and is strongly enhanced near the free surface of a film. PMID:28928147
Kim, Donghwan; Lee, Hyunsuk; Bae, Joohyeon; Jeong, Hyomin; Choi, Byeongkeun; Nam, Taehyun; Noh, Jungpil
2018-09-01
Ti-Ni shape memory alloy (SMA) thin films are very attractive material for industrial and medical applications such as micro-actuator, micro-sensors, and stents for blood vessels. An important property besides shape memory effect in the application of SMA thin films is the adhesion between the film and the substrate. When using thin films as micro-actuators or micro-sensors in MEMS, the film must be strongly adhered to the substrate. On the other hand, when using SMA thin films in medical devices such as stents, the deposited alloy thin film must be easily separable from the substrate for efficient processing. In this study, we investigated the effect of substrate roughness on the adhesion of Ti-Ni SMA thin films, as well as the structural properties and phase-transformation behavior of the fabricated films. Ti-Ni SMA thin films were deposited onto etched glass substrates with magnetron sputtering. Radio frequency plasma was used for etching the substrate. The adhesion properties were investigated through progressive scratch test. Structural properties of the films were determined via Feld emission scanning electron microscopy, X-ray diffraction measurements (XRD) and Energy-dispersive X-ray spectroscopy analysis. Phase transformation behaviors were observed with differential scanning calorimetry and low temperature-XRD. Ti-Ni SMA thin film deposited onto rough substrate provides higher adhesive strength than smooth substrate. However the roughness of the substrate has no influence on the growth and crystallization of the Ti-Ni SMA thin films.
Nanoporous structures on ZnO thin films
NASA Astrophysics Data System (ADS)
Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma
2010-01-01
Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.
SHI irradiation effect on pure and Mn doped ZnO thin films
NASA Astrophysics Data System (ADS)
Khawal, H. A.; Raskar, N. D.; Dole, B. N.
2017-05-01
Investigated the structural, surface, electrical and modifications induced by Swift Heavy Ions (SHI) irradiation on pure and Mn substituted ZnO thin films were observed. Thin films of Zn1-xMnxO (x = 0.00, 0.04) were synthesized using the dip coating technique. All thin films irradiated by Li3+ swift heavy ions with fluence 5 × 1013 ions/cm2. The XRD peak reveals that all the samples exhibit wurtzite structures. Surface morphology of samples was investigated by SEM, it was observed that pristine samples of ZnO thin film shows spherical shape but for 4 % Mn substituted ZnO thin film with 5 × 1013 ions/cm2 fluence, it reveals that big grain spherical morphology like structure respectively. I-V characteristics were recorded in the voltage range -5 to 5 V. All curves were passed through origin and nearly linear exhibit ohmic in nature for the films.
NASA Astrophysics Data System (ADS)
Tripathy, N.; Das, K. C.; Ghosh, S. P.; Bose, G.; Kar, J. P.
2017-02-01
CaCu3Ti4O12 (CCTO) thin films have been deposited by RF magnetron sputtering on silicon substrates at room temperature. As-deposited thin films were subjected to rapid thermal annealing (RTA) at different temperatures ranging from 850°C to 1000°C. XRD and capacitance - voltage studies indicate that the structural and electrical properties of CCTO thin film strongly depend upon the annealing temperature. XRD pattern of CCTO thin film annealed at 950°C revealed the polycrystalline nature with evolutions of microstructures. Electrical properties of the dielectric films were investigated by fabricating Al/CCTO/Si metal oxide semiconductor structure. Electrical properties were found to be deteriorated with increasing in annealing temperature.
NASA Astrophysics Data System (ADS)
Abdel-Khalek, H.; El-Samahi, M. I.; El-Mahalawy, Ahmed M.
2018-06-01
The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac)2 thin film to atmospheric plasma for 5 min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac)2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5 min, but, when the exposure time reaches 10 min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35 nm to 1 nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac)2 thin films were studied using spectrophotometric method. The exposure of cu(acac)2 thin films to plasma produced the indirect energy gap decrease from 3.20 eV to 2.67 eV for 10 min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied.
Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua
2016-09-14
Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.
A comparison study of Co and Cu doped MgO diluted magnetic thin films
NASA Astrophysics Data System (ADS)
Sarıtaş, S.; ćakıcı, T.; Muǧlu, G. Merhan; Kundakcı, M.; Yıldırım, M.
2017-02-01
Transition metal-doped MgO diluted magnetic thin films are appropriate candidates for spintronic applications and designing magnetic devices and sensors. Therefore, MgO:Co and MgO:Cu films were deposited on glass substrates by Chemical Spray Pyrolysis (CSP) method different thin film deposition parameters. Deposited different transition metal doped MgO thin films were compared in terms of optic and structural properties. Comparison optic analysis of the films was investigated spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Comparison structural analysis of the thin films was examined by using XRD, Raman Analysis, SEM, EDX and AFM techniques. The transition metal-doped; MgO:Co and MgO:Cu thin films maybe have potential applications in spintronics and magnetic data storage.
Effect of aluminium doping on structural and optical properties of ZnO thin films by sol-gel method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayaprasath, G.; Murugan, R.; Ravi, G., E-mail: raviganesa@rediffmail.com, E-mail: gravicrc@gmail.com
2015-06-24
We systematically investigated the structural, morphological and optical properties of 0.05 mol % Al doped ZnO (Al:ZnO) thin films deposited on glass substrates by sol-gel spin coating method. The influences of Al doping in ZnO thin films are characterized by Powder X-ray diffraction study. ZnO and Al:ZnO thin films have showed hexagonal wurtzite structure without any secondary phase in c-axis (002) orientation. The SEM images also proved the hexagonal rod like morphologies for both films. All the films exhibited transmittance of 70-80% in the visible range up to 800 nm and cut-off wavelength observed at ∼390 nm corresponding to the fundamental absorption ofmore » ZnO. The band gap of the ZnO thin films slightly widened with the Al doping. The photoluminescence properties have been studied for Al: ZnO thin films and the results are presented in detail.« less
Nanoscale characterization and local piezoelectric properties of lead-free KNN-LT-LS thin films
NASA Astrophysics Data System (ADS)
Abazari, M.; Choi, T.; Cheong, S.-W.; Safari, A.
2010-01-01
We report the observation of domain structure and piezoelectric properties of pure and Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrates. It is revealed that, using piezoresponse force microscopy, ferroelectric domain structure in such 500 nm thin films comprised of primarily 180° domains. This was in accordance with the tetragonal structure of the films, confirmed by relative permittivity measurements and x-ray diffraction patterns. Effective piezoelectric coefficient (d33) of the films were calculated using piezoelectric displacement curves and shown to be ~53 pm V-1 for pure KNN-LT-LS thin films. This value is among the highest values reported for an epitaxial lead-free thin film and shows a great potential for KNN-LT-LS to serve as an alternative to PZT thin films in future applications.
Structural and morphological study of ZrO2 thin films
NASA Astrophysics Data System (ADS)
Kumar, Davinder; Singh, Avtar; Kaur, Manpreet; Rana, Vikrant Singh; Kaur, Raminder
2018-05-01
In this paper we discuss the fabrication of transparent thin films of Zirconium Oxide (ZrO2) deposited on glass substrates by sol-gel dip coating technique. Further these fabricated films were characterized for different annealing temperatures and withdrawal speed. X-ray diffraction is used to study the structural properties of deposited thin films and it reveals the change in crystallographic properties with the change in annealing temperature. Thickness of thin films is estimated by using scanning electron microscope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lad, Robert J.
1999-12-14
This project focused on three different aspects of oxide thin film systems: (1) Model metal/oxide and oxide/oxide interface studies were carried out by depositing ultra-thin metal (Al, K, Mg) and oxide (MgO, AlO{sub x}) films on TiO{sub 2}, NiO and {alpha}-Al{sub 2}O{sub 3} single crystal oxide substrates. (2) Electron cyclotron resonance (ECR) oxygen plasma deposition was used to fabricate AlO{sub 3} and ZrO{sub 2} films on sapphire substrates, and film growth mechanisms and structural characteristics were investigated. (3) The friction and wear characteristics of ZrO{sub 2} films on sapphire substrates in unlubricated sliding contact were studied and correlated with filmmore » microstructure. In these studies, thin film and interfacial regions were characterized using diffraction (RHEED, LEED, XRD), electron spectroscopies (XPS, UPS, AES), microscopy (AFM) and tribology instruments (pin-on-disk, friction microprobe, and scratch tester). By precise control of thin film microstructure, an increased understanding of the structural and chemical stability of interface regions and tribological performance of ultra-thin oxide films was achieved in these important ceramic systems.« less
Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Stender, Dieter; Schäuble, Nina; Weidenkaff, Anke; Montagne, Alex; Ghisleni, Rudy; Michler, Johann; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas
2015-01-01
The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ) is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.
Multilayer composites and manufacture of same
Holesinger, Terry G.; Jia, Quanxi
2006-02-07
The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelinck, G. H., E-mail: Gerwin.Gelinck@tno.nl; Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven; Breemen, A. J. J. M. van
Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.
The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films
NASA Astrophysics Data System (ADS)
Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin
In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.
NASA Astrophysics Data System (ADS)
Chavan, Apparao R.; Chilwar, R. R.; Shisode, M. V.; Hivrekar, Mahesh M.; Mande, V. K.; Jadhav, K. M.
2018-05-01
The nanocrystalline NiFe2O4 thin film has been prepared using a spray pyrolysis technique on glass substrate. The prepared thin film was characterized by using X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FTIR), and Field Emission-Scanning Electron Microscopy (FE-SEM) characterization techniques for the structural and microstructural analysis. The magnetic property was measured using vibrating sample magnetometer (VSM) at room temperature. X-ray diffraction studies show the formation of single phase spinel structure of the thin film. The octahedral and tetrahedral vibration in the sample was studied by Fourier transform infrared (FT-IR) spectra. Magnetic hysteresis loop was recorded for thin film at room temperature. At 15 kOe, saturation magnetization (Ms) was found to increase while coercivity (Hc) decreases with thickness of the NiFe2O4 thin film.
Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.
Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min
2017-08-29
Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain. We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates. Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.
Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M
2018-06-15
The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac) 2 thin film to atmospheric plasma for 5min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac) 2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5min, but, when the exposure time reaches 10min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35nm to ~1nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac) 2 thin films were studied using spectrophotometric method. The exposure of cu(acac) 2 thin films to plasma produced the indirect energy gap decrease from 3.20eV to 2.67eV for 10min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied. Copyright © 2018 Elsevier B.V. All rights reserved.
Al-/Ga-Doped ZnO Window Layers for Highly Efficient Cu₂ZnSn(S,Se)₄ Thin Film Solar Cells.
Seo, Se Won; Seo, Jung Woo; Kim, Donghwan; Cheon, Ki-Beom; Lee, Doh-Kwon; Kim, Jin Young
2018-09-01
The successful use of Al-/Ga-doped ZnO (AGZO) thin films as a transparent conducting oxide (TCO) layer of a Cu2ZnSn(S,Se)4 (CZTSSe) thin film solar cell is demonstrated. The AGZO thin films were prepared by radio frequency (RF) sputtering. The structural, crystallographic, electrical, and optical properties of the AGZO thin films were systematically investigated. The photovoltaic properties of CZTSSe thin film solar cells incorporating the AGZO-based TCO layer were also reported. It has been found that the RF power and substrate temperature of the AGZO thin film are important factors determining the electrical, optical, and structural properties. The optimization process involving the RF power and the substrate temperature leads to good electrical and optical transmittance of the AGZO thin films. Finally, the CZTSSe solar cell with the AGZO TCO layer demonstrated a high conversion efficiency of 9.68%, which is higher than that of the conventional AZO counterpart by 12%.
NASA Astrophysics Data System (ADS)
Tripathi, Ravishankar Nath; Verma, Aneet Kumar; Rahul, Vishwakarma, S. R.
2011-10-01
Cadmium selenide (CdSe) thin films deposited by means of electron beam evaporation technique under high vacuum ˜10 -5 torr on ultrasonically cleaned glass substrate. Using stating materials of various compositions of cadmium and selenium using formula Cd 1- x Se x where x is orbitory constant having value 0.20≤ x ≤0.40 here we take less value of x for the creation of anion vacancy in thin films. In present work the structural properties have been studies using XRD technique and found that starting materials and thin films both are polycrystalline in nature having hexagonal structure. Here we study the effect of composition ratio Cd/Se in starting material and its prepared thin films on its grain size and lattice parameter. From the analysis of X-Ray diffractogram found that lattice parameter and grain size both are decreases with increasing Cd/Se ratio in thin films as well as in starting material the preferred orientation in thin films along (100) plane. The surface morphology was studied using SEM characterization and found that films are smooth and homogeneous. The films have been analysed for optical band gap and absorbed a direct band gap.
Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr).
Demessence, Aude; Horcajada, Patricia; Serre, Christian; Boissière, Cédric; Grosso, David; Sanchez, Clément; Férey, Gérard
2009-12-14
Stable nanoparticles dispersions of the porous hybrid MIL-101(Cr) allow dip-coating of high quality optical thin films with dual hierarchical porous structure. Moreover, for the first time, mechanical and sorption properties of mesoporous MOFs based thin films are evaluated.
Yim, H; Kong, W Y; Yoon, S J; Kim, Y C; Choi, J W
2013-05-01
The Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode thin films were deposited on planar, hemisphere, linked hemisphere, and isolated hemisphere structured Pt current collector thin films to investigate the effect of 3-dimensional (3-D) structure for the electrochemical properties of active cathode thin films. The films of linked hemisphere structure shows the highest initial discharge capacity of 140 microA h/cm2-microm which is better than those of planar (62 microA h/cm2-microm), hemisphere (94.6 microA h/cm2-microm), and isolated hemisphere (135 microA h/cm2-microm) films due to increase of surface area for cathode thin films. Linked hemisphere shows the biggest capacity and the best retention rate because 6 nanobridges of each hemisphere bring strong connection.
Self-assembly of dodecaphenyl POSS thin films
NASA Astrophysics Data System (ADS)
Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor
2017-12-01
The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.
Effect of cadmium incorporation on the properties of zinc oxide thin films
NASA Astrophysics Data System (ADS)
Bharath, S. P.; Bangera, Kasturi V.; Shivakumar, G. K.
2018-02-01
Cd x Zn1- x O (0 ≤ x ≤ 0.20) thin films are deposited on soda lime glass substrates using spray pyrolysis technique. To check the thermal stability, Cd x Zn1- x O thin films are subjected to annealing. Both the as-deposited and annealed Cd x Zn1- x O thin films are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDAX) to check the structural, surface morphological and compositional properties, respectively. XRD analysis reveals that the both as-deposited and annealed Cd x Zn1- x O thin films are (002) oriented with wurtzite structure. SEM studies confirm that as-deposited, as well as annealed Cd x Zn1- x O thin films are free from pinholes and cracks. Compositional analysis shows the deficiency in Cd content after annealing. Optical properties evaluated from UV-Vis spectroscopy shows red shift in the band gap for Cd x Zn1- x O thin films. Electrical property measured using two probe method shows a decrease in the resistance after Cd incorporation. The results indicate that cadmium can be successfully incorporated in zinc oxide thin films to achieve structural changes in the properties of films.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
2001-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J.
1998-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, H.J.; Stoner, R.J.
1998-05-05
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects. 32 figs.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
2002-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Optical stress generator and detector
Maris, Humphrey J.; Stoner, Robert J
1999-01-01
Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.
Silicon-integrated thin-film structure for electro-optic applications
McKee, Rodney A.; Walker, Frederick Joseph
2000-01-01
A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.
Synthesis and characterization of nanostructured bismuth selenide thin films.
Sun, Zhengliang; Liufu, Shengcong; Chen, Lidong
2010-12-07
Nanostructured bismuth selenide thin films have been successfully fabricated on a silicon substrate at low temperature by rational design of the precursor solution. Bi(2)Se(3) thin films were constructed of coalesced lamella in the thickness of 50-80 nm. The nucleation and growth process of Bi(2)Se(3) thin films, as well as the influence of solution chemistry on the film structure were investigated in detail. As one of the most promising thermoelectric materials, the thermoelectric properties of the prepared Bi(2)Se(3) thin films were also investigated. The power factor increased with increasing carrier mobility, coming from the enlarged crystallites and enhanced coalesced structure, and reached 1 μW cm(-1) K(-1).
Synthesis of galium nitride thin films using sol-gel dip coating method
NASA Astrophysics Data System (ADS)
Hamid, Maizatul Akmam Ab; Ng, Sha Shiong
2017-12-01
In this research, gallium nitride (GaN) thin film were grown on silicon (Si) substrate by a low-cost sol-gel dip coating deposition method. The GaN precursor solution was prepared using gallium (III) nitrate hydrate powder, ethanol and diethanolamine as a starting material, solvent and surfactant respectively. The structural, morphological and optical characteristics of the deposited GaN thin film were investigated. Field-emission scanning electron microscopy observations showed that crack free and dense grains GaN thin films were formed. Energy dispersive X-ray analysis confirmed that the oxygen content in the deposited films was low. X-ray diffraction results revealed that deposited GaN thin films have hexagonal wurtzite structure.
Role of solution structure in self-assembly of conjugated block copolymer thin films
Brady, Michael A.; Ku, Sung -Yu; Perez, Louis A.; ...
2016-10-24
Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)- block-poly(diketopyrrolopyrrole–terthiophene) (P3HT- b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT- b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering.more » In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. Finally, these results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers.« less
Role of solution structure in self-assembly of conjugated block copolymer thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Michael A.; Ku, Sung -Yu; Perez, Louis A.
Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)- block-poly(diketopyrrolopyrrole–terthiophene) (P3HT- b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT- b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering.more » In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. Finally, these results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers.« less
Structure and Ferroelectric Properties of High Tc BiScO3-PbTiO3 Epitaxial Thin Films.
Wasa, Kiyotaka; Yoshida, Shinya; Hanzawa, Hiroaki; Adachi, Hideaki; Matsunaga, Toshiyuki; Tanaka, Shuji
2016-10-01
Piezoelectric ceramics of new composition with higher Curie temperature T c are extensively studied for better piezoelectric microelectromechanical systems (MEMS). Apart from the compositional research, enhanced T c could be achieved in a modified structure. We have considered that a designed laminated structure of Pb(Zr, Ti)O 3 (PZT)-based thin film, i.e., relaxed heteroepitaxial epitaxial thin film, is one of the promising modified structures to enhance T c . This structure exhibits an extraordinarily high T c , i.e., [Formula: see text] (bulk [Formula: see text]). In this paper, we have fabricated the designed laminated structure of high T c (1-x)BiScO 3 -xPbTiO 3 . T c of BS-0.8PT thin films was found to be extraordinarily high, i.e., [Formula: see text] (bulk T c , [Formula: see text]). Their ferroelectric performances were comparable to those of PZT-based thin films. The present BS-xPT thin films have a high potential for fabrication of high-temperature-stable piezoelectric MEMS. The mechanism of the enhanced T c is probably the presence of the mechanically stable interface to temperature in the laminated structure. We believe this designed laminated structure can extract fruitful properties of bulk ferroelectric ceramics.
NASA Astrophysics Data System (ADS)
Oh, Seol Hee; Ferblantier, Gerald; Park, Young Sang; Schmerber, Guy; Dinia, Aziz; Slaoui, Abdelilah; Jo, William
2018-05-01
The compositional dependence of the crystal structure, optical transmittance, and surface electric properties of the zinc tin oxide (Zn-Sn-O, shortened ZTO) thin films were investigated. ZTO thin films with different compositional ratios were fabricated on glass and p-silicon wafers using radio frequency magnetron sputtering. The binding energy of amorphous ZTO thin films was examined by a X-ray photoelectron spectroscopy. The optical transmittance over 70% in the visible region for all the ZTO films was observed. The optical band gap of the ZTO films was changed as a result of the competition between the Burstein-Moss effect and renormalization. An electron concentration in the films and surface work function distribution were measured by a Hall measurement and Kelvin probe force microscopy, respectively. The mobility of the n- and p-type ZTO thin films have more than 130 cm2/V s and 15 cm2/V s, respectively. We finally constructed the band structure which contains band gap, work function, and band edges such as valence band maximum and conduction band minimum of ZTO thin films. The present study results suggest that the ZTO thin film is competitive compared with the indium tin oxide, which is a representative material of the transparent conducting oxides, regarding optoelectronic devices applications.
NASA Astrophysics Data System (ADS)
Otieno, Francis; Airo, Mildred; Erasmus, Rudolph M.; Billing, David G.; Quandt, Alexander; Wamwangi, Daniel
2017-08-01
Aluminium doped zinc oxide thin films are prepared by Radio Frequency magnetron sputtering in pure argon atmosphere at 100 W. The structural results reveal good film adhesion on a silicon substrate (001). The thin films were then subjected to heat treatment in a furnace under ambient air. The structural, morphological, and optical properties of the thin films as a function of deposition time and annealing temperatures have been investigated using Grazing incidence X-Ray Diffraction (GIXRD), Atomic Force Microscopy, and Scanning Electronic Microscopy. The photoluminescence properties of the annealed films showed significant changes in the optical properties attributed to mid gap defects. Annealing increases the crystallite size and the roughness of the film. The crystallinity of the films also improved as evident from the Raman and XRD studies.
Selective rear side ablation of thin nickel-chromium-alloy films using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Pabst, Linda; Ullmann, Frank; Ebert, Robby; Exner, Horst
2018-03-01
In recent years, the selective laser structuring from the transparent substrate side plays an increased role in thin film processing. The rear side ablation is a highly effective ablation method for thin film structuring and revels a high structuring quality. Therefore, the rear side ablation of nickel-chromium-alloy thin films on glass substrate was investigated using femtosecond laser irradiation. Single and multiple pulses ablation thresholds as well as the incubation coefficient were determined. By irradiation from the transparent substrate side at low fluences a cracking or a partly delamination of the film could be observed. By increasing the fluence the most part of the film was ablated, however, a very thin film remained at the interface of the glass substrate. This thin remaining layer could be completely ablated by two pulses. A further increase of the pulse number had no influence on the ablation morphology. The ablated film was still intact and an entire disc or fragments could be collected near the ablation area. The fragments showed no morphology change and were still in solid state.
An investigation of GaN thin films on AlN on sapphire substrate by sol-gel spin coating method
NASA Astrophysics Data System (ADS)
Amin, Nur Fahana Mohd; Ng, Sha Shiong
2017-12-01
In this research, the gallium nitride (GaN) thin films were deposited on aluminium nitride on sapphire (AlN/Al2O3) substrate by sol-gel spin coating method. Simple ethanol-based precursor with the addition of diethanolamine solution was used. The structural and morphology properties of synthesized GaN thin films were characterized by using X-ray Diffraction, Field-Emission Scanning Electron Microscopy and Atomic Force Microscopy. While the elemental compositions and the lattice vibrational properties of the films were investigated by means of the Energy Dispersive X-ray spectroscopy and Raman spectroscopy. All the results revealed that the wurtzite structure GaN thin films with GaN(002) preferred orientation and smooth surface morphology were successfully grown on AlN/Al2O3 substrate by using inexpensive and simplified sol-gel spin coating technique. The sol-gel spin coated GaN thin film with lowest oxygen content was also achieved.FESEM images show that GaN thin films with uniform and packed grains were formed. Based on the obtained results, it can be concluded that wurtzite structure GaN thin films were successfully deposited on AlN/Al2O3 substrate.
NASA Astrophysics Data System (ADS)
Thanawala, Sachin
Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.
Fabrication of stable, wide-bandgap thin films of Mg, Zn and O
Katiyar, Ram S.; Bhattacharya, Pijush; Das, Rasmi R.
2006-07-25
A stable, wide-bandgap (approximately 6 eV) ZnO/MgO multilayer thin film is fabricated using pulsed-laser deposition on c-plane Al2O3 substrates. Layers of ZnO alternate with layers of MgO. The thickness of MgO is a constant of approximately 1 nm; the thicknesses of ZnO layers vary from approximately 0.75 to 2.5 nm. Abrupt structural transitions from hexagonal to cubic phase follow a decrease in the thickness of ZnO sublayers within this range. The band gap of the thin films is also influenced by the crystalline structure of multilayer stacks. Thin films with hexagonal and cubic structure have band-gap values of 3.5 and 6 eV, respectively. In the hexagonal phase, Mg content of the films is approximately 40%; in the cubic phase Mg content is approximately 60%. The thin films are stable and their structural and optical properties are unaffected by annealing at 750.degree. C.
Optical and structural properties of cobalt-permalloy slanted columnar heterostructure thin films
NASA Astrophysics Data System (ADS)
Sekora, Derek; Briley, Chad; Schubert, Mathias; Schubert, Eva
2017-11-01
Optical and structural properties of sequential Co-column-NiFe-column slanted columnar heterostructure thin films with an Al2O3 passivation coating are reported. Electron-beam evaporated glancing angle deposition is utilized to deposit the sequential multiple-material slanted columnar heterostructure thin films. Mueller matrix generalized spectroscopic ellipsometry data is analyzed with a best-match model approach employing the anisotropic Bruggeman effective medium approximation formalism to determine bulk-like and anisotropic optical and structural properties of the individual Co and NiFe slanted columnar material sub-layers. Scanning electron microscopy is applied to image the Co-NiFe sequential growth properties and to verify the results of the ellipsometric analysis. Comparisons to single-material slanted columnar thin films and optically bulk solid thin films are presented and discussed. We find that the optical and structural properties of each material sub-layer of the sequential slanted columnar heterostructure film are distinct from each other and resemble those of their respective single-material counterparts.
Hobson, David O.; Snyder, Jr., William B.
1995-01-01
A method and system for manufacturing a thin-film battery and a battery structure formed with the method utilizes a plurality of deposition stations at which thin battery component films are built up in sequence upon a web-like substrate as the substrate is automatically moved through the stations. At an initial station, cathode and anode current collector film sections are deposited upon the substrate, and at another station, a thin cathode film is deposited upon the substrate so to overlie part of the cathode current collector section. At another station, a thin electrolyte film is deposited upon so as to overlie the cathode film and part of the anode current collector film, at yet another station, a thin lithium film is deposited upon so as to overlie the electrolyte film and an additional part of the anode current collector film. Such a method accommodates the winding of a layup of battery components into a spiral configuration to provide a thin-film, high capacity battery and also accommodates the build up of thin film battery components onto a substrate surface having any of a number of shapes.
Nanocrystalline high-entropy alloy (CoCrFeNiAl 0.3 ) thin-film coating by magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Weibing; Lan, Si; Gao, Libo
High-entropy CoCrFeNiAl0.3 alloy thin films were prepared by magnetron sputtering technique. The thin film surface was very smooth and homogeneous. The synchrotron X-ray experiment confirmed that (111) type of texture existed in the thin film, and the structure was face-centered cubic nanocrystals with a minor content of ordered NiAl-type body-centered cubic structures. Interestingly, the elastic modulus of the thin film was nearly the same to the bulk single-crystal counterpart, however, the nanohardness is about four times of the bulk single-crystal counterpart. It was found that the high hardness was due to the formation of nanocrystal structure inside the thin filmsmore » and the preferred growth orientation, which could be promising for applications in micro fabrication and advanced coating technologies.« less
Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation
NASA Astrophysics Data System (ADS)
Jin, Kuijuan; Wang, Jiesu; Gu, Junxing; L03 Group in Institute of Physics, Chinese Academy of Sciences Team
BiFeO3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO3 thin films with a thickness below 60 nm belongs to the point group 4mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ31/ χ15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO3 thin films. email: kjjin@iphy.ac.cn
Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation.
Wang, Jie-Su; Jin, Kui-Juan; Guo, Hai-Zhong; Gu, Jun-Xing; Wan, Qian; He, Xu; Li, Xiao-Long; Xu, Xiu-Lai; Yang, Guo-Zhen
2016-12-01
BiFeO 3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO 3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO 3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO 3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO 3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO 3 thin films with a thickness below 60 nm belongs to the point group 4 mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ 31 /χ 15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO 3 thin films.
Evolution of structural distortion in BiFeO3 thin films probed by second-harmonic generation
Wang, Jie-su; Jin, Kui-juan; Guo, Hai-zhong; Gu, Jun-xing; Wan, Qian; He, Xu; Li, Xiao-long; Xu, Xiu-lai; Yang, Guo-zhen
2016-01-01
BiFeO3 thin films have drawn much attention due to its potential applications for novel magnetoelectric devices and fundamental physics in magnetoelectric coupling. However, the structural evolution of BiFeO3 films with thickness remains controversial. Here we use an optical second-harmonic generation technique to explore the phase-related symmetry evolution of BiFeO3 thin films with the variation of thickness. The crystalline structures for 60 and 180-nm-thick BiFeO3 thin films were characterized by high-resolution X-ray diffractometry reciprocal space mapping and the local piezoelectric response for 60-nm-thick BiFeO3 thin films was characterized by piezoresponse force microscopy. The present results show that the symmetry of BiFeO3 thin films with a thickness below 60 nm belongs to the point group 4 mm. We conclude that the disappearance of fourfold rotational symmetry in SHG s-out pattern implies for the appearance of R-phase. The fact that the thinner the film is, the closer to 1 the tensor element ratio χ31/χ15 tends, indicates an increase of symmetry with the decrease of thickness for BiFeO3 thin films. PMID:27905565
NASA Astrophysics Data System (ADS)
Liu, Wei-Ting; Huang, Wen-Yao
2012-10-01
This study used the novel fluorescence based deep-blue-emitting molecule BPVPDA in an organic fluorescent color thin film to exhibit deep blue color with CIE coordinates of (0.13, 0.16). The developed original organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and thin-film-transistor (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a TFT LCD with organic color thin films. The organic color thin films structure uses an organic dye dopant in a limpid photoresist. With this technology, the following characteristics can be obtained: 1. high color reproduction of gamut ratio, and 2. improved luminous efficiency with organic color fluorescent thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD or OLED.
NASA Astrophysics Data System (ADS)
Liu, Wei-ting; Huang, Wen-Yao
2012-06-01
This study used novel fluorescence based deep-blue-emitting molecules, namely BPVPDA, an organic fluorescence color thin film using BPVPDA exhibit deep blue fluorine with CIE coordinates of (0.13,0.16). The developed original Organic RGB color thin film technology enables the optimization of the distinctive features of an organic light emitting diode (OLED) and (TFT) LCD display. The color filter structure maintains the same high resolution to obtain a higher level of brightness, in comparison with conventional organic RGB color thin film. The image-processing engine is designed to achieve a sharp text image for a thin-film-transistor (TFT) LCD with organic color thin films. The organic color thin films structure uses organic dye dopent in limpid photo resist. With this technology , the following characteristics can be obtained: (1) high color reproduction of gamut ratio, and (2) improved luminous efficiency with organic color fluorescence thin film. This performance is among the best results ever reported for a color-filter used on TFT-LCD and OLED.
NASA Astrophysics Data System (ADS)
Gubari, Ghamdan M. M.; Ibrahim Mohammed S., M.; Huse, Nanasaheb P.; Dive, Avinash S.; Sharma, Ramphal
2018-05-01
The Cu0.1Zn0.9S thin film was grown by facile chemical bath deposition (CBD) method on glass substrates at 60°C. The structural, morphological, photosensor properties of the as-grown thin film has been investigated. The structural and phase confirmation of the as-grown thin film was carried out by X-ray diffraction (XRD) technique and Raman spectroscopy. The FE-SEM images showed that the thin films are well covered with material on an entire glass substrate. From the optical absorption spectrum, the direct band gap energy for the Cu0.1Zn0.9S thin film was found to be ˜3.16 eV at room temperature. The electrical properties were measured at room temperature in the voltage range ±2.5 V, showed a drastic enhancement in current under light illumination with the highest photosensitivity of ˜72 % for 260 W.
The structure and magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film
NASA Astrophysics Data System (ADS)
Huang, Yuanqi; Chen, Zhengwei; Zhang, Xiao; Wang, Xiaolong; Zhi, Yusong; Wu, Zhenping; Tang, Weihua
2018-05-01
High quality epitaxial single phase (Ga0.96Mn0.04)2O3 and Ga2O3 thin films have been prepared on sapphire substrates by using laser molecular beam epitaxy (L-MBE). X-ray diffraction results indicate that the thin films have the monoclinic structure with a ≤ft( {\\bar 201} \\right) preferable orientation. Room temperature (RT) ferromagnetism appears and the magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film are enhanced compared with our previous works. Experiments as well as the first principle method are used to explain the role of Mn dopant on the structure and magnetic properties of the thin films. The ferromagnetic properties are explained based on the concentration of transition element and the defects in the thin films. Project supported by the National Natural Science Foundation of China (Nos. 11404029, 51572033, 51172208) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, M. A. R., E-mail: ameerridhwan89@gmail.com; Mamat, M. H., E-mail: hafiz-030@yahoo.com; Ismail, A. S., E-mail: kyrin-samaxi@yahoo.com
2016-07-06
Preparation of NiO thin films at different annealing temperature by sol-gel method was conducted to synthesize the quality of the surface thin films. The effects of annealing temperature on the surface topology were systematically investigated. Our studies confirmed that the surface roughness of the thin films was increased whenever annealing temperature was increase. NiO thin films morphology structure analysis was confirmed by field emission scanning electron microscope. Surface roughness of the thin films was investigated by atomic force microscopy.
Growth Mechanism of Cluster-Assembled Surfaces: From Submonolayer to Thin-Film Regime
NASA Astrophysics Data System (ADS)
Borghi, Francesca; Podestà, Alessandro; Piazzoni, Claudio; Milani, Paolo
2018-04-01
Nanostructured films obtained by assembling preformed atomic clusters are of strategic importance for a wide variety of applications. The deposition of clusters produced in the gas phase onto a substrate offers the possibility to control and engineer the structural and functional properties of the cluster-assembled films. To date, the microscopic mechanisms underlying the growth and structuring of cluster-assembled films are poorly understood, and, in particular, the transition from the submonolayer to the thin-film regime is experimentally unexplored. Here we report the systematic characterization by atomic force microscopy of the evolution of the structural properties of cluster-assembled films deposited by supersonic cluster beam deposition. As a paradigm of nanostructured systems, we focus our attention on cluster-assembled zirconia films, investigating the influence of the building block dimensions on the growth mechanisms and roughening of the thin films, following the growth process from the early stages of the submonolayer to the thin-film regime. Our results demonstrate that the growth dynamics in the submonolayer regime determines different morphological properties of the cluster-assembled thin film. The evolution of the roughness with the number of deposited clusters reproduces the growth exponent of the ballistic deposition in the 2 +1 model from the submonolayer to the thin-film regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Ravi; Kaur, Davinder, E-mail: dkaurfph@iitr.ac.in
2016-05-06
In this study, the influence of film thickness on the structural, surface morphology and mechanical properties of Aluminum chromium nitride (AlCrN) thin films has been successfully investigated. The AlCrN thin films were deposited on silicon (100) substrate using dc magnetron reactive co-sputtering at substrate temperature 400° C. The structural, surface morphology and mechanical properties were studied using X-ray diffraction, field-emission scanning electron microscopy and nanoindentation techniques respectively. The thickness of these thin films was controlled by varying the deposition time therefore increase in deposition time led to increase in film thickness. X-ray diffraction pattern of AlCrN thin films with differentmore » deposition time shows the presence of (100) and (200) orientations. The crystallite size varies in the range from 12.5 nm to 36.3 nm with the film thickness due to surface energy minimization with the higher film thickness. The hardness pattern of these AlCrN thin films follows Hall-Petch relation. The highest hardness 23.08 Gpa and young modulus 215.31 Gpa were achieved at lowest grain size of 12.5 nm.« less
Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H
2014-10-14
Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.
Jin, Jingcheng; Jin, Chunshui; Li, Chun; Deng, Wenyuan; Yao, Shun
2015-06-01
High-quality coatings of fluoride materials are in extraordinary demand for use in deep ultraviolet (DUV) lithography. Gadolinium fluoride (GdF3) thin films were prepared by a thermal boat evaporation process at different substrate temperatures. GdF3 thin film was set at quarter-wave thickness (∼27 nm) with regard to their common use in DUV/vacuum ultraviolet optical stacks; these thin films may significantly differ in nanostructural properties at corresponding depositing temperatures, which would crucially influence the performance of the multilayers. The measurement and analysis of optical, structural, and mechanical properties of GdF3 thin films have been performed in a comprehensive characterization cycle. It was found that depositing GdF3 thin films at relative higher temperature would form a rather dense, smooth, homogeneous structure within this film thickness scale.
NASA Astrophysics Data System (ADS)
Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki
2017-05-01
Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.
Fabrication and etching processes of silicon-based PZT thin films
NASA Astrophysics Data System (ADS)
Zhao, Hongjin; Liu, Yanxiang; Liu, Jianshe; Ren, Tian-Ling; Liu, Li-Tian; Li, Zhijian
2001-09-01
Lead-zirconate-titanate (PZT) thin films on silicon were prepared by a sol-gel method. Phase characterization and crystal orientation of the films were investigated by x-ray diffraction analysis (XRD). It was shown that the PZT thin films had a perfect perovskite structure after annealed at a low temperature of 600 degrees C. PZT thin films were chemically etched using HCl/HF solution through typical semiconductor lithographic process, and the etching condition was optimized. The scanning electron microscopy results indicated that the PZT thin film etching problem was well solved for the applications of PZT thin film devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouro, J.; Gualdino, A.; Chu, V.
2013-11-14
Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three differentmore » types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.« less
Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3
NASA Astrophysics Data System (ADS)
Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip
2018-02-01
The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.
NASA Astrophysics Data System (ADS)
Musaoğlu, Caner; Pat, Suat; Özen, Soner; Korkmaz, Şadan; Mohammadigharehbagh, Reza
2018-03-01
In this study, investigation of some physical properties of In-doped CuxO thin films onto amorphous glass substrates were done. The thin films were depsoied by thermionic vacuum arc technique (TVA). TVA technique gives a thin film with lower precursor impurity according to the other chemical and physical depsoition methods. The microstructural properties of the produced thin films was determined by x-ray diffraction device (XRD). The thickness values were measured as to be 30 nm and 60 nm, respectively. The miller indices of the thin films’ crystalline planes were determined as to be Cu (111), CuO (\\bar{1} 12), CuInO2 (107) and Cu2O (200), Cu (111), CuO (\\bar{1} 12), CuO (\\bar{2} 02), CuInO2 (015) for sample C1 and C2, respectively. The produced In-doped CuO thin films are in polycrystalline structure. The surface properties of produced In doped CuO thin films were determined by using an atomic force microscope (AFM) and field emission scanning electron microscope (FESEM) tools. The optical properties of the In doped CuO thin films were determined by UV–vis spectrophotometer, interferometer, and photoluminescence devices. p-type semiconductor thin film was obtained by TVA depsoition.
NASA Astrophysics Data System (ADS)
Vinoth, E.; Gopalakrishnan, N.
2018-04-01
Undoped and Mg doped (at l0 mol %) ZnO thin films have been grown on glass substrates by using the RF magnetron sputtering. The structural properties of the fabricated thin films were studied by X-ray diffraction analysis and it was found hexagonal wurtzite phase and preferential orientation along (002) of both films. Green Band Emission peaks in the Photoluminescence spectra confirm the structural defects such as oxygen vacancies (Vo) in the films. Uniform distribution of spherical shape morphology of grains observed in the both films by FESEM. However, the growth of grains was found in the Mg doped thin film. The temperature dependent ammonia sensing is done by the indigenously made gas sensing setup. The gas response of the both films was increased as the temperature increases, attains maximum at 75° C and then decreases. Response and recovery time measurementswere donefor boththe films and it shows the fast response time and quick recovery for doped thin film compared to the pure ZnO thin film.
Lee, Ching-Ting; Chen, Chia-Chi; Lee, Hsin-Ying
2018-03-05
The three dimensional inverters were fabricated using novel complementary structure of stacked bottom n-type aluminum-doped zinc oxide (Al:ZnO) thin-film transistor and top p-type nickel oxide (NiO) thin-film transistor. When the inverter operated at the direct voltage (V DD ) of 10 V and the input voltage from 0 V to 10 V, the obtained high performances included the output swing of 9.9 V, the high noise margin of 2.7 V, and the low noise margin of 2.2 V. Furthermore, the high performances of unskenwed inverter were demonstrated by using the novel complementary structure of the stacked n-type Al:ZnO thin-film transistor and p-type nickel oxide (NiO) thin-film transistor.
Atomic-scale visualization of oxide thin-film surfaces.
Iwaya, Katsuya; Ohsawa, Takeo; Shimizu, Ryota; Okada, Yoshinori; Hitosugi, Taro
2018-01-01
The interfaces of complex oxide heterostructures exhibit intriguing phenomena not observed in their constituent materials. The oxide thin-film growth of such heterostructures has been successfully controlled with unit-cell precision; however, atomic-scale understandings of oxide thin-film surfaces and interfaces have remained insufficient. We examined, with atomic precision, the surface and electronic structures of oxide thin films and their growth processes using low-temperature scanning tunneling microscopy. Our results reveal that oxide thin-film surface structures are complicated in contrast to the general perception and that atomically ordered surfaces can be achieved with careful attention to the surface preparation. Such atomically ordered oxide thin-film surfaces offer great opportunities not only for investigating the microscopic origins of interfacial phenomena but also for exploring new surface phenomena and for studying the electronic states of complex oxides that are inaccessible using bulk samples.
Effect of K-doping on structural and optical properties of ZnO thin films
NASA Astrophysics Data System (ADS)
Xu, Linhua; Li, Xiangyin; Yuan, Jun
2008-09-01
In this work, K-doped ZnO thin films were prepared by a sol-gel method on Si(111) and glass substrates. The effect of different K-doping concentrations on structural and optical properties of the ZnO thin films was studied. The results showed that the 1 at.% K-doped ZnO thin film had the best crystallization quality and the strongest ultraviolet emission ability. When the concentration of K was above 1 at.%, the crystallization quality and ultraviolet emission ability dropped. For the K-doped ZnO thin films, there was not only ultraviolet emission, but also a blue emission signal in their photoluminescent spectra. The blue emission might be connected with K impurity or/and the intrinsic defects (Zn interstitial and Zn vacancy) of the ZnO thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl; Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl; Jelonkiewicz, Jerzy, E-mail: jerzy.jelonkiewicz@kik.pcz.pl
The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUIDmore » magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined. - Highlights: • Functionalized free-standing SBA-15 thin films were synthesized for a first time. • Thin films synthesis procedure was described in details. • Structural properties of the films were thoroughly investigated and presented. • Magnetic properties of the novel material was investigated and presented.« less
Structural and optical properties of ITO and Cu doped ITO thin films
NASA Astrophysics Data System (ADS)
Chakraborty, Deepannita; Kaleemulla, S.; Rao, N. Madhusudhana; Subbaravamma, K.; Rao, G. Venugopal
2018-04-01
(In0.95Sn0.05)2O3 and (In0.90Cu0.05Sn0.05)2O3 thin films were coated onto glass substrate by electron beam evaporation technique. The structural and optical properties of ITO and Cu doped ITO thin films have been studied by X-ray diffractometer (XRD) and UV-Vis-NIR spectrophotometer. The crystallite size obtained for ITO and Cu doped ITO thin films was in the range of 24 nm to 22 nm. The optical band gap of 4 eV for ITO thin film sample has been observed. The optical band gap decreases to 3.85 eV by doping Cu in ITO.
Electrochemical and physical properties of electroplated CuO thin films.
Dhanasekaran, V; Mahalingam, T
2013-01-01
Cupric oxide thin films have been prepared on ITO glass substrates from an aqueous electrolytic bath containing CuSO4 and tartaric acid. Growth mechanism has been analyzed using cyclic voltammetry. The role of pH on the structural, morphological, compositional, electrical and optical properties of CuO films is investigated. The structural studies revealed that the deposited films are polycrystalline in nature with a cubic structure. The preferential orientation of CuO thin films is found to be along (111) plane. X-ray line profile analysis has been carried out to determine the microstructural parameters of CuO thin films. The pyramid shaped grains are observed from SEM and AFM images. The optical band gap energy and electrical activation energy is found to be 1.45 and 0.37 eV, respectively. Also, the optical constants of CuO thin films such as refractive index (n), complex dielectric constant (epsilon) extinction coefficient (k) and optical conductivity (sigma) are evaluated.
NASA Astrophysics Data System (ADS)
Logu, T.; Soundarrajan, P.; Sankarasubramanian, K.; Sethuraman, K.
2018-04-01
In this work, a high crystalline and mesoporous nanostructured cadmium sulfide (CdS) thin film was successfully grown on the FTO substrates using facile Electrospray Aerosol Deposition (ESAD) technique. The structural, optical, morphological and electrical properties of CdS thin film have been systematically examined. CdS thin film exhibits the hexagonal wurtzite crystal structure with polycrystalline nature. The optical band gap energy of the prepared film was estimated from the Tauc plot and is 2.43 eV. The SEM and AFM images show that the well-interconnected CdS nanoparticles gives mesoporous like morphology. The fine aerosol generated from the ESAD process induces the alteration in the surface morphological structure of deposited CdS film that consequences in enhanced electrical and photo-physical properties. The photoconductivity of the sample has been studied which demonstrates significant photo current. The present study predicts that mesoporous nanostructured CdS thin film would be given a special interest for optoelectronic applications.
Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method.
Jo, Seo-Hyeon; Lee, Sung-Gap; Lee, Young-Hie
2012-01-05
In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2.
Structure and electrical properties of Pb(ZrxTi1-x)O3 deposited on textured Pt thin films
NASA Astrophysics Data System (ADS)
Hong, Jongin; Song, Han Wook; Lee, Hee Chul; Lee, Won Jong; No, Kwangsoo
2001-08-01
The texturing of the bottom electrode plays a key role in the structure and electrical properties of Pb(Zr, Ti)O3 (PZT) thin films. We fabricated Pt bottom electrodes having a different thickness on MgO single crystals at 600 °C by rf magnetron sputtering. As the thickness of platinum (Pt) thin film increased, the preferred orientation of Pt thin film changed from (200) to (111). PZT thin films were fabricated at 450 °C by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition on the textured Pt thin films. The texturing of the bottom electrode caused drastic changes in the C-V characteristics, P-E characteristics, and fatigue characteristics of metal/ferroelectric material/metal (MFM) capacitors. The difference of the electrical properties between the PZT thin films having different texturing was discussed in terms-of the x-y alignment and the interface between electrode and PZT in MFM capacitors.
Structural and Electromagnetic Properties of Ni-Mn-Ga Thin Films Deposited on Si Substrates
NASA Astrophysics Data System (ADS)
Pereira, M. J.; Lourenço, A. A. C. S.; Amaral, V. S.
2014-07-01
Ni2MnGa thin films raise great interest due to their properties, which provide them with strong potential for technological applications. Ni2MnGa thin films were prepared by r.f. sputtering deposition on Si substrates at low temperature (400 ºC). Film thicknesses in the range 10-120 nm were obtained. A study of the structural, magnetic and electrical properties of the films is presented. We find that the deposited films show some degree of crystallinity, with coexisting cubic and tetragonal structural phases, the first one being preponderant over the latter, particularly in the thinner films. The films possess soft magnetic properties and their coercivity is thickness dependent in the range 15-200 Oe at 300K. Electrical resistivity measurements signal the structural transition and suggest the occurrence of avalanche and return-point memory effects, in temperature cycling through the magnetic/structural transition range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Sarita, E-mail: sss.sharmasarita@gmail.com; Ram, Mast; Thakur, Shilpa
2016-05-06
Ba{sub 0.7}Sr{sub 0.3}(Zr{sub x}Ti{sub 1-x})O{sub 3}(BSZT, x=0,0.05,0.10,0.15,0.20) thin films were prepared by using sol gel method. Structural and microstructural properties were studied by using XRD, Raman Spectroscopy and atomic force microscopy (AFM) respectively. XRD and Raman Spectroscopy show the presence of tetragonal phase in multilayer BSZT thin film. The experimental results demonstrate that structural and microstructural properties of BSZT thin film were significantly dependent on variation of Zr content.
Compositional and structural analysis of nitrogen incorporated and ion implanted diamond thin films
NASA Astrophysics Data System (ADS)
Garratt, Elias James
Significant progress in area of nano-structured thin film systems has taken place in recent decades. In particular, diamond thin film systems are being widely studied for their wear resistant, optical and electronic properties. Of the various methods researchers use to modify the structure of such films, three techniques in particular are of interest due to their versatility: modification of the growth atmosphere, growth on metalized substrates, providing an interfacial layer, and modification through post-growth ion implantation. The aim of this study is to investigate the effects each has to the structure and composition of elements. Different techniques are applied in each section; nitrogen gas dilution in a microwave plasma CVD system, diamond deposition on a metal interfacial layer and ion implantation in thin nanocrystalline diamond film. The forms of nanocrystalline diamond film resulting from such modifications are investigated using advanced spectroscopic and spectrometric techniques, as well as mechanical testing and surface mapping. The impact of these characterizations will provide valuable perspective to researchers in materials science. Understanding the changes to the structure and properties of this class of thin films, which can be induced through various mechanisms, will allow future researchers to refine these films towards technological applications in areas of hard coatings, electronics and photonics.
Performance enhancement in Sb doped Cu(InGa)Se2 thin film solar cell by e-beam evaporation
NASA Astrophysics Data System (ADS)
Chen, Jieyi; Shen, Honglie; Zhai, Zihao; Li, Yufang; Yi, Yunge
2018-03-01
To investigate the effects of Sb doping on the structural and electrical properties of Cu(InGa)Se2 (CIGS) thin films and solar cells, CIGS thin films, prepared by e-beam evaporation on soda-lime glass, were doped with lower and upper Sb layers in the precursor stacks respectively. Change of structure and introduction of stress were observed in the CIGS thin films with upper Sb layer in stack through XRD and Raman measurement. Both crystalline quality and compactness of CIGS thin films were improved by the doping of upper Sb layer in stack and the CIGS thin film showed an optimal structural property with 20 nm Sb layer. Movement of Fermi level of the surface of CIGS thin film after doping of upper Sb layer in stack and electrons transfer between Cu/Cu+ redox couple and CIGS thin films, which provided probability for the substitution of Sb for Cu sites at the surface of CIGS thin films, were proposed to explain the migration of Cu from the surface to the bulk of CIGS thin films. The larger barrier at the CIGS/CdS interface after doping of upper Sb layer in stack made contribution to the increase of VOC of CIGS solar cells. The efficiency of CIGS solar cell was improved from 3.3% to 7.2% after doping with 20 nm upper Sb. Compared to the CIGS solar cell with lower Sb layer in stack, in which an additional Cu2-xSe phase was found, the CIGS solar cell with upper Sb layer in stack possessed a higher efficiency.
Synergistic effect of indium and gallium co-doping on the properties of RF sputtered ZnO thin films
NASA Astrophysics Data System (ADS)
Shaheera, M.; Girija, K. G.; Kaur, Manmeet; Geetha, V.; Debnath, A. K.; Karri, Malvika; Thota, Manoj Kumar; Vatsa, R. K.; Muthe, K. P.; Gadkari, S. C.
2018-04-01
ZnO thin films were synthesized using RF magnetron sputtering, with simultaneous incorporation of Indium (In) and Gallium (Ga). The structural, optical, chemical composition and surface morphology of the pure and co-doped (IGZO) thin films were characterized by X-Ray diffraction (XRD), UV-visible spectroscopy, Field Emission Scanning Electron Microscopy (FESEM), and Raman spectroscopy. XRD revealed that these films were oriented along c-axis with hexagonal wurtzite structure. The (002) diffraction peak in the co-doped sample was observed at 33.76° with a slight shift towards lower 2θ values as compared to pure ZnO. The surface morphology of the two thin films was observed to differ. For pure ZnO films, round grains were observed and for IGZO thin films round as well as rod type grains were observed. All thin films synthesized show excellent optical properties with more than 90% transmission in the visible region and band gap of the films is observed to decrease with co-doping. The co doping of In and Ga is therefore expected to provide a broad range optical and physical properties of ZnO thin films for a variety of optoelectronic applications.
Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aryanto, Didik, E-mail: didi027@lipi.go.id; Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah; Marwoto, Putut
Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtainedmore » at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.« less
In-situ ellipsometry: applications to thin film research, development, and production
NASA Astrophysics Data System (ADS)
Kief, M. T.
1999-07-01
Many industries including the optics industry, semiconductor industry, and magnetic storage industry are deeply rooted in the science and technology of thin film materials and thin film based devices. Research in novel thin film systems and the engineering of artificial structures increasingly requires a control on the atomic scale in both thickness and lateral order. Development of the deposition and fabrication processes for these thin film structures requires technical sophistication and efficiency combined with an understanding of the multi-faceted process interactions. The production of these materials necessitates a remarkable degree of control to minimize scrap and assure good performance. Furthermore, in today's industry these operations must occur at an ever accelerating pace. In this article, we will review one technique which can make these challenges more tractable - insitu ellipsometry. This is a very powerful tool which is capable of characterizing thin film processes in real-time. We review the art and illustrate with novel applications to metal thin film growth. In addition, we will illustrate how information obtained with insitu ellipsometry can predict the end use thin film properties such as the transport properties. In conclusion, further advances in insitu ellipsometry and its applications will be discussed in terms of needs and trends as a tool for thin film research, development and production.
Wei, Mao-Kuo; Lin, Chii-Wann; Yang, Chih-Chung; Kiang, Yean-Woei; Lee, Jiun-Haw; Lin, Hoang-Yan
2010-01-01
In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode. PMID:20480033
Synthesis and characterization of cobalt doped nickel oxide thin films by spray pyrolysis method
NASA Astrophysics Data System (ADS)
Sathisha, D.; Naik, K. Gopalakrishna
2018-05-01
Cobalt (Co) doped nickel oxide (NiO) thin films were deposited on glass substrates at a temperature of about 400 °C by spray pyrolysis method. The effect of Co doping concentration on structural, optical and compositional properties of NiO thin films was investigated. X-ray diffraction result shows that the deposited thin films are polycrystalline in nature. Surface morphologies of the deposited thin films were observed by FESEM and AFM. EDS spectra showed the incorporation of Co dopants in NiO thin films. Optical properties of the grown thin films were characterized by UV-visible spectroscopy. It was found that the optical band gap energy and transmittance of the films decrease with increasing Co doping concentration.
Facile "modular assembly" for fast construction of a highly oriented crystalline MOF nanofilm.
Xu, Gang; Yamada, Teppei; Otsubo, Kazuya; Sakaida, Shun; Kitagawa, Hiroshi
2012-10-10
The preparation of crystalline, ordered thin films of metal-organic frameworks (MOFs) will be a critical process for MOF-based nanodevices in the future. MOF thin films with perfect orientation and excellent crystallinity were formed with novel nanosheet-structured components, Cu-TCPP [TCPP = 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin], by a new "modular assembly" strategy. The modular assembly process involves two steps: a "modularization" step is used to synthesize highly crystalline "modules" with a nanosized structure that can be conveniently assembled into a thin film in the following "assembly" step. With this method, MOF thin films can easily be set up on different substrates at very high speed with controllable thickness. This new approach also enabled us to prepare highly oriented crystalline thin films of MOFs that cannot be prepared in thin-film form by traditional techniques.
Room temperature ferroelectricity in continuous croconic acid thin films
NASA Astrophysics Data System (ADS)
Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Zhang, Xiaozhe; Wang, Xiao; Yu, Le; Ahmadi, Zahra; Costa, Paulo S.; DiChiara, Anthony D.; Cheng, Xuemei; Gruverman, Alexei; Enders, Axel; Xu, Xiaoshan
2016-09-01
Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.
ZnS thin films deposition by thermal evaporation for photovoltaic applications
NASA Astrophysics Data System (ADS)
Benyahia, K.; Benhaya, A.; Aida, M. S.
2015-10-01
ZnS thin films were deposited on glass substrates by thermal evaporation from millimetric crystals of ZnS. The structural, compositional and optical properties of the films are studied by X-ray diffraction, SEM microscopy, and UV-VIS spectroscopy. The obtained results show that the films are pin hole free and have a cubic zinc blend structure with (111) preferential orientation. The estimated optical band gap is 3.5 eV and the refractive index in the visible wavelength ranges from 2.5 to 1.8. The good cubic structure obtained for thin layers enabled us to conclude that the prepared ZnS films may have application as buffer layer in replacement of the harmful CdS in CIGS thin film solar cells or as an antireflection coating in silicon-based solar cells.
NASA Astrophysics Data System (ADS)
Riascos, H.; Duque, J. S.; Orozco, S.
2017-01-01
ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.
Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; ...
2015-07-05
By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb 3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb 3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb 3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb 6 octahedra with motifs highly resembling the local structure in crystalline FeSb 3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb 3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less
Jensen, Kirsten M. Ø.; Blichfeld, Anders B.; Bauers, Sage R.; Wood, Suzannah R.; Dooryhée, Eric; Johnson, David C.; Iversen, Bo B.; Billinge, Simon J. L.
2015-01-01
By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF) analysis have been obtained from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The ‘tfPDF’ method is illustrated through studies of as-deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films. PMID:26306190
Studies on RF sputtered (WO3)1-x (V2O5)x thin films for smart window applications
NASA Astrophysics Data System (ADS)
Meenakshi, M.; Sivakumar, R.; Perumal, P.; Sanjeeviraja, C.
2016-05-01
V2O5 doped WO3 targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO3)1-x (V2O5)x were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
Structural phase study in un-patterned and patterned PVDF semi-crystalline films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramod, K., E-mail: rameshg.phy@pondiuni.edu.in; Gangineni, Ramesh Babu, E-mail: rameshg.phy@pondiuni.edu.in
2014-04-24
This work explores the structural phase studies of organic polymer- polyvinylidene fluoride (PVDF) thin films in semi-crystallized phase and nano-patterned PVDF thin films. The nanopatterns are transferred with the CD layer as a master using soft lithography technique. The semi-crystalline PVDF films were prepared by a still and hot (SH) method, using a homemade spin coater that has the proficiency of substrate heating by a halogen lamp. Using this set up, smooth PVDF thin films in semi-crystalline α-phase were prepared using 2-Butanone as solvent. XRD, AFM and confocal Raman microscope have been utilized to study the structural phase, crystallinity andmore » quality of the films.« less
NASA Astrophysics Data System (ADS)
Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.
2018-05-01
This study presents the investigation on crystallinity property of PbTiO3 thin films towards metal-insulator-metal capacitor device fabrication. The preparation of the thin films utilizes sol-gel spin coating method with low annealing temperature effect. Hence, structural and electrical characterization is brought to justify the thin films consistency.
Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qi; Matsuoka, Fumiaki; Suh, Hyo Seon
Three-dimensional (3D) mesoporous thin films with sub-100 nm periodic lattices are of increasing interest as templates for a number of nanotechnology applications, yet are hard to achieve with conventional top-down fabrication methods. Block copolymer self-assembly derived mesoscale structures provide a toolbox for such 3D template formation. In this work, single (alternating) gyroidal and double gyroidal mesoporous thin-film structures are achieved via solvent vapor annealing assisted co-assembly of poly(isoprene-block-styrene-block-ethylene oxide) (PI-b-PS-b-PEO, ISO) and resorcinol/phenol formaldehyde resols. In particular, the alternating gyroid thin-film morphology is highly desirable for potential template backfilling processes as a result of the large pore volume fraction. Inmore » situ grazing-incidence small-angle X-ray scattering during solvent annealing is employed as a tool to elucidate and navigate the pathway complexity of the structure formation processes. The resulting network structures are resistant to high temperatures provided an inert atmosphere. The thin films have tunable hydrophilicity from pyrolysis at different temperatures, while pore sizes can be tailored by varying ISO molar mass. A transfer technique between substrates is demonstrated for alternating gyroidal mesoporous thin films, circumventing the need to re-optimize film formation protocols for different substrates. Increased conductivity after pyrolysis at high temperatures demonstrates that these gyroidal mesoporous resin/carbon thin films have potential as functional 3D templates for a number of nanomaterials applications.« less
Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films
NASA Astrophysics Data System (ADS)
Prasannakumara, R.; Naik, K. Gopalakrishna
2018-05-01
Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.
Atomic structures of B20 FeGe thin films grown on the Si(111) surface
NASA Astrophysics Data System (ADS)
Kim, Wondong; Noh, Seungkyun; Yoon, Jisoo; Kim, Young Heon; Lee, Inho; Kim, Jae-Sung; Hwang, Chanyong
We investigated the growth and atomic structures of FeGe thin films on the Si (111) surface by using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). The 2 5nm- thick FeGe thin films were prepared on the clean Si(111) 7x7 surface by co-deposition of Fe and Ge from separated electron-beam evaporators. With direct deposition on the substrate at the temperature above 550 K, the surface of FeGe films was not smooth and consisted of coarse grains. By the combination of room-temperature annealing and post-annealing process around 800 K, the structure of FeGe thin films evolved into the well crystalized structures. Atom-resolved STM images revealed that there are at least four different surface terminations. We constructed atomic models for each surface terminations based on the bulk atomic arrangement of a B20 chiral structure and confirmed that the observed STM images are successfully reproduced by using computational simulations employing Vienna Ab Initio Simulation package (VASP) with a B20 chiral structure model. TEM cross-sectional images also support our atomic models by revealing clearly the characteristic zigzag features of B20 structures of FeGe(111) thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Do, Woori; Jin, Won-Beom; Choi, Jungwan
2014-10-15
Highlights: • Intensified visible light irradiation was generated via a high-powered Xe arc lamp. • The disordered Si atomic structure absorbs the intensified visible light. • The rapid heating activates electrically boron-implanted Si thin films. • Flash lamp heating is applicable to low temperature polycrystalline Si thin films. - Abstract: Boron-implanted polycrystalline Si thin films on glass substrates were subjected to a short duration (1 ms) of intense visible light irradiation generated via a high-powered Xe arc lamp. The disordered Si atomic structure absorbs the intense visible light resulting from flash lamp annealing. The subsequent rapid heating results in themore » electrical activation of boron-implanted Si thin films, which is empirically observed using Hall measurements. The electrical activation is verified by the observed increase in the crystalline component of the Si structures resulting in higher transmittance. The feasibility of flash lamp annealing has also been demonstrated via a theoretical thermal prediction, indicating that the flash lamp annealing is applicable to low-temperature polycrystalline Si thin films.« less
Analysis of Crystal Structure of Fe3O4 Thin Films Based on Iron Sand Growth by Spin Coating Method
NASA Astrophysics Data System (ADS)
Rianto, D.; Yulfriska, N.; Murti, F.; Hidayati, H.; Ramli, R.
2018-04-01
Recently, iron sand used as one of base materials in the steel industry. However, the content of iron sand can be used as starting materials in sensor technology in the form of thin films. In this paper, we report the analysis of crystal structure of magnetite thin film based on iron sand from Tiram’s Beach. The magnetic content of sand separated by a permanent magnet, then it was milled at 30 hours milling time. In order to increase the purity of magnetite, it washed after milling using aquades under magnetic separation by a magnet permanent. The thin film has been prepared using iron (III) nitrate by sol–gel technique. The precursor is resulted by dissolving magnetite in oxalic acid and nitric acid. Then, solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. The X-Ray Diffraction is operated thin film characterization. The structure of magnetite has been studied based on X-Ray Peaks that correspond to magnetite content of thin films.
Laser deposition and direct-writing of thermoelectric misfit cobaltite thin films
NASA Astrophysics Data System (ADS)
Chen, Jikun; Palla-Papavlu, Alexandra; Li, Yulong; Chen, Lidong; Shi, Xun; Döbeli, Max; Stender, Dieter; Populoh, Sascha; Xie, Wenjie; Weidenkaff, Anke; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas
2014-06-01
A two-step process combining pulsed laser deposition of calcium cobaltite thin films and a subsequent laser induced forward transfer as micro-pixel is demonstrated as a direct writing approach of micro-scale thin film structures for potential applications in thermoelectric micro-devices. To achieve the desired thermo-electric properties of the cobaltite thin film, the laser induced plasma properties have been characterized utilizing plasma mass spectrometry establishing a direct correlation to the corresponding film composition and structure. The introduction of a platinum sacrificial layer when growing the oxide thin film enables a damage-free laser transfer of calcium cobaltite thereby preserving the film composition and crystallinity as well as the shape integrity of the as-transferred pixels. The demonstrated direct writing approach simplifies the fabrication of micro-devices and provides a large degree of flexibility in designing and fabricating fully functional thermoelectric micro-devices.
Doping induced c-axis oriented growth of transparent ZnO thin film
NASA Astrophysics Data System (ADS)
Mistry, Bhaumik V.; Joshi, U. S.
2018-04-01
c-Axis oriented In doped ZnO (IZO) transparent conducting thin films were optimized on glass substrate using sol gel spin coating method. The Indium content in ZnO was varied systematically and the structural parameters were studied. Along with the crystallographic properties, the optoelectronic and electrical properties of IZO thin films were investigated in detail. The IZO thin films revealed hexagonal wurtzite structure. It was found that In doping in ZnO promotes the c-axis oriented growth of the thin films deposited on amorphous substrate. The particle size of the IZO films were increase as doping content increases from 2% to 5%. The 2% In doped ZnO film show electrical resistivity of 0.11 Ω cm, which is far better than the reported value for ZnO thin film. Better than 75% average optical transmission was estimated in the wavelength range from 400-800 nm. Systematic variartions in the electron concentration and band gap was observed with increasing In doping. Note worthy finding is that, with suitable amount of In doping improves not only transparency and conductivity but also improves the preferred orientation of the oxide thin film.
NASA Astrophysics Data System (ADS)
Gelinck, G. H.; van Breemen, A. J. J. M.; Cobb, B.
2015-03-01
Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Rekha, E-mail: rekha.mittal07@gmail.com; Kumar, Dinesh; Chaudhary, Sujeet
2016-05-06
Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46more » to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.« less
NASA Astrophysics Data System (ADS)
Skonieczny, R.; Makowiecki, J.; Bursa, B.; Krzykowski, A.; Szybowicz, M.
2018-02-01
The titanyl phthalocyanine (TiOPc) thin film deposited on glass, silicon and gold substrate have been studied using Raman spectroscopy, atomic force microscopy (AFM), absorption and profilometry measurements. The TiOPc thin layers have been deposited at room temperature by the quasi-molecular beam evaporation technique. The Raman spectra have been recorded using micro Raman system equipped with a confocal microscope. Using surface Raman mapping techni que with polarized Raman spectra the polymorphic forms of the TiOPc thin films distribution have been obtained. The AFM height and phase image were examined in order to find surface features and morphology of the thin films. Additionally to compare experimental results, structure optimization and vibrational spectra calculation of single TiOPc molecule were performed using DFT calculations. The received results showed that the parameters like polymorphic form, grain size, roughness of the surface in TiOPc thin films can well characterize the obtained organic thin films structures in terms of their use in optoelectronics and photovoltaics devices.
NASA Astrophysics Data System (ADS)
Chaudhari, J. J.; Joshi, U. S.
2018-05-01
In this study kesterite Cu2ZnSnS4 (CZTS) thin films suitable for absorber layer in thin film solar cells (TFSCs) were successfully fabricated on glass substrate by sol-gel method. The effects of complexing agent on formation of CZTS thin films have been investigated. X-ray diffraction (XRD) analysis confirms formation of polycrystalline CZTS thin films with single phase kesterite structure. XRD and Raman spectroscopy analysis of CZTS thin films with optimized concentration of complexing agent confirmed formation of kesterite phase in CZTS thin films. The direct optical band gap energy of CZTS thin films is found to decrease from 1.82 to 1.50 eV with increase of concentration of complexing agent triethanolamine. Morphological analysis of CZTS thin films shows smooth, uniform and densely packed CZTS grains and increase in the grain size with increase of concentration of complexing agent. Hall measurements revealed that concentration of charge carrier increases and resistivity decreases in CZTS thin films as amount of complexing agent increases.
A two-layer structured PbI2 thin film for efficient planar perovskite solar cells.
Ying, Chao; Shi, Chengwu; Wu, Ni; Zhang, Jincheng; Wang, Mao
2015-07-28
In this paper, a two-layer structured PbI2 thin film was constructed by the spin-coating procedure using a 0.80 M PbI2 solution in DMF and subsequent close-spaced vacuum thermal evaporation using PbI2 powder as a source. The bottom PbI2 thin film was compact with a sheet-like appearance, parallel to the FTO substrate, and can be easily converted to a compact perovskite thin film to suppress the charge recombination of the electrons of the TiO2 conduction band and the holes of the spiro-OMeTAD valence band. The top PbI2 thin film was porous with nano-sheet arrays, perpendicular to the FTO substrate, and can be easily converted to a porous perovskite thin film to improve the hole migration from the perovskite to spiro-OMeTAD and the charge separation at the perovskite/spiro-OMeTAD interface. The planar perovskite solar cells based on the two-layer structured PbI2 thin film exhibited a photoelectric conversion efficiency of 11.64%, along with an open-circuit voltage of 0.90 V, a short-circuit photocurrent density of 19.29 mA cm(-2) and a fill factor of 0.67.
Metallic Thin-Film Bonding and Alloy Generation
NASA Technical Reports Server (NTRS)
Peotter, Brian S. (Inventor); Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Droppers, Lloyd (Inventor)
2016-01-01
Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.
In-situ ellipsometry: applications to thin film research, development, and production
NASA Astrophysics Data System (ADS)
Kief, Mark T.
1999-07-01
Many industries including the optics industry, semiconductor industry, and magnetic storage industry are deeply rooted in the science and technology of the film materials and thin film based devices. Research in novel thin film systems and the engineering of artificial structures increasingly requires a control on the atomic scale in both thickness and lateral order. Development of the deposition and fabrication processes for these thin film structures requires technical sophistication and efficiency combined with an understanding of the multi-faceted process interactions. The production of these materials necessitates a remarkable degree of control to minimize scrap and assure good performance. Furthermore, in today's industry these operations must occur at an ever accelerating pace. In this article, we will review one technique which can make these challenges more tractable-- insitu ellipsometry. This is a very powerful tool which is capable of characterizing thin film processes in real-time. We review the art and illustrate with novel applications to metal thin film growth. In addition, we will illustrate how information obtained with insitu ellipsometry can predict the end use thin film properties such as the transport properties. In conclusion, further advances in insitu ellipsometry and its applications will be discussed in terms of needs and trends as a tool for thin film research, development and production.
Laser patterning of transparent polymers assisted by plasmon excitation.
Elashnikov, R; Trelin, A; Otta, J; Fitl, P; Mares, D; Jerabek, V; Svorcik, V; Lyutakov, O
2018-06-13
Plasmon-assisted lithography of thin transparent polymer films, based on polymer mass-redistribution under plasmon excitation, is presented. The plasmon-supported structures were prepared by thermal annealing of thin Ag films sputtered on glass or glass/graphene substrates. Thin films of polymethylmethacrylate, polystyrene and polylactic acid were then spin-coated on the created plasmon-supported structures. Subsequent laser beam writing, at the wavelength corresponding to the position of plasmon absorption, leads to mass redistribution and patterning of the thin polymer films. The prepared structures were characterized using UV-Vis spectroscopy and confocal and AFM microscopy. The shape of the prepared structures was found to be strongly dependent on the substrate type. The mechanism leading to polymer patterning was examined and attributed to the plasmon-heating. The proposed method makes it possible to create different patterns in polymer films without the need for wet technological stages, powerful light sources or a change in the polymer optical properties.
NASA Astrophysics Data System (ADS)
Makhlouf, Mohamed M.; El-Denglawey, Adel
2018-04-01
Methyl red (MR) powder is polycrystalline structure as-purchased. The uniform, homogeneous and no cracks nano MR thin films are successfully prepared using thermal evaporation technique. The structural investigation for the pristine, annealed and UV irradiated MR films shows nanorods spread in amorphous medium. The part of as-prepared films exposed to UV light irradiation of wavelength 254 nm and intensity of 2000 µW/cm2 for 1 h, while the other part of films was treated by the annealing temperature at 178 °C for 1 h. The optical properties of MR thin films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the spectral range 200-2000 nm. The optical constants, dispersion parameters, and energy loss and dielectric functions of MR thin films were calculated and showed remarkable dependence on UV irradiation and annealing temperature upon the films of MR. The dependence of absorption coefficient on the photon energy were analyzed and the results showed that MR films undergo direct allowed optical transition for pristine, annealed and irradiated MR films.
Ferroelectric properties of PZT/BFO multilayer thin films prepared using the sol-gel method
2012-01-01
In this study, Pb(Zr0.52Ti0.48)O3/BiFeO3 [PZT/BFO] multilayer thin films were fabricated using the spin-coating method on a Pt(200 nm)/Ti(10 nm)/SiO2(100 nm)/p-Si(100) substrate alternately using BFO and PZT metal alkoxide solutions. The coating-and-heating procedure was repeated several times to form the multilayer thin films. All PZT/BFO multilayer thin films show a void-free, uniform grain structure without the presence of rosette structures. The relative dielectric constant and dielectric loss of the six-coated PZT/BFO [PZT/BFO-6] thin film were approximately 405 and 0.03%, respectively. As the number of coatings increased, the remanent polarization and coercive field increased. The values for the BFO-6 multilayer thin film were 41.3 C/cm2 and 15.1 MV/cm, respectively. The leakage current density of the BFO-6 multilayer thin film at 5 V was 2.52 × 10-7 A/cm2. PMID:22221519
NASA Astrophysics Data System (ADS)
Zaman, S.; Mehmood, S. K.; Mansoor, M.; Asim, M. M.
2014-06-01
PbS thin films have received considerable attention because of their potential applications in opto-electronics applications. Spontaneous reaction of lead acetate and thiourea in aqueous hydrazine hydrate has been used for depositing PbS thin films on glass substrates. Structural and optical properties of PbS thin films are greatly influenced by the morality of the reactants and crystal defects in the lattice. Our work focuses on the variation in lead ion concentration and its effect on the structural and optical properties of PbS thin films. The deposited films were analyzed using XRD, SEM, spectrophotometer and dark resistance measurement. XRD patterns indicated the formation of major phase of nano crystalline PbS with minor presence of lead oxide phase. We also noticed that peak intensity ratio of I111/I200 varied by changing the Pb ion concentration. The film thickness and dark resistance increased whereas optical band gap decreased with the decreasing Pb ion concentration. SEM scans showed that the grain size is less than 100 nm and is not affected by varying Pb ion concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barhoumi, A., E-mail: amira-barhoumi@yahoo.fr; Guermazi, S.; Leroy, G.
2014-05-28
Al-doped ZnO thin films (AZO) have been deposited on amorphous glass substrates by DC sputtering at different substrate temperatures T{sub s}. X-Ray diffraction results reveal that AZO thin films have a hexagonal wurtzite structure with (002) preferred orientation. (002) peaks indicate that the crystalline structure of the films is oriented with c-axis perpendicular to the substrate. Three-dimensional (3D) atomic force microscopy images of AZO thin films deposited on glass substrate at 200 °C, 300 °C, and 400 °C, respectively, shows the improvement of the crystallinity and the homogeneity of AZO thin films with T{sub s} which is in agreement with the noise measurements.more » The noise was characterized between 1 Hz and 100 kHz and we have obtained 1/f spectra. The noise is very sensitive to the crystal structure especially to the orientation of the crystallites which is perpendicular to the substrate and to the grain boundaries which generate a high current flow and a sharp increase in noise. Through time, R{sub sh} and [αμ]{sub eff} increase with the modification of the crystallinity of AZO thin films. Study of noise aging shows that the noise is more sensitive than resistivity for all AZO thin films.« less
NASA Astrophysics Data System (ADS)
Lu, Lei; Xiao, Dingquan; Lin, Dunmin; Zhang, Yongbin; Zhu, Jianguo
2009-02-01
Bi 0.5(Na 0.7K 0.2Li 0.1) 0.5TiO 3 (BNKLT) thin films were prepared on Pt/Ti/SiO 2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alraddadi, S.; Hines, W.; Yilmaz, T.
2016-02-19
A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe 3O 4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness ≤10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (001) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1 × 10 -7 torr to 1 × 10 -5 torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED)more » and x-ray photoemission spectroscopy (XPS), respectively. Moreover, the quality of the epitaxial Fe 3O 4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. We observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe 3O 4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses ≤20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe 3O 4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.« less
Structural and optical properties of Na-doped ZnO films
NASA Astrophysics Data System (ADS)
Akcan, D.; Gungor, A.; Arda, L.
2018-06-01
Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.
NASA Astrophysics Data System (ADS)
Salari, S.; Ghodsi, F. E.
2018-06-01
A study on the optical properties and photoluminescence (PL) spectra of ternary oxide nanogranular thin films comprising Zr, Zn, and Sn revealed that the change in component ratio could direct the roadmap to improve characteristics of the films. Grazing angle X-ray diffraction analysis showed that incorporation of Sn atoms into the tetragonal structure of Zn/Zr thin film resulted in an amorphous structure. The band gap of film was tunable by precisely controlling the concentration of components. The widening of band gap could correlate to the quantum confinement effect. PL spectra of the composite thin films under excitation at 365 nm showed a sharp red emission with relatively Gaussian line shape, which was intensified in the optimum percentage ratio of 50/30/20. This nearly red emission is attributed to the radiative emission of electrons captured at low-energy traps located near the valence band. An optimum red emission is strongly desirable for use in white LEDs. The comparative study on FTIR spectra of unary, binary, and ternary thin films confirmed successful composition of three different metal oxides in ternary thin films. Detailed investigation on FTIR spectra of ternary compounds revealed that the quenching in PL emission at higher percentage of Sn was originally due to the hydroxyl group.
NASA Astrophysics Data System (ADS)
Gashaw Hone, Fekadu; Dejene, F. B.
2018-02-01
Polycrystalline lead sulphide (PbS) thin films were grown on glass substrates by chemical bath deposition route using ethanolamine (ETA) as a complexing agent. The effects of ETA molar concentration on the structural, morphological, electrical and optical properties of lead sulphide thin films were thoroughly studied. The XRD analyses revealed that all the deposited thin films were face center cubic crystal structure and their preferred orientations were varied along the (111) and (200) planes. The XRD results further confirmed that ETA concentration had a significant effects on the strain, average crystalline size and dislocation density of the deposited thin films. The SEM studies illustrated the evolution and transformation of surface morphology as ETA molar concentration increased from 0.41 M to 1.64 M. The energy dispersive x-ray analysis was used to verify the compositional elements of the deposited thin films. Optical spectroscopy investigation established that the band gap of the PbS thin films were reduced from 0.98 eV to 0.68 eV as ETA concentration increased. The photoluminescence spectra showed a well defined peak at 428 nm and shoulder around 468 nm for all PbS thin films. The electrical resistivity of the thin films found in the order of 103 Ω cm at room temperature and decreased as the ETA molar concentration was increased.
Thickness-modulated anisotropic ferromagnetism in Fe-doped epitaxial HfO2 thin films
NASA Astrophysics Data System (ADS)
Liu, Wenlong; Liu, Ming; Zhang, Ruyi; Ma, Rong; Wang, Hong
2017-10-01
Epitaxial tetragonal Fe-doped Hf0.95Fe0.05O2 (FHO) thin films with various thicknesses were deposited on (001)-oriented NdCaAlO4 (NCAO) substrates by using a pulsed laser deposition (PLD) system. The crystal structure and epitaxial nature of the FHO thin films were confirmed by typical x-ray diffraction (XRD) θ-2θ scan and reciprocal space mapping (RSM). The results indicate that two sets of lattice sites exist with two different crystal orientations [(001) and (100)] in the thicker FHO thin films. Further, the intensity of the (100) direction increases with the increase in thicknesses, which should have a significant effect on the anisotropic magnetization of the FHO thin films. Meanwhile, all the FHO thin films possess a tetragonal phase structure. An anisotropy behavior in magnetization has been observed in the FHO thin films. The anisotropic magnetization of the FHO thin films is slowly weakened as the thickness increases. Meanwhile, the saturation magnetization (Ms) of both in-plane and out-of-plane decreases with the increase in the thickness. The change in the anisotropic magnetization and Ms is attributed to the crystal lattice and the variation in the valence of Fe ions. These results indicate that the thickness-modulated anisotropic ferromagnetism of the tetragonal FHO epitaxial thin films is of potential use for the integration of metal-oxide semiconductors with spintronics.
Structural and optical properties of Sb65Se35-xGex thin films
NASA Astrophysics Data System (ADS)
Saleh, S. A.; Al-Hajry, A.; Ali, H. M.
2011-07-01
Sb65Se35-xGex (x=0-20 at.%) thin films, prepared by the electron beam evaporation technique on ultrasonically cleaned glass substrates at 300 K, were investigated. The amorphous structure of the thin films was confirmed by x-ray diffraction analysis. The structure was deduced from the Raman spectra measured for all germanium contents in the Sb-Se-Ge matrix. The absorption coefficient (α) of the films was determined by optical transmission measurements. The compositional dependence of the optical band gap is discussed in light of topological and chemical ordered network models.
Naghshine, Babak B; Kiani, Amirkianoosh
2017-01-01
In this research, a numerical model is introduced for simulation of laser processing of thin film multilayer structures, to predict the temperature and ablated area for a set of laser parameters including average power and repetition rate. Different thin-films on Si substrate were processed by nanosecond Nd:YAG laser pulses and the experimental and numerical results were compared to each other. The results show that applying a thin film on the surface can completely change the temperature field and vary the shape of the heat affected zone. The findings of this paper can have many potential applications including patterning the cell growth for biomedical applications and controlling the grain size in fabrication of polycrystalline silicon (poly-Si) thin-film transistors (TFTs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malini, D. Rachel; Sanjeeviraja, C., E-mail: sanjeeviraja@rediffmail.com
Vanadium pentoxide (V{sub 2}O{sub 5}) and Vanadium-Cerium mixed oxide thin films at different molar ratios of V{sub 2}O{sub 5} and CeO{sub 2} have been deposited at 200 W rf power by rf planar magnetron sputtering in pure argon atmosphere. The structural and optical properties were studied by taking X-ray diffraction and transmittance and absorption spectra respectively. The amorphous thin films show an increase in transmittance and optical bandgap with increase in CeO{sub 2} content in as-prepared thin films. The impedance measurements for as-deposited thin films show an increase in electrical conductivity with increase in CeO{sub 2} material.
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Zhang, Q.; Holt, M. V.; Highland, M. J.; Evans, P. G.; Fuoss, P. H.
2016-10-01
Bragg projection ptychography (BPP) is a coherent diffraction imaging technique capable of mapping the spatial distribution of the Bragg structure factor in nanostructured thin films. Here, we show that, because these images are projections, the structural sensitivity of the resulting images depends on the film thickness and the aspect ratio and orientation of the features of interest and that image interpretation depends on these factors. We model changes in contrast in the BPP reconstructions of simulated PbTiO3 ferroelectric thin films with meandering 180∘ stripe domains as a function of film thickness, discuss their origin, and comment on the implication of these factors on the design of BPP experiments of general nanostructured films.
NASA Astrophysics Data System (ADS)
Parvathy Venu, M.; Shrisha B., V.; Balakrishna, K. M.; Naik, K. Gopalakrishna
2017-05-01
Undoped ZnO and Al doped ZnO thin films were deposited on glass and p-Si(100) substrates by RF magnetron sputtering technique at room temperature using homemade targets. ZnO target containing 5 at% of Al2O3 as doping source was used for the growth of Al doped ZnO thin films. XRD revealed that the films have hexagonal wurtzite structure with high crystallinity. Morphology and chemical composition of the films have been indicated by FESEM and EDAX studies. A blue shift of the band gap energy and higher optical transmittance has been observed in the case of Al doped ZnO (ZnO:Al) thin films with respect to the ZnO thin films. The as deposited films on p-Si were used to fabricate n-ZnO/p-Si(100) and n-ZnO:Al/p-Si(100) heterojunction diodes and their room temperature current-voltage characteristics were studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domenichini, P.; Condó, A.M.; Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Av. Bustillo 9500, 8400 San Carlos de Bariloche
We report the influence of the microstructure on the martensitic transformation in polycrystalline Cu−Zn−Al thin films with 18R structure. The films are grown in two steps. First, Cu−Al thin films are obtained by DC sputtering. Second, the Zn is introduced in the Cu−Al thin films by the annealing them together with a bulk Cu−Zn−Al reference. The crystalline structure of the films was analyzed by X-ray diffraction and transmission electron microscopy. The martensitic transformation temperature was measured by electrical transport using conventional four probe geometry. It was observed that temperatures above 973 K are necessary for zincification of the samples tomore » occur. The resulting martensitic transformation and its hysteresis (barrier for the transformation) depend on the grain size, topology and films thickness. - Highlights: • Polycrystalline Cu−Al−Zn thin films with nanometric grain size are sintered. • Influence of thermal annealing process on the microstructure is analyzed. • Martensitic transformation of Cu−Al−Zn thin films is strongly affected by the microstructure.« less
Structural and magnetic studies of Cr doped nickel ferrite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panwar, Kalpana, E-mail: kalpanapanwar99@gmail.com; Department of Physics, Govt. Women Engg. College, Ajmer-305002; Heda, N. L.
We have studied the structural and magnetic properties of Cr doped nickel ferrite thin films deposited on Si (100) and Si (111) using pulsed laser deposition technique. The films were deposited under vacuum and substrate temperature was kept at 700°C. X-ray diffraction analysis revealed that films on both substrates have single phase cubic spinel structure. However, the film grown on Si (111) shows better crystalline behavior. Fourier transform infrared spectroscopy suggests that films on both substrates have mixed spinel structure. These films show magnetic hysteresis behavior and magnetization value of film on Si (100) is larger than that on Simore » (111). It turns out that structural and magnetic properties of these two films are correlated.« less
NASA Astrophysics Data System (ADS)
Alshahrie, Ahmed; Juodkazis, S.; Al-Ghamdi, A. A.; Hafez, M.; Bronstein, L. M.
2017-10-01
Nanocrystalline In1-xCuxP thin films (0 ≤ x ≤ 0.5) have been deposited on quartz substrates by a Metal-Organic Chemical Vapor Deposition (MOCVD) technique. The effect of the copper ion content on the structural crystal lattice, morphology and optical behavior of the InP thin films was assessed using X-ray diffraction, scanning electron microscopy, atomic force microscopy, Raman spectroscopy and spectrophotometry. All films exhibited a crystalline cubic zinc blende structure, inferring the solubility of the Cu atoms in the InP crystal structure. The XRD patterns demonstrated that the inclusion of Cu atoms into the InP films forced the nanoparticles in the films to grow along the (1 1 1) direction. The AFM topography showed that the Cu ions reduce the surface roughness of deposited films. The Raman spectra of the deposited films contain the first and second order anti-stoke ΓTO, ΓLO, ΧLO + ΧTO, 2ΓTO, and ΓLO + ΓTO bands which are characteristic of the InP crystalline structure. The intensities of these bands decreased with increasing the content of the Cu atoms in the InP crystals implying the creation of a stacking fault density in the InP crystal structure. The In1-xCuxP thin films have shown high optical transparency of 90%. An increase of the optical band gap from 1.38 eV to 1.6 eV was assigned to the increase of the amount of Cu ions in the InP films. The In0.5Cu0.5P thin film exhibited remarkable optical conductivity with very low dissipation factor which makes it a promising buffer window for solar energy applications.
NASA Astrophysics Data System (ADS)
Peng, Cheng-Jien
The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could significantly improve the time -dependent dielectric breakdown (TDDB) behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping.
NASA Astrophysics Data System (ADS)
Ahmadipour, Mohsen; Ain, Mohd Fadzil; Ahmad, Zainal Arifin
2016-11-01
In this study, calcium copper titanate (CCTO) thin films were deposited on ITO substrates successfully by radio frequency (RF) magnetron sputtering method in argon atmosphere. The CCTO thin films present a polycrystalline, uniform and porous structure. The surface morphology, optical and humidity sensing properties of the synthesized CCTO thin films have been studied by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), UV-vis spectrophotometer and current-voltage (I-V) analysis. XRD and AFM confirmed that the intensity of peaks and pore size of CCTO thin films were enhanced by increasing the thin films. Tauc plot method was adopted to estimate the optical band gaps. The surface structure and energy band gaps of the deposited films were affected by film thickness. Energy band gap of the layers were 3.76 eV, 3.68 eV and 3.5 eV for 200 nm, 400 nm, and 600 nm CCTO thin films layer, respectively. The humidity sensing properties were measured by using direct current (DC) analysis method. The response times were 12 s, 22 s, and 35 s while the recovery times were 500 s, 600 s, and 650 s for 200 nm, 400 nm, and 600 nm CCTO thin films, respectively at humidity range of 30-90% relative humidity (RH).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meenakshi, M.; Perumal, P.; Sivakumar, R.
2016-05-23
V{sub 2}O{sub 5} doped WO{sub 3} targets for RF sputtering thin film deposition were prepared for various compositions. Thin films of (WO{sub 3}){sub 1-x} (V{sub 2}O{sub 5}){sub x} were deposited on to glass substrates using these targets. Structural characteristics of the prepared targets and thin films were studied using X-ray diffraction. Laser Raman studies were carried out on the thin films to confirm the compound formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazur, Michal, E-mail: michal.mazur@pwr.edu.pl; Wojcieszak, Damian; Domaradzki, Jaroslaw
2015-12-15
Highlights: • HfTiO{sub 4} thin films were deposited by magnetron co-sputtering. • As-prepared and annealed at 800 °C thin films were nanocrystalline. • Optical properties and hardness were investigated in relation to thin films structure. • Hardness was 3-times higher in the case of as-deposited thin films. • HfTiO{sub 4} thin films are suitable for use as optical coatings with protective properties. - Abstract: Titania (TiO{sub 2}) and hafnium oxide (HfO{sub 2}) thin films are in the focus of interest to the microelectronics community from a dozen years. Because of their outstanding properties like, among the others, high stability, highmore » refractive index, high electric permittivity, they found applications in many optical and electronics domains. In this work discussion on the hardness, microstructure and optical properties of as-deposited and annealed HfTiO{sub 4} thin films has been presented. Deposited films were prepared using magnetron co-sputtering method. Performed investigations revealed that as-deposited coatings were nanocrystalline with HfTiO{sub 4} structure. Deposited films were built from crystallites of ca. 4–12 nm in size and after additional annealing an increase in crystallites size up to 16 nm was observed. Micro-mechanical properties, i.e., hardness and elastic modulus were determined using conventional load-controlled nanoindentation testing. the annealed films had 3-times lower hardness as-compared to as-deposited ones (∼9 GPa). Based on optical investigations real and imaginary components of refractive index were calculated, both for as-deposited and annealed thin films. The real refractive index component increased after annealing from 2.03 to 2.16, while extinction coefficient increased by an order from 10{sup −4} to 10{sup −3}. Structure modification was analyzed together with optical energy band-gap, Urbach energy and using Wemple–DiDomenico model.« less
Sawamoto, Masanori; Kang, Myeong Jin; Miyazaki, Eigo; Sugino, Hiroyoshi; Osaka, Itaru; Takimiya, Kazuo
2016-02-17
We demonstrate a new approach to solution-processable dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) derivatives that can afford good thin-film transistors having mobilities higher than 0.1 cm(2) V(-1) s(-1). The key molecular design strategy is the introduction of one branched alkyl group at the edge of the DNTT core, which improves solubility while retaining semiconducting characteristics in the thin-film state. Dialkylation, i.e., the introduction of two branched alkyl groups on the DNTT core, had a detrimental effect on the semiconducting properties. Although the physicochemical properties of the mono- and dialkylated derivatives at the molecular level were almost the same, the thin-film absorption spectra and the ionization potentials (IPs) were markedly different, indicating that the intermolecular interaction in the thin-film state was affected by the number of alkyl groups. Indeed, the packing structures of the monoalkylated DNTTs in the thin-film state, which were estimated from the XRD patterns, were similar to that of parent DNTT, indicating the existence of the lamella structure with the herringbone packing motif. In sharp contrast, the XRD patterns of the dialkylated DNTT thin films showed poor crystallinity, and the packing structures were significantly different from that of parent DNTT. All the results of structural characterization in the thin-film state and evaluation of device characteristics of the DNTT derivatives with branched alkyl groups indicate that the introduction of a branched alkyl group in the molecular long-axis direction is an effective way to solubilize the rigid, largely π-extended organic semiconducting core without interfering with the semiconducting characteristics in the thin-film state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Din, Nasser Saad, E-mail: nsaadaldin@yahoo.com; Hussain, Nabiha, E-mail: nabihahssin@yahoo.com; Jandow, Nidhal, E-mail: nidhaljandow@yahoo.com
2016-07-25
Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH{sub 2}){sub 2}) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, itmore » observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300 K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.« less
Photovoltaic sub-cell interconnects
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne
2017-05-09
Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.
NASA Astrophysics Data System (ADS)
Turkoglu, F.; Koseoglu, H.; Zeybek, S.; Ozdemir, M.; Aygun, G.; Ozyuzer, L.
2018-04-01
In this study, aluminum-doped zinc oxide (AZO) thin films were deposited by DC magnetron sputtering at room temperature. The distance between the substrate and target axis, and substrate rotation speed were varied to get high quality AZO thin films. The influences of these deposition parameters on the structural, optical, and electrical properties of the fabricated films were investigated by X-ray diffraction (XRD), Raman spectroscopy, spectrophotometry, and four-point probe techniques. The overall analysis revealed that both sample position and substrate rotation speed are effective in changing the optical, structural, and electrical properties of the AZO thin films. We further observed that stress in the films can be significantly reduced by off-center deposition and rotating the sample holder during the deposition. An average transmittance above 85% in the visible range and a resistivity of 2.02 × 10-3 Ω cm were obtained for the AZO films.
Influence of spray time on the optical and electrical properties of CoNi2S4 thin films
NASA Astrophysics Data System (ADS)
El Radaf, I. M.; Fouad, S. S.; Ismail, A. M.; Sakr, G. B.
2018-04-01
In this paper, a facile spray pyrolysis technique was utilized to synthesize CoNi2S4 thin films. The influence of spray time on the structural, optical and electrical properties of the CoNi2S4 thin films was studied. The x-ray diffraction studies of the CoNi2S4 thin films illustrate that the films exhibit a polycrystalline nature with cubic structure. The values of the lattice strain ε, and the dislocation density δ, were decreased as the spray time increase while the grain size has reverse manner to lattice strain ε, and the dislocation density δ. The transmittance and reflectance spectra of the CoNi2S4 thin films were recorded in the wavelength range of (400–2500) nm to evaluate the optical parameters of the CoNi2S4 thin films. Optical absorption coefficient of CoNi2S4 thin films revealed a presence of a direct energy gap and the values of energy gap were decreased from 1.68 to 1.53 eV as the spray time increases from 15 min to 45 min. The nonlinear refractive index of the CoNi2S4 thin films was increased with increasing of the spray time. The CoNi2S4 thin films exhibit single activation energy and the activation energy was decreased as the spray time increased.
Heat flux sensor research and development: The cool film calorimeter
NASA Technical Reports Server (NTRS)
Abtahi, A.; Dean, P.
1990-01-01
The goal was to meet the measurement requirement of the NASP program for a gauge capable of measuring heat flux into a 'typical' structure in a 'typical' hypersonic flight environment. A device is conceptually described that has fast response times and is small enough to fit in leading edge or cowl lip structures. The device relies heavily on thin film technology. The main conclusion is the description of the limitations of thin film technology both in the art of fabrication and in the assumption that thin films have the same material properties as the original bulk material. Three gauges were designed and fabricated. Thin film deposition processes were evaluated. The effect of different thin film materials on the performance and fabrication of the gauge was studied. The gauges were tested in an arcjet facility. Survivability and accuracy were determined under various hostile environment conditions.
Effect of copper and nickel doping on the optical and structural properties of ZnO
NASA Astrophysics Data System (ADS)
Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.
2017-02-01
The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.
NASA Astrophysics Data System (ADS)
Park, Seyong; Yoon, Young Soo
2016-09-01
In this paper, we report the first successful fabrication of CdWO4 thin film scintillators deposited on quartz glass substrates by using an electron-beam physical vapor deposition method. The films were dense, uniform, and crack-free. CdWO4 thin-film samples of varying thicknesses were investigated by using structural and optical characterization techniques. An optimized thickness for the CdWO4 thin-film scintillators was discovered. The scintillation and the optical properties were found to depend strongly on the annealing process. The annealing process resulted in thin films with a distinct crystal structure and with improved transparency and scintillation properties. For potential applications in gamma-ray energy storage systems, photoluminescence measurements were performed using gamma rays at a dose rate of 10 kGy h-1.
The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route
NASA Astrophysics Data System (ADS)
Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei
2012-06-01
An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.
Conductive layer for biaxially oriented semiconductor film growth
Findikoglu, Alp T.; Matias, Vladimir
2007-10-30
A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.
p-Type Transparent Electronics
2003-09-25
thin - film transistors (TTFTs) reported to date in the literature are summarized. 2.2.1 Thin - Film Transistor Structure and Fabrication A TFT ...is incapable of controlling the TFT regardless of gate voltage, as described in Sec. 2.2.3.1. 2.2.4 Transparent Thin - Film Transistors (TTFTs...Transparent thin - film transistors (TTFTs) described in the literature to date are all n-channel devices. Several n-channel TTFTs (n-TTFTs) based on
Synthesis and characterization of lithium intercalation electrodes based on iron oxide thin films
NASA Astrophysics Data System (ADS)
Sarradin, J.; Guessous, A.; Ribes, M.
Sputter-deposited iron oxide thin films are investigated as a possible negative electrode for rocking-chair microbatteries. Experimental conditions related to the manufacturing of amorphous thin films suitable to a large number of available intercalation sites are described. Structural and physical properties of the thin layer films are presented. The conductivities of the amorphous thin films were found to be very high compared with those of the respective crystalline forms. Regarding the electrochemical behaviour, Fe 2O 3-based thin films electrodes are able to store and reversibly exchange lithium ions. At a C/2 charge/discharge rate with 100% depth-of-discharge (DOD), the specific capacity of these amorphous thin film electrodes remains almost constant and close to 330 Ah/kg after more than 120 charge/discharge cycles.
Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas
Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1 μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. Utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less
Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas
Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less
Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films
Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas; ...
2016-09-02
Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less
Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin films.
Woo, Sungmin; Lee, Sang A; Mun, Hyeona; Choi, Young Gwan; Zhung, Chan June; Shin, Soohyeon; Lacotte, Morgane; David, Adrian; Prellier, Wilfrid; Park, Tuson; Kang, Won Nam; Lee, Jong Seok; Kim, Sung Wng; Choi, Woo Seok
2018-03-01
Transition metal oxide thin films show versatile electric, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO 3 thin films using pulsed laser epitaxy. Using the epitaxial stabilization technique with an atomically flat polycrystalline SrTiO 3 substrate, an epitaxial polycrystalline SrRuO 3 thin film with the crystalline quality of each grain comparable to that of its single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced the enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to an enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho
2016-01-15
Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solidmore » oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.« less
NASA Astrophysics Data System (ADS)
Kamat, Sandip V.; Chhabra, Jasvinder; Patil, V. S.; Yadav, J. B.; Puri, R. K.; Puri, Vijaya
2018-05-01
The polythiophene thin films were prepared by a wellknown chemical bath deposition technique. The deposited thin films were characterized for structural morphological properties and the adhesion of these thin films were measured by direct pull off (DPO) method, the effect of oxidant concentration on these thin films also studied. The FTIR spectra of chemically deposited polythiophene thin films shows the absorption peak at 836 cm-1 which represents c-s stretching vibrations, shifts to 869 cm-1 as the oxidant concentration increases. The band at 666 cm-1 representing c-s-c ring deformation becomes sharper and appears with a shoulder peak due to increase in oxidant concentration.
Epitaxial BiFeO3 thin films fabricated by chemical solution deposition
NASA Astrophysics Data System (ADS)
Singh, S. K.; Kim, Y. K.; Funakubo, H.; Ishiwara, H.
2006-04-01
Epitaxial BiFeO3 (BFO) thin films were fabricated on (001)-, (110)-, and (111)-oriented single-crystal SrRuO3(SRO )/SrTiO3(STO) structures by chemical solution deposition. X-ray diffraction indicates the formation of an epitaxial single-phase perovskite structure and pole figure measurement confirms the cube-on-cube epitaxial relationship of BFO ‖SRO‖STO. Chemical-solution-deposited BFO films have a rhombohedral structure with lattice parameter of 0.395nm, which is the same structure as that of a bulk single crystal. The remanent polarization of approximately 50μC/cm2 was observed in BFO (001) thin films at 80K.
Method of fabricating a scalable nanoporous membrane filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem
A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter ofmore » the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.« less
NASA Astrophysics Data System (ADS)
Salodkar, R. V.; Belkhedkar, M. R.; Nemade, S. D.
2018-05-01
Successive Ionic Layer Adsorption and Reaction (SILAR) method has been employed to deposit nanocrystalline ZrO2 thin film of thickness 91 nm onto glass substrates using ZrOCl2.8H2O and NaOH as cationic and anionic precursors respectively. The structural and surface morphological characterizations have been carried out by means of X-ray diffraction and field emission scanning electron microscopy confirms the nanocrystalline nature of ZrO2 thin film. The direct optical band gap and activation energy of the ZrO2 thin film are found to be 4.74 and 0.80eV respectively.
Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics.
Eda, Goki; Chhowalla, Manish
2010-06-11
Chemically derived graphene oxide (GO) possesses a unique set of properties arising from oxygen functional groups that are introduced during chemical exfoliation of graphite. Large-area thin-film deposition of GO, enabled by its solubility in a variety of solvents, offers a route towards GO-based thin-film electronics and optoelectronics. The electrical and optical properties of GO are strongly dependent on its chemical and atomic structure and are tunable over a wide range via chemical engineering. In this Review, the fundamental structure and properties of GO-based thin films are discussed in relation to their potential applications in electronics and optoelectronics.
Structural and magnetic analysis of Cu, Co substituted NiFe2O4 thin films
NASA Astrophysics Data System (ADS)
Sharma, Hakikat; Bala, Kanchan; Negi, N. S.
2016-05-01
In the present work we prepared NiFe2O4, Ni0.95Cu0.05Fe2O4 and Ni0.94Cu0.05Co0.01 Fe2O4 thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).
Rietveld-refinement and optical study of the Fe doped ZnO thin film by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Kumar, Arun; Dhiman, Pooja; Singh, M.
2017-05-01
Fe Doped ZnO Dilute Magnetic Semiconductor thin film prepared by RF magnetron sputtering on glass substrate and Influence of 3% Fe-doping on structural and Optical properties has been studied. The Rietveld-refinement analysis shows that Fe doping has a significant effect on crystalline structure, grain size and strain in the thin film. Two dimensional and three-dimensional atom probe tomography of the thin film shows that Fe ions are randomly distributed which is supported by Xray Diffraction (XRD). Fe-doping is found to effectively modify the band gap energy up to 3.5 eV.
Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A
2006-07-01
A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.
NASA Astrophysics Data System (ADS)
Thakurdesai, Madhavi; Kanjilal, D.; Bhattacharyya, Varsha
2012-08-01
Irradiation by swift heavy ions (SHI) is unique tool to synthesize nanocrystalline thin films. We have reported transformation of 100 nm thick amorphous films into nanocrystalline film due to irradiation by 100 MeV Ag ion beam. Oblate shaped nanoparticles having anatase phase of TiO2 were formed on the surface of the irradiated films. In the present investigation, these films are annealed at 350 °C for 2 min in oxygen atmosphere by Rapid Thermal Annealing (RTA) method. During RTA processing, the temperature rises abruptly and this thermal instability is expected to alter surface morphology, structural and optical properties of nanocrystalline TiO2 thin films. Thus in the present work, effect of RTA on SHI induced nanocrystalline thin films of TiO2 is studied. The effect of RTA processing on the shape and size of TiO2 nanoparticles is studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Glancing Angle X-ray Diffraction (GAXRD) studies are carried to investigate structural changes induced by RTA processing. Optical characterization is carried out by UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The changes observed in structural and optical properties of nanocrystalline TiO2 thin films after RTA processing are attributed to the annihilation of SHI induced defects.
Thermal-induced structural and optical investigations of Agsbnd ZnO nanocomposite thin films
NASA Astrophysics Data System (ADS)
Singh, S. K.; Singhal, R.
2018-07-01
In the present paper, we have successfully synthesized Agsbnd ZnO nanocomposite thin films by RF-magnetron sputtering technique at room temperature. Systematic investigations of thermal-induced structural and optical modifications in Agsbnd ZnO thin films have been observed and described. The Agsbnd ZnO thin films were annealed at three different temperatures of 300 °C, 400 °C and 500 °C in vacuum to prevent the oxidation of Ag. The presence and formation of Ag nanoparticles were estimated by transmission electron microscopy. X-ray diffraction analysis revealed the structural information about the crystalline quality of ZnO. The crystallinity as well as the crystallite size of the films have been found to be improved with annealing temperatures. The estimated crystallite size was ∼15.8 nm for as-deposited film and 19.0 nm for the film at a higher temperature. The chemical composition and structural analysis of as-deposited film were carried out by X-ray photoelectron spectroscopy. A very sharp absorption band appeared at ∼540 nm for Ag NPs that is associated with the surface plasmon resonance band of Ag. A noticeable red shift of about ∼12 nm has been recorded for films annealed at 500 °C. Atomic force microscopy has been utilized to examine the surface morphology of the as-deposited and annealed films. The grain size was found to be increase with increasing annealing temperature, while no significant changes were observed in the roughness of Agsbnd ZnO thin films. Raman spectroscopy revealed lattice defects and disordering in the films after the thermal annealing.
Ahmad, Mariam; Andersen, Frederik; Brend Bech, Ári; Bendixen, H. Krestian L.; Nawrocki, Patrick R.; Bloch, Anders J.; Bora, Ilkay; Bukhari, Tahreem A.; Bærentsen, Nicolai V.; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T.; Daniels, Joshua A.; Dinckan, Nermin; El Idrissi, Mohamed; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V.; Hyllested, Louise O. H.; Jensen, Casper; Kallenbach, Amalie S.; Kaur, Kirandip; Khan, Suheb R.; Kjær, Emil T. S.; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M.; Munk, Chastine F.; Møller, Theis; Nehme, Ola M. Z.; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V.; Nøhr, Peter C. T.; Skaarup Ovesen, Jacob; Paustian, Lucas; Pedersen, Adam S.; Petersen, Mathias K.; Poulsen, Camilla M.; Praeger-Jahnsen, Louis; Qureshi, L. Sonia; Schiermacher, Louise S.; Simris, Martin B.; Smith, Gorm; Smith, Heidi N.; Sonne, Alexander K.; Zenulovic, Marko R.; Winther Sørensen, Alma; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B.
2018-01-01
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained. PMID:29462883
Kühnel, Miguel R Carro-Temboury Martin; Ahmad, Mariam; Andersen, Frederik; Bech, Ári Brend; Bendixen, H Krestian L; Nawrocki, Patrick R; Bloch, Anders J; Bora, Ilkay; Bukhari, Tahreem A; Bærentsen, Nicolai V; Carstensen, Jens; Chima, Smeeah; Colberg, Helene; Dahm, Rasmus T; Daniels, Joshua A; Dinckan, Nermin; Idrissi, Mohamed El; Erlandsen, Ricci; Førster, Marc; Ghauri, Yasmin; Gold, Mikkel; Hansen, Andreas; Hansen, Kenn; Helmsøe-Zinck, Mathias; Henriksen, Mathias; Hoffmann, Sophus V; Hyllested, Louise O H; Jensen, Casper; Kallenbach, Amalie S; Kaur, Kirandip; Khan, Suheb R; Kjær, Emil T S; Kristiansen, Bjørn; Langvad, Sylvester; Lund, Philip M; Munk, Chastine F; Møller, Theis; Nehme, Ola M Z; Nejrup, Mathilde Rove; Nexø, Louise; Nielsen, Simon Skødt Holm; Niemeier, Nicolai; Nikolajsen, Lasse V; Nøhr, Peter C T; Orlowski, Dominik B; Overgaard, Marc; Ovesen, Jacob Skaarup; Paustian, Lucas; Pedersen, Adam S; Petersen, Mathias K; Poulsen, Camilla M; Praeger-Jahnsen, Louis; Qureshi, L Sonia; Ree, Nicolai; Schiermacher, Louise S; Simris, Martin B; Smith, Gorm; Smith, Heidi N; Sonne, Alexander K; Zenulovic, Marko R; Sørensen, Alma Winther; Sørensen, Karina; Vogt, Emil; Væring, Andreas; Westermann, Jonas; Özcan, Sevin B; Sørensen, Thomas Just
2018-02-15
Three series of ionic self-assembled materials based on anionic azo-dyes and cationic benzalkonium surfactants were synthesized and thin films were prepared by spin-casting. These thin films appear isotropic when investigated with polarized optical microscopy, although they are highly anisotropic. Here, three series of homologous materials were studied to rationalize this observation. Investigating thin films of ordered molecular materials relies to a large extent on advanced experimental methods and large research infrastructure. A statement that in particular is true for thin films with nanoscopic order, where X-ray reflectometry, X-ray and neutron scattering, electron microscopy and atom force microscopy (AFM) has to be used to elucidate film morphology and the underlying molecular structure. Here, the thin films were investigated using AFM, optical microscopy and polarized absorption spectroscopy. It was shown that by using numerical method for treating the polarized absorption spectroscopy data, the molecular structure can be elucidated. Further, it was shown that polarized optical spectroscopy is a general tool that allows determination of the molecular order in thin films. Finally, it was found that full control of thermal history and rigorous control of the ionic self-assembly conditions are required to reproducibly make these materials of high nanoscopic order. Similarly, the conditions for spin-casting are shown to be determining for the overall thin film morphology, while molecular order is maintained.
Deposition and characterization of molybdenum thin films using dc-plasma magnetron sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Majid, E-mail: majids@hotmail.com; Islam, Mohammad, E-mail: mohammad.islam@gmail.com
2013-12-15
Molebdenum (Mo) thin films were deposited on well-cleaned soda-lime glass substrates using DC-plasma magnetron sputtering. In the design of experiment deposition was optimized for maximum beneficial characteristics by monitoring effect of process variables such as deposition power (100–200 W). Their electrical, structural and morphological properties were analyzed to study the effect of these variables. The electrical resistivity of Mo thin films could be reduced by increasing deposition power. Within the range of analyzed deposition power, Mo thin films showed a mono crystalline nature and the crystallites were found to have an orientation along [110] direction. The surface morphology of thinmore » films showed that a highly dense micro structure has been obtained. The surface roughness of films increased with deposition power. The adhesion of Mo thin films could be improved by increasing the deposition power. Atomic force microscopy was used for the topographical study of the films and to determine the roughness of the films. X-ray diffractrometer and scanning electron microscopy analysis were used to investigate the crystallinity and surface morphology of the films. Hall effect measurement system was used to find resistivity, carrier mobility and carrier density of deposited films. The adhesion test was performed using scotch hatch tape adhesion test. Mo thin films prepared at deposition power of 200 W, substrate temperature of 23°C and Ar pressure of 0.0123 mbar exhibited a mono crystalline structure with an orientation along (110) direction, thickness of ∼550 nm and electrical resistivity value of 0.57 × 10{sup −4} Ω cm.« less
NASA Astrophysics Data System (ADS)
Zhang, Wenshu; Hu, Huijun; Zhang, Caili; Li, Jianguo; Li, Yuping; Ling, Lixia; Han, Peide
2017-12-01
Based on the density functional theory, the structural stability and optical properties of undoped and Y (Y = Al, B, Si and Ti)-doped ZnO nano thin films are investigated. The good stability of the films based on the ZnO (0 0 0 1) can be obtained when the layer is larger than 12. Moreover, the dielectric function, refractive index, absorption, and reflectivity of doped ZnO nano thin films have been analyzed in detail. In the visible light range, the values of ZnO films from 12 to 24 layers are all smaller than those of the bulk. And with the augment of the layers, the values keep increasing. All the results signify that the nano film of 12 layers possesses the lowest reflectivity and weakest absorption. In addition, there is an evident impact of some doped element on the properties of nano films. The absorption and reflectivity of Ti, Si-doped ZnO nano thin films are higher than those of the clean films, while Al, B-doped are lower, especially B-doped. Moreover, the conductivity of the doped structure is better than that of the bulk. Thus, the B-doped ZnO nano thin films could be potential candidate materials of transparent conductive films.
Synthesis and characterization of spin-coated ZnS thin films
NASA Astrophysics Data System (ADS)
Zaman, M. Burhanuz; Chandel, Tarun; Dehury, Kshetramohan; Rajaram, P.
2018-05-01
In this paper, we report synthesis of ZnS thin films using a sol-gel method. A unique aprotic solvent, dimethlysulphoxide (DMSO) has been used to obtain a homogeneous ZnS gel. Zinc acetate and thiourea were used as the precursor sources for Zn and S, respectively, to deposit nanocrystalline ZnS thin films. Optical, structural and morphological properties of the films were studied. Optical studies reveal high transmittance of the samples over the entire visible region. The energy band gap (Eg) for the ZnS thin films is found to be about 3.6 eV which matches with that of bulk ZnS. The interference fringes in transmissions spectrum show the high quality of synthesized samples. Strong photoluminescence peak in the UV region makes the films suitable for optoelectronic applications. X-ray diffraction studies reveal that sol-gel derived ZnS thin films are polycrystalline in nature with hexagonal structure. SEM studies confirmed that the ZnS films show smooth and uniform grains morphology having size in 20-25 nm range. The EDAX studies confirmed that the films are nearly stoichiometric.
Exciting transition metal doped dilute magnetic thin films: MgO:Er and ZnO:Er
NASA Astrophysics Data System (ADS)
Ćakıcı, T.; Sarıtaş, S.; Muǧlu, G. Merhan; Yıldırım, M.
2017-02-01
Erbium doped MgO and doped ZnO thin films have reasonably important properties applications in spintronic devices. These films were synthesized on glass substrates by Chemical Spray Pyrolysis (CSP) method. In the literature there has been almost no report on preparation of MgO:Er dilute magnetic thin films by means of CSP. Because doped thin films show different magnetic behaviors, depending upon the type of magnetic material ions, concentration of them, synthesis route and experimental conditions, synthesized MgO:Er and ZnO:Er films were compared to thin film properties. Optical analyses of the synthesized thin films were examined spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Structural analysis of the thin films was examined by using XRD, Raman Analysis, FE-SEM, EDX and AFM techniques. Also, magnetic properties of the MgO:Er and ZnO:Er films were investigated by vibrating sample magnetometer (VSM) which show that diamagnetic behavior of the MgO:Er thin film and ferromagnetic (FM) behavior of the ZnO:Er film were is formed.
NASA Astrophysics Data System (ADS)
Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.
2014-02-01
Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.
Microstructure and ferroelectricity of BaTiO3 thin films on Si for integrated photonics
NASA Astrophysics Data System (ADS)
Kormondy, Kristy J.; Popoff, Youri; Sousa, Marilyne; Eltes, Felix; Caimi, Daniele; Rossell, Marta D.; Fiebig, Manfred; Hoffmann, Patrik; Marchiori, Chiara; Reinke, Michael; Trassin, Morgan; Demkov, Alexander A.; Fompeyrine, Jean; Abe, Stefan
2017-02-01
Significant progress has been made in integrating novel materials into silicon photonic structures in order to extend the functionality of photonic circuits. One of these promising optical materials is BaTiO3 or barium titanate (BTO) that exhibits a very large Pockels coefficient as required for high-speed light modulators. However, all previous demonstrations show a noticable reduction of the Pockels effect in BTO thin films deposited on silicon substrates compared to BTO bulk crystals. Here, we report on the strong dependence of the Pockels effect in BTO thin films on their microstructure, and provide guidelines on how to engineer thin films with strong electro-optic response. We employ several deposition methods such as molecular beam epitaxy and chemical vapor deposition to realize BTO thin films with different morphology and crystalline structure. While a linear electro-optic response is present even in porous, polycrystalline BTO thin films with an effective Pockels coefficient r eff = 6 pm V-1, it is maximized for dense, tetragonal, epitaxial BTO films (r eff = 140 pm V-1). By identifying the key structural predictors of electro-optic response in BTO/Si, we provide a roadmap to fully exploit the linear electro-optic effect in novel hybrid oxide/semiconductor nanophotonic devices.
Deposition of PTFE thin films by ion beam sputtering and a study of the ion bombardment effect
NASA Astrophysics Data System (ADS)
He, J. L.; Li, W. Z.; Wang, L. D.; Wang, J.; Li, H. D.
1998-02-01
Ion beam sputtering technique was employed to prepare thin films of Polytetrafluroethylene (PTFE). Simultaneous ion beam bombardment during film growth was also conducted in order to study the bombardment effects. Infrared absorption (IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis was used to evaluate the material's integrity. It was found that PTFE thin films could be grown at room temperature by direct sputtering of a PTFE target. The film's composition and structure were shown to be dependent on the sputtering energy. Films deposited by single sputtering at higher energy (˜1500 eV) were structurally quite similar to the original PTFE material. Simultaneous ion beam bombarding during film growth caused defluorination and structural changes. Mechanism for sputtering deposition of such a polymeric material is also discussed.
NASA Astrophysics Data System (ADS)
Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir
2018-05-01
Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.
NASA Astrophysics Data System (ADS)
Attia, A. A.; Saadeldin, M. M.; Soliman, H. S.; Gadallah, A.-S.; Sawaby, K.
2016-12-01
Para-quaterpheny1 (p-4pheny1) thin films were deposited by the thermal evaporation method on glass/quartz substrates for structural and optical investigations. The XRD of p-4phenyl thin films showed that the as-deposited films have a monoclinic structure. The surface morphology of p-4phenyl thin film was studied using scanning electron microscope. The absorption spectrum of p-4phenyl thin film recorded in the wavelength range 200-2500 nm. Photoluminescence measurements revealed two emission peaks at 435 and 444 nm using N2-laser (337.8 nm). The energy gap obtained from the absorption and photoluminescence data was found to be 2.87 and 2.74 eV respectively with Stokes shift value of 0.13 eV. The current-voltage characteristics of p-4phenyl/p-Si heterojunction have been recorded in the dark and under illumination of laser (337.8 nm). Responsivity, Detectivity, External quantum efficiency and Response speed of (Au/p-4pheny1/p-Si/Al) photodetector have been determined using different laser sources at -1 V bias.
Hiszpanski, Anna M; Baur, Robin M; Kim, Bumjung; Tremblay, Noah J; Nuckolls, Colin; Woll, Arthur R; Loo, Yueh-Lin
2014-11-05
Though both the crystal structure and molecular orientation of organic semiconductors are known to impact charge transport in thin-film devices, separately accessing different polymorphs and varying the out-of-plane molecular orientation is challenging, typically requiring stringent control over film deposition conditions, film thickness, and substrate chemistry. Here we demonstrate independent tuning of the crystalline polymorph and molecular orientation in thin films of contorted hexabenzocoronene, c-HBC, during post-deposition processing without the need to adjust deposition conditions. Three polymorphs are observed, two of which have not been previously reported. Using our ability to independently tune the crystal structure and out-of-plane molecular orientation in thin films of c-HBC, we have decoupled and evaluated the effects that molecular packing and orientation have on device performance in thin-film transistors (TFTs). In the case of TFTs comprising c-HBC, polymorphism and molecular orientation are equally important; independently changing either one affects the field-effect mobility by an order of magnitude.
Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes
NASA Astrophysics Data System (ADS)
Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio
2014-12-01
The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.
Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan
2016-08-10
The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting thin film surface, buried interfacial, and bulk structures is a first crucial step in understanding the structure-function relationship of such films in order to optimize device performance. An in-depth understanding on how the side-chain influences the interfacial and surface polymer orientation will guide the future molecular structure design of organic semiconductors.
Back, Ji-Woong; Song, Eun-Ah; Lee, Keum-Joo; Lee, Youn-Kyung; Hwang, Chae-Ryong; Jo, Sang-Hyun; Jung, Woo-Gwang; Kim, Jin-Yeol
2012-02-01
Organic semiconducting polymer thin-films of 3-hexylthiophene, 3-octylthiophene, 3-decylthiophene, containing highly oriented crystal were fabricated by gas-phase polymerization using the CVD technique. These poly(3-alkylthiophene) films had a crystallinity up to 80%, and possessed a Hall mobility up to 10 cm2/Vs. The degree of crystalinity and the mobility values increased as the alkyl chain length increased. The crystal structure of the polymers was composed of stacked layers constructed by a side-by-side arrangement of alkyl chains and in-plane pi-pi stacking. These thin films are capable of being applied to organic electronics as the active materials used in thin-film transistors and organic photovoltaic cells.
Structural and mechanical properties of CVD deposited titanium aluminium nitride (TiAlN) thin films
NASA Astrophysics Data System (ADS)
Das, Soham; Guha, Spandan; Ghadai, Ranjan; Kumar, Dhruva; Swain, Bibhu P.
2017-06-01
Titanium aluminium nitride (TiAlN) thin films were deposited by chemical vapour deposition using TiO2 powder, Al powder and N2 gas. The morphology and mechanical properties of the films were characterized by scanning electron microscopy and nanoindentation technique, respectively. The structural properties were characterized by Raman spectroscopy and X-ray diffraction. The XRD result shows TiAlN films are of NaCl-type metal nitride structure. Micro-Raman peaks of the TiAlN thin film were observed within 450 and 642 cm-1 for acoustic and optic range, respectively. A maximum hardness and Young modulus up to 22 and 272.15 GPa, respectively, were observed in the TiAlN film deposited at 1200 °C.
Hruszkewycz, S. O.; Zhang, Q.; Holt, M. V.; ...
2016-10-04
Bragg projection ptychography (BPP) is a coherent diffraction imaging technique capable of mapping the spatial distribution of the Bragg structure factor in nanostructured thin films. Here, we show that, because these images are projections, the structural sensitivity of the resulting images depends on the film thickness and the aspect ratio and orientation of the features of interest and that image interpretation depends on these factors. Lastly, we model changes in contrast in the BPP reconstructions of simulated PbTiO 3 ferroelectric thin films with meandering 180° stripe domains as a function of film thickness, discuss their origin, and comment on themore » implication of these factors on the design of BPP experiments of general nanostructured films.« less
Structural control of In2Se3 polycrystalline thin films by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Okamoto, T.; Nakada, Y.; Aoki, T.; Takaba, Y.; Yamada, A.; Konagai, M.
2006-09-01
Structural control of In2Se3 polycrystalline thin films was attempted by molecular beam epitaxy (MBE) technique. In2Se3 polycrystalline films were obtained on glass substrates at substrate temperatures above 400 °C. VI/III ratio greatly affected crystal structure of In2Se3 polycrystalline films. Mixtures of -In2Se3 and γ-In2Se3 were obtained at VI/III ratios greater than 20, and layered InSe polycrystalline films were formed at VI/III ratios below 1. γ-In2Se3 polycrystalline thin films without α-phase were successfully deposited with VI/III ratios in a range of 2 to 4. Photocurrent spectra of the γ-In2Se3 polycrystalline films showed an abrupt increase at approximately 1.9 eV, which almost corresponds with the reported bandgap of γ-In2Se3. Dark conductivity and photoconductivity measured under solar simulator light (AM 1.5, 100 mW/cm2) were approximately 10-9 and 10-5 S/cm in the γ-In2Se3 polycrystalline thin films, respectively.
Structural, XPS and magnetic studies of pulsed laser deposited Fe doped Eu{sub 2}O{sub 3} thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sandeep; Prakash, Ram, E-mail: rpgiuc@gmail.com; Choudhary, R.J.
2015-10-15
Highlights: • Growth of Fe doped Eu{sub 2}O{sub 3} thin films by PLD. • XRD and Raman’s spectroscopy used for structure confirmation. • The electronic states of Eu and Fe are confirmed by XPS. • Magnetic properties reveals room temperature magnetic ordering in deposited film. - Abstract: Fe (4 at.%) doped europium (III) oxide thin film was deposited on silicon (1 0 0) substrate by pulsed laser deposition technique. Structural, spectral and magnetic properties were studied by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and magnetization measurements. XRD and Raman spectroscopy reveal that the grown film is singlemore » phased and belongs to the cubic structure of Eu{sub 2}O{sub 3}. XPS study of the Eu{sub 1.92}Fe{sub 0.08}O{sub 3} film shows that Fe exists in Fe{sup 3+} ionic state in the film. The film exhibits magnetic ordering at room temperature.« less
Wu, Weihua; Chen, Shiyu; Zhai, Jiwei; Liu, Xinyi; Lai, Tianshu; Song, Sannian; Song, Zhitang
2017-10-06
Superlattice-like Ge 50 Te 50 /Ge 8 Sb 92 (SLL GT/GS) thin film was systematically investigated for multi-level storage and ultra-fast switching phase-change memory application. In situ resistance measurement indicates that SLL GT/GS thin film exhibits two distinct resistance steps with elevated temperature. The thermal stability of the amorphous state and intermediate state were evaluated with the Kissinger and Arrhenius plots. The phase-structure evolution revealed that the amorphous SLL GT/GS thin film crystallized into rhombohedral Sb phase first, then the rhombohedral GeTe phase. The microstructure, layered structure, and interface stability of SLL GT/GS thin film was confirmed by using transmission electron microscopy. The transition speed of crystallization and amorphization was measured by the picosecond laser pump-probe system. The volume variation during the crystallization was obtained from x-ray reflectivity. Phase-change memory (PCM) cells based on SLL GT/GS thin film were fabricated to verify the multi-level switching under an electrical pulse as short as 30 ns. These results illustrate that the SLL GT/GS thin film has great potentiality in high-density and high-speed PCM applications.
Mahalingam, S.; Abdullah, H.; Shaari, S.; Muchtar, A.; Asshari, I.
2015-01-01
Indium oxide (In2O3) thin films annealed at various annealing temperatures were prepared by using spin-coating method for dye-sensitized solar cells (DSSCs). The objective of this research is to enhance the photovoltaic conversion efficiency in In2O3 thin films by finding the optimum annealing temperature and also to study the reason for high and low performance in the annealed In2O3 thin films. The structural and morphological characteristics of In2O3 thin films were studied via XRD patterns, atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), EDX sampling, and transmission electron microscopy (TEM). The annealing treatment modified the nanostructures of the In2O3 thin films viewed through FESEM images. The In2O3-450°C-based DSSC exhibited better photovoltaic performance than the other annealed thin films of 1.54%. The electron properties were studied by electrochemical impedance spectroscopy (EIS) unit. The In2O3-450°C thin films provide larger diffusion rate, low recombination effect, and longer electron lifetime, thus enhancing the performance of DSSC. PMID:26146652
NASA Astrophysics Data System (ADS)
Najafi-Ashtiani, Hamed; Bahari, Ali
2016-08-01
In the field of materials for electrochromic (EC) applications much attention was paid to the derivatives of aniline. We report on the optical, structural and electrochromic properties of electrochromic thin film based on composite of WO3 nanoparticles and copolymer of aniline and o-toluidine prepared by electrochemical polymerization method on fluorine doped tin oxide (FTO) coated glass. The thin film was studied by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The morphology of prepared thin film was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and the thermal gravimetric analysis (TGA) as well. The optical spectra of nanocomposite thin film were characterized in the 200-900 nm wavelength range and EC properties of nanocomposite thin film were studied by cyclic voltammetry (CV). The calculation of optical band gaps of thin film exhibited that the thin film has directly allowed transition with the values of 2.63 eV on first region and 3.80 eV on second region. Dispersion parameters were calculated based on the single oscillator model. Finally, important parameters such as dispersion energy, oscillator energy and lattice dielectric constant were determined and compared with the data from other researchers. The nonlinear optical properties such as nonlinear optical susceptibility, nonlinear absorption coefficient and nonlinear refractive index were extracted. The obtained results of nanocomposite thin film can be useful for the optoelectronic applications.
Fu, Xiaofei; Li, Xianli; Lv, Jingwei; Wang, Famei; Wang, Liying
2017-01-01
The structure and nanoscale mechanical properties of Ni48.8Mn27.2Ga24 thin film fabricated by DC magnetron sputtering are investigated systematically. The thin film has the austenite state at room temperature with the L21 Hesuler structure. During nanoindentation, stress-induced martensitic transformation occurs on the nanoscale for the film annealed at 823 K for 1 hour and the shape recovery ratio is up to 85.3%. The associated mechanism is discussed. PMID:29109812
Synthesis and annealing study of RF sputtered ZnO thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Shushant Kumar, E-mail: singhshushant86@gmail.com; Sharma, Himanshu; Singhal, R.
2016-05-23
In this paper, we have investigated the annealing effect on optical and structural properties of ZnO thin films, synthesized by RF magnetron sputtering. ZnO thin films were deposited on glass and silicon substrates simultaneously at a substrate temperature of 300 °C using Argon gas in sputtering chamber. Thickness of as deposited ZnO thin film was found to be ~155 nm, calculated by Rutherford backscattering spectroscopy (RBS). These films were annealed at 400 °C and 500 °C temperature in the continuous flow of oxygen gas for 1 hour in tube furnace. X-ray diffraction analysis confirmed the formation of hexagonal wurtzite structuremore » of ZnO thin film along the c-axis (002) orientation. Transmittance of thin films was increased with increasing the annealing temperature estimated by UV-visible transmission spectroscopy. Quality and texture of the thin films were improved with annealing temperature, estimated by Raman spectroscopy.« less
NASA Astrophysics Data System (ADS)
He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong
2011-12-01
The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.
Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method
NASA Astrophysics Data System (ADS)
G, Sreeja V.; V, Sabitha P.; Anila, E. I.; R, Reshmi; John, Manu Punnan; Radhakrishnan, P.
2014-10-01
ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.
Rapid fabrication of hierarchically structured supramolecular nanocomposite thin films in one minute
Xu, Ting; Kao, Joseph
2016-11-08
Functional nanocomposites containing nanoparticles of different chemical compositions may exhibit new properties to meet demands for advanced technology. It is imperative to simultaneously achieve hierarchical structural control and to develop rapid, scalable fabrication to minimize degradation of nanoparticle properties and for compatibility with nanomanufacturing. The assembly kinetics of supramolecular nanocomposite in thin films is governed by the energetic cost arising from defects, the chain mobility, and the activation energy for inter-domain diffusion. By optimizing only one parameter, the solvent fraction in the film, the assembly kinetics can be precisely tailored to produce hierarchically structured thin films of supramolecular nanocomposites in approximately one minute. Moreover, the strong wavelength dependent optical anisotropy in the nanocomposite highlights their potential applications for light manipulation and information transmission. The present invention opens a new avenue in designing manufacture-friendly continuous processing for the fabrication of functional nanocomposite thin films.
Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application
NASA Astrophysics Data System (ADS)
Nimbalkar, Amol R.; Patil, Maruti G.
2017-12-01
In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.
Oxygen vacancy induced room temperature ferromagnetism in (In1-xNix)2O3 thin films
NASA Astrophysics Data System (ADS)
Chakraborty, Deepannita; Kaleemulla, S.; Kuppan, M.; Rao, N. Madhusudhana; Krishnamoorthi, C.; Omkaram, I.; Reddy, D. Sreekantha; Rao, G. Venugopal
2018-05-01
Nickel doped indium oxide thin films (In1-xNix)2O3 at x = 0.00, 0.03, 0.05 and 0.07 were deposited onto glass substrates by electron beam evaporation technique. The deposited thin films were subjected to annealing in air at 250 °C, 350 °C and 450 °C for 2 h using high temperature furnace. A set of films were vacuum annealed at 450 °C to study the role of oxygen on magnetic properties of the (In1-xNix)2O3 thin films. The thin films were subjected to different characterization techniques to study their structural, chemical, surface, optical and magnetic properties. All the synthesized air annealed and vacuum annealed films exhibit body centered cubic structure without any secondary phases. No significant change in the diffraction peak position, either to lower or higher diffraction angles has been observed. The band gap of the films decreased from 3.73 eV to 3.63 eV with increase of annealing temperature from 250 °C to 450 °C, in the presence of air. From a slight decrease in strength of magnetization to a complete disappearance of hysteresis loop has been observed in pure In2O3 thin films with increasing the annealing temperature from 250 °C to 450 °C, in the presence of air. The (In1-xNix)2O3 thin films annealed under vacuum follow a trend of enhancement in the strength of magnetization to increase in temperature from 250 °C to 450 °C. The hysteresis loop does not disappear at 450 °C in (In1-xNix)2O3 thin films, as observed in the case of pure In2O3 thin films.
Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal
2016-05-23
X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependentmore » structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.« less
NASA Astrophysics Data System (ADS)
Baisakh, K.; Behera, S.; Pati, S.
2018-03-01
In this work we have systematically studied the optical characteristics of synthesized wurzite zinc oxide thin films exhibiting (002) orientation. Using sol gel spin coating technique zinc oxide thin films are grown on pre cleaned fused quartz substrates. Structural properties of the films are studied using X-ray diffraction analysis. Micro structural analysis and thickness of the grown samples are analyzed using field emission scanning electron microscopy. With an aim to investigate the optical characteristics of the grown zinc oxide thin films the transmission and reflection spectra are evaluated in the ultraviolet-visible (UV-VIS) range. Using envelope method, the refractive index, extinction coefficient, absorption coefficient, band gap energy and the thickness of the synthesized films are estimated from the recorded UV-VIS spectra. An attempt has also been made to study the influence of crystallographic orientation on the optical characteristics of the grown films.
Structurally colored biopolymer thin films for detection of dissolved metal ions in aqueous solution
NASA Astrophysics Data System (ADS)
Cathell, Matthew David
Natural polymers, such as the polysaccharides alginate and chitosan, are noted sorbents of heavy metals. Their polymer backbone structures are rich in ligands that can interact with metal ions through chelation, electrostatics, ion exchange and nonspecific mechanisms. These water-soluble biopolymer materials can be processed into hydrogel thin films, creating high surface area interfaces ideal for binding and sequestering metal ions from solution. By virtue of their uniform nanoscale dimensions (with thicknesses smaller than wavelengths of visible light) polymer thin films exhibit structure-based coloration. This phenomenon, frequently observed in nature, causes the transparent and essentially colorless films to reflect light in a wide array of colors. The lamellar film structures act as one-dimensional photonic crystals, allowing selective reflection of certain wavelengths of light while minimizing other wavelengths by out-of-phase interference. The combination of metal-binding and reflective properties make alginate and chitosan thin films attractive candidates for analyte sensing. Interactions with metal ions can induce changes in film thicknesses and refractive indices, thus altering the path of light reflected through the film. Small changes in dimensional or optical properties can lead to shifts in film color that are perceivable by the unaided eye. These thin films offer the potential for optical sensing of toxic dissolved materials without the need for instrumentation, external power or scientific expertise. With the use of a spectroscopic ellipsometer and a fiber optic reflectance spectrometer, the physical and optical characteristics of biopolymer thin films have been characterized in response to 50 ppm metal ion solutions. It has been determined that metal interactions can lead to measurable changes in both film thicknesses and effective refractive indices. The intrinsic response behaviors of alginate and chitosan, as well as the responses of modified derivatives of these materials, have been investigated. It has been found that the natural metal selectivity of biopolymer films can be tuned and refined by adjusting the ligand environment through backbone modification. Other investigations have also been undertaken, including in situ monitoring of biopolymer---metal interactions and quantification of thin film metal-binding capacities.
Study on swift heavy ions induced modifications of Ag-ZnO nanocomposite thin film
NASA Astrophysics Data System (ADS)
Singh, S. K.; Singhal, R.; Siva Kumar, V. V.
2017-03-01
In the present work, swift heavy ion (SHI) irradiation induced modifications in structural and optical properties of Ag-ZnO nanocomposite thin films have been investigated. Ag-ZnO nanocomposite (NCs) thin films were synthesized by RF magnetron sputtering technique and irradiated with 100 MeV Ag7+ ions at three different fluences 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Rutherford Backscattering Spectrometry revealed Ag concentration to be ∼8.0 at.%, and measured thickness of the films was ∼55 nm. Structural properties of pristine and irradiated films have been analyzed by X-ray diffraction analysis and found that variation in crystallite size of the film with ion irradiation. X-ray photoelectron spectroscopy (XPS) indicates the formation of Ag-ZnO nanocomposite thin film with presence of Ag, Zn and O elements. Oxidation state of Ag and Zn also estimated by XPS analysis. Surface plasmon resonance (SPR) of Ag nanoparticle has appeared at ∼475 nm in the pristine thin film, which is blue shifted by ∼30 nm in film irradiated at fluence of 3 × 1012 ions/cm2 and completely disappeared in film irradiated at higher fluences, 1 × 1013 and 3 × 1013 ions/cm2. A marginal change in the optical band gap of Ag-ZnO nanocomposite thin film is also found with increasing ion fluence. Surface morphology of pristine and irradiated films have been studied using Atomic Force Microscopy (AFM). Raman and Photo-luminance (PL) spectra of nanocomposite thin films have been investigated to understand the ion induced modifications such as lattice defects and disordering in the nanocomposite thin film.
Tailoring and optimization of optical properties of CdO thin films for gas sensing applications
NASA Astrophysics Data System (ADS)
Rajput, Jeevitesh K.; Pathak, Trilok K.; Kumar, V.; Swart, H. C.; Purohit, L. P.
2018-04-01
Cadmium oxide (CdO) thin films have been deposited onto glass substrates using different molar concentrations (0.2 M, 0.5 M and 0.8 M) of cadmium acetate precursor solutions using a sol-gel spin coating technique. The structural, morphological, optical and electrical results are presented. X-ray diffraction patterns indicated that the CdO films of different molarity have a stable cubic structure with a (111) preferred orientation at low molar concentration. Scanning electron microscopy images revealed that the films adopted a rectangular to cauliflower like morphology. The optical transmittance of the thin films was observed in the range 200-800 nm and it was found that the 0.2 M CdO thin films showed about 83% transmission in the visible region. The optical band gap energy of the thin films was found to vary from 2.10 to 3.30 eV with the increase in molar concentration of the solution. The electrical resistance of the 0.5 M thin film was found to be 1.56 kΩ. The oxygen sensing response was observed between 20-33% in the low temperature range (32-200 °C).
NASA Astrophysics Data System (ADS)
Kaushal, Ajay; Kaur, Davinder
2011-06-01
We report on the effect of oxygen partial pressure and vacuum annealing on structural and optical properties of pulsed laser-deposited nanocrystalline WO3 thin films. XRD results show the hexagonal phase of deposited WO3 thin films. The crystallite size was observed to increase with increase in oxygen partial pressure. Vacuum annealing changed the transparent as-deposited WO3 thin film to deep shade of blue color which increases the optical absorption of the film. The origin of this blue color could be due to the presence of oxygen vacancies associated with tungsten ions in lower oxidation states. In addition, the effects of VO2 content on structural, electrochemical, and optical properties of (WO3)1- x (VO2) x nanocomposite thin films have also been systematically investigated. Cyclic voltammogram exhibits a modification with the appearance of an extra cathodic peak for VO2-WO3 thin film electrode with higher VO2 content ( x ≥ 0.2). Increase of VO2 content in (WO3)1- x (VO2) x films leads to red shift in optical band gap.
NASA Astrophysics Data System (ADS)
Luo, Sida
Individual carbon nanotubes (CNTs) possess excellent piezoresistive performance, which is manifested by the significant electrical resistance change when subject to mechanical deformation. In comparison to individual CNTs, the CNT thin films, formed by a random assembly of individual tubes or bundles, show much lower piezoresistive sensitivity. Given the progress made to date in developing CNT ensemble based-piezoresistive sensors, the related piezoresistive mechanism(s) are still not well understood. The crucial step to obtain a better understanding of this issue is to study the effects of CNT structure in the dispersion on the piezoresistivity of CNT ensemble based-piezoresistive sensors. To reach this goal, my Ph.D. research first focuses on establishing the processing-structure-property relationship of SWCNT thin film piezoresistive sensors. The key accomplishment contains: 1) developing the combined preparative ultracentrifuge method (PUM) and dynamic light scattering (DLS) method to quantitatively characterized SWCNT particle size in dispersions under various sonication conditions; 2) designing combined ultrasonication and microfluidization processing protocol for high throughput and large-scale production of high quality SWCNT dispersions; 3) fabricating varied SWCNT thin film piezoresistive sensors through spray coating technique and immersion-drying post-treatment; and 4) investigating the effect of microstructures of SWCNTs on piezoresistivity of SWCNT thin film sensors. This experimental methodology for quantitative and systematic investigation of the processing-structure-property relationships provides a means for the performance optimization of CNT ensemble based piezoresistive sensors. As a start to understand the piezoresistive mechanism, the second focus of my Ph.D. research is studying charge transport behaviors in SWCNT thin films. It was found that the temperature-dependent sheet resistance of SWCNT thin films could be explained by a 3D variable range hopping (3D-VRH) model. More importantly, a strong correlation between the length of SWCNTs and the VRH parameter T0, indicating the degree of disorder of the electronic system, has been identified. With the structure dependent transport mechanism study, a very interesting topic - how T0 changes when SWCNT thin film is under a mechanical deformation, would be helpful for better understanding the piezoresistive mechanism of SWCNT thin film sensors. As demonstrated in transport mechanism study, SWCNT thin film exhibits a negative temperature coefficient (NTC) of resistance. In contrast, another family of carbon nanomaterials, graphite nanoplatelets (GNPs), shows positive temperature coefficient (PTC) of resistance, attributed to their metallic nature. Therefore, upon a wise selection of mass ratio of SWCNTs to GNPs for fabrication of hybrid SWCNT/GNP thin film piezoresistive sensors, a near zero temperature coefficients of resistance in a broad temperature range has been achieved. This unique self-temperature compensation feature along with the high sensitivity of SWCNT/GNP hybrid sensors provides them a vantage for readily and accurately measuring the strain/stress levels in different conditions. With the unique features of SWCNT/GNP hybrid thin film sensors, my future work will focus on application exploration on SWCNT/GNP thin film sensor based devices. For example, we have demonstrated that it is potential for man-machine interaction and body monitoring when coating the hybrid sensor on highly stretchable nitrile glove. The structure health monitoring (SHM) of composite materials could also be realized by coating the thin film sensor on a glass fiber surface and then embedding the fiber sensor in composite structure.
NASA Astrophysics Data System (ADS)
Xiao, Qi-Ling; Shao, Sriu-Ying; He, Hong-Bo; Shao, Jian-Da; Fan, Zheng-Xiu
2008-09-01
Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 molar contents (0, 3, 7, and 12mol%) are deposited on BK7 substrates by electron-beam evaporation technique. The effects of different Y2O3 contents on residual stresses and structures of YSZ thin films are studied. Residual stresses are investigated by means of two different techniques: the curvature measurement and x-ray diffraction method. It is found that the evolution of residual stresses of YSZ thin films by the two different methods is consistent. Residual stresses of films transform from compressive stress into tensile stress and the tensile stress incre ases monotonically with the increase of Y2O3 content. At the same time, the structures of these films change from the mixture of amorphous and monoclinic phases into high temperature cubic phase. The variations of residual stress correspond to the evolution of structures induced by adding of Y2O3 content.
Biocompatibility of GaSb thin films grown by RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Nishimoto, Naoki; Fujihara, Junko; Yoshino, Katsumi
2017-07-01
GaSb may be suitable for biological applications, such as cellular sensors and bio-medical instrumentation because of its low toxicity compared with As (III) compounds and its band gap energy. Therefore, the biocompatibility and the film properties under physiological conditions were investigated for GaSb thin films with or without a surface coating. GaSb thin films were grown on quartz substrates by RF magnetron sputtering, and then coated with (3-mercaptopropyl) trimethoxysilane (MPT). The electrical properties, surface morphology, and crystal structure of the GaSb thin film were unaffected by the MPT coating. The cell viability assay suggested that MPT-coated GaSb thin films are biocompatible. Bare GaSb was particularly unstable in pH9 buffer. Ga elution was prevented by the MPT coating, although the Ga concentration in the pH 9 buffer was higher than that in the other solutions. The surface morphology and crystal structure were not changed by exposure to the solutions, except for the pH 9 buffer, and the thin film properties of MPT-coated GaSb exposed to distilled water and H2O2 in saline were maintained. These results indicate that MPT-coated GaSb thin films are biocompatible and could be used for temporary biomedical devices.
Large area polysilicon films with predetermined stress characteristics and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)
2002-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.
NASA Astrophysics Data System (ADS)
Cai, Xiuyu
2007-12-01
Organic semiconductors are attracting more and more interest as a promising set of materials in the field of electronics research. This thesis focused on several new organic semiconductors and a novel high-kappa dielectric thin film (SrTiO3), which are two essential parts in Organic Thin Film Transistors (OTFTs). Structure and morphology of thin films of tricyanovinyl capped oligothiophenes were studied using atomic force microscopy and x-ray diffraction. Thin film transistors of one compound exhibited a reasonable electron mobility of 0.02 cm2/Vs. Temperature dependent measurements on the thin film transistor based on this compound revealed shallow trap states that were interpreted in terms of a multiple trap and release model. Moreover, inversion of the majority charge carrier type from electrons to holes was observed when the number of oligothiophene rings increased to six and ambipolar transport behavior was observed for tricyanovinyl sexithiophene. Another interesting organic semiconductor compound is the fluoalkylquarterthiophene, which showed ambipolar transport and large hysteresis in the transfer curve. Due to the bistable state at floating gate, the thin film transistor was exploited to study non-volatile floating gate memory effects. The temperature dependence of the retention time for this memory device revealed that the electron trapping was an activated process. Following the earlier work on hybrid acene-thiophene organic semiconductors, new compounds with similar structure were studied to reveal the mechanism of the air-stability exhibited by some compounds. They all formed highly crystalline thin films and showed reasonable device performances which are well correlated with the molecular structures, thin film microstructures, and solid state packing. The most air-stable compound had no observable degradation with exposure to air for 15 months. SrTiO3 was developed to be employed in OTFTs. Optimization of thin film growth was performed using reactive sputtering growth. Excellent SrTiO3 epitaixal thin film growth was revealed on conductive SrTiO 3:Nb substrates. A maximum charge carrier density of 1014 cm-2 was obtained based on pentacene and perylene diimide thin film transistors. Some new physical phenomena, such as step-like transfer characteristic curve and negative transconductance, were observed at such high field effect induced charge carrier density.
NASA Astrophysics Data System (ADS)
Nishanthini, R.; Muthu Menaka, M.; Pandi, P.; Bahavan Palani, P.; Neyvasagam, K.
The copper telluride (Cu2Te) thin film of thickness 240nm was coated on a microscopic glass substrate by thermal evaporation technique. The prepared films were annealed at 150∘C and 250∘C for 1h. The annealing effect on Cu2Te thin films was examined with different characterization methods like X-ray Diffraction Spectroscopy (XRD), Scanning Electron Microscopy (SEM), Ultra Violet-Visible Spectroscopy (UV-VIS) and Photoluminescence (PL) Spectroscopy. The peak intensities of XRD spectra were increased while increasing annealing temperature from 150∘C to 250∘C. The improved crystallinity of the thin films was revealed. However, the prepared films are exposed complex structure with better compatibility. Moreover, the shift in band gap energy towards higher energies (blue shift) with increasing annealing temperature is observed from the optical studies.
Park, Seungil; Parida, Bhaskar; Kim, Keunjoo
2013-05-01
We investigated the thin film growths of hydrogenated silicon by hot-wire chemical vapor deposition with different flow rates of SiH4 and H2 mixture ambient and fabricated thin film solar cells by implementing the intrinsic layers to SiC/Si heterojunction p-i-n structures. The film samples showed the different infrared absorption spectra of 2,000 and 2,100 cm(-1), which are corresponding to the chemical bonds of SiH and SiH2, respectively. The a-Si:H sample with the relatively high silane concentration provides the absorption peak of SiH bond, but the microc-Si:H sample with the relatively low silane concentration provides the absorption peak of SiH2 bond as well as SiH bond. Furthermore, the microc-Si:H sample showed the Raman spectral shift of 520 cm(-1) for crystalline phase Si bonds as well as the 480 cm(-1) for the amorphous phase Si bonds. These bonding structures are very consistent with the further analysis of the long-wavelength photoconduction tail and the formation of nanocrystalline Si structures. The microc-Si:H thin film solar cell has the photovoltaic behavior of open circuit voltage similar to crystalline silicon thin film solar cell, indicating that microc-Si:H thin film with the mixed phase of amorphous and nanocrystalline structures show the carrier transportation through the channel of nanocrystallites.
Photoactive and self-sensing P3HT-based thin films for strain and corrosion monitoring
NASA Astrophysics Data System (ADS)
Ryu, Donghyeon; Loh, Kenneth J.
2014-03-01
Structural systems deteriorate due to excessive deformation and corrosive environments. If damage is left undetected, they can propagate to cause sudden collapse. However, one of the main difficulties of monitoring damage progression is that, for example, excessive/plastic deformation and corrosion are drastically different physical processes. Strain is a mechanical phenomenon, whereas corrosion is a complex electrochemical process. The current strategy for structural health monitoring (SHM) is to use either different types of sensors or to employ system identification for quantifying overall changes to the structure. In this study, an alternative SHM paradigm is proposed in that a single, multifunctional material would be able to selectively sense different but simultaneously occurring structural damage. In particular, a photoactive and self-sensing thin film was developed for monitoring strain and corrosion. Another unique aspect was that the films were self-sensing and did not depend on external electrical energy for operations. First, the thin films were fabricated using photoactive poly(3-hexylthiophene) (P3HT) and other functional polymers using spin-coating and layerby- layer assembly. Second, the fabricated thin films were interrogated using an ultraviolet-visible (UV-Vis) spectrophotometer for quantifying their optical response to applied external stimuli, such as strain and exposure to pH buffer solutions. Lastly, the multifunctional thin films were tested and validated for strain and pH sensing. Interrogation of these separate responses was achieved by illuminating the thin films different wavelengths of light and then measuring the corresponding electrical current generated.
Polat, B D; Keleş, O
2014-05-01
We investigate the anode performance of non ordered and ordered nanostructured Cu-Sn thin films deposited via electron beam deposition technique. The ordered nanostructured Cu-Sn thin film having nano-porosities was fabricated using an oblique (co)deposition technique. Our results showed that the nano structured Cu-Sn thin film containing Cu-Sn nanorods had higher initial anodic capacity (790 mA h g(-)) than that of the non ordered thin film (330 mA h g(-)). But the capacity of the ordered nanostructured Cu-Sn thin film diminished after the first cycle and a steady state capacity value around 300 mA h g(-) is sustainable in following up to 80th cycle, which is attributed to the composition and morphology of the thin film. The presence of copper containing Sn nanorods leading to form nano-porosities as interstitial spaces among them, enhanced lithium ions movement within thin film and increased the thin film tolerance against the stress generated because of the drastic volume change occurred during lithiation-delithiation processes; hence, homogenously distributed porosities increased the cycle life of the thin film.
Surface topography and electrical properties in Sr2FeMoO6 films studied at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Angervo, I.; Saloaro, M.; Mäkelä, J.; Lehtiö, J.-P.; Huhtinen, H.; Paturi, P.
2018-03-01
Pulsed laser deposited Sr2FeMoO6 thin films were investigated for the first time with scanning tunneling microscopy and spectroscopy. The results confirm atomic scale layer growth, with step-terrace structure corresponding to a single lattice cell scale. The spectroscopy research reveals a distribution of local electrical properties linked to structural deformation in the initial thin film layers at the film substrate interface. Significant hole structure giving rise to electrically distinctive regions in thinner film also seems to set a thickness limit for the thinnest films to be used in applications.
NASA Astrophysics Data System (ADS)
Majeed, Shahbaz; Siraj, K.; Naseem, S.; Khan, Muhammad F.; Irshad, M.; Faiz, H.; Mahmood, A.
2017-07-01
Pure and gold-doped diamond-like carbon (Au-DLC) thin films are deposited at room temperature by using RF magnetron sputtering in an argon gas-filled chamber with a constant flow rate of 100 sccm and sputtering time of 30 min for all DLC thin films. Single-crystal silicon (1 0 0) substrates are used for the deposition of pristine and Au-DLC thin films. Graphite (99.99%) and gold (99.99%) are used as co-sputtering targets in the sputtering chamber. The optical properties and structure of Au-DLC thin films are studied with the variation of gold concentration from 1%-5%. Raman spectroscopy, atomic force microscopy (AFM), Vickers hardness measurement (VHM), and spectroscopic ellipsometry are used to analyze these thin films. Raman spectroscopy indicates increased graphitic behavior and reduction in the internal stresses of Au-DLC thin films as the function of increasing gold doping. AFM is used for surface topography, which shows that spherical-like particles are formed on the surface, which agglomerate and form larger clusters on the surface by increasing the gold content. Spectroscopy ellipsometry analysis elucidates that the refractive index and extinction coefficient are inversely related and the optical bandgap energy is decreased with increasing gold content. VHM shows that gold doping reduces the hardness of thin films, which is attributed to the increase in sp2-hybridization.
Wang, Fang-Hsing; Chen, Kun-Neng; Hsu, Chao-Ming; Liu, Min-Chu; Yang, Cheng-Fu
2016-01-01
In this study, Ga2O3-doped ZnO (GZO) thin films were deposited on glass and flexible polyimide (PI) substrates at room temperature (300 K), 373 K, and 473 K by the radio frequency (RF) magnetron sputtering method. After finding the deposition rate, all the GZO thin films with a nano-scale thickness of about 150 ± 10 nm were controlled by the deposition time. X-ray diffraction patterns indicated that the GZO thin films were not amorphous and all exhibited the (002) peak, and field emission scanning electron microscopy showed that only nano-scale particles were observed. The dependences of the structural, electrical, and optical properties of the GZO thin films on different deposition temperatures and substrates were investigated. X-ray photoemission spectroscopy (XPS) was used to measure the elemental composition at the chemical and electronic states of the GZO thin films deposited on different substrates, which could be used to clarify the mechanism of difference in electrical properties of the GZO thin films. In this study, the XPS binding energy spectra of Ga2p3/2 and Ga2p1/2 peaks, Zn2p3/2 and Zn2p1/2 peaks, the Ga3d peak, and O1s peaks for GZO thin films on glass and PI substrates were well compared. PMID:28335216
High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures
NASA Technical Reports Server (NTRS)
Neurgaonkar, R. R.; Nelson, J. G.
1999-01-01
The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and Epsilon. The challenge was to find PZT compositions that maintained high d(sub ij) and Epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.
High Performance Piezoelectric Thin Films for Shape Control in Large Inflatable Structures
NASA Technical Reports Server (NTRS)
Neurgaonkar, R. R.; Nelson, J. G.
1999-01-01
The objective of this research and development program was to develop PbZr(1-x)Ti(x)O3 (PZT) and Pb(1-x)Ba(x)Nb2O6 (PBN) materials with large piezoelectric response which are suitable for shape control in large inflatable structures. Two approaches were to be considered: (1) direct deposition of PZT and PBN films on flexible plastic or thin metal foil substrates, and (2) deposition on Si followed by fabrication of hybrid structures on mylar or kapton. Testing in shape control concepts was carried out at JPL and based on their results, the required modifications were made in the final film compositions and deposition techniques. The program objective was to identify and then optimize piezoelectric materials for NASA shape control applications. This involved the bulk piezoelectric and photovoltaic responses and the compatibility of the thin films with appropriate substrate structures. Within the PZT system, Rockwell has achieved the highest reported piezoelectric coefficient (d(sub 33) greater than 100 pC/N) of any ceramic composition. We used this experience in piezoelectric technology to establish compositions that can effectively address the issues of this program. The performance of piezoelectric thin films depends directly on d(sub ij) and epsilin. The challenge was to find PZT compositions that maintained high d(sub ij) and epsilon, while also exhibiting a large photovoltaic effect and integrate thin films of this composition into the system structure necessary to meet shape control applications. During the course of this program, several PZT and PLZT compositions were identified that meet these requirements. Two such compositions were successfully used in electrical and optical actuation studies of thin film structures.
NASA Astrophysics Data System (ADS)
Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.
2018-01-01
The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.
Ferroelectricity in epitaxial Y-doped HfO2 thin film integrated on Si substrate
NASA Astrophysics Data System (ADS)
Lee, K.; Lee, T. Y.; Yang, S. M.; Lee, D. H.; Park, J.; Chae, S. C.
2018-05-01
We report on the ferroelectricity of a Y-doped HfO2 thin film epitaxially grown on Si substrate, with an yttria-stabilized zirconia buffer layer pre-deposited on the substrate. Piezoresponse force microscopy results show the ferroelectric domain pattern, implying the existence of ferroelectricity in the epitaxial HfO2 film. The epitaxially stabilized HfO2 film in the form of a metal-ferroelectric-insulator-semiconductor structure exhibits ferroelectric hysteresis with a clear ferroelectric switching current in polarization-voltage measurements. The HfO2 thin film also demonstrates ferroelectric retention comparable to that of current perovskite-based metal-ferroelectric-insulator-semiconductor structures.
Superparamagnetic behavior of Fe70Dy30 granular thin film
NASA Astrophysics Data System (ADS)
Mekala, Laxman; Muhammed Shameem P., V.; Kumar, M. Senthil
2018-04-01
In the present study, the structural and magnetic properties of the Fe70Dy30 thin films are investigated. The Fe70Dy30 thin film with a thickness of 250 Å is fabricated using a dc magnetron sputtering system. Structural and temperature dependent magnetic properties indicate the granular nature of the film. The nonsaturation of the magnetization curves even at high fields of 50 kOe and the obtained very low coercivity in the temperature range 50 - 300 K reveal that films are superparamagnetic (SPM). The decreasing blocking temperature (Tb) with increasing an external magnetic field in temperature dependent magnetization curves are exposed qualitatively.
Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu
2016-02-25
In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.
Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu
2016-01-01
In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al2O3 and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value. PMID:28344296
Method for fabrication of electrodes
Jankowski, Alan F.; Morse, Jeffrey D.; Barksdale, Randy
2004-06-22
Described herein is a method to fabricate porous thin-film electrodes for fuel cells and fuel cell stacks. Furthermore, the method can be used for all fuel cell electrolyte materials which utilize a continuous electrolyte layer. An electrode layer is deposited on a porous host structure by flowing gas (for example, Argon) from the bottomside of the host structure while simultaneously depositing a conductive material onto the topside of the host structure. By controlling the gas flow rate through the pores, along with the process conditions and deposition rate of the thin-film electrode material, a film of a pre-determined thickness can be formed. Once the porous electrode is formed, a continuous electrolyte thin-film is deposited, followed by a second porous electrode to complete the fuel cell structure.
Intermediate surface structure between step bunching and step flow in SrRuO3 thin film growth
NASA Astrophysics Data System (ADS)
Bertino, Giulia; Gura, Anna; Dawber, Matthew
We performed a systematic study of SrRuO3 thin films grown on TiO2 terminated SrTiO3 substrates using off-axis magnetron sputtering. We investigated the step bunching formation and the evolution of the SRO film morphology by varying the step size of the substrate, the growth temperature and the film thickness. The thin films were characterized using Atomic Force Microscopy and X-Ray Diffraction. We identified single and multiple step bunching and step flow growth regimes as a function of the growth parameters. Also, we clearly observe a stronger influence of the step size of the substrate on the evolution of the SRO film surface with respect to the other growth parameters. Remarkably, we observe the formation of a smooth, regular and uniform ``fish skin'' structure at the transition between one regime and another. We believe that the fish skin structure results from the merging of 2D flat islands predicted by previous models. The direct observation of this transition structure allows us to better understand how and when step bunching develops in the growth of SrRuO3 thin films.
Structural, optical and photoelectric properties of sprayed CdS thin films
NASA Astrophysics Data System (ADS)
Chandel, Tarun; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, P.
2018-05-01
In this study, CdS thin films were grown via a facile spray pyrolysis technique. The crystalline phase, morphological, compositional and optical properties of the CdS thin films have been studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and UV-vis absorption spectroscopy, respectively. XRD patterns show that the grown CdS films crystallized in the hexagonal structure. Scanning electron microscopy (SEM) study shows that the surfaces of the films are smooth and are uniformly covered with nanoparticles. EDAX results reveal that the grown films have good stochiometry. UV-vis spectroscopy shows that the grown films have transparency above 80% over the entire visible region. The photo-electric response of the CdS films grown on glass substrates has been observed.
Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x Ag = 0.5 are effective against E. coli and S. aureus after 24 h. PMID:24523630
NASA Astrophysics Data System (ADS)
Kim, Min Hong; Choi, Hyung Wook; Kim, Kyung Hwan
2013-11-01
The WO3-x thin films were prepared on indium tin oxide (ITO) coated glass at 0.7 oxygen flow ratio [O2/(Ar+O2)] using the facing targets sputtering (FTS) system at room temperature. In order to obtain the annealing effect, as-deposited thin films were annealed at temperatures of 100, 200, 300, 400, and 500 °C for 1 h in open air. The structural properties of the WO3-x thin film were measured using an X-ray diffractometer. The WO3-x thin films annealed at up to 300 °C indicated amorphous properties, while those annealed above 400 °C indicated crystalline properties. The electrochemical and optical properties of WO3-x thin films were measured using cyclic voltammetry and a UV/vis spectrometer. The maximum value of coloration efficiency obtained was 34.09 cm2/C for thin film annealed at 200 °C. The WO3-x thin film annealed at 200 °C showed superior electrochromic properties.
Iconaru, Simona Liliana; Chapon, Patrick; Le Coustumer, Philippe; Predoi, Daniela
2014-01-01
In this work, the preparation and characterization of silver doped hydroxyapatite thin films were reported and their antimicrobial activity was characterized. Silver doped hydroxyapatite (Ag:HAp) thin films coatings substrate was prepared on commercially pure Si disks by sol-gel method. The silver doped hydroxyapatite thin films were characterized by various techniques such as Scanning electron microscopy (SEM) with energy Dispersive X-ray attachment (X-EDS), Fourier transform infrared spectroscopy (FT-IR), and glow discharge optical emission spectroscopy (GDOES). These techniques have permitted the structural and chemical characterisation of the silver doped hydroxyapatite thin films. The antimicrobial effect of the Ag:HAp thin films on Escherichia coli and Staphylococcus aureus bacteria was then investigated. This is the first study on the antimicrobial effect of Ag:HAp thin films obtained by sol-gel method. The results of this study have shown that the Ag:HAp thin films with x(Ag) = 0.5 are effective against E. coli and S. aureus after 24 h.
Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang
2016-12-21
To develop a high-performance anode for thin-film lithium-ion batteries (TFBs, with a total thickness on the scale of micrometers), a Cu 2 ZnSnS 4 (CZTS) thin film is fabricated by magnetron sputtering and exhibits an ultrahigh performance of 950 mAh g -1 even after 500 cycles, which is the highest among the reported CZTS for lithium storage so far. The characterization and electrochemical tests reveal that the thin-film structure and additional reactions both contribute to the excellent properties. Furthermore, the microscale TFBs with effective footprints of 0.52 mm 2 utilizing the CZTS thin film as anode are manufactured by microfabrication techniques, showing superior capability than the analogous TFBs with the SnO 2 thin film as anode. This work demonstrates the advantages of exploiting thin-film electrodes and novel materials into micropower sources by electronic manufacture methods.
A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jambure, S.B.; Patil, S.J.; Deshpande, A.R.
2014-01-01
Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less
The Structural Changes of the Sn(y)OX Thin Films Under Influence of Heat Treament
NASA Astrophysics Data System (ADS)
Vong, V.
2001-04-01
Composite oxide Sn(y) Ox made by thermal oxidation of the Sn(y)-bimetal thin films, in which y is the doped-materials as well as Sb, Ag or Pd. The Sn(y)-bimetal thin films have been made by evaporation in high vacuum onto NaCl-monocrystall and optical glass substrates. In the work the tin and the doped material (y) were put on two different boats and then both the boats were simultaniously heated to evaporate. The Sn(y)Ox thin films were annealed at the differential temperatures. The structural changes of its have been investigated by using X-ray diffraction and transmission electron microscope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suharyadi, Edi, E-mail: esuharyadi@ugm.ac.id; Riyanto, Agus; Abraha, Kamsul
2016-04-19
CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co{sub 65}Ni{sub 15}Fe{sub 20}, Co{sub 62}Ni{sub 15}Fe{sub 23}, and Co{sub 55}Ni{sub 15}Fe{sub 30} thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending onmore » annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.« less
Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics.
Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag
2018-05-25
Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS 2 ) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS 2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS 2 thin film by annealing at 450 °C for 1 h in H 2 S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS 2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 10 5 and 10 4 cm -1 in the visible region, respectively. In addition, SnS and SnS 2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS 2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS 2 thin films exhibited on-off drain current ratios of 8.8 and 2.1 × 10 3 and mobilities of 0.21 and 0.014 cm 2 V -1 s -1 , respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS 2 thin films were 6.0 × 10 16 and 8.7 × 10 13 cm -3 , respectively, in this experiment.
Fabrication of high crystalline SnS and SnS2 thin films, and their switching device characteristics
NASA Astrophysics Data System (ADS)
Choi, Hyeongsu; Lee, Jeongsu; Shin, Seokyoon; Lee, Juhyun; Lee, Seungjin; Park, Hyunwoo; Kwon, Sejin; Lee, Namgue; Bang, Minwook; Lee, Seung-Beck; Jeon, Hyeongtag
2018-05-01
Representative tin sulfide compounds, tin monosulfide (SnS) and tin disulfide (SnS2) are strong candidates for future nanoelectronic devices, based on non-toxicity, low cost, unique structures and optoelectronic properties. However, it is insufficient for synthesizing of tin sulfide thin films using vapor phase deposition method which is capable of fabricating reproducible device and securing high quality films, and their device characteristics. In this study, we obtained highly crystalline SnS thin films by atomic layer deposition and obtained highly crystalline SnS2 thin films by phase transition of the SnS thin films. The SnS thin film was transformed into SnS2 thin film by annealing at 450 °C for 1 h in H2S atmosphere. This phase transition was confirmed by x-ray diffractometer and x-ray photoelectron spectroscopy, and we studied the cause of the phase transition. We then compared the film characteristics of these two tin sulfide thin films and their switching device characteristics. SnS and SnS2 thin films had optical bandgaps of 1.35 and 2.70 eV, and absorption coefficients of about 105 and 104 cm‑1 in the visible region, respectively. In addition, SnS and SnS2 thin films exhibited p-type and n-type semiconductor characteristics. In the images of high resolution-transmission electron microscopy, SnS and SnS2 directly showed a highly crystalline orthorhombic and hexagonal layered structure. The field effect transistors of SnS and SnS2 thin films exhibited on–off drain current ratios of 8.8 and 2.1 × 103 and mobilities of 0.21 and 0.014 cm2 V‑1 s‑1, respectively. This difference in switching device characteristics mainly depends on the carrier concentration because it contributes to off-state conductance and mobility. The major carrier concentrations of the SnS and SnS2 thin films were 6.0 × 1016 and 8.7 × 1013 cm‑3, respectively, in this experiment.
NASA Astrophysics Data System (ADS)
Zahran, H. Y.; Yahia, I. S.; Alamri, F. H.
2017-05-01
Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV-vis-NIR spectrophotometer in the wavelength range 350-2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300-2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV-vis regions and it is suitable for nonlinear optical applications.
Geometric shape control of thin film ferroelectrics and resulting structures
McKee, Rodney A.; Walker, Frederick J.
2000-01-01
A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.
Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei
2016-06-28
On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process.
Zincblende to Wurtzite phase shift of CdSe thin films prepared by electrochemical deposition
NASA Astrophysics Data System (ADS)
Bai, Rekha; Chaudhary, Sujeet; Pandya, Dinesh K.
2018-04-01
Cadmium selenide (CdSe) nanostructured thin films have been deposited on conducting glass substrates by potentiostatic electrochemical deposition (ECD) technique. The effect of electrolyte bath pH on the structural, morphological and optical properties of CdSe films has been investigated. Crystal structure of these films is characterized by X-ray diffraction and Raman spectroscopy which reveal polycrystalline nature of CdSe films exhibiting phase shift from zincblende to wurtzite structure with increase in bath pH. Optical studies reveal that the CdSe thin films have good absorbance in visible spectral region and they possess direct optical band gap which increases from 1.68 to 1.97 eV with increase in bath pH. The results suggest CdSe is an efficient absorber material for next generation solar cells.
NASA Astrophysics Data System (ADS)
Xu, Yunyun; Zhang, Tao; Lin, Zhenrong; Tian, Yanfeng; Zhou, Shandan
Sb2O3- and CeO2-doped ZnO thin films were prepared by RF magnetron sputtering technique. The influence of Sb2O3 and CeO2 on the structure and ultraviolet (UV) absorption properties was studied by X-ray diffraction and UV-Vis spectrophotometry. Results show that multiple doping of films had a prominent effect on the development of crystal grains and the UV absorption property. Ce and Sb exist in many forms in the ZnO film. The multiple-doped films also show enhanced UVA absorption, and the UV absorption peak widens and the absorption intensity increases. Sb plays a dominant role on the structure and UV absorption of ZnO thin films, which are enhanced by Ce.
The uniformity study of non-oxide thin film at device level using electron energy loss spectroscopy
NASA Astrophysics Data System (ADS)
Li, Zhi-Peng; Zheng, Yuankai; Li, Shaoping; Wang, Haifeng
2018-05-01
Electron energy loss spectroscopy (EELS) has been widely used as a chemical analysis technique to characterize materials chemical properties, such as element valence states, atoms/ions bonding environment. This study provides a new method to characterize physical properties (i.e., film uniformity, grain orientations) of non-oxide thin films in the magnetic device by using EELS microanalysis on scanning transmission electron microscope. This method is based on analyzing white line ratio of spectra and related extended energy loss fine structures so as to correlate it with thin film uniformity. This new approach can provide an effective and sensitive method to monitor/characterize thin film quality (i.e., uniformity) at atomic level for thin film development, which is especially useful for examining ultra-thin films (i.e., several nanometers) or embedded films in devices for industry applications. More importantly, this technique enables development of quantitative characterization of thin film uniformity and it would be a remarkably useful technique for examining various types of devices for industrial applications.
Pulsed laser deposition of lithium niobate thin films
NASA Astrophysics Data System (ADS)
Canale, L.; Girault-Di Bin, C.; Cosset, F.; Bessaudou, A.; Celerier, A.; Decossas, J.-Louis; Vareille, J.-C.
2000-12-01
Pulsed laser deposition of Lithium Niobate thin films onto sapphire (0001) substrates is reported. Thin films composition and structure have been determined using Rutherford Backscattermg Spectroscopy (RBS) and X-ray diffraction ( XRD) experiments. The influe:nce of deposition parameters such as substrate temperature, oxygen pressure and target to substrate distance on the composition and the structure of the films has been studied. Deposition temperature is found to be an important parameter which enables us to grow LiNbO3 films without the Li deficient phase LiNb3O8. Nearly stoichiometric thin fihns have been obtained for an oxygen pressure of 0. 1 Ton and a substrate temperature of 800°C. Under optimized conditions the (001) preferential orientation of growth, suitable for most optical applications, has been obtained.
Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films
NASA Astrophysics Data System (ADS)
Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.
NASA Astrophysics Data System (ADS)
Cristescu, R.; Popescu, C.; Dorcioman, G.; Miroiu, F. M.; Socol, G.; Mihailescu, I. N.; Gittard, S. D.; Miller, P. R.; Narayan, R. J.; Enculescu, M.; Chrisey, D. B.
2013-08-01
We report on thin film deposition by matrix assisted pulsed laser evaporation (MAPLE) of two polymer-drug composite thin film systems. A pulsed KrF* excimer laser source (λ = 248 nm, τ = 25 ns, ν = 10 Hz) was used to deposit composite thin films of poly(D,L-lactide) (PDLLA) containing several gentamicin concentrations. FTIR spectroscopy was used to demonstrate that MAPLE-transferred materials exhibited chemical structures similar to those of drop cast materials. Scanning electron microscopy data indicated that MAPLE may be used to fabricate thin films of good morphological quality. The activity of PDLLA-gentamicin composite thin films against Staphylococcus aureus bacteria was demonstrated using drop testing. The influence of drug concentration on microbial viability was also assessed. Our studies indicate that polymer-drug composite thin films prepared by MAPLE may be used to impart antimicrobial activity to implants, medical devices, and other contact surfaces.
NASA Astrophysics Data System (ADS)
Ohmori, H.; Shoji, M.; Kobayashi, T.; Yamamoto, T.; Sugiyama, Y.; Hayashi, K.; Hono, K.
1996-04-01
The Hf-added FeRuGaSi alloy film has an amorphous structure in the as-deposited state and becomes nanocrystalline after annealing. Due to this structure change from crystalline to amorphous by the addition of Hf, soft magnetic degradation of the film deposited on the slant grooved substrate, which is necessary for the sophisticated embedded thin film (ETF) head structure, is greatly suppressed and the undesirable film stress is relieved. The FeRuGaSi-Hf alloy film has higher resistivity and permeability at high frequencies than those of sendust film, and the read/write characteristics of this alloy film show better performance than sendust film.
Electrochromic Properties of Tungsten Oxide Films Prepared by Reactive Sputtering
NASA Astrophysics Data System (ADS)
Kim, Min Hong; Kang, Tai Young; Jung, Yu Sup; Kim, Kyung Hwan
2013-05-01
WO3-x thin films were deposited on induim tin oxide (ITO) glass substrates with various oxygen flow ratios from 0.55 to 0.7 by the reactive facing-target sputtering method, at a power density of 4 W/cm2 and room temperature. The structural properties of the WO3-x thin films were measured by X-ray diffractometry and Raman spectral analysis. As-deposited WO3-x thin films had an amorphous structure. In the Raman spectra, WO3-x thin films exhibited two strong peaks at 770 and 950 cm-1 attributed to the vibrations of W6+-O and W6+=O bonds, respectively. The electrochemical and optical properties of WO3-x thin films were measured by cyclic voltammetry and UV/vis spectrometry. The results showed the highest charge density at an oxygen flow ratio of 0.7 and the highest transmittance in the visible range. The maximum coloration efficiency was 30.82 cm2/C at an oxygen flow ratio of 0.7.
NASA Astrophysics Data System (ADS)
Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu
2017-06-01
p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p-n modules of bismuth telluride without any doping process.
Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films
NASA Astrophysics Data System (ADS)
Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong
2018-04-01
In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.
NASA Astrophysics Data System (ADS)
Menon, Rashmi; Sreenivas, K.; Gupta, Vinay
2008-05-01
Highly c axis oriented zinc oxide (ZnO) thin films have been prepared on 1737 Corning glass substrate by planar rf magnetron sputtering under varying pressure (10-50mTorr) and different oxygen percentage (40%-100%) in reactive gas mixtures. The as-grown ZnO thin films were found to have stress over a wide range from -6×1010to-9×107dynes/cm2. The presence of stress depends strongly on processing conditions, and films become almost stress free under a unique combination of sputtering pressure and reactive gas composition. The studies show a correlation of stress with structural and electrical properties of the ZnO thin film. The stressed films possess high electrical conductivity and exhibits strong dielectric dispersion over a wide frequency (1kHz-1MHz). The dielectric constant ɛ'(ω) of stress free ZnO film was almost frequency independent and was close to the bulk value. The measured value of dc conductivity, σdc(ω) and ac conductivity σac(ω) of stress free ZnO film was 1.3×10-9 and 6.8×10-5Ω-1cm-1, respectively. The observed variation in the structural and electrical properties of ZnO thin film with stress has been analyzed in the light of growth kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl; Rodríguez, C.A.; Porcile-Saavedra, P.F.
Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films. - Graphical abstract: “Study of themore » crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution” by M. G. Sandoval-Paz, C. A. Rodríguez, P. F. Porcile-Saavedra, C. Trejo-Cruz. Display Omitted - Highlights: • Copper (I) selenide thin films were obtained by chemical bath deposition. • Orthorhombic to cubic phase change was induced by varying the reaction solution pH. • Orthorhombic phase is obtained mainly from a hydroxides cluster mechanism. • Cubic phase is obtained mainly from an ion by ion mechanism. • Structural, optical and electrical properties are presented as a function of pH.« less
Electro-optical properties of the metal oxide-carbon thin film system of CdO-LCC
NASA Astrophysics Data System (ADS)
Kokshina, A. V.; Smirnov, A. V.; Razina, A. G.
2016-08-01
This article presents the results of a study electrical and optical properties of the thin film system of CdO-LCC. Cadmium oxide films were obtained by method of thermal oxidation. CdO-LCC thin film system was produced by applying on a CdO film a linear chain carbon film in thickness of 100 nm using the ion-plasma method, after which the obtained system was annealed. The studies showed that the obtained CdO-LCC films are quite transparent in the visible region; it has polycrystalline structure, thickness around 300 nm, the band gap to 2.3 eV. The obtained thin film system has photosensitive properties.
NASA Astrophysics Data System (ADS)
Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji
2017-12-01
This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.
NASA Astrophysics Data System (ADS)
Özakın, Oǧuzhan; Aktaş, Şeydanur; Güzeldir, Betül; Saǧlam, Mustafa
2017-04-01
In our study, as p-type crystalline Si substrate was used. Omic contact was performed by evaporating Al metal on the matt surface of crystal. On the other surface of it CdS thin film were enlarged with the technique of Spray Pyrolysis. Structural characteristics of the grown thin film was examined SEM and EDAX image. When examining SEM image of CdS thin film were totally covered the p-Si crystal surface of it was nearly homogeneous and The EDAX spectra showed that the expected different ratios metal percent exist in the alloys, approximately. On the CdS films whose surface features were investigated, at 10-7 torr pressure was obtained Cd/CdS/p-Si/Al sandwich structure by evaporating Cd. Firstly, the I-V (current-voltage) characteristics on 80K between 320K at room temperature of this structure was measured. I-V characteristics of the examined at parameters diodes calculation, Thermionic Emission, were used. The characteristic parameters such as barrier height and ideality factor of this structure have been calculated from the forward bias I-V characteristics. Consequently, it was seen that CdS thin film grown on p-Si semiconductor will be used confidently in Cd/p-Si metal-semiconductor contacts thanks to Spray Pyrolysis method.
Microstructural and mechanical characteristics of Ni–Cr thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petley, Vijay; Sathishkumar, S.; Thulasi Raman, K.H.
2015-06-15
Highlights: • Ni–Cr thin films of varied composition deposited by DC magnetron co-sputtering. • Thin film with Ni–Cr: 80–20 at% composition exhibits most distinct behavior. • The films were tensile tested and exhibited no cracking till the substrate yielding. - Abstract: Ni–Cr alloy thin films have been deposited using magnetron co-sputtering technique at room temperature. Crystal structure was evaluated using GIXRD. Ni–Cr solid solution upto 40 at% of Cr exhibited fcc solid solution of Cr in Ni and beyond that it exhibited bcc solid solution of Ni in Cr. X-ray diffraction analysis shows formation of (1 1 1) fiber texturemore » in fcc and (2 2 0) fiber texture in bcc Ni–Cr thin films. Electron microscopy in both in-plane and transverse direction of the film surface revealed the presence of columnar microstructure for films having Cr upto 40 at%. Mechanical properties of the films are evaluated using nanoindentation. The modulus values increased with increase of Cr at% till the film is fcc. With further increase in Cr at% the modulus values decreased. Ni–Cr film with 20 at% Ni exhibits reduction in modulus and is correlated to the poor crystallization of the film as reflected in XRD analysis. The Ni–Cr thin film with 80 at% Ni and 20 at% Cr exhibited the most distinct columnar structure with highest electrical resistivity, indentation hardness and elastic modulus.« less
NASA Astrophysics Data System (ADS)
Istratov, A. V.; Gerke, M. N.
2018-01-01
Progress in nano- and microsystem technology is directly related to the development of thin-film technologies. At the present time, thin metal films can serve as the basis for the creation of new instruments for nanoelectronics. One of the important parameters of thin films affecting the characteristics of devices is their optical properties. That is why the island structures, whose optical properties, can change in a wide range depending on their morphology, are of increasing interest. However, despite the large amount of research conducted by scientists from different countries, many questions about the optimal production and use of thin films remain unresolved.
Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem
2012-08-17
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.
2012-01-01
Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341
NASA Astrophysics Data System (ADS)
Rozana, M. D.; Arshad, A. N.; Wahid, M. H. M.; Habibah, Z.; Sarip, M. N.; Rusop, M.
2018-05-01
This study investigates the effect of annealing on the topography, morphology and crystal phases of poly(vinylideneflouride)/Magnesium Oxide (MgO) nanocomposites thin films via AFM, FESEM and ATR-FTIR. The nanocomposites thin films were annealed at temperatures ranging from 70°C to 170°C. The annealed PVDF/MgO nanocomposites thin films were then cooled at room temperature before removal from the oven. This is to restructure the crystal lattice and to reduce imperfection for the PVDF/MgO nanocomposites thin films. PVDF/MgO nanocomposites thin films with annealing temperatures of 70°C, 90°C and 110°C showed uniform distribution of MgO nanoparticles, relatively low average surface roughness and no visible of defects. High application of annealing temperature on PVDF/MgO nanocomposites thin films caused tear-like defects on the thin films surface as observed by FESEM. The PVDF/MgO nanocomposites thin films annealed at 70°C was found to be a favourable film to be utilized in this study due to its enhanced β-crystalites of PVDF as evident in ATR-FTIR spectra.
NASA Astrophysics Data System (ADS)
Avazpour, L.; Toroghinejad, M. R.; Shokrollahi, H.
2016-11-01
A series of rare-earth (RE)-doped nanocrystalline Cox RE(1-x) Fe2O4 (x = 0, 0.1, 0.2 and RE: Nd, Eu) thin films were prepared on silicon substrates by a sol-gel process, and the influences of different RE3+ ions on the microstructure, magnetism and polar magneto-optical Kerr effect of the deposited films were investigated. Also this research presents the optimization process of cobalt ferrite thin films deposited via spin coating, by studying their structural and morphological properties at different thicknesses (200, 350 nm) and various heat treatment temperatures 300-850 °C. Nanoparticulate polycrystalline thin film were formed with heat treatment above 400 °C but proper magnetic properties due to well crystallization of the film were achieved at about 650 °C. AFM results indicated that the deposited thin films were crack-free exhibiting a dense nanogranular structure. The root-mean square (RMS) roughness of the thin films was in the range of 0.2-3.2 nm. The results revealed that both of the magnetism and magneto optical Kerr (MOKE) spectra of Cox RE(1-x) Fe2O4 films could be mediated by doping with various RE ions. The Curie temperature of substituted samples was lower than pristine cobalt ferrite thin films. In MOKE spectra both dominant peaks were blue shifted with addition of RE ions. For low concentration dopant the inter-valence charge transfer related rotation was enhanced and for higher concentration dopant the crystal field rotation peak was enhanced. The MOKE enhancement for Eu3+ substituted samples was more than Nd3+ doped cobalt ferrite films. The enhanced MOKEs in nanocrystalline thin films might promise their applications for magneto-optical sensors in adopted wavelengths.
NASA Astrophysics Data System (ADS)
Annese, E.; Mori, T. J. A.; Schio, P.; Rache Salles, B.; Cezar, J. C.
2018-04-01
The implementation of La0.67Sr0.33MnO3 thin films in multilayered structures in organic and inorganic spintronics devices requires the optimization of their electronic and magnetic properties. In this work we report the structural, morphological, electronic and magnetic characterizations of La0.67Sr0.33MnO3 epitaxial thin films on SrTiO3 substrates, grown by pulsed laser deposition under different growing conditions. We show that the fluence of laser shots and in situ post-annealing conditions are important parameters to control the tetragonality (c/a) of the thin films. The distortion of the structure has a remarkable impact on both surface and bulk magnetism, allowing the tunability of the materials properties for use in different applications.
Barium ferrite thin-film recording media
NASA Astrophysics Data System (ADS)
Sui, Xiaoyu; Scherge, Matthias; Kryder, Mark H.; Snyder, John E.; Harris, Vincent G.; Koon, Norman C.
1996-03-01
Both longitudinal and perpendicular barium ferrite thin films are being pursued as overcoatless magnetic recording media. In this paper, prior research on thin-film Ba ferrite is reviewed and the most recent results are presented. Self-textured high-coercivity longitudinal Ba ferrite thin films have been achieved using conventional rf diode sputtering. Microstructural studies show that c-axis in-plane oriented grains have a characteristic acicular shape, while c-axis perpendicularly oriented grains have a platelet shape. Extended X-ray absorption fine structure (EXAFS) measurements indicate that the crystal orientations are predetermined by the structural anisotropy in the as-sputtered 'amorphous' state. Recording tests on 1500 Oe coercivity longitudinal Ba ferrite disks show performance comparable with that of a 1900 Oe Co alloy disk. To further improve the recording performance, both grain size and aspect ratio need to be reduced. Initial tribological tests indicate high hardness of Ba ferrite thin films. However, surface roughness needs to be reduced. For future ultrahigh-density contact recording, it is believed that perpendicular recording may be used. A thin Pt underlayer has been found to be capable of producing Ba ferrite thin films with excellent c-axis perpendicular orientation.
Room temperature ferromagnetism in BiFe1-xMnxO3 thin film induced by spin-structure manipulation
NASA Astrophysics Data System (ADS)
Shigematsu, Kei; Asakura, Takeshi; Yamamoto, Hajime; Shimizu, Keisuke; Katsumata, Marin; Shimizu, Haruki; Sakai, Yuki; Hojo, Hajime; Mibu, Ko; Azuma, Masaki
2018-05-01
The evolution of crystal structure, spin structure, and macroscopic magnetization of manganese-substituted BiFeO3 (BiFe1-xMnxO3), a candidate for multiferroic materials, were investigated on bulk and epitaxial thin-film. Mn substitution for Fe induced collinear antiferromagnetic spin structure around room temperature by destabilizing the cycloidal spin modulation which prohibited the appearance of net magnetization generated by Dzyaloshinskii-Moriya interaction. For the bulk samples, however, no significant signal of ferromagnetism was observed because the direction of the ordered spins was close to parallel to the electric polarization so that spin-canting did not occur. On the contrary, BiFe1-xMnxO3 thin film on SrTiO3 (001) had a collinear spin structure with the spin direction perpendicular to the electric polarization at room temperature, where the appearance of spontaneous magnetization was expected. Indeed, ferromagnetic hysteresis behavior was observed for BiFe0.9Mn0.1O3 thin film.
Facile synthesis and photo electrochemical performance of SnSe thin films
NASA Astrophysics Data System (ADS)
Pusawale, S. N.; Jadhav, P. S.; Lokhande, C. D.
2018-05-01
Orthorhombic structured SnSe thin films are synthesized via SILAR (successive ionic layer adsorption and reaction) method on glass substrates. The structural properties of thin films are characterized by x-ray diffraction, scanning electron microscopy studies from which nanoparticles with an elongated shape and hydrophilic behavior are observed. UV -VIS absorption spectroscopy study showed the maximum absorption in the visible region with a direct band gap of 1.55 eV. The photo electrochemical study showed p-type electrical conductivity.
The study of voids in the AuAl thin-film system using the nuclear microprobe
NASA Astrophysics Data System (ADS)
de Waal, H. S.; Pretorius, R.; Prozesky, V. M.; Churms, C. L.
1997-07-01
A Nuclear Microprobe (NMP) was used to study void formation in thin film gold-aluminium systems. Microprobe Rutherford Backscattering Spectrometry (μRBS) was utilised to effectively obtain a three-dimensional picture of the void structure on the scale of a few nanometers in the depth dimension and a few microns in the in-plane dimension. This study illustrates the usefulness of the NMP in the study of materials and specifically thin-film structures.
Highly ordered gold nanotubes using thiols at a cleavable block copolymer interface.
Ryu, Ja-Hyoung; Park, Soojin; Kim, Bokyung; Klaikherd, Akamol; Russell, Thomas P; Thayumanavan, S
2009-07-29
We have prepared functionalized nanoporous thin films from a polystyrene-block-polyethylene oxide block copolymer, which was made cleavable due to the intervening disulfide bond. The cleavage reaction of the disulfide bond leaves behind free thiol groups inside the nanopores of polystyrene thin film. This nanoporous thin film can be used as a template for generating gold nanoring structures. This strategy can provide a facile method to form a highly ordered array of biopolymer or metal-polymer composite structures.
NASA Astrophysics Data System (ADS)
Kalaivani, A.; Senguttuvan, G.; Kannan, R.
2018-03-01
Nickel based alloys has a huge applications in microelectronics and micro electromechanical systems owing to its superior soft magnetic properties. With the advantages of simplicity, cost-effectiveness and controllable patterning, electroplating processes has been chosen to fabricate thin films in our work. The soft magnetic NiFeP thin film was successfully deposited over the surface of copper plate through galvanostatic electroplating method by applying constant current density of 10 mA cm-2 for a deposition rate for half an hour. The properties of the deposited NiFeP thin films were analyzed by subjecting it into different physio-chemical characterization such as XRD, SEM, EDAX, AFM and VSM. XRD pattern confirms the formation of NiFeP particles and the structural analysis reveals that the NiFeP particles were uniformly deposited over the surface of copper substrate. The surface roughness analysis of the NiFeP films was done using AFM analysis. The magnetic studies and the hardness of the thin film were evaluated from the VSM and hardness test. The NiFeP thin films possess lower coercivity with higher magnetization value of 69. 36 × 10-3 and 431.92 Gauss.
Structural and electrical properties of CZTS thin films by electrodeposition
NASA Astrophysics Data System (ADS)
Rao, M. C.; Basha, Sk. Shahenoor
2018-06-01
CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.
Study of structural and optical properties of PbS thin films
NASA Astrophysics Data System (ADS)
Homraruen, T.; Sudswasd, Y.; Sorod, R.; Kayunkid, N.; Yindeesuk, W.
2018-03-01
This research aimed to synthesize lead sulfide (PbS) thin films on glass slides using the successive ion layer absorption and reaction (SILAR) method. We studied the optical properties and structure of PbS thin films by changing the number of dipping cycles and the concentration of precursor solution. The results of this experiment show that different conditions have a considerable influence on the thickness and absorbance of the films. When the number of dipping cycles and the concentration of the solution are increased, film thickness and absorbance tend to become higher. The xrays diffraction pattern showed all the diffraction peaks which confirmed the face center cubic and the structure of PbS had identified. Grain size computation was used to confirm how much these conditions could be affected.
Quaternary schematics for property engineering of CdSe thin films
NASA Astrophysics Data System (ADS)
Chavan, G. T.; Pawar, S. T.; Prakshale, V. M.; Sikora, A.; Pawar, S. M.; Chaure, N. B.; Kamble, S. S.; Maldar, N. N.; Deshmukh, L. P.
2017-12-01
The synthesis of quaternary Cd1-xZnxSySe1-y (0 ≤ x = y ≤ 0.35) thin films was done through indigenously developed chemical solution growth process. As-obtained thin films were subjected to the physical, chemical, structural and optical characterizations. The nearly hydrophobic nature of the as-deposited films except binary CdSe was observed through the wettability studies. The colorimetric studies supported a change in physical color attributes. The elemental analysis done confirmed the formation of Cd(Zn, S)Se and the chemical states of constituent elements as Cd2+, Zn2+, S2- and Se2-. Structural assessment suggested the formation of the polycrystalline quaternary phase of the hexagonal wurtzite structure. The Raman spectroscopy was also employed for the confirmation studies on Cd1-xZnxSySe1-y thin films. Morphological observations indicated microstructural transformation from an aggregated bunch of nano-sized globular grains into a rhomboid network of petal/flakes like crystallites. The atomic force micrographs (AFM) revealed the enhancement in the hillock structures. From advanced AFM characterizations, we observed that the CdSe thin film has leptokurtic (Sku = 3.23) surface, whereas, quaternary Cd(Zn, S)Se films have platykurtic (Sku < 3) surface. The orientation of the surface morphology was observed through the angular spectrum studies. The optical absorption studies revealed direct allowed transition for the films with a continuous modulation of the energy bandgap from 1.8 eV to 2.31 eV.
NASA Astrophysics Data System (ADS)
Jatratkar, Aviraj A.; Yadav, Jyotiprakash B.; Deshmukh, R. R.; Barshilia, Harish C.; Puri, Vijaya; Puri, R. K.
2016-12-01
This study reports on polyaniline thin films deposited on a glass substrate using a low-pressure glow-discharge-pulsed plasma polymerization method. The polyaniline thin film obtained by pulsed plasma polymerization has been successfully demonstrated as an optical waveguide with a transmission loss of 3.93 dB cm-1, and has the potential to be employed in integrated optics. An attempt has been made to investigate the effect of plasma OFF-time on the structural, optical as well as surface properties of polyaniline thin film. The plasma ON-time has been kept constant and the plasma OFF-time has been varied throughout the work. The plasma OFF-time strongly influenced the properties of the polyaniline thin film, and a nanostructured and compact surface was revealed in the morphological studies. The plasma OFF-time was found to enhance film thickness, roughness, refractive index and optical transmission loss, whereas it reduced the optical band gap of the polyaniline thin films. Retention in the aromatic structure was confirmed by FTIR results. Optical studies revealed a π-π* electronic transition at about 317 nm as well as the formation of a branched structure. As compared with continuous wave plasma, pulsed plasma polymerization shows better properties. Pulsed plasma polymerization reduced the roughness of the film from 1.2 nm to 0.42 nm and the optical transmission loss from 6.56 dB cm-1 to 3.39 dB cm-1.
Growth and characterization of CdS buffer layers by CBD and MOCVD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrone, A.A.; Huang, C.; Li, S.S.
1999-03-01
Thin film CdS has been widely used in thin-film photovoltaic devices. The most efficient Cu(In,&hthinsp;Ga)Se{sub 2} (CIGS) solar cells reported to date utilized a thin CdS buffer layer prepared by a reactive solution growth technique known as chemical bath deposition (CBD). Considerable effort has been directed to better understand the role and find a replacement for the CBD CdS process in CIGS-based solar cells. We reported a low temperature ({approximately}150&hthinsp;{degree}C) Metalorganic Chemical Vapor Deposition (MOCVD) CdS thin film buffer layer process for CIGS absorbers. Many prior studies have reported that CBD CdS contains a mixture of crystal structures. Recent investigationsmore » of CBD CdS thin films by ellipsometry suggested a multilayer structure. In this study we compare CdS thin films prepared by CBD and MOCVD and the effects of annealing. TED and XRD are used to characterize the crystal structure, the film microstructure is studied by HRTEM, and the optical properties are studied by Raman and spectrophotometry. All of these characterization techniques reveal superior crystalline film quality for CdS films grown by MOCVD compared to those grown by CBD. Dual Beam Optical Modulation (DBOM) studies showed that the MOCVD and CBD CdS buffer layer processes have nearly the same effect on CIGS absorbers when combined with a cadmium partial electrolyte aqueous dip. {copyright} {ital 1999 American Institute of Physics.}« less
Effect of Annealing Temperature on Flowerlike Cu3BiS3 Thin Films Grown by Chemical Bath Deposition
NASA Astrophysics Data System (ADS)
Deshmukh, S. G.; Patel, S. J.; Patel, K. K.; Panchal, A. K.; Kheraj, Vipul
2017-10-01
For widespread application of thin-film photovoltaic solar cells, synthesis of inexpensive absorber material is essential. In this work, deposition of ternary Cu3BiS3 absorber material, which contains abundant and environmentally benign elements, was carried out on glass substrate. Flowerlike Cu3BiS3 thin films with nanoflakes as building block were formed on glass substrate by chemical bath deposition. These films were annealed at 573 K and 673 K in sulfur ambient for structural improvement. Their structure was characterized using Raman spectroscopy, as well as their surface morphological and optical properties. The x-ray diffraction profile of as-deposited Cu3BiS3 thin film revealed amorphous structure, which transformed to orthorhombic phase after annealing. The Raman spectrum exhibited a characteristic peak at 290 cm-1. Scanning electron microscopy of as-deposited Cu3BiS3 film confirmed formation of nanoflowers with diameter of around 1052 nm. Wettability testing of as-deposited Cu3BiS3 thin film demonstrated hydrophobic nature, which became hydrophilic after annealing. The measured ultraviolet-visible (UV-Vis) absorption spectra of the Cu3BiS3 thin films gave an absorption coefficient of 105 cm-1 and direct optical bandgap of about 1.42 eV after annealing treatment. Based on all these results, such Cu3BiS3 material may have potential applications in the photovoltaic field as an absorber layer.
NASA Astrophysics Data System (ADS)
Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.
2016-07-01
In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.
Gbabode, Gabin; Dohr, Michael; Niebel, Claude; Balandier, Jean-Yves; Ruzié, Christian; Négrier, Philippe; Mondieig, Denise; Geerts, Yves H; Resel, Roland; Sferrazza, Michele
2014-08-27
A detailed structural study of the bulk and thin film phases observed for two potential high-performance organic semiconductors has been carried out. The molecules are based on [1]benzothieno[3,2-b]benzothiophene (BTBT) as conjugated core and octyl side groups, which are anchored either symmetrically at both sides of the BTBT core (C8-BTBT-C8) or nonsymmetrically at one side only (C8-BTBT). Thin films of different thickness (8-85 nm) have been prepared by spin-coating for both systems and analyzed by combining specular and grazing incidence X-ray diffraction. In the case of C8-BTBT-C8, the known crystal structure obtained from single-crystal investigations is observed within all thin films, down to a film thickness of 9 nm. In the case of C8-BTBT, the crystal structure of the bulk phase has been determined from X-ray powder diffraction data with a consistent matching of experimental and calculated X-ray diffraction patterns (Rwp = 5.8%). The packing arrangement of C8-BTBT is similar to that of C8-BTBT-C8, that is, consisting of a lamellar structure with molecules arranged in a "herringbone" fashion, yet with lamellae composed of two head-to-head (or tail-to-tail as the structure is periodic) superimposed molecules instead of only one molecule for C8-BTBT-C8. As for C8-BTBT-C8, we demonstrate that the same phase is observed in bulk and thin films for C8-BTBT whatever the film thickness investigated.
Lattice structure and magnetization of LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Rata, A. D.; Herklotz, A.; Schultz, L.; Dörr, K.
2010-07-01
We investigate the structure and magnetic properties of thin films of the LaCoO3 compound. Thin films are deposited by pulsed laser deposition on various substrates in order to tune the strain from compressive to tensile. Single-phase (001) oriented LaCoO3 layers were grown on all substrates despite large misfits. The tetragonal distortion of the films covers a wide range from -2% to 2.8%. Our LaCoO3 films are ferromagnetic with Curie temperature around 85 K, contrary to the bulk. The total magnetic moment is below 1 μ B /Co3+, a value relatively small for an exited spin-state of the Co3+ ions, but comparable to values reported in literature. A correlation of strain states and magnetic moment of Co3+ ions in LaCoO3 thin films is observed.
NASA Astrophysics Data System (ADS)
Patro, L. N.; Ravi Chandra Raju, N.; Meher, S. R.; Kamala Bharathi, K.
2013-09-01
This article presents the results on the growth and characterization of BaSnF4 thin films on glass substrates prepared by pulsed laser deposition technique. The structural results of BaSnF4 thin film carried out by glancing angle X-ray diffraction technique indicates the formation of the film with similar structure (tetragonal, P4/nmm) to the bulk target material. The absorption coefficient and band gap of the film is determined by suitable analysis of the transmittance spectra. The transport properties of the thin films are studied using impedance spectroscopy in the temperature range of 323-573 K. The frequency-dependent imaginary part of impedance plot shows that the conductivity relaxation is non-Debye in nature. The scaling behavior of the imaginary part of impedance at various frequencies indicates temperature-independent relaxation behavior.
High index glass thin film processing for photonics and photovoltaic (PV) applications
NASA Astrophysics Data System (ADS)
Ogbuu, Okechukwu Anthony
To favorably compete with fossil-fuel technology, the greatest challenge for thin film solar-cells is to improve efficiency and reduce material cost. Thickness scaling to thin film reduces material cost but affects the light absorption in the cells; therefore a concept that traps incident photons and increases its optical path length is needed to boost absorption in thin film solar cells. One approach is the integration of low symmetric gratings (LSG), using high index material, on either the front-side or backside of 30 um thin c-Si cells. In this study, Multicomponent TeO2--Bi2O 3--ZnO (TBZ) glass thin films were prepared using RF magnetron sputtering under different oxygen flow rates. The influences of oxygen flow rate on the structural and optical properties of the resulting thin films were investigated. The structural origin of the optical property variation was studied using X-ray diffraction, X-ray photoelectron spectroscopy, Raman Spectroscopy, and transmission electron microscopy. The results indicate that TBZ glass thin film is a suitable material for front side LSG material photovoltaic and photonics applications due to their amorphous nature, high refractive index (n > 2), broad band optical transparency window, low processing temperature. We developed a simple maskless method to pattern sputtered tellurite based glass thin films using unconventional agarose hydrogel mediated wet etching. Conventional wet etching process, while claiming low cost and high throughput, suffers from reproducibility and pattern fidelity issues due to the isotropic nature of wet chemical etching when applied to glasses and polymers. This method overcomes these challenges by using an agarose hydrogel stamp to mediate a conformal etching process. In our maskless method, agarose hydrogel stamps are patterned following a standard soft lithography and replica molding process from micropatterned masters and soaked in a chemical etchant. The micro-scale features on the stamp are subsequently transferred into glass and polymer thin films via conformal wet etching. High refractive index chalcogenide glass (n = 2.6) thin films with composition As20Se80 was selected for backside LSG material due to their attractive properties. We developed an optimized integration protocol for LSG integration and successfully integrated these LSG structures at the back side of both 30 microm c-Si solar cells and standalone 30 microm c-Si wafers. Optical and electrical characterization of LSG on thin c-Si cells shows that LSG structures create higher absorption enhancement and external quantum efficiency at long wavelengths.
Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik
2011-04-01
A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers.
NASA Astrophysics Data System (ADS)
Chen, Hsi-Chao; Jan, Der-Jun; Chen, Chien-Han; Huang, Kuo-Ting; Lo, Yen-Ming; Chen, Sheng-Hui
2011-09-01
The purpose of this research was to compare the optical properties and structure of tungsten oxide (WO3) thin films that was deposited by different sputtering depositions. WO3 thin films deposited by two different depositions of direct current (DC) magnetron sputtering and pulsed DC sputtering. A 99.95% WO3 target was used as the starting material for these depositions. These WO3 thin films were deposited on the ITO glass, PET and silicon substrate by different ratios of oxygen and argon. A shadow moiré interferometer would be introduced to measure the residual stress for PET substrate. RF magnetron sputtering had the large residual stress than the other's depositions. A Raman spectrum could exhibit the phase of oxidation of WO3 thin film by different depositions. At the ratio of oxygen and argon was about 1:1, and the WO3 thin films had the best oxidation. However, it was important at the change of the transmittance (ΔT = Tbleached - Tcolored) between the coloring and bleaching for the smart window. Therefore, we also found the WO3 thin films had the large variation of transmittance between the coloring and bleaching at the gas ratios of oxygen and argon of 1:1.
Chalcogenide phase-change thin films used as grayscale photolithography materials.
Wang, Rui; Wei, Jingsong; Fan, Yongtao
2014-03-10
Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.
Multi-layer assemblies with predetermined stress profile and method for producing same
NASA Technical Reports Server (NTRS)
Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)
2003-01-01
Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.
Optical, mechanical and structural properties of PMMA/SiO2 nanocomposite thin films
NASA Astrophysics Data System (ADS)
Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.
2018-01-01
We have fabricated PMMA/SiO2 nanocomposite flexible thin films of 60 μm thicknesses by using solution casting method in the presence of transverse electric field. In this paper, we have investigated the effect of SiO2 nanoparticle (NP) loading on optical and mechanical properties of the composite thin film. The SEM images show that nanocomposite thin films have a smoother and uniform morphology. The transmittance peak near 1103 cm-1 in FT-IR spectrum confirms the presence of SiO2 NPs in the composite thin film. It is observed that optical bandgap decreases with an increase in the SiO2 NP concentration. Dynamic mechanical analysis shows that presence of SiO2 NP enhances the mechanical strength of the composite thin film.
NASA Astrophysics Data System (ADS)
Rajpal, Shashikant; Kumar, S. R.
2018-04-01
Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material with cubic structure and having potential applications in different opto-electronic devices. Here we investigated the effects of annealing on the thermoluminescence (TL) of ZnTe thin films. A nanocrystalline ZnTe thin film was successfully electrodeposited on nickel substrate and the effect of annealing on structural, morphological, and optical properties were studied. The TL emission spectrum of as deposited sample is weakly emissive in UV region at ∼328 nm. The variation in the annealing temperature results into sharp increase in emission intensity at ∼328 nm along with appearance of a new peak at ∼437 nm in visible region. Thus, the deposited nanocrystalline ZnTe thin films exhibited excellent thermoluminescent properties upon annealing. Furthermore, the influence of annealing (annealed at 400 °C) on the solid state of ZnTe were also studied by XRD, SEM, EDS, AFM. It is observed that ZnTe thin film annealed at 400 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.
Microstructure study of ZnO thin films on Si substrate grown by MOCVD
NASA Astrophysics Data System (ADS)
Huang, Jingyun; Ye, Zhizhen; Lu, Huanming; Wang, Lei; Zhao, Binghui; Li, Xianhang
2007-08-01
The microstructure of zinc oxide thin films on silicon substrates grown by metalorganic chemical vapour deposition (MOCVD) was characterized. The cross-sectional bright-field transmission electron microscopy (TEM) image showed that small ZnO columnar grains were embedded into large columnar grains, and the selected-area electron diffraction pattern showed that the ZnO/Si thin films were nearly c-axis oriented. The deviation angle along the ZnO (0 0 0 1) direction with respect to the growth direction of Si (1 0 0) was no more than 5°. The [0 0 0 1]-tilt grain boundaries in ZnO/Si thin films were investigated symmetrically by plan-view high resolution TEM. The boundaries can be classified into three types: low-angle boundaries described as an irregular array of edge dislocations, boundaries of near 30° angle with (1\\,0\\,\\bar{1}\\,0) facet structures and large-angle boundaries with symmetric structure which could be explained by a low Σ coincident site lattice structure mode. The research was useful to us for finding optimized growth conditions to improve ZnO/Si thin film quality.
Electrical and Infrared Optical Properties of Vanadium Oxide Semiconducting Thin-Film Thermometers
NASA Astrophysics Data System (ADS)
Zia, Muhammad Fakhar; Abdel-Rahman, Mohamed; Alduraibi, Mohammad; Ilahi, Bouraoui; Awad, Ehab; Majzoub, Sohaib
2017-10-01
A synthesis method has been developed for preparation of vanadium oxide thermometer thin film for microbolometer application. The structure presented is a 95-nm thin film prepared by sputter-depositing nine alternating multilayer thin films of vanadium pentoxide (V2O5) with thickness of 15 nm and vanadium with thickness of 5 nm followed by postdeposition annealing at 300°C in nitrogen (N2) and oxygen (O2) atmospheres. The resulting vanadium oxide (V x O y ) thermometer thin films exhibited temperature coefficient of resistance (TCR) of -3.55%/°C with room-temperature resistivity of 2.68 Ω cm for structures annealed in N2 atmosphere, and TCR of -3.06%/°C with room-temperature resistivity of 0.84 Ω cm for structures annealed in O2 atmosphere. Furthermore, optical measurements of N2- and O2-annealed samples were performed by Fourier-transform infrared ellipsometry to determine their dispersion curves, refractive index ( n), and extinction coefficient ( k) at wavelength from 7000 nm to 14,000 nm. The results indicate the possibility of applying the developed materials in thermometers for microbolometers.
NASA Astrophysics Data System (ADS)
Khalyapin, D. L.; Kim, J.; Stolyar, S. V.; Turpanov, I. A.; Kim, P. D.; Kim, I.
2003-11-01
The crystal structure of the thin films of metastable Co 13Cu 87 alloy prepared by magnetron sputtering was investigated by transmission electron microscope. As-deposited films have a nanocrystal structure with an fcc lattice. As a result of the prolonged ion polishing with a beam of Ar ions with the energy of 4.7 keV, the four-layer 4H dhcp structure was formed.
Nanostructure and strain effects in active thin films for novel electronic device applications
NASA Astrophysics Data System (ADS)
Yuan, Zheng
2007-12-01
There are many potential applications of ferroelectric thin films that take advantage of their unique dielectric and piezoelectric properties, such as tunable microwave devices and thin-film active sensors for structural health monitoring (SHM). However, many technical issues still restrict practical applications of ferroelectric thin films, including high insertion loss, limited figure of merit, soft mode effect, large temperature coefficients, and others. The main theme of this thesis is the advanced technique developments, and the new ferroelectric thin films syntheses and investigations for novel device applications. A novel method of additional doping has been adopted to (Ba,Sr)TiO 3 (BSTO) thin films on MgO. By introducing 2% Mn into the stoichiometric BSTO, Mn:BSTO thin films have shown a greatly enhanced dielectric tunability and a reduced insertion loss at high frequencies (10-30 GHz). A new record of a large tunability of 80% with a high dielectric constant of 3800 and an extra low dielectric loss of 0.001 at 1 MHz at room-temperature was achieved. Meanwhile, the new highly epitaxial ferroelectric (Pb,Sr)TiO3 (PSTO) thin films have been synthesized on (001) MgO substrates. PSTO films demonstrated excellent high frequency dielectric properties with high dielectric constants above 1420 and large dielectric tunabilities above 34% at room-temperature up to 20 GHz. In addition, a smaller temperature coefficient from 80 K to 300 K was observed in PSTO films compared to BSTO films. These results indicate that the Mn:BSTO and PSTO films are both good candidates for developing room-temperature tunable microwave devices. Furthermore, crystalline ferroelectric BaTiO3 (BTO) thin films have been deposited directly on metal substrate Ni through a unique in-situ substrate pre-oxidation treatment. The highly oriented nanopillar structural BTO films were grown on the buffered layers created by the pre-oxidation treatment. No interdiffusion or reaction was observed at the interface. As-grown BTO films demonstrated good ferroelectric properties and an extremely large piezoelectric response of 130 (x 10-12 C/N). These excellent preliminary results enable the long-term perspective on the unobtrusive ferroelectric thin-film active sensors for SHM applications.
Kang, Tae-Woon; Kim, Sung Hyun; Kim, Cheol Hwan; Lee, Sang-Mok; Kim, Han-Ki; Park, Jae Seong; Lee, Jae Heung; Yang, Yong Suk; Lee, Sang-Jin
2017-09-27
Polymer/metal/polymer and polymer/metal/inorganic trilayer-structured transparent electrodes with fluorocarbon plasma polymer thin film heaters have been proposed. The polymer/metal/polymer and polymer/metal/inorganic transparent conducting thin films fabricated on a large-area flexible polymer substrate using a continuous roll-to-roll sputtering process show excellent electrical properties and visible-light transmittance. They also exhibit water-repelling surfaces to prevent wetting and to remove contamination. In addition, the adoption of a fluorocarbon/metal/fluorocarbon film permits an outer bending radius as small as 3 mm. These films have a sheet resistance of less than 5 Ω sq -1 , sufficient to drive light-emitting diode circuits. The thin film heater with the fluorocarbon/Ag/SiN x structure exhibits excellent heating characteristics, with a temperature reaching 180 °C under the driving voltage of 13 V. Therefore, the proposed polymer/metal/polymer and polymer/metal/inorganic transparent conducting electrodes using polymer thin films can be applied in flexible and rollable displays as well as automobile window heaters and other devices.
NASA Astrophysics Data System (ADS)
Ouchabane, M.; Dublanche-Tixier, Ch.; Dergham, D.
2017-11-01
The present work is a contribution to the understanding of the mechanical behavior of DLC thin films through nanoindentation tests. DLC films of different thicknesses deposited by the PECVD process on a silicon substrate contain high residual compressive stresses when they are very thin and the stresses become relatively low and more relaxed as the film thickens. These different levels of residual stress influence the values of hardness (H) and Young's modulus (E) obtained when probing the film-substrate system by nanoindentation. It is observed that the DLC layers exhibit different mechanical behaviors even when they are deposited under the same conditions. It is proposed that the compressive stress induces structural modifications resulting in modifying the elasto-plastic properties of each thin film-substrate system. Data analysis of the loading curve can provide information on the elasto-plastic properties of DLC thin films, particularly the stiffness (S) and Er2/H, as a function of residual compressive stresses. The structural changes induced by residual stresses were probed by using Raman spectroscopy and correlated to the mechanical properties.
NASA Astrophysics Data System (ADS)
Asvini, V.; Saravanan, G.; Kalaiezhily, R. K.; Raja, M. Manivel; Ravichandran, K.
2018-04-01
Fe2CoSi based Heusler alloy thin films were deposited on Si (111) wafer (substrate) of varying thickness using ultra high vacuum DC magnetron sputtering. The structural behavior was observed and found to be hold the L21 structure. The deposited thin films were characterized magnetic properties using vibrating sample magnetometer; the result shows a very high saturated magnetization (Ms), lowest coercivity (Hc), high curie transition temperature (Tc) and low hysteresis loss. Thin film thickness of 75 nm Fe2CoSi sample maintained at substrate temperature 450°C shows the lowest coercivity (Hc=7 Oe). In general, Fe2CoSi Heusler alloys curie transition temperature is very high, due to strong exchange interaction between the Fe and Co atoms. The substrate temperature was kept constant at 450°C for varying thickness (e.g. 5, 20, 50, 75 and 100 nm) of thin film sample. The 75 nm thickness thin film sample shows well crystallanity and good magnetic properties, further squareness ratio in B-H loop increases with the increase in film thickness.
Nanostructured Gd3+-TiO2 surfaces for self-cleaning application
NASA Astrophysics Data System (ADS)
Saif, M.; El-Molla, S. A.; Aboul-Fotouh, S. M. K.; Ibrahim, M. M.; Ismail, L. F. M.; Dahn, Douglas C.
2014-06-01
Preparation of self-cleaning surfaces based on lanthanide modified titanium dioxide nanoparticles has rarely been reported. In the present work, gadolinium doped titanium dioxide thin films (x mol Gd3+-TiO2 where x = 0.000, 0.005, 0.008, 0.010, 0.020 and 0.030 mol) were synthesized by sol-gel method and deposited using doctor-blade method. These films were characterized by studying their structural, optical and electrical properties. Doping with gadolinium decreases the band gap energy and increase conductivity of thin films. The photo self-cleaning activity in term of quantitative determination of the active oxidative species (rad OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results show that, the highly active thin film is the 0.020 Gd3+-TiO2. The structural, morphology, optical, electrical and photoactivity properties of Gd3+-TiO2 thin films make it promising surfaces for self-cleaning application. Mineralization of commercial textile dye (Remazol Red RB-133, RR) and durability using 0.020Gd3+-TiO2 film surface was studied.
Semiconducting boron carbide thin films: Structure, processing, and diode applications
NASA Astrophysics Data System (ADS)
Bao, Ruqiang
The high energy density and long lifetime of betavoltaic devices make them very useful to provide the power for applications ranging from implantable cardiac pacemakers to deep space satellites and remote sensors. However, when made with conventional semiconductors, betavoltaic devices tend to suffer rapid degradation as a result of radiation damage. It has been suggested that the degradation problem could potentially be alleviated by replacing conventional semiconductors with a radiation hard semiconducting material like icosahedral boron carbide. The goal of my dissertation was to better understand the fundamental properties and structure of boron carbide thin films and to explore the processes to fabricate boron carbide based devices for voltaic applications. A pulsed laser deposition system and a radio frequency (RF) magnetron sputtering deposition system were designed and built to achieve the goals. After comparing the experimental results obtained using these two techniques, it was concluded that RF magnetron sputtering deposition technique is a good method to make B4C boron carbide thin films to fabricate repeatable and reproducible voltaic devices. The B4C thin films deposited by RF magnetron sputtering require in situ dry pre-cleaning to make ohmic contacts for B4C thin films to fabricate the devices. By adding another RF sputtering to pre-clean the substrate and thin films, a process to fabricate B4C / n-Si heterojunctions has been established. In addition, a low energy electron accelerator (LEEA) was built to mimic beta particles emitted from Pm147 and used to characterize the betavoltaic performance of betavoltaic devices as a function of beta energy and beta flux as well as do accelerated lifetime testing for betavoltaic devices. The energy range of LEEA is 20 - 250 keV with the current from several nA to 50 muA. High efficiency Si solar cells were used to demonstrate the powerful capabilities of LEEA, i.e., the characterization of betavoltaic performance and the accelerated lifetime test of betavoltaic devices. Structural analysis by X-ray diffraction and high resolution transmission electron microscopy showed that the prepared B4C thin films are amorphous. The presence of icosahedrons, which account for the radiation hardness of icosahedral boron rich solids, in the amorphous B4C thin films was supported by Fourier transform infrared spectroscopy. The pair distribution functions derived from selected area diffraction pattern of amorphous B 4C thin films showed that the short range order structure of amorphous B4C thin films is similar to beta-rhombohedral boron but with a shorter distance. The investigation of electrical properties of B4 C thin films showed that the resistivity of B4C thin films ranges from 695 O-cm to 9650 O-cm depending on the deposition temperature; the direct and indirect bandgaps for B4C thin films are 2.776 - 2.898 eV and 1.148 - 1.327 eV, respectively; the effective lifetime of excess charge carrier is close to 0.1 ms for B4C thin film deposited at room temperature and approximates to 1 ms for those deposited at 175 °C to 500 °C. Based on structural characterization and electrical properties of B4C thin films, a structural model of B4C thin films was proposed and supported by nanoindenter experiments, i.e., the hardness of thin films deposited at temperature in the range of 275 °C to 350 °C is lower than that of the films deposited at RT and 650 °C. Heterojunctions of B4C / n-Si (100) possessing photovoltaic response have been fabricated. The suitable deposition temperature for B 4C thin film to fabricate photovoltaic device is from 175 °C to 350 °C. When the Si substrate surface was not pre-cleaned before depositing B4C thin film, the B4C / n-Si (100) heterojunction has better photovoltaic responses, presumably because there were no sputter-produced defects on the surface of Si (100) substrate. Until now, the best achievable photovoltaic performance is B4C / n-Si (100) heterojunction with 200 nm thick B4C thin film when the Si (100) substrate surface was not pre-cleaned by RF sputtering. When this heterojunction was characterized using solar simulator with air mass 1.5 spectra, the short circuit current density is 1.484 mA/cm2, the open circuit voltage is about 0.389 V, and the power conversion efficiency is about 0.214 %. In addition, B5C thin films deposited by plasma enhanced chemical vapor deposition were used to make some of the devices studied in this dissertation. It was found that the Si-doped BC / n-Si (111) heterojunctions also demonstrates their photovoltaic and betavoltaic responses. Even after irradiated by a 120 keV electron beam to a fluence of 4.38x1017 electrons/cm 2, the heterojunctions still posses betavoltaic behavior and their responses to the incident irradiance density are similar to that before irradiation.
NASA Astrophysics Data System (ADS)
Sankar, M. S. Ravi; Gangineni, R. B.
2018-04-01
This work aims at understanding the solvent influence upon the throughput and structure of poly vinyledene fluoride (PVDF)nano-patterned films. The PVDF thin films are deposited by spin coating method using Dimethylsulfoxide (DMSO), Tetrahydrofuran (THF) and 2-butanone solvents. The nano-patterns are realized by imprinting SONY 700 MB CD aluminum constructions on PVDF thin filmsusing imprint lithography technique under ambient annealing temperature and pressure. Surface morphology &imprint pattern transfer quality is evaluated with Atomic force microscopy (AFM). Raman spectroscopy is used for evaluating the structural evolutions with respect to solvent & patterning.
NASA Astrophysics Data System (ADS)
Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet
2018-06-01
Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.
NASA Astrophysics Data System (ADS)
Anjum, Safia; Rafique, M. S.; Khaleeq-ur-Rahaman, M.; Siraj, K.; Usman, Arslan; Ahsan, A.; Naseem, S.; Khan, K.
2011-06-01
Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 and Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films with different concentrations of Mn and Zr have been deposited on single crystal n-Si (400) at room temperature (RT) by pulse laser deposition technique (PLD). The films have been deposited under two conditions: (i) with the applied external magnetic field across the propagation of the plume (ii) without applied external magnetic field ( B=0). XRD results show the films have spinel cubic structure when deposited in the presence of magnetic field. SEM and AFM observations clearly show the effect of external applied magnetic field on the growth of films in terms of small particle size, improved uniformity and lower r.m.s. roughness. Thin films deposited under the influence of external magnetic field exhibit higher magnetization as measured by the VSM. The optical band gap energy Eg, refractive index n, reflection, absorption and the thickness of the thin films were measured by spectroscopy ellipsometer. The reflection of Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films is higher than Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 thin films due to the greater concentration of Zr. The thicknesses of the thin films under the influence of external magnetic field are larger than the films grown without field for both samples. The optical band gap energy Eg decreases with increasing film thickness. The films with external magnetic field are found highly absorbing in nature due to the larger film thickness.
Z-scan measurement for nonlinear absorption property of rGO/ZnO:Al thin film
NASA Astrophysics Data System (ADS)
Sreeja, V. G.; Anila, E. I.
2018-04-01
We report the fabrication of reduced graphene oxide integrated aluminium doped zinc oxide (rGO/ZnO:Al) composite thin film on a glass substrate by spin coating technique. The effect of rGO on structural and linear optical properties of rGO/ZnO:Al composite thin film was explored with the help of X-Ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis absorption spectroscopy. Structural studies reveals that the composite film has hexagonal wurtzite structure with a strong bonding between rGO and ZnO:Al material. The band gap energy of ZnO:Al thin film was red shifted by the addition of rGO. The Nonlinear absorption property was investigated by open aperture Z-scan technique by using Q switched Nd-YAG laser at 532nm. The Z-scan results showed that the composite film demonstrates reverse saturable absorption property with a nonlinear absorption coefficient, β, of 12.75×10-7m/w. The results showed that investigated rGO/ZnO:Al thin film is a promising material suitable for the applications in absorbing type optical devices such as optical limiters, optical switches and protection of the optical sensors in the field of nonlinear optics.
Investigations in structural morphological and optical properties of Bi-Pb-S system thin films
NASA Astrophysics Data System (ADS)
Malika, Boukhalfa; Noureddine, Benramdane; Mourad, Medles; Abdelkader, Outzourhit; Attouya, Bouzidi; Hind, Tabet-derraz
Bi2S3, PbS and Bi-Pb-S system thin films were grown on glass substrates by the spray pyrolysis technique. The films growth was realized by the reaction of aqueous solutions of bismuth trichloride (BiCl3) and trihydrate Lead Acetate (TLA) (Pb(CH3COO)2.3H2O) with thiourea on heated substrates. The films study was performed as a function of the TLA volume ratio (TLA vol. ratio) in the solution obtained by the mixture of BiCl3 and thiourea used as precursor solution (PrS). X-ray diffraction (XRD), field emitting scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) were used for structural and compositional analysis of the as deposited films. With the structural investigations, Bi2S3, PbS thin films and PbS-Bi2S3 composite thin films formation was confirmed. Optical properties of the deposited films were obtained using transmittance and reflectance measurements in the wavelength range [200-2500 nm]. The absorption edge shows a shift towards low energy with the increase of the TLA vol. ratio.The optical bandgaps for the films with various TLA vol. ratio are found to lie between those of the Bi2S3 and PbS ones. The optical parameters (extinction coefficient, refractive index, real and imaginary parts if the complex dielectric constant) of the thin films are also investigated. These are found to be dependent on the TLA vol. ratio.
NASA Astrophysics Data System (ADS)
Chander, Subhash; Dhaka, M. S.
2016-10-01
The thickness and physical properties of electron beam vacuum evaporated CdZnTe thin films have been optimized in the present work. The films of thickness 300 nm and 400 nm were deposited on ITO coated glass substrates and subjected to different characterization tools like X-ray diffraction (XRD), UV-Vis spectrophotometer, source meter and scanning electron microscopy (SEM) to investigate the structural, optical, electrical and surface morphological properties respectively. The XRD results show that the as-deposited CdZnTe thin films have zinc blende cubic structure and polycrystalline in nature with preferred orientation (111). Different structural parameters are also evaluated and discussed. The optical study reveals that the optical transition is found to be direct and energy band gap is decreased for higher thickness. The transmittance is found to increase with thickness and red shift observed which is suitable for CdZnTe films as an absorber layer in tandem solar cells. The current-voltage characteristics of deposited films show linear behavior in both forward and reverse directions as well as the conductivity is increased for higher film thickness. The SEM studies show that the as-deposited CdZnTe thin films are found to be homogeneous, uniform, small circle-shaped grains and free from crystal defects. The experimental results confirm that the film thickness plays an important role to optimize the physical properties of CdZnTe thin films for tandem solar cell applications as an absorber layer.
NASA Astrophysics Data System (ADS)
Rahman Ansari, Akhalakur; Hussain, Shahir; Imran, Mohd; Abdel-wahab, M. Sh; Alshahrie, Ahmed
2018-06-01
The pure cobalt thin film was deposited on the glass substrate by using DC magnetron sputtering and then exposed to microwave assist oxygen plasma generated in microwave plasma CVD. The oxidation process of Co thin film into Co3O4 thin films with different microwave power and temperature were studied. The influences of microwave power, temperature and irradiation time were investigated on the morphology and particle size of oxide thin films. The crystal structure, chemical conformation, morphologies and optical properties of oxidized Co thin films (Co3O4) were studied by using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Raman Spectroscopy and UV–vis Spectroscopy. The data of these films showed complete oxidation pure metallic cobalt (Co) into cobalt oxide (Co3O4). The optical properties were studied for calculating the direct band gaps which ranges from 1.35 to 1.8 eV.
Electron-beam-evaporated thin films of hafnium dioxide for fabricating electronic devices
Xiao, Zhigang; Kisslinger, Kim
2015-06-17
Thin films of hafnium dioxide (HfO 2) are widely used as the gate oxide in fabricating integrated circuits because of their high dielectric constants. In this paper, the authors report the growth of thin films of HfO 2 using e-beam evaporation, and the fabrication of complementary metal-oxide semiconductor (CMOS) integrated circuits using this HfO 2 thin film as the gate oxide. The authors analyzed the thin films using high-resolution transmission electron microscopy and electron diffraction, thereby demonstrating that the e-beam-evaporation-grown HfO 2 film has a polycrystalline structure and forms an excellent interface with silicon. Accordingly, we fabricated 31-stage CMOS ringmore » oscillator to test the quality of the HfO 2 thin film as the gate oxide, and obtained excellent rail-to-rail oscillation waveforms from it, denoting that the HfO 2 thin film functioned very well as the gate oxide.« less
Effect of annealing on optical properties and structure of the vanadium dioxide thin films
NASA Astrophysics Data System (ADS)
Zhu, Huiqun; Li, Yi; Li, Yuming; Huang, Yize; Tong, Guoxiang; Fang, Baoying; Zheng, Qiuxin; Li, Liu; Shen, Yujian
2012-10-01
VO2 thin films were prepared on soda-lime glass substrates by DC magnetron sputtering at room temperature using vanadium target and post annealing in air. X-ray diffraction and FTIR spectroscopy analyses showed that the films obtained at the optimized parameters have high VO2 (011) orientation. Both low temperature deposition and post annealing method were beneficial to grow the nano-films with pure VO2 phase-structure and composition. Metalinsulator transition properties of the VO2 films in terms of infrared transmittance, transmittance variation and film thickness were investigated under varying annealing temperature. Results showed that infrared transmittance variation and transition temperature of the nano-films were significantly improved and reduced respectively. Therefore, this study was able to develop practical low-cost preparation methods for high-performance intelligent energy-saving thin films.
New organic semiconductor thin film derived from p-toluidine monomer
NASA Astrophysics Data System (ADS)
Al-Hossainy, A. F.; Zoromba, M. Sh
2018-03-01
p-Toluidine was used as a precursor to synthesize new organic compound [(E)-4-methyl-N1-((E)-4-methyl-6-(p-tolylimino) cyclohex-3-en-1-ylidene)-N2-(p-tolyl) benzene-1,2-diamine] (MBD) by oxidative reaction via potassium dichromate as oxidizing agent at room temperature. Spin coater was used to fabricate nano-size crystalline thin film of the MBD with thickness 73 nm. The characterizations of the MBD powder and thin film have been described by various techniques including Fourier Transform Infrared (FT-IR), Mass Spectra, X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), UV-Visible measurements and Atomic Force Microscope (AFM). The results revealed that the MBD as an organic material is semi-crystalline containing benzenoid (Bensbnd Nsbnd Ben) and quinonoid (Quin = N = Quin) structures. Various optical constants such as refractive index (n), and the absorption index, (k) of the MBD thin film were determined. The effect of temperature on the electrical resistivity of MBD film was studied by a Keithley 6517B electrometer. The energy band gap value of the MBD thin film was found to be 2.24 eV. Thus, MBD is located in the semiconductor materials range. In addition, structural and optical mechanisms of MBD nanostructured thin film were investigated. The obtained results illustrate the possibility of controlling the organic semiconductor MBD thin film for the optoelectronic applications.
The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification.
Yin, Wenchang; Tao, Cheng-An; Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang
2017-08-29
Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH₂-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH₂-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index ( n eff ) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices.
The Tuning of Optical Properties of Nanoscale MOFs-Based Thin Film through Post-Modification
Zou, Xiaorong; Wang, Fang; Qu, Tianlian; Wang, Jianfang
2017-01-01
Optical properties, which determine the application of optical devices in different fields, are the most significant properties of optical thin films. In recent years, Metal-organic framework (MOF)-based optical thin films have attracted increasing attention because of their novel optical properties and important potential applications in optical and photoelectric devices, especially optical thin films with tunable optical properties. This study reports the first example of tuning the optical properties of a MOF-based optical thin film via post-modification. The MOF-based optical thin film was composed of NH2-MIL-53(Al) nanorods (NRs) (MIL: Materials from Institute Lavoisier), and was constructed via a spin-coating method. Three aldehydes with different lengths of carbon chains were chosen to modify the MOF optical thin film to tune their optical properties. After post-modification, the structural color of the NH2-MIL-53(Al) thin film showed an obvious change from purple to bluish violet and cyan. The reflection spectrum and the reflectivity also altered in different degrees. The effective refractive index (neff) of MOFs thin film can also be tuned from 1.292 to 1.424 at a wavelength of 750 nm. The success of tuning of the optical properties of MOFs thin films through post-modification will make MOFs optical thin films meet different needs of optical properties in various optical and optoelectronic devices. PMID:28850057
NASA Astrophysics Data System (ADS)
Kumar, Anuj; Pawar, Shuvam; Singh, Kirandeep; Kaur, Davinder
2018-05-01
In this study, we have reported the influence of growth temperature on perovskite phase evolution in sputtered deposited high quality Pb1-x Lax (Zr0.9 Ti0.1)O3 (PLZT) thin films on Pt/Ti/SiO2/Si substrate. PLZT thin films were fabricated at substrate temperature ranging from 400 to 700 °C. We have investigated the structural, dielectric, ferroelectric and leakage current characteristics of these thin films. XRD patterns reveal that 600 °C is the optimized temperature to deposit highly (110) oriented perovskite phase PLZT thin film. The further increase in temperature (700 °) causes reappearance of additional peaks corresponding to lead deficient pyrochlore phase. All PLZT thin films show decrease in dielectric constant with frequency. However, PLZT thin film fabricated at 600 °C displays dielectric constant ˜532 at 1 MHz frequency which is relatively higher than other deposited thin films. The P-E loops of these PLZT thin films exhibit strong dependence on deposition temperature. The pure perovskite PZLT thin film shows saturation polarization of ˜51.2µC/cm2 and coercive field (2Ec) ˜67.85 kV/cm. These high quality PLZT thin films finds their applications in non-volatile memory and nano-electro-mechanical systems (NEMS).
Aluminum concentration and substrate temperature in chemical sprayed ZnO:Al thin solid films
NASA Astrophysics Data System (ADS)
Lozada, Erick Velázquez; Castañeda, L.; Aguilar, E. Austria
2018-02-01
The continuous interest in the synthesis and properties study of materials has permitted the development of semiconductor oxides. Zinc oxide (ZnO) with hexagonal wurzite structure is a wide band gap n-type semiconductor and interesting material over a wide range. Chemically sprayed aluminium-doped zinc oxide thin films (ZnO:Al) were deposited on soda-lime glass substrates starting from zinc pentanedionate and aluminium pentanedionate. The influence of both the dopant concentration in the starting solution and the substrate temperature on the composition, morphology, and transport properties of the ZnO:Al thin films were studied. The structure of all the ZnO:Al thin films was polycrystalline, and variation in the preferential growth with the aluminium content in the solution was observed: from an initial (002) growth in films with low Al content, switching to a predominance of (101) planes for heavily dopant regime. The crystallite size was found to decrease with doping concentration and range from 33 to 20 nm. First-order Raman scattering from ZnO:Al, all having the wurtzite structure. The assignments of the E2 mode in ZnO:Al differ from previous investigations. The film composition and the dopant concentration were determined by Auger Electron Spectroscopy (AES); these results showed that the films are almost stoichiometric ZnO. The optimum deposition conditions leading to conductive and transparent ZnO:Al thin films were also found. In this way a resistivity of 0.03 Ω-cm with a (002) preferential growth, were obtained in optimized ZnO:Al thin films.
Dewetting of Thin Polymer Films
NASA Astrophysics Data System (ADS)
Dixit, P. S.; Sorensen, J. L.; Kent, M.; Jeon, H. S.
2001-03-01
DEWETTING OF THIN POLYMER FILMS P. S. Dixit,(1) J. L. Sorensen,(2) M. Kent,(2) H. S. Jeon*(1) (1) Department of Petroleum and Chemical Engineering, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801, jeon@nmt.edu (2) Department 1832, Sandia National Laboratories, Albuquerque, NM. Dewetting of thin polymer films is of technological importance for a variety of applications such as protective coatings, dielectric layers, and adhesives. Stable and smooth films are required for the above applications. Above the glass transition temperature (Tg) the instability of polymer thin films on a nonwettable substrate can be occurred. The dewetting mechanism and structure of polypropylene (Tg = -20 ^circC) and polystyrene (Tg = 100 ^circC) thin films is investigated as a function of film thickness (25 Åh < 250 Åand quenching temperature. Contact angle measurements are used in conjunction with optical microscope to check the surface homogeneity of the films. Uniform thin films are prepared by spin casting the polymer solutions onto silicon substrates with different contact angles. We found that the stable and unstable regions of the thin films as a function of the film thickness and quenching temperature, and then constructed a stability diagram for the dewetting of thin polymer films. We also found that the dewetting patterns of the thin films are affected substantially by the changes of film thickness and quenching temperature.
Third order nonlinearity in pulsed laser deposited LiNbO{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluri, Anil; Rapolu, Mounika; Rao, S. Venugopal, E-mail: kcjrsp@uohyd.ernet.in, E-mail: svrsp@uohyd.ernet.in
2016-05-06
Lithium niobate (LiNbO{sub 3}) thin films were prepared using pulsed laser deposition technique. Structural properties of the same were examined from XRD and optical band gap of the thin films were measured from transmittance spectra recorded using UV-Visible spectrophotometer. Nonlinear optical properties of the thin films were recorded using Z-Scan technique. The films were exhibiting third order nonlinearity and their corresponding two photon absorption, nonlinear refractive index, real and imaginary part of nonlinear susceptibility were calculated from open aperture and closed aperture transmission curves. From these studies, it suggests that these films have potential applications in nonlinear optical devices.
Structural and magnetic analysis of Cu, Co substituted NiFe{sub 2}O{sub 4} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hakikat; Bala, Kanchan; Negi, N. S.
2016-05-23
In the present work we prepared NiFe{sub 2}O{sub 4}, Ni{sub 0.95}Cu{sub 0.05}Fe{sub 2}O{sub 4} and Ni{sub 0.94}Cu{sub 0.05}Co{sub 0.01} Fe{sub 2}O{sub 4} thin films by metallo-organic decomposition method (MOD) using spin coating technique. The thin films were analyzed by X-ray diffractometer (XRD) and Atomic force microscope (AFM) for structural studies. The XRD patterns confirmed the ferrite phase of thin films. From AFM, we analyzed surface morphology, calculated grain size (GS) and root mean square roughness (RMSR). Room temperature magnetic properties were investigated by vibrating sample magnetometer (VSM).
Enhancement of electrical properties in polycrystalline BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Yun, Kwi Young; Ricinschi, Dan; Kanashima, Takeshi; Okuyama, Masanori
2006-11-01
Ferroelectric BiFeO3 thin films were grown on Pt /TiO2/SiO2/Si substrates by pulsed-laser deposition. From the x-ray diffraction analysis, the BiFeO3 thin films consist of perovskite single phase, and the crystal structure shows the tetragonal structure with a space group P4mm. The BiFeO3 thin films show enhanced electrical properties with low leakage current density value of ˜10-4A /cm2 at a maximum applied voltage of 31V. This enhanced electrical resistivity allowed the authors to obtain giant ferroelectric polarization values such as saturation polarizations of 110 and 166μC/cm2 at room temperature and 80K, respectively.
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.
The structural properties and absorption spectra of H2Pc thin films have been studied. The films used in these studies were thermally evaporated on glass/quartz substrates with thickness ranging from 60 to 460 nm. The XRD studies of H2Pc thin films showed that the as-deposited films have a-form with monoclinic system. The mean crystallite size (L), the dislocation density (d) and the strain (x) were evaluated. The molecular structure of H2Pc thin films is confirmed by analysis of (FTIR) spectra. The surface morphology of H2Pc thin films was examined by scanning electron microscope. The absorption spectra of H2Pc recorded in the UV - VIS - IR region for the as-deposited and the annealed thin films of different thickness have been analyzed. The spectra showed two absorption bands namely the Q-band and the Soret (B)-band. The Q-band shows its characteristic splitting (Davydove splitting) with DQ = 0.21 eV. Values of some important optical parameters, namely optical absorption coefficient (a¢), molar extinction coefficient (emolar), half-band-width (Dl), electronic dipole strength (q2) and oscillator strength (f) were calculated. The fundamental and the onset of the indirect energy gaps were also determined as 2.47 and 1.4 eV, respectively.
Studies of electronic and magnetic properties of LaVO3 thin film
NASA Astrophysics Data System (ADS)
Jana, Anupam; Karwal, Sharad; Choudhary, R. J.; Phase, D. M.
2018-04-01
We have investigated the electronic and magnetic properties of pulsed laser deposited Mott insulator LaVO3 (LVO) thin film. Structural characterization revels the single phase [00l] oriented LVO thin film. Enhancement of out of plane lattice parameter indicates the compressively strained LVO film. Electron spectroscopic studies demonstrate that vanadium is present in V3+ state. An energy dispersive X-ray spectroscopic study ensures the stoichiometric growth of the film. Very smooth surface is observed in scanning electron micrograph. Colour mapping for elemental distribution reflect the homogeneity of LVO film. The bifurcation between zero-field-cooled and Field-cooled curves clearly points towards the weak ferromagnetic phase presence in compressively strained LVO thin film. A finite value of coercivity at 300 K reflects the possibility of room temperature ferromagnetism of LVO thin film.
Shi, Chenyang; Teerakapibal, Rattavut; Yu, Lian; ...
2017-07-10
Using high-brilliance high-energy synchrotron X-ray radiation, for the first time the total scattering of a thin organic glass film deposited on a strongly scattering inorganic substrate has been measured in transmission mode. The organic thin film was composed of the weakly scattering pharmaceutical substance indomethacin in the amorphous state. The film was 130 µm thick atop a borosilicate glass substrate of equal thickness. The atomic pair distribution function derived from the thin-film measurement is in excellent agreement with that from bulk measurements. This ability to measure the total scattering of amorphous organic thin films in transmission will enable accurate in situmore » structural studies for a wide range of materials.« less
Applications of Thin Film Thermocouples for Surface Temperature Measurement
NASA Technical Reports Server (NTRS)
Martin, Lisa C.; Holanda, Raymond
1994-01-01
Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, therefore leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a class 1000 clean room. The thermocouples are platinum-13 percent rhodium versus platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of space shuttle main engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.
NASA Astrophysics Data System (ADS)
Gann, Eliot; Caironi, Mario; Noh, Yong-Young; Kim, Yun-Hi; McNeill, Christopher R.
The depth dependence of crystalline structure within thin films is critical for many technological applications, but has been impossible to measure directly using common techniques. In this work, by monitoring diffraction peak intensity and location and utilizing the highly angle-dependent waveguiding effects of X-rays near grazing incidence we quantitatively measure the thickness, roughness and orientation of stratified crystalline layers within thin films of a high-performance semiconducting polymer. In particular, this diffractive X-ray waveguiding reveals a self-organized 5-nm-thick crystalline surface layer with crystalline orientation orthogonal to the underlying 65-nm-thick layer. While demonstrated for an organic semiconductor film, this approach is applicable to any thin film material system where stratified crystalline structure and orientation can influence important interfacial processes such as charge injection and field-effect transport.
Magnetron sputtered boron films and TI/B multilayer structures
Makowiecki, Daniel M.; Jankowski, Alan F.
1993-01-01
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.
Magnetron sputtered boron films and Ti/B multilayer structures
Makowiecki, Daniel M.; Jankowski, Alan F.
1995-01-01
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.
Magnetron sputtered boron films and TI/B multilayer structures
Makowiecki, D.M.; Jankowski, A.F.
1993-04-20
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.
Magnetron sputtered boron films and Ti/B multilayer structures
Makowiecki, D.M.; Jankowski, A.F.
1995-02-14
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.
Near-zero IR transmission of VO2 thin films deposited on Si substrate
NASA Astrophysics Data System (ADS)
Zhang, Chunzi; Koughia, Cyril; Li, Yuanshi; Cui, Xiaoyu; Ye, Fan; Shiri, Sheida; Sanayei, Mohsen; Wen, Shi-Jie; Yang, Qiaoqin; Kasap, Safa
2018-05-01
Vanadium dioxide (VO2) thin films of different thickness have been deposited on Si substrates by using DC magnetron sputtering. The effects of substrate pre-treatment by means of seeding (spin coating and ultrasonic bathing) and biasing on the structure and optical properties were investigated. Seeding results in a smaller grain size in the oxide film, whereas biasing results in square-textured crystals. VO2 thin films of 150 nm thick show a near-zero IR transmission in switched state. Especially, the 150 nm thick VO2 thin film with seeding treatment shows an enhanced switching efficiency.
NASA Astrophysics Data System (ADS)
Arfaoui, A.; Touihri, S.; Mhamdi, A.; Labidi, A.; Manoubi, T.
2015-12-01
Thin films of molybdenum trioxide and tungsten trioxide were deposited on glass substrates using a simplified thermal evaporation under vacuum method monitored by heat treatment in flowing oxygen at 500 °C for 1 h. The structural and morphological properties of the films were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The X-ray diffraction analysis shows that the films of MoO3 and WO3 were well crystallized in orthorhombic and monoclinic phase respectively with the crystallites preferentially oriented toward (2 0 0) direction parallel a-axis for both samples. In literature, we have shown in previous papers that structural and surface morphology of metal thin films play an important role in the gas detection mechanism. In this article, we have studied the response evolution of MoO3 and WO3 thin films sensors ethanol versus time, working temperature and the concentration of the ethanol. It was found that these films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. Finally, the photocatalytic activity of the samples was evaluated with respect to the degradation reaction of a wastewater containing methylene blue (MB) under UV-visible light irradiation. The molybdenum trioxide exhibits a higher degradation rate than the tungsten trioxide thin films under similar experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denny, Yus Rama; Firmansyah, Teguh; Oh, Suhk Kun
2016-10-15
Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS),more » and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.« less
Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures
NASA Astrophysics Data System (ADS)
Chen, G.; Tien, C. L.; Wu, X.; Smith, J. S.
1994-05-01
This work develops a new measurement technique that determines the thermal diffusivity of thin films in both parallel and perpendicular directions, and presents experimental results on the thermal diffusivity of GaAs/AlGaAs-based thin-film structures. In the experiment, a modulated laser source heats up the sample and a fast-response temperature sensor patterned directly on the sample picks up the thermal response. From the phase delay between the heating source and the temperature sensor, the thermal diffusivity in either the parallel or perpendicular direction is obtained depending on the experimental configuration. The experiment is performed on a molecular-beam-epitaxy grown vertical-cavity surface-emitting laser (VCSEL) structure. The substrates of the samples are etched away to eliminate the effects of the interface between the film and the substrate. The results show that the thermal diffusivity of the VCSEL structure is 5-7 times smaller than that of its corresponding bulk media. The experiments also provide evidence on the anisotropy of thermal diffusivity caused solely by the effects of interfaces and boundaries of thin films.
Origin of thickness dependence of structural phase transition temperatures in BiFeO 3 thin films
Yang, Yongsoo; Beekman, Christianne; Siemons, Wolter; ...
2016-03-28
In this study, two structural phase transitions are investigated in highly strained BiFeO 3 thin films grown on LaAlO 3 substrates, as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transition temperatures (upon heating: monoclinic MC to monoclinic MA, and MA to tetragonal) decrease as the film becomes thinner. The existence of an interface layer at the film-substrate interface, deduced from half-order peak intensities, contributes to this behavior only for the thinnest samples; at larger thicknesses (above a few nanometers) the temperature dependence can be understood in terms of electrostatic considerations akin to size effects inmore » ferroelectric phase transitions, but observed here for structural phase transitions within the ferroelectric phase and related to the rearrangement rather than the formation of domains. For ultra-thin films, the tetragonal structure is stable at all investigated temperatures (down to 30 K).« less
Low-cost growth of magnesium doped gallium nitride thin films by sol-gel spin coating method
NASA Astrophysics Data System (ADS)
Amin, N. Mohd; Ng, S. S.
2018-01-01
Low-cost sol-gel spin coating growth of magnesium (Mg) doped gallium nitride (GaN) thin films with different concentrations of Mg was reported. The effects of the Mg concentration on the structural, surface morphology, elemental compositions, lattice vibrational, and electrical properties of the deposited films were investigated. X-ray diffraction results show that the Mg-doped samples have wurtzite structure with preferred orientation of GaN(002). The crystallite size decreases and the surface of the films with pits/pores were formed, while the crystalline quality of the films degraded as the Mg concentration increases from 2% to 6. %. All the Raman active phonon modes of the wurtzite GaN were observed while a broad peak attributed to the Mg-related lattice vibrational mode was detected at 669 cm-1. Hall effect results show that the resistivity of the thin films decreases while the hole concentration and hall mobility of thin films increases as the concentration of the Mg increases.
Structural and optical properties of annealed and illuminated (Ag3AsS3)0.6(As2S3)0.4 thin films
NASA Astrophysics Data System (ADS)
Studenyak, I. P.; Neimet, Yu. Yu.; Rati, Y. Y.; Stanko, D.; Kranjčec, M.; Kökényesi, S.; Daróci, L.; Bohdan, R.
2014-11-01
(Ag3AsS3)0.6(As2S3)0.4 thin films were deposited upon a quartz substrate by rapid thermal evaporation. Structural studies of the as-deposited, annealed and illuminated films were performed using XRD, scanning electron and atomic force microscopies. Surfaces of all the films were found to be covered with Ag-rich crystalline micrometer sized cones. Thermal annealing leads to mechanical deformation of part of the cones and their detachment from the base film surface while the laser illumination leads to the new formations appearance on the surface of thin films. The spectroscopic studies of optical transmission spectra for as-deposited, annealed and illuminated thin films were carried out. The optical absorption spectra in the region of its exponential behaviour were analysed, the dispersion dependences of refractive index as well as their variation after annealing and illumination were investigated.
Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films
NASA Astrophysics Data System (ADS)
Cheemadan, Saheer; Santhosh Kumar, M. C.
2018-04-01
Nickel oxide (NiO) thin films were deposited by RF sputtering process and the physical properties were investigated for varying substrate temperatures and oxygen partial pressure. The variation of the crystallographic orientation and microstructure of the NiO thin films with an increase in substrate temperature were studied. It was observed that NiO thin films deposited at 350 °C shows relatively good crystalline characteristics with a preferential orientation along (111) plane. With the optimum substrate temperature of 350 °C, the NiO thin films were deposited under various oxygen partial pressures at the same experimental conditions. The structural, optical and electrical properties of NiO thin films under varying oxygen partial pressure of 10%–50% were investigated. From XRD it is clear that the films prepared in the pure argon atmosphere were amorphous while the films in oxygen partial pressure exhibited polycrystalline NiO phase. SEM and AFM investigations unveil that the higher substrate temperature improves the microstructure of the thin films. It is revealed that the NiO thin films deposited at oxygen partial pressure of 40% and a substrate temperature of 350 °C, showed higher electrical conductivity with p-type characteristics.
Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films
NASA Astrophysics Data System (ADS)
Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng
2013-03-01
A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.
[Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].
Tang, Xiaoshan; Li, Da
2010-12-01
Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.
Song, Gwang Yeom; Oh, Chadol; Sinha, Soumyadeep; Son, Junwoo; Heo, Jaeyeong
2017-07-19
Atomic layer deposition was adopted to deposit VO x thin films using vanadyl tri-isopropoxide {VO[O(C 3 H 7 )] 3 , VTIP} and water (H 2 O) at 135 °C. The self-limiting and purge-time-dependent growth behaviors were studied by ex situ ellipsometry to determine the saturated growth conditions for atomic-layer-deposited VO x . The as-deposited films were found to be amorphous. The structural, chemical, and optical properties of the crystalline thin films with controlled phase formation were investigated after postdeposition annealing at various atmospheres and temperatures. Reducing and oxidizing atmospheres enabled the formation of pure VO 2 and V 2 O 5 phases, respectively. The possible band structures of the crystalline VO 2 and V 2 O 5 thin films were established. Furthermore, an electrochemical response and a voltage-induced insulator-to-metal transition in the vertical metal-vanadium oxide-metal device structure were observed for V 2 O 5 and VO 2 films, respectively.
Sun, Guangyao; Zhou, Huaijuan; Cao, Xun; Li, Rong; Tazawa, Masato; Okada, Masahisa; Jin, Ping
2016-03-23
Composite films of VO2-TiO2 were deposited on sapphire (11-20) substrate by cosputtering method. Self-assembled well-ordered multilayer structure with alternating Ti- and V-rich epitaxial thin layer was obtained by thermal annealing via a spinodal decomposition mechanism. The structured thermochromic films demonstrate superior optical modulation upon phase transition, with significantly reduced transition temperature. The results provide a facile and novel approach to fabricate smart structures with excellent performance.
Self-assembled ordered structures in thin films of HAT5 discotic liquid crystal.
Morales, Piero; Lagerwall, Jan; Vacca, Paolo; Laschat, Sabine; Scalia, Giusy
2010-05-20
Thin films of the discotic liquid crystal hexapentyloxytriphenylene (HAT5), prepared from solution via casting or spin-coating, were investigated by atomic force microscopy and polarizing optical microscopy, revealing large-scale ordered structures substantially different from those typically observed in standard samples of the same material. Thin and very long fibrils of planar-aligned liquid crystal were found, possibly formed as a result of an intermediate lyotropic nematic state arising during the solvent evaporation process. Moreover, in sufficiently thin films the crystallization seems to be suppressed, extending the uniform order of the liquid crystal phase down to room temperature. This should be compared to the bulk situation, where the same material crystallizes into a polymorphic structure at 68 °C.
Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate
2013-01-01
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques. PMID:23448090
Fabrication and properties of ZnO/GaN heterostructure nanocolumnar thin film on Si (111) substrate.
Wei, Xianqi; Zhao, Ranran; Shao, Minghui; Xu, Xijin; Huang, Jinzhao
2013-02-28
Zinc oxide thin films have been obtained on bare and GaN buffer layer decorated Si (111) substrates by pulsed laser deposition (PLD), respectively. GaN buffer layer was achieved by a two-step method. The structure, surface morphology, composition, and optical properties of these thin films were investigated by X-ray diffraction, field emission scanning electron microscopy, infrared absorption spectra, and photoluminiscence (PL) spectra, respectively. Scanning electron microscopy images indicate that the flower-like grains were presented on the surface of ZnO thin films grown on GaN/Si (111) substrate, while the ZnO thin films grown on Si (111) substrate show the morphology of inclination column. PL spectrum reveals that the ultraviolet emission efficiency of ZnO thin film on GaN buffer layer is high, and the defect emission of ZnO thin film derived from Zni and Vo is low. The results demonstrate that the existence of GaN buffer layer can greatly improve the ZnO thin film on the Si (111) substrate by PLD techniques.
Epitaxial ternary nitride thin films prepared by a chemical solution method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Hongmei; Feldmann, David M; Wang, Haiyan
2008-01-01
It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.
NASA Astrophysics Data System (ADS)
Boukhenoufa, N.; Mahamdi, R.; Rechem, D.
2016-11-01
In this work, sol—gel dip-coating technique was used to elaborate ZnO pure and ZnO/Al films. The impact of Al-doped concentration on the structural, optical, surface morphological and electrical properties of the elaborated samples was investigated. It was found that better electrical and optical performances have been obtained for an Al concentration equal to 5%, where the ZnO thin films exhibit a resistivity value equal to 1.64104 Ω·cm. Moreover, highest transparency has been recorded for the same Al concentration value. The obtained results from this investigation make the developed thin film structure a potential candidate for high optoelectronic performance applications.
Structural and optical properties of PbS thin films grown by chemical bath deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seghaier, S.; Kamoun, N.; Guasch, C.
2007-09-19
Lead sulphide thin films are grown on glass substrates at various deposition times tD, in the range of 40-60 min per step of 2 min, using the chemical bath deposition technique. X-ray diffraction and atomic force microscopy are used to characterize the film structure. The surface composition is analysed by Auger electron spectroscopy. It appears that the as-prepared thin films are polycrystalline with cubic structure. Nanometric scale crystallites are uniformly distributed on the surface. They exhibit almost a stoechiometric composition with a [Pb]/[S] ratio equal to 1.10. Optical properties are studied in the range of 300-3300 nm by spectrophotometric measurements.more » Analysis of the optical absorption data of lead sulphide thin layers reveals a narrow optical direct band gap equal to 0.46 eV for the layer corresponding to a deposition time equal to 60 min.« less
NASA Astrophysics Data System (ADS)
Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole
2015-04-01
This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.
Integrated thin film cadmium sulfide solar cell module
NASA Technical Reports Server (NTRS)
Mickelsen, R. A.; Abbott, D. D.
1971-01-01
The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.
NASA Astrophysics Data System (ADS)
Kumar, Veeresh; Singhal, Rahul
2018-04-01
In the present study, thin films of Ni-Ti shape memory alloy have been grown on Si substrate by dc magnetron co-sputtering technique using separate sputter targets Ni and Ti. The prepared thin films have been irradiated by 100 MeV Ag7+ ions at three different fluences, which are 1 × 1012, 5 × 1012, and 1 × 1013 ions/cm2. The elemental composition and depth profile of pristine film have been investigated by Rutherford backscattering spectrometry. The changes in crystal orientation, surface morphology, and mechanical properties of Ni-Ti thin films before and after irradiation have been studied by X-ray diffraction, atomic force microscopy, field-emission scanning electron microscopy, and nanoindentation techniques, respectively. X-ray diffraction measurement has revealed the existence of both austenite and martensite phases in pristine film and the formation of precipitate on the surface of the film after irradiation at an optimized fluence of 1 × 1013 ions/cm2. Nanoindentation measurement has revealed improvement in mechanical properties of Ni-Ti thin films after ion irradiation via increasing hardness and Young modulus due to the formation of precipitate and ductile phase. The improvement in mechanical behavior could be explained in terms of precipitation hardening and structural change of Ni-Ti thin film after irradiation by Swift heavy ion irradiation.
Epitaxial Ba2IrO4 thin-films grown on SrTiO3 substrates by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Nichols, J.; Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A.
2014-03-01
We have synthesized epitaxial Ba2IrO4 (BIO) thin-films on SrTiO3 (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr2IrO4. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.
Zong, Yingxia; Zhou, Yuanyuan; Ju, Minggang; Garces, Hector F; Krause, Amanda R; Ji, Fuxiang; Cui, Guanglei; Zeng, Xiao Cheng; Padture, Nitin P; Pang, Shuping
2016-11-14
Methylamine-induced thin-film transformation at room-temperature is discovered, where a porous, rough, polycrystalline NH 4 PbI 3 non-perovskite thin film converts stepwise into a dense, ultrasmooth, textured CH 3 NH 3 PbI 3 perovskite thin film. Owing to the beneficial phase/structural development of the thin film, its photovoltaic properties undergo dramatic enhancement during this NH 4 PbI 3 -to-CH 3 NH 3 PbI 3 transformation process. The chemical origins of this transformation are studied at various length scales. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rechargeable thin film battery and method for making the same
Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.
2006-01-03
A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.
NASA Astrophysics Data System (ADS)
Wang, J.; Zhu, J.; He, Y. X.
2014-01-01
The influence of two different locations of sputter guns on the morphological and structural properties of Cu-In-Ga precursors and Cu(In,Ga)Se2 (CIGS) thin films was investigated. All the precursors contained cauliflower-like nodules, whereas smaller subnodules were observed on the background. All the precursors revealed apparent three-layered structures, and voids were observed at the CIGS/SLG interface of Sets 1 and 2 films rather than Set 3 film. EDS results indicated that all CIGS thin films were Cu-deficient. Based on the grazing incidence X-ray diffraction (GIXRD) patterns, as-selenized films showed peaks corresponding to the chalcopyrite-type CIGS structure. Depth-resolved Raman spectra showed the formation of a dominant CIGS phase inside the films for all the as-selenized samples investigated, and of an ordered vacancy compound (OVC) phase like Cu(In,Ga)3Se5 or Cu(In,Ga)2Se3.5 at the surface and/or CIGS/SLG interface region of Sets 2 and 3 films. No evidence was obtained on the presence of an OVC phase in Set 1 CIGS film, which may be speculated that long-time annealing is contributed to suppress the growth of OVC phases. The results of the present work suggest that the metallic precursors deposited with the upright-location sputter gun might be more appropriate to prepare CIGS thin films than those sputtered with the titled-location gun.
Study on the growth mechanism and optical properties of sputtered lead selenide thin films
NASA Astrophysics Data System (ADS)
Sun, Xigui; Gao, Kewei; Pang, Xiaolu; Yang, Huisheng; Volinsky, Alex A.
2015-11-01
Lead selenide thin films with different microstructure were deposited on Si (1 0 0) substrates using magnetron sputtering at 50 °C, 150 °C and 250 °C, respectively. The crystal structure of the sputtered PbSe thin films varies from amorphous crystalline to columnar grain, and then to double-layer (nano-crystalline layer and columnar grain layer) structure as the deposition temperature increases, which is due to the dominating growth mode of the thin films changes from Frank-van der Merwe (or layer-by-layer) growth mode at 50 °C to Volmer-Weber (or 3D island) growth mode at 150 °C, and then to Stranski-Krastanow (or 3D island-on-wetting-layer) growth mode at 250 °C. The growth mechanism of the sputtered PbSe thin films is mainly dominated by the surface and strain energy contributions. Moreover, the strain energy contribution is more prominent when the deposition temperature is less than 180 °C, while, the surface energy contribution is more prominent when the deposition temperature is higher than 180 °C. The absorption spectra of the sputtered PbSe thin films are in 3.1-5 μm range. Besides, the sputtered PbSe thin film prepared at 250 °C has two different optical band gaps due to its unique double-layer structure. According to the theoretical calculation results, the variation of the band gap with the deposition temperature is determined by the shift of the valence band maximum with the lattice constant.
Fabrication of DC inorganic electroluminescent thin-film devices with novel n-p-n type structure
NASA Astrophysics Data System (ADS)
Ishimura, Takuyoshi; Matsumoto, Hironaga
2014-04-01
Inorganic electroluminescent (iEL) thin films are used in light-emitting devices and are functional under alternating current conditions only. Stable luminescent light has yet to be obtained under direct current conditions. We postulated that thin-film iEL light emission occurs when an injected electron occupies the excited state of a luminescent center and then recombines radiatively. From this perspective, we fabricated a novel stacked n-p-n type thin-film iEL device composed of indium tin oxide (ITO)-ZnO-CuAlO2-ZnS-ZnS:TbF3-Al thin films and obtained stable luminescence using a low-voltage DC power supply. The overall luminescent color of the device depended on only the dopant in the luminescent layer, not the band gap or thin-film material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabah, Fayroz A., E-mail: fayroz-arif@yahoo.com; Department of Electrical Engineering, College of Engineering, Al-Mustansiriya University, Baghdad; Ahmed, Naser M., E-mail: naser@usm.my
The copper sulphide (CuS) thin films were grown with good adhesion by spray pyrolysis deposition (SPD) on Ti, ITO and glass substrates at 200 °C. The distance between nozzle and substrate is 30 cm. The composition was prepared by mixing copper chloride CuCl{sub 2}.2H{sub 2}O as a source of Cu{sup 2+} and sodium thiosulfate Na{sub 2}S{sub 2}O{sub 3}.5H{sub 2}O as a source of and S{sup 2−}. Two concentrations (0.2 and 0.4 M) were used for each CuCl{sub 2} and Na{sub 2}S{sub 2}O{sub 3} to be prepared and then sprayed (20 ml). The process was started by spraying the solution formore » 3 seconds and after 10 seconds the cycle was repeated until the solution was sprayed completely on the hot substrates. The structural characteristics were studied using X-ray diffraction; they showed covellite CuS hexagonal crystal structure for 0.2 M concentration, and covellite CuS hexagonal crystal structure with two small peaks of chalcocite Cu{sub 2}S hexagonal crystal structure for 0.4 M concentration. Also the surface and electrical characteristics were investigated using Field Emission Scanning Electron Microscopy (FESEM) and current source device, respectively. The surface study for the CuS thin films showed nanorods to be established for 0.2 M concentration and mix of nanorods and nanoplates for 0.4 M concentration. The electrical study showed ohmic behavior and low resistivity for these films. Hall Effect was measured for these thin films, it showed that all samples of CuS are p- type thin films and ensured that the resistivity for thin films of 0.2 M concentration was lower than that of 0.4 M concentration; and for the two concentrations CuS thin film deposited on ITO had the lowest resistivity. This leads to the result that the conductivity was high for CuS thin film deposited on ITO substrate, and the conductivity of the three thin films of 0.2 M concentration was higher than that of 0.4 M concentration.« less
NASA Astrophysics Data System (ADS)
Nakashima, Seiji; Ricinschi, Dan; Park, Jung Min; Kanashima, Takeshi; Fujisawa, Hironori; Shimizu, Masaru; Okuyama, Masanori
2009-03-01
The stress influence of the structural and ferroelectric properties of polycrystalline BiFeO3 (BFO) thin films has been investigated using a membrane substrate for relaxing stress. Reciprocal space mapping (RSM) measurement has been performed to confirm the stress dependence of the crystal structure of polycrystalline BFO thin films on the Pt (200 nm)/TiO2 (50 nm)/SiO2 (600 nm)/Si (625 μm) substrate (stress-constrained BFO film) and the Pt (200 nm)/TiO2 (50 nm)/SiO2 (600 nm)/Si (15 μm) membrane substrate (stress-relaxed BFO film). The BFO thin films prepared by pulsed laser deposition were polycrystalline and mainly exhibit a texture with (001) and (110) plane orientations. From the RSM results, the crystal structure of the (001)-oriented domain changes from Pm monoclinic to Cm monoclinic or to R3c rhombohedral due to stress relaxation. Moreover, at room temperature as well as at 150 K, remanent polarization (Pr) increases and double coercive field (2Ec) decreases (in the latter case from 88 to 94 μC/cm2 and from 532 to 457 kV/cm, respectively) due to relaxing stress. The enhancement of ferroelectricity is attributed to the crystal structural deformation and/or transition and angle change between the polarization direction and film plane.
Structure and growth of the mesoscopic surfactant/silica thin films
NASA Astrophysics Data System (ADS)
Zhou, Linbo
1999-10-01
We report the study of the structure and the growth of the mesoscopic surfactant/silica thin films. We use X-ray diffraction coupled with Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), Transmission Electron Microscope (TEM) and light scattering techniques to study the structure, lattice strain and the drying effect of the thin films as well as the growth kinetics and mechanism. The surfactant/silica materials are synthesized using the supramolecular assemblies of the surfactant molecules to template the condensation of the inorganic species. The subsequent calcination yields the mesoporous silica materials, which have many application properties such as unusual electronic, optical, magnetic and elastic characteristics. The films are grown on mica, graphite and silicon substrates in an acidic CTAC (Cetyltrimethyl Ammonium Chloride)/TEOS (Tetraethyl Orthosilicate) solution and are found to consist of the hexagonally packed tubules. The substrate plays an important role in the epitaxial arrangement of the film. We use the light scattering and cryo TEM to study the micelle morphology and aggregation in the solution and use synchrotron radiation X-ray diffraction to study the growth of the film at the solid/liquid interfaces in-situ. An induction time is found followed by the growth of the film at a nonlinear growth rate. The induction time depends on the ratio of the concentrations of CTAC to TEOS in the high CTAC concentration regime. The growth kinetics and mechanism are elucidated in a context of a growth model. For the technological application, Micromolding in Capillaries (MIMIC) technique and the field guided growth are used to process the patterned mesoscopic surfactant/silica thin films and align the nanotubules into the desired orientation. X-ray diffraction characterization has been performed to study the structure and orientation of the thin films. The combined influence of the electric field and the confinement of the mold allows the synthesis of the surfactant/silica thin films with the controlled orientation.
Optical Analysis of Iron-Doped Lead Sulfide Thin Films for Opto-Electronic Applications
NASA Astrophysics Data System (ADS)
Chidambara Kumar, K. N.; Khadeer Pasha, S. K.; Deshmukh, Kalim; Chidambaram, K.; Shakil Muhammad, G.
Iron-doped lead sulfide thin films were deposited on glass substrates using successive ionic layer adsorption and reaction method (SILAR) at room temperature. The X-ray diffraction pattern of the film shows a well formed crystalline thin film with face-centered cubic structure along the preferential orientation (1 1 1). The lattice constant is determined using Nelson Riley plots. Using X-ray broadening, the crystallite size is determined by Scherrer formula. Morphology of the thin film was studied using a scanning electron microscope. The optical properties of the film were investigated using a UV-vis spectrophotometer. We observed an increase in the optical band gap from 2.45 to 3.03eV after doping iron in the lead sulfide thin film. The cutoff wavelength lies in the visible region, and hence the grown thin films can be used for optoelectronic and sensor applications. The results from the photoluminescence study show the emission at 500-720nm. The vibrating sample magnetometer measurements confirmed that the lead sulfide thin film becomes weakly ferromagnetic material after doping with iron.
Lai, Yiu Wai; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios; Hofmann, Martin R; Ludwig, Alfred
2011-10-01
A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.
Corrosion-resistant multilayer structures with improved reflectivity
Soufli, Regina; Fernandez-Perea, Monica; Robinson, Jeff C.
2013-04-09
In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.
Goos-Hänchen effect on Si thin films with spherical and cylindrical pores
NASA Astrophysics Data System (ADS)
Olaya, Cherrie May; Garcia, Wilson O.; Hermosa, Nathaniel
2018-02-01
We examine the effects on the spatial and angular Goos-Hanchen (GH) beam shifts of spherical and cylindrical pores in a thin film. In our calculations, a p-polarized light is incident on a 1-μm thick porous silicon (Si) thin film on a Si substrate. The beam shifts are within the measurement range of usual optical detectors. Our results show that a technique based on GH shift can be used to determine the porosity and pore structure of thin films at a given thickness.
Simulation of the optical coating deposition
NASA Astrophysics Data System (ADS)
Grigoriev, Fedor; Sulimov, Vladimir; Tikhonravov, Alexander
2018-04-01
A brief review of the mathematical methods of thin-film growth simulation and results of their applications is presented. Both full-atomistic and multi-scale approaches that were used in the studies of thin-film deposition are considered. The results of the structural parameter simulation including density profiles, roughness, porosity, point defect concentration, and others are discussed. The application of the quantum level methods to the simulation of the thin-film electronic and optical properties is considered. Special attention is paid to the simulation of the silicon dioxide thin films.
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Ji, Jialin; Tao, Chunxian; Zhang, Dawei
2016-10-01
Au/ZnO/Ag sandwich structure films were fabricated by DC magnetron sputter at room temperature. The tunability of the surface plasmon resonance wavelength was realized by varying the thickness of ZnO thin film. The effects of ZnO layer on the optical properties of Au/ZnO/Au thin films were investigated by optical absorption and Raman scattering measurements. It has been found that both the surface plasmon resonance frequency and SERS can be controlled by adjusting the thickness of ZnO layer due to the coupling of metal and semiconductor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, D. K.; Pathak, H. P.; Shukla, Nitesh
2015-05-15
Thin films of a-Se{sub 66}Te{sub 25}In{sub 9} have been deposited onto a chemically cleaned glass substrate by thermal evaporation technique under vacuum. Glassy nature of the films has been ascertained by X-ray diffraction pattern. The analysis of absorption spectra, measured at normal incidence, in the spectral range 400-1100 nm has been used for the optical characterization of thin films under investigation. The effect of thermal annealing on structure and optical band gap (E{sub g}) of a-Se{sub 66}Te{sub 25}In{sub 9} have been studied.
NASA Astrophysics Data System (ADS)
Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.
2016-01-01
The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.
NASA Astrophysics Data System (ADS)
Choudhary, Ritika; Chauhan, Rishi Pal
2017-07-01
The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.
Printable CIGS thin film solar cells
NASA Astrophysics Data System (ADS)
Fan, Xiaojuan
2014-03-01
Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuanyuan; Yang, Mengjin; Pang, Shuping
Here we demonstrate a radically different chemical route for the creation of HC(NH2)2PbI3 (FAPbI3) perovskite thin films. This approach entails a simple exposure of as-synthesized CH3NH3PbI3 (MAPbI3) perovskite thin films to HC(=NH)NH2 (formamidine or FA) gas at 150 degrees C, which leads to rapid displacement of the MA+ cations by FA+ cations in the perovskite structure. The resultant FAPbI3 perovskite thin films preserve the microstructural morphology of the original MAPbI3 thin films exceptionally well. Importantly, the myriad processing innovations that have led to the creation of high-quality MAPbI3 perovskite thin films are directly adaptable to FAPbI3 through this simple, rapidmore » chemical-conversion route. Accordingly, we show that efficiencies of perovskite solar cells fabricated with FAPbI3 thin films created using this route can reach -18%.« less
NASA Astrophysics Data System (ADS)
Jose, Edwin; Kumar, M. C. Santhosh
2016-09-01
We report the deposition of nanostructured Cu-Zn-S composite thin films by Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. The structural, morphological, optical, photoluminescence and electrical properties of Cu-Zn-S thin films are investigated. The results of X-ray diffraction (XRD) and Raman spectroscopy studies indicate that the films exhibit a ternary Cu-Zn-S structure rather than the Cu xS and ZnS binary composite. Scanning electron microscope (SEM) studies show that the Cu-Zn-S films are covered well over glass substrates. The optical band gap energies of the Cu-Zn-S films are calculated using UV-visible absorption measurements, which are found in the range of 2.2 to 2.32 eV. The room temperature photoluminescence studies show a wide range of emissions from 410 nm to 565 nm. These emissions are mainly due to defects and vacancies in the composite system. The electrical studies using Hall effect measurements show that the Cu-Zn-S films are having p-type conductivity.
NASA Astrophysics Data System (ADS)
Yousif, A.; Duvenhage, M. M.; Ntwaeaborwa, O. M.; Swart, H. C.
2018-04-01
Y3(Al,Ga)5O12:Tb thin films (70 nm) have been prepared by pulsed laser deposition on a Si (100) substrate at the substrate temperature of 300 °C. The effect of annealing time on the structural, morphological and luminescence properties of Y3(Al,Ga)5O12:Tb thin films at 800 °C were studied. The crystal structure of the samples was studied by X- ray diffraction (XRD) and showed shifts in the peak positions to lower diffraction angles for the annealed film compared to the XRD peak positions of the commercial Y3(Al,Ga)5O12:Tb powder. A new excitation band different from the original Y3(Al,Ga)5O12:Tb powder was also observed for the annealed films. The shift in the XRD pattern and the new excitation band for the annealed film suggested that the films were enriched with Ga after annealing.
Ultralow Damping in Nanometer-Thick Epitaxial Spinel Ferrite Thin Films.
Emori, Satoru; Yi, Di; Crossley, Sam; Wisser, Jacob J; Balakrishnan, Purnima P; Khodadadi, Behrouz; Shafer, Padraic; Klewe, Christoph; N'Diaye, Alpha T; Urwin, Brittany T; Mahalingam, Krishnamurthy; Howe, Brandon M; Hwang, Harold Y; Arenholz, Elke; Suzuki, Yuri
2018-06-08
Pure spin currents, unaccompanied by dissipative charge flow, are essential for realizing energy-efficient nanomagnetic information and communications devices. Thin-film magnetic insulators have been identified as promising materials for spin-current technology because they are thought to exhibit lower damping compared with their metallic counterparts. However, insulating behavior is not a sufficient requirement for low damping, as evidenced by the very limited options for low-damping insulators. Here, we demonstrate a new class of nanometer-thick ultralow-damping insulating thin films based on design criteria that minimize orbital angular momentum and structural disorder. Specifically, we show ultralow damping in <20 nm thick spinel-structure magnesium aluminum ferrite (MAFO), in which magnetization arises from Fe 3+ ions with zero orbital angular momentum. These epitaxial MAFO thin films exhibit a Gilbert damping parameter of ∼0.0015 and negligible inhomogeneous linewidth broadening, resulting in narrow half width at half-maximum linewidths of ∼0.6 mT around 10 GHz. Our findings offer an attractive thin-film platform for enabling integrated insulating spintronics.
Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;
NASA Astrophysics Data System (ADS)
Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil
2017-09-01
In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.
NASA Astrophysics Data System (ADS)
Anitha, M.; Saravanakumar, K.; Anitha, N.; Amalraj, L.
2018-06-01
Un-doped and co-doped (Zn + F) cadmium oxide (CdO) thin films were prepared by modified spray pyrolysis technique using a nebulizer on glass substrates kept at 200 °C. They were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), UV-vis spectroscopy, Hall Effect and photoluminescence (PL) respectively. The thin films were having thickness in the range of 520-560 nm. They were well crystalline and displayed high transparency of about >70% in the visible region. It was clearly seen from the SEM photographs that co-doping causes notable changes in the surface morphology. Electrical study exhibited the resistivity of co-doped CdO thin films drastically fell to 1.43 × 10-4 Ω-cm compared with the un-doped CdO thin film. The obtained PL spectra were well corroborated with the structural and optical studies. The high transparency, wide band gap energy and enhanced electrical properties obtained infer that Zn + F co-doped CdO thin films find application in optoelectronic devices, especially in window layer of solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhavan, N. D., E-mail: nima.dehdashti@uwa.edu.au; Jolley, G.; Umana-Membreno, G. A.
2014-08-28
Three-dimensional (3D) topological insulators (TI) are a new state of quantum matter in which surface states reside in the bulk insulating energy bandgap and are protected by time-reversal symmetry. It is possible to create an energy bandgap as a consequence of the interaction between the conduction band and valence band surface states from the opposite surfaces of a TI thin film, and the width of the bandgap can be controlled by the thin film thickness. The formation of an energy bandgap raises the possibility of thin-film TI-based metal-oxide-semiconductor field-effect-transistors (MOSFETs). In this paper, we explore the performance of MOSFETs basedmore » on thin film 3D-TI structures by employing quantum ballistic transport simulations using the effective continuous Hamiltonian with fitting parameters extracted from ab-initio calculations. We demonstrate that thin film transistors based on a 3D-TI structure provide similar electrical characteristics compared to a Si-MOSFET for gate lengths down to 10 nm. Thus, such a device can be a potential candidate to replace Si-based MOSFETs in the sub-10 nm regime.« less
NASA Astrophysics Data System (ADS)
Al-Hossainy, A. Farouk; Ibrahim, A.
2017-11-01
The dependence of structural properties and optical constants on annealing temperature of a 2-((1,2-bis (diphenylphosphino)ethyl)amino) acetic acid-methyl red-monochloro zinc dihydride (DPEA-MR-Zn) as a novel organic semiconductor thin film was studied. The DPEA-MR-Zn thin film was deposited on silicon substrates using the spin coating technique. The as-deposited film was annealed in air for 1 h at 150, 175 and 205 °C. The XRD study of DPEA-MR-Zn in its powder form showed that this complex is mere a triclinic crystal structure with a space group P-1. In addition, the XRD patterns showed that the as-deposited thin films were crystallized according to the preferential orientation [(214), (121), (0 2 bar 6), (3 bar 02), (122) and (11 4 bar)]. Moreover, two additional peaks (2 bar 2 bar 1 and 2 4 bar 7) were shown at 2θ nearly 30°, and 69°, where, the more annealing temperature, the more the intensity of the two peaks. In addition, it was noticed that the grain size had a remarkable change with an annealing temperature of the DPEA-MR-Zn thin films. The optical measurements showed that the thin film has a relatively high absorption region where the photon energy ranges from 2 to 3.25 eV. Both of Wemple-DiDomenico and single Sellmeier oscillator models were applied on the DPEA-MR-Zn to analyze the dispersion of the refractive index and the optical and dielectric constants. The outcome of the study of the structural and optical properties reported here of the DPEA-MR-Zn organic semiconductor crystalline nanostructure thin film had shown various applications in many advanced technologies such as photovoltaic solar cells.
Moisture adsorption in optical coatings
NASA Technical Reports Server (NTRS)
Macleod, H. Angus
1988-01-01
The thin film filter is a very large aperture component which is exceedingly useful because of its small size, flexibility and ease of mounting. Thin film components, however, do have defects of performance and especially of stability which can cause problems in systems, particularly where long-term measurements are being made. Of all of the problems, those associated with moisture absorption are the most serious. Moisture absorption occurs in the pore-shaped voids inherent in the columnar structure of the layers. Ion-assisted deposition is a promising technique for substantially reducing moisture adsorption effects in thin film structures.
Photoactive lead oxide thin films by spray pyrolysis
NASA Astrophysics Data System (ADS)
Bhagat, Dharini; Waldiya, Manmohansingh; Mukhopadhyay, Indrajit
2018-05-01
We report the synthesis of photoactive lead monoxide thin films on fluorine doped tin oxide substrate by cost effective spray pyrolysis technique using aqueous solution of lead acetate trihydrate. Influence of substrate temperature on the structural and optical properties of thin films was studied. Polymorph of lead monoxide, litharge (α-PbO), was obtained when the substrate temperature was kept constant at 360 °C. XRD analysis revealed that the deposits were tetragonal structured with preferred orientation along 002 plane. Band gap value was found to be 1.93ev from diffuse reflectance spectra.
Optical filters for linearly polarized light using sculptured nematic thin flim of TiO2
NASA Astrophysics Data System (ADS)
Muhammad, Zahir; Wali, Faiz; Rehman, Zia ur
2018-05-01
A study of optical filters using sculptured nematic thin films is presented in this article. A central 90◦ twist-defect between two sculptured nematic thin films (SNTFs) sections transmit light of same polarization state and reflect other in the spectral Bragg regime. The SNTFs reflect light of both linearly polarized states in the Bragg regime if the amplitude of modulation of vapor incident angle is increased. A twist-defect in a tilt-modulated sculptured nematic thin films as a result produces bandpass or ultra-narrow bandpass filter depending upon the thickness of the SNTFs. However, both the bandpass or/and ultra-narrow bandpass filters can make polarization-insensitive Bragg mirrors by the appropriate modulation of the tilted 2D nanostructures of a given sculptured nematic thin films. Moreover, it is also observed that the sculptured nematic thin films are very tolerant of the structural defects if the amplitude of modulating vapor incident angle of the structural nano-materials is sufficiently large. Similarly, we observed the affect of incident angles on Bragg filters.
High performance sandwich structured Si thin film anodes with LiPON coating
NASA Astrophysics Data System (ADS)
Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao
2018-06-01
The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solid-electrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.
High performance sandwich structured Si thin film anodes with LiPON coating
NASA Astrophysics Data System (ADS)
Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao
2018-04-01
The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.
Ultrasonic Spray Pyrolysis Deposited Copper Sulphide Thin Films for Solar Cell Applications
Firat, Y. E.; Yildirim, H.; Erturk, K.
2017-01-01
Polycrystalline copper sulphide (CuxS) thin films were grown by ultrasonic spray pyrolysis method using aqueous solutions of copper chloride and thiourea without any complexing agent at various substrate temperatures of 240, 280, and 320°C. The films were characterized for their structural, optical, and electrical properties by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), atomic force microscopy (AFM), contact angle (CA), optical absorption, and current-voltage (I-V) measurements. The XRD analysis showed that the films had single or mixed phase polycrystalline nature with a hexagonal covellite and cubic digenite structure. The crystalline phase of the films changed depending on the substrate temperature. The optical band gaps (Eg) of thin films were 2.07 eV (CuS), 2.50 eV (Cu1.765S), and 2.28 eV (Cu1.765S–Cu2S). AFM results indicated that the films had spherical nanosized particles well adhered to the substrate. Contact angle measurements showed that the thin films had hydrophobic nature. Hall effect measurements of all the deposited CuxS thin films demonstrated them to be of p-type conductivity, and the current-voltage (I-V) dark curves exhibited linear variation. PMID:29109807
Lee, Stephanie S; Mativetsky, Jeffrey M; Loth, Marsha A; Anthony, John E; Loo, Yueh-Lin
2012-11-27
The nanoscale boundaries formed when neighboring spherulites impinge in polycrystalline, solution-processed organic semiconductor thin films act as bottlenecks to charge transport, significantly reducing organic thin-film transistor mobility in devices comprising spherulitic thin films as the active layers. These interspherulite boundaries (ISBs) are structurally complex, with varying angles of molecular orientation mismatch along their lengths. We have successfully engineered exclusively low- and exclusively high-angle ISBs to elucidate how the angle of molecular orientation mismatch at ISBs affects their resistivities in triethylsilylethynyl anthradithiophene thin films. Conductive AFM and four-probe measurements reveal that current flow is unaffected by the presence of low-angle ISBs, whereas current flow is significantly disrupted across high-angle ISBs. In the latter case, we estimate the resistivity to be 22 MΩμm(2)/width of the ISB, only less than a quarter of the resistivity measured across low-angle grain boundaries in thermally evaporated sexithiophene thin films. This discrepancy in resistivities across ISBs in solution-processed organic semiconductor thin films and grain boundaries in thermally evaporated organic semiconductor thin films likely arises from inherent differences in the nature of film formation in the respective systems.
Atomic moments in Mn 2CoAl thin films analyzed by X-ray magnetic circular dichroism
Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; ...
2014-12-05
Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn 2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.
Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures
Cataldo, Sebastiano; Pignataro, Bruno
2013-01-01
This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions. PMID:28809362
Observation of shift in band gap with annealing in hydrothermally synthesized TiO2-thin films
NASA Astrophysics Data System (ADS)
Pawar, Vani; Jha, Pardeep K.; Singh, Prabhakar
2018-05-01
Anatase TiO2 thin films were synthesized by hydrothermal method. The films were fabricated on a glass substrate by spin coating unit and annealed at 500 °C for 2 hours in ambient atmosphere. The effect of annealing on microstructure and optical properties of TiO2 thin films namely, just deposited and annealed thin film were investigated. The XRD data confirms the tetragonal crystalline structure of the films with space group I41/amd. The surface morphology suggests that TiO2 particles are almost homogeneous in size and annealing of the film affect the grain growth of the particles. The band gap energy increases from 2.81 to 3.34 eV. On the basis of our observation, it can be concluded that the annealing of TiO2 thin films enhances the absorption range and it may find potential application in the field of solar cells.
Graphene enhanced surface plasmon resonance sensing based on Goos-Hänchen shift
NASA Astrophysics Data System (ADS)
Chen, Huifang; Tong, Jinguang; Wang, Yiqin; Jiang, Li
2018-03-01
A graphene/Ag structure is engineered as an enhanced platform for surface plasmon resonance sensing due to the high impermeability nature of graphene and the superior surface plasmon resonance performance of Ag. This structure is ultrasensitive to even tiny refractive index change of analytes based on Goos-Hänchen shift measurement compared to the traditional SPR sensor with bare Au film. The graphene/Ag configuration is consisted of five components, including BK7 glass slide, titanium thin film, silver thin film, two-dimensional graphene layers and biomolecular analyte layer. We have optimized the parameters of each layer and theoretically analyzed Goos-Hänchen shift of the plasmonic structure under surface plasmon resonance effect. The optimized graphene/Ag structure is monolayer graphene coated on Ag thin film with the thickness of 42 nm.
NASA Astrophysics Data System (ADS)
Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur
2018-02-01
In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.
Yang, Cheng-Fu; Chen, Kai-Huang; Chen, Ying-Chung; Chang, Ting-Chang
2007-09-01
In this study, the Ba(Zr0.1Ti0.9)O3 (BZ1T9) thin films have been well deposited on the Pt/Ti/SiO2/Si substrate. The optimum radio frequency (RF) deposition parameters are developed, and the BZ1T9 thin films deposition at the optimum parameters have the maximum capacitance and dielectric constant of 4.4 nF and 190. As the applied voltage is increased to 8 V, the remnant polarization and coercive field of BZ1T9 thin films are about 4.5 microC/cm2 and 80 kV/cm. The counterclockwise current hysteresis and memory window of n-channel thin-film transistor property are observed, and that can be used to indicate the switching of ferroelectric polarization of BZ1T9 thin films. One-transistor-capacitor (1TC) structure of BZ1T9 ferroelectric random access memory device using bottom-gate amorphous silicon thin-film transistor was desirable because of the smaller size and better sensitivity. The BZ1T9 ferroelectric RAM devices with channel width = 40 microm and channel length = 8 microm has been successfully fabricated and the ID-VG transfer characteristics also are investigated in this study.
Enhanced ultraviolet photo-response in Dy doped ZnO thin film
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Singh, Ranveer; Pandey, Praveen C.
2018-02-01
In the present work, a Dy doped ZnO thin film deposited by the spin coating method has been studied for its potential application in a ZnO based UV detector. The investigations on the structural property and surface morphology of the thin film ensure that the prepared samples are crystalline and exhibit a hexagonal crystal structure of ZnO. A small change in crystallite size has been observed due to Dy doping in ZnO. AFM analysis ascertains the grain growth and smooth surface of the thin films. The Dy doped ZnO thin film exhibits a significant enhancement in UV region absorption as compared to the pure ZnO thin film, which suggests that Dy doped ZnO can be used as a UV detector. Under UV irradiation of wavelength 325 nm, the photocurrent value of Dy doped ZnO is 105.54 μA at 4.5 V, which is 31 times greater than that of the un-doped ZnO thin film (3.39 μA). The calculated value of responsivity is found to increase significantly due to the incorporation of Dy in the ZnO lattice. The observed higher value of photocurrent and responsivity could be attributed to the substitution of Dy in the ZnO lattice, which enhances the conductivity, electron mobility, and defects in ZnO and benefits the UV sensing property.
NASA Astrophysics Data System (ADS)
Chandrakala, C.; Sravanthi, P.; Raj Bharath, S.; Arockiasamy, S.; George Johnson, M.; Nagaraja, K. S.; Jeyaraj, B.
2017-02-01
A novel binuclear zinc schiff's base complex bis[(pentylnitrilomethylidine)(pentylnitrilomethylidine-μ-phenalato)]dizinc(II) (hereafter referred as ZSP) was prepared and used as a precursor for the deposition of ZnO thin film by MOCVD. The dynamic TG run of ZSP showed sufficient volatility and good thermal stability. The temperature dependence of vapour pressure measured by transpiration technique yielded a value of 55.8 ± 2.3 kJ mol-1 for the enthalpy of sublimation (ΔH°sub) in the temperature range of 423-503 K. The crystal structure of ZSP was solved by single crystal XRD which exhibits triclinic crystal system with the space group of Pī. The molecular mass of ZSP was determined by mass spectrometry which yielded the m/z value of 891 and 445 Da corresponding to its dimeric as well as monomeric form. The complex ZSP was further characterized by FT-IR and NMR. The demonstration of ZnO thin film deposition was carried out by using plasma assisted MOCVD. The thin film XRD confirmed the highly oriented (002) ZnO thin films on Si(100) substrate. The uniformity and composition of the thin film were analyzed by SEM/EDX. The band gap of ZnO thin film measurement indicated the blue shift with the value of 3.79 eV.
NASA Astrophysics Data System (ADS)
Arif, Mohd.; Sanger, Amit; Vilarinho, Paula M.; Singh, Arun
2018-04-01
Nanocrystalline ZnO thin films were deposited on glass substrate via sol-gel dip-coating technique then annealed at 300°C, 400°C, and 500°C for 1 h. Their optical, structural, and morphological properties were studied using ultraviolet-visible (UV-Vis) spectrophotometry, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). XRD diffraction revealed that the crystalline nature of the thin films increased with increasing annealing temperature. The c-axis orientation improved, and the grain size increased, as indicated by increased intensity of the (002) plane peak at 2θ = 34.42° corresponding to hexagonal ZnO crystal. The average crystallite size of the thin films ranged from 13 nm to 23 nm. Increasing the annealing temperature resulted in larger crystallite size and higher crystallinity with increased surface roughness. The grain size according to SEM analysis was in good agreement with the x-ray diffraction data. The optical bandgap of the thin films narrowed with increasing annealing temperature, lying in the range of 3.14 eV to 3.02 eV. The transmission of the thin films was as high as 94% within the visible region. The thickness of the thin films was 400 nm, as measured by ellipsometry, after annealing at the different temperatures of 300°C, 400°C, and 500°C.
Effects of drying temperature on tomato-based thin film as self-powered UV photodetector
NASA Astrophysics Data System (ADS)
Thu, Myo Myo; Mastuda, Atsunori; Cheong, Kuan Yew
2018-07-01
In this work, tomato thin-film is used as an active natural organic layer for UV photodetector. The effects of drying temperature (60-140 °C) on structural, chemical, electrical and UV sensing properties of tomato thin-film have been investigated. The photodetector consists of a glass substrate/tomato thin-film active layer/interdigitated aluminium electrode structure. As the drying temperature increases, surface and density of tomato thin-film is smoother and denser with thinner physical thickness. Chemical functional groups as a function of drying temperature is evaluated and correlated with the electrical property of thin film. A comparison between dark and UV (B and C) illumination with respect to the electrical property has been revealed and the observation has been linked to the active chemical compounds that controlling antioxidant activity in the tomato. By drying the tomato thin-film at 120°C, a self-powered (V = 0 V) photodetector that is able to selectively detecting UV-C can be obtained with external quantum efficiency (η) of 2.53 × 10-7%. While drying it at 140 °C, the detector is better in detecting UV-B when operating at either 5 or -5 V with η of 7.7384 × 10-6% and 8.87 × 10-6%, respectively. The typical response time for raising and falling for all samples are less than 0.3 s.
NASA Astrophysics Data System (ADS)
Moon, Eun-A.; Jun, Young-Kil; Kim, Nam-Hoon; Lee, Woo-Sun
2016-07-01
Photovoltaic applications require transparent conducting-oxide (TCO) thin films with high optical transmittance in the visible spectral region (380 - 780 nm), low resistivity, and high thermal/chemical stability. The ZnO thin film is one of the most common alternatives to the conventional indium-tin-oxide (ITO) thin film TCO. Highly transparent and conductive ZnO thin films can be prepared by doping with group III elements. Heavily-doped ZnO:Al (AZO) thin films were prepared by using the RF magnetron co-sputtering method with ZnO and Al targets to obtain better characteristics at a low cost. The RF sputtering power to each target was varied to control the doping concentration in fixed-thickness AZO thin films. The crystal structures of the AZO thin films were analyzed by using X-ray diffraction. The morphological microstructure was observed by using scanning electron microscopy. The optical transmittance and the band gap energy of the AZO thin films were examined with an UV-visible spectrophotometer in the range of 300 - 1800 nm. The resistivity and the carrier concentration were examined by using a Hall-effect measurement system. An excellent optical transmittance > 80% with an appropriate band gap energy (3.26 - 3.27 eV) and an improved resistivity (~10 -1 Ω·cm) with high carrier concentration (1017 - 1019 cm -3) were demonstrated in 350-nm-thick AZO thin films for thin-film photovoltaic applications.
NASA Astrophysics Data System (ADS)
Singh, S. K.; Singhal, R.
2017-09-01
In the present work, we study the annealing and swift heavy ion (SHI) beam induced modifications in the optical and structural properties of sandwiched structured Carbon-gold-Carbon (a-C/Au/a-C) nanocomposite (NCs) thin films. The NCs thin films were synthesized by electron-beam evaporation technique at room temperature with ∼30 nm thickness for both carbon layer and ∼6 nm for gold layer. Gold-carbon NCs thin films were annealed in the presence of argon at a temperature of 500 °C, 600 °C and 750 °C. The NCs thin films were also irradiated with 90 MeV Ni ions beam with different ion fluences in the range from 3 × 1012, 6 × 1012 and 1 × 1013 ions/cm2. Surface plasmon resonance (SPR) of Au nanoparticles are not observed in the pristine film but, after annealing at temperature of 600 °C and 750 °C, it was clearly seen at ∼534 nm as confirmed by UV-visible absorption spectroscopy. 90 MeV Ni irradiated thin film at the fluence of 1 × 1013 ions/cm2 also show strong absorption band at ∼534 nm. The growth and size of Au nanoparticle for pristine and 90 MeV Ni ion irradiated thin film with fluence of 1 × 1013 ions/cm2, were estimated by Transmission electron microscopy (TEM) images with the bi-model distribution. The size of the gold nanoparticle (NPs) was found to be ∼4.5 nm for the pristine film and ∼5.4 nm for the irradiated film at a fluence of 1 × 1013 ions/cm2. The thickness and metal atomic fraction in carbon matrix were estimated by Rutherford backscattering spectroscopy (RBS). The effect of annealing as well as heavy ion irradiation on D and G band of carbon matrix were studied by Raman spectroscopy.
Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki
2016-08-19
We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm(-1) K(-2)), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.
Srivastava, Samanvaya; Reddy, P Dinesh Sankar; Wang, Cindy; Bandyopadhyay, Dipankar; Sharma, Ashutosh
2010-05-07
We study by nonlinear simulations the electric field induced pattern formation in a thin viscous film resting on a topographically or chemically patterned substrate. The thin film microstructures can be aligned to the substrate patterns within a window of parameters where the spinodal length scale of the field induced instability is close to the substrate periodicity. We investigate systematically the change in the film morphology and order when (i) the substrate pattern periodicity is varied at a constant film thickness and (ii) the film thickness is varied at a constant substrate periodicity. Simulations show two distinct pathway of evolution when the substrate-topography changes from protrusions to cavities. The isolated substrate defects generate locally ordered ripplelike structures distinct from the structures on a periodically patterned substrate. In the latter case, film morphology is governed by a competition between the pattern periodicity and the length scale of instability. Relating the thin film morphologies to the underlying substrate pattern has implications for field induced patterning and robustness of inter-interface pattern transfer, e.g., coding-decoding of information printed on a substrate.
Effect of Al doping on performance of ZnO thin film transistors
NASA Astrophysics Data System (ADS)
Dong, Junchen; Han, Dedong; Li, Huijin; Yu, Wen; Zhang, Shendong; Zhang, Xing; Wang, Yi
2018-03-01
In this work, we investigate the Aluminum-doped Zinc Oxide (AZO) thin films and their feasibility as the active layer for thin film transistors (TFTs). A comparison on performance is made between the AZO TFTs and ZnO TFTs. The electrical properties such as saturation mobility, subthreshold swing, and on-to-off current ratio are improved when AZO is utilized as the active layer. Oxygen component of the thin film materials indicates that Al is the suppressor for oxygen defect in active layer, which improves the subthreshold swing. Moreover, based on band structure analyzation, we observe that the carrier concentration of AZO is higher than ZnO, leading to the enhancement of saturation mobility. The microstructure of the thin films convey that the AZO films exhibit much smaller grain boundaries than ZnO films, which results in the lower off-state current and higher on-to-off current ratio of AZO TFTs. The AZO thin films show huge potential to be the active layer of TFTs.
Method for making surfactant-templated, high-porosity thin films
Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou
2001-01-01
An evaporation-induced self-assembly method to prepare a surfactant-templated thin film by mixing a silica sol, a surfactant, and a hydrophobic polymer and then evaporating a portion of the solvent during coating onto a substrate and then heating to form a liquid-phase, thin film material with a porosity greater than approximately 50 percent. The high porosity thin films can have dielectric constants less than 2 to be suitable for applications requiring low-dielectric constants. An interstitial compound can be added to the mixture, with the interstitial compound either covalently bonded to the pores or physically entrapped within the porous structure. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.
Atomic layer deposition of metal sulfide thin films using non-halogenated precursors
Martinson, Alex B. F.; Elam, Jeffrey W.; Pellin, Michael J.
2015-05-26
A method for preparing a metal sulfide thin film using ALD and structures incorporating the metal sulfide thin film. The method includes providing an ALD reactor, a substrate, a first precursor comprising a metal and a second precursor comprising a sulfur compound. The first and the second precursors are reacted in the ALD precursor to form a metal sulfide thin film on the substrate. In a particular embodiment, the metal compound comprises Bis(N,N'-di-sec-butylacetamidinato)dicopper(I) and the sulfur compound comprises hydrogen sulfide (H.sub.2S) to prepare a Cu.sub.2S film. The resulting metal sulfide thin film may be used in among other devices, photovoltaic devices, including interdigitated photovoltaic devices that may use relatively abundant materials for electrical energy production.
Gas sensing properties of very thin TiO2 films prepared by atomic layer deposition (ALD)
NASA Astrophysics Data System (ADS)
Boyadjiev, S.; Georgieva, V.; Vergov, L.; Baji, Zs; Gáber, F.; Szilágyi, I. M.
2014-11-01
Very thin titanium dioxide (TiO2) films of less than 10 nm were deposited by atomic layer deposition (ALD) in order to study their gas sensing properties. Applying the quartz crystal microbalance (QCM) method, prototype structures with the TiO2 ALD deposited thin films were tested for sensitivity to NO2. Although being very thin, the films were sensitive at room temperature and could register low concentrations as 50-100 ppm. The sorption is fully reversible and the films seem to be capable to detect for long term. These initial results for very thin ALD deposited TiO2 films give a promising approach for producing gas sensors working at room temperature on a fast, simple and cost-effective technology.
Fabrication and characterization of lead-free BaTiO3 thin film for storage device applications
NASA Astrophysics Data System (ADS)
Sharma, Hakikat; Negi, N. S.
2018-05-01
The lead-free BaTiO3 (BT) thin film solution has been prepared by sol-gel method. The prepared solution spin coated on Pt/TiO2/SiO2/ Si substrate. The fabricated thin film was analyzed by XRD and Raman spectrometer for structural conformation. Uniformity of thin film was examined by Atomic force microscope (AFM). Thickness of the film was measured by cross sectional FESEM. Activation energies for both positive and negative biasing have been calculated from temperature dependent leakage current density as a function of electric field. For ferroelectric memory devices such as FRAM the hysteresis loop plays important role. Electric filed dependent polarization of BT thin film measured at different switching voltages. With increasing voltage maximum polarization increases.
Pröller, Stephan; Moseguí González, Daniel; Zhu, Chenhuii; ...
2017-06-01
In order to tailor the assembling of polymers and organic molecules, a deeper understanding of the kinetics involved in thin film production is necessary. While post-production characterization only provides insight on the final film structure, more sophisticated experimental setups are needed to probe the structure formation processes in situ during deposition. The drying kinetics of a deposited organic thin film strongly influences the assembling process on the nanometer scale. Lastly, this work presents an experimental setup that enables fine control of the atmosphere composition surrounding the sample during slot die coating, while simultaneously probing the film formation kinetics using inmore » situ grazing incidence X-ray scattering and spectroscopy.« less
Sakaida, Shun; Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2017-07-17
We report the fabrication and characterization of the first example of a tetracyanonickelate-based two-dimensional-layered metal-organic framework, {Fe(py) 2 Ni(CN) 4 } (py = pyridine), thin film. To fabricate a nanometer-sized thin film, we utilized the layer-by-layer method, whereby a substrate was alternately soaked in solutions of the structural components. Surface X-ray studies revealed that the fabricated film was crystalline with well-controlled growth directions both parallel and perpendicular to the substrate. In addition, lattice parameter analysis indicated that the crystal system is found to be close to higher symmetry by being downsized to a thin film.
NASA Astrophysics Data System (ADS)
Rahaman, Sabina; Sunil, M. Anantha; Shaik, Habibuddin; Ghosh, Kaustab
2018-05-01
Deposition of Cu2SnS3 (CTS) thin films is successfully carried out on soda lime glass substrate using low cost ultrasonic spray pyrolysis technique. Vacuum annealing of CTS films is carried out at different temperatures 350°C, 400°C and 450°C. The present work is to study the effect of annealing temperature on the crystal structure, surface morphology and optical properties of CTS thin films. Structural studies confirm the formation of CTS phase. Raman analysis is carried out to study presence of defects with annealing temperature. Optical studies confirm that film prepared at 450°C temperature is suitable as absorber material for photovoltaic applications.
Characterization of MAPLE deposited WO3 thin films for electrochromic applications
NASA Astrophysics Data System (ADS)
Boyadjiev, S. I.; Stefan, N.; Szilágyi, I. M.; Mihailescu, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Besleaga, C.; Iliev, M. T.; Gesheva, K. A.
2017-01-01
Tungsten trioxide (WO3) is a widely studied material for electrochromic applications. The structure, morphology and optical properties of WO3 thin films, grown by matrix assisted pulsed laser evaporation (MAPLE) from monoclinic WO3 nano-sized particles, were investigated for their possible application as electrochromic layers. A KrF* excimer (λ=248 nm, ζFWHM=25 ns) laser source was used in all experiments. The MAPLE deposited WO3 thin films were studied by atomic force microscopy (AFM), grazing incidence X-ray diffraction (GIXRD) and Fourier transform infrared spectroscopy (FTIR). Cyclic voltammetry measurements were also performed, and the coloring and bleaching were observed. The morpho-structural investigations disclosed the synthesis of single-phase monoclinic WO3 films consisting of crystalline nano-grains embedded in an amorphous matrix. All thin films showed good electrochromic properties, thus validating application of the MAPLE deposition technique for the further development of electrochromic devices.
Park, Ji Hun; Byun, Dongjin; Lee, Joong Kee
2011-08-01
Gallium tin oxide composite (GTO) thin films were prepared by electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD). The organometallics of tetramethlytin and trimethylgallium were used for precursors of gallium and tin, respectively. X-ray diffraction (XRD) characterization indicated that the gallium tin oxide composite thin films show the nanopolycrystalline of tetragonal rutile structure. Hall measurement indicated that the Ga/[O+Sn] mole ratio play an important role to determine the electrical properties of gallium tin composite oxide thin films. n-type conducting film obtained Ga/[O+Sn] mole ratio of 0.05 exhibited the lowest electrical resistivity of 1.21 x 10(-3) ohms cm. In our experimental range, the optimized carrier concentration of 3.71 x 10(18) cm(-3) was prepared at the Ga/[O+Sn] mole ratio of 0.35.
Chlorine gas sensing performance of palladium doped nickel ferrite thin films
NASA Astrophysics Data System (ADS)
Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita
2016-05-01
NiFe2O4 and Pd:NiFe2O4 (Pd=1 w/o, 3 w/o and 5 w/o) thin films, p-type semiconducting oxides with an inverse spinel structure have been used as a gas sensor to detect chlorine. These films were prepared by spray pyrolysis technique and XRD was used to confirm the structure. The surface morphology was studied using SEM. Magnetization measurements were carried out at room temperature using SQUID VSM, which shows ferrimagnetic behavior of the samples. The reduction in optimum operating temperature and enhancement in response was observed on Pd-incorporation in nickel ferrite thin films. Faster response and recovery characteristic is observed Pd-incorporated nickel ferrite thin films. The long-term stability is evaluated over a period of six months. This feature may be regarded as a significant facet towards their practical application as gas sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yangang; Zhang, Xiaohang; Gong, Yunhui
2016-01-15
We report on fabrication of organic-inorganic perovskite thin films using a hybrid method consisting of pulsed laser deposition (PLD) of lead iodide and spin-coating of methylammonium iodide. Smooth and highly crystalline CH{sub 3}NH{sub 3}PbI{sub 3} thin films have been fabricated on silicon and glass coated substrates with fluorine doped tin oxide using this PLD-based hybrid method. Planar perovskite solar cells with an inverted structure have been successfully fabricated using the perovskite films. Because of its versatility, the PLD-based hybrid fabrication method not only provides an easy and precise control of the thickness of the perovskite thin films, but also offersmore » a straightforward platform for studying the potential feasibility in using other metal halides and organic salts for formation of the organic-inorganic perovskite structure.« less
NASA Astrophysics Data System (ADS)
Oyanagi, H.; Tsukada, A.; Naito, M.; Saini, N. L.; Zhang, C.
2007-02-01
A Ge pixel array detector (PAD) with 100 segments was used in fluorescence x-ray absorption spectroscopy (XAS) study, probing local structure of high temperature superconducting thin film single crystals. Independent monitoring of individual pixel outputs allows real-time inspection of interference of substrates which has long been a major source of systematic error. By optimizing grazing-incidence angle and azimuthal orientation, smooth extended x-ray absorption fine structure (EXAFS) oscillations were obtained, demonstrating that strain effects can be studied using high-quality data for thin film single crystals grown by molecular beam epitaxy (MBE). The results of (La,Sr)2CuO4 thin film single crystals under strain are related to the strain dependence of the critical temperature of superconductivity.
Fabrication and characterization of nickel oxide nanoparticles/silicon NiO NPS/Si
NASA Astrophysics Data System (ADS)
Shuihab, Aliyah; Khalf, Surour
2018-05-01
In this study, (NiO) thin film which prepared by chemical method and deposited by drop casting technique on glass. The structural, optical and chemical analyses have been investigated. X-ray diffraction (XRD) measurements relieve that the (NiO) thin film was polycrystalline, cubic structure and there is no trace of the other material. UV-Vis measurements reveal that the energy gap of (NiO) thin film was found 1.8 eV. The Fourier Transform Infrared Spectroscopy (FTIR) spectrum of (NiO) thin film shows NiO nanoparticles had its IR peak of Ni-O stretching vibration and shifted to blue direction. Due to their quantum size effect and spherical nanostructures, the FTIR absorption of NiO nanoparticles is blue-shifted compared to that of the bulk form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muaz, A. K. M.; Ruslinda, A. R.; Ayub, R. M.
2016-07-06
In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO{sub 2}) thin films. The prepared TiO{sub 2} sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO{sub 2}) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO{sub 2} thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO{sub 2} films were examined with X-raymore » Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO{sub 2} thin films were measured using two-point-probe technique.« less
NASA Astrophysics Data System (ADS)
Bedia, A.; Bedia, F. Z.; Aillerie, M.; Maloufi, N.
2017-11-01
Low cost Al-Sn codoped ZnO (ATZO) Transparent Conductive Oxide films were deposited by spray pyrolysis on glass substrate. The influence of Al-Sn codoping on the structural, optical and electrical properties of ZnO thin films was studied by comparing the same properties obtained in undoped ZnO, Al doped ZnO (AZO) and Sn doped ZnO (TZO) thin films. The so-obtained films crystallized in hexagonal wurtzite structure. The morphology and structural defects have been investigated by both High resolution Field Effect Scanning Electron Microscopy (FE-SEM) and Raman spectroscopy at 532 nm excitation source. In the visible region, the undoped and doped films show an average transmittance of the order of 85%, while for ATZO thin film, it is of the order of 72%, which points out a degradation of the optical properties due to the co-doping. The optical band gap of ATZO thin film achieves 3.31eV and this shift, compared to the referred samples is attributed to the Burstein-Moss (BM) and band gap narrowing (BGN) opposite effects which is due to the increase of the carrier concentration in degenerate semiconductors. Within all the samples, the ATZO thin film exhibits the lowest electrical resistivity of 4.56 × 10-3 Ωcm with a Hall mobility equal to 2.13 cm2 V-1s-1, and the highest carrier concentration of 6.41 × 1020 cm-3. The performance of ATZO transparent conductive oxide film are determined by its figure of merit (φTC), found equal to 1.69 10-4 Ω-1, which is a suitable value for potentially high-performance solar cell applications.
Control of femtosecond laser interference ejection with angle and polarisation
NASA Astrophysics Data System (ADS)
Roper, David M.; Ho, Stephen; Haque, Moez; Herman, Peter R.
2017-03-01
The nonlinear interactions of femtosecond lasers are driving multiple new application directions for nanopatterning and structuring of thin transparent dielectric films that serve in range of technological fields. Fresnel reflections generated by film interfaces were recently shown to confine strong nonlinear interactions at the Fabry-Perot fringe maxima to generate thin nanoscale plasma disks of 20 to 40 nm thickness stacked on half wavelength spacing, λ/2nfilm, inside a film (refractive index, nfilm). The following phase-explosion and ablation dynamics have resulted in a novel means for intrafilm processing that includes `quantized' half-wavelength machining steps and formation of blisters with embedded nanocavities. This paper presents an extension in the control of interferometric laser processing around our past study of Si3N4 and SiOx thin films at 515 nm, 800 nm, and 1044 nm laser wavelengths. The role of laser polarization and incident angle is explored on fringe visibility and improving interferometric processing inside the film to dominate over interface and / or surface ablation. SiOx thin films of 1 μm thickness on silicon substrates were irradiated with a 515 nm wavelength, 280 fs duration laser pulses at 0° to 65° incident angles. A significant transition in ablation region from complete film removal to structured quantized ejection is reported for p- and s-polarised light that is promising to improve control and expand the versatility of the technique to a wider range of applications and materials. The research is aimed at creating novel bio-engineered surfaces for cell culture, bacterial studies and regenerative medicine, and nanofluidic structures that underpin lab-in-a-film. Similarly, the formation of intrafilm blisters and nanocavities offers new opportunities in structuring existing thin film devices, such as CMOS microelectronics, LED, lab-on-chips, and MEMS.
Structural, morphological and optical studies of F doped SnO2 thin films
NASA Astrophysics Data System (ADS)
Chandel, Tarun; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, Poolla
2018-05-01
Highly conducting and transparent FTO (flourine doped tin Oxide) thin films were grown on the glass substrates using a low cost spray pyrolysis technique. The films were characterized for their structural, morphological and optical studies using XRD, SEM and UV-Vis spectroscopy. XRD studies show that the FTO films crystallize in Tetragonal cassiterite structure. Morphological analysis using SEM show that the films are uniformly covered with spherical grains albeit high in surface roughness. The average optical transmission greater than 80% in the visible region along with the appearance of interference fringes in the transmission curves confirms the high quality of the films. Electrical studies show that the films exhibit sheet resistance below 10 Ω ϒ-1.
Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M
2018-05-21
In this study, the effect of thermal annealing under vacuum conditions on structural, morphological and optical properties of thermally evaporated copper (II) acetylacetonate, cu(acac) 2 , thin films were investigated. The copper (II) acetylacetonate thin films were deposited using thermal evaporation technique at vacuum pressure ~1 × 10 -5 mbar. The deposited films were thermally annealed at 323, 373, 423, and 473 K for 2 h in vacuum. The thermogravimetric analysis of cu(acac) 2 powder indicated a thermal stability of cu(acac) 2 up to 423 K. The effects of thermal annealing on the structural properties of cu(acac) 2 were evaluated employing X-ray diffraction method and the analysis showed a polycrystalline nature of the as-deposited and annealed films with a preferred orientation in [1¯01] direction. Fourier transformation infrared (FTIR) technique was used to negate the decomposition of copper (II) acetylacetonate during preparation or/and annealing up to 423 K. The surface morphology of the prepared films was characterized by means of field emission scanning electron microscopy (FESEM). A significant enhancement of the morphological properties of cu(acac) 2 thin films was obtained till the annealing temperature reaches 423 K. The variation of optical constants that estimated from spectrophotometric measurements of the prepared thin films was investigated as a function of annealing temperature. The annealing process presented significantly impacted the nonlinear optical properties such as third-order optical susceptibility χ (3) and nonlinear refractive index n 2 of cu(acac) 2 thin films. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hosseinpour, Rabie; Izadifard, Morteza; Ghazi, Mohammad Ebrahim; Bahramian, Bahram
2018-02-01
The effect of annealing temperature on structural, optical, and electrical properties of Cu2ZnSnS4 (CZTS) thin films grown on a glass substrate by spin coating sol-gel technique has been studied. Structural study showed that all samples had kesterite crystalline structure. Scanning electron microscopy images showed that the crystalline quality of the samples was improved by heat treatment. Optical study showed that the energy gap values for the samples ranged from 1.55 eV to 1.78 eV. Moreover, good optical conductivity values (1012 S-1 to 1014 S-1) were obtained for the samples. Investigation of the electrical properties of the CZTS thin films showed that the carrier concentration increased significantly with the annealing temperature. The photoelectrical behavior of the samples revealed that the photocurrent under light illumination increased significantly. Overall, the results show that the CZTS thin films annealed at 500°C had better structural, optical, and electrical properties and that such CZTS thin films are desirable for use as absorber layers in solar cells. The photovoltaic properties of the CZTS layer annealed at 500°C were also investigated and the associated figure of merit calculated. The results showed that the fabricated ZnS-CZTS heterojunction exhibited good rectifying behavior but rather low fill factor.
Structural and electrical properties of sputter deposited ZnO thin films
NASA Astrophysics Data System (ADS)
Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil
2018-05-01
The growth of zinc oxide thin films having different oxygen content was achieved at ambient temperature by reactive dc magnetron sputtering technique and their structural and electrical properties are studied. The structural studies show that the films are polycrystalline with a preferential orientation of the grains along the c-axis [002], which increases with increase in oxygen partial pressure. The grain size and the surface roughness of the zinc oxide films are found to decrease with increasing oxygen partial pressure. It is observed that the resistivity of the zinc oxide films can be tuned from semiconducting to insulating regime by varying the oxygen content.
NASA Astrophysics Data System (ADS)
Thiruramanathan, P.; Sankar, S.; Marikani, A.; Madhavan, D.; Sharma, Sanjeev K.
2017-07-01
Calcium copper titanate (CaCu3Ti4O12, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO2/Si] substrate through a sol-gel spin coating technique and annealed at 600-900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal-insulator-metal (M-I-M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell-Wagner two-layer models and Koop's theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant ( ɛ r = 3334), low loss (tan δ = 3.54), capacitance ( C = 4951 nF), which might satisfy the requirements of embedded capacitor.
NASA Astrophysics Data System (ADS)
Dhas, C. Ravi; Christy, A. Jennifer; Venkatesh, R.; Santhoshi Monica, S. Esther; Panda, Subhendu K.; Subramanian, B.; Ravichandran, K.; Sudhagar, P.; Ezhil Raj, A. Moses
2017-12-01
CuInS2 (CIS) thin films have been synthesized onto the glass substrates for different solvent volumes (10, 30, 50 and 70 ml) by nebulizer spray technique. The effect of solvent volume on the structural, morphological, compositional, optical and electrical properties of CIS thin films has been investigated. X-ray diffraction patterns suggest that the obtained CIS films are polycrystalline with the tetragonal structure. The surface morphology of the prepared CIS films purely depends on the solvent volume. The elemental quantitative investigation and the stoichiometric ratio of the CIS thin films were verified from XPS and EDS. High absorbance with the optical band gap of 1.13 eV was obtained at the higher solvent volume. All the deposited CIS thin films exhibited p-type semiconducting behavior with the high electrical conductivity and carrier concentration. CIS thin films deposited onto the FTO substrate were used as a counter electrode (CE) in dye-sensitized solar cells. CIS CEs possessed high electrocatalytic behavior and fast electron charge transfer at the CE/electrolyte interface. The CIS CE prepared using 50 ml solvent volume generated high energy conversion efficiency of about 3.25%.
NASA Astrophysics Data System (ADS)
Jin, Wencan; Vishwanath, Suresh; Liu, Jianpeng; Kong, Lingyuan; Lou, Rui; Dai, Zhongwei; Sadowski, Jerzy T.; Liu, Xinyu; Lien, Huai-Hsun; Chaney, Alexander; Han, Yimo; Cao, Michael; Ma, Junzhang; Qian, Tian; Wang, Shancai; Dobrowolska, Malgorzata; Furdyna, Jacek; Muller, David A.; Pohl, Karsten; Ding, Hong; Dadap, Jerry I.; Xing, Huili Grace; Osgood, Richard M.
2017-10-01
Topological crystalline insulators have been recently predicted and observed in rock-salt structure SnSe {111 } thin films. Previous studies have suggested that the Se-terminated surface of this thin film with hydrogen passivation has a reduced surface energy and is thus a preferred configuration. In this paper, synchrotron-based angle-resolved photoemission spectroscopy, along with density functional theory calculations, is used to demonstrate that a rock-salt SnSe {111 } thin film epitaxially grown on Bi2Se3 has a stable Sn-terminated surface. These observations are supported by low-energy electron diffraction (LEED) intensity-voltage measurements and dynamical LEED calculations, which further show that the Sn-terminated SnSe {111 } thin film has undergone a surface structural relaxation of the interlayer spacing between the Sn and Se atomic planes. In sharp contrast to the Se-terminated counterpart, the observed Dirac surface state in the Sn-terminated SnSe {111 } thin film is shown to yield a high Fermi velocity, 0.50 ×106 m /s , which suggests a potential mechanism of engineering the Dirac surface state of topological materials by tuning the surface configuration.
Seleim, S M; Hamdalla, Taymour A; Mahmoud, Mohamed E
2017-09-05
Nanosized (NS) cobalt (II) bis(5-phenyl-azo-8-hydroxyquinolate) (NS Co(II)-(5PA-8HQ) 2 ) thin films have been synthesized using static step-by-step soft surface reaction (SS-b-SSR) technique. Structural and optical characterizations of these thin films have been carried out using thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray diffraction (XRD). The HR-TEM results revealed that the assembled Co(II)-complex exhibited a uniformly NS structure particles in the form of nanorods with width and length up to 16.90nm and 506.38nm, respectively. The linear and nonlinear optical properties have been investigated. The identified energy gap of the designed thin film materials was found 4.01eV. The refractive index of deposited Co(II)-complex thin film was identified by thickness-dependence and found as 1.9 at wavelength 1100nm. In addition, the refractive index was varied by about 0.15 due to an increase in the thickness by 19nm. Copyright © 2017 Elsevier B.V. All rights reserved.
Jin, Wencan; Vishwanath, Suresh; Liu, Jianpeng; ...
2017-10-25
Topological crystalline insulators have been recently predicted and observed in rock-salt structure SnSe {111} thin films. Previous studies have suggested that the Se-terminated surface of this thin film with hydrogen passivation has a reduced surface energy and is thus a preferred configuration. In this paper, synchrotron-based angle-resolved photoemission spectroscopy, along with density functional theory calculations, is used to demonstrate that a rock-salt SnSe {111} thin film epitaxially grown on Bi 2Se 3 has a stable Sn-terminated surface. These observations are supported by low-energy electron diffraction (LEED) intensity-voltage measurements and dynamical LEED calculations, which further show that the Sn-terminated SnSe {111}more » thin film has undergone a surface structural relaxation of the interlayer spacing between the Sn and Se atomic planes. In sharp contrast to the Se-terminated counterpart, the observed Dirac surface state in the Sn-terminated SnSe {111} thin film is shown to yield a high Fermi velocity, 0.50 x 10 6 m/s, which suggests a potential mechanism of engineering the Dirac surface state of topological materials by tuning the surface configuration.« less
Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young
2014-11-01
The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.
Wireless digital pressure gauge based on nanomaterials
NASA Astrophysics Data System (ADS)
Abay, Dilyara; Otarbay, Zhuldyz; Token, Madengul; Guseinov, Nazim; Muratov, Mukhit; Gabdullin, Maratbek; Ismailov, Daniyar
2018-03-01
In the article studies the efficiency of using nanostructured nickel copper films as thin films for bending sensors. Thin films of nickel-copper alloy were deposited using magnetron sputtering technology followed by the appropriate masks. Scanning electron microscopy (SEM) and energy- dispersive X-ray spectroscopy (EDS) techniques were used to examine structure and surface of the Ni Cu coatings. The results of the bending sensors result indicated that the Ni Cu thin film strain gauge showed an excellent sensitive.
A comparative study: Effect of plasma on V2O5 nanostructured thin films
NASA Astrophysics Data System (ADS)
Singh, Megha; Kumar, Prabhat; Sharma, Rabindar K.; Reddy, G. B.
2016-05-01
Vanadium pentoxide nanostructured thin films (NSTs) have been studied to analyze the effect of plasma on nanostructures grown and morphology of films deposited using sublimation process. Nanostructured thin films were deposited on glass substrates, one in presence of oxygen plasma and other in oxygen environment (absence of plasma). Films were characterized using XRD, Raman spectroscopy, SEM and HRTEM. XRD studies revealed α-V2O5 films (orthorhombic phase) with good crystallinity. However, film deposited in presence of plasma have higher peak intensities as compared to those deposited in absence of plasma. Raman studies also support these finding following same trends of considerable increase in intensity in case of film deposited in presence of plasma. SEM micrographs makes the difference more visible, as film deposited in plasma have well defined plate like structures whereas other film have not-clearly-defined petal-like structures. HRTEM results show orthorhombic phase with 0.39 nm interplanar spacing, as reported by XRD. Results are hereby in good agreement with each other.
NASA Technical Reports Server (NTRS)
Schneier, R.; Braswell, T. V.; Vaughn, R. W.
1978-01-01
The effect of electrodeposition variables on film thickness was investigated using a dilute polyimide solution as a bath into which aluminum (as foil or as a vapor deposited coating) was immersed. The electrodeposited film was dried for 2 hours at 93 C (primarily to remove solvent) and cured for 18 hours at 186 C. Infrared studies indicate that imide formation (curing) occurs at 149 C under vacuum. From a conceptual viewpoint, satisfactory film metallized on one side can be obtained by this method. The cured ultra thin polyimide film exhibits properties equivalent to those of commercial film, and the surface appearance of the strippable polyimide film compares favorably with that of a sample of commercial film of thicker gauge. The feasibility of manufacturing approximately one million sq m of ultra thin film capable of being joined to fabricate an 800 m by 9 800 m square from starting material 0.5 to 1 m wide for space erectable structures was demonstrated.
Zhang, Changxing; Qu, Zhe; Fang, Xufei; Feng, Xue; Hwang, Keh-Chih
2015-02-01
Thin film stresses in thin film/substrate systems at elevated temperatures affect the reliability and safety of such structures in microelectronic devices. The stresses result from the thermal mismatch strain between the film and substrate. The reflection mode digital gradient sensing (DGS) method, a real-time, full-field optical technique, measures deformations of reflective surface topographies. In this paper, we developed this method to measure topographies and thin film stresses of thin film/substrate systems at elevated temperatures. We calibrated and compensated for the air convection at elevated temperatures, which is a serious problem for optical techniques. We covered the principles for surface topography measurements by the reflection mode DGS method at elevated temperatures and the governing equations to remove the air convection effects. The proposed method is applied to successfully measure the full-field topography and deformation of a NiTi thin film on a silicon substrate at elevated temperatures. The evolution of thin film stresses obtained by extending Stoney's formula implies the "nonuniform" effect the experimental results have shown.
NASA Astrophysics Data System (ADS)
Adelifard, Mehdi; Darudi, Hosein
2016-07-01
There is a great interest in the use of graphene sheets in thin film solar cells with low-cost and good-optoelectronic properties. Here, the production of absorbent conductive reduced graphene oxide (RGO) thin films was investigated. RGO thin films were prepared from spray-coated graphene oxide (GO) layers at various substrate temperature followed by a simple hydrazine-reducing method. The structural, morphological, optical, and electrical characterizations of graphene oxide (GO) and RGO thin films were investigated. X-ray diffraction analysis showed a phase shift from GO to RGO due to hydrazine treatment, in agreement with the FTIR spectra of the layers. FESEM images clearly exhibited continuous films resulting from the overlap of graphene nanosheets. The produced low-cost thin films had high absorption coefficient up to 1.0 × 105 cm-1, electrical resistance as low as 0.9 kΩ/sq, and effective optical band gap of about 1.50 eV, close to the optimum value for solar conversion. The conductive absorbent properties of the reduced graphene oxide thin films would be useful to develop photovoltaic cells.
NASA Technical Reports Server (NTRS)
Woods, Lawrence M.; Kalla, Ajay; Gonzalez, Damian; Ribelin, Rosine
2005-01-01
Future spacecraft and high-altitude airship (HAA) technologies will require high array specific power (W/kg), which can be met using thin-film photovoltaics (PV) on lightweight and flexible substrates. It has been calculated that the thin-film array technology, including the array support structure, begins to exceed the specific power of crystalline multi-junction arrays when the thin-film device efficiencies begin to exceed 12%. Thin-film PV devices have other advantages in that they are more easily integrated into HAA s, and are projected to be much less costly than their crystalline PV counterparts. Furthermore, it is likely that only thin-film array technology will be able to meet device specific power requirements exceeding 1 kW/kg (photovoltaic and integrated substrate/blanket mass only). Of the various thin-film technologies, single junction and radiation resistant CuInSe2 (CIS) and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of thin-film device performance, with the best efficiency, reaching 19.2% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys could achieve the highest levels of thin-film space and HAA solar array performance.
Thermal characterization of TiCxOy thin films
NASA Astrophysics Data System (ADS)
Fernandes, A. C.; Vaz, F.; Gören, A.; Junge, K. H.; Gibkes, J.; Bein, B. K.; Macedo, F.
2008-01-01
Thermal wave characterization of thin films used in industrial applications can be a useful tool, not just to get information on the films' thermal properties, but to get information on structural-physical parameters, e.g. crystalline structure and surface roughness, and on the film deposition conditions, since the thermal film properties are directly related to the structural-physical parameters and to the deposition conditions. Different sets of TiCXOY thin films, deposited by reactive magnetron sputtering on steel, have been prepared, changing only one deposition parameter at a time. Here, the effect of the oxygen flow on the thermal film properties is studied. The thermal waves have been measured by modulated IR radiometry, and the phase lag data have been interpreted using an Extremum method by which the thermal coating parameters are directly related to the values and modulation frequencies of the relative extrema of the inverse calibrated thermal wave phases. Structural/morphological characterization has been done using X-ray diffraction (XRD) and atomic force microscopy (AFM). The characterization of the films also includes thickness, hardness, and electric resistivity measurements. The results obtained so far indicate strong correlations between the thermal diffusivity and conductivity, on the one hand, and the oxygen flow on the other hand.
NASA Astrophysics Data System (ADS)
Ravikumar, M.; Valanarasu, S.; Chandramohan, R.; Jacob, S. Santhosh Kumar; Kathalingam, A.
2015-08-01
CdO thin films were deposited on glass and silicon substrates by simple perfume atomizer at 350°C using cadmium acetate and trisodium citrate (TSC). The effect of the TSC concentration on the structural, morphological, optical, and photoconductive properties of the prepared CdO thin films was investigated. X-Ray diffraction (XRD) studies of the deposited films revealed improvement in crystalline nature with increase of TSC concentration. Films prepared without TSC showed porous nature, not fully covering the substrate, whereas films prepared using TSC exhibited full coverage of the substrate with uniform particles. Optical transmittance study of the films showed high transmittance (50% to 60%), and the absorption edge was found to shift towards the red region depending on the TSC concentration. The films exhibited a direct band-to-band transition with bandgap varying between 2.31 eV and 2.12 eV. Photoconductivity studies of the n-CdO/ p-Si structure for various TSC concentrations were also carried out. I- V characteristics of this n-CdO/ p-Si structure revealed the formation of rectifying junctions, and its photoconductivity was found to increase with the TSC concentration.
Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi
For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less
Room temperature ferroelectricity in continuous croconic acid thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei
2016-09-05
Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50–100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structuresmore » of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.« less
Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging
Westermeier, Christian; Cernescu, Adrian; Amarie, Sergiu; Liewald, Clemens; Keilmann, Fritz; Nickel, Bert
2014-01-01
Controlling the domain size and degree of crystallization in organic films is highly important for electronic applications such as organic photovoltaics, but suitable nanoscale mapping is very difficult. Here we apply infrared-spectroscopic nano-imaging to directly determine the local crystallinity of organic thin films with 20-nm resolution. We find that state-of-the-art pentacene films (grown on SiO2 at elevated temperature) are structurally not homogeneous but exhibit two interpenetrating phases at sub-micrometre scale, documented by a shifted vibrational resonance. We observe bulk-phase nucleation of distinct ellipsoidal shape within the dominant pentacene thin-film phase and also further growth during storage. A faint topographical contrast as well as X-ray analysis corroborates our interpretation. As bulk-phase nucleation obstructs carrier percolation paths within the thin-film phase, hitherto uncontrolled structural inhomogeneity might have caused conflicting reports about pentacene carrier mobility. Infrared-spectroscopic nano-imaging of nanoscale polymorphism should have many applications ranging from organic nanocomposites to geologic minerals. PMID:24916130
NASA Astrophysics Data System (ADS)
Sinha, Tarkeshwar; Lilhare, Devjyoti; Khare, Ayush
2018-02-01
Zinc sulfide (ZnS) thin films deposited by chemical bath deposition (CBD) technique have proved their capability in a wide area of applications including electroluminescent and display devices, solar cells, sensors, and field emitters. These semiconducting thin films have attracted a much attention from the scientific community for industrial and research purposes. In this article, we provide a comprehensive review on the effect of various parameters on various properties of CBD-grown ZnS films. In the first part, we discuss the historical background of ZnS, its basic properties, and the advantages of the CBD technique. Detailed discussions on the film growth, structural and optical properties of ZnS thin films affected by various parameters, such as bath temperature and concentration, deposition time, stirring speed, complexing agents, pH value, humidity in the environment, and annealing conditions, are also presented. In later sections, brief information about the recent studies and findings is also added to explore the scope of research work in this field.
Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol-gel method
NASA Astrophysics Data System (ADS)
Saidani, T.; Zaabat, M.; Aida, M. S.; Boudine, B.
2015-12-01
In the present work, we prepared undoped and copper doped ZnO thin films by the sol-gel dip coating method on glass substrates from zinc acetate dissolved in a solution of ethanol. The objective of our work is to study the effect of Cu doping with different concentrations on structural, morphological, optical properties and photocatalytic activity of ZnO thin films. For this purpose, we have used XRD to study the structural properties, and AFM to determine the morphology of the surface of the ZnO thin films. The optical properties and the photocatalytic degradation of the films were examined by UV-visibles spectrophotometer. The Tauc method was used to estimate the optical band gap. The XRD spectra indicated that the films have an hexagonal wurtzite structure, which gradually deteriorated with increasing Cu concentration. The results showed that the incorporation of Cu decreases the crystallite size. The AFM study showed that an increase of the concentration of Cu causes the decrease of the surface roughness, which passes from 20.2 for Un-doped ZnO to 12.16 nm for doped ZnO 5 wt% Cu. Optical measurements have shown that all the deposited films show good optical transmittance (77%-92%) in the visible region and increases the optical gap with increasing Cu concentration. The presence of copper from 1% to 5 wt% in the ZnO thin films is found to decelerate the photocatalytic process.
NASA Astrophysics Data System (ADS)
Mazur, M.; Sieradzka, K.; Kaczmarek, D.; Domaradzki, J.; Wojcieszak, D.; Domanowski, P.
2013-08-01
In this paper investigations of structural and optical properties of nanocrystalline Ti-V oxide thin films are described. The films were deposited onto Corning 7059 glass using a modified reactive magnetron sputtering method. Structural investigations of prepared Ti-V oxides with vanadium addition of 19 at. % revealed amorphous structure, while incorporation of 21 and 23 at. % of vanadium resulted in V2O5 formation with crystallites sizes of 12.7 and 32.4 nm, respectively. All prepared thin films belong to transparent oxide semiconductors due to their high transmission level of ca. 60-75 % in the visible light range, and resistivity in the range of 3.3·102-1.4·105 Ωcm. Additionally, wettability and hardness tests were performed in order to evaluate the usefulness of the films for functional coatings.
Effects of bacteria on CdS thin films used in technological devices
NASA Astrophysics Data System (ADS)
Alpdoğan, S.; Adıgüzel, A. O.; Sahan, B.; Tunçer, M.; Metin Gubur, H.
2017-04-01
Cadmium sulfide (CdS) thin films were fabricated on glass substrates by the chemical bath deposition method at 70 {}^\\circ \\text{C} considering deposition times ranging from 2 h to 5 h. The optical band gaps of CdS thin films were found to be in the 2.42-2.37 eV range. CdS thin films had uniform spherical nano-size grains which had polycrystalline, hexagonal and cubic phases. The films had a characteristic electrical resistivity of the order of {{10}5} Ω \\text{cm} and n-type conductivity at room condition. CdS thin films were incubated in cultures of B.domonas aeruginosa and Staphylococcus aureus, which exist abundantly in the environment, and form biofilms. SEM images showed that S. aureus and K. pneumonia were detected significantly on the film surfaces with a few of P. aeruginosa and B. subtilis cells attached. CdS thin film surface exhibits relatively good resistance to the colonization of P. aeruginosa and B. subtilis. Optical results showed that the band gap of CdS thin films which interacted with the bacteria is 2.42 \\text{eV} . The crystal structure and electrical properties of CdS thin films were not affected by bacterial adhesion. The antimicrobial effect of CdS nanoparticles was different for different bacterial strains.
Demirel, Gokcen Birlik; Daglar, Bihter; Bayindir, Mehmet
2013-07-14
A novel sensing material based on pyrene doped polyethersulfone worm-like structured thin film is developed using a facile technique for detection of nitroaromatic explosive vapours. The formation of π-π stacking in the thin fluorescent film allows a highly sensitive fluorescence quenching which is detectable by the naked eye in a response time of a few seconds.
Influence of hydrogen on the structure and stability of ultra-thin ZnO on metal substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniek, Bjoern; Hofmann, Oliver T.; Institut für Festkörperphysik, TU Graz, 8010 Graz
2015-03-30
We investigate the atomic and electronic structure of ultra-thin ZnO films (1 to 4 layers) on the (111) surfaces of Ag, Cu, Pd, Pt, Ni, and Rh by means of density-functional theory. The ZnO monolayer is found to adopt an α-BN structure on the metal substrates with coincidence structures in good agreement with experiment. Thicker ZnO layers change into a wurtzite structure. The films exhibit a strong corrugation, which can be smoothed by hydrogen (H) adsorption. An H over-layer with 50% coverage is formed at chemical potentials that range from low to ultra-high vacuum H{sub 2} pressures. For the Agmore » substrate, both α-BN and wurtzite ZnO films are accessible in this pressure range, while for Cu, Pd, Pt, Rh, and Ni wurtzite films are favored. The surface structure and the density of states of these H passivated ZnO thin films agree well with those of the bulk ZnO(0001{sup ¯})-2×1-H surface.« less
Physical Characterization of Orthorhombic AgInS2 Nanocrystalline Thin Films
NASA Astrophysics Data System (ADS)
El Zawawi, I. K.; Mahdy, Manal A.
2017-11-01
Nanocrystalline thin films of AgInS2 were synthesized using an inert gas condensation technique. The grazing incident in-plane x-ray diffraction technique was used to detect the crystal structure of the deposited and annealed thin films. The results confirmed that the as-deposited film shows an amorphous behavior and that the annealed film has a single phase crystallized in an orthorhombic structure. The orthorhombic structure and particle size were detected using high-resolution transmission electron microscopy. The particle size ( P_{{s}}) estimated from micrograph images of the nanocrystalline films were increased from 6 nm to 12 nm as the film thickness increased from 11 nm to 110 nm. Accordingly, increasing the film thickness up to 110 nm reflects varying the optical band gap from 2.75 eV to 2.1 eV. The photocurrent measurements were studied where the fast rise and decay of the photocurrent are governed by the recombination mechanism. The electrical conductivity behavior was demonstrated by two transition mechanisms: extrinsic transition for a low-temperature range (300-400 K) and intrinsic transition for the high-temperature region above 400 K.
NASA Astrophysics Data System (ADS)
Watanabe, Takayuki; Funakubo, Hiroshi
2006-09-01
This article describes the current progress in thin bismuth layer-structured ferroelectric films (BLSFs) including SrBi2Ta2O9 and (Bi,La)4Ti3O12, particularly those developed in the last ten years. BLSF thin films can be applied to ferroelectric random access memories because of their durable fatigue-free properties and lead-free composition. We will briefly introduce epitaxial thin films grown on a variety of substrates. Because of the difficulty in growing single crystals of sufficient size to characterize the ferroelectric behavior in specific crystal growth directions, we will characterize epitaxially grown thin films to obtain basic information about the anisotropic switching behavior, which is important for evaluating the performance of emerging materials. We will then discuss the fiber-textured growth on the (111)Pt-covered Si substrates of SrBi2Ta2O9 and Bi4Ti3O12 thin films. Because we expect that the spread crystal orientation will affect the bit-to-bit errors, we believe that the fiber-textured growth and the characterization technique for the deposited film orientation are interesting from a practical standpoint. Another specific challenge of thin film growth is the growth of a-axis-(polar axis)-oriented films. a-/b-axis-oriented films are characterized both crystallographically and by electric hysteresis loop. The hysteresis performance was in accordance with the volume fraction of the a /b domains; however, no evidence for 90° switching of the b domain by an external electric field was obtained. The control of film orientation also allows systematic studies on the effects of a structural modification and relation between spontaneous polarization and Curie temperature, examples of which are given in this paper. After a short description of the piezoelectric properties, we will conclude with a summary and the future prospects of BLSF thin films for research and applications.
NASA Astrophysics Data System (ADS)
Tripathi, Ravi P.; Zulfequar, M.; Khan, Shamshad A.
2018-04-01
Our aim is to study the thickness dependent effects on structure, electrical and optical properties of Se85In12Bi3 nanochalcogenide thin films. Bulk alloy of Se85In12Bi3 was synthesized by melt-quenching technique. The amorphous as well as glassy nature of Se85In12Bi3 chalcogenide was confirmed by non-isothermal Differential Scanning Calorimetry (DSC) measurements. The nanochalcogenide thin films of thickness 30, 60 and 90 nm were prepared on glass/Si wafer substrate using Physical Vapour Condensation Technique (PVCT). From XRD studies it was found that thin films have amorphous texture. The surface morphology and particle size of films were studied by Field Emission Scanning Electron Microscope (FESEM). From optical studies, different optical parameters were estimated for Se85In12Bi3 thin films at different thickness. It was found that the absorption coefficient (α) and extinction coefficient (k) increases with photon energy and decreases with film thickness. The optical absorption process followed the rule of indirect transitions and optical band gap were found to be increase with film thickness. The value of Urbach energy (Et) and steepness parameter (σ) were also calculated for different film thickness. For electrical studies, dc-conductivity measurement was done at different temperature and activation energy (ΔEc) were determined and found to be increase with film thickness.
Properties of thin silver films with different thickness
NASA Astrophysics Data System (ADS)
Zhao, Pei; Su, Weitao; Wang, Reng; Xu, Xiaofeng; Zhang, Fengshan
2009-01-01
In order to investigate optical properties of silver films with different film thickness, multilayer composed of thin silver film sandwiched between ZnS films are sputtered on the float glass. The crystal structures, optical and electrical properties of films are characterized by various techniques, such as X-ray diffraction (XRD), spectrum analysis, etc. The optical constants of thin silver film are calculated by fitting the transmittance ( T) and reflectance ( R) spectrum of the multilayer. Electrical and optical properties of silver films thinner than 6.2 nm exhibit sharp change. However, variation becomes slow as film thickness is larger than 6.2 nm. The experimental results indicate that 6.2 nm is the optimum thickness for properties of silver.
NASA Astrophysics Data System (ADS)
Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Okuhata, Ryo; Ishibe, Takafumi; Watanabe, Kentaro; Suzuki, Takeyuki; Fujita, Takeshi; Sawano, Kentarou; Nakamura, Yoshiaki
2017-05-01
We have investigated the intrinsic thermoelectric properties of epitaxial β-FeSi2 thin films and the impact of phosphorus (P) doping. Epitaxial β-FeSi2 thin films with single phase were grown on Si(111) substrates by two different techniques in an ultrahigh-vacuum molecular beam epitaxy (MBE) system: solid-phase epitaxy (SPE), where iron silicide films formed by codeposition of Fe and Si at room temperature were recrystallized by annealing at 530°C to form epitaxial β-FeSi2 thin films on Si(111) substrates, and MBE of β-FeSi2 thin films on epitaxial β-FeSi2 templates formed on Si(111) by reactive deposition epitaxy (RDE) at 530°C (RDE + MBE). Epitaxial SPE thin films based on codeposition had a flatter surface and more abrupt β-FeSi2/Si(111) interface than epitaxial RDE + MBE thin films. We investigated the intrinsic thermoelectric properties of the epitaxial β-FeSi2 thin films on Si(111), revealing lower thermal conductivity and higher electrical conductivity compared with bulk β-FeSi2. We also investigated the impact of doping on the Seebeck coefficient of bulk and thin-film β-FeSi2. A route to enhance the thermoelectric performance of β-FeSi2 is proposed, based on (1) fabrication of thin-film structures for high electrical conductivity and low thermal conductivity, and (2) proper choice of doping for high Seebeck coefficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Quan, E-mail: wangq@mail.ujs.edu.cn; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000; Zhang, Yanmin
2013-11-14
Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructuremore » after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.« less
Synthesis and characterization of ZnO thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anilkumar, T. S., E-mail: anil24march@gmail.com; Girija, M. L., E-mail: girija.ml.grt1@gmail.com; Venkatesh, J., E-mail: phph9502@yahoo.com
2016-05-06
Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivitymore » of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, H. P.; Dwivedi, D. K., E-mail: todkdwivedi@gmail.com; Shukla, Nitesh
2016-05-06
Thin films of a- Se{sub 72}Te{sub 25}In{sub 3} were prepared by vacuum evaporation technique in a base pressure of 10{sup -6} Torr on to well cleaned glass substrate. a-Se{sub 72}Te{sub 25}In{sub 3} thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical absorption spectra of these films were measured in the wavelength range 400-1100 nm in order to derive the absorption coefficient of these films. The optical band gap of as prepared and annealed films as a function of photon energy hasmore » been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.« less
Lo Nigro, Raffaella; Malandrino, Graziella; Toro, Roberta G; Losurdo, Maria; Bruno, Giovanni; Fragalà, Ignazio L
2005-10-12
CaCu3Ti4O12 (CCTO) thin films were successfully grown on LaAlO3(100) and Pt/TiO2/SiO2/Si(100) substrates by a novel MOCVD approach. Epitaxial CCTO(001) thin films have been obtained on LaAlO3(100) substrates, while polycrystalline CCTO films have been grown on Pt/TiO2/SiO2/Si(100) substrates. Surface morphology and grain size of the different nanostructured deposited films were examined by AFM, and spectroscopic ellipsometry has been used to investigate the electronic part of the dielectric constant (epsilon2). Looking at the epsilon2 curves, it can be seen that by increasing the film structural order, a greater dielectric response has been obtained. The measured dielectric properties accounted for the ratio between grain volumes and grain boundary areas, which is very different in the different structured films.
Filonovich, Sergej Alexandrovich; Águas, Hugo; Busani, Tito; Vicente, António; Araújo, Andreia; Gaspar, Diana; Vilarigues, Marcia; Leitão, Joaquim; Fortunato, Elvira; Martins, Rodrigo
2012-01-01
We have characterized the structure and electrical properties of p-type nanocrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition and explored optimization methods of such layers for potential applications in thin-film solar cells. Particular attention was paid to the characterization of very thin (∼20 nm) films. The cross-sectional morphology of the layers was studied by fitting the ellipsometry spectra using a multilayer model. The results suggest that the crystallization process in a high-pressure growth regime is mostly realized through a subsurface mechanism in the absence of the incubation layer at the substrate-film interface. Hydrogen plasma treatment of a 22-nm-thick film improved its electrical properties (conductivity increased more than ten times) owing to hydrogen insertion and Si structure rearrangements throughout the entire thickness of the film. PMID:27877504
[Preparation of large area Al-ZnO thin film by DC magnetron sputtering].
Jiao, Fei; Liao, Cheng; Han, Jun-Feng; Zhou, Zhen
2009-03-01
Solar cells of p-CIS/n-buffer/ZnO type, where CIS is (CuInS2, CuInSe2 or intermediates, are thin-film-based devices for the future high-efficiency and low-cost photovoltaic devices. As important thin film, the properties of Al-doped ZnO (AZO) directly affect the parameter of the cell, especially for large volume. In the present paper, AZO semiconductor transparent thin film on soda-lime glass was fabricated using cylindrical zinc-aluminum target, which can not only lower the cost of the target but also make the preparation of large area AZO thin film more easily. Using the DC magnet sputtering techniques and rolling target, high utilization efficiency of target was achieved and large area uniform and directional film was realized. An introduction to DC magnet sputtering techniques for large area film fabrication is given. With different measurement methods, such as X-ray diffraction (XRD) and scan electron microscope (SEM), we analyzed large size film's structure, appearance, and electrical and optical characteristics. The XRD spectrum indicated that the AZO film shows well zinc-blende structure with a preferred (002) growth and the c-axis is oriented normal to the substrate plane. The lattice constant is 5.603 9 nm and the mismatch with CdS thin film is only 2 percent. It absolutely satisfied the demand of the GIGS solar cell. The cross-section of the AZO thin film indicates the columnar structure and the surface morphology shows that the crystal size is about 50 nm that is consistent with the result of XRD spectrum. By the optical transmission curve, not only the high transmission rate over 85 percent in the visible spectrum between 400 nm and 700 nm was showed but also the band gap 3.1 eV was estimated. And all these parameters can meet the demand of the large area module of GIGS solar cell. The result is that using alloy target and Ar gas, and controlling the appropriate pressure of oxygen, we can get directional, condensed, uniform, high transmitting rate, low resistance and large size (300 mm x 300 mm) AZO film.
NASA Astrophysics Data System (ADS)
Khan, M. I.; Imran, S.; Shahnawaz; Saleem, Muhammad; Ur Rehman, Saif
2018-03-01
The effect of annealing temperature on the structural, morphological and electrical properties of TiO2/ZnO (TZ) thin films has been observed. Bilayer thin films of TiO2/ZnO are deposited on FTO glass substrate by spray pyrolysis method. After deposition, these films are annealed at 573 K, 723 K and 873 K. XRD shows that TiO2 is present in anatase phase only and ZnO is present in hexagonal phase. No other phases of TiO2 and ZnO are present. Also, there is no evidence of other compounds like Zn-Ti etc. It also shows that the average grain size of TiO2/ZnO films is increased by increasing annealing temperature. AFM (Atomic force microscope) showed that the average roughness of TiO2/ZnO films is decreased at temperature 573-723 K and then increased at 873 K. The calculated average sheet resistivity of thin films annealed at 573 K, 723 K and 873 K is 152.28 × 102, 75.29 × 102 and 63.34 × 102 ohm-m respectively. This decrease in sheet resistivity might be due to the increment of electron concentration with increasing thickness and the temperature of thin films.
The Evolution of Fabricated Gold Thin Films to Nano-Micro Particles Under Thermal Annealing Process
NASA Astrophysics Data System (ADS)
Hajivaliei, Mahdi; Nazari, Saeed
2016-06-01
Gold (Au) thin films with thickness of 35nm were prepared by electron beam deposition onto flat glass substrates under high vacuum (5.3×10-3Pa) condition and they were annealed in the range of 573-873 K for 1 and 2h in atmospheric pressure. The influence of the annealing temperature on the evolution of Au thin film to nano-micro particles was studied. Moreover, the basic properties of the films, namely morphological, structural and optical were investigated. The X-ray diffraction (XRD) analysis revealed that the Au thin films were cubic structure phase with lattice parameter around a=4.0786Å. The most preferential orientation is along (111) planes for all Au films. The lattice parameter and grain size in the films were calculated by X-ray patterns and correlated with annealing temperatures. The obtained results of ultraviolet-visible spectrometry (UV-Vis) indicate that with increasing annealing temperature, the surface plasmon resonance peak of gold nanocrystallite will disappear which implies the size of particles are grown. Field-emission scanning electron microscopy (FE-SEM) results show that the prepared gold thin films have been converted to nano-micro gold particles in different annealing temperatures. These results lead to controlling the size of produced nanocrystallite.
Electrochemical Properties of Si Film Electrodes Containing TiNi Thin-Film Current Collectors
NASA Astrophysics Data System (ADS)
Im, Yeon-min; Noh, Jung-pil; Cho, Gyu-bong; Nam, Tea-hyun
2018-03-01
A 50.3Ti-49.7Ni thin film fabricated by DC sputtering was employed as a current collector of Si film electrode. The structural and electrochemical properties of Si/TiNi film electrode were compared with those of a Si/Cu film electrode. The TiNi film with cluster-like structures composed of B2 austenitic phase at room temperature displayed the high electrochemical stability for Li ions. The amorphous Si film deposited on the TiNi film also consisted of cluster-like structures on the surface. The Si film grown on the TiNi film current collector (Si/TiNi electrode) demonstrated a high columbic efficiency of 87% at the first cycle (363 μAh/cm2 of charge capacity and 314 μAh/cm2 of discharge capacity). The Si/TiNi electrode exhibited better electrochemical properties in terms of capacity, cycle performance, and structural stability compared to the Si electrode with a conventional Cu foil current collector.
Strong thin membrane structure. [solar sails
NASA Technical Reports Server (NTRS)
Frazer, R. E. (Inventor)
1979-01-01
A continuous process is described for producing strong lightweight structures for use as solar sails for spacecraft propulsion by radiation pressure. A thin reflective coating, such as aluminum, is applied to a rotating cylinder. A nylon mesh, applied over the aluminum coating, is then coated with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum. An emissivity increasing material such as chromium or silicon monoxide is applied to the polymer film to disperse such material colloidally into the growing polymer film, or to the final polymer film. The resulting membrane structure is then removed from the cylinder. Alternately, the membrane structure can be formed by etching a substrate in the form of an organic film such as a polymide, or a metal foil, to remove material from the substrate and reduce its thickness. A thin reflective coating (aluminum) is applied on one side of the substrate, and an emissivity increasing coating is applied on the reverse side of the substrate.
Biswal, Rajesh; Castañeda, Luis; Moctezuma, Rosario; Vega-Pérez, Jaime; Olvera, María De La Luz; Maldonado, Arturo
2012-03-12
Indium doped zinc oxide [ZnO:In] thin films have been deposited at 430°C on soda-lime glass substrates by the chemical spray technique, starting from zinc acetate and indium acetate. Pulverization of the solution was done by ultrasonic excitation. The variations in the electrical, structural, optical, and morphological characteristics of ZnO:In thin films, as a function of both the water content in the starting solution and the substrate temperature, were studied. The electrical resistivity of ZnO:In thin films is not significantly affected with the increase in the water content, up to 200 mL/L; further increase in water content causes an increase in the resistivity of the films. All films show a polycrystalline character, fitting well with the hexagonal ZnO wurtzite-type structure. No preferential growth in samples deposited with the lowest water content was observed, whereas an increase in water content gave rise to a (002) growth. The surface morphology of the films shows a consistency with structure results, as non-geometrical shaped round grains were observed in the case of films deposited with the lowest water content, whereas hexagonal slices, with a wide size distribution were observed in the other cases. In addition, films deposited with the highest water content show a narrow size distribution.
NASA Astrophysics Data System (ADS)
Ciupinǎ, Victor; Prioteasa, Iulian; Ilie, Daniela; Manu, Radu; Petrǎşescu, Lucian; Tutun, Ştefan Gabriel; Dincǎ, Paul; MustaÅ£ǎ, Ion; Lungu, Cristian Petricǎ; Jepu, IonuÅ£; Vasile, Eugeniu; Nicolescu, Virginia; Vladoiu, Rodica
2017-02-01
Copper/Cobalt/Copper/Iron thin films were synthesized in order to obtain nanostructured materials with special magnetoresistive properties. The multilayer films were deposited on silicon substrates. In this respect we used Thermionic Vacuum Arc Discharge Method (TVA). The benefit of this deposition technique is the ability to have a controlled range of thicknesses starting from few nanometers to hundreds of nanometers. The purity of the thin films was insured by a high vacuum pressure and a lack of any kind of buffer gas inside the coating chamber. The morphology and structure of the thin films were analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Techniques and Energy Dispersive X-ray Spectroscopy (EDXS). Magnetoresistive measurement results depict that thin films possess Giant Magneto-Resistance Effect (GMR). Magneto-Optic-Kerr Effect (MOKE) studies were performed to characterize the magnetic properties of these thin films.
Study of Sb2S3 thin films deposited by SILAR method
NASA Astrophysics Data System (ADS)
Deshpande, M. P.; Chauhan, Krishna; Patel, Kiran N.; Rajput, Piyush; Bhoi, Hiteshkumar R.; Chaki, S. H.
2018-05-01
In the present work, we deposited Sb2S3 thin films on glass slide by successive ionic layer adsorption and reaction (SILAR) technique with different time cycles. From EDAX, we could observe that the films were non-stoichiometric and contained few elements from glass slide. X-ray diffraction has shown that these films are orthorhombic in structure from where we have calculated the lattice parameter and crystallize size. SEM images shows that SILAR synthesized Sb2S3 thin films are homogenous and well distributed indicating the formation of uniform thin films at lower concentration. The room temperature Raman spectra of Sb2S3 thin films showed sharp peaks at 250 cm‑1 and 300 cm‑1 for all cases. Room temperature photoluminescence emission spectrum shows broad bands over 430–480 nm range with strong blue emission peak centered at same wavelength of 460 nm (2.70 eV) for all cases.
Nanometer-Thick Yttrium Iron Garnet Film Development and Spintronics-Related Study
NASA Astrophysics Data System (ADS)
Chang, Houchen
In the last decade, there has been a considerable interest in using yttrium iron garnet (Y3Fe5O12, YIG) materials for magnetic insulator-based spintronics studies. This interest derives from the fact that YIG materials have very low intrinsic damping. The development of YIG-based spintronics demands YIG films that have a thickness in the nanometer (nm) range and at the same time exhibit low damping similar to single-crystal YIG bulk materials. This dissertation reports comprehensive experimental studies on nm-thick YIG films by magnetron sputtering techniques. Optimization of sputtering control parameters and post-deposition annealing processes are discussed in detail. The feasibility of low-damping YIG nm-thick film growth via sputtering is demonstrated. A 22.3-nm-thick YIG film, for example, shows a Gilbert damping constant of less than 1.0 x 10-4. The demonstration is of great technological significance because sputtering is a thin film growth technique most widely used in industry. The spin Seebeck effect (SSE) refers to the generation of spin voltage in a ferromagnet (FM) due to a temperature gradient. The spin voltage can produce a pure spin current into a normal metal (NM) that is in contact with the FM. Various theoretical models have been proposed to interpret the SSE, although a complete understanding of the effect has not been realized yet. In this dissertation the study of the role of damping on the SSE in YIG thin films is conducted for the first time. With the thin film development method mentioned in the last paragraph, a series of YIG thin films showing very similar structural and static magnetic properties but rather different Gilbert damping values were prepared. A Pt capping layer was grown on each YIG film to probe the strength of the SSE. The experimental data show that the YIG films with a smaller intrinsic Gilbert damping shows a stronger SSE. The majority of the previous studies on YIG spintronics utilized YIG films that were grown on single-crystal Gd3Ga5O 12 (GGG) substrates first and then capped with either a thin NM layer or a thin topological insulator (TI) layer. The use of the GGG substrates is crucial in terms of realizing high-quality YIG films, because GGG not only has a crystalline structure almost perfectly matching that of YIG but is also extremely stable at high temperature in oxygen that is the condition needed for YIG crystallization. The feasibility of growing high-quality YIG thin films on Pt thin films is explored in this dissertation. This work is of great significance because it enables the fabrication of sandwich-like NM/YIG/NM or NM/YIG/TI structures. Such tri-layered structures will facilitate various interesting fundamental studies as well as device developments. The demonstration of a magnon-mediated electric current drag phenomenon is presented as an example for such tri-layered structures.
Spray deposited gallium doped tin oxide thinfilm for acetone sensor application
NASA Astrophysics Data System (ADS)
Preethi, M. S.; Bharath, S. P.; Bangera, Kasturi V.
2018-04-01
Undoped and gallium doped (1 at.%, 2 at.% and 3 at.%) tin oxide thin films were prepared using spray pyrolysis technique by optimising the deposition conditions such as precursor concentration, substrate temperature and spraying rate. X-ray diffraction analysis revealed formation of tetragonally structured polycrystalline films. The SEM micrographs of Ga doped films showed microstructures. The electrical resistivity of the doped films was found to be more than that of the undoped films. The Ga-doped tin oxide thin films were characterised for gas sensors. 1 at.% Ga doped thin films were found to be better acetone gas sensor, showed 68% sensitivity at 350°C temperature.
Radio-frequency oxygen-plasma-enhanced pulsed laser deposition of IGZO films
NASA Astrophysics Data System (ADS)
Chou, Chia-Man; Lai, Chih-Chang; Chang, Chih-Wei; Wen, Kai-Shin; Hsiao, Vincent K. S.
2017-07-01
We demonstrate the crystalline structures, optical transmittance, surface and cross-sectional morphologies, chemical compositions, and electrical properties of indium gallium zinc oxide (IGZO)-based thin films deposited on glass and silicon substrates through pulsed laser deposition (PLD) incorporated with radio-frequency (r.f.)-generated oxygen plasma. The plasma-enhanced pulsed laser deposition (PEPLD)-based IGZO thin films exhibited a c-axis-aligned crystalline (CAAC) structure, which was attributed to the increase in Zn-O under high oxygen vapor pressure (150 mTorr). High oxygen vapor pressure (150 mTorr) and low r.f. power (10 W) are the optimal deposition conditions for fabricating IGZO thin films with improved electrical properties.
Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods
NASA Astrophysics Data System (ADS)
Xi, J.-Q.; Kim, Jong Kyu; Schubert, E. F.; Ye, Dexian; Lu, T.-M.; Lin, Shawn-Yu; Juneja, Jasbir S.
2006-03-01
The refractive-index contrast in dielectric multilayer structures, optical resonators, and photonic crystals is an important figure of merit that creates a strong demand for high-quality thin films with a low refractive index. A SiO2 nanorod layer with low refractive index of n=1.08, to our knowledge the lowest ever reported in thin-film materials, is grown by oblique-angle electron-beam deposition of SiO2. A single-pair distributed Bragg reflector employing a SiO2 nanorod layer is demonstrated to have enhanced reflectivity, showing the great potential of low-refractive-index films for applications in photonic structures and devices.
Hall effect measurements of high-quality M n3CuN thin films and the electronic structure
NASA Astrophysics Data System (ADS)
Matsumoto, Toshiki; Hatano, Takafumi; Urata, Takahiro; Iida, Kazumasa; Takenaka, Koshi; Ikuta, Hiroshi
2017-11-01
The physical properties of M n3CuN were studied using thin films. We found that an annealing process was very effective to improve the film quality, the key of which was the use of Ti that prevented the formation of oxide impurities. Using these high-quality thin films, we found strong strain dependence for the ferromagnetic transition temperature (TC) and a sign change of the Hall coefficient at TC. The analysis of Hall coefficient data revealed a sizable decrease of hole concentration and a large increase of electron mobility below TC, which is discussed in relation to the electronic structure of this material.
Structured Ionomer Thin Films at Water Interface: Molecular Dynamics Simulation Insight
Aryal, Dipak; Agrawal, Anupriya; Perahia, Dvora; ...
2017-08-23
Controlling the structure and dynamics of thin films of ionizable polymers at water interfaces is critical to their many applications. As the chemical diversity within one polymer is increased, controlling the structure and dynamics of the polymer, which is a key to their use, becomes a challenge. Here molecular dynamics simulations (MD) are used to obtain molecular insight into the structure and dynamics of thin films of one such macromolecule at the interface with water. The polymer consists of an ABCBA topology with randomly sulfonated polystyrene (C), tethered symmetrically to flexible poly(ethylene- r-propylene) blocks (B), and end-capped by a poly(more » t-butylstyrene) block (A). The compositions of the interfacial and bulk regions of thin films of the ABCBA polymers are followed as a function of exposure time to water. We find that interfacial rearrangements take place where buried ionic segments migrate toward the water interface. The hydrophobic blocks collapse and rearrange to minimize their exposure to water. In conclusion, the water that initially drives interfacial reengagements breaks the ionic clusters within the film, forming a dynamic hydrophilic internal network within the hydrophobic segments.« less
Defect analysis and detection of micro nano structured optical thin film
NASA Astrophysics Data System (ADS)
Xu, Chang; Shi, Nuo; Zhou, Lang; Shi, Qinfeng; Yang, Yang; Li, Zhuo
2017-10-01
This paper focuses on developing an automated method for detecting defects on our wavelength conversion thin film. We analyzes the operating principle of our wavelength conversion Micro/Nano thin film which absorbing visible light and emitting infrared radiation, indicates the relationship between the pixel's pattern and the radiation of the thin film, and issues the principle of defining blind pixels and their categories due to the calculated and experimental results. An effective method is issued for the automated detection based on wavelet transform and template matching. The results reveal that this method has desired accuracy and processing speed.
Bennemann, K
2010-06-23
Characteristic results of magnetism in small particles, thin films and tunnel junctions are presented. As a consequence of the reduced atomic coordination in small clusters and thin films the electronic states and density of states are modified. Thus, magnetic moments and magnetization are affected. Generally, in clusters and thin films magnetic anisotropy plays a special role. In tunnel junctions the interplay of magnetism, spin currents and superconductivity are of particular interest. In ring-like mesoscopic systems Aharonov-Bohm-induced currents are studied. Results are given for single transition metal clusters, cluster ensembles, thin films, mesoscopic structures and tunnel systems. © 2010 IOP Publishing Ltd
Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V.; Pahurkar, V. G.
2016-05-06
This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.
NASA Astrophysics Data System (ADS)
Hong, Ruijin; Shao, Wen; Ji, Jialin; Tao, Chunxian; Zhang, Dawei
2018-06-01
Silver thin films with linear variable thickness were deposited at room temperature. The corresponding tunability of optical properties and Raman scattering intensity were realized by thermal annealing process. With the thickness increasing, the topography of as-annealed silver thin films was observed to develop from discontinued nanospheres into continuous structure with a redshift of the surface plasmon resonance wavelength in visible region. Both the various nanosphere sizes and states of aggregation of as-annealed silver thin films contributed to significantly increasing the sensitivity of surface enhanced Raman scattering (SERS).
Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films
NASA Astrophysics Data System (ADS)
Sharma, Vivek; Zhang, Yiran; Yilixiati, Subinuer
Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freely standing thin films. We distinguish nanoscopic rims, mesas and craters, and follow their emergence and growth. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), these topological features involve discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm. These non-flat features result from oscillatory, periodic, supramolecular structural forces that arise in confined fluids, and arise due to complex coupling of hydrodynamic and thermodynamic effects at the nanoscale.
Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films
NASA Astrophysics Data System (ADS)
Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek
Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids
Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.
Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar
2017-01-01
This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.
NASA Astrophysics Data System (ADS)
Fridjine, S.; Touihri, S.; Boubaker, K.; Amlouk, M.
2010-01-01
ZnS 1- xSe x thin films have been grown by selenization process, applied to ZnS sprayed thin films deposited on Pyrex glass substrates at 550 °C. The crystal structure and surface morphology were investigated by the XRD technique and by the atomic force microscopy. This structural study shows that selenium-free ( x=0) ZnS thin films, prepared at substrate temperature TS=450 °C, were well crystallized in cubic structure and oriented preferentially along (1 1 1) direction. The thermal and mechanical properties were also investigated using a photothermal protocol along with Vickers hardness measurements. On the other hand, the analyze of the transmittance T( λ) and the reflectance R( λ), optical measurements of these films depicts a decrease in the band gap energy value Eg with an increase in Se content ( x). Indeed, Eg values vary from 3.6 to 3.1 eV.
Effect of thermal annealing on structural and optical properties of In{sub 2}S{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Sonu, E-mail: sonuchoudhary1983@gmail.com
2015-08-28
There is a highly need of an alternate of toxic materials CdS for solar cell applications and indium sulfide is found the most suitable candidate to replace CdS due to its non-toxic and environmental friendly nature. In this paper, the effect of thermal annealing on the structural and optical properties of indium sulfide (In{sub 2}S{sub 3}) thin films is undertaken. The indium sulfide thin films of 121 nm were deposited on glass substrates employing thermal evaporation method. The films were subjected to the X-ray diffractometer and UV-Vis spectrophotometer respectively for structural and optical analysis. The XRD pattern show that themore » as-deposited thin film was amorphous in nature and crystallinity is found to be varied with annealing temperature. The optical analysis reveals that the optical band gap is varied with annealing. The optical parameters like absorption coefficient, extinction coefficient and refractive index were calculated. The results are in good agreement with available literature.« less
NASA Astrophysics Data System (ADS)
Chebil, W.; Boukadhaba, M. A.; Madhi, I.; Fouzri, A.; Lusson, A.; Vilar, C.; Sallet, V.
2017-01-01
In this present work, ZnO and ZnMgO thin films prepared by a sol-gel process were deposited on glass substrates via spin coating technique. The structural, morphological and optical properties of the obtained films were investigated. X-ray diffraction study revealed that all layers exhibit a hexagonal wurtzite structure without any secondary phase segregation. The atomic force microscopy (AFM) depicts that the grains size of ours samples decreases as magnesium content increases. The absorption spectra obtained on ZnMgO thin films show a band gap tuning from 3.19 to 3.36 eV, which is also consistent with blue shifting of near-band edge PL emission, measured at low temperature. The incorporated amount of magnesium was calculated and confirmed by EDX. The gas sensing performances were tested in air containing NO2 for different operating temperatures. The experimental result exhibited that ZnMgO sensors shows a faster response and recovery time than the ZnO thin films. The resistivity and the sensor response as function of Mg content were also investigated.
Tunability of morphological properties of Nd-doped TiO2 thin films
NASA Astrophysics Data System (ADS)
Rehan, Imran; Sultana, Sabiha; Khan, Nauman; Qamar, Zahid; Rehan, Kamran
2016-11-01
In this work, an endeavor is made toward structural assessment and morphological variation of titanium dioxide (TiO2) thin films when doped with neodymium (Nd). The electron beam deposition technique was employed to fabricate Nd-based TiO2 thin films on n-Type Si substrates. Nd concentration was varied from 0.0 to 2.0 atomic percent (at.%) under identical growth environments. The films were deposited in an oxygen-deficient environment to cause the growth of rutile phases. Energy dispersive x-ray spectroscopy confirmed the presence and variation of Nd dopant in TiO2. X-ray diffraction analysis showed the transformation of amorphous structures of the as-grown samples to anatase polycrystalline after annealing at 500 °C, while atomic force microscopy exposed linearity in grain density in as-grown samples with doping until 1 at.%. Raman spectrums of as-grown and annealed samples revealed the growth of the anatase phase in the annealed samples. Based on these results it can be proposed that Nd doping has pronounced effects on the structural characteristics of TiO2 thin films.
Dynamic structural colour using vanadium dioxide thin films
NASA Astrophysics Data System (ADS)
Wilson, K.; Marocico, C. A.; Bradley, A. L.
2018-06-01
A thin film stack consisting of layers of indium tin oxide (ITO) with an intermediate vanadium oxide (VO2) layer on an optically thick silver film has been investigated for dynamic structural colour. The structure benefits from the phase change properties of VO2. Compared with other phase change materials, such as germanium antimony telluride (GST), VO2 can be offered as a lower power consumption alternative. It has been overlooked in the visible spectral range due to its smaller refractive index change below 700 nm. We demonstrate that the sensitivity of the visible reflectance spectrum to the change in phase of a 30 nm VO2 layer is increased after it is incorporated in a thin film stack, with performance comparable to other phase change materials. The extent to which dynamic tuning of the reflectance spectra of ITO–VO2–ITO–Ag thin film stacks can be exploited for colour switching is reported, with approximately 25% change in reflectance demonstrated at 550 nm. Inclusion of a top ITO layer is also shown to improve the chromaticity change on phase transition.
Thin films of a ferroelectric phenazine/chloranilic acid organic cocrystal
NASA Astrophysics Data System (ADS)
Thompson, Nicholas J.; Jandl, Adam C.; Spalenka, Josef W.; Evans, Paul G.
2011-07-01
Phenazine-chloranilic acid cocrystal thin films can be formed by vacuum evaporation of the component molecules onto cooled substrates. Fluxes of phenazine and chloranilic acid were provided from separate sublimation sources, from which the cocrystalline phase can be formed under a wide range of impingement rates of the component molecules. Substrates consisted of Au or Ni thin films on Si wafers, cooled to 100-140 K during deposition. X-ray diffraction and scanning electron microscopy show that this process yields polycrystalline thin films of the cocrystal with voids between crystalline grains. The relative intensities of X-ray reflections differ from reported intensities of polycrystalline powders, suggesting that the films have an anisotropic distribution of crystallographic orientations. The cocrystalline thin films have an effective dielectric constant of 13 at room temperature, increasing at lower temperatures and exhibiting a broad maximum near 200 K. The means to grow thin films of organic ferroelectric materials will allow the integration of new functionalities into organic electronic device structures, including capacitors and field-effect transistors.
a Brief Survey on Basic Properties of Thin Films for Device Application
NASA Astrophysics Data System (ADS)
Rao, M. C.; Shekhawat, M. S.
Thin film materials are the key elements of continued technological advances made in the fields of optoelectronic, photonic and magnetic devices. Thin film studies have directly or indirectly advanced many new areas of research in solid state physics and chemistry which are based on phenomena uniquely characteristic of the thickness, geometry and structure of the film. The processing of materials into thin films allows easy integration into various types of devices. Thin films are extremely thermally stable and reasonably hard, but they are fragile. On the other hand organic materials have reasonable thermal stability and are tough, but are soft. Thin film mechanical properties can be measured by tensile testing of freestanding films and by the micro beam cantilever deflection technique, but the easiest way is by means of nanoindentation. Optical experiments provide a good way of examining the properties of semiconductors. Particularly measuring the absorption coefficient for various energies gives information about the band gaps of the material. Thin film materials have been used in semiconductor devices, wireless communications, telecommunications, integrated circuits, rectifiers, transistors, solar cells, light-emitting diodes, photoconductors and light crystal displays, lithography, micro- electromechanical systems (MEMS) and multifunctional emerging coatings, as well as other emerging cutting technologies.
Influence of Ti Content on the Partial Oxidation of TixFeCoNi Thin Films in Vacuum Annealing
Yang, Ya-Chu; Yeh, Jien-Wei; Tsau, Chun-Huei
2017-01-01
This study investigated the effects of Ti content and vacuum annealing on the microstructure evolution of TixFeCoNi (x = 0, 0.5, and 1) thin films and the underlying mechanisms. The as-deposited thin film transformed from an FCC (face center cubic) structure at x = 0 into an amorphous structure at x = 1, which can be explained by determining topological instability and a hard ball model. After annealing was performed at 1000 °C for 30 min, the films presented a layered structure comprising metal solid solutions and oxygen-deficient oxides, which can be major attributed to oxygen traces in the vacuum furnace. Different Ti contents provided various phase separation and layered structures. The underlying mechanism is mainly related to the competition among possible oxides in terms of free energy production at 1000 °C. PMID:28953244
Hayashi, Kouichi
2010-12-01
Based on our previous work, I review the applications of x-ray refraction and the x-ray waveguide phenomenon to organic and inorganic thin films in the present paper. Under grazing incidence conditions, observations of refracted x-rays and guided x-rays due to the x-ray waveguide phenomenon provide information about thin film structures, and thus have potential as alternative methods to x-ray reflectivity. To date, we have measured the spectra of the refracted x-rays and guided x-rays from end faces of thin films using white incident x-ray beams, and utilized them for the determination of film density and thickness. Some of this work is summarized in the present paper. At the end of this paper, I describe our recent achievement in this field, namely the in situ measurement of guided x-rays during the film degradation process due to strong synchrotron radiation damage. Moreover, I discuss the perspective of the present technique from the viewpoint of micro-characterization and real-time estimation of thin films.
NASA Astrophysics Data System (ADS)
Icli, Kerem Cagatay; Kocaoglu, Bahadir Can; Ozenbas, Macit
2018-01-01
Fluorine-doped tin dioxide (FTO) thin films were produced via conventional spray pyrolysis and ultrasonic spray pyrolysis (USP) methods using alcohol-based solutions. The prepared films were compared in terms of crystal structure, morphology, surface roughness, visible light transmittance, and electronic properties. Upon investigation of the grain structures and morphologies, the films prepared using ultrasonic spray method provided relatively larger grains and due to this condition, carrier mobilities of these films exhibited slightly higher values. Dye-sensitized solar cells and 10×10 cm modules were prepared using commercially available and USP-deposited FTO/glass substrates, and solar performances were compared. It is observed that there exists no remarkable efficiency difference for both cells and modules, where module efficiency of the USP-deposited FTO glass substrates is 3.06% compared to commercial substrate giving 2.85% under identical conditions. We demonstrated that USP deposition is a low cost and versatile method of depositing commercial quality FTO thin films on large substrates employed in large area dye-sensitized solar modules or other thin film technologies.
Morphology and crystallinity of ZnS nanocolumns prepared by glancing angle deposition.
Lu, Lifang; Zhang, Fujun; Xu, Zheng; Zhao, Suling; Wang, Yongsheng
2010-03-01
ZnS films with different morphologies and nanometer structures were fabricated via high vacuum electron beam deposition by changing the oblique angle alpha between the incoming particle flux and the substrate normal. The morphology and crystallinity of ZnS nanocrystalline films prepared on the substrates at alpha = 0 degrees and 80 degrees were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction. These experimental results show that the ZnS nanocolumn structure was formed at the situation of alpha = 80 degrees. The incidence angle also strongly influenced the crystallinity of thin films. The most intensive diffraction peaks changed from (220) to (111) when the incidence angle was set to 0 degrees and 80 degrees. The dynamic growth process of ZnS films at alpha = 0 degrees and 80 degrees has been analyzed by shadow effect and atomic surface diffusion. The transmittance spectra of the ZnS thin films prepared at different oblique angles were measured, and the transmissivity of ZnS nanocolumn thin films was enhanced compared with ZnS thin films prepared by normal deposition in the visible light range.
Paik, Taejong; Hong, Sung-Hoon; Gaulding, E Ashley; Caglayan, Humeyra; Gordon, Thomas R; Engheta, Nader; Kagan, Cherie R; Murray, Christopher B
2014-01-28
We demonstrate thermally switchable VO2 metamaterials fabricated using solution-processable colloidal nanocrystals (NCs). Vanadium oxide (VOx) NCs are synthesized through a nonhydrolytic reaction and deposited from stable colloidal dispersions to form NC thin films. Rapid thermal annealing transforms the VOx NC thin films into monoclinic, nanocrystalline VO2 thin films that show a sharp, reversible metal-insulator phase transition. Introduction of precise concentrations of tungsten dopings into the colloidal VOx NCs enables the still sharp phase transition of the VO2 thin films to be tuned to lower temperatures as the doping level increases. We fabricate "smart", differentially doped, multilayered VO2 films to program the phase and therefore the metal-insulator behavior of constituent vertically structured layers with temperature. With increasing temperature, we tailored the optical response of multilayered films in the near-IR and IR regions from that of a strong light absorber, in a metal-insulator structure, to that of a Drude-like reflector, characteristic of a pure metallic structure. We demonstrate that nanocrystal-based nanoimprinting can be employed to pattern multilayered subwavelength nanostructures, such as three-dimensional VO2 nanopillar arrays, that exhibit plasmonic dipolar responses tunable with a temperature change.
Effect of different coating layer on the topography and optical properties of ZnO nanostructured
NASA Astrophysics Data System (ADS)
Mohamed, R.; Mamat, M. H.; Malek, M. F.; Ismail, A. S.; Yusoff, M. M.; Asiah, M. N.; Khusaimi, Z.; Rusop, M.
2018-05-01
Magnesium (Mg) and aluminum (Al) co-doped zinc oxide (MAZO) thin films were synthesized on glass substrate by sol-gel spin coating method. MAZO thin films were prepared at different coating layers range from 1 to 9. Atomic Force Microscopy (AFM) was used to investigate the topography of the thin films. According to the AFM results, Root Means Square (RMS) of MAZO thin films was increased from 0.747 to 6.545 nm, with increase of number coating layer from 1 to 9, respectively. The results shown the variation on structural and topography properties of MAZO seed film when it's deposited at different coating layers on glass substrate. The optical properties was analyzed using UV-Vis spectroscopy. The obtained results show that the transmittance spectra was increased as thin films coating layer increases.
NASA Astrophysics Data System (ADS)
Kadhim, Imad H.; Abu Hassan, H.
2017-04-01
Nanocrystalline tin dioxide (SnO2) thin films have been successfully prepared by sol-gel spin-coating technique on p-type Si (100) substrates. A stable solution was prepared by mixing tin(II) chloride dihydrate, pure ethanol, and glycerin. Temperature affects the properties of SnO2 thin films, particularly the crystallite size where the crystallization of SnO2 with tetragonal rutile structure is achieved when thin films that prepared under different aging heat times are annealed at 400∘C. By increasing aging heat time in the presence of annealing temperatures the FESEM images indicated that the thickness of the fabricated film was directly proportional to solution viscosity, increasing from approximately 380 nm to 744 nm, as well as the crystallization of the thin films improved and reduced defects.
NASA Astrophysics Data System (ADS)
Ahmad, Farhan; Belkhedkar, M. R.; Salodkar, R. V.
2018-05-01
Nanostructured SrO thin film of thickness 139 nm was deposited by chemical bath deposition technique onto glass substrates using SrCl2.6H2O and NaOH as cationic and anionic precursors without complexing agents. The X-ray diffraction studies revealed that, SrO thin film is nanocrystalline in nature with cubic structure. The surface morphology of the SrO film was investigated by means of field emission scanning electron microscopy. The optical studies showed that SrO film exhibits direct as well as indirect optical band gap energy. The electrical resistivity and activation energy of SrO thin film is found to be of the order of 106 Ω cm and 0.58eV respectively.
NASA Astrophysics Data System (ADS)
Grant, Daniel S.; Rawat, Rajdeep S.; Bazaka, Kateryna; Jacob, Mohan V.
2017-09-01
The high degree of crosslinking present in plasma polymerised thin films, coupled with their high molecular weight, imbues these films with properties similar to those of thermosetting polymers. For instance, such films tend to be relatively hard, insoluble, and to date have not exhibited plasticity when subjected to elevated temperatures. In this paper it is demonstrated that plasma polymers can, in fact, undergo plastic deformation in response to the application of extremely short-lived thermal treatment delivered by a dense plasma focus device, as evidenced by the evolution of bubble-like structures from the thin film. This finding suggests new avenues for texturing plasma thin films, and synthesising cavities that may find utility as thermal insulators or domains for material encapsulation.
NASA Astrophysics Data System (ADS)
Sainju, Deepak
Many modern optical and electronic devices, including photovoltaic devices, consist of multilayered thin film structures. Spectroscopic ellipsometry (SE) is a critically important characterization technique for such multilayers. SE can be applied to measure key parameters related to the structural, optical, and electrical properties of the components of multilayers with high accuracy and precision. One of the key advantages of this non-destructive technique is its capability of monitoring the growth dynamics of thin films in-situ and in real time with monolayer level precision. In this dissertation, the techniques of SE have been applied to study the component layer materials and structures used as back-reflectors and as the transparent contact layers in thin film photovoltaic technologies, including hydrogenated silicon (Si:H), copper indium-gallium diselenide (CIGS), and cadmium telluride (CdTe). The component layer materials, including silver and both intrinsic and doped zinc oxide, are fabricated on crystalline silicon and glass substrates using magnetron sputtering techniques. These thin films are measured in-situ and in real time as well as ex-situ by spectroscopic ellipsometry in order to extract parameters related to the structural properties, such as bulk layer thickness and surface roughness layer thickness and their time evolution, the latter information specific to real time measurements. The index of refraction and extinction coefficient or complex dielectric function of a single unknown layer can also be obtained from the measurement versus photon energy. Applying analytical expressions for these optical properties versus photon energy, parameters that describe electronic transport, such as electrical resistivity and electron scattering time, can be extracted. The SE technique is also performed as the sample is heated in order to derive the effects of annealing on the optical properties and derived electrical transport parameters, as well as the intrinsic temperature dependence of these properties and parameters. One of the major achievements of this dissertation research is the characterization of the thickness and optical properties of the interface layer formed between the silver and zinc oxide layers in a back-reflector structure used in thin film photovoltaics. An understanding of the impact of these thin film material properties on solar cell device performance has been complemented by applying reflectance and transmittance spectroscopy as well as simulations of cell performance.
NASA Astrophysics Data System (ADS)
Dahal, Lila Raj
Real time spectroscopic ellipsometry (RTSE), and ex-situ mapping spectroscopic ellipsometry (SE) are powerful characterization techniques capable of performance optimization and scale-up evaluation of thin film solar cells used in various photovoltaics technologies. These non-invasive optical probes employ multichannel spectral detection for high speed and provide high precision parameters that describe (i) thin film structure, such as layer thicknesses, and (ii) thin film optical properties, such as oscillator variables in analytical expressions for the complex dielectric function. These parameters are critical for evaluating the electronic performance of materials in thin film solar cells and also can be used as inputs for simulating their multilayer optical performance. In this Thesis, the component layers of thin film hydrogenated silicon (Si:H) solar cells in the n-i-p or substrate configuration on rigid and flexible substrate materials have been studied by RTSE and ex-situ mapping SE. Depositions were performed by magnetron sputtering for the metal and transparent conducting oxide contacts and by plasma enhanced chemical vapor deposition (PECVD) for the semiconductor doped contacts and intrinsic absorber layers. The motivations are first to optimize the thin film Si:H solar cell in n-i-p substrate configuration for single-junction small-area dot cells and ultimately to scale-up the optimized process to larger areas with minimum loss in device performance. Deposition phase diagrams for both i- and p -layers on 2" x 2" rigid borosilicate glass substrate were developed as functions of the hydrogen-to-silane flow ratio in PECVD. These phase diagrams were correlated with the performance parameters of the corresponding solar cells, fabricated in the Cr/Ag/ZnO/n/i/ p/ITO structure. In both cases, optimization was achieved when the layers were deposited in the protocrystalline phase. Identical solar cell structures were fabricated on 6" x 6" borosilicate glass with 256 cells followed by ex-situ mapping SE on each cell to achieve better statistics for solar cell optimization by correlating local structural parameters with solar cell parameters. Solar cells of similar structure were also fabricated on flexible polymer substrates in the roll-to-roll configuration. In this configuration as well, RTSE was demonstrated as an effective process monitoring and control tool for thin film photovoltaics.
Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film
NASA Astrophysics Data System (ADS)
Kumar, S. Vinodh; Raja, M. Manivel; Pandi, R. Senthur; Pandyan, R. Kodi; Mahendran, M.
2016-05-01
Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L12 cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively. At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.