Science.gov

Sample records for structures dynamic characteristics

  1. Relations between structural and dynamic thermal characteristics of building walls

    SciTech Connect

    Kossecka, E.; Kosny, J.

    1996-10-01

    The effect of internal thermal structure on dynamic characteristics of walls is analyzed. The concept of structure factors is introduced and the conditions they impose on response factors are given. Simple examples of multilayer walls, representing different types of thermal resistance and capacity distribution, are analyzed to illustrate general relations between structure factors and response factors. The idea of the ``thermally equivalent wall``, a plane multilayer structure, with dynamic characteristics similar to those of a complex structure, in which three-dimensional heat flow occurs, is presented.

  2. Dynamic energy absorption characteristics of hollow microlattice structures

    SciTech Connect

    Liu, YL; Schaedler, TA; Chen, X

    2014-10-01

    Hollow microlattice structures are promising candidates for advanced energy absorption and their characteristics under dynamic crushing are explored. The energy absorption can be significantly enhanced by inertial stabilization, shock wave effect and strain rate hardening effect. In this paper we combine theoretical analysis and comprehensive finite element method simulation to decouple the three effects, and then obtain a simple model to predict the overall dynamic effects of hollow microlattice structures. Inertial stabilization originates from the suppression of sudden crushing of the microlattice and its contribution scales with the crushing speed, v. Shock wave effect comes from the discontinuity across the plastic shock wave front during dynamic loading and its contribution scales with e. The strain rate effect increases the effective yield strength upon dynamic deformation and increases the energy absorption density. A mechanism map is established that illustrates the dominance of these three dynamic effects at a range of crushing speeds. Compared with quasi-static loading, the energy absorption capacity a dynamic loading of 250 m/s can be enhanced by an order of magnitude. The study may shed useful insight on designing and optimizing the energy absorption performance of hollow microlattice structures under various dynamic loads. (C) 2014 Elsevier Ltd. All rights reserved.

  3. The dynamical characteristics and wave structure of typhoon Rananim (2004)

    NASA Astrophysics Data System (ADS)

    Ming, Jie; Ni, Yunqi; Shen, Xinyong

    2009-05-01

    Typhoon Rananim (2004) was one of the severest typhoons landfalling the Chinese mainland from 1996 to 2004. It brought serious damage and induced prodigious economical loss. Using a new generation of mesoscale model, named the Weather Research and Forecasting (WRF) modeling system, with 1.667 km grid horizontal spacing on the finest nested mesh, Rananim was successfully simulated in terms of track, intensity, eye, eyewall, and spiral rainbands. We compared the structures of Rananim to those of hurricanes in previous studies and observations to assess the validity of simulation. The three-dimensional (3D) dynamic and thermal structures of eye and eyewall were studied based on the simulated results. The focus was investigation of the characteristics of the vortex Rossby waves in the inner-core region. We found that the Rossby vortex waves propagate azimuthally upwind against the azimuthal mean tangential flow around the eyewall, and their period was longer than that of an air parcel moving within the azimuthal mean tangential flow. They also propagated outward against the boundary layer inflow of the azimuthal mean vortex. Futhermore, we studied the connection between the spiral potential vorticity (PV) bands and spiral rainbands, and found that the vortex Rossby waves played an important role in the formation process of spiral rainbands.

  4. Dynamic characteristics of a magnetorheological pin joint for civil structures

    NASA Astrophysics Data System (ADS)

    Li, Yancheng; Li, Jianchun

    2014-03-01

    Magnetorheological (MR) pin joint is a novel device in which its joint moment resistance can be controlled in real-time by altering the applied magnetic field. The smart pin joint is intended to be used as a controllable connector between the columns and beams of a civil structure to instantaneously shift the structural natural frequencies in order to avoid resonance and therefore to reduce unwanted vibrations and hence prevent structural damage. As an intrinsically nonlinear device, modelling of this MR fluid based device is a challenging task and makes the design of a suitable control algorithm a cumbersome situation. Aimed at its application in civil structure, the main purpose of this paper is to test and characterise the hysteretic behaviour of MR pin joint. A test scheme is designed to obtain the dynamic performance of MR pin joint in the dominant earthquake frequency range. Some unique phenomena different from those of MR damper are observed through the experimental testing. A computationally-efficient model is proposed by introducing a hyperbolic element to accurately reproduce its dynamic behaviour and to further facilitate the design of a suitable control algorithm. Comprehensive investigations on the model accuracy and dependences of the proposed model on loading condition (frequency and amplitude) and input current level are reported in the last section of this paper.

  5. Improving the dynamic characteristics of body-in-white structure using structural optimization.

    PubMed

    Yahaya Rashid, Aizzat S; Ramli, Rahizar; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  6. Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization

    PubMed Central

    Yahaya Rashid, Aizzat S.; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312

  7. Improving the dynamic characteristics of body-in-white structure using structural optimization.

    PubMed

    Yahaya Rashid, Aizzat S; Ramli, Rahizar; Mohamed Haris, Sallehuddin; Alias, Anuar

    2014-01-01

    The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process.

  8. Dynamic Characteristics of a Model and Prototype for 3D-RC Structure

    NASA Astrophysics Data System (ADS)

    Moniuddin, Md. Khaja; Vasanthalakshmi, G.; Chethan, K.; Babu, R. Ramesh

    2016-06-01

    Infill walls provide durable and economical partitions that have relatively excellent thermal and sound insulation with high fire resistance. Monolithic infilled walls are provided within RC structures without being analyzed as a combination of concrete and brick elements, although in reality they act as a single unit during earthquakes. The performance of such structures during earthquakes has proved to be superior in comparison to bare frames in terms of stiffness, strength and energy dissipation. To know the dynamic characteristics of monolithic infill wall panels and masonry infill, modal, response spectrum and time history analyses have been carried out on a model and prototype of a 3D RC structure for a comparative study.

  9. Damage identification method based on structural dynamic characteristics and strain measurements

    NASA Astrophysics Data System (ADS)

    Teng, Jun; Lu, Wei

    2009-03-01

    More and more large span structures have been built or are being built and their health is concerned about by civil engineers and investors, which arises to the problem of studying on several damage identification methods to give estimation on the health of the structure and the identification on damage location and damage degree. The damage identification methods in civil engineering are mostly based on dynamic characteristics, which have difficulties when applied to practical structures. Meanwhile, the strains of the structural important elements can give more exactly and more directly information for damage identification on damage location and damage degree. The information fusion for acceleration sensors and strain sensors is used for making a strategic decision on damage identification and the Dempster-Shafer evidence theory is used as the information fusion strategic decision, in which the strategic decision information fusion is a method to give the final decision based on the decision made by each kind of sensors according to some principle and some synthesized evaluation, that is, the final damage identification results are given based on the damage identification results using the structural dynamic characteristics and strain measurements. In addition, a finite element model of large span space shell structure is built and several damage cases of it are simulated, in the example, the structural dynamic characteristics damage index and strain measurements damage index are used to give the damage identification results, combining which the final damage identification result by strategic decision fusion is given too, while the method presented in the paper is proofed to be reliable and effective according to comparing the three kinds of damage identification results mentioned above.

  10. Structural stiffness, strength and dynamic characteristics of large tetrahedral space truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.; Card, M. F.

    1977-01-01

    Physical characteristics of large skeletal frameworks for space applications are investigated by analyzing one concept: the tetrahedral truss, which is idealized as a sandwich plate with isotropic faces. Appropriate analytical relations are presented in terms of the truss column element properties which for calculations were taken as slender graphite/epoxy tubes. Column loads, resulting from gravity gradient control and orbital transfer, are found to be small for the class structure investigated. Fundamental frequencies of large truss structures are shown to be an order of magnitude lower than large earth based structures. Permissible loads are shown to result in small lateral deflections of the truss due to low-strain at Euler buckling of the slender graphite/epoxy truss column elements. Lateral thermal deflections are found to be a fraction of the truss depth using graphite/epoxy columns.

  11. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    NASA Astrophysics Data System (ADS)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  12. Dynamic characteristics of dual-frequency nematic liquid crystal with quasi-homeotropic twist structure

    NASA Astrophysics Data System (ADS)

    Konshina, E. A.; Fedorov, M. A.; Amosova, L. P.

    2010-07-01

    Dynamic characteristics of a liquid crystal (LC) cell with a quasi-homeotropic twist structure formed in a dual-frequency nematic liquid crystal (DFNLC) layer with the director pretilt angle increased to 60° have been experimentally studied. The cell was switched from the off to on state using a 30-kHz electric field, while the reverse (off/on) switching was effected by a 1-kHz field. An increase in the director pretilt angle allowed the switch-on time of a 6.4-μm-thick DFNLC cell to be reduced to 1 ms and the relaxation (switch-off) time, to 0.5 ms.

  13. Research on the structure and dynamic characteristics of a fast-steering mirror

    NASA Astrophysics Data System (ADS)

    Zhou, Jianmin; Yin, Hongyan; Wang, Yonghui

    2009-05-01

    Based on the analysis of mechanical structures and characteristics of several shafting reflecting mirror at home and abroad, the composition principle of FSM is introduced in detail, and a concrete designing scheme of shaftless FSM is proposed. Using resonant frequency as a starting point, according to elastic mechanics, a vibration system of FSM is established. The structure of elastic system of FSM, material, manufacturing and heat treatment are also introduced. The computer simulation of the structure is completed by using COSMOS software. At last, the corresponding experimental result of property of open-loop of FSM is also given.

  14. Influence on disease spread dynamics of herd characteristics in a structured livestock industry.

    PubMed

    Lindström, Tom; Lewerin, Susanna Sternberg; Wennergren, Uno

    2012-06-01

    Studies of between-herd contacts may provide important insight to disease transmission dynamics. By comparing the result from models with different levels of detail in the description of animal movement, we studied how factors influence the final epidemic size as well as the dynamic behaviour of an outbreak. We investigated the effect of contact heterogeneity of pig herds in Sweden due to herd size, between-herd distance and production type. Our comparative study suggests that the production-type structure is the most influential factor. Hence, our results imply that production type is the most important factor to obtain valid data for and include when modelling and analysing this system. The study also revealed that all included factors reduce the final epidemic size and also have yet more diverse effects on initial rate of disease spread. This implies that a large set of factors ought to be included to assess relevant predictions when modelling disease spread between herds. Furthermore, our results show that a more detailed model changes predictions regarding the variability in the outbreak dynamics and conclude that this is an important factor to consider in risk assessment.

  15. Effects of structural and dynamic family characteristics on the development of depressive and aggressive problems during adolescence. The TRAILS study.

    PubMed

    Sijtsema, J J; Oldehinkel, A J; Veenstra, R; Verhulst, F C; Ormel, J

    2014-06-01

    Both structural (i.e., SES, familial psychopathology, family composition) and dynamic (i.e., parental warmth and rejection) family characteristics have been associated with aggressive and depressive problem development. However, it is unclear to what extent (changes in) dynamic family characteristics have an independent effect on problem development while accounting for stable family characteristics and comorbid problem development. This issue was addressed by studying problem development in a large community sample (N = 2,230; age 10-20) of adolescents using Linear Mixed models. Paternal and maternal warmth and rejection were assessed via the Egna Minnen Beträffande Uppfostran for Children (EMBU-C). Aggressive and depressive problems were assessed via subscales of the Youth/Adult Self-Report. Results showed that dynamic family characteristics independently affected the development of aggressive problems. Moreover, maternal rejection in preadolescence and increases in paternal rejection were associated with aggressive problems, whereas decreases in maternal rejection were associated with decreases in depressive problems over time. Paternal and maternal warmth in preadolescence was associated with fewer depressive problems during adolescence. Moreover, increases in paternal warmth were associated with fewer depressive problems over time. Aggressive problems were a stable predictor of depressive problems over time. Finally, those who increased in depressive problems became more aggressive during adolescence, whereas those who decreased in depressive problems became also less aggressive. Besides the effect of comorbid problems, problem development is to a large extent due to dynamic family characteristics, and in particular to changes in parental rejection, which leaves much room for parenting-based interventions. PMID:24043499

  16. Time-Structured and Net Intraindividual Variability: Tools for Examining the Development of Dynamic Characteristics and Processes

    PubMed Central

    Ram, Nilam; Gerstorf, Denis

    2009-01-01

    The study of intraindividual variability is the study of fluctuations, oscillations, adaptations, and “noise” in behavioral outcomes that manifest on micro-time scales. This paper provides a descriptive frame for the combined study of intraindividual variability and aging/development. At the conceptual level, we highlight that the study of intraindividual variability provides access to dynamic characteristics – construct-level descriptions of individuals' capacities for change (e.g., lability), and dynamic processes – the systematic changes individuals' exhibit in response to endogenous and exogenous influences (e.g., regulation). At the methodological level, we review how quantifications of net intraindividual variability (e.g., iSD) and models of time-structured intraindividual variability (e.g., time-series) are being used to measure and describe dynamic characteristics and processes. At the research design level, we point to the benefits of measurement burst study designs, wherein data are obtained across multiple time scales, for the study of development. PMID:20025395

  17. RELATIONSHIP BETWEEN DAMAGE AND CHANGE OF DYNAMIC CHARACTERISTICS IN AN EXISTING BRIDGE FOR VIBRATION-BASED STRUCTURAL HEALTH MONITORING

    NASA Astrophysics Data System (ADS)

    Miyashita, Takeshi; Tamada, Kazuya; Liu, Cuiping; Iwasaki, Hidenori; Nagai, Masatsugu

    The objective of this study is to understand the relationship between damage and the change of dynamic characteristics in an existing bridge for vibration-based structural health monitoring. Focused bridge is a demolished pedestrian bridge, which is a composite steel girder with two main girders. The first damages are slits by gas cutting, which are given to a lower flange in the lateral direction. Then, outstanding plate in the lower flange is removed along the span. Vibration measurement was carried out in each damage case. As a result, it was confirmed that natural frequencies decreased depending on the progress of damage. Its reduction rate was greater in the modes without torsion. For reproducible analysis, spectral element and finite element analyses were carried out. Analytical results also showed the similar reduction of natural frequencies to measurement.

  18. Determination of Dynamic Characteristics of the Frame Bearing Structures of the Vibrating Separating Machines

    NASA Astrophysics Data System (ADS)

    Piven, V. V.; Umanskaya, O. L.

    2016-08-01

    Within the vibrating separating machines the vibration displacement of the members is transferred to a frame bearing structure, and over it the movement is transferred again to the suspension brackets of the sieve separating surfaces and to the foundation, on which the machine is fixed. The forced oscillations of the sieve separating surfaces ensure the separation process, and the vibration, transferred from the frame structure, disturbs this process. It is necessary to ensure the vibration displacement of the separating surfaces within the fixed limitations by means of optimal design of the frame bearing surfaces. The aim of the work is to decrease adverse vibrations towards the technological separation process. The calculated and graphical relations, acquired according to the presented methods, enable to estimate the influence of various structure solutions on vibration displacements of the structure elements at the stage of design.

  19. Acoustic characteristics and dynamic structural loading of an ASTOVL aircraft in hover

    NASA Astrophysics Data System (ADS)

    Mitchell, L. K.; Norum, Thomas D.; Johns, Albert L.

    1992-01-01

    Measurements of surface dynamic loading and freestream acoustics were made for an ASTOVL model in hover, to quantify the effects of elevated temperature on the acoustic field and surface loading. Data were acquired for a many combinations of operating parameters: model height above the ground plane, nozzle pressure ratio, and jet exit stagnation temperature. For many conditions, strong tones were observed, with amplitudes up to 150 dB. The frequencies of the strongest tones were well predicted by a model assuming feedback between the nozzle exit and the ground plane. The model also accounts for many of the variations in frequency observed with changes in model height, nozzle pressure ratio, and jet temperature. Broadband sound pressure levels up to 170 dB were also recorded. The maximum levels occurred at approximately 3 equivalent jet diameters above the ground plane. For the majority of the cases, the increase in noise due to temperature was less than expected based on free jet correlations.

  20. Dynamics of lithium ions in borotellurite mixed former glasses: Correlation between the characteristic length scales of mobile ions and glass network structural units

    SciTech Connect

    Shaw, A.; Ghosh, A.

    2014-10-28

    We have studied the mixed network former effect on the dynamics of lithium ions in borotellurite glasses in wide composition and temperature ranges. The length scales of ion dynamics, such as characteristic mean square displacement and spatial extent of sub-diffusive motion of lithium ions have been determined from the ac conductivity and dielectric spectra, respectively, in the framework of linear response theory. The relative concentrations of different network structural units have been determined from the deconvolution of the FTIR spectra. A direct correlation between the ion dynamics and the characteristic length scales and the relative concentration of BO{sub 4} units has been established for different compositions of the borotellurite glasses.

  1. Asymmetric dual-gate-structured one-transistor dynamic random access memory cells for retention characteristics improvement

    NASA Astrophysics Data System (ADS)

    Kim, Hyungjin; Lee, Jong-Ho; Park, Byung-Gook

    2016-08-01

    One of the major concerns of one-transistor dynamic random access memory (1T-DRAM) is poor retention time. In this letter, a 1T-DRAM cell with two separated asymmetric gates was fabricated and evaluated to improve sensing margin and retention characteristics. It was observed that significantly enhanced sensing margin and retention time over 1 s were obtained using a negatively biased second gate and trapped electrons in the nitride layer because of increased hole capacity in the floating body. These findings indicate that the proposed device could serve as a promising candidate for overcoming retention issues of 1T-DRAM cells.

  2. Computational Methods for Structural Mechanics and Dynamics

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.

  3. Influence of structural parameters on dynamic characteristics and wind-induced buffeting responses of a super-long-span cable-stayed bridge

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Chen, Chunchao; Xing, Chenxi; Li, Aiqun

    2014-09-01

    A 3D finite element (FE) model for the Sutong cable-stayed bridge (SCB) is established based on ANSYS. The dynamic characteristics of the bridge are analyzed using a subspace iteration method. Based on recorded wind data, the measured spectra expression is presented using the nonlinear least-squares regression method. Turbulent winds at the bridge site are simulated based on the spectral representation method and the FFT technique. The influence of some key structural parameters and measures on the dynamic characteristics of the bridge are investigated. These parameters include dead load intensity, as well as vertical, lateral and torsional stiffness of the steel box girder. In addition, the influence of elastic stiffness of the connection device employed between the towers and the girder on the vibration mode of the steel box girder is investigated. The analysis shows that all of the vertical, lateral and torsional buffeting displacement responses reduce gradually as the dead load intensity increases. The dynamic characteristics and the structural buffeting displacement response of the SCB are only slightly affected by the vertical and torsional stiffness of the steel box girder, and the lateral and torsional buffeting displacement responses reduce gradually as the lateral stiffness increases. These results provide a reference for dynamic analysis and design of super-long-span cable-stayed bridges.

  4. Unique characteristics of nonequilibrium carrier transport dynamics in an undoped GaAs/n-type GaAs epitaxial structure

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takayuki; Nakayama, Masaaki

    2016-07-01

    We have investigated nonequilibrium carrier dynamics in an undoped GaAs/n-type GaAs epitaxial structure at room temperature using reflection-type pump–probe spectroscopy at different pump photon energies and Monte Carlo simulation. It was found that the transport process of photogenerated electrons in the undoped layer is characterized by the valance between the quasiballistic motion passing through the undoped layer and the intervalley scattering from the Γ valley to the L one as a function of the excess energy of photogenerated electrons. The Γ–L scattering component exhibits threshold-like appearance and then gradually increases with increasing excess energy.

  5. Structural characteristics of hydrated protons in the conductive channels: effects of confinement and fluorination studied by molecular dynamics simulation.

    PubMed

    Zhang, Ning; Song, Yuechun; Ruan, Xuehua; Yan, Xiaoming; Liu, Zhao; Shen, Zhuanglin; Wu, Xuemei; He, Gaohong

    2016-09-21

    The relationship between the proton conductive channel and the hydrated proton structure is of significant importance for understanding the deformed hydrogen bonding network of the confined protons which matches the nanochannel. In general, the structure of hydrated protons in the nanochannel of the proton exchange membrane is affected by several factors. To investigate the independent effect of each factor, it is necessary to eliminate the interference of other factors. In this paper, a one-dimensional carbon nanotube decorated with fluorine was built to investigate the independent effects of nanoscale confinement and fluorination on the structural properties of hydrated protons in the nanochannel using classical molecular dynamics simulation. In order to characterize the structure of hydrated protons confined in the channel, the hydrogen bonding interaction between water and the hydrated protons has been studied according to suitable hydrogen bond criteria. The hydrogen bond criteria were proposed based on the radial distribution function, angle distribution and pair-potential energy distribution. It was found that fluorination leads to an ordered hydrogen bonding structure of the hydrated protons near the channel surface, and confinement weakens the formation of the bifurcated hydrogen bonds in the radial direction. Besides, fluorination lowers the free energy barrier of hydronium along the nanochannel, but slightly increases the barrier for water. This leads to disintegration of the sequential hydrogen bond network in the fluorinated CNTs with small size. In the fluorinated CNTs with large diameter, the lower degree of confinement produces a spiral-like sequential hydrogen bond network with few bifurcated hydrogen bonds in the central region. This structure might promote unidirectional proton transfer along the channel without random movement. This study provides the cooperative effect of confinement dimension and fluorination on the structure and hydrogen

  6. Wind Turbine Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, D. R. (Editor)

    1978-01-01

    A workshop on wind turbine structural dynamics was held to review and document current United States work on the dynamic behavior of large wind turbines, primarily of the horizontal-axis type, and to identify and discuss other wind turbine configurations that may have lower cost and weight. Information was exchanged on the following topics: (1) Methods for calculating dynamic loads; (2) Aeroelasticity stability (3) Wind loads, both steady and transient; (4) Critical design conditions; (5) Drive train dynamics; and (6) Behavior of operating wind turbines.

  7. Gly25-Ser26 amyloid β-protein structural isomorphs produce distinct Aβ42 conformational dynamics and assembly characteristics.

    PubMed

    Roychaudhuri, Robin; Lomakin, Aleksey; Bernstein, Summer; Zheng, Xueyun; Condron, Margaret M; Benedek, George B; Bowers, Michael; Teplow, David B

    2014-06-26

    One of the earliest events in amyloid β-protein (Aβ) self-association is nucleation of Aβ monomer folding through formation of a turn at Gly25-Lys28. We report here the effects of structural changes at the center of the turn, Gly25-Ser26, on Aβ42 conformational dynamics and assembly. We used "click peptide" chemistry to quasi-synchronously create Aβ42 from 26-O-acyliso-Aβ42 (iAβ42) through a pH jump from 3 to 7.4. We also synthesized Nα-acetyl-Ser26-iAβ42 (Ac-iAβ42), which cannot undergo O→N acyl chemistry, to study the behavior of this ester form of Aβ42 itself at neutral pH. Data from experiments monitoring increases in β-sheet formation (thioflavin T, CD), hydrodynamic radius (RH), scattering intensity (quasielastic light scattering spectroscopy), and extent of oligomerization (ion mobility spectroscopy-mass spectrometry) were quite consistent. A rank order of Ac-iAβ42>iAβ42>Aβ42 was observed. Photochemically cross-linked iAβ42 displayed an oligomer distribution with a prominent dimer band that was not present with Aβ42. These dimers also were observed selectively in iAβ42 in ion mobility spectrometry experiments. The distinct biophysical behaviors of iAβ42 and Aβ42 appear to be due to the conversion of iAβ42 into "pure" Aβ42 monomer, a nascent form of Aβ42 that does not comprise the variety of oligomeric and aggregated states present in pre-existent Aβ42. These results emphasize the importance of the Gly25-Ser26 dipeptide in organizing Aβ42 monomer structure and thus suggest that drugs altering the interactions of this dipeptide with neighboring side-chain atoms or with the peptide backbone could be useful in therapeutic strategies targeting formation of Aβ oligomers and higher-order assemblies.

  8. Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics

    SciTech Connect

    Jeffries, M.O. )

    1992-08-01

    Ice shelves are thick, floating ice masses most often associated with Antarctica where they are seaward extensions of the grounded Antarctic ice sheet and sources of many icebergs. However, there are also ice shelves in the Arctic, primarily located along the north coast of Ellesmere Island in the Canadian High Arctic. The only ice shelves in North America and the most extensive in the north polar region, the Ellesmere ice shelves originate from glaciers and from sea ice and are the source of ice islands, the tabular icebergs of the Arctic Ocean. The present state of knowledge and understanding of these ice features is summarized in this paper. It includes historical background to the discovery and early study of ice shelves and ice islands, including the use of ice islands as floating laboratories for polar geophysical research. Growth mechanisms and age, the former extent and the twentieth century disintegration of the Ellesmere ice shelves, and the processes and mechanisms of ice island calving are summarized. Surface features, thickness, thermal regime, and the size, shape, and numbers of ice islands are discussed. The structural-stratigraphic variability of ice islands and ice shelves and the complex nature of their growth and development are described. Large-scale and small-scale dynamics of ice islands are described, and the results of modeling their drift and recurrence intervals are presented. The conclusion identifies some unanswered questions and future research opportunities and needs. 97 refs., 18 figs.

  9. Structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.

    1985-01-01

    Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.

  10. Structural system identification: Structural dynamics model validation

    SciTech Connect

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  11. High Efficiency of Optimization of Response Surface Method for Structure Dynamic Characteristics by Using Perturbation Method with Complementary Term

    NASA Astrophysics Data System (ADS)

    Zhao, Xilu; Terane, Teppei; Shin, Hyunjin; Hagiwara, Ichiro

    In this paper, a new perturbation method is proposed, and is shown that the correction vector can be calculated shorter than ever. And, the computing efficiency of the response surface optimization method could improve greatly by applying perturbation method with complementary term to example analysis in the optimization of vibration characteristics by the response surface methodology and by finishing eigenvalue analysis which takes most computing time just once. Moreover, the validity and effectiveness is examined by examples by inducing approximately estimated formula of the vibration response value based on orthogonal polynomial. Lastly, it is shown that the computing time is shorten greatly compared with former method by applying this method to analysis of optimization problem of vibration characteristics.

  12. Characteristics and Prediction of RNA Structure

    PubMed Central

    Zhu, Daming; Zhang, Caiming; Han, Huijian; Crandall, Keith A.

    2014-01-01

    RNA secondary structures with pseudoknots are often predicted by minimizing free energy, which is NP-hard. Most RNAs fold during transcription from DNA into RNA through a hierarchical pathway wherein secondary structures form prior to tertiary structures. Real RNA secondary structures often have local instead of global optimization because of kinetic reasons. The performance of RNA structure prediction may be improved by considering dynamic and hierarchical folding mechanisms. This study is a novel report on RNA folding that accords with the golden mean characteristic based on the statistical analysis of the real RNA secondary structures of all 480 sequences from RNA STRAND, which are validated by NMR or X-ray. The length ratios of domains in these sequences are approximately 0.382L, 0.5L, 0.618L, and L, where L is the sequence length. These points are just the important golden sections of sequence. With this characteristic, an algorithm is designed to predict RNA hierarchical structures and simulate RNA folding by dynamically folding RNA structures according to the above golden section points. The sensitivity and number of predicted pseudoknots of our algorithm are better than those of the Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms. Experimental results reflect the folding rules of RNA from a new angle that is close to natural folding. PMID:25110687

  13. Dynamic characteristics of pulsed supersonic fuel sprays

    NASA Astrophysics Data System (ADS)

    Pianthong, K.; Matthujak, A.; Takayama, K.; Milton, B. E.; Behnia, M.

    2008-06-01

    This paper describes the dynamic characteristics of pulsed, supersonic liquid fuel sprays or jets injected into ambient air. Simple, single hole nozzles were employed with the nozzle sac geometries being varied. Different fuel types, diesel fuel, bio-diesel, kerosene, and gasoline were used to determine the effects of fuel properties on the spray characteristics. A vertical two-stage light gas gun was employed as a projectile launcher to provide a high velocity impact to produce the liquid jet. The injection pressure was around 0.88-1.24 GPa in all cases. The pulsed, supersonic fuel sprays were visualized by using a high-speed video camera and shadowgraph method. The spray tip penetration and velocity attenuation and other characteristics were examined and are described here. An instantaneous spray tip velocity of 1,542 m/s (Mach number 4.52) was obtained. However, this spray tip velocity can be sustained for only a very short period (a few microseconds). It then attenuates very quickly. The phenomenon of multiple high frequency spray pulses generated by a single shot impact and the changed in the angle of the shock structure during the spray flight, which had already been observed in previous studies, is again noted. Multiple shock waves from the conical nozzle spray were also clearly captured.

  14. Structural dynamics verification facility study

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.

    1981-01-01

    The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.

  15. Structure/load dependent vectors for linear structural dynamic analysis

    NASA Technical Reports Server (NTRS)

    Qin, Jiangning; Nguyen, Duc T.

    1992-01-01

    The dynamic solution vectors yielded by the present structure/load dependent-vectors method for large-scale linear structural dynamic analyses involving complex loadings can be used as starting vectors, so that both structure and load characteristics are encompassed by the basis vectors. The method is shown to entail fewer vectors than current alternatives for a given level of accuracy, especially in the cases of structures that have external concentrated masses. Numerical results are presented which illustrate the advantages of this dependent-vectors method relative to other reduction methods.

  16. Dynamic and Performance Characteristics of Baseball Bats

    ERIC Educational Resources Information Center

    Bryant, Fred O.; And Others

    1977-01-01

    The dynamic and performance characteristics of wooden and aluminum baseball bats were investigated in two phases; the first dealing with the velocity of the batted balls, and the second with a study of centers of percussion and impulse response at the handle. (MJB)

  17. Dynamic adaptivity of "smart" piezoelectric structures

    NASA Astrophysics Data System (ADS)

    Tzou, Horn-Sen; Zhong, Jianping P.

    1990-10-01

    Active smart" space and machine structures with adaptive dynamic characteristics have long been interested in a variety of high-performance systems, e.g., flexible robots, flexible space structures, "smart" machines, etc. In this paper, an active adaptive structure made of piezoelectric materials is proposed and evaluated. The structural adaptivity is achieved by a voltage feedback (open or closed loops) utilizing the converse piezoelectric effect. A mathematical model is proposed and the electrodynamic equations of motion and the generalized boundary conditions of a generic piezoelectric shell subjected to mechanical and electrical excitations are derived using Hamilton's principle and the linear piezoelectric theory. The dynamic adaptivity of the structure is introduced using a feedback control system. The theory is demonstrated in a case study in which the structural adaptivity (natural frequency) is investigated.

  18. Dynamical symmetries in nuclear structure

    SciTech Connect

    Casten, R.F.

    1986-01-01

    In recent years the concept of dynamical symmetries in nuclei has witnessed a renaissance of interest and activity. Much of this work has been developed in the context of the Interacting Boson Approximation (or IBA) model. The appearance and properties of dynamical symmetries in nuclei will be reviewed, with emphasis on their characteristic signatures and on the role of the proton-neutron interaction in their formation, systematics and evolution. 36 refs., 20 figs.

  19. Characteristic flow patterns generated by macrozoobenthic structures

    NASA Astrophysics Data System (ADS)

    Friedrichs, M.; Graf, G.

    2009-02-01

    A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a bottom scanning laser, was used for detailed, non-intrusive flow measurements (at 2 cm s - 1 and 10 cm s - 1 ) around solitary biogenic structures, combined with high-resolution mapping of the structure shape and position. The structures were replicates of typical macrozoobenthic species commonly found in the Mecklenburg Bight and with a presumed influence on both, the near-bed current regime and sediment transport dynamics: a worm tube, a snail shell, a mussel, a sand mound, a pit, and a cross-stream track furrow. The flow was considerably altered locally by the different protruding structures (worm tube, snail, mussel and mound). They reduced the horizontal approach velocity by 72% to 79% in the wake zone at about 1-2 cm height, and the flow was deflected around the structures with vertical and lateral velocities of up to 10% and 20% of the free-stream velocity respectively in a region adjacent to the structures. The resulting flow separation (at flow Reynolds number of about 4000 and 20,000 respectively) divided an outer deflection region from an inner region with characteristic vortices and the wake region. All protruding structures showed this general pattern, but also produced individual characteristics. Conversely, the depressions (track and pit) only had a weak influence on the local boundary layer flow, combined with a considerable flow reduction within their cavities (between 29% and 53% of the free-stream velocity). A longitudinal vortex formed, below which a stagnant space was found. The average height affected by the structure-related mass flow rate deficit for the two velocities was 1.6 cm and 1.3 cm respectively (80% of height and 64%) for the protruding structures and 0.6 cm and 0.9 cm (90% and 127% of depth) for the depressions. Marine benthic soft-bottom macrozoobenthos species are expected to benefit from the flow modifications they induce, particularly in terms of

  20. Structural Mechanics and Dynamics Branch

    NASA Technical Reports Server (NTRS)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  1. Dynamic characteristics of double tunneling-injection quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Asryan, Levon V.

    2015-03-01

    Dynamic characteristics of double tunneling-injection (DTI) quantum dot (QD) lasers are studied. To reveal the potential of such lasers for high-speed direct modulation of their optical output by pump current, fast carrier injection into QDs and no carrier leakage from QDs are assumed. The small-signal analysis of rate equations is applied. The modulation bandwidth is calculated as a function of the dc component of the injection current density and parameters of the laser structure.

  2. Dynamic and attitude control characteristics of an International Space Station

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Cooper, Paul A.; Young, John W.; Mccutchen, Don K.

    1987-01-01

    The structural dynamic characteristics of the International Space Station (ISS), the interim reference configuration established for NASA's Space Station developmental program, are discussed, and a finite element model is described. Modes and frequencies of the station below 2.0 Hz are derived, and the dynamic response of the station is simulated for an external impulse load corresponding to a failed shuttle-docking maneuver. A three-axis attitude control system regulates the ISS orientation, with control moment gyros responding to attitude and attitude rate signals. No instabilities were found in the attitude control system.

  3. Dynamical structure in paleoclimate data

    SciTech Connect

    Stewart, H.B.

    1994-12-01

    Deterministic chaos in dynamical systems offers a new paradigm for understanding irregular fluctuations. The theory of chaotic dynamical systems includes methods which can test whether any given set of time series data, such as paleoclimate proxy data, are consistent with a deterministic interpretation. Paleoclimate data with annual resolution and absolute dating provide multiple channels of concurrent time series; these multiple time series can be treated as potential phase space coordinates to test whether interannual climate variability is deterministic. Dynamical structure tests which take advantage of such multichannel data are proposed and illustrated by application to a simple synthetic model of chaos, and to two paleoclimate proxy data series.

  4. Numerical and Experimental Dynamic Characteristics of Thin-Film Membranes

    NASA Technical Reports Server (NTRS)

    Young, Leyland G.; Ramanathan, Suresh; Hu, Jia-Zhu; Pai, P. Frank

    2004-01-01

    Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. Finite element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system.

  5. Hierarchical optimisation on scissor seat suspension characteristic and structure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlei; Zhang, Xinjie; Guo, Konghui; Lv, Jiming; Yang, Yi

    2016-11-01

    Scissor seat suspension has been applied widely to attenuate the cab vibrations of commercial vehicles, while its design generally needs a trade-off between the seat acceleration and suspension travel, which creates a typical optimisation issue. A complexity for this issue is that the optimal dynamics parameters are not easy to approach solutions fast and unequivocally. Hence, the hierarchical optimisation on scissor seat suspension characteristic and structure is proposed, providing a top-down methodology with the globally optimal and fast convergent solutions to compromise these design contradictions. In details, a characteristic-oriented non-parametric dynamics model of the scissor seat suspension is formulated firstly via databases, describing its vertical dynamics accurately. Then, the ideal vertical stiffness-damping characteristic is cascaded via the characteristic-oriented model, and the structure parameters are optimised in accordance with a structure-oriented multi-body dynamics model of the scissor seat suspension. Eventually, the seat effective amplitude transmissibility factor, suspension travel and the CPU time for solving are evaluated. The results show the seat suspension performance and convergent speed of the globally optimal solutions are improved well. Hence, the proposed hierarchical optimisation methodology regarding characteristic and structure of the scissor seat suspension is promising for its virtual development.

  6. Dynamic response of aircraft structure

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The physical and mathematical problems associated with the response of elastic structures to random excitations such as occurs during buffeting and other transonic phenomena were discussed. The following subjects were covered: (1) general dynamic system consisting of the aircraft structure, the aerodynamic driving forces due to separated flow, and the aerodynamic forces due to aircraft structural motion, (2) structural and aerodynamic quantities of the dynamic system with special emphasis given to the description of the aerodynamic forces, and including a treatment of similarity laws, scaling effects, and wind tunnel testing, and (3) methods for data processing of fluctuating pressure recordings and techniques for response analysis for random excitation. A general buffeting flutter model, which takes into account the interactions between the separated and motion induced flows was presented. Relaxations of this model leading to the forced vibration model were explained.

  7. Dynamic Heterogeneity in Lipid Structures

    NASA Astrophysics Data System (ADS)

    Othon, Christina; Dadashvand, Neda

    2015-03-01

    We have characterized the temperature and pressure dependent scaling of dynamic heterogeneity in a homogenous liquid phase of a lipid monolayer using time-resolved fluorescence anisotropy (TRFA) microscopy. Rotational diffusion is far more sensitive to highly correlated motions than translational diffusion due to the enhanced influence of nearest neighbor interactions. Highly correlated motion results in regions of high-density, low mobility lipids, and low-density, high mobility lipids; and are observed as the bimodal distribution of rotational correlation times. For biological lipid membranes the presence of highly correlated motion will greatly influence the rates of protein sorting and self-assembly, as particles suspended in the fluid can become kinetically trapped. Rotational diffusion timescales (~ ns) are far shorter than the lifetime of dynamic clusters and lipid raft-like structures (~ 10 μs), and thus the distribution of rotational correlation times can provide critical insight into the presence of these structures. We have characterized rotational dynamic distributions for a variety of phosphocholine moieties, and found dynamics consistent with highly correlated motion. Using the proximity to the phase transition, and the scaling of the temperature dependence of the heterogeneity we apply theoretical models developed for other condensed matter systems help us define limits on the size and lifetime of dynamic clusters in lipid structures. corresponding author

  8. Solar interior structure and dynamics

    NASA Astrophysics Data System (ADS)

    Howe, Rachel

    2016-07-01

    Helioseismology allows us to probe the interior structure and dynamics of the Sun, and long-term observations allow us to follow their temporal variations. This review describes the important findings of recent years, covering the interior structure, the near-surface changes related to the solar cycle and possible deeper-seated variations, the interior rotation profile, and solar-cycle related changes in the zonal and meridional flows.

  9. Dynamical symmetries in contemporary nuclear structure applications

    NASA Astrophysics Data System (ADS)

    Georgieva, A. I.; Ivanov, M. I.; Drenska, S. L.; Sviratcheva, K. D.; Draayer, J. P.

    2010-12-01

    In terms of group theory—the language of symmetries, the concept of spontaneous symmetry breaking is represented in terms of chains of group-subgroup structures that define the dynamical symmetry of the system under consideration. This framework enables exact analytic solutions of the associated eigenvalue problems. We review two types of applications of dynamical symmetries in contemporary theoretical nuclear structure physics: first for a classification of the many-body systems under consideration, with respect to an important characteristic of their behavior; and second for the creation of exactly solvable algebraic models that describe specific aspects of this behavior. This is illustrated with the boson and fermion realizations of symplectic structures. In the first case with an application of the sp(4, R) classification scheme of even-even nuclei within the major nuclear shells and next with of the sp(4) microscopic model for the description of isovector pairing correlations.

  10. Study of structural and dynamic characteristics of copper(II) amino acid complexes in solutions by combined EPR and NMR relaxation methods.

    PubMed

    Bukharov, Mikhail S; Shtyrlin, Valery G; Mukhtarov, Anvar Sh; Mamin, Georgy V; Stapf, Siegfried; Mattea, Carlos; Krutikov, Alexander A; Il'in, Alexander N; Serov, Nikita Yu

    2014-05-28

    Structural features and dynamical behaviour of the copper(ii) bis-complexes with glycine, d-alanine, d-valine, l-serine, l-aspartic acid, l-glutamic acid, l-lysine, l-proline, and sarcosine were studied by combined EPR and NMR relaxation methods. The cis and trans isomers were unambiguously assigned and characterized by EPR data. It was found that addition of a salt background has an influence on the cis-trans isomer equilibrium in favour of the formation of the cis isomer. By comparison of NMRD, DFT computations, and structural data it was shown that only one water molecule is coordinated in the axial position of these complexes. The increased exchange rates of this molecule found for Cu(l-Asp)2(2-), Cu(l-Glu)2(2-), Cu(l-LysH)2(2+), and Cu(l-Pro)2 were attributed to its pushing out by side chain groups of the ligands. By simulation of NMRD profiles an increase of lifetimes of the copper(ii) 2nd coordination sphere water molecules was revealed in the presence of additional carboxylic, alcoholic, or ammonium groups of the ligands, as well as the pyrrolidine ring of proline. The very short lifetimes of the 2nd coordination sphere water molecules (4-13 ps at 298 K) were explained in terms of the Frank-Wen structural model by the existence of cavities which draw in quickly enough water molecules from the 2nd coordination sphere.

  11. Study of structural and dynamic characteristics of copper(II) amino acid complexes in solutions by combined EPR and NMR relaxation methods.

    PubMed

    Bukharov, Mikhail S; Shtyrlin, Valery G; Mukhtarov, Anvar Sh; Mamin, Georgy V; Stapf, Siegfried; Mattea, Carlos; Krutikov, Alexander A; Il'in, Alexander N; Serov, Nikita Yu

    2014-05-28

    Structural features and dynamical behaviour of the copper(ii) bis-complexes with glycine, d-alanine, d-valine, l-serine, l-aspartic acid, l-glutamic acid, l-lysine, l-proline, and sarcosine were studied by combined EPR and NMR relaxation methods. The cis and trans isomers were unambiguously assigned and characterized by EPR data. It was found that addition of a salt background has an influence on the cis-trans isomer equilibrium in favour of the formation of the cis isomer. By comparison of NMRD, DFT computations, and structural data it was shown that only one water molecule is coordinated in the axial position of these complexes. The increased exchange rates of this molecule found for Cu(l-Asp)2(2-), Cu(l-Glu)2(2-), Cu(l-LysH)2(2+), and Cu(l-Pro)2 were attributed to its pushing out by side chain groups of the ligands. By simulation of NMRD profiles an increase of lifetimes of the copper(ii) 2nd coordination sphere water molecules was revealed in the presence of additional carboxylic, alcoholic, or ammonium groups of the ligands, as well as the pyrrolidine ring of proline. The very short lifetimes of the 2nd coordination sphere water molecules (4-13 ps at 298 K) were explained in terms of the Frank-Wen structural model by the existence of cavities which draw in quickly enough water molecules from the 2nd coordination sphere. PMID:24722622

  12. Evolutionary dynamics on random structures

    SciTech Connect

    Fraser, S.M.; Reidys, C.M. |

    1997-04-01

    In this paper the authors consider the evolutionary dynamics of populations of sequences, under a process of selection at the phenotypic level of structures. They use a simple graph-theoretic representation of structures which captures well the properties of the mapping between RNA sequences and their molecular structure. Each sequence is assigned to a structure by means of a sequence-to-structure mapping. The authors make the basic assumption that every fitness landscape can be factorized through the structures. The set of all sequences that map into a particular random structure can then be modeled as a random graph in sequence space, the so-called neutral network. They analyze in detail how an evolving population searches for new structures, in particular how they switch from one neutral network to another. They verify that transitions occur directly between neutral networks, and study the effects of different population sizes and the influence of the relatedness of the structures on these transitions. In fitness landscapes where several structures exhibit high fitness, the authors then study evolutionary paths on the structural level taken by the population during its search. They present a new way of expressing structural similarities which are shown to have relevant implications for the time evolution of the population.

  13. Structural dynamics system model reduction

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Rose, T. L.; Wada, B. K.

    1987-01-01

    Loads analysis for structural dynamic systems is usually performed by finite element models. Because of the complexity of the structural system, the model contains large number of degree-of-freedom. The large model is necessary since details of the stress, loads and responses due to mission environments are computed. However, a simplified model is needed for other tasks such as pre-test analysis for modal testing, and control-structural interaction studies. A systematic method of model reduction for modal test analysis is presented. Perhaps it will be of some help in developing a simplified model for the control studies.

  14. Ultrafast structural dynamics in metals

    NASA Astrophysics Data System (ADS)

    Nie, Shouhua

    Direct observation and understanding of atomic-level structural dynamics are important frontiers in scientific research and applications. Femtosecond electron diffraction (FED), a technique that combines time-resolved pump-probe and electron diffraction concepts, holds a great promise to reveal the dynamical processes of ultrafast phenomena in biology, chemistry and solid-state physics at the atomic time and length scales. This thesis presents the development of a tabletop femtosecond electron diffractometer and its applications to study the ultrafast structural dynamics of thin metal films. Using a delicate instrument design and careful experimental configuration, sub-picosecond temporal and sub-milli-angstrom spatial resolutions are maintained simultaneously in the diffractometer. Using this diffractometer, we have studied the dynamics of coherent and random thermal lattice motions initiated by femtosecond laser pulses in ultrathin metal films, and particularly, the mechanism of coherent acoustic phonon generation. We also introduce a new approach to measure the electronic Gruneisen parameter in metals using FED at and above room temperature. Finally, we study the ultrafast demagnetization process in ferromagnetic transition metal Ni by monitoring the transient lattice dynamics with FED.

  15. Hydroelastic dynamic characteristics of a slender axis-symmetric body

    NASA Astrophysics Data System (ADS)

    Chen, Weimin; Li, Min; Zheng, Zhongqin; Zhang, Liwu

    2010-07-01

    The slender axis-symmetric submarine body moving in the vertical plane is the object of our investigation. A coupling model is developed where displacements of a solid body as a Euler beam (consisting of rigid motions and elastic deformations) and fluid pressures are employed as basic independent variables, including the interaction between hydrodynamic forces and structure dynamic forces. Firstly the hydrodynamic forces, depending on and conversely influencing body motions, are taken into account as the governing equations. The expressions of fluid pressure are derived based on the potential theory. The characteristics of fluid pressure, including its components, distribution and effect on structure dynamics, are analyzed. Then the coupling model is solved numerically by means of a finite element method (FEM). This avoids the complicacy, combining CFD (fluid) and FEM (structure), of direct numerical simulation, and allows the body with a non-strict ideal shape so as to be more suitable for practical engineering. An illustrative example is given in which the hydroelastic dynamic characteristics, natural frequencies and modes of a submarine body are analyzed and compared with experimental results. Satisfactory agreement is observed and the model presented in this paper is shown to be valid.

  16. Dynamically variable negative stiffness structures

    PubMed Central

    Churchill, Christopher B.; Shahan, David W.; Smith, Sloan P.; Keefe, Andrew C.; McKnight, Geoffrey P.

    2016-01-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness–based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  17. Dynamically variable negative stiffness structures.

    PubMed

    Churchill, Christopher B; Shahan, David W; Smith, Sloan P; Keefe, Andrew C; McKnight, Geoffrey P

    2016-02-01

    Variable stiffness structures that enable a wide range of efficient load-bearing and dexterous activity are ubiquitous in mammalian musculoskeletal systems but are rare in engineered systems because of their complexity, power, and cost. We present a new negative stiffness-based load-bearing structure with dynamically tunable stiffness. Negative stiffness, traditionally used to achieve novel response from passive structures, is a powerful tool to achieve dynamic stiffness changes when configured with an active component. Using relatively simple hardware and low-power, low-frequency actuation, we show an assembly capable of fast (<10 ms) and useful (>100×) dynamic stiffness control. This approach mitigates limitations of conventional tunable stiffness structures that exhibit either small (<30%) stiffness change, high friction, poor load/torque transmission at low stiffness, or high power active control at the frequencies of interest. We experimentally demonstrate actively tunable vibration isolation and stiffness tuning independent of supported loads, enhancing applications such as humanoid robotic limbs and lightweight adaptive vibration isolators. PMID:26989771

  18. [Structural dynamics and delinquent behavior].

    PubMed

    Kröber, H-L

    2004-10-01

    Using key concepts of Janzarik's structural-dynamic model, this article describes some of the potential uses of this model in a forensic setting. We will especially take into account that aspect of Janzarik's work from the start of his research in the 1950s through to the late 1990s which particularly addressed forensic questions. Using the example of dynamic Unstetigkeit and structural derailment, the aspect of 'mental content becoming autonomous' will be considered regarding Schuldunfahigkeit. Taking the example of autopraxis, successful and disturbed balance between impulsivity and self-control in personality disorder will be clarified and concerning the concept of self-corruption the self-induced corroboration of dissocial attitudes will be explained. The author considers the user-friendly work of Janzarik to be a fundamental instrument for answering questions in forensic psychiatry.

  19. Sierra Structural Dynamics User's Notes

    SciTech Connect

    Reese, Garth M.

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

  20. Evaluating the Dynamic Characteristics of Retrofitted RC Beams

    SciTech Connect

    Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang

    2008-07-08

    The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case.

  1. Evaluating the Dynamic Characteristics of Retrofitted RC Beams

    NASA Astrophysics Data System (ADS)

    Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang

    2008-07-01

    The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case.

  2. Surface structure determines dynamic wetting

    NASA Astrophysics Data System (ADS)

    Shiomi, Junichiro; Wang, Jiayu; Do-Quang, Minh; Cannon, James; Yue, Feng; Suzuki, Yuji; Amberg, Gustav

    2014-11-01

    Dynamic wetting, the spontaneous spreading process after droplet contacts a solid surface, is important in various engineering processes, such as in printing, coating, and lubrication. In the recent years, experiments and numerical simulations have greatly progressed the understanding in the dynamic wetting particularly on ``flat'' substrates. To gain further insight into the governing physics of the dynamic wetting, we perform droplet-wetting experiments on microstructured surfaces, just a few micrometers in size, with complementary numerical simulations, and investigate the dependence of the spreading rate on the microstructure geometries and fluid properties. We reveal that the influence of microstructures can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. The systematic study is also of practical importance since structures and roughness are omnipresent and their influence on spreading rate would give us additional degrees of freedom to control the dynamic wetting. This work was financially supported in part by, the Japan Society for the Promotion of Science (J.W., J.C., and J.S) and Swedish Governmental Agency for Innovation Systems (M.D.-Q. and G.A.).

  3. Aluminum Honeycomb Characteristics in Dynamic Crush Environments

    SciTech Connect

    Bateman, Vesta I.; Swanson, Lloyd H.

    1999-07-01

    Fifteen aluminum honeycomb cubes (3 in.) have been crushed in the Mechanical Shock Laboratory's drop table testing machines. This report summarizes shock experiments with honeycomb densities of 22.1 pcf and 38.0 pcf and with crush weights of 45 lb, 168 lb, and 268 lb. The honeycomb samples were crushed in all three orientations, W, L, and T. Most of the experiments were conducted at an impact velocity of {approx}40 fps, but higher velocities of up to 90 fps were used for selected experiments. Where possible, multiple experiments were conducted for a specific orientation and density of the honeycomb samples. All results are for Hexcel honeycomb except for one experiment with Alcore honeycomb and have been evaluated for validity. This report contains the raw acceleration data measured on the top of the drop table carriage, pictures of the crushed samples, and normalized force-displacement curves for all fifteen experiments. These data are not strictly valid for material characteristics in L and T orientations because the cross-sectional area of the honeycomb changed (split) during the crush. However, these are the best data available at this time. These dynamic crush data do suggest a significant increase in crush strength to 8000 psi ({approximately} 25-30% increase) over quasi-static values of {approximately}6000 psi for the 38.0 pcf Hexcel Honeycomb in the T-orientation. An uncertainty analysis is included and estimates the error in these data.

  4. Feature extraction for structural dynamics model validation

    SciTech Connect

    Hemez, Francois; Farrar, Charles; Park, Gyuhae; Nishio, Mayuko; Worden, Keith; Takeda, Nobuo

    2010-11-08

    This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.

  5. Sierra Structural Dynamics Theory Manual

    SciTech Connect

    Reese, Garth M.

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.

  6. Chromatin Structure in Telomere Dynamics

    PubMed Central

    Galati, Alessandra; Micheli, Emanuela; Cacchione, Stefano

    2013-01-01

    The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions. PMID:23471416

  7. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  8. Preliminary shuttle structural dynamics modeling design study

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design and development of a structural dynamics model of the space shuttle are discussed. The model provides for early study of structural dynamics problems, permits evaluation of the accuracy of the structural and hydroelastic analysis methods used on test vehicles, and provides for efficiently evaluating potential cost savings in structural dynamic testing techniques. The discussion is developed around the modes in which major input forces and responses occur and the significant structural details in these modes.

  9. Stability characteristics and structural properties of single- and double-walled boron-nitride nanotubes under physical adsorption of Flavin mononucleotide (FMN) in aqueous environment using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Ajori, S.; Ameri, A.

    2016-03-01

    The non-cytotoxic properties of Boron-nitride nanotubes (BNNTs) and the ability of stable interaction with biomolecules make them so promising for biological applications. In this research, molecular dynamics (MD) simulations are performed to investigate the structural properties and stability characteristics of single- and double-walled BNNTs under physical adsorption of Flavin mononucleotide (FMN) in vacuum and aqueous environments. According to the simulation results, gyration radius increases by rising the weight percentage of FMN. Also, the results demonstrate that critical buckling force of functionalized BNNTs increases in vacuum. Moreover, it is observed that by increasing the weight percentage of FMN, critical force of functionalized BNNTs rises. By contrast, critical strain reduces by functionalization of BNNTs in vacuum. Considering the aqueous environment, it is observed that gyration radius and critical buckling force of functionalized BNNTs increase more considerably than those of functionalized BNNTs in vacuum, whereas the critical strains approximately remain unchanged.

  10. Effects of rail dynamics and friction characteristics on curve squeal

    NASA Astrophysics Data System (ADS)

    Ding, B.; Squicciarini, G.; Thompson, D. J.

    2016-09-01

    Curve squeal in railway vehicles is an instability mechanism that arises in tight curves under certain running and environmental conditions. In developing a model the most important elements are the characterisation of friction coupled with an accurate representation of the structural dynamics of the wheel. However, the role played by the dynamics of the rail is not fully understood and it is unclear whether this should be included in a model or whether it can be safely neglected. This paper makes use of previously developed time domain and frequency domain curve squeal models to assess whether the presence of the rail and the falling characteristics of the friction force can modify the instability mechanisms and the final response. For this purpose, the time-domain model has been updated to include the rail dynamics in terms of its state space representation in various directions. Frequency domain and time domain analyses results show that falling friction is not the only reason for squeal and rail dynamics can play an important role, especially under constant friction conditions.

  11. Lewis Structures Technology, 1988. Volume 1: Structural Dynamics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the Structures Division of the Lewis Research Center and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive testing, dynamical systems, fatigue and damage, wind turbines, hot section technology, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics.

  12. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale

    2014-01-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  13. Research in Structures and Dynamics, 1984

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J. (Compiler); Noor, A. K. (Compiler)

    1984-01-01

    A symposium on advanced and trends in structures and dynamics was held to communicate new insights into physical behavior and to identify trends in the solution procedures for structures and dynamics problems. Pertinent areas of concern were (1) multiprocessors, parallel computation, and database management systems, (2) advances in finite element technology, (3) interactive computing and optimization, (4) mechanics of materials, (5) structural stability, (6) dynamic response of structures, and (7) advanced computer applications.

  14. Block structured dynamics and neuronal coding

    NASA Astrophysics Data System (ADS)

    González-Miranda, J. M.

    2005-11-01

    When certain control parameters of nervous cell models are varied, complex bifurcation structures develop in which the dynamical behaviors available appear classified in blocks, according to criteria of dynamical likelihood. This block structured dynamics may be a clue to understand how activated neurons encode information by firing spike trains of their action potentials.

  15. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1987-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig are presented.

  16. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1987-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig, are presented.

  17. Identification of structural interface characteristics using component mode synthesis

    NASA Technical Reports Server (NTRS)

    Huckelbridge, A. A.; Lawrence, C.

    1989-01-01

    The inability to adequately model connections has limited the ability to predict overall system dynamic response. Connections between structural components are often mechanically complex and difficult to accurately model analytically. Improved analytical models for connections are needed to improve system dynamic predictions. This study explores combining Component Mode synthesis methods for coupling structural components with Parameter Identification procedures for improving the analytical modeling of the connections. Improvements in the connection properties are computed in terms of physical parameters so the physical characteristics of the connections can be better understood, in addition to providing improved input for the system model. Two sample problems, one utilizing simulated data, the other using experimental data from a rotor dynamic test rig, are presented.

  18. Combustion fume structure and dynamics

    SciTech Connect

    Flagan, R.C.

    1992-08-01

    The focus of this research program is on elucidating the fundamental processes that determine the particle size distribution, composition, and agglomerate structures of coal ash fumes. The ultimate objective of this work is the development and validation of a model for the dynamics of combustion fumes, describing both the evolution of the particle size distribution and the particle morphology. The study employs model systems to address the fundamental questions and to provide rigorous validation of the models to be developed. This first phase of the project has been devoted to the development of a detailed experimental strategy that will allow agglomerates with a broad range of fractal dimensions to be studied in the laboratory. (VC)

  19. Surface structure determines dynamic wetting

    PubMed Central

    Wang, Jiayu; Do-Quang, Minh; Cannon, James J.; Yue, Feng; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-01-01

    Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure. PMID:25683872

  20. Structural Dynamics and Control Interaction of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S. (Editor); Scofield, Harold N. (Editor)

    1987-01-01

    A workshop on structural dynamics and control interaction of flexible structures was held to promote technical exchange between the structural dynamics and control disciplines, foster joint technology, and provide a forum for discussing and focusing critical issues in the separate and combined areas. Issues and areas of emphasis were identified in structure-control interaction for the next generation of flexible systems.

  1. Structure and Dynamics of Colliding Plasma Jets

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Ryutov, D. D.; Hu, S. X.; Rosenberg, M. J.; Zylstra, A. B.; Séguin, F. H.; Frenje, J. A.; Casey, D. T.; Gatu Johnson, M.; Manuel, M. J.-E.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Park, H. S.; Remington, B. A.; Wilks, S. C.; Betti, R.; Froula, D. H.; Knauer, J. P.; Meyerhofer, D. D.; Drake, R. P.; Kuranz, C. C.; Young, R.; Koenig, M.

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇Te×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number ReM˜5×104) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

  2. Structure and Dynamics of Colliding Plasma Jets

    SciTech Connect

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; Rinderknecht, H.; Petrasso, R.; Amendt, P.; Park, H.; Remington, B.; Wilks, S.; Betti, R.; Froula, D.; Knauer, J.; Meyerhofer, D.; Drake, R.; Kuranz, C.; Young, R.; Koenig, M.

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

  3. Structure and Dynamics of Colliding Plasma Jets

    DOE PAGES

    Li, C.; Ryutov, D.; Hu, S.; Rosenberg, M.; Zylstra, A.; Seguin, F.; Frenje, J.; Casey, D.; Gatu Johnson, M.; Manuel, M.; et al

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇Te ×∇ne Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number RM ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  4. Resolution of structural heterogeneity in dynamic crystallography

    PubMed Central

    Ren, Zhong; Chan, Peter W. Y.; Moffat, Keith; Pai, Emil F.; Royer, William E.; Šrajer, Vukica; Yang, Xiaojing

    2013-01-01

    Dynamic behavior of proteins is critical to their function. X-­ray crystallography, a powerful yet mostly static technique, faces inherent challenges in acquiring dynamic information despite decades of effort. Dynamicstructural changes’ are often indirectly inferred from ‘structural differences’ by comparing related static structures. In contrast, the direct observation of dynamic structural changes requires the initiation of a biochemical reaction or process in a crystal. Both the direct and the indirect approaches share a common challenge in analysis: how to interpret the structural heterogeneity intrinsic to all dynamic processes. This paper presents a real-space approach to this challenge, in which a suite of analytical methods and tools to identify and refine the mixed structural species present in multiple crystallographic data sets have been developed. These methods have been applied to representative scenarios in dynamic crystallography, and reveal structural information that is otherwise difficult to interpret or inaccessible using conventional methods. PMID:23695239

  5. Resolution of structural heterogeneity in dynamic crystallography.

    PubMed

    Ren, Zhong; Chan, Peter W Y; Moffat, Keith; Pai, Emil F; Royer, William E; Šrajer, Vukica; Yang, Xiaojing

    2013-06-01

    Dynamic behavior of proteins is critical to their function. X-ray crystallography, a powerful yet mostly static technique, faces inherent challenges in acquiring dynamic information despite decades of effort. Dynamic `structural changes' are often indirectly inferred from `structural differences' by comparing related static structures. In contrast, the direct observation of dynamic structural changes requires the initiation of a biochemical reaction or process in a crystal. Both the direct and the indirect approaches share a common challenge in analysis: how to interpret the structural heterogeneity intrinsic to all dynamic processes. This paper presents a real-space approach to this challenge, in which a suite of analytical methods and tools to identify and refine the mixed structural species present in multiple crystallographic data sets have been developed. These methods have been applied to representative scenarios in dynamic crystallography, and reveal structural information that is otherwise difficult to interpret or inaccessible using conventional methods.

  6. Effect of drive mechanisms on dynamic characteristics of spacecraft tracking-drive flexible systems

    NASA Astrophysics Data System (ADS)

    Zhu, Shi-yao; Lei, Yong-jun; Wu, Xin-feng; Zhang, Da-peng

    2015-05-01

    Spacecraft tracking-drive flexible systems (STFS) consist of drive mechanisms and flexible structures, including solar array and a variety of large-scale antennas. The electromechanical interaction inside drive mechanisms makes it quite complicated to directly analyze the dynamic characteristics of an STFS. In this paper, an indirect dynamic characteristic analysis method for operating-state STFS is presented. The proposed method utilizes the structure dynamics approximation of drive mechanisms that converts the electromechanical model of an STFS into a structure dynamic model with elastic boundary conditions. The structure dynamics approximation and the dynamic characteristic analysis method are validated by experimental and analytical results, respectively. The analysis results indicate that the gear transmission ratio and viscous friction coefficient are the primary factors in approximating boundary stiffness and damping. Dynamic characteristics of an STFS with a large gear transmission ratio are close to that of a flexible structure with a cantilever boundary. Otherwise, torsion-mode natural frequencies of the STFS become smaller and corresponding modal damping ratios become larger, as a result of the local stiffness and damping features of drive mechanisms.

  7. Morphological characteristics of motile plants for dynamic motion

    NASA Astrophysics Data System (ADS)

    Song, Kahye; Yeom, Eunseop; Kim, Kiwoong; Lee, Sang Joon

    2014-11-01

    Most plants have been considered as non-motile organisms. However, plants move in response to environmental changes for survival. In addition, some species drive dynamic motions in a short period of time. Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. It has specialized organs that are omnidirectionally activated due to morphological features. In addition, scales of pinecone open or close up depending on humidity for efficient seed release. A number of previous studies on the dynamic motion of plants have been investigated in a biochemical point of view. In this study, the morphological characteristics of those motile organs were investigated by using X-ray CT and micro-imaging techniques. The results show that the dynamic motions of motile plants are supported by structural features related with water transport. These studies would provide new insight for better understanding the moving mechanism of motile plant in morphological point of view. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Grant Number: 2008-0061991).

  8. Numerical investigation of bubble nonlinear dynamics characteristics

    SciTech Connect

    Shi, Jie Yang, Desen; Shi, Shengguo; Hu, Bo; Zhang, Haoyang; Jiang, Wei

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  9. Structural and mechanical characteristics of polymersomes.

    PubMed

    Chang, Hung-Yu; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2014-09-14

    Polymersomes self-assembled from amphiphilic macromolecules have attracted growing attention because of their multifunctionality and stability. By controlling the structural characteristics of polymersomes, including vesicle shape, size, and membrane thickness, their mechanical and transport properties as well as their fusion behavior can be manipulated. Numerous experimental techniques have been developed to explore polymersome characteristics; however, experimental microscopic observations and knowledge of vesicles are limited. Mesoscale simulations can complement experimental studies of the vesicular features at the microscopic level and thus provide a feasible method to better understand the relationship between the fundamental structures and physicochemical properties of polymersomes. Moreover, the predictive ability of the simulation approaches may greatly assist developments and future applications of polymersomes.

  10. Structural dynamics and ecology of flatfish populations

    NASA Astrophysics Data System (ADS)

    Bailey, Kevin M.

    1997-11-01

    The concept of structure in populations of marine fishes is fundamental to how we manage and conduct research on these resources. The degree of population structure ranges widely among flatfishes. Although we know that large populations tend to be subdivided into local populations, based on morphological, meristic and reproductive characteristics, these data often conflict with evidence on genetic stock structure, due to the scale and organization of movement within the metapopulation. Movement of individuals between local subpopulations and colonization events on a macroecological scale are probably important to some flatfish populations. Dispersal of larvae is known to be a major factor affecting population mixing. Some flatfishes have planktonic stages of long duration and for these species there is often, but not always, little population structure; gene flow sometimes may be limited by oceanographic features, such as eddies and fronts. At the juvenile stage dispersal can result in colonization of under-utilized habitats; however, for flatfishes with strong habitat requirements, this type of event may be less likely when suitable habitats are fragmented. Complex population structure has major implications for management, e.g. lumping harvested populations with little gene flow can have detrimental local effects. Moreover, the issue of population structure and movement influences the interpretation of research data, where populations are generally treated as closed systems. There is currently a strong need for a multidisciplinary approach to study fish population dynamics and the structure of their populations. This research should involve molecular geneticists, population geneticists, animal behaviourists and ecologists. Migration mechanisms, colonization and extinction events, gene flow and density-dependent movements are subject areas of great importance to managing large harvested populations, but our understanding of them at ecological scales, at least for

  11. Modeling the dynamic characteristics of pneumatic muscle.

    PubMed

    Reynolds, D B; Repperger, D W; Phillips, C A; Bandry, G

    2003-03-01

    A pneumatic muscle (PM) system was studied to determine whether a three-element model could describe its dynamics. As far as the authors are aware, this model has not been used to describe the dynamics of PM. A new phenomenological model consists of a contractile (force-generating) element, spring element, and damping element in parallel. The PM system was investigated using an apparatus that allowed precise and accurate actuation pressure (P) control by a linear servo-valve. Length change of the PM was measured by a linear potentiometer. Spring and damping element functions of P were determined by a static perturbation method at several constant P values. These results indicate that at constant P, PM behaves as a spring and damper in parallel. The contractile element function of P was determined by the response to a step input in P, using values of spring and damping elements from the perturbation study. The study showed that the resulting coefficient functions of the three-element model describe the dynamic response to the step input of P accurately, indicating that the static perturbation results can be applied to the dynamic case. This model is further validated by accurately predicting the contraction response to a triangular P waveform. All three elements have pressure-dependent coefficients for pressure P in the range 207 < or = P < or = 621 kPa (30 < or = P < or = 90 psi). Studies with a step decrease in P (relaxation of the PM) indicate that the damping element coefficient is smaller during relaxation than contraction.

  12. CHARACTERISTIC STRUCTURE OF STAR-FORMING CLOUDS

    SciTech Connect

    Myers, Philip C.

    2015-06-20

    This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.

  13. Characteristic Structure of Star-forming Clouds

    NASA Astrophysics Data System (ADS)

    Myers, Philip C.

    2015-06-01

    This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.

  14. Structural dynamics branch research and accomplishments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.

  15. Dynamic characteristics of observed sudden warmings

    NASA Technical Reports Server (NTRS)

    Dartt, D. G.; Venne, D. E.

    1986-01-01

    The planetary wave dynamics of stratospheric sudden warmings in the Northern Hemisphere for a large number of observed events that occurred during winters from 1970 to 1975 and 1978 to 1981 are investigated. The analysis describes wave propagation and zonal flow interaction from the troposphere upwards to near 50 km, and in some years to near 80 km. Three primary topics are covered here: (1) the interaction of zonally propagating and quasi-stationary planetary waves during warming events; (2) planetary wave influence on zonal flow near the stratopause; and (3) planetary wave propagation to near 80 km as seen from Stratospheric and Mesospheric Sounder (SAMS) data.

  16. GPS in pioneering dynamic monitoring of long-period structures

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.

    2002-01-01

    Global Positioning System (GPS) technology with 10-20-Hz sampling rates allows scientifically justified dynamic measurements of relative displacements of long-period structures. The displacement response of a simulated tall building in real time and permanent deployment of GPS units at the roof of a building are described. To the authors' best knowledge, this is the first permanent deployment of GPS units (in the world) for continuous dynamic monitoring of a tall building. Data recorded from the building during a windy day is analyzed to determine the structural characteristics. When recorded during extreme motions caused by earthquakes and strong winds, such measurements can be used to compute average drift ratios and changes in dynamic characteristics, and therefore can be used by engineers and building owners or managers to assess the structural integrity and performance by establishing pre-established thresholds. Such information can be used to secure public safety and/or take steps to improve the performance of the building.

  17. Dielectric relaxation of polymers: segmental dynamics under structural constraints.

    PubMed

    Alegria, Angel; Colmenero, Juan

    2016-10-01

    In this article we review the recent polymer literature where dielectric spectroscopy has been used to investigate the segmental dynamics of polymers under the constraints produced by self-structuring. Specifically, we consider three cases: (i) semicrystalline polymers, (ii) segregated block-copolymers, and (iii) asymmetric miscible polymer blends. In these three situations the characteristics of the dielectric relaxation associated with the polymer segmental dynamics are markedly affected by the constraints imposed by the corresponding structural features. After reviewing in detail each of the polymer systems, the most common aspects are discussed in the context of the use of dielectric relaxation as a sensitive tool for analyzing structural features in nanostructured polymer systems.

  18. Band Structure Characteristics of Nacreous Composite Materials with Various Defects

    NASA Astrophysics Data System (ADS)

    Yin, J.; Zhang, S.; Zhang, H. W.; Chen, B. S.

    2016-06-01

    Nacreous composite materials have excellent mechanical properties, such as high strength, high toughness, and wide phononic band gap. In order to research band structure characteristics of nacreous composite materials with various defects, supercell models with the Brick-and-Mortar microstructure are considered. An efficient multi-level substructure algorithm is employed to discuss the band structure. Furthermore, two common systems with point and line defects and varied material parameters are discussed. In addition, band structures concerning straight and deflected crack defects are calculated by changing the shear modulus of the mortar. Finally, the sensitivity of band structures to the random material distribution is presented by considering different volume ratios of the brick. The results reveal that the first band gap of a nacreous composite material is insensitive to defects under certain conditions. It will be of great value to the design and synthesis of new nacreous composite materials for better dynamic properties.

  19. Research in structures, structural dynamics and materials, 1989

    NASA Technical Reports Server (NTRS)

    Hunter, William F. (Compiler); Noor, Ahmed K. (Compiler)

    1989-01-01

    Topics addressed include: composite plates; buckling predictions; missile launch tube modeling; structural/control systems design; optimization of nonlinear R/C frames; error analysis for semi-analytic displacement; crack acoustic emission; and structural dynamics.

  20. Simultaneous dynamic electrical and structural measurements of functional materials

    NASA Astrophysics Data System (ADS)

    Vecchini, C.; Thompson, P.; Stewart, M.; Muñiz-Piniella, A.; McMitchell, S. R. C.; Wooldridge, J.; Lepadatu, S.; Bouchenoire, L.; Brown, S.; Wermeille, D.; Bikondoa, O.; Lucas, C. A.; Hase, T. P. A.; Lesourd, M.; Dontsov, D.; Cain, M. G.

    2015-10-01

    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

  1. Simultaneous dynamic electrical and structural measurements of functional materials

    SciTech Connect

    Vecchini, C.; Stewart, M.; Muñiz-Piniella, A.; Wooldridge, J.; Thompson, P.; McMitchell, S. R. C.; Bouchenoire, L.; Brown, S.; Wermeille, D.; Lucas, C. A.; Lepadatu, S.; Bikondoa, O.; Hase, T. P. A.; Lesourd, M.; Dontsov, D.; Cain, M. G.

    2015-10-15

    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

  2. Dynamic characteristics and seismic stability of expanded polystyrene geofoam embankments

    NASA Astrophysics Data System (ADS)

    Amini, Zahra A.

    Expanded Polystyrene (EPS) geofoam has become a preferred material in various construction applications due to its light weight. Application of EPS accelerates the projects particularly on soft soils. The focus of this research is on the application of the EPS in embankments and its behavior mainly under harmonic vibration. The goal of this study was to investigate dynamic characteristics of freestanding vertical EPS geofoam embankment and address potential seismic issues that result from the distinguished dynamic behavior of such systems due to the layered and discrete block structure. A series of experimental studies on EPS 19 and a commercially available adhesive was conducted. Two-dimensional numerical analyses were performed to replicate the response of EPS geofoam embankment to horizontal and vertical harmonic motions. The results of the analyses have shown that for some acceleration amplitude levels interlayer sliding is expected to occur in EPS geofoam embankments almost immediately after the start of the base excitation; however, as a highly efficient energy dissipation mechanism sliding ceases rapidly. Shear keys and adhesive may be used to prevent interlayer sliding if they cover the proper extent of area of the embankment. EPS blocks placed in the corners of the embankment and at the edges of the segment prohibited from sliding may experience high stress concentrations. The embankment may show horizontal sway and rocking once sliding is prevented.

  3. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  4. Dynamical characteristics of Phobos and Deimos.

    NASA Technical Reports Server (NTRS)

    Burns, J. A.

    1972-01-01

    The orbital properties of the two small Martian satellites, Phobos and Deimos, are discussed, as well as those dynamical constants of Mars that can be determined from the satellite orbits. The secular acceleration of the mean motion of Phobos is shown to be very small. Of mechanisms that could cause any such acceleration, only tidal friction appears to be important. From the orbital evolution of the Martian satellites under tidal forces, Phobos and Deimos seem to have originated in nearly circular orbits of low inclination fairly close to the distance at which a satellite's orbital period is the planet's rotation period. It is proposed that the Martian satellites were born at the same time as Mars from equatorial dust clouds. The satellites are predicted to be locked in synchronous rotation, with their axes of minimum moment of inertia pointing on the average toward Mars, whereas their maximum axes are approximately normal to their orbit planes.

  5. Dynamic characteristics of tweeting and tweet topics

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun Woong; Choi, M. Y.; Kim, Ho Sung; Lee, Keumsook

    2012-02-01

    Twitter, having more than 200 million world users and more than 4 million Korean users, is still growing fast. Because Twitter users can `tweet' about any topic within the 140-character limit, and other users who follow the users and see the tweets can `retweet' them, Twitter is regarded as a new medium of transferring and sharing information. Nevertheless, the propensities of Twitter users to tweet or to retweet still remain unclear. In order to investigate these propensities, we propose a simple model for the dynamics of the total number of tweets about specific topics. We then observe that the topics can be categorized into three kinds according to predictability and sustainability: predictable events, unpredictable events, and sustainable events. Comparing model results with real data, we infer the tweet propensities motivated by external causes as well as retweet propensities.

  6. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2015-05-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  7. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  8. Predicting protein dynamics from structural ensembles

    NASA Astrophysics Data System (ADS)

    Copperman, J.; Guenza, M. G.

    2015-12-01

    The biological properties of proteins are uniquely determined by their structure and dynamics. A protein in solution populates a structural ensemble of metastable configurations around the global fold. From overall rotation to local fluctuations, the dynamics of proteins can cover several orders of magnitude in time scales. We propose a simulation-free coarse-grained approach which utilizes knowledge of the important metastable folded states of the protein to predict the protein dynamics. This approach is based upon the Langevin Equation for Protein Dynamics (LE4PD), a Langevin formalism in the coordinates of the protein backbone. The linear modes of this Langevin formalism organize the fluctuations of the protein, so that more extended dynamical cooperativity relates to increasing energy barriers to mode diffusion. The accuracy of the LE4PD is verified by analyzing the predicted dynamics across a set of seven different proteins for which both relaxation data and NMR solution structures are available. Using experimental NMR conformers as the input structural ensembles, LE4PD predicts quantitatively accurate results, with correlation coefficient ρ = 0.93 to NMR backbone relaxation measurements for the seven proteins. The NMR solution structure derived ensemble and predicted dynamical relaxation is compared with molecular dynamics simulation-derived structural ensembles and LE4PD predictions and is consistent in the time scale of the simulations. The use of the experimental NMR conformers frees the approach from computationally demanding simulations.

  9. The contract murderer: patterns, characteristics, and dynamics.

    PubMed

    Schlesinger, L B

    2001-09-01

    A case of an independent professional contract murderer, who killed over 100 people, is reported. After eluding law enforcement for 30 years, the subject killed several associates who he believed could implicate him in various crimes. These homicides eventually led to his arrest, since the victims were individuals who could be linked to him. This hit man had a background of poverty and childhood abuse but, as an adult, had pursued a middle-class lifestyle and kept his family totally separate from his criminal career. In addition, he had a number of characteristics that helped him carry out his crimes in a highly planned, methodical, and organized manner: he had adept social judgment; personality traits of orderliness, control, and paranoid vigilance; useful defense mechanisms of rationalization and reframing; and an exceptional ability to encapsulate emotions. This case is discussed within the context of contract murder, a crime that occurs relatively frequently and is probably increasing; yet it often goes undetected, the arrest rate is low, and the offender is rarely studied.

  10. Lumped mass modelling for the dynamic analysis of aircraft structures

    NASA Technical Reports Server (NTRS)

    Abu-Saba, Elias G.; Shen, Ji Yao; Mcginley, William M.; Montgomery, Raymond C.

    1992-01-01

    Aircraft structures may be modelled by lumping the masses at particular strategic points and the flexibility or stiffness of the structure is obtained with reference to these points. Equivalent moments of inertia for the section at these positions are determined. The lumped masses are calculated based on the assumption that each point will represent the mass spread on one half of the space on each side. Then these parameters are used in the differential equation of motion and the eigen characteristics are determined. A comparison is made with results obtained by other established methods. The lumped mass approach in the dynamic analysis of complicated structures provides an easier means of predicting the dynamic characteristics of these structures. It involves less computer time and avoids computational errors that are inherent in the numerical solution of complicated systems.

  11. Dynamics and control characteristics of a reference Space Station configuration

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Cooper, Paul A.; Young, John W.

    1988-01-01

    This paper describes the structural dynamic characteristics of a NASA reference space station configuration as defined in the November 1987 Space Station Program - Systems Engineering and Integration Engineering Data Book. The modes and frequencies of the station below 2.0 Hz were obtained and selected results along with rigid body properties are presented. A three-axis attitude control system using control moment gyros responding to attitude and attitude rate signals is used to regulate the orientation of the station. The stability of the control system with non-collocated sensors is investigated for both compensated and uncompensated control signals. Results from a closed-loop simulation of a commanded attitude change about three axes, and from a closed-loop simulation of the response of the station to an externally applied unit force impulse at the docking port are presented. These simulation results are used to evaluate the possible degree of control/structures interaction which could occur during normal operation of the station.

  12. Structural dynamic and aeroelastic considerations for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.

    1991-01-01

    The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.

  13. Global asymptotic stability of dynamic dissipative compensators for multibody flexible space structures

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M.; Alberts, Thomas E.

    1993-01-01

    The stability characteristics of dynamic dissipative compensators are investigated for multibody flexible space structures having nonlinear dynamics. The problem addressed is that of proving asymptotic stability of dynamic dissipative compensators. The stability proof uses the Liapunov approach and exploits the inherent passivity of such systems. For such systems these compensators are shown to be robust to parametric uncertainties and unmodeled dynamics. The results are applicable to a large class of structures such as flexible space structures with articulated flexible appendages.

  14. Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde

    2016-08-01

    In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.

  15. SSME structural dynamic model development

    NASA Technical Reports Server (NTRS)

    Foley, M. J.; Tilley, D. M.; Welch, C. T.

    1983-01-01

    A mathematical model of the Space Shuttle Main Engine (SSME) as a complete assembly, with detailed emphasis on LOX and High Fuel Turbopumps is developed. The advantages of both complete engine dynamics, and high fidelity modeling are incorporated. Development of this model, some results, and projected applications are discussed.

  16. Visualizing structural dynamics of thylakoid membranes

    PubMed Central

    Iwai, Masakazu; Yokono, Makio; Nakano, Akihiko

    2014-01-01

    To optimize photosynthesis, light-harvesting antenna proteins regulate light energy dissipation and redistribution in chloroplast thylakoid membranes, which involve dynamic protein reorganization of photosystems I and II. However, direct evidence for such protein reorganization has not been visualized in live cells. Here we demonstrate structural dynamics of thylakoid membranes by live cell imaging in combination with deconvolution. We observed chlorophyll fluorescence in the antibiotics-induced macrochloroplast in the moss Physcomitrella patens. The three-dimensional reconstruction uncovered the fine thylakoid membrane structure in live cells. The time-lapse imaging shows that the entire thylakoid membrane network is structurally stable, but the individual thylakoid membrane structure is flexible in vivo. Our observation indicates that grana serve as a framework to maintain structural integrity of the entire thylakoid membrane network. Both the structural stability and flexibility of thylakoid membranes would be essential for dynamic protein reorganization under fluctuating light environments. PMID:24442007

  17. Visualizing structural dynamics of thylakoid membranes.

    PubMed

    Iwai, Masakazu; Yokono, Makio; Nakano, Akihiko

    2014-01-20

    To optimize photosynthesis, light-harvesting antenna proteins regulate light energy dissipation and redistribution in chloroplast thylakoid membranes, which involve dynamic protein reorganization of photosystems I and II. However, direct evidence for such protein reorganization has not been visualized in live cells. Here we demonstrate structural dynamics of thylakoid membranes by live cell imaging in combination with deconvolution. We observed chlorophyll fluorescence in the antibiotics-induced macrochloroplast in the moss Physcomitrella patens. The three-dimensional reconstruction uncovered the fine thylakoid membrane structure in live cells. The time-lapse imaging shows that the entire thylakoid membrane network is structurally stable, but the individual thylakoid membrane structure is flexible in vivo. Our observation indicates that grana serve as a framework to maintain structural integrity of the entire thylakoid membrane network. Both the structural stability and flexibility of thylakoid membranes would be essential for dynamic protein reorganization under fluctuating light environments.

  18. Structural Dynamic Behavior of Wind Turbines

    NASA Technical Reports Server (NTRS)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  19. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  20. From structure to function, via dynamics

    NASA Astrophysics Data System (ADS)

    Stetter, O.; Soriano, J.; Geisel, T.; Battaglia, D.

    2013-01-01

    Neurons in the brain are wired into a synaptic network that spans multiple scales, from local circuits within cortical columns to fiber tracts interconnecting distant areas. However, brain function require the dynamic control of inter-circuit interactions on time-scales faster than synaptic changes. In particular, strength and direction of causal influences between neural populations (described by the so-called directed functional connectivity) must be reconfigurable even when the underlying structural connectivity is fixed. Such directed functional influences can be quantified resorting to causal analysis of time-series based on tools like Granger Causality or Transfer Entropy. The ability to quickly reorganize inter-areal interactions is a chief requirement for performance in a changing natural environment. But how can manifold functional networks stem "on demand" from an essentially fixed structure? We explore the hypothesis that the self-organization of neuronal synchronous activity underlies the control of brain functional connectivity. Based on simulated and real recordings of critical neuronal cultures in vitro, as well as on mean-field and spiking network models of interacting brain areas, we have found that "function follows dynamics", rather than structure. Different dynamic states of a same structural network, characterized by different synchronization properties, are indeed associated to different functional digraphs (functional multiplicity). We also highlight the crucial role of dynamics in establishing a structure-to-function link, by showing that whenever different structural topologies lead to similar dynamical states, than the associated functional connectivities are also very similar (structural degeneracy).

  1. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A.; Rossow, M. P.

    1985-01-01

    The mass and stiffness distributions for helicopter rotor blades are tailored in such a way to give a predetermined placement of blade natural frequencies. The optimal design is pursued with respect of minimum weight, sufficient inertia, and reasonable dynamic characteristics. Finite element techniques are used as a tool. Rotor types include hingeless, articulated, and teetering.

  2. Dynamic characteristics of peripheral jet ACV. II - Pitching motion

    NASA Astrophysics Data System (ADS)

    Mori, T.; Maeda, H.

    The dynamic pitching characteristics of peripheral jet ACV (Air Cushion Vehicle) which have a stability curtain are investigated analytically and experimentally. The measured values of moment, lift and cushion pressure are compared with numerical results noting applicability to the pitching motion. The response of ACV to the sinusoidal pitching oscillation of the ground is also studied.

  3. Evolutionary dynamics of taxonomic structure

    PubMed Central

    Foote, Michael

    2012-01-01

    The distribution of species among genera and higher taxa has largely untapped potential to reveal among-clade variation in rates of origination and extinction. The probability distribution of the number of species within a genus is modelled with a stochastic, time-homogeneous birth–death model having two parameters: the rate of species extinction, μ, and the rate of genus origination, γ, each scaled as a multiple of the rate of within-genus speciation, λ. The distribution is more sensitive to γ than to μ, although μ affects the size of the largest genera. The species : genus ratio depends strongly on both γ and μ, and so is not a good diagnostic of evolutionary dynamics. The proportion of monotypic genera, however, depends mainly on γ, and so may provide an index of the genus origination rate. Application to living marine molluscs of New Zealand shows that bivalves have a higher relative rate of genus origination than gastropods. This is supported by the analysis of palaeontological data. This concordance suggests that analysis of living taxonomic distributions may allow inference of macroevolutionary dynamics even without a fossil record. PMID:21865239

  4. Structure and Dynamics of Polymer nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Xu, Di; Rafailovich, Miriam; Gersappe, Dilip

    2013-03-01

    Polymer hydrogels are widely used in fields like food science, tissue engineering and drug delivery. A lot of research has focused on developing hydrogels with novel properties. However, a lack of understanding of the dynamics and structure of the hydrogel has become a big obstacle. We use molecular dynamic simulations, which provide a direct observation of gel formation and gel structures, to study the local structural and dynamic properties of hydrogels. Our work focuses on using coarse-graining molecule dynamic simulations to study physically linked polymer nano-composite hydrogels. Our goal is to study how the aspect ratio and shape of the nanofiller introduced to the hydrogel can lead to different mechanical behavior. Our simulation looks at the effects of polymer species, chain length, and water content and the effect on the mechanical properties of the hydrogel.

  5. Dynamic Structure of Plasma Fibronectin

    PubMed Central

    Maurer, Lisa M.; Ma, Wenjiang; Mosher, Deane F.

    2016-01-01

    Fibronectin is a large vertebrate glycoprotein that is found in soluble and insoluble forms and involved in diverse processes. Protomeric fibronectin is a dimer of subunits, each of which comprises 29 to 31 modules—12 type I, two type II, and 15-17 type III. Plasma fibronectin is secreted by hepatocytes and circulates in a compact conformation before it binds to cell surfaces, converts to an extended conformation, and is assembled into fibronectin fibrils. Here we review biophysical and structural studies that have shed light on how plasma fibronectin transitions from the compact to the extended conformation. The three types of modules each have a well-organized secondary and tertiary structure as defined by NMR and crystallography and have been likened to “beads on a string”. There are flexible sequences in the N-terminal tail, between the fifth and sixth type I modules, between the first two and last two of the type III modules, and at the C-terminus. Several specific module-module interactions have been identified that likely maintain the compact quaternary structure of circulating fibronectin. The quaternary structure is perturbed in response to binding events, including binding of fibronectin to the surface of vertebrate cells for fibril assembly and to bacterial adhesins. PMID:27185500

  6. SSME structural dynamic model development

    NASA Technical Reports Server (NTRS)

    Foley, Michael J.

    1989-01-01

    The high pressure fuel turbopump (HPFTP) is a major component of the Space Shuttle Main Engine (SSME) powerhead. The device is a three stage centrifugal pump that is directly driven by a two stage hot gas turbine. The purpose of the pump is to deliver fuel (liquid hydrogen) from the low pressure fuel turbopump (LPFTP) through the main fuel valve (MFV) to the thrust chamber coolant circuits. In doing so, the pump pressurizes the fuel from an inlet pressure of approximately 178 psi to a discharge pressure of over 6000 psi. At full power level (FPL), the pump rotates at a speed of over 37,000 rpm while generating approximately 77,000 horsepower. Obviously, a pump failure at these speeds and power levels could jeopardize the mission. Results are summarized for work in which the solutions obtained from analytical models of the fuel turbopump impellers are compared with the results obtained from dynamic tests.

  7. A review of dynamic characteristics of magnetically levitated vehicle systems

    SciTech Connect

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  8. The Structure and Dynamics of GRB Jets

    SciTech Connect

    Granot, Jonathan; /KIPAC, Menlo Park

    2006-10-25

    There are several lines of evidence which suggest that the relativistic outflows in gamma-ray bursts (GRBs) are collimated into narrow jets. The jet structure has important implications for the true energy release and the event rate of GRBs, and can constrain the mechanism responsible for the acceleration and collimation of the jet. Nevertheless, the jet structure and its dynamics as it sweeps up the external medium and decelerates, are not well understood. In this review I discuss our current understanding of GRB jets, stressing their structure and dynamics.

  9. On Dynamics of Spinning Structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Ibrahim, A.

    2012-01-01

    This paper provides details of developments pertaining to vibration analysis of gyroscopic systems, that involves a finite element structural discretization followed by the solution of the resulting matrix eigenvalue problem by a progressive, accelerated simultaneous iteration technique. Thus Coriolis, centrifugal and geometrical stiffness matrices are derived for shell and line elements, followed by the eigensolution details as well as solution of representative problems that demonstrates the efficacy of the currently developed numerical procedures and tools.

  10. Structural dynamics payload loads estimates

    NASA Technical Reports Server (NTRS)

    Engels, R. C.

    1982-01-01

    Methods for the prediction of loads on large space structures are discussed. Existing approaches to the problem of loads calculation are surveyed. A full scale version of an alternate numerical integration technique to solve the response part of a load cycle is presented, and a set of short cut versions of the algorithm developed. The implementation of these techniques using the software package developed is discussed.

  11. GPS in dynamic monitoring of long-period structures

    USGS Publications Warehouse

    Celebi, M.

    2000-01-01

    Global Positioning System (GPS) technology with high sampling rates (??? 10 samples per second) allows scientifically justified and economically feasible dynamic measurements of relative displacements of long-period structures-otherwise difficult to measure directly by other means, such as the most commonly used accelerometers that require post-processing including double integration. We describe an experiment whereby the displacement responses of a simulated tall building are measured clearly and accurately in real-time. Such measurements can be used to assess average drift ratios and changes in dynamic characteristics, and therefore can be used by engineers and building owners or managers to assess the building performance during extreme motions caused by earthquakes and strong winds. By establishing threshold displacements or drift ratios and identifying changing dynamic characteristics, procedures can be developed to use such information to secure public safety and/or take steps to improve the performance of the building. Published by Elsevier Science Ltd.

  12. [Age structure and growth characteristic of Castanopsis fargesii population].

    PubMed

    Song, Kun; Da, Liang-jun; Yang, Tong-hui; Yang, Xu-feng

    2007-02-01

    In this paper, the age structure and growth characteristics of Castanopsis fargesii population in a shade-tolerant broadleaved evergreen forest were studied, aimed to understand more about the regeneration patterns and dynamics of this population. The results showed that the age structure of C. fargesii population was of sporadic type, with two death peaks of a 30-year gap. This population had a good plasticity in growth to light condition. Because there were no significant differences in light condition under the canopy in vertical, the saplings came into their first suppression period when they were 5-8 years old, with a height growth rate less than 0. 1 m x a(-1) lasting for 10 years. The beginning time of the first growth suppression period was by the end of the first death peak of the population, and the ending time of the first growth suppression period was at the beginning of the second death peak of the population, demonstrating that growth characteristic was the key factor affecting the age structure of C. fargesii.

  13. Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors

    PubMed Central

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações—Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior. PMID:22778661

  14. Dynamic Characteristics of Penor Peat Using MASW Method

    NASA Astrophysics Data System (ADS)

    Zainorabidin, A.; Said, M. J. M.

    2016-07-01

    The dynamic behaviour of soil affected the mechanical properties of soil such as shear wave velocity, shear modulus, damping ratio and poisson's ratio [1] which is becoming important aspect need to be considered for structures influences by dynamic movement. This study is to determine the dynamic behaviour of Penor peat such as shear wave velocity using MASW and estimation its shear modulus. Peat soils are very problematic soils since it's have high compressibility, low shear strength, high moisture content and low bearing capacity which is very not suitable materials to construct any foundation structures. Shear wave velocity ranges between 32.94 - 95.89 m/s and shear modulus are ranging between 0.93 - 8.01 MPa. The differences of both dynamic properties are due to the changes of peat density and affected by the fibre content, organic content, degree of degradation and moisture content.

  15. Program of Research in Structures and Dynamics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Structures and Dynamics Program was first initiated in 1972 with the following two major objectives: to provide a basic understanding and working knowledge of some key areas pertinent to structures, solid mechanics, and dynamics technology including computer aided design; and to provide a comprehensive educational and research program at the NASA Langley Research Center leading to advanced degrees in the structures and dynamics areas. During the operation of the program the research work was done in support of the activities of both the Structures and Dynamics Division and the Loads and Aeroelasticity Division. During the period of 1972 to 1986 the Program provided support for two full-time faculty members, one part-time faculty member, three postdoctoral fellows, one research engineer, eight programmers, and 28 graduate research assistants. The faculty and staff of the program have published 144 papers and reports, and made 70 presentations at national and international meetings, describing their research findings. In addition, they organized and helped in the organization of 10 workshops and national symposia in the structures and dynamics areas. The graduate research assistants and the students enrolled in the program have written 20 masters theses and 2 doctoral dissertations. The overall progress is summarized.

  16. [Oligoglycine surface structures: molecular dynamics simulation].

    PubMed

    Gus'kova, O A; Khalatur, P G; Khokhlov, A R; Chinarev, A A; Tsygankova, S V; Bovin, N V

    2010-01-01

    The full-atomic molecular dynamics (MD) simulation of adsorption mode for diantennary oligoglycines [H-Gly4-NH(CH2)5]2 onto graphite and mica surface is described. The resulting structure of adsorption layers is analyzed. The peptide second structure motives have been studied by both STRIDE (structural identification) and DSSP (dictionary of secondary structure of proteins) methods. The obtained results confirm the possibility of polyglycine II (PGII) structure formation in diantennary oligoglycine (DAOG) monolayers deposited onto graphite surface, which was earlier estimated based on atomic-force microscopy measurements.

  17. Structural dynamics of liganded myoglobin

    SciTech Connect

    Frauenfelder, H.; Petsko, G.A.

    1980-10-01

    X-ray crystallography can reveal the magnitudes and principal directions of the mean-square displacements of every atom in a protein. This structural information is complementary to the temporal information obtainable by spectroscopic techniques such as nuclear magnetic resonance. Determination of the temperature dependence of the mean-square displacements makes it possible to separate large conformational motions from simple thermal vibrations. The contribution of crystal lattice disorder to the overall apparent displacement can be estimated by Moessbauer spectroscopy. This technique has been applied to high resolution x-ray diffraction data from sperm whale myoglobin in its Met iron and oxy cobalt forms. Both crystal structures display regions of large conformational motions, particularly at the chain termini and in the region of the proximal histidine. Overall, the mean-square displacement increases with increasing distance from the center of gravity of the molecule. Some regions of the heme pocket in oxy cobalt myoglobin are more rigid than the corresponding regions in Met myoglobin.

  18. Submesoscale dynamics and planktonic community structure

    NASA Astrophysics Data System (ADS)

    Franks, P. J.; Taniguchi, D. A.

    2012-12-01

    The vertical velocities associated with submesoscale dynamics occur on time scales that are resonant with planktonic growth and grazing rates. This resonance may cause submesoscale dynamics to be disproportionately important to planktonic productivity and carbon sequestration. To investigate the role of submesoscale motions on planktonic community structure, we used a continuum size-structured planktonic ecosystem model. The model is based on a traditional NPZ framework, but allows for size dependence of all biological processes. The model was carefully parameterized with data from the literature, and reproduces realistic planktonic size spectra. Perturbing the model with a nutrient pulse similar to that driven by submesoscale upwelling leads to significant perturbations to the ecosystem. Pulses of enhanced biomass propagate from small to large organisms over time scales of days to weeks. We explore the model stability and dynamics, and their dependence on the parameter values, to gain understanding of the potential for submesoscale physical motions to influence planktonic ecosystem dynamics.

  19. Dynamics of adaptive structures: Design through simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alexander, S.

    1993-01-01

    The use of a helical bi-morph actuator/sensor concept by mimicking the change of helical waveform in bacterial flagella is perhaps the first application of bacterial motions (living species) to longitudinal deployment of space structures. However, no dynamical considerations were analyzed to explain the waveform change mechanisms. The objective is to review various deployment concepts from the dynamics point of view and introduce the dynamical considerations from the outset as part of design considerations. Specifically, the impact of the incorporation of the combined static mechanisms and dynamic design considerations on the deployment performance during the reconfiguration stage is studied in terms of improved controllability, maneuvering duration, and joint singularity index. It is shown that intermediate configurations during articulations play an important role for improved joint mechanisms design and overall structural deployability.

  20. Dynamic Calibration and Verification Device of Measurement System for Dynamic Characteristic Coefficients of Sliding Bearing.

    PubMed

    Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang

    2016-01-01

    The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz-100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz-30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283

  1. Dynamic Calibration and Verification Device of Measurement System for Dynamic Characteristic Coefficients of Sliding Bearing

    PubMed Central

    Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang

    2016-01-01

    The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283

  2. Origin and Structure of Dynamic Cooperative Networks

    NASA Astrophysics Data System (ADS)

    Wardil, Lucas; Hauert, Christoph

    2014-07-01

    Societies are built on social interactions among individuals. Cooperation represents the simplest form of a social interaction: one individual provides a benefit to another one at a cost to itself. Social networks represent a dynamical abstraction of social interactions in a society. The behaviour of an individual towards others and of others towards the individual shape the individual's neighbourhood and hence the local structure of the social network. Here we propose a simple theoretical framework to model dynamic social networks by focussing on each individual's actions instead of interactions between individuals. This eliminates the traditional dichotomy between the strategy of individuals and the structure of the population and easily complements empirical studies. As a consequence, altruists, egoists and fair types are naturally determined by the local social structures, while globally egalitarian networks or stratified structures arise. Cooperative interactions drive the emergence and shape the structure of social networks.

  3. Origin and Structure of Dynamic Cooperative Networks

    PubMed Central

    Wardil, Lucas; Hauert, Christoph

    2014-01-01

    Societies are built on social interactions among individuals. Cooperation represents the simplest form of a social interaction: one individual provides a benefit to another one at a cost to itself. Social networks represent a dynamical abstraction of social interactions in a society. The behaviour of an individual towards others and of others towards the individual shape the individual's neighbourhood and hence the local structure of the social network. Here we propose a simple theoretical framework to model dynamic social networks by focussing on each individual's actions instead of interactions between individuals. This eliminates the traditional dichotomy between the strategy of individuals and the structure of the population and easily complements empirical studies. As a consequence, altruists, egoists and fair types are naturally determined by the local social structures, while globally egalitarian networks or stratified structures arise. Cooperative interactions drive the emergence and shape the structure of social networks. PMID:25030202

  4. Dynamics and structure of energetic displacement cascades

    SciTech Connect

    Averback, R.S.; Diaz de la Rubia, T.; Benedek, R.

    1987-12-01

    This paper summarizes recent progress in the understanding of energetic displacement cascades and the primary state of damage in metals. On the theoretical side, the availability of supercomputers has greatly enhanced our ability to simulate cascades by molecular dynamics. Recent application of this simulation technique to Cu and Ni provides new insight into the dynamics of cascade processes. On the experimental side, new data on ion beam mixing and in situ electron microscopy studies of ion damage at low temperatures reveal the role of the thermodynamic properties of the material on cascade dynamics and structure. 38 refs., 9 figs.

  5. Strength of concrete structures under dynamic loading

    NASA Astrophysics Data System (ADS)

    Kumpyak, O. G.; Galyautdinov, Z. R.; Kokorin, D. N.

    2016-01-01

    The use of elastic supports is one the efficient methods of decreasing the dynamic loading. The paper describes the influence of elastic supports on the stress-strain state of steel concrete structures exposed to one-time dynamic loading resulting in failure. Oblique bending beams on elastic supports and their elastic, elastoplastic, and elastoplastic consolidation behavior are considered in this paper. For numerical calculations the developed computer program is used based on the finite element method. Research findings prove high efficiency of elastic supports under dynamic loading conditions. The most effective behavior of elastic supports is demonstrated at the elastoplastic stage. A good agreement is observed between the theoretical and experimental results.

  6. Nonlinear Dynamics of Structures with Material Degradation

    NASA Astrophysics Data System (ADS)

    Soltani, P.; Wagg, D. J.; Pinna, C.; Whear, R.; Briody, C.

    2016-09-01

    Structures usually experience deterioration during their working life. Oxidation, corrosion, UV exposure, and thermo-mechanical fatigue are some of the most well-known mechanisms that cause degradation. The phenomenon gradually changes structural properties and dynamic behaviour over their lifetime, and can be more problematic and challenging in the presence of nonlinearity. In this paper, we study how the dynamic behaviour of a nonlinear system changes as the thermal environment causes certain parameters to vary. To this end, a nonlinear lumped mass modal model is considered and defined under harmonic external force. Temperature dependent material functions, formulated from empirical test data, are added into the model. Using these functions, bifurcation parameters are defined and the corresponding nonlinear responses are observed by numerical continuation. A comparison between the results gives a preliminary insight into how temperature induced properties affects the dynamic response and highlights changes in stability conditions of the structure.

  7. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Bugg, Frank M.; Ivey, E. W.; Moore, C. J.; Townsend, John S.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses challenges for development and implementation of technology. One specific challenge is the development of a dynamics test program for defining the space station design requirements, and identifying and characterizing phenomena affecting the space station's design and development. The test proposal, as outlined, is a comprehensive structural dynamics program to be launched in support of the space station (SS). Development of a parametric data base and verification of the mathematical models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The four test phases planned are discussed: testing of SS applicable structural concepts; testing of SS prototypes; testing of actual SS structural hardware; and on-orbit testing of SS construction.

  8. Unifying dynamical and structural stability of equilibria

    NASA Astrophysics Data System (ADS)

    Arnoldi, Jean-François; Haegeman, Bart

    2016-09-01

    We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.

  9. Solar chromospheric fine scale structures: dynamics and energetics

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.

    2012-01-01

    The solar chromosphere is a very inhomogeneous and dynamic layer of the solar atmosphere that exhibits several phenomena on a wide range of spatial and temporal scales. High-resolution and long-duration observations, employing mostly lines, such as Halpha, the Ca II infrared lines and the Ca II H and K lines, obtained both from ground-based telescope facilities (e.g. DST, VTT, THEMIS, SST, DOT), as well as state-of-the-art satellites (e.g. SOHO, TRACE, HINODE) reveal an incredibly rich, dynamic and highly structured chromospheric environment. What is known in literature as the chromospheric fine-scale structure mainly consists of small fibrilar-like features that connect various parts of quiet/active regions or span across the chromospheric network cell interiors, showing a large diversity of both physical and dynamic characteristics. The highly dynamic, fine-scale chromospheric structures are mostly governed by flows which reflect the complex geometry and dynamics of the local magnetic field and play an important role in the propagation and dissipation of waves. A comprehensive study of these structures requires deep understanding of the physical processes involved and investigation of their intricate link with structures/processes at lower photospheric levels. Furthermore, due to their large number present on the solar surface, it is essential to investigate their impact on the mass and energy transport to higher atmospheric layers through processes such as magnetic reconnection and propagation of waves. The in-depth study of all aforementioned characteristics and processes, with the further addition of non-LTE physics, as well as the use of three-dimensional numerical simulations poses a fascinating challenge for both theory and numerical modeling of chromospheric fine-scale structures.

  10. Charge Transport and Structural Dynamics in Deep Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Cosby, Tyler; Holt, Adam; Terheggen, Logan; Griffin, Philip; Benson, Roberto; Sangoro, Joshua

    2015-03-01

    Charge transport and structural dynamics in a series of imidazole and carboxylic acid-based deep eutectic mixtures are investigated by broadband dielectric spectroscopy, dynamic light scattering, 1H nuclear magnetic resonance spectroscopy, calorimetry, and Fourier transform infrared spectroscopy. It is found that the extended hydrogen-bonded networks characteristic of imidazoles are broken down upon addition of carboxylic acids, resulting in an increase in dc conductivity of the mixtures. These results are discussed within the framework of recent theories of hydrogen bonding and proton transport.

  11. Multiscale structure in eco-evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  12. Comparisons of the dynamic characteristics of magnetorheological and hydraulic dampers

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Oyadiji, S. O.

    2015-04-01

    A magnetorheological (MR) damper can adapt its dynamic performance to the vibration environment by controlling the current applied. Compared to other types of dampers, the MR damper has a wider range of dynamic characteristics. Two different dampers: hydraulic, and MR dampers were tested under forced sinusoidal excitations of low to high frequencies. Also, different currents were applied on the MR damper to investigate its performance under varying electromagnetic fields. The results reveal that the two dampers have nonlinear dynamic characteristics and that characteristics of the hydraulic damper are different from those of the MR damper. The hydraulic damper provides slight nonlinear damping force whereas the MR damper shows a strong nonlinear property. In addition, the hydraulic damper is designed to provide an asymmetric damping force of rebound and compression whereas the MR damper provides a symmetric damping force. In the experiments conducted, the excitation frequency was varied from 3 Hz to 11 Hz and the amplitude from 2.5 mm to 12 mm. For the hydraulic damper, the lowest compression damping force only increases by about 0.54 kN while the rebound force increases by about 1.9 kN. In contrast, the variations of compression and rebound forces of the MR damper are 1.9 and 2.0 kN, respectively. Furthermore, the damping force of the MR damper increases as the current increases from 0 to 0.75 A.

  13. The structure and dynamics of interactive documents

    SciTech Connect

    Rocha, J.T.

    1999-04-01

    Advances in information technology continue to accelerate as the new millennium approaches. With these advances, electronic information management is becoming increasingly important and is now supported by a seemingly bewildering array of hardware and software whose sole purpose is the design and implementation of interactive documents employing multimedia applications. Multimedia memory and storage applications such as Compact Disk-Read Only Memory (CD-ROMs) are already a familiar interactive tool in both the entertainment and business sectors. Even home enthusiasts now have the means at their disposal to design and produce CD-ROMs. More recently, Digital Video Disk (DVD) technology is carving its own niche in these markets and may (once application bugs are corrected and prices are lowered) eventually supplant CD-ROM technology. CD-ROM and DVD are not the only memory and storage applications capable of supporting interactive media. External, high-capacity drives and disks such as the Iomega{copyright} zip{reg_sign} and jaz{reg_sign} are also useful platforms for launching interactive documents without the need for additional hardware such as CD-ROM burners and copiers. The main drawback here, however, is the relatively high unit price per disk when compared to the unit cost of CD-ROMs. Regardless of the application chosen, there are fundamental structural characteristics that must be considered before effective interactive documents can be created. Additionally, the dynamics of interactive documents employing hypertext links are unique and bear only slight resemblance to those of their traditional hard-copy counterparts. These two considerations form the essential content of this paper.

  14. Structure of the Benzene - by Dynamics

    NASA Astrophysics Data System (ADS)

    Schnell, Melanie; Erlekam, Undine; Von Helden, Gert; Meijer, Gerard; Bunker, Philip R.; Grabow, Jens-Uwe; Van Der Avoird, Ad

    2013-06-01

    The benzene dimer is the prototype system for Van der Waals interactions between aromatic molecules. Here, we report a joint experimental and theoretical study regarding normal (C_6H_6)_2 and the partially deuterated (C_6D_6)(C_6H_6) isotopologue. Interestingly, although its tilted T-shaped equilibrium structure corresponds to an asymmetric rotor, both isotopologues exhibit the rotational spectrum of a symmetric rotor, with a characteristic quartet splitting pattern due to internal tunneling motions: each transition exhibits a -2 : -1 : +1 : +2 splitting ratio with respect to its center. We unravel these splittings with the aid of the unrivalled resolution of the supersonic-jet FT-microwave experiment which provides accurate split-patterns, by means of a reduced-dimensionality model for the internal dynamics of the (rotating) dimer that reproduces them. They turn out to originate from a concerted tunneling mechanism involving both the hindered rotation of the stem in the T-shaped dimer around its sixfold axis and tilt tunneling. We also show that the observed intensities of the tunneling components are not solely determined by nuclear spin statistical weights. Rather, taking small differences in the dissociation energies of different dimer nuclear spin species into account, the kinetics of the dimer formation and equilibration can bias the populations of the tunneling symmetry species. Using Stark shift measurements, we determine the dipole moment of (C_6H_6)_2 to be μ = 0.580(51) D, in agreement with the value of 0.63 D calculated with the assumption that the dipole moment is mainly determined by the dipoles induced in both monomers by the electric field of the quadrupole of the other monomer. M. Schnell, U. Erlekam, P. R. Bunker, G. v. Helden, J.-U. Grabow, G. Meijer, A. van der Avoird, Angew. Chem. Int. Ed., DOI: 10.1002/anie.201300653 and 10.1002/ange.201300653

  15. Recent advances in structural dynamics of large space structures

    NASA Technical Reports Server (NTRS)

    Pinson, Larry D.

    1987-01-01

    Recent progress in the area of structural dynamics of large space structures is reviewed. Topics include system identification, large angle slewing of flexible structures, definition of scaling limitations in structural models, and recent results on a tension-stabilized antenna concept known as the hoop-column. Increasingly complex laboratory experiments guide most of the activities leading to realistic technological developments. Theoretical progress in system identification based on system realization theory resulting in unification of several methods is reviewed. Experimental results from implementation of a theoretical large-angle slewing control approach are shown. Status and results of the development of a research computer program for analysis of the transient dynamics of large angle motion of flexible structures are presented. Correlation of results from analysis and vibration tests of the hoop-column antenna concept are summarized.

  16. Recent advances in structural dynamics of large space structures

    NASA Technical Reports Server (NTRS)

    Pinson, Larry D.

    1987-01-01

    Recent progress in the area of structural dynamics of large space structures is reviewed. Topics include system identification, large angle slewing of flexible structures, definition of scaling limitations in structural models, and recent results on a tension-stabilized antenna concept known as the hoop-column. Increasingly complex laboratory experiments guide most of the activities leading to realistic technological developments. Theoretical progress in system identification based on system realization theory resulting in unification of several methods is reviewed. Experimental results from implementation of a theoretical large-angle slewing control approach are shown. Status and results of the development of a research computer program for analysis of the transient dynamics of large angle motion of flexible structures are presented. Correlation of results from analysis and vibration tests of the hoop-column antenna concepts are summarized.

  17. Space station structures and dynamics test program

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.; Townsend, John S.; Ivey, Edward W.

    1987-01-01

    The design, construction, and operation of a low-Earth orbit space station poses unique challenges for development and implementation of new technology. The technology arises from the special requirement that the station be built and constructed to function in a weightless environment, where static loads are minimal and secondary to system dynamics and control problems. One specific challenge confronting NASA is the development of a dynamics test program for: (1) defining space station design requirements, and (2) identifying the characterizing phenomena affecting the station's design and development. A general definition of the space station dynamic test program, as proposed by MSFC, forms the subject of this report. The test proposal is a comprehensive structural dynamics program to be launched in support of the space station. The test program will help to define the key issues and/or problems inherent to large space structure analysis, design, and testing. Development of a parametric data base and verification of the math models and analytical analysis tools necessary for engineering support of the station's design, construction, and operation provide the impetus for the dynamics test program. The philosophy is to integrate dynamics into the design phase through extensive ground testing and analytical ground simulations of generic systems, prototype elements, and subassemblies. On-orbit testing of the station will also be used to define its capability.

  18. Dynamic based damage detection in composite structures

    NASA Astrophysics Data System (ADS)

    Banerjee, Sauvik; Ricci, Fabrizio; Baid, Harsh; Mal, Ajit K.

    2009-03-01

    Advanced composites are being used increasingly in state-of-the-art aircraft and aerospace structures. In spite of their many advantages, composite materials are highly susceptible to hidden flaws that may occur at any time during the life cycle of a structure, and if undetected, may cause sudden and catastrophic failure of the entire structure. This paper is concerned with the detection and characterization of hidden defects in composite structures before they grow to a critical size. A methodology for automatic damage identification and localization is developed using a combination of vibration and wave propagation data. The structure is assumed to be instrumented with an array of actuators and sensors to excite and record its dynamic response, including vibration and wave propagation effects. A damage index, calculated from the measured dynamical response of the structure in a previous (reference) state and the current state, is introduced as a determinant of structural damage. The indices are used to identify low velocity impact damages in increasingly complex composite structural components. The potential application of the approach in developing health monitoring systems in defects-critical structures is indicated.

  19. Polar cusp: optical and particle characteristics-dynamics

    SciTech Connect

    Sandholt, P.E.; Egeland, A.; Asheim, S.; Lybekk, B.; Hardy, D.A.

    1985-01-01

    Photometric observations from two stations on Svalbard, Norway, were used to map the location and dynamics of polar-cusp auroras. Coordinated observations of low-energy electron precipitation from satellite HILAT and optical observations from the ground are discussed. Cases are presented showing the dynamical behavior of cusp auroras and the local magnetic field related to changes in the interplanetary magnetic field (IMF) and irregularities in the solar wind plasma. Dynamical phenomena with different time scales are studied. South and northward expansions of the midday sector of the auroral oval are discussed in relation to IMF variations and geomagnetic substorm activity. Intensifications and rapid poleward motions of discrete auroral structures in the cusp region are shown to be associated with local Pi type magnetic pulsations, each event lasting a few minutes. These small scale dynamical phenomena are discussed in relation to different models of plasma penetration across the dayside magnetopause, from the magnetosheath to the polar cusp region of the magnetosphere.

  20. Modeling share dynamics by extracting competition structure

    NASA Astrophysics Data System (ADS)

    Kimura, Masahiro; Saito, Kazumi; Ueda, Naonori

    2004-11-01

    We propose a new method for analyzing multivariate time-series data governed by competitive dynamics such as fluctuations in the number of visitors to Web sites that form a market. To achieve this aim, we construct a probabilistic dynamical model using a replicator equation and derive its learning algorithm. This method is implemented for both categorizing the sites into groups of competitors and predicting the future shares of the sites based on the observed time-series data. We confirmed experimentally, using synthetic data, that the method successfully identifies the true model structure, and exhibits better prediction performance than conventional methods that leave competitive dynamics out of consideration. We also experimentally demonstrated, using real data of visitors to 20 Web sites offering streaming video contents, that the method suggested a reasonable competition structure that conventional methods failed to find and that it outperformed them in terms of predictive performance.

  1. Dielectric relaxation of polymers: segmental dynamics under structural constraints.

    PubMed

    Alegria, Angel; Colmenero, Juan

    2016-10-01

    In this article we review the recent polymer literature where dielectric spectroscopy has been used to investigate the segmental dynamics of polymers under the constraints produced by self-structuring. Specifically, we consider three cases: (i) semicrystalline polymers, (ii) segregated block-copolymers, and (iii) asymmetric miscible polymer blends. In these three situations the characteristics of the dielectric relaxation associated with the polymer segmental dynamics are markedly affected by the constraints imposed by the corresponding structural features. After reviewing in detail each of the polymer systems, the most common aspects are discussed in the context of the use of dielectric relaxation as a sensitive tool for analyzing structural features in nanostructured polymer systems. PMID:27560167

  2. Proteins with Novel Structure, Function and Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  3. Dynamic object management for distributed data structures

    NASA Technical Reports Server (NTRS)

    Totty, Brian K.; Reed, Daniel A.

    1992-01-01

    In distributed-memory multiprocessors, remote memory accesses incur larger delays than local accesses. Hence, insightful allocation and access of distributed data can yield substantial performance gains. The authors argue for the use of dynamic data management policies encapsulated within individual distributed data structures. Distributed data structures offer performance, flexibility, abstraction, and system independence. This approach is supported by data from a trace-driven simulation study of parallel scientific benchmarks. Experimental data on memory locality, message count, message volume, and communication delay suggest that data-structure-specific data management is superior to a single, system-imposed policy.

  4. Structure and Dynamics of Intrinsically Disordered Proteins.

    PubMed

    Fu, Biao; Vendruscolo, Michele

    2015-01-01

    Intrinsically disordered proteins (IDPs) are involved in a wide range of essential biological processes, including in particular signalling and regulation. We are only beginning, however, to develop a detailed knowledge of the structure and dynamics of these proteins. It is becoming increasingly clear that, as IDPs populate highly heterogeneous states, they should be described in terms of conformational ensembles rather than as individual structures, as is instead most often the case for the native states of globular proteins. Within this context, in this chapter we describe the conceptual tools and methodological aspects associated with the description of the structure and dynamics of IDPs in terms of conformational ensembles. A major emphasis is given to methods in which molecular simulations are used in combination with experimental nuclear magnetic resonance (NMR) measurements, as they are emerging as a powerful route to achieve an accurate determination of the conformational properties of IDPs. PMID:26387099

  5. Structure and dynamics of calmodulin in solution.

    PubMed Central

    Wriggers, W; Mehler, E; Pitici, F; Weinstein, H; Schulten, K

    1998-01-01

    To characterize the dynamic behavior of calmodulin in solution, we have carried out molecular dynamics (MD) simulations of the Ca2+-loaded structure. The crystal structure of calmodulin was placed in a solvent sphere of radius 44 A, and 6 Cl- and 22 Na+ ions were included to neutralize the system and to model a 150 mM salt concentration. The total number of atoms was 32,867. During the 3-ns simulation, the structure exhibits large conformational changes on the nanosecond time scale. The central alpha-helix, which has been shown to unwind locally upon binding of calmodulin to target proteins, bends and unwinds near residue Arg74. We interpret this result as a preparative step in the more extensive structural transition observed in the "flexible linker" region 74-82 of the central helix upon complex formation. The major structural change is a reorientation of the two Ca2+-binding domains with respect to each other and a rearrangement of alpha-helices in the N-terminus domain that makes the hydrophobic target peptide binding site more accessible. This structural rearrangement brings the domains to a more favorable position for target binding, poised to achieve the orientation observed in the complex of calmodulin with myosin light-chain kinase. Analysis of solvent structure reveals an inhomogeneity in the mobility of water in the vicinity of the protein, which is attributable to the hydrophobic effect exerted by calmodulin's binding sites for target peptides. PMID:9545028

  6. Dynamic structural disorder in supported nanoscale catalysts

    SciTech Connect

    Rehr, J. J.; Vila, F. D.

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  7. Research in Structures, Structural Dynamics and Materials, 1990

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Compiler); Noor, Ahmed K. (Compiler)

    1990-01-01

    The Structural Dynamics and Materials (SDM) Conference was held on April 2 to 4, 1990 in Long Beach, California. This publication is a compilation of presentations of the work-in-progress sessions and does not contain papers from the regular sessions since those papers are published by AIAA in the conference proceedings.

  8. Structural Dynamics and Control Interaction of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S. (Editor); Scofield, Harold N. (Editor)

    1987-01-01

    A Workshop was held to promote technical exchange between the structural dynamic and control disciplines, foster joint technology, and provide a forum for discussing and focusing critical issues in the separate and combined areas. The workshop was closed by a panel meeting. Panel members' viewpoints and their responses to questions are included.

  9. The structural characteristics of video games: a psycho-structural analysis.

    PubMed

    Wood, Richard T A; Griffiths, Mark D; Chappell, Darren; Davies, Mark N O

    2004-02-01

    There is little doubt that video game playing is a psychological and social phenomenon. This paper outlines the main structural characteristics of video game playing (i.e., those characteristics that either induce gaming in the first place or are inducements to continue gaming irrespective of the individual's psychological, physiological, or socio-economic status). This online study is the first ever to assess what structural characteristics (if any) are important to a group of self-selected video game players (n = 382). The main variables examined were sound, graphics, background and setting, duration of game, rate of play, advancement rate, use of humor, control options, game dynamics, winning and losing features, character development, brand assurance, and multi-player features. Although there were many major gender differences, one of the main overall findings was the importance of a high degree of realism (i.e., realistic sound, graphics, and setting). Other important characteristics included a rapid absorption rate, character development, the ability to customize the game, and multiplayer features. Suggestions for future research are outlined.

  10. The effect of cavitation on the hydrofoil dynamic characteristics

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhou, L. J.; Wang, Z. W.; Zhi, F. L.

    2013-12-01

    Cavitation in hydraulic machinery usually causes a change of fluid dynamic characteristics. In order to predict the effect of cavitation on hydrofoil characteristics, the cavitation around a hydrofoil was studied numerically. The full cavitation model and a modified RNG k ε-turbulence model were used. The finite volume method with the SIMPLEC scheme was used to discretize the time-dependent equations. The second-order upwind scheme was used for the convection terms with the central difference scheme used for the diffusion terms. Fluid dynamic characteristics including cavity's length, shedding frequency, pressure coefficient and lift and drag force coefficients features in a range of cavitation number were analyzed. Computations were made on the three-dimensional flow field around a NACA66 hydrofoil at 8° angle of attack. The recording force signals exhibit periodic behaviours with the time. And the cavity shedding frequency increases with the cavitation number, however the length of cavity decreases with the cavitation number, which result in changing of lift-drag ratio. Especially for larger cavitation numbers, the lift drag ratio of cavitation field is getting closer and closer to that of non-cavitation field.

  11. Nonlinear characteristics of joints as elements of multi-body dynamic systems

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.

    1989-01-01

    As the connecting elements in multi-body structures, joints play a pivotal role in the overall dynamic response of these systems. Obviously, the linear stiffness of the joint strongly influences the system frequencies, but the joints are also likely to be the dominant sources of damping and nonlinearities, especially in aircraft and space structures. The general characteristics of such joints will be discussed. Then the state of the art in nonlinear joint characterization techniques will be surveyed. Finally, the impact that joints have on the overall response of structures will be evaluated.

  12. Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes.

    PubMed

    Sun, Zhe; Suenaga, Takuya; Sarkar, Parantap; Sato, Sota; Kotani, Motoko; Isobe, Hiroyuki

    2016-07-19

    The chemistry of a belt-shaped cyclic array of aromatic panels, a so-called "nanohoop," has increasingly attracted much interest, partly because it serves as a segmental model of single-wall carbon nanotubes with curved sp(2)-carbon networks. Although the unique molecular structure of nanohoops is expected to deepen our understanding in curved π-systems, its structural chemistry is still in its infancy despite structural variants rapidly accumulated over the past several years. For instance, structural characteristics that endow the belt shapes with rigidity, an important structural feature relevant to carbon nanotubes, have not been clarified to date. We herein report the synthesis and structures of a series of belt-shaped cyclonaphthylenes. Random synthesis methods using three precursor units with different numbers of naphthylene panels allowed us to prepare 6 congeners consisting of 6 to 11 naphthylene panels, and relationships between the rigidity and the panel numbers, i.e., molecular structures, were investigated. Fundamental yet complicated stereoisomerism in the belt-shaped structures was disclosed by mathematical methods, and dynamics in the panel rotation was revealed by dynamic NMR studies with the aid of theoretical calculations.

  13. Stereoisomerism, crystal structures, and dynamics of belt-shaped cyclonaphthylenes.

    PubMed

    Sun, Zhe; Suenaga, Takuya; Sarkar, Parantap; Sato, Sota; Kotani, Motoko; Isobe, Hiroyuki

    2016-07-19

    The chemistry of a belt-shaped cyclic array of aromatic panels, a so-called "nanohoop," has increasingly attracted much interest, partly because it serves as a segmental model of single-wall carbon nanotubes with curved sp(2)-carbon networks. Although the unique molecular structure of nanohoops is expected to deepen our understanding in curved π-systems, its structural chemistry is still in its infancy despite structural variants rapidly accumulated over the past several years. For instance, structural characteristics that endow the belt shapes with rigidity, an important structural feature relevant to carbon nanotubes, have not been clarified to date. We herein report the synthesis and structures of a series of belt-shaped cyclonaphthylenes. Random synthesis methods using three precursor units with different numbers of naphthylene panels allowed us to prepare 6 congeners consisting of 6 to 11 naphthylene panels, and relationships between the rigidity and the panel numbers, i.e., molecular structures, were investigated. Fundamental yet complicated stereoisomerism in the belt-shaped structures was disclosed by mathematical methods, and dynamics in the panel rotation was revealed by dynamic NMR studies with the aid of theoretical calculations. PMID:27357686

  14. Structural Characteristics of Synthetic Amorphous Calcium Carbonate

    SciTech Connect

    Michel, F. Marc; MacDonald, Jason; Feng, Jian; Phillips, Brian L.; Ehm, Lars; Tarabrella, Cathy; Parise, John B.; Reeder, Richard J.

    2008-08-06

    Amorphous calcium carbonate (ACC) is an important phase involved in calcification by a wide variety of invertebrate organisms and is of technological interest in the development of functional materials. Despite widespread scientific interest in this phase a full characterization of structure is lacking. This is mainly due to its metastability and difficulties in evaluating structure using conventional structure determination methods. Here we present new findings from the application of two techniques, pair distribution function analysis and nuclear magnetic resonance spectroscopy, which provide new insight to structural aspects of synthetic ACC. Several important results have emerged from this study of ACC formed in vitro using two common preparation methods: (1) ACC exhibits no structural coherence over distances > 15 {angstrom} and is truly amorphous; (2) most of the hydrogen in ACC is present as structural H{sub 2}O, about half of which undergoes restricted motion on the millisecond time scale near room temperature; (3) the short- and intermediate-range structure of ACC shows no distinct match to any known structure in the calcium carbonate system; and (4) most of the carbonate in ACC is monodentate making it distinctly different from monohydrocalcite. Although the structure of synthetic ACC is still not fully understood, the results presented provide an important baseline for future experiments evaluating biogenic ACC and samples containing certain additives that may play a role in stabilization of ACC, crystallization kinetics, and final polymorph selection.

  15. Video Game Structural Characteristics: A New Psychological Taxonomy

    ERIC Educational Resources Information Center

    King, Daniel; Delfabbro, Paul; Griffiths, Mark

    2010-01-01

    Excessive video game playing behaviour may be influenced by a variety of factors including the structural characteristics of video games. Structural characteristics refer to those features inherent within the video game itself that may facilitate initiation, development and maintenance of video game playing over time. Numerous structural…

  16. Dynamics and structure of stretched flames

    SciTech Connect

    Law, C.K.

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  17. Structural Characteristics of Novel Protein Folds

    PubMed Central

    Fernandez-Fuentes, Narcis; Dybas, Joseph M.; Fiser, Andras

    2010-01-01

    Folds are the basic building blocks of protein structures. Understanding the emergence of novel protein folds is an important step towards understanding the rules governing the evolution of protein structure and function and for developing tools for protein structure modeling and design. We explored the frequency of occurrences of an exhaustively classified library of supersecondary structural elements (Smotifs), in protein structures, in order to identify features that would define a fold as novel compared to previously known structures. We found that a surprisingly small set of Smotifs is sufficient to describe all known folds. Furthermore, novel folds do not require novel Smotifs, but rather are a new combination of existing ones. Novel folds can be typified by the inclusion of a relatively higher number of rarely occurring Smotifs in their structures and, to a lesser extent, by a novel topological combination of commonly occurring Smotifs. When investigating the structural features of Smotifs, we found that the top 10% of most frequent ones have a higher fraction of internal contacts, while some of the most rare motifs are larger, and contain a longer loop region. PMID:20421995

  18. Static and dynamic characteristics of parallel-grooved seals

    NASA Technical Reports Server (NTRS)

    Iwatsubo, Takuzo; Yang, Bo-Suk; Ibaraki, Ryuji

    1987-01-01

    Presented is an analytical method to determine static and dynamic characteristics of annular parallel-grooved seals. The governing equations were derived by using the turbulent lubrication theory based on the law of fluid friction. Linear zero- and first-order perturbation equations of the governing equations were developed, and these equations were analytically investigated to obtain the reaction force of the seals. An analysis is presented that calculates the leakage flow rate, the torque loss, and the rotordynamic coefficients for parallel-grooved seals. To demonstrate this analysis, we show the effect of changing number of stages, land and groove width, and inlet swirl on stability of the boiler feed water pump seals. Generally, as the number of stages increased or the grooves became wider, the leakage flow rate and rotor-dynamic coefficients decreased and the torque loss increased.

  19. Quantifying dynamic characteristics of human walking for comprehensive gait cycle.

    PubMed

    Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H

    2013-09-01

    Normal human walking typically consists of phases during which the body is statically unbalanced while maintaining dynamic stability. Quantifying the dynamic characteristics of human walking can provide better understanding of gait principles. We introduce a novel quantitative index, the dynamic gait measure (DGM), for comprehensive gait cycle. The DGM quantifies the effects of inertia and the static balance instability in terms of zero-moment point and ground projection of center of mass and incorporates the time-varying foot support region (FSR) and the threshold between static and dynamic walking. Also, a framework of determining the DGM from experimental data is introduced, in which the gait cycle segmentation is further refined. A multisegmental foot model is integrated into a biped system to reconstruct the walking motion from experiments, which demonstrates the time-varying FSR for different subphases. The proof-of-concept results of the DGM from a gait experiment are demonstrated. The DGM results are analyzed along with other established features and indices of normal human walking. The DGM provides a measure of static balance instability of biped walking during each (sub)phase as well as the entire gait cycle. The DGM of normal human walking has the potential to provide some scientific insights in understanding biped walking principles, which can also be useful for their engineering and clinical applications.

  20. [Dynamic characteristics of alternate strides in cross-country skiing].

    PubMed

    Gagnon, M

    1980-03-01

    Seven instructors in cross-country skiing were filmed during the performance of the alternate stride at three different velocities: maximal, medium and slow. The dynamic characteristics of the movement were analyzed. On the basis of spatio-temporal analyses, it was found that the alternate stride is a motion essentially propulsive with the predominance of the superior limbs to propulsion. The skier maintains or increases his velocity at the beginning of the glide which is possibly attributed to the transfer of momentum of the recovery leg. A decrease in horizontal velocity is observed at the end of the glide. At maximal speed, the asynchronous character of the actions by the superior and inferior limbs is more important; there is a reduced emphasis in the actions by the superior limbs. At medium speed, the following characteristics are observed: a reduced importance in the asynchronous actions, a larger preponderance to the gliding phase and a smaller elevation of the skier's center of gravity.

  1. Study of Dynamic Characteristics of Aeroelastic Systems Utilizing Randomdec Signatures

    NASA Technical Reports Server (NTRS)

    Chang, C. S.

    1975-01-01

    The feasibility of utilizing the random decrement method in conjunction with a signature analysis procedure to determine the dynamic characteristics of an aeroelastic system for the purpose of on-line prediction of potential on-set of flutter was examined. Digital computer programs were developed to simulate sampled response signals of a two-mode aeroelastic system. Simulated response data were used to test the random decrement method. A special curve-fit approach was developed for analyzing the resulting signatures. A number of numerical 'experiments' were conducted on the combined processes. The method is capable of determining frequency and damping values accurately from randomdec signatures of carefully selected lengths.

  2. User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Yasue, M.

    1974-01-01

    A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.

  3. Dynamic structural network evolution in compressed granular systems

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Puckett, James; Daniels, Karen; Bassett, Danielle

    The heterogeneous dynamic behavior of granular packings under shear or compression is not well-understood. In this study, we use novel techniques from network science to investigate the structural evolution that occurs in compressed granular systems. Specifically, we treat particles as network nodes, and pressure-dependent forces between particles as layer-specific network edges. Then, we use a generalization of community detection methods to multilayer networks, and develop quantitative measures that characterize changes in the architecture of the force network as a function of pressure. We observe that branchlike domains reminiscent of force chains evolve differentially as pressure is applied: topological characteristics of these domains at rest predict their coalescence or dispersion under pressure. Our methods allow us to study the dynamics of mesoscale structure in granular systems, and provide a direct way to compare data from systems under different external conditions or with different physical makeup.

  4. The structure and dynamics of multilayer networks

    NASA Astrophysics Data System (ADS)

    Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, C. I.; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M.

    2014-11-01

    In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of the interactions under study. Only in the last years, taking advantage of the enhanced resolution in real data sets, network scientists have directed their interest to the multiplex character of real-world systems, and explicitly considered the time-varying and multilayer nature of networks. We offer here a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.

  5. Chemical structure and dynamics. Annual report 1995

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  6. Chemical structure and dynamics: Annual report 1996

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  7. Annual Report 2000. Chemical Structure and Dynamics

    SciTech Connect

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  8. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1984-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  9. Impact dynamics research on composite transport structures

    NASA Technical Reports Server (NTRS)

    Carden, H. D.

    1985-01-01

    The experimental and analytical efforts being undertaken to investigate the response of composite and aluminum structures under crash loading conditions were reviewed. A Boeing 720 airplane was used in the controlled-impact demonstration test. Energy absorption of composite materials, the tearing of fuselage skin panels, the friction and abrasion behavior of composite skins, and the crushing behavior and dynamic response of composite beams were among the topics addressed.

  10. Structure And Dynamics Of Finite Dust Clouds

    SciTech Connect

    Block, D.; Kroll, M.; Arp, O.; Piel, A.; Kaeding, S.; Ivanov, Y.; Melzer, A.; Henning, C.; Baumgartner, H.; Bonitz, M.

    2008-09-07

    Two novel three-dimensional (3D) diagnostics, stereoscopic imaging and digital holography, enable us to provide a critical comparison of experimental results with simulations and theory and thus to gain a detailed insight into the structural and dynamical properties of strongly coupled dust clouds. Special attention is paid to the influence of screening and the role of metastable states in dust clouds containing just a very few particles.

  11. Space structure (dynamics and control) theme development

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was made to define the long-range technical objectives and goals for the Space Structure (Dynamics and Control) theme area. The approach was to evaluate ongoing and proposed technology activities such that the technology gaps and voids could be identified. After the technology needs were identified, a set of recommended experimental activities was defined including the technical objectives of each and their relationship.

  12. Handbook on dynamics of jointed structures.

    SciTech Connect

    Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

    2009-07-01

    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

  13. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2004-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook is solicited from the spacecraft structural dynamics testing community.

  14. NASA Handbook for Spacecraft Structural Dynamics Testing

    NASA Technical Reports Server (NTRS)

    Kern, Dennis L.; Scharton, Terry D.

    2005-01-01

    Recent advances in the area of structural dynamics and vibrations, in both methodology and capability, have the potential to make spacecraft system testing more effective from technical, cost, schedule, and hardware safety points of view. However, application of these advanced test methods varies widely among the NASA Centers and their contractors. Identification and refinement of the best of these test methodologies and implementation approaches has been an objective of efforts by the Jet Propulsion Laboratory on behalf of the NASA Office of the Chief Engineer. But to develop the most appropriate overall test program for a flight project from the selection of advanced methodologies, as well as conventional test methods, spacecraft project managers and their technical staffs will need overall guidance and technical rationale. Thus, the Chief Engineer's Office has recently tasked JPL to prepare a NASA Handbook for Spacecraft Structural Dynamics Testing. An outline of the proposed handbook, with a synopsis of each section, has been developed and is presented herein. Comments on the proposed handbook are solicited from the spacecraft structural dynamics testing community.

  15. Characteristics of dynamic triaxial testing of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Ulloa Calderon, Alvaro

    Due to the increasing traffic loads and tire pressures, a serious detrimental impact has occurred on flexible pavements in the form of excessive permanent deformation once the critical combination of loading and environmental conditions are reached. This distress, also known as rutting, leads to an increase in road roughness and ultimately jeopardizes the road users' safety. The flow number (FN) simple performance test for asphalt mixtures was one of the final three tests selected for further evaluation from the twenty-four test/material properties initially examined under the NCHRP 9-19 project. Currently, no standard triaxial testing conditions in terms of the magnitude of the deviator and confining stresses have been specified. In addition, a repeated haversine axial compressive load pulse of 0.1 second and a rest period of 0.9 second are commonly used as part of the triaxial testing conditions. The overall objective of this research was to define the loading conditions that created by a moving truck load in the hot mixed asphalt (HMA) layer. The loading conditions were defined in terms of the triaxial stress levels and the corresponding loading time. Dynamic mechanistic analysis with circular stress distribution was used to closely simulate field loading conditions. Extensive mechanistic analyses of three different asphalt pavement structures subjected to moving traffic loads at various speeds and under braking and non-braking conditions were conducted using the 3D-Move model. Prediction equations for estimating the anticipated deviator and confining stresses along with the equivalent deviator stress pulse duration as a function of pavement temperature, vehicle speed, and asphalt mixture's stiffness have been developed. The magnitude of deviator stress, sigmad and confining stress, sigmac, were determined by converting the stress tensor computed in the HMA layer at 2" below pavement surface under a moving 18-wheel truck using the octahedral normal and shear

  16. Uncertain structural dynamics of aircraft panels and fuzzy structures analysis

    NASA Astrophysics Data System (ADS)

    Sparrow, Victor W.; Buehrle, Ralph D.

    2002-11-01

    Aircraft fuselage panels, seemingly simple structures, are actually complex because of the uncertainty of the attachments of the frame stiffeners and longitudinal stringers. It is clearly important to understand the dynamics of these panels because of the subsequent radiation into the passenger cabin, even when complete information is not available for all portions of the finite-element model. Over the last few years a fuzzy structures analysis (FSA) approach has been undertaken at Penn State and NASA Langley to quantify the uncertainty in modeling aircraft panels. A new MSC.Nastran [MSC.Software Corp. (Santa Ana, CA)] Direct Matrix Abstraction Program (DMAP) code was written and tested [AIAA paper 2001-1320, 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Seattle, WA, 16 April 2001] and was applied to simple fuselage panel models [J. Acoust. Soc. Am. 109, 2410(A) (2001)]. Recently the work has focused on understanding the dynamics of a realistic aluminum fuselage panel, typical of today's aircraft construction. This presentation will provide an overview of the research and recent results will be given for the fuselage panel. Comparison between experiments and the FSA results will be shown for different fuzzy input parameters. [Work supported by NASA Research Cooperative Agreement NCC-1-382.

  17. Characteristic ion distributions in the dynamic auroral transition region

    NASA Astrophysics Data System (ADS)

    Zeng, W.; Horwitz, J. L.; Tu, J.-N.

    2006-04-01

    A Dynamic Fluid Kinetic (DyFK) simulation is conducted to study the H+/O+ flows and distribution functions in the high-latitude dynamic transition region, specifically from 1000 km to about 4000 km altitude. Here, the collisional-to-collisionless transition region is that region where Coulomb collisions have significant but not dominant effects on the ion distributions. In this study, a simulation flux tube, which extends from 120 km to 3 RE altitude, is assumed to experience a pulse of auroral effects for approximately 20 minutes, including both soft electron precipitation and transverse wave heating, and then according to different geophysical circumstances, either to relax following the cessation of such auroral effects or to be heated further continuously by waves with power at higher frequencies. Our principal purpose in this investigation is to elicit the characteristic ion distribution functions in the auroral transition region, where both collisions and kinetic processes play significant roles. The characteristics of the simulated O+ and H+ velocity distributions, such as kidney bean shaped H+ distributions, and O+ distributions having cold cores with upward folded conic wings, resemble those observed by satellites at similar altitudes and geographic conditions. From the simulated distribution function results under different geophysical conditions, we find that O+-O+ and O+-H+ collisions, in conjunction with the kinetic and auroral processes, are key factors in the velocity distributions up to 4000 km altitude, especially for the low speed portions, for both O+ and H+ ions.

  18. Strength and dynamic characteristics analyses of wound composite axial impeller

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Olortegui-Yume, Jorge; Müller, Norbert

    2012-03-01

    A low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.

  19. Experiment of static and dynamic characteristics of spiral grooved seals

    NASA Technical Reports Server (NTRS)

    Iwatsubo, T.; Sheng, B. C.; Ono, M.

    1991-01-01

    The leakages and the dynamic characteristics of six types of spiral grooved seals are experimentally investigated. The effect of the helix angle of the seal is investigated mainly under the condition of the same nominal clearances, land and groove lengths, and groove depths. The dynamic characteristics are measured for various parameters such as preswirl velocity, pressure difference between inlet and outlet of the seal, whirling amplitude, whirling speed, and rotating speed of the rotor. The results are also compared with leakage increases with the increase of the helix angle, but as the rotating speed increases, the leakages of the larger helix angle seals quickly drop. The leakage of the smooth-stator (SS)/smooth-grooved rotor (SGR) seal drops faster than that of the spiral-grooved stator (SGS)/smooth-rotor (SR) seal. It is found that a circumferential flow can be produced by the flow along the helix angle direction, and this circumferential flow acts as a negative swirl. For the present helix angle range, there is an optimum helix angle with which the seal has a comparatively positive effect on the rotor stability. Compared with the SGS/SR seals, the SS/SGR seal has a worse effect on the rotor stability.

  20. The Dynamic Characteristic and Hysteresis Effect of an Air Spring

    NASA Astrophysics Data System (ADS)

    Löcken, F.; Welsch, M.

    2015-02-01

    In many applications of vibration technology, especially in chassis, air springs present a common alternative to steel spring concepts. A design-independent and therefore universal approach is presented to describe the dynamic characteristic of such springs. Differential and constitutive equations based on energy balances of the enclosed volume and the mountings are given to describe the nonlinear and dynamic characteristics. Therefore all parameters can be estimated directly from physical and geometrical properties, without parameter fitting. The numerically solved equations fit very well to measurements of a passenger car air spring. In a second step a simplification of this model leads to a pure mechanical equation. While in principle the same parameters are used, just an empirical correction of the effective heat transfer coefficient is needed to handle some simplification on this topic. Finally, a linearization of this equation leads to an analogous mechanical model that can be assembled from two common spring- and one dashpot elements in a specific arrangement. This transfer into "mechanical language" enables a system description with a simple force-displacement law and a consideration of the nonobvious hysteresis and stiffness increase of an air spring from a mechanical point of view.

  1. Brownian Dynamics Simulation of Protein Solutions: Structural and Dynamical Properties

    SciTech Connect

    Mereghetti, Paolo; Gabdoulline, Razif; Wade, Rebecca C.

    2010-12-01

    The study of solutions of biomacromolecules provides an important basis for understanding the behavior of many fundamental cellular processes, such as protein folding, self-assembly, biochemical reactions, and signal transduction. Here, we describe a Brownian dynamics simulation procedure and its validation for the study of the dynamic and structural properties of protein solutions. In the model used, the proteins are treated as atomically detailed rigid bodies moving in a continuum solvent. The protein-protein interaction forces are described by the sum of electrostatic interaction, electrostatic desolvation, nonpolar desolvation, and soft-core repulsion terms. The linearized Poisson-Boltzmann equation is solved to compute electrostatic terms. Simulations of homogeneous solutions of three different proteins with varying concentrations, pH, and ionic strength were performed. The results were compared to experimental data and theoretical values in terms of long-time self-diffusion coefficients, second virial coefficients, and structure factors. The results agree with the experimental trends and, in many cases, experimental values are reproduced quantitatively. There are no parameters specific to certain protein types in the interaction model, and hence the model should be applicable to the simulation of the behavior of mixtures of macromolecules in cell-like crowded environments.

  2. Dynamic testing of MFTF containment-vessel structural system

    SciTech Connect

    Weaver, H.J.; McCallen, D.B.; Eli, M.W.

    1982-04-01

    Dynamic (modal) testing was performed on the Magnetic Fusion Test Facility (MFTF) containment vessel. The seismic design of this vessel was heavily dependent upon the value of structural damping used in the analysis. Typically for welded steel vessels, a value of 2 to 3% of critical is used. However, due to the large mass of the vessel and magnet supported inside, we felt that the interaction between the structure and its foundation would be enhanced. This would result in a larger value of damping because vibrational energy in the structure would be transferred through the foundation into the surrounding soil. The dynamic test performed on this structure (with the magnet in place) confirmed this later theory and resulted in damping values of approximately 4 to 5% for the whole body modes. This report presents a brief description of dynamic testing emphasizing the specific test procedure used on the MFTF-A system. It also presents an interpretation of the damping mechanisms observed (material and geometric) based upon the spatial characteristics of the modal parameters (mode shapes).

  3. Dynamic characterization of thin-film inflatable structures

    NASA Astrophysics Data System (ADS)

    Slade, Kara Nicole

    Inflatable structures constructed from thin polyimide films form a key part of several technology development programs for solar thermal propulsion for satellites, as well as for other applications both in space and on earth. This project investigates the mechanical properties of several of these structures, focusing primarily on their dynamic behavior. The primary focus is the Shooting Star Experiment prototype developed by NASA, but a simpler cylindrical structure is also considered in order to provide an analytically tractable situation for the evaluation of testing and modeling techniques. The cylindrical strut is tested statically to determine its load-deflection characteristics both in linear and nonlinear regimes. The phenomenon of wrinkling is observed under large deflection conditions, particularly at lower pressure. Then, modal testing is used to determine the dynamic properties of the strut for comparison to numerical models. Modal testing is also conducted on Pathfinder 3, a prototype inflatable solar concentrator for the Shooting Star Experiment, both in vacuum and ambient atmospheric conditions. The orbital terminator crossing test is used to determine the dynamic susceptibility of the Pathfinder 3 structure to thermal shock, and it is found to undergo only quasistatic deformations. Finite element models of the cylinder and the Pathfinder 3 concentrator are then constructed using MSC NASTRAN. The inflatable cylinder may be modeled as a beam if only global bending is considered. This restriction leads to the development of a frequency-dependent modulus of elasticity in bending for the structure, developed from engineering beam theory. Both frequency-dependent beam models and shell models are constructed and evaluated for their efficacy. The results from the modeling of the strut are then applied to the inflatable concentrator, where it is found that the shell model captures more of the dynamic subtleties of the system than the beam model, but that both

  4. A generalized gamma(s)-family of self-starting algorithms for computational structural dynamics

    NASA Technical Reports Server (NTRS)

    Namburu, Raju R.; Tamma, Kumar K.

    1992-01-01

    A generalized gamma(s)-family of self-starting single-step formulations are presented in order to provide simplified yet effective dynamic attributes to include features towards eliminating the need to involve accelerations in the computational process for structural dynamic problems. By appropriately selecting the parameters pertaining to gamma(s)(s = 1, 2, 3), both explicit and implicit formulations are obtained. The stability and accuracy characteristics of the gamma(s)-family of representations are presented to validate the robustness of the formulations for structural dynamic problems. Numerous illustrative examples are described and the results are in excellent agreement and validate the applicability of these formulations for structural dynamic computations.

  5. A novel approach to detecting breathing-fatigue cracks based on dynamic characteristics

    NASA Astrophysics Data System (ADS)

    Yan, Guirong; De Stefano, Alessandro; Matta, Emiliano; Feng, Ruoqiang

    2013-01-01

    During the service life of structures, breathing-fatigue cracks may occur in structural members due to dynamic loadings acting on them. These fatigue cracks, if undetected, might lead to a catastrophic failure of the whole structural system. Although a number of approaches have been proposed to detect breathing-fatigue cracks, some of them appear rather sophisticated or expensive (requiring complicated equipment), and others suffer from a lack of sensitivity. In this study, a simple and efficient approach to detecting breathing-fatigue cracks is developed based on dynamic characteristics of breathing cracks. First, considering that breathing cracks introduce bilinearity into structures, a simple system identification method for bilinear systems is proposed by taking best advantage of dynamic characteristics of bilinear systems. This method transfers nonlinear system identification into linear system identification by dividing impulse or free-vibration responses into different parts corresponding to each stiffness region according to the stiffness interface. In this way, the natural frequency of each region can be identified using any modal identification approach applicable to linear systems. Second, the procedure for identifying the existence of breathing fatigue cracks and quantifying the cracks qualitatively is proposed by looking for the difference in the identified natural frequency between regions. Third, through introducing Hilbert transform, the proposed procedure is extended to identify fatigue cracks in piecewise-nonlinear systems. The proposed system identification method and crack detection procedure have been successfully validated by numerical simulations and experimental tests.

  6. Dynamic analysis of flexible multibody structures

    NASA Technical Reports Server (NTRS)

    Hernried, Alan G.

    1989-01-01

    A system composed of several interconnected elastic components that may experience large angular motion relative to each other during operation is referred to as a flexible multibody structure. Several formulations were proposed for the determination of the dynamic response of controlled flexible multibody structures. In general, these formulations consist of superposing elastic deformations of the component body onto the large rigid body motion of the component. It was shown that this particular methodology for combining linear structural deformations with nonlinear kinematics can lead to erroneous response predictions when either the beam member is very flexible or the rotational speed is high. In addition, previous formulations introduce constraint equations to define the interrelations among system components. This approach increases the number of equations that must be solved, and may result in contraint violation when numerical error accumulates during the integration process. In order to overcome the difficulties, a new approach was suggested. The approach is essentially a finite element formulation which takes advantage of the fact that many multibody structures are joint dominated. The Large Angle Transient Dynamic Analysis (LATDYN) program for clarity of documentation, ease of use, user friendliness, modeling generality, and accuracy of results was evaluated. This required gaining a working familiarity with the code and performing several case studies.

  7. Condensed Antenna Structural Models for Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Levy, R.

    1985-01-01

    Condensed degree-of-freedom models are compared with large degree-of-freedom finite-element models of a representative antenna-tipping and alidade structure, for both locked and free-rotor configurations. It is shown that: (1) the effective-mass models accurately reproduce the lower-mode natural frequencies of the finite element model; (2) frequency responses for the two types of models are in agreement up to at least 16 rad/s for specific points; and (3) transient responses computed for the same points are in good agreement. It is concluded that the effective-mass model, which best represents the five lower modes of the finite-element model, is a sufficient representation of the structure for future incorporation with a total servo control structure dynamic simulation.

  8. Interval prediction in structural dynamic analysis

    NASA Technical Reports Server (NTRS)

    Hasselman, Timothy K.; Chrostowski, Jon D.; Ross, Timothy J.

    1992-01-01

    Methods for assessing the predictive accuracy of structural dynamic models are examined with attention given to the effects of modal mass, stiffness, and damping uncertainties. The methods are based on a nondeterministic analysis called 'interval prediction' in which interval variables are used to describe parameters and responses that are unknown. Statistical databases for generic modeling uncertainties are derived from experimental data and incorporated analytically to evaluate responses. Covariance matrices of modal mass, stiffness, and damping parameters are propagated numerically in models of large space structures by means of three methods. The test data tend to fall within the predicted intervals of uncertainty determined by the statistical databases. The present findings demonstrate the suitability of using data from previously analyzed and tested space structures for assessing the predictive accuracy of an analytical model.

  9. Dynamic Probabilistic Instability of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties in that order.

  10. Monitoring the Dynamic Deformation of the Bridge Structures by Accelerometers

    NASA Astrophysics Data System (ADS)

    Lipták, Imrich

    2013-10-01

    The paper presents current trends in determining the dynamic deformations of bridge structures through the exploitation of geodetic measurements by accelerometers. The main aim of the paper is to demonstrate the practical application of these measurements on the cycling bridge over the river Morava in Devínska Nová Ves. Possibilities for the processing and analysis of accelerometer measurements by spectral analysis are described. An evaluation of the results is realized based on the modal characteristics from a numerical model designed by the finite element method.

  11. Structural dynamic analysis of the Large Deployable Reflector

    NASA Technical Reports Server (NTRS)

    Andersen, G. C.; Scott, A. D.

    1986-01-01

    The dynamic performance of the primary mirror of the Large Deployable Reflector (LDR) is analyzed under conditions of typical external disturbances that would be encountered during normal space operation. The performance assessment is based upon the difference between the figure distortion errors of the incoming image and the mission figure tolerance requirements (rms surface accuracy error and jitter). The need for additional figure control of the incoming image is assessed, and other alternatives for figure control are presented, such as increased structural damping effects due to the uncertainty in the real damping characteristics.

  12. Analysis of dispersion characteristics of phononic structures

    SciTech Connect

    Parkhomenko, D. A. Kolenov, S. A.; Grigoruk, V. I.; Movchan, N. N.

    2011-05-15

    A general theory for calculating the dispersion of bulk acoustic waves in 3D and 2D phononic crystals made of anisotropic materials is presented, which is based on the plane-wave expansion method. Two approaches to separating acoustic modes in the dispersion diagrams are proposed. The pattern of the acoustic field distribution is studied as depending on the wavevector direction for various types of modes. Degeneracy of acoustic modes in directions different from the axes of symmetry of the phononic crystal is demonstrated. Possibilities of the proposed method are illustrated by the application to 3D and 2D silicon-based phononic crystal structures.

  13. Solar Prominence Fine Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    2014-01-01

    We review recent observational and theoretical results on the fine structure and dynamics of solar prominences, beginning with an overview of prominence classifications, the proposal of possible new ``funnel prominence'' classification, and a discussion of the recent ``solar tornado'' findings. We then focus on quiescent prominences to review formation, down-flow dynamics, and the ``prominence bubble'' phenomena. We show new observations of the prominence bubble Rayleigh-Taylor instability triggered by a Kelvin-Helmholtz shear flow instability occurring along the bubble boundary. Finally we review recent studies on plasma composition of bubbles, emphasizing that differential emission measure (DEM) analysis offers a more quantitative analysis than photometric comparisons. In conclusion, we discuss the relation of prominences to coronal magnetic flux ropes, proposing that prominences can be understood as partially ionized condensations of plasma forming the return flow of a general magneto-thermal convection in the corona.

  14. A new computational structure for real-time dynamics

    SciTech Connect

    Izaguirre, A. ); Hashimoto, Minoru )

    1992-08-01

    The authors present an efficient structure for the computation of robot dynamics in real time. The fundamental characteristic of this structure is the division of the computation into a high-priority synchronous task and low-priority background tasks, possibly sharing the resources of a conventional computing unit based on commercial microprocessors. The background tasks compute the inertial and gravitational coefficients as well as the forces due to the velocities of the joints. In each control sample period, the high-priority synchronous task computes the product of the inertial coefficients by the accelerations of the joints and performs the summation of the torques due to the velocities and gravitational forces. Kircanski et al. (1986) have shown that the bandwidth of the variation of joint angles and of their velocities is an order of magnitude less than the variation of joint accelerations. This result agrees with the experiments the authors have carried out using a PUMA 260 robot. Two main strategies contribute to reduce the computational burden associated with the evaluation of the dynamic equations. The first involves the use of efficient algorithms for the evaluation of the equations. The second is aimed at reducing the number of dynamic parameters by identifying beforehand the linear dependencies among these parameters, as well as carrying out a significance analysis of the parameters' contribution to the final joint torques. The actual code used to evaluate this dynamic model is entirely computer generated from experimental data, requiring no other manual intervention than performing a campaign of measurements.

  15. Fundamental structures of dynamic social networks.

    PubMed

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.

  16. Fundamental structures of dynamic social networks

    PubMed Central

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-01-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision. PMID:27555584

  17. Fundamental structures of dynamic social networks.

    PubMed

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision. PMID:27555584

  18. Fluid mechanics of dynamic stall. II - Prediction of full scale characteristics

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Analytical extrapolations are made from experimental subscale dynamics to predict full scale characteristics of dynamic stall. The method proceeds by establishing analytic relationships between dynamic and static aerodynamic characteristics induced by viscous flow effects. The method is then validated by predicting dynamic test results on the basis of corresponding static test data obtained at the same subscale flow conditions, and the effect of Reynolds number on the static aerodynamic characteristics are determined from subscale to full scale flow conditions.

  19. Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads

    NASA Astrophysics Data System (ADS)

    Long, Xu; Ge, Fei; Wang, Lei; Hong, Youshi

    2009-06-01

    This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.

  20. Structural Dynamics of Tropical Moist Forest Gaps.

    PubMed

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6

  1. Structural Dynamics of Tropical Moist Forest Gaps

    PubMed Central

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23

  2. Reconstruction of dynamic forces during impact tests of a crushable structure

    SciTech Connect

    Bateman, V.I.; Carne, T.G.; Mayes, R.L.; Davie, N.T.

    1993-12-31

    A force reconstruction technique is being used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degree}) and slapdown (30{degree}) impact conditions. The dynamic force characteristics for the current nose design, determined from these tests, will be used to write a dynamic force specification for a new nose design that will replace the current nose. Two structures for experimentally determining the dynamic force -- deflection characteristics of the old and new noses have been designed and constructed. One structure has the same dynamic characteristics as the bomb and is being used for axial and slapdown orientations with rocket-propelled testing. The second structure has the same mass as the bomb and is being used for iterative axial testing of candidate designs with a pneumatic ram. The structural characteristics of these two structures have been determined and are presented. A force reconstruction algorithm using the Sum of Weighted Accelerations Technique (SWAT) has been developed for each of the two structures. The force reconstruction algorithms have been verified for both structures using laboratory data. The force reconstruction process and the resulting algorithms are described. Data verifying the force reconstruction algorithms is presented.

  3. Load deflection characteristics of inflated structures

    NASA Technical Reports Server (NTRS)

    Baumgarten, J. R.

    1983-01-01

    A single, closed form relationship to relate load to the deformed dimensions of the horizontal torus was developed. Wall elasticity was included in the analysis, and special care was taken to predict the final footprint area of the loaded structure. The test fixture utilized is shown. The tori used for the bulk of the testing were rubber inner tubes for a 32 and 160 pneumatic tire. The inner tube being tested was plumbed, to a mercury-filled manometer, which had a 50 inch measurement capacity, by use of a special adapter. The adapter fit over the valve stem and allowed air to be added from a shop-air source and to be bled through the standard valve mechanism. In this fashion, tests requiring the maintenance of a constant indication of air pressure could be run with little difficulty.

  4. Algebraic Dynamic Programming over general data structures

    PubMed Central

    2015-01-01

    Background Dynamic programming algorithms provide exact solutions to many problems in computational biology, such as sequence alignment, RNA folding, hidden Markov models (HMMs), and scoring of phylogenetic trees. Structurally analogous algorithms compute optimal solutions, evaluate score distributions, and perform stochastic sampling. This is explained in the theory of Algebraic Dynamic Programming (ADP) by a strict separation of state space traversal (usually represented by a context free grammar), scoring (encoded as an algebra), and choice rule. A key ingredient in this theory is the use of yield parsers that operate on the ordered input data structure, usually strings or ordered trees. The computation of ensemble properties, such as a posteriori probabilities of HMMs or partition functions in RNA folding, requires the combination of two distinct, but intimately related algorithms, known as the inside and the outside recursion. Only the inside recursions are covered by the classical ADP theory. Results The ideas of ADP are generalized to a much wider scope of data structures by relaxing the concept of parsing. This allows us to formalize the conceptual complementarity of inside and outside variables in a natural way. We demonstrate that outside recursions are generically derivable from inside decomposition schemes. In addition to rephrasing the well-known algorithms for HMMs, pairwise sequence alignment, and RNA folding we show how the TSP and the shortest Hamiltonian path problem can be implemented efficiently in the extended ADP framework. As a showcase application we investigate the ancient evolution of HOX gene clusters in terms of shortest Hamiltonian paths. Conclusions The generalized ADP framework presented here greatly facilitates the development and implementation of dynamic programming algorithms for a wide spectrum of applications. PMID:26695390

  5. Annual Report 2002. Chemical Structure & Dynamics

    SciTech Connect

    Colson, Steven D.; Gephart, Roy E.

    2003-01-01

    This report describes the research and accomplishments of the Chemical Structure and Dynamics (CS&D) Group of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) from October 2000 through December 2001. Publications, presentations, and collaborations are listed from October 2000 to September 2002. The EMSL is a national user facility located at the Pacific Northwest National Laboratory, Richland, Washington. The CS&D program supports the Department of Energy?s mission of fostering fundamental research in the natural sciences to provide a basis for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use and contaminant releases.

  6. Dynamics and Stability and Control Characteristics of the X-37

    NASA Technical Reports Server (NTRS)

    Chaudhary, Ashwani; Nguyen, Viet; Tran, Hoi; Poladian, David; Falangas, Eric; Turner, Susan G. (Technical Monitor)

    2001-01-01

    This paper presents the stability and control analysis and the control design results for the Boeing/NASA/AFRL X-37. The X-37 is a flight demonstrator vehicle that will go into space and after its mission, autonomously reenter and land on a conventional runway. This paper studies the dynamics and control of the X-37 from atmospheric reentry through landing. A nominal trajectory that lands on the Edwards Air Force Base Lakebed is considered for all the analysis and design. The X-37's longitudinal and lateral/directional bare-airframe characteristics are presented. The level of maneuvering control power is assessed. Vehicle trim with multiple surfaces is discussed. Special challenges where the wings loose roll effectiveness are discussed and solutions are presented. Aerodynamic uncertainties and flexibility modeling issues are presented. Control design results and robustness analysis methods are presented. Results are provided for the Entry, Terminal Area Energy Management (TAEM), and Approach and Land phases.

  7. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A. E.; Rossow, M. P.

    1983-01-01

    The possibilities and limitations of tailoring blade mass and stiffness distributions to give an optimum blade design in terms of weight, inertia, and dynamic characteristics are discussed. The extent that changes in mass of stiffness distribution can be used to place rotor frequencies at desired locations is determined. Theoretical limits to the amount of frequency shift are established. Realistic constraints on blade properties based on weight, mass, moment of inertia, size, strength, and stability are formulated. The extent that the hub loads can be minimized by proper choice of E1 distribution, and the minimum hub loads which can be approximated by a design for a given set of natural frequencies are determined. Aerodynamic couplings that might affect the optimum blade design, and the relative effectiveness of mass and stiffness distribution on the optimization procedure are investigated.

  8. Floating clamping mechanism of PT fuel injector and its dynamic characteristics analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xinqing; Liang, Sheng; Xia, Tian; Wang, Dong; Qian, Shuhua

    2012-05-01

    PT fuel injector is one of the most important parts of modern diesel engine. To satisfy the requirements of the rapid and accurate test of PT fuel injector, the self-adaptive floating clamping mechanism was developed and used in the relevant bench. Its dynamic characteristics directly influence the test efficiency and accuracy. However, due to its special structure and complex oil pressure signal, related documents for evaluating dynamic characteristics of this mechanism are lack and some dynamic characteristics of this mechanism can't be extracted and recognized effectively by traditional methods. Aiming at the problem above-mentioned, a new method based on Hilbert-Huang transform (HHT) is presented. Firstly, combining with the actual working process, the dynamic liquid pressure signal of the mechanism is acquired. By analyzing the pressure fluctuation during the whole working process in time domain, oil leakage and hydraulic shock in the clamping chamber are discovered. Secondly, owing to the nonlinearity and nonstationarity of pressure signal, empirical mode decomposition is used, and the signal is decomposed and reconstructed into forced vibration, free vibration and noise. By analyzing forced vibration in the time domain, machining error and installation error of cam are revealed. Finally, free vibration component is analyzed in time-frequency domain with HHT, the traits of free vibration in the time-frequency domain are revealed. Compared with traditional methods, Hilbert spectrum has higher time-frequency resolutions and higher credibility. The improved mechanism based on the above analyses can guarantee the test accuracy of injector injection. This new method based on the analyses of the pressure signal and combined with HHT can provide scientific basis for evaluation, design improvement of the mechanism, and give references for dynamic characteristics analysis of the hydraulic system in the interrelated fields.

  9. Static and dynamic analyses of tensegrity structures

    NASA Astrophysics Data System (ADS)

    Nishimura, Yoshitaka

    Tensegrity structures are a class of truss structures consisting of a continuous set of tension members (cables) and a discrete set of compression members (bars). Since tensegrity structures are light weight and can be compactly stowed and deployed, cylindrical tensegrity modules have been proposed for space structures. From a view point of structural dynamics, tensegrity structures pose a new set of problems, i.e., initial shape finding. Initial configurations of tensegrity structures must be computed by imposing a pre-stressability condition to initial equilibrium equations. There are ample qualitative statements regarding the initial geometry of cylindrical and spherical tensegrity modules. Quantitative initial shape anlyses have only been performed on one-stage and two-stage cylindrical modules. However, analytical expressions for important geometrical parameters such as twist angles and overlap ratios lack the definition of the initial shape of both cylindrical and spherical tensegrity modules. In response to the above needs, a set of static and dynamic characterization procedures for tensegrity modules was first developed. The procedures were subsequently applied to Buckminster Fuller's spherical tensegrity modules. Both the initial shape and the corresponding pre-stress mode were analytically obtained by using the graphs of the tetrahedral, octahedral (cubic), and icosahedral (dodecahedral) groups. For pre-stressed configurations, modal analyses were conducted to classify a large number of infinitesimal mechanism modes. The procedures also applied tocyclic cylindrical tensegrity modules with an arbitrary number of stages. It was found that both the Maxwell number and the number of infinitesimal mechanism modes are independent of the number of stages in the axial direction. A reduced set of equilibrium equations was derived by incorporating cyclic symmetry and the flip, or quasi-flip, symmetry of the cylindrical modules. For multi-stage modules with more than

  10. Physicochemical, rheological and structural characteristics of starch in maize tortillas.

    PubMed

    Hernández-Uribe, Juan P; Ramos-López, Gonzalo; Yee-Madeira, Hernani; Bello-Pérez, Luis A

    2010-06-01

    Fresh and stored maize (white and blue) tortillas were evaluated for physicochemical, rheological and structural characteristics assessed by calorimetry, x-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, dynamic viscoelastic tests, and high-performance size-exclusion chromatography. Two endotherms were found in studies of fresh and stored tortillas. The low temperature endotherm (50-56 degrees C) was due to reorganized (retrograded) amylopectin, while the high temperature endotherm (105-123 degrees C) was attributed to retrograded amylose. The enthalpy value for the lower temperature transition was minor than that of the high temperature transition. Fresh tortillas showed an amorphous starch arrangement by x-ray diffraction study. Stored samples showed the presence of peaks at 2theta = 17 masculine and 23 masculine, indicating re-crystallization of starch components. FTIR results confirmed the development of higher levels of starch crystals during storage. Differences in the viscoelastic parameters were also observed between fresh and stored samples. At the longest storage times, white tortillas were more rigid than blue tortillas. Molar mass values for starch increased for both white and blue tortillas as storage time progressed, though relatively higher values were obtained for white tortillas. More starch reorganization occurred in white tortillas, in accordance to calorimetric, x-ray diffraction, FTIR and rheological results. These results corroborate that changes occurring in tortillas during storage are related to reorganization of starch components, and the maize variety more than the color plays an important role.

  11. Structural characteristics and behavior of fire-modified soil aggregates

    NASA Astrophysics Data System (ADS)

    Blake, William H.; Droppo, Ian G.; Humphreys, Geoffrey S.; Doerr, Stefan H.; Shakesby, Richard A.; Wallbrink, Peter J.

    2007-06-01

    The transport dynamics of burnt material in fluvial systems require attention since the off-site transfer of soil material from wildfire-affected slopes includes ash and nutrients which may have negative impacts on downstream water quality. The aim of this work is to explore the presence, structural characteristics, and fluvial behavior of fire-modified soil aggregates in burnt soil material sampled from a water supply catchment near Sydney, Australia, and to compare their fluvial behavior to that of composite particles from unburnt soils. Samples of burnt and unburnt soil material were analyzed for effective particle size, settling velocity, composite particle density, and porosity using established microscope-based image analysis approaches. Burnt soil aggregates exhibit significantly higher settling velocities (mean 11.47 ± 1.11 mm s-1) than unburnt particles of similar diameter (3.36 ± 0.91 mm s-1) reflecting an increase in density because of reduction in organic content and a reduction in pore space linked to shrinkage. Soil aggregates in severely burnt soil are dense and inorganic and behave differently to their unburnt counterparts and discrete grains of the same size. Burnt composite particles are robust and readily transported within fluvial systems. Their presence in burnt soil and mobilized material is likely to have important implications for postfire fine (<63 μm) sediment and nutrient budgets.

  12. The dynamic impact characteristics of tennis balls with tennis rackets.

    PubMed

    Haake, S J; Carré, M J; Goodwill, S R

    2003-10-01

    The dynamic properties of six types of tennis balls were measured using a force platform and high-speed digital video images of ball impacts on rigidly clamped tennis rackets. It was found that the coefficient of restitution reduced with velocity for impacts on a rigid surface or with a rigidly clamped tennis racket. Pressurized balls had the highest coefficient of restitution, which decreased by 20% when punctured. Pressureless balls had a coefficient of restitution approaching that of a punctured ball at high speeds. The dynamic stiffness of the ball or the ball-racket system increased with velocity and pressurized balls had the highest stiffness, which decreased by 35% when punctured. The characteristics of pressureless balls were shown to be similar to those of punctured balls at high velocity and it was found that lowering the string tension produced a smaller range of stiffness or coefficient of restitution. It was hypothesized that players might consider high ball stiffness to imply a high coefficient of restitution. Plots of coefficient of restitution versus stiffness confirmed the relationship and it was found that, generally, pressurized balls had a higher coefficient of restitution and stiffness than pressureless balls. The players might perceive these parameters through a combination of sound, vibration and perception of ball speed off the racket. PMID:14620027

  13. Molten uranium dioxide structure and dynamics

    SciTech Connect

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; Leibowitz, L.

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  14. Nucleon Structure from Dynamical Lattice QCD

    SciTech Connect

    Huey-Wen Lin

    2007-06-01

    We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.

  15. Nucleon Structure from Dynamical Lattice QCD

    SciTech Connect

    Lin, H.-W.

    2007-06-13

    We present lattice QCD numerical calculations of hadronic structure functions and form factors from full-QCD lattices, with a chirally symmetric fermion action, domain-wall fermions, for the sea and valence quarks. The lattice spacing is about 0.12 fm with physical volume approximately (2 fm)3 for RBC 2-flavor ensembles and (3 fm)3 for RBC/UKQCD 2+1-flavor dynamical ones. The lightest sea quark mass is about 1/2 the strange quark mass for the former ensembles and 1/4 for the latter ones. Our calculations include: isovector vector- and axial-charge form factors and the first few moments of the polarized and unpolarized structure functions of the nucleon. Nonperturbative renormalization in RI/MOM scheme is applied.

  16. Molten uranium dioxide structure and dynamics

    DOE PAGES

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; et al

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. Onmore » melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.« less

  17. Dynamics and Emergent Structures in Active Fluids

    NASA Astrophysics Data System (ADS)

    Baskaran, Aparna

    2014-03-01

    In this talk, we consider an active fluid of colloidal sized particles, with the primary manifestation of activity being a self-replenishing velocity along one body axis of the particle. This is a minimal model for varied systems such as bacterial colonies, cytoskeletal filament motility assays vibrated granular particles and self propelled diffusophoretic colloids, depending on the nature of interaction among the particles. Using microscopic Brownian dynamics simulations, coarse-graining using the tools of non-equilibrium statistical mechanics and analysis of macroscopic hydrodynamic theories, we characterize emergent structures seen in these systems, which are determined by the symmetry of the interactions among the active units, such as propagating density waves, dense stationary bands, asters and phase separated isotropic clusters. We identify a universal mechanism, termed ``self-regulation,'' as the underlying physics that leads to these structures in diverse systems. Support from NSF through DMR-1149266 and DMR-0820492.

  18. Molten uranium dioxide structure and dynamics.

    PubMed

    Skinner, L B; Benmore, C J; Weber, J K R; Williamson, M A; Tamalonis, A; Hebden, A; Wiencek, T; Alderman, O L G; Guthrie, M; Leibowitz, L; Parise, J B

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts. PMID:25414311

  19. Molten uranium dioxide structure and dynamics.

    PubMed

    Skinner, L B; Benmore, C J; Weber, J K R; Williamson, M A; Tamalonis, A; Hebden, A; Wiencek, T; Alderman, O L G; Guthrie, M; Leibowitz, L; Parise, J B

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  20. Dynamic versus Static Hadronic Structure Functions

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2009-01-09

    'Static' structure functions are the probabilistic distributions computed from the square of the light-front wavefunctions of the target hadron. In contrast, the 'dynamic' structure functions measured in deep inelastic lepton-hadron scattering include the effects of rescattering associated with the Wilson line. Initial- and final-state rescattering, neglected in the parton model, can have a profound effect in QCD hard-scattering reactions, producing single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam-Tung relation in Drell-Yan reactions, nuclear shadowing, and non-universal nuclear antishadowing|novel leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also review how 'direct' higher-twist processes--where a proton is produced in the hard subprocess itself--can explain the anomalous proton-to-pion ratio seen in high centrality heavy ion collisions.

  1. Dynamical characteristics of atmospheric aerosols over IG region

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Singh, Ramesh P.; Kumar, Rajesh

    2016-05-01

    The dynamical characteristics of atmospheric aerosols over the Indo-Gangetic (IG) region are primarily dependent on the geographical settings and meteorological conditions. Detailed analysis of multi satellite data and ground observations have been carried out over three different cities i.e. Kanpur, Greater Noida and Amritsar during 2010-2013. Level-3 Moderate Resolution Imaging Spectroradiometer (MODIS) terra daily global grid product with spatial resolution of 1° × 1° shows the mean AOD at 500 nm wavelength value of 0.73, 0.70 and 0.67 with the standard deviation of 0.43, 0.39 and 0.36 respectively over Amritsar, Greater Noida and Kanpur. Our detailed analysis shows characteristic behavior of aerosols from west to east in the IG region depending upon the proximity of desert regions of Arabia. We have observed large influx of dusts from the Thar desert and Arabia peninsula during pre-monsoon season (April-June), highly affecting Amritsar which is close to the desert region.

  2. NMR Studies of Protein Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Xiang

    Available from UMI in association with The British Library. Requires signed TDF. This thesis describes applications of 2D homonuclear NMR techniques to the study of protein structure and dynamics in solution. The sequential assignments for the 3G-residue bovine Pancreatic Polypeptide (bPP) are reported. The secondary and tertiary structure of bPP in solution has been determined from experimental NMR data. bPP has a well defined C-terminal alpha-helix and a rather ordered conformation in the N-terminal region. The two segments are joined by a turn which is poorly defined. Both the N- and the C-terminus are highly disordered. The mean solution structure of bPP is remarkably similar to the crystal structure of avian Pancreatic Polypeptide (aPP). The average conformations of most side-chains from the alpha-helix of bPP in solution are closely similar to those of aPP in the crystalline state. A large number of side-chains of bPP, however, show significant conformational averaging in solution. The 89-residue kringle domain of urokinase from both human and recombinant sources has been investigated. Sequential assignments based primarily on the recombinant sample and the determination of secondary structure are presented. Two helices have been identified; one of these corresponds to that reported for t-PA kringle 2, but does not exist in other kringles with known structures. The second helix is thus far unique to the urokinase kringle. Three antiparallel beta-sheets and three tight turns have also been identified. The tertiary fold of the molecule conforms broadly to that found for other kringles. Three regions in the urokinase kringle exhibit high local mobility; one of these, the Pro56-Pro62 segment, forms part of the proposed binding site. The other two mobile regions are the N- and C-termini which are likely to form the interfaces between the kringle and the other two domains (EGF and protease) in urokinase. The differential dynamic behaviours of the kringle and

  3. Modeling Insurgent Network Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Gabbay, Michael; Thirkill-Mackelprang, Ashley

    2010-03-01

    We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.

  4. Chemical Structure and Dynamics annual report 1997

    SciTech Connect

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

  5. Structure and Dynamics of the Solar Chromosphere

    NASA Technical Reports Server (NTRS)

    Kalkofen, Wolfgang

    1998-01-01

    The problem of chromospheric dynamics and heating consists of two problems: one, concerning the magnetic network on the boundary of supergranulation cells (CB), where the oscillation period is seven minutes, and the other, concerning the cell interior (CI), where the oscillation period is three minutes. The observational data on the oscillations and the emission of radiation can be used to determine the structure and dynamics of the atmosphere provided answers are known to three critical questions, concerning: the nature of the waves powering the bright points, the origin of the observed oscillation periods and the mechanism of chromospheric heating. The recent modeling of the dynamics of the CI, which combines a sophisticated treatment of gas dynamics and radiative transfer in a one-dimensional model with empirical velocity input from the observations, answered the first of these questions: the waves powering K(sub 2upsilon), bright points are propagating acoustic waves. This firm conclusion declares invalid the model of Leibacher & Stein, which explains the observed period with standing acoustic waves in a chromospheric cavity. On the third question, the heating of the chromosphere in the CI, their model predicts that the temperature in the chromosphere is declining in the outward direction up to a height of at least I Mm most of the time, so even the time-average temperature is dropping monotonically in the outward direction, implying that lines formed in the chromosphere up to a height of at least 1 Mm appear in absorption most of the time and everywhere in the CI. The problem of the CI can be resolved with a two-component model, which combines a model for K(sub 2upsilon), bright points with a model for the background. The bright point model has the same aims as the CS94 model, except that the empirical driving from the LRK93 observations is replaced by impulsive excitation, as suggested by the properties of the Klein-Gordon equation.

  6. Structural optimization for nonlinear dynamic response.

    PubMed

    Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S

    2015-09-28

    Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.

  7. Structural Dynamics of the Vault Ribonucleoprotein Particle

    NASA Astrophysics Data System (ADS)

    Casañas, Arnau; Querol, Jordi; Fita, Ignasi; Verdaguer, Núria

    Vaults are ubiquitous, highly conserved, 13 MDa ribonucleoprotein particles, involved in a diversity of cellular processes, including multidrug resistance, transport mechanisms and signal transmission. There are between 104 and 106 vault particles per mammalian cell and they do not trigger autoimmunity. The vault particle shows a hollow barrel-shaped structure organized in two identical moieties, each consisting of 39 copies of the major vault protein (MVP). Other data indicated that vault halves can dissociate at acidic pH. The high resolution, crystal structure of the of the seven N-terminal domains (R1-R7) of MVP, forming the central vault barrel, together with that of the native vault particle (solved at 8 Å resolution), revealed the interactions governing vault association and suggested a pH-dependent mechanism for a reversible dissociation induced by low pH. Vault particles posses many features making them very promising vehicles for the delivery of therapeutic agents including self-assembly, 100 nm size range, emerging atomic-level structural information, natural presence in humans ensuring biocompability, recombinant production system, existing features for targeting species to the large lumen and a dynamic structure that may be controlled for manipulation of drug release kinetics. All these attributes provide vaults with enormous potential as a drug/gene delivery platform.

  8. Response and characteristics of structures subjected to S-H waves

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1984-01-01

    A study of the dynamic characteristics of a coupled translational-rotational system is given. The formulation of the problem considers the soil-structure interaction effects by utilizing the impedance functions at the foundation of a structure. Due to the fact that the coefficient matrix in the characteristic equation is frequency dependent in nature, iterations have to be performed to find the nature frequencies of the system. Examples and discussions are presented. Comparisons of the analytical results from various approaches are also given.

  9. Structural and dynamical properties of complex networks

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab

    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our

  10. Structure and dynamics in Photosystem I

    NASA Astrophysics Data System (ADS)

    Jolley, Craig Charles

    Photosystem I (PSI) is a transmembrane protein complex that uses incident light energy to drive an energetically unfavorable electron transfer reaction across a membrane in the early steps of oxygenic photosynthesis. This electron transfer reaction provides energy for the fixing of carbon dioxide and for the subsequent synthesis of nearly all biological material on Earth. Despite the morphological variety of oxygenic photosynthetic organisms---ranging from single-celled aquatic cyanobacteria to large, complex terrestrial plants---the structure and function of PSI are remarkably well-conserved across phyla. PSI has been the subject of extensive interdisciplinary research involving fields ranging from molecular genetics to condensed matter physics, and many aspects of its function still remain unclear. This study presents a variety of theoretical and experimental approaches to aspects of PSI structure and dynamics. An atomic-level structural model of higher plant PSI has been constructed based on recent protein crystal structures, and provides insight into the evolution of eukaryotic PSI. Time-resolved optical spectroscopic studies of PSI supercomplexes from the green freshwater alga Chlamydomonas reinhardtii illustrate how this organism adapts its photosynthetic apparatus to deal with changing environmental conditions and highlight the importance of structure-function relationships in light-harvesting systems. A novel computational approach using constrained geometric simulations has been used to model a portion of the PSI assembly process, shedding some light on how the heterodimeric PSI reaction center evolved from the more ancient homodimeric photosynthetic reaction centers found in green sulfur bacteria and heliobacteria. A new method is also demonstrated in which constrained geometric simulations are used to flexibly fit a high-resolution protein structure to a low-resolution density map obtained with cryo-electron microscopy (cryo-EM) or low-resolution x

  11. Structural Characteristics of University Engineering Students' Conceptions of Energy.

    ERIC Educational Resources Information Center

    Liu, Xiufeng; Ebenezer, Jazlin; Fraser, Duncan M.

    2002-01-01

    Examines structural characteristics of university engineering students' conceptions of energy elicited through paragraph writing and their relations with categories of their conceptions specific to energy in solution processes identified through interviews. Reports that structures of students' conceptions are characterized primarily by…

  12. Structural dynamic health monitoring of adaptive CFRP structures

    NASA Astrophysics Data System (ADS)

    Kaiser, Stephan; Melcher, Joerg; Breitbach, Elmar J.; Sachau, Delf

    1999-07-01

    The DLR Institute of Structural Mechanics is engaged in the construction and optimization of adaptive structures for aerospace and terrestrial applications. Due to the FFS- Project, one of the recent works of the Institute is the reduction of buffet induced vibration loads at a fin. The construction of modern aircrafts is influenced b the increasing use of fiber composites. They have more specific stiffness and strength properties than metals. On the other hand the layered structure leads to new kinds of damages like delaminations. In the fin interface there are actuators and sensors integrated. Therefore the fin is connected with a controller. For the extension of this adaptive system towards an on-line tool for health monitoring this controller can be used as an identifier of the structure's modal parameters. The most promising procedure is based on MX filters. These filters constitute the filter coefficients from which a fast transformation procedure extracts the modal parameters. The changes of these parameters are related to the location and extent of the damage. So when using the already integrate controller for system identification, one can have a low-cost on-line damage detection for dynamic adaptive structures. First off-line test at CFRP plates have shown the ability to detect delaminations.

  13. Characterization of photonic amorphous structures with different characteristic lengths

    NASA Astrophysics Data System (ADS)

    Wen, Cheng-Chi; Hung, Yu-Chueh

    2016-04-01

    Photonic amorphous structure (PAS) has attracted increasing research attention due to their interesting characteristics, such as noniridescent structural colors and isotropic photonic band gap. In this work, we present PAS with different characteristic lengths and analyze their structural and topological properties. First, a Fourier spectral method was used to solve Cahn-Hilliard equation and generate a spinodal binary phase structure. By changing the time of the evolution of phase field, mobility, and standard deviation, the characteristic length of amorphous structures can be adjusted. We present the numerical analysis based on finite-difference time-domain (FDTD) method to characterize the density of state (DOS) of PAS based on different time of the evolution of phase field. The corresponding spatial Fourier spectrum of PAS is calculated to examine the characteristic length, and the photonic band gap properties will be discussed in association with the characteristic length. These results are crucial for design of new optical materials display devices base on dielectric amorphous photonic structures.

  14. The Shock and Vibration Bulletin. Part 3: Structure Medium Interaction, Case Studies in Dynamics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Structure and medium interactions topics are addressed. Topics include: a failure analysis of underground concrete structures subjected to blast loadings, an optimization design procedure for concrete slabs, and a discussion of the transient response of a cylindrical shell submerged in a fluid. Case studies in dynamics are presented which include an examination of a shock isolation platform for a seasparrow launcher, a discussion of hydrofoil fatigue load environments, and an investigation of the dynamic characteristics of turbine generators and low tuned foundations.

  15. Equilibrium and Dynamical Characteristics of Imidazole Langmuir Monolayers on Graphite Sheets.

    PubMed

    Rodriguez, Javier; Elola, M Dolores; Laria, D

    2015-07-23

    Using molecular dynamics techniques, we examine structural and dynamical characteristics of liquid-like imidazole (Im) monolayers physisorbed onto a planar graphite sheet, at T = 384 K. Our simulations reveal that molecular orientations in the saturated monolayer exhibit a bistable distribution, characterized by an inner parallel arrangement of the molecules in close contact with the substrate and a slanted alignment, in those lying in adjacent, outer locations. Compared to the results found in three-dimensional, bulk phases, the analysis of the spatial correlations between sites participating in hydrogen bonding shows a clear enhancement of the intermolecular interactions, which also leads to stronger dipolar correlations. As a result, the gross structural features of the monolayer can be cast in terms of mesoscopic domains, comprising units articulated via winding hydrogen bonds, that persist along typical time intervals of a few tens of picoseconds. On the dynamical side, a similar comparison of the characteristic decorrelation time for orientational motions shows a 4-fold increment. Contrasting, the reduction of the system dimensionality leads to a larger diffusion constant. Possible substrate-induced anisotropies in the diffusive motions are also investigated.

  16. Nonparametric inference of network structure and dynamics

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  17. Structure, dynamics, and function of biomolecules

    SciTech Connect

    Frauenfelder, H.; Berendzen, J.R.; Garcia, A.; Gupta, G.; Olah, G.A.; Terwilliger, T.C.; Trewhella, J.; Wood, C.C.; Woodruff, W.H.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors enhanced Los Alamos' core competency in Bioscience and Biotechnology by building on present strengths in experimental techniques, theory, high-performance computing, modeling, and simulation applied to biomolecular structure, dynamics, and function. Specifically, the authors strengthened their capabilities in neutron/x-ray scattering, x-ray crystallography, NMR, laser, and optical spectroscopies. Initially they focused on supporting the Los alamos Neutron Science Center (LANSCE) in the design and implementation of new neutron scattering instrumentation, they developed new methods for analysis of scattering data, and they developed new projects to study the structures of biomolecular complexes. The authors have also worked to strengthen interactions between theory and experiment, and between the biological and physical sciences. They sponsored regular meetings of members from all interested LANL technical divisions, and supported two lecture series: ''Biology for Physicists'' and ''Issues in Modern Biology''. They also supported the formation of interdisciplinary/inter-divisional teams to develop projects in science-based bioremediation and an integrated structural biology resource. Finally, they successfully worked with a multidisciplinary team to put forward the Laboratory's Genome and Beyond tactical goal.

  18. Dynamic characteristics of gas-water interfacial plasma under water

    SciTech Connect

    Zheng, S. J.; Zhang, Y. C.; Ke, B.; Ding, F.; Tang, Z. L.; Yang, K.; Zhu, X. D.

    2012-06-15

    Gas-water interfacial plasmas under water were generated in a compact space in a tube with a sandglass-like structure, where two metal wires were employed as electrodes with an applied 35 kHz ac power source. The dynamic behaviors of voltage/current were investigated for the powered electrode with/without water cover to understand the effect of the gas-water interface. It is found that the discharge exhibits periodic pulsed currents after breakdown as the powered electrode is covered with water, whereas the electrical current reveals a damped oscillation with time with a frequency about 10{sup 6} Hz as the powered electrode is in a vapor bubble. By increasing water conductivity, a discharge current waveform transition from pulse to oscillation presents in the water covering case. These suggest that the gas-water interface has a significant influence on the discharge property.

  19. Structure and dynamics of amorphous water ice.

    PubMed

    Laufer, D; Kochavi, E; Bar-Nun, A

    1987-12-15

    Further insight into the structure and dynamics of amorphous water ice, at low temperatures, was obtained by trapping in it Ar, Ne, H2, and D2. Ballistic water-vapor deposition results in the growth of smooth, approximately 1 x 0.2 micrometer2, ice needles. The amorphous ice seems to exist in at least two separate forms, at T < 85 K and at 85 < T < 136.8 K, and transform irreversibly from one form to the other through a series of temperature-dependent metastable states. The channels formed by the water hexagons in the ice are wide enough to allow the free penetration of H2 and D2 into the ice matrix even in the relatively compact cubic ice, resulting in H2-(D2-) to-ice ratios (by number) as high as 0.63. The larger Ar atoms can penetrate only into the wider channels of amorphous ice, and Ne is an intermediate case. Dynamic percolation behavior explains the emergence of Ar and Ne (but not H2 and D2) for the ice, upon warming, in small and big gas jets. The big jets, each containing approximately 5 x 10(10) atoms, break and propel the ice needles. Dynamic percolation also explains the collapse of the ice matrix under bombardment by Ar , at a pressure exceeding 2.6 dyn cm-2, and the burial of huge amounts of gas inside the collapsed matrix, up to an Ar-to-ice of 3.3 (by number). The experimental results could be relevant to comets, icy satellites, and icy grain mantles in dense interstellar clouds.

  20. Structure and dynamics of amorphous water ice

    NASA Technical Reports Server (NTRS)

    Laufer, D.; Kochavi, E.; Bar-Nun, A.; Owen, T. (Principal Investigator)

    1987-01-01

    Further insight into the structure and dynamics of amorphous water ice, at low temperatures, was obtained by trapping in it Ar, Ne, H2, and D2. Ballistic water-vapor deposition results in the growth of smooth, approximately 1 x 0.2 micrometer2, ice needles. The amorphous ice seems to exist in at least two separate forms, at T < 85 K and at 85 < T < 136.8 K, and transform irreversibly from one form to the other through a series of temperature-dependent metastable states. The channels formed by the water hexagons in the ice are wide enough to allow the free penetration of H2 and D2 into the ice matrix even in the relatively compact cubic ice, resulting in H2-(D2-) to-ice ratios (by number) as high as 0.63. The larger Ar atoms can penetrate only into the wider channels of amorphous ice, and Ne is an intermediate case. Dynamic percolation behavior explains the emergence of Ar and Ne (but not H2 and D2) for the ice, upon warming, in small and big gas jets. The big jets, each containing approximately 5 x 10(10) atoms, break and propel the ice needles. Dynamic percolation also explains the collapse of the ice matrix under bombardment by Ar , at a pressure exceeding 2.6 dyn cm-2, and the burial of huge amounts of gas inside the collapsed matrix, up to an Ar-to-ice of 3.3 (by number). The experimental results could be relevant to comets, icy satellites, and icy grain mantles in dense interstellar clouds.

  1. Structure and dynamics of Andromeda's stellar disk

    NASA Astrophysics Data System (ADS)

    Dorman, Claire Elise

    2015-10-01

    Lambda cold dark matter (LambdaCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LambdaCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar 0Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion 150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with Lambda

  2. Dynamics of influence on hierarchical structures

    NASA Astrophysics Data System (ADS)

    Fotouhi, Babak; Rabbat, Michael G.

    2013-08-01

    Dichotomous spin dynamics on a pyramidal hierarchical structure (the Bethe lattice) are studied. The system embodies a number of classes, where a class comprises nodes that are equidistant from the root (head node). Weighted links exist between nodes from the same and different classes. The spin (hereafter state) of the head node is fixed. We solve for the dynamics of the system for different boundary conditions. We find necessary conditions so that the classes eventually repudiate or acquiesce in the state imposed by the head node. The results indicate that to reach unanimity across the hierarchy, it suffices that the bottommost class adopts the same state as the head node. Then the rest of the hierarchy will inevitably comply. This also sheds light on the importance of mass media as a means of synchronization between the topmost and bottommost classes. Surprisingly, in the case of discord between the head node and the bottommost classes, the average state over all nodes inclines towards that of the bottommost class regardless of the link weights and intraclass configurations. Hence the role of the bottommost class is signified.

  3. Structure and dynamics of electrorheological fluids

    SciTech Connect

    Martin, J.E.; Odinek, J.; Halsey, T.C.; Kamien, R.

    1998-01-01

    We have used two-dimensional light scattering to study the structure and dynamics of a single-scattering electrorheological fluid in the quiescent state and in steady and oscillatory shear. Studies of the quiescent fluid show that particle columns grow in two stages. Particles first chain along the electric field, causing scattering lobes to appear orthogonal to the field, and then aggregate into columns, causing the scattering lobes to move to smaller angles. Column formation can be understood in terms of a thermal coarsening model we present, whereas the early-time scattering in the direction parallel to the field can be compared to the theory of line liquids. In simple shear the scattering lobes are inclined in the direction of fluid vorticity, in detailed agreement with the independent droplet model of the shear thinning viscosity. In oscillatory shear the orientation of the scattering lobes varies nonsinusoidally. This nonlinear dynamics is described by a kinetic chain model, which provides a theory of the nonlinear shear rheology in arbitrary shear flows. {copyright} {ital 1998} {ital The American Physical Society}

  4. Generalized Wishart distribution for probabilistic structural dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, Sondipon

    2010-04-01

    An accurate and efficient uncertainty quantification of the dynamic response of complex structural systems is crucial for their design and analysis. Among the many approaches proposed, the random matrix approach has received significant attention over the past decade. In this paper two new random matrix models, namely (1) generalized scalar Wishart distribution and (2) generalized diagonal Wishart distribution have been proposed. The central aims behind the proposition of the new models are to (1) improve the accuracy of the statistical predictions, (2) simplify the analytical formulations and (3) improve computational efficiency. Identification of the parameters of the newly proposed random matrix models has been discussed. Closed-form expressions have been derived using rigorous analytical approaches. It is considered that the dynamical system is proportionally damped and the mass and stiffness properties of the system are random. The newly proposed approaches are compared with the existing Wishart random matrix model using numerical case studies. Results from the random matrix approaches have been validated using an experiment on a vibrating plate with randomly attached spring-mass oscillators. One hundred nominally identical samples have been created and separately tested within a laboratory framework. Relative merits and demerits of different random matrix formulations are discussed and based on the numerical and experimental studies the recommendation for the best model has been given. A simple step-by-step method for implementing the new computational approach in conjunction with general purpose finite element software has been outlined.

  5. Lagrangian coherent structures and inertial particle dynamics

    NASA Astrophysics Data System (ADS)

    Sudharsan, M.; Brunton, Steven L.; Riley, James J.

    2016-03-01

    In this work we investigate the dynamics of inertial particles using finite-time Lyapunov exponents (FTLE). In particular, we characterize the attractor and repeller structures underlying preferential concentration of inertial particles in terms of FTLE fields of the underlying carrier fluid. Inertial particles that are heavier than the ambient fluid (aerosols) attract onto ridges of the negative-time fluid FTLE. This negative-time FTLE ridge becomes a repeller for particles that are lighter than the carrier fluid (bubbles). We also examine the inertial FTLE (iFTLE) determined by the trajectories of inertial particles evolved using the Maxey-Riley equations with nonzero Stokes number and density ratio. Finally, we explore the low-pass filtering effect of Stokes number. These ideas are demonstrated on two-dimensional numerical simulations of the unsteady double-gyre flow.

  6. Lagrangian coherent structures and inertial particle dynamics.

    PubMed

    Sudharsan, M; Brunton, Steven L; Riley, James J

    2016-03-01

    In this work we investigate the dynamics of inertial particles using finite-time Lyapunov exponents (FTLE). In particular, we characterize the attractor and repeller structures underlying preferential concentration of inertial particles in terms of FTLE fields of the underlying carrier fluid. Inertial particles that are heavier than the ambient fluid (aerosols) attract onto ridges of the negative-time fluid FTLE. This negative-time FTLE ridge becomes a repeller for particles that are lighter than the carrier fluid (bubbles). We also examine the inertial FTLE (iFTLE) determined by the trajectories of inertial particles evolved using the Maxey-Riley equations with nonzero Stokes number and density ratio. Finally, we explore the low-pass filtering effect of Stokes number. These ideas are demonstrated on two-dimensional numerical simulations of the unsteady double-gyre flow.

  7. Dynamic structure factor of vibrating fractals.

    PubMed

    Reuveni, Shlomi; Klafter, Joseph; Granek, Rony

    2012-02-10

    Motivated by novel experimental work and the lack of an adequate theory, we study the dynamic structure factor S(k,t) of large vibrating fractal networks at large wave numbers k. We show that the decay of S(k,t) is dominated by the spatially averaged mean square displacement of a network node, which evolves subdiffusively in time, ((u[over →](i)(t)-u[over →](i)(0))(2))∼t(ν), where ν depends on the spectral dimension d(s) and fractal dimension d(f). As a result, S(k,t) decays as a stretched exponential S(k,t)≈S(k)e(-(Γ(k)t)(ν)) with Γ(k)∼k(2/ν). Applications to a variety of fractal-like systems are elucidated.

  8. Chromatin Higher-order Structure and Dynamics

    PubMed Central

    Woodcock, Christopher L.; Ghosh, Rajarshi P.

    2010-01-01

    The primary role of the nucleus as an information storage, retrieval, and replication site requires the physical organization and compaction of meters of DNA. Although it has been clear for many years that nucleosomes constitute the first level of chromatin compaction, this contributes a relatively small fraction of the condensation needed to fit the typical genome into an interphase nucleus or set of metaphase chromosomes, indicating that there are additional “higher order” levels of chromatin condensation. Identifying these levels, their interrelationships, and the principles that govern their occurrence has been a challenging and much discussed problem. In this article, we focus on recent experimental advances and the emerging evidence indicating that structural plasticity and chromatin dynamics play dominant roles in genome organization. We also discuss novel approaches likely to yield important insights in the near future, and suggest research areas that merit further study. PMID:20452954

  9. Dynamic actin structures stabilized by profilin.

    PubMed Central

    Finkel, T; Theriot, J A; Dise, K R; Tomaselli, G F; Goldschmidt-Clermont, P J

    1994-01-01

    We describe the production and analysis of clonal cell lines in which we have overexpressed human profilin, a small ubiquitous actin monomer binding protein, to assess the role of profilin on actin function in vivo. The concentration of filamentous actin is increased in cells with higher profilin levels, and actin filament half-life measured in these cells is directly proportional to the steady-state profilin concentration. The distribution of actin filaments is altered by profilin overexpression. While parallel actin bundles crossing the cells are virtually absent in cells overexpressing profilin, the submembranous actin network of these cells is denser than in control cells. These results suggest that in vivo profilin regulates the stability, and thereby distribution, of specific dynamic actin structures. Images PMID:8108438

  10. Chemical structure and dynamics. Annual report 1994

    SciTech Connect

    Colson, S.D.

    1995-07-01

    The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

  11. Dynamics and control of flexible multibody structures

    NASA Astrophysics Data System (ADS)

    Stemple, Timothy John

    The goal of this study is to present a method for deriving equations of motion capable of modeling the controlled motion of an open loop multibody structure comprised of an arbitrary number of rigid bodies and slender beams. The procedure presented here for deriving equations of motion for flexible multibody systems is carried out by means of the Principle of Virtual Work (often referred to in the dynamics literature as d'Alembert's Principle). We first consider the motion of a general flexible body relative to the inertial space, and then derive specific formulas for both rigid bodies and slender beams. Next, we make a small motions assumption, with the end result being equations for a Rayleigh beam, which include terms which account for the axial motion, due to bending, of points on the beam central axis. This process includes a novel application of the exponential form of an orthogonal matrix, which is ideally suited for truncation. Then, the generalized coordinates and quasi-velocities used in the mathematical model, including those needed in the spatial discretization process of the beam equations are discussed. Furthermore, we develop a new set of recursive relations used to compute the inertial motion of a body in terms of the generalized coordinates and quasi-velocities. This research was motivated by the desire to model the controlled motion of a flexible space robot, and consequently, we use the multibody dynamics equations to simulate the motion of such a structure, providing a demonstration of the computer program. For this particular example we make use of a new sequence of shape functions, first used by Meirovitch and Stemple to model a two dimensional building frame subjected to earthquake excitations.

  12. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    SciTech Connect

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-03-20

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  13. Annual Report 1998: Chemical Structure and Dynamics

    SciTech Connect

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  14. Multiscale Dynamics of Solar Magnetic Structures

    NASA Technical Reports Server (NTRS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries.We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  15. Dynamic characteristics of power-tower space stations with 15-foot truss bays

    NASA Technical Reports Server (NTRS)

    Dorsey, J. T.

    1986-01-01

    A power tower space station concept which generates power with photovoltaic arrays and where the truss structure has a bay size of 15 ft is described. Rigid body and flexible body dynamic characteristics are presented for a 75-kW Initial Operating Capability (IOC) and 150-kW and 300-kW growth stations. The transient response of the IOC and 300-kW growth stations to shuttle dock, orbit reboost, and mobile remote manipulator system translation loads are studied. Displacements, accelerations, and bending moments at various locations on the IOC and 300-kW growth stations are presented.

  16. Measurement of human pilot dynamic characteristics in flight simulation

    NASA Technical Reports Server (NTRS)

    Reedy, James T.

    1987-01-01

    Fast Fourier Transform (FFT) and Least Square Error (LSE) estimation techniques were applied to the problem of identifying pilot-vehicle dynamic characteristics in flight simulation. A brief investigation of the effects of noise, input bandwidth and system delay upon the FFT and LSE techniques was undertaken using synthetic data. Data from a piloted simulation conducted at NASA Ames Research Center was then analyzed. The simulation was performed in the NASA Ames Research Center Variable Stability CH-47B helicopter operating in fixed-basis simulator mode. The piloting task consisted of maintaining the simulated vehicle over a moving hover pad whose motion was described by a random-appearing sum of sinusoids. The two test subjects used a head-down, color cathode ray tube (CRT) display for guidance and control information. Test configurations differed in the number of axes being controlled by the pilot (longitudinal only versus longitudinal and lateral), and in the presence or absence of an important display indicator called an 'acceleration ball'. A number of different pilot-vehicle transfer functions were measured, and where appropriate, qualitatively compared with theoretical pilot- vehicle models. Some indirect evidence suggesting pursuit behavior on the part of the test subjects is discussed.

  17. Dynamics of Subauroral Polarization Stream (SAPS) Structures

    NASA Astrophysics Data System (ADS)

    Sazykin, S. Y.; Coster, A. J.; Huba, J.; Ridley, A. J.; Erickson, P. J.; Foster, J. C.; Baker, J. B. H.; Wolf, R.

    2015-12-01

    The Subauroral Polarization Stream (SAPS) flow structures are narrow ionospheric channels of fast (in excess of 100 m/s) westward drift just outside the equatorward edge of the diffuse aurora in the dusk-to-midnight local time sector. Other terms for this phenomenon include subauroral Ion Drift (SAID) events and Polarization Jets. SAPS structures represent a striking departure from the commonly-used two-cell convection pattern. They are thought to arise from the displacement of the downward region-2 Birkeland currents on the dusk side equatorward of the low-latitude boundary of the auroral oval during times of changing high-latitude convection. In this paper, we will use several event simulations with the SAMI3-RCM numerical model (a self-consistent ionosphere-inner magnetosphere model) and RCM-GITM (a self-consistent model of the ionosphere-thermosphere-inner magnetosphere) to analyze the relative roles of changes in the IMF Bz component, ionospheric electron density depletions, and thermospheric modifications in controlling the dynamics of SAPS. Simulation results will be compared to multi-instrument ionospheric observations.

  18. Dynamics of wake structure in clapping propulsion

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2009-11-01

    Some animals such as insects and frogs use a pair of symmetric flaps for locomotion. In some cases, these flappers operate in close proximity or even touch each other. In order to understand the underlying physics of these kinds of motion, we have studied the wake structures induced by clapping and their associated thrust performance. A simple mechanical model with two acrylic plates was used to simulate the power stroke of the clapping motion and three-dimensional flow fields were obtained using defocusing digital particle image velocimetry. Our studies show that the process of vortex connection plays a critical role in forming a downstream closed vortex loop. Under some kinematic conditions, this vortex loop changes its shape dynamically, which is analogous to the process of an elliptical vortex ring switching its minor and major axis. As the length of the plate along the rotating shaft decreases to change an aspect ratio, the downstream motion of the vortex is retarded due to the outward motion of side edge vortices and less propulsive force is generated per the surface area of the plate. The impact of compliance and stroke angle of the plate on wake structures and thrust magnitudes are also presented.

  19. Digital system for structural dynamics simulation

    SciTech Connect

    Krauter, A.I.; Lagace, L.J.; Wojnar, M.K.; Glor, C.

    1982-11-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  20. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  1. Electronic Structure and Dynamics of Nitrosyl Porphyrins

    PubMed Central

    Scheidt, W. Robert; Barabanschikov, Alexander; Pavlik, Jeffrey W.; Silvernail, Nathan J.; Sage, J. Timothy

    2010-01-01

    Nitric oxide (NO) is a signalling molecule employed to regulate essential physiological processes. Thus, there is great interest in understanding the interaction of NO with heme, which is found at the active site of many proteins that recognize NO, as well those involved in its creation and elimination. We summarize what we have learned from investigations of the structure, vibrational properties, and conformational dynamics of NO complexes with ferrous porphyrins, as well as computational investigations in support of these experimental studies. Multi-temperature crystallographic data reveals variations in the orientational disorder of the nitrosyl ligand. In some cases, equilibria among NO orientations can be analyzed using the vant Hoff relationship and the free energy and the enthalpy of the solid-state transitions evaluated experimentally. DFT calculations predict that intrinsic barriers to torsional rotations are smaller than thermal energies at physiological temperatures, and the coincidence of observed NO orientations with minima in molecular mechanics potentials indicates that nonbonded interactions with other chemical groups control the conformational freedom of the bound NO. In favorable cases, reduced disorder at low temperatures exposes subtle structural features including off-axis tilting of the Fe–NO bond and anisotropy of the equatorial Fe–N bonds. We also present the results of nuclear resonance vibrational spectroscopy (NRVS) measurements on oriented single crystals of [Fe(TPP)(NO)] and [Fe(TPP)(1-MeIm)(NO)]. These describe the anisotropic vibrational motion of Fe in five-and six-coordinate heme-NO complexes, and reveal vibrations of all Fe-ligand bonds as well as low frequency molecular distortions associated with the doming of the heme upon ligand binding. Quantitative comparison with predicted frequencies, amplitudes and directions facilitates identification of vibrational modes, but also suggests that commonly used DFT functionals are not

  2. Structural and dynamic properties of vitreous and crystalline barium disilicate: molecular dynamics simulation and Raman scattering experiments

    NASA Astrophysics Data System (ADS)

    Rodrigues, A. M.; Rino, J. P.; Pizani, P. S.; Zanotto, E. D.

    2016-11-01

    In this paper, we use a molecular dynamics simulation and Raman scattering measurements to study the vibrational and structural characteristics of barium disilicate, BaSi2O5, in vitreous and crystalline states. Our proposed atomic interaction potential describes the structural and dynamic behaviour of this material very well and can also be used for further extended studies. In addition, Raman spectroscopy enabled validation of the predictions of the potential by comparing the simulated vibrational density of states with the spectrum of the material in its vitreous state. Furthermore, we characterized the kinetics of the crystallization process through in situ Raman measurements as a function of temperature.

  3. Solitary waves and nonlinear dynamic coherent structures in magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Tankeyev, A. P.; Smagin, V. V.; Borich, M. A.; Zhuravlev, A. S.

    2009-03-01

    Within the framework of the extended nonlinear Schrödinger equation (ENSE), two types of nonlinear states of magnetization in a ferromagnet-dielectric-metal metamagnetic structure have been obtained and investigated. These states have an internal structure; e.g., a periodic sequence of compound solitons is formed by kink-antikink pairs (shock waves), and coherent periodic breather structures are formed by “bright” quasi-solitons. Conditions have been found under which the envelope of these states is described by a modified Korteweg-de Vries (mKdV) equation. It is shown that the compound solitons are described by an mKdV equation with repulsion, and the breather structures, by an mKdV equation with attraction. It is shown also that the characteristic properties of the solutions are determined by the sign of the group-velocity dispersion rather than by the sign of the group velocity itself. The results obtained can be used for searching new nonlinear dynamic coherent structures, e.g., compound solitons and breathers in high-dispersion magnetic metamaterials.

  4. Modeling flood event characteristics using D-vine structures

    NASA Astrophysics Data System (ADS)

    Shafaei, Maryam; Fakheri-Fard, Ahmad; Dinpashoh, Yagob; Mirabbasi, Rasoul; De Michele, Carlo

    2016-08-01

    The authors investigate the use of drawable (D-)vine structures to model the dependences existing among the main characteristics of a flood event, i.e., flood volume, flood peak, duration, and peak time. Firstly, different three- and four-dimensional probability distributions were built considering all the permutations of the conditioning variables. The Frank copula was used to model the dependence of each pair of variables. Then, the appropriate D-vine structures were selected using information criteria and a goodness-of-fit test. The influence of varying the data length on the selected D-vine structure was also investigated. Finally, flood event characteristics were simulated using the four-dimensional D-vine structure.

  5. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome.

    PubMed

    Hellyer, Peter J; Scott, Gregory; Shanahan, Murray; Sharp, David J; Leech, Robert

    2015-06-17

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome.

  6. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome

    PubMed Central

    Hellyer, Peter J.; Scott, Gregory; Shanahan, Murray; Sharp, David J.

    2015-01-01

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. PMID:26085630

  7. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome.

    PubMed

    Hellyer, Peter J; Scott, Gregory; Shanahan, Murray; Sharp, David J; Leech, Robert

    2015-06-17

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. PMID:26085630

  8. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-7. Fluid-structure dynamics

    SciTech Connect

    Ma, D.C.; Moody, F.J.

    1985-01-01

    Fluid-structure dynamics is an important subject in various fields such as nuclear power, petrochemical, offshore, and aerospace industries. The term ''fluid-structure dynamics'' covers the structural response, fluid transients and their interactions (fluid-structure interactions) of fluid-structure systems can be either: (1) fluid contained within structures; or (2) structures surrounded by fluid. Examples of (1) are pressure waves in piping and seismic response of liquid-storage tanks. Examples of (2) are fluid-induced vibration and dynamic response of submerged components. The response of fluid-structure systems can be either vibrational in nature or highly transient depending on the characteristics of external loadings. The aim of this volume is to provide a forum for bringing together recent research activities in various areas of fluid-structure dynamics. It is hoped that this volume will be beneficial for future research and upgrade the current analysis and design methodology of fluid-structure systems under dynamic loadings.

  9. Bioinspired, dynamic, structured surfaces for biofilm prevention

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  10. Structural dynamics technology research in NASA: Perspective on future needs

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The perspective of a NASA ad hoc study group on future research needs in structural dynamics within the aerospace industry is presented. The common aspects of the design process across the industry are identified and the role of structural dynamics is established through a discussion of various design considerations having their basis in structural dynamics. The specific structural dynamics issues involved are identified and assessed as to their current technological status and trends. Projections of future requirements based on this assessment are made and areas of research to meet them are identified.

  11. Structural dynamics and vibrations of damped, aircraft-type structures

    NASA Technical Reports Server (NTRS)

    Young, Maurice I.

    1992-01-01

    Engineering preliminary design methods for approximating and predicting the effects of viscous or equivalent viscous-type damping treatments on the free and forced vibration of lightly damped aircraft-type structures are developed. Similar developments are presented for dynamic hysteresis viscoelastic-type damping treatments. It is shown by both engineering analysis and numerical illustrations that the intermodal coupling of the undamped modes arising from the introduction of damping may be neglected in applying these preliminary design methods, except when dissimilar modes of these lightly damped, complex aircraft-type structures have identical or nearly identical natural frequencies. In such cases, it is shown that a relatively simple, additional interaction calculation between pairs of modes exhibiting this 'modal response' phenomenon suffices in the prediction of interacting modal damping fractions. The accuracy of the methods is shown to be very good to excellent, depending on the normal natural frequency separation of the system modes, thereby permitting a relatively simple preliminary design approach. This approach is shown to be a natural precursor to elaborate finite element, digital computer design computations in evaluating the type, quantity, and location of damping treatment.

  12. Dynamic insight into protein structure utilizing red edge excitation shift.

    PubMed

    Chattopadhyay, Amitabha; Haldar, Sourav

    2014-01-21

    Proteins are considered the workhorses in the cellular machinery. They are often organized in a highly ordered conformation in the crowded cellular environment. These conformations display characteristic dynamics over a range of time scales. An emerging consensus is that protein function is critically dependent on its dynamics. The subtle interplay between structure and dynamics is a hallmark of protein organization and is essential for its function. Depending on the environmental context, proteins can adopt a range of conformations such as native, molten globule, unfolded (denatured), and misfolded states. Although protein crystallography is a well established technique, it is not always possible to characterize various protein conformations by X-ray crystallography due to transient nature of these states. Even in cases where structural characterization is possible, the information obtained lacks dynamic component, which is needed to understand protein function. In this overall scenario, approaches that reveal information on protein dynamics are much appreciated. Dynamics of confined water has interesting implications in protein folding. Interfacial hydration combines the motion of water molecules with the slow moving protein molecules. The red edge excitation shift (REES) approach becomes relevant in this context. REES is defined as the shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of absorption spectrum. REES arises due to slow rates (relative to fluorescence lifetime) of solvent relaxation (reorientation) around an excited state fluorophore in organized assemblies such as proteins. Consequently, REES depends on the environment-induced motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. In the case of a protein, the confined water in the protein creates a dipolar field that acts as the solvent for a fluorophore

  13. Dynamic insight into protein structure utilizing red edge excitation shift.

    PubMed

    Chattopadhyay, Amitabha; Haldar, Sourav

    2014-01-21

    Proteins are considered the workhorses in the cellular machinery. They are often organized in a highly ordered conformation in the crowded cellular environment. These conformations display characteristic dynamics over a range of time scales. An emerging consensus is that protein function is critically dependent on its dynamics. The subtle interplay between structure and dynamics is a hallmark of protein organization and is essential for its function. Depending on the environmental context, proteins can adopt a range of conformations such as native, molten globule, unfolded (denatured), and misfolded states. Although protein crystallography is a well established technique, it is not always possible to characterize various protein conformations by X-ray crystallography due to transient nature of these states. Even in cases where structural characterization is possible, the information obtained lacks dynamic component, which is needed to understand protein function. In this overall scenario, approaches that reveal information on protein dynamics are much appreciated. Dynamics of confined water has interesting implications in protein folding. Interfacial hydration combines the motion of water molecules with the slow moving protein molecules. The red edge excitation shift (REES) approach becomes relevant in this context. REES is defined as the shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of absorption spectrum. REES arises due to slow rates (relative to fluorescence lifetime) of solvent relaxation (reorientation) around an excited state fluorophore in organized assemblies such as proteins. Consequently, REES depends on the environment-induced motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. In the case of a protein, the confined water in the protein creates a dipolar field that acts as the solvent for a fluorophore

  14. Entropy-driven structure and dynamics in carbon nanocrystallites

    SciTech Connect

    McNutt, Nicholas W; Wang, Qifei; Rios, Orlando; Keffer, David J

    2014-01-01

    New carbon composite materials are being developed that contain carbon nanocrystallites in the range of 5 17 A in radius dispersed within an amorphous carbon matrix. Evaluating the applicability of these materials for use in battery electrodes requires a molecular-level understanding of the thermodynamic, structural, and dynamic properties of the nanocrystallites. Herein, molecular dynamics simulations reveal the molecular-level mechanisms for such experimental observations as the increased spacing between carbon planes in nanocrystallites as a function of decreasing crystallite size. As the width of this spacing impacts Li-ion capacity, an explanation of the origin of this distance is relevant to understanding anode performance. It is thus shown that the structural configuration of these crystallites is a function of entropy. The magnitude of out-of-plane ripples, binding energy between layers, and frequency of characteristic planar modes are reported over a range of nanocrystallite sizes and temperatures. This fundamental information for layered carbon nanocrystallites may be used to explain enhanced lithium ion diffusion within the carbon composites.

  15. A Molecular Dynamics Study of the Structure-Dynamics Relationships of Supercooled Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Soklaski, Ryan

    Central to the field of condensed matter physics is a decades old outstanding problem in the study of glasses -- namely explaining the extreme slowing of dynamics in a liquid as it is supercooled towards the so-called glass transition. Efforts to universally describe the stretched relaxation processes and heterogeneous dynamics that characteristically develop in supercooled liquids remain divided in both their approaches and successes. Towards this end, a consensus on the role that atomic and molecular structures play in the liquid is even more tenuous. However, mounting material science research efforts have culminated to reveal that the vast diversity of metallic glass species and their properties are rooted in an equally-broad set of structural archetypes. Herein lies the motivation of this dissertation: the detailed information available regarding the structure-property relationships of metallic glasses provides a new context in which one can study the evolution of a supercooled liquid by utilizing a structural motif that is known to dominate the glass. Cu64Zr36 is a binary alloy whose good glass-forming ability and simple composition makes it a canonical material to both empirical and numerical studies. Here, we perform classical molecular dynamics simulations and conduct a comprehensive analysis of the dynamical regimes of liquid Cu64Zr36, while focusing on the roles played by atomic icosahedral ordering -- a structural motif which ultimately percolates the glass' structure. Large data analysis techniques are leveraged to obtain uniquely detailed structural and dynamical information in this context. In doing so, we develop the first account of the origin of icosahedral order in this alloy, revealing deep connections between this incipient structural ordering, frustration-limited domain theory, and recent important empirical findings that are relevant to the nature of metallic liquids at large. Furthermore, important dynamical landmarks such as the breakdown

  16. Effect of temperature on the dynamic characteristics of the glass-carbon fiber hybrid composites

    NASA Astrophysics Data System (ADS)

    Hidayat, Yon Afif; Susilo, Didik Djoko; Raharjo, Wijang W.

    2016-03-01

    This study aimed to investigate the effect of temperature on the dynamic characteristics of hybrid composites. Hybrid composites consisting of unsaturated polyester resin and glass fiber reinforced with carbon fiber. The volume fraction used in this study was 0.4. The hybrid composite was made using hand lay-up technique. The dynamic characteristics were obtained through vibration testing. The testing was conducted according to ASTM E756. The variables studied were composite without heating, heating at 100 °C, 200 °C and 280 °C. The experiments were done in three mounting configurations, i.e. upright, downward and horizontal configurations. The natural frequency and damping ratio was determined using half-power bandwidth method. The results showed that heating of composite structure affects the natural frequency and damping ratio of the hybrid composite. Heating until 100 °C will increase the natural frequency of the hybrid composite and decrease the damping ratio, but heating at the temperature above 100 °C will decrease the natural frequency and will damage the hybrid composite structure. The composite mounting configurations do not give significant effect to natural frequency and damping ratio of the hybrid composites.

  17. Needs and trends in structural dynamics

    NASA Technical Reports Server (NTRS)

    Morosow, G.; Dublin, M.; Kordes, E. E.

    1978-01-01

    The paper discusses dynamic analyses and testing of aerospace vehicles and the application of such analyses and testing to nonaerospace fields. Items covered in the section on dynamic analyses of aerospace vehicles include self-induced and forced oscillatory loads, approaches to dynamic modeling and analysis, nonlinear analyses, and integrated dynamics design and optimization. Items covered in the section on the dynamic testing of aerospace vehicles include integrated test philosophy, test facilities, and ways of improving performance and reducing costs. The nonaerospace applications that are discussed include ground and water transportation, medicine, and nuclear power plants.

  18. On the modal characteristics of damaging structures subjected to earthquakes

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Mossucca, Antonello; Nigro, Antonella; Nigro, Domenico

    2015-04-01

    Structural Health Monitoring, especially for structures located in seismic prone areas, has assumed a meaning of great importance in last years, for the possibility to make a more objective and more rapid estimation of the damage occurred on buildings after a seismic event. In the last years many researchers are working to set-up new methodologies for Non-destructive Damage Evaluation based on the variation of the dynamic behaviour of structures under seismic loads. The NDE methods for damage detection and evaluation can be classified into four levels, according to the specific criteria provided by the Rytter. Each level of identification is correlated with specific information related to monitored structure. In fact, by increasing the level it is possible to obtain more information about the state of the health of the structures, to know if damage occurred on the structures, to quantify and localize the damage and to evaluate its impact on the monitored structure. Several authors discussed on the possibility to use the mode shape curvature to localize damage on structural elements, for example, by applying the curvature-based method to frequency response function instead of mode shape, and demonstrated the potential of this approach by considering real data. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. In earthquake engineering field, the recourse to experimental research is necessary to understand the mechanical behaviour of the various structural and non-structural components. In this paper a new methodology to detect and localize a possible damage occurred on a framed structure after an earthquake is presented and discussed. The main outcomes retrieved from many numerical non linear dynamic models of reinforced concrete framed structures characterized by 3, 5 and 8 floors with different geometric configurations and designed for gravity loads only

  19. Structure and dynamics of ultrathin organic films

    NASA Astrophysics Data System (ADS)

    Kiktyeva, Tatyana A.

    Existing and newly developed nonlinear optical methods have been used to characterize molecular structure, orientation and dynamics at interfaces. Optical second harmonic generation (SHG) studies have been conducted on molecular films of the organic dyes, rhodamine 6G and malachite green, adsorbed at the fused silica/air interface. The second harmonic response from the organic dye films was found to be a non-monotonic function of the surface concentration with discontinuities corresponding to completion of successive monolayers. This behavior reflects ordering of molecular adlayers, which extends for several layers. Polarized SHG studies in conjunction with optical absorbance and fluorescence measurements were used to determine the type of interactions responsible for the adsorption in the ordered layers. The results indicate that the well-defined order within the first layer is due to the specific adsorbate-substrate interactions. Orientation in subsequent layers is teed by adsorbate-adsorbate interactions, dependent on the nature of the adsorbate and consequently on its orientation within the first layer. These results provide a direct measure of the extent of the interfacial ordering and molecular interactions at the solid/air interface and can be used to determine an adsorbate's filling factor. Time and frequency resolved vibrational spectra of a monolayer of amphiphilic molecules at the CaF2/air interface were investigated using infrared-visible sum frequency generation. Vibrational wave packet dynamics following coherent excitation of CH3 vibrational modes with broad bandwidth infrared pulses is reported. The induced macroscopic polarization displays quantum interference effects (quantum beats) and decays on a time scale dependent on the nature of the interfacial environment. These observations provide a link between the degree of structural order of the monolayer and the vibrational coherence lifetime. Monitoring interfacial wave packet dynamics represents a

  20. Optimizing Dynamical Network Structure for Pinning Control.

    PubMed

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-12

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  1. Dynamics of a complex streamer structure

    NASA Astrophysics Data System (ADS)

    Lehtinen, N. G.; Ostgaard, N.; Inan, U.

    2014-12-01

    Streamer corona formation and propagation is an important process in the development of lightning. In order to understand its dynamics, the streamer front velocity is calculated in a 1D model with curvature. We show that streamers may only propagate only the presence of mechanisms such as electron drift, electron diffusion and photoionization. The results indicate, in particular, that: (1) the effect of photoionization on the streamer velocity for both positive and negative streamers is mostly determined by the photoionization length, with a weaker dependence on the amount of photoionization; (2) the electron drift may increase the velocity of the negative streamers but has an opposite effect on the positive streamers; (3) the contributions of photoionization and electron diffusion to the velocity are decreased for positive curvature, i.e., convex fronts, while the contribution of electron drift is independent of curvature. These results are used in a fractal model in which the front propagation velocity is simulated as the cluster growth probability [Niemeyer et al, 1984, doi:10.1103/PhysRevLett.52.1033]. In the case when the photoionization is the main mechanism which determines the streamer propagation, the emerging transverse size of the streamers is of the order of the photoionization length, and at the larger scale the streamer structure is a fractal similar to the one obtained in a diffusion-limited aggregation system.

  2. Optimizing Dynamical Network Structure for Pinning Control

    NASA Astrophysics Data System (ADS)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  3. Effect of non-structural elements on the dynamic behaviour of moment-resisting framed structures

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Auletta, Gianluca

    2015-04-01

    Effects of earthquakes on building structures have studied from many researchers on the recent scientific and technique literature. The phenomenon is clear: inertia forces are governed from structural and non-structural stiffness and masses. The distribution of seismic lateral loads and their magnitude are strongly correlated to the fundamental period of the structure. Therefore, an accurate evaluation of the fundamental period is a crucial aspect for both static and dynamic seismic analyses. In fact, the fundamental period determines the global seismic demand through the spectral acceleration directly evaluated from the linear and/or nonlinear acceleration response spectra (provided from codes or derived from detailed analyses of site effects). Recent earthquakes highlighted the significant effects derived from the interaction between structural and non-structural elements on the main dynamic parameters of a structure and on the lateral distribution of the inertial forces. Usually, non-structural elements acts together with the structural elements, adding both masses and stiffness. Using numerical and experimental campaigns, many researchers have studied the effects of infill walls on the dynamic behaviour of buildings and several simplified models have been proposed to take into account the presence of non-structural elements within linear and nonlinear numerical models. As example, Kliner and Bertero tested a 1/3 scaled structure (moment-resisting infilled frame model) and determine its behaviour during earthquakes. They found that the infills increased the stiffness of the frame in about 5 times. Consequently, in these cases the fundamental period reduces and the inertia forces generally increases. Meharabi et al. tested a 6-storey, three bay, reinforced concrete moment resisting frame, designed according to the provision of UBC-91, and they shown that the lateral force resistance of an infilled frame was higher than that of bare frame. It was concluded that a

  4. Statistical characteristics of dynamics for population migration driven by the economic interests

    NASA Astrophysics Data System (ADS)

    Huo, Jie; Wang, Xu-Ming; Zhao, Ning; Hao, Rui

    2016-06-01

    Population migration typically occurs under some constraints, which can deeply affect the structure of a society and some other related aspects. Therefore, it is critical to investigate the characteristics of population migration. Data from the China Statistical Yearbook indicate that the regional gross domestic product per capita relates to the population size via a linear or power-law relation. In addition, the distribution of population migration sizes or relative migration strength introduced here is dominated by a shifted power-law relation. To reveal the mechanism that creates the aforementioned distributions, a dynamic model is proposed based on the population migration rule that migration is facilitated by higher financial gains and abated by fewer employment opportunities at the destination, considering the migration cost as a function of the migration distance. The calculated results indicate that the distribution of the relative migration strength is governed by a shifted power-law relation, and that the distribution of migration distances is dominated by a truncated power-law relation. These results suggest the use of a power-law to fit a distribution may be not always suitable. Additionally, from the modeling framework, one can infer that it is the randomness and determinacy that jointly create the scaling characteristics of the distributions. The calculation also demonstrates that the network formed by active nodes, representing the immigration and emigration regions, usually evolves from an ordered state with a non-uniform structure to a disordered state with a uniform structure, which is evidenced by the increasing structural entropy.

  5. Kinematics and dynamics of deployable structures with scissor-like-elements based on screw theory

    NASA Astrophysics Data System (ADS)

    Sun, Yuantao; Wang, Sanmin; Mills, James K.; Zhi, Changjian

    2014-07-01

    Because the deployable structures are complex multi-loop structures and methods of derivation which lead to simpler kinematic and dynamic equations of motion are the subject of research effort, the kinematics and dynamics of deployable structures with scissor-like-elements are presented based on screw theory and the principle of virtual work respectively. According to the geometric characteristic of the deployable structure examined, the basic structural unit is the common scissor-like-element(SLE). First, a spatial deployable structure, comprised of three SLEs, is defined, and the constraint topology graph is obtained. The equations of motion are then derived based on screw theory and the geometric nature of scissor elements. Second, to develop the dynamics of the whole deployable structure, the local coordinates of the SLEs and the Jacobian matrices of the center of mass of the deployable structure are derived. Then, the equivalent forces are assembled and added in the equations of motion based on the principle of virtual work. Finally, dynamic behavior and unfolded process of the deployable structure are simulated. Its figures of velocity, acceleration and input torque are obtained based on the simulate results. Screw theory not only provides an efficient solution formulation and theory guidance for complex multi-closed loop deployable structures, but also extends the method to solve dynamics of deployable structures. As an efficient mathematical tool, the simper equations of motion are derived based on screw theory.

  6. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    SciTech Connect

    Demontis, Pierfranco; Suffritti, Giuseppe B.; Gulín-González, Jorge; Sant, Marco

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  7. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study

    PubMed Central

    Zhou, Li-li; Liu, Rang-su; Tian, Ze-an; Liu, Hai-rong; Hou, Zhao-yang; Peng, Ping

    2016-01-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90–150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule. PMID:27526660

  8. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study.

    PubMed

    Zhou, Li-Li; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Peng, Ping

    2016-01-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90-150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule. PMID:27526660

  9. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Zhou, Li-Li; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Peng, Ping

    2016-08-01

    The crystallization characteristics in supercooled liquid Zn during isothermal relaxation were investigated using molecular dynamics simulations by adopting the cluster-type index method (CTIM) and the tracing method. Results showed that the crystallization process undergo three different stages. The size of the critical nucleus was found to be approximately 90–150 atoms in this system; the growth of nuclei proceeded via the successive formation of hcp and fcc structures with a layered distribution; and finally, the system evolved into a much larger crystal with a distinct layered distribution of hcp and fcc structures with an 8R stacking sequence of ABCBACAB by adjusting all of the atoms in the larger clusters according to a certain rule.

  10. Sediment characteristics and transportation dynamics of the Ganga River

    NASA Astrophysics Data System (ADS)

    Singh, Munendra; Singh, Indra Bir; Müller, German

    2007-04-01

    Understanding of river systems that have experienced various forcing mechanisms such as climate, tectonics, sea level fluctuations and their linkages is a major concern for fluvial scientists. The 2525-km-long Ganga River derives its fluvial flux from northern part of the Indian subcontinent and drops in the Ganga-Brahmaputra delta and the Bengal fan regions. This paper presents a study of the Ganga River sediments for their textural properties, grainsize characteristics, and transportation dynamics. A suite of recently deposited sediments (189 bedload samples and 27 suspended load samples) of the river and its tributaries was collected from 63 locations. Dry and wet sieve methods of grainsize analysis were performed and Folk and Ward's parameters were calculated. Transportation dynamics of the sediment load was assessed by means of channel hydrology, flow/sediment rating curves, bedform mechanics, grainsize images, and cumulative curves. Textural properties of the bedload sediments of the Ganga River tributaries originating from the Himalaya orogenic belt, the northern Indian craton and the Ganga alluvial plain regions are characterised by the predominance of fine to very fine sand, medium to fine sand, and very fine sand to clay, respectively. Downstream textural variations in the bedload and suspended load sediments of the Ganga River are, therefore, complex and are strongly influenced by lateral sediment inputs by the tributaries and channel slope. At the base of the Himalaya, a very sharp gravel-sand transition is present in which median grainsize of bedload sediments decreases from over - 0.16 Φ to 2.46 Φ within a distance of 35 km. Downstream decline in mean grainsize of bedload sediments in the upper Ganga River within the alluvial plain can be expressed by an exponential formula as: mean grainsize (in Φ) = 0.0024 × Distance (in kilometres from the Himalayan front) + 1.29. It is a result of selective transport phenomena rather than of abrasion, the

  11. Dynamics and structure of turbulent premixed flames

    NASA Technical Reports Server (NTRS)

    Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.

    1995-01-01

    In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the

  12. Structural dynamics branch research and accomplishments to FY 1992

    NASA Astrophysics Data System (ADS)

    Lawrence, Charles

    1992-12-01

    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications.

  13. Structural dynamics branch research and accomplishments for fiscal year 1987

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This publication contains a collection of fiscal year 1987 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's four major work areas, Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods, are included in the report as well as a complete listing of the FY87 branch publications.

  14. Structural dynamics branch research and accomplishments to FY 1992

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1992-01-01

    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications.

  15. Titan's lower troposphere: thermal structure and dynamics

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Lebonnois, S.

    2011-12-01

    A new climate model for Titan's atmosphere has been developed, using the physics of the IPSL Titan 2-dimensional climate model with the current version of the LMDZ General Circulation Model's dynamical core. The GCM covers altitudes from the surface to 500 km with the diurnal cycle and the gravitational tides included. 1. Boundary layer and thermal structure The HASI profile of potential temperature shows a layer at 300 m, an other at 800 m and a slope change at 2 km ([5],[2]). Dune spacing on Titan is consistent with a 2-3 km boundary layer ([3]). We have reproduced this profile (see figure) and interpreted the layer at 300 m as a convective boundary layer, the layer at 800 m is a residual layer corresponding to the maximum diurnal vertical extension of the PBL. We interpret the slope change at 2 km as produced by the seasonal displacement of the ITCZ. This layer traps the circulation in the first two km and is responsible of the dune spacing. Finally we interpret the fog discovered in summer polar region ([1]) has clouds produced by the diurnal cycle of the PBL (as fair weather cumulus on Earth). 2. Surface winds 2.1 Effect of gravitational and thermal tides We analysed tropospheric winds and the influence of both the thermal and the gravitational tides. The impact of gravitational tides on the circulation is extremely small. Thermal tides have a visible effect, though quite tenuous. 2.2 Effect of topography We produced topography maps derived from spherical harmonic interpolation ([6]) on the reference ellipsoid ([4]). Surface temperatures at high altitude appear higher that the ambient air. Vertical air movements produce anabatic winds developing on smooth and long slopes. This could be one of the main causes controlling the direction of surface winds and the direction of dunes. References [1] Brown et al.: Discovery of fog at the south pole of Titan, Astrophys. J. 706 (2009), pp. L110-L113 [2] Griffith et al.: Titan's Tropical Storms in an Evolving Atmosphere

  16. Visualizing Structure and Dynamics of Disaccharide Simulations

    SciTech Connect

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  17. Dynamic arrest in charged colloidal systems exhibiting large-scale structural heterogeneities.

    PubMed

    Haro-Pérez, C; Rojas-Ochoa, L F; Castañeda-Priego, R; Quesada-Pérez, M; Callejas-Fernández, J; Hidalgo-Alvarez, R; Trappe, V

    2009-01-01

    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics. PMID:19257245

  18. Dynamic arrest in charged colloidal systems exhibiting large-scale structural heterogeneities.

    PubMed

    Haro-Pérez, C; Rojas-Ochoa, L F; Castañeda-Priego, R; Quesada-Pérez, M; Callejas-Fernández, J; Hidalgo-Alvarez, R; Trappe, V

    2009-01-01

    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics.

  19. Dynamic Arrest in Charged Colloidal Systems Exhibiting Large-Scale Structural Heterogeneities

    SciTech Connect

    Haro-Perez, C.; Callejas-Fernandez, J.; Hidalgo-Alvarez, R.; Rojas-Ochoa, L. F.; Castaneda-Priego, R.; Quesada-Perez, M.; Trappe, V.

    2009-01-09

    Suspensions of charged liposomes are found to exhibit typical features of strongly repulsive fluid systems at short length scales, while exhibiting structural heterogeneities at larger length scales that are characteristic of attractive systems. We model the static structure factor of these systems using effective pair interaction potentials composed of a long-range attraction and a shorter range repulsion. Our modeling of the static structure yields conditions for dynamically arrested states at larger volume fractions, which we find to agree with the experimentally observed dynamics.

  20. Hydration structure of salt solutions from ab initio molecular dynamics

    SciTech Connect

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-07

    The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  1. Low-dimensional dynamics of structured random networks

    NASA Astrophysics Data System (ADS)

    Aljadeff, Johnatan; Renfrew, David; Vegué, Marina; Sharpee, Tatyana O.

    2016-02-01

    Using a generalized random recurrent neural network model, and by extending our recently developed mean-field approach [J. Aljadeff, M. Stern, and T. Sharpee, Phys. Rev. Lett. 114, 088101 (2015), 10.1103/PhysRevLett.114.088101], we study the relationship between the network connectivity structure and its low-dimensional dynamics. Each connection in the network is a random number with mean 0 and variance that depends on pre- and postsynaptic neurons through a sufficiently smooth function g of their identities. We find that these networks undergo a phase transition from a silent to a chaotic state at a critical point we derive as a function of g . Above the critical point, although unit activation levels are chaotic, their autocorrelation functions are restricted to a low-dimensional subspace. This provides a direct link between the network's structure and some of its functional characteristics. We discuss example applications of the general results to neuroscience where we derive the support of the spectrum of connectivity matrices with heterogeneous and possibly correlated degree distributions, and to ecology where we study the stability of the cascade model for food web structure.

  2. Hydration structure of salt solutions from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-01

    The solvation structures of Na^+, K^+, and Cl^- ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na^+, K^+, and Cl^-, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  3. Structural characteristics and hydration kinetics of modified steel slag

    SciTech Connect

    Li Jianxin; Yu Qijun; Wei Jiangxiong Zhang Tongsheng

    2011-03-15

    This study investigates the structural characteristics and hydration kinetics of modified basic oxygen furnace steel slag. The basic oxygen furnace steel slag (BOFS) was mixed with electric arc furnace steel slag (EAFS) in appropriate ratios and heated again at high temperature in the laboratory. The mineralogical and structural characteristics of both BOFS and modified steel slag (MSS) were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy, Raman and Fourier transform infrared spectroscopies. The results show that modification increases alite content in MSS and decreases alite crystal size with the formation of C{sub 6}AF{sub 2}. One more obvious heat evolution peak appears in MSS's heat-flow rate curves in comparison to BOFS, becoming similar to that of typical Portland cement paste. As a result, its cementitious activity is much improved.

  4. Modeling the metastable dynamics of correlated structures

    PubMed Central

    Shakirov, Alexey M.; Tsibulsky, Sergey V.; Antipov, Andrey E.; Shchadilova, Yulia E.; Rubtsov, Alexey N.

    2015-01-01

    Metastable quantum dynamics of an asymmetric triangular cluster that is coupled to a reservoir is investigated. The dynamics is governed by bath-mediated transitions, which in part require a thermal activation process. The decay rate is controlled by tuning the excitation spectrum of the frustrated cluster. We use the master equation approach and construct transition operators in terms of many-body states. We analyze dynamics of observables and reveal metastability of an excited state and of a magnetically polarized ground state. PMID:25623327

  5. METAPOPULATION STRUCTURE AND DYNAMICS OF POND BREEDING

    EPA Science Inventory

    Our review indicates that pond breeding amphibians exhibit highly variable spatial and temporal population dynamics, such that no single generalized model can realistically describe these animals. We propose that consideration of breeding pond permanence, and adaptations to pond ...

  6. Tyrosine Aminotransferase: Biochemical and Structural Properties and Molecular Dynamics Simulations

    SciTech Connect

    P Mehere; Q Han; J Lemkul; C Vavricka; H Robinson; D Bevan; J Li

    2011-12-31

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  7. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations

    SciTech Connect

    Mehere, P.; Robinson, H.; Han, Q.; Lemkul, J. A.; Vavricka, C. J.; Bevan, D. R.; Li, J.

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using {alpha}-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 {angstrom} resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  8. Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations.

    PubMed

    Mehere, Prajwalini; Han, Qian; Lemkul, Justin A; Vavricka, Christopher J; Robinson, Howard; Bevan, David R; Li, Jianyong

    2010-11-01

    Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using α-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 Å resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.

  9. Reconstruction of dynamic structural inputs in the presence of noise

    SciTech Connect

    Bateman, V.I.; Solomon, O.M. Jr.

    1986-08-01

    This report describes a technique to reconstruct dynamic structural inputs by deconvolution of measured data. The structure to which this technique has been applied is a mild steel bar (3 in diameter and 60 in. long) with a conical nose which provides some geometric simulation of penetrating structures which are used in field test. The deconvolution technique successfully reconstructs dynamic inputs to the bar with and without additive white noise present in the measured response.

  10. Antiparallel triple helices. Structural characteristics and stabilization by 8-amino derivatives.

    PubMed

    Aviñó, Anna; Cubero, Elena; González, Carlos; Eritja, Ramon; Orozco, Modesto

    2003-12-24

    The structural, dynamical, and recognition properties of antiparallel DNA triplexes formed by the antiparallel d(G#G.C), d(A#A.T), and d(T#A.T) motifs (the pound sign and dot mean reverse-Hoogsteen and Watson-Crick hydrogen bonds, respectively) are studied by means of "state of the art" molecular dynamics simulations. Once the characteristics of the helix are defined, molecular dynamics and thermodynamic integration calculations are used to determine the expected stabilization of the antiparallel triplex caused by the introduction of 8-aminopurines. Finally, oligonucleotides containing 8-aminopurine derivatives are synthesized and tested experimentally using several approaches in a variety of systems. A very large stabilization of the triplex is found experimentally, as predicted by simulations. These results open the possibility for the use of oligonucleotides carrying 8-aminopurines to bind single-stranded nucleic acids by formation of antiparallel triplexes.

  11. Dynamic Stall Characteristics of Drooped Leading Edge Airfoils

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

    2000-01-01

    Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

  12. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling

    NASA Astrophysics Data System (ADS)

    Liu, Feifei; Lan, Fengchong; Chen, Jiqing

    2016-07-01

    Heat pipe cooling for battery thermal management systems (BTMSs) in electric vehicles (EVs) is growing due to its advantages of high cooling efficiency, compact structure and flexible geometry. Considering the transient conduction, phase change and uncertain thermal conditions in a heat pipe, it is challenging to obtain the dynamic thermal characteristics accurately in such complex heat and mass transfer process. In this paper, a "segmented" thermal resistance model of a heat pipe is proposed based on thermal circuit method. The equivalent conductivities of different segments, viz. the evaporator and condenser of pipe, are used to determine their own thermal parameters and conditions integrated into the thermal model of battery for a complete three-dimensional (3D) computational fluid dynamics (CFD) simulation. The proposed "segmented" model shows more precise than the "non-segmented" model by the comparison of simulated and experimental temperature distribution and variation of an ultra-thin micro heat pipe (UMHP) battery pack, and has less calculation error to obtain dynamic thermal behavior for exact thermal design, management and control of heat pipe BTMSs. Using the "segmented" model, the cooling effect of the UMHP pack with different natural/forced convection and arrangements is predicted, and the results correspond well to the tests.

  13. Effects of Piezoelectric (PZT) Sensor Bonding and the Characteristics of the Host Structure on Impedance Based Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Jalloh, Abdul

    2005-01-01

    This study was conducted to investigate the effects of certain factors on the impedance signal in structural health monitoring. These factors were: the quality of the bond between the sensor and the host structure, and the characteristics of the host structure, such as geometry, mass, and material properties. This work was carried out to answer a set of questions, related to these factors, that were developed by the project team. The project team was comprised of Dr. Doug Ramers and Dr. Abdul Jalloh of the Summer Faculty Fellowship Program, Mr. Arnaldo Colon- Perez, a student intern from the University of Puerto Rico of Turabo, and Mr. John Lassiter and Mr. Bob Engberg of the Structural and Dynamics Test Group at NASA Marshall Space Flight Center (MSFC). This study was based on a review of the literature on structural health monitoring to investigate the factors referred to above because there was not enough time to plan and conduct the appropriate tests at MSFC during the tenure of the Summer Faculty Fellowship Program project members. The surveyed literature documents works on structural health monitoring that were based on laboratory tests that were conducted using bolted trusses and other civil engineering type structures for the most part. These are not the typical types of structures used in designing and building NASA s space vehicles and systems. It was therefore recommended that tests be conducted using NASA type structures, such as pressure vessels, to validate the observations made in this report.

  14. Structural characteristics via SLDV for a class of morphing micro-air-vehicles

    NASA Astrophysics Data System (ADS)

    Diggs, Edward C.; Bilgen, Onur; Kurdila, Andrew; Kochersburger, Kevin; Inman, Dan; Vignola, Joe

    2007-04-01

    Conventional control surfaces have been used in most carbon fiber composite, membrane-wing autonomous micro air vehicles (MAV). In some cases, vehicle morphing is achieved using servo actuators to articulate vehicle kinematic joints, or to deform crucial wing / tail surfaces. However, articulated lifting surfaces and articulated wing sections are difficult to instrument and fabricate in a repeatable fashion. Assembly is complex and time consuming. The goal of this paper is to establish the feasibility of morphing wings on autonomous MAVs that are actuated via active materials. Active actuation is achieved via a type of piezoceramic composite called Macro Fiber Composite (MFC). This paper investigates the structural dynamics of morphing wings on MAVs that are actuated via active composites. This paper continues the work presented in1 by considering structural dynamic characteristics of the morphing vehicle determined through Scanning Laser Doppler Vibrometry (SLDV).

  15. Improving structure-based function prediction using molecular dynamics

    PubMed Central

    Glazer, Dariya S.; Radmer, Randall J.; Altman, Russ B.

    2009-01-01

    Summary The number of molecules with solved three-dimensional structure but unknown function is increasing rapidly. Particularly problematic are novel folds with little detectable similarity to molecules of known function. Experimental assays can determine the functions of such molecules, but are time-consuming and expensive. Computational approaches can identify potential functional sites; however, these approaches generally rely on single static structures and do not use information about dynamics. In fact, structural dynamics can enhance function prediction: we coupled molecular dynamics simulations with structure-based function prediction algorithms that identify Ca2+ binding sites. When applied to 11 challenging proteins, both methods showed substantial improvement in performance, revealing 22 more sites in one case and 12 more in the other, with a modest increase in apparent false positives. Thus, we show that treating molecules as dynamic entities improves the performance of structure-based function prediction methods. PMID:19604472

  16. Morphological, structural, and spectral characteristics of amorphous iron sulfates

    NASA Astrophysics Data System (ADS)

    Sklute, E. C.; Jensen, H. B.; Rogers, A. D.; Reeder, R. J.

    2015-04-01

    Current or past brine hydrologic activity on Mars may provide suitable conditions for the formation of amorphous ferric sulfates. Once formed, these phases would likely be stable under current Martian conditions, particularly at low- to mid-latitudes. Therefore, we consider amorphous iron sulfates (AIS) as possible components of Martian surface materials. Laboratory AIS were created through multiple synthesis routes and characterized with total X-ray scattering, thermogravimetric analysis, scanning electron microscopy, visible/near-infrared (VNIR), thermal infrared (TIR), and Mössbauer techniques. We synthesized amorphous ferric sulfates (Fe(III)2(SO4)3 · ~ 6-8H2O) from sulfate-saturated fluids via vacuum dehydration or exposure to low relative humidity (<11%). Amorphous ferrous sulfate (Fe(II)SO4 · ~ 1H2O) was synthesized via vacuum dehydration of melanterite. All AIS lack structural order beyond 11 Å. The short-range (<5 Å) structural characteristics of amorphous ferric sulfates resemble all crystalline reference compounds; structural characteristics for the amorphous ferrous sulfate are similar to but distinct from both rozenite and szomolnokite. VNIR and TIR spectral data for all AIS display broad, muted features consistent with structural disorder and are spectrally distinct from all crystalline sulfates considered for comparison. Mössbauer spectra are also distinct from crystalline phase spectra available for comparison. AIS should be distinguishable from crystalline sulfates based on the position of their Fe-related absorptions in the visible range and their spectral characteristics in the TIR. In the NIR, bands associated with hydration at ~1.4 and 1.9 µm are significantly broadened, which greatly reduces their detectability in soil mixtures. AIS may contribute to the amorphous fraction of soils measured by the Curiosity rover.

  17. Structural dynamics of nucleosomes at single molecule resolution

    PubMed Central

    Choy, John S.; Lee, Tae-Hee

    2013-01-01

    The detailed mechanisms of how DNA that is assembled around a histone core can be accessed by DNA-binding proteins for transcription, replication, or repair, remain elusive nearly 40 years after Kornberg's nucleosome model was proposed. Uncovering the structural dynamics of nucleosomes is a crucial step in elucidating the mechanisms regulating genome accessibility. This requires the deconvolultion of multiple structural states within an ensemble. Recent advances in single molecule methods enable unprecedented efficiency in examining subpopulation dynamics. In this review, we summarize studies of nucleosome structure and dynamics from single molecule approaches and how they advance our understanding of the mechanisms that govern DNA transactions. PMID:22831768

  18. LMI-based controller design for dynamic variable structure systems

    NASA Astrophysics Data System (ADS)

    Ohtake, Hiroshi; Tanaka, Kazuo

    2005-12-01

    This paper presents controller design conditions for dynamic variable structure systems in terms of linear matrix inequalities (LMIs). In our previous paper, we proposed the dynamic variable structure system and derived its controller design conditions using switching fuzzy model-based control approach. However, the controller design conditions were given in terms of bilinear matrix inequalities (BMIs). In this paper, by introducing the augmented system which consists of the switching fuzzy model and a stable linear system, we derive new controller design conditions in terms of linear matrix inequalities (LMIs) for the dynamic variable structure systems. A simulation result shows the utility of this control approach.

  19. Nonlinear dynamics of vortices in nano-structured superconductors

    NASA Astrophysics Data System (ADS)

    Peeters, Francois

    2014-03-01

    Nonlinear flux dynamics in superconductors is a prototype for many nonlinear phenomena occurring in different areas of physics. It is well-known that vortices in nano-structured superconductors with dimensions comparable to characteristic length scales behave very different from those in bulk materials, e.g. multi-quanta giant vortices and symmetry-induced vortex-antivortex pairs can nucleate which are impossible in bulk. I will give a few examples of the surprising behavior of vortex matter in different type of nano-structured superconducting films. Our analysis is based on the time-dependent Ginzburg-Landau theory. Where possible comparison with experiments.will be made. For example large resistance oscillations are found, different from the usual Little-Parks effect, that are due to current-excited moving vortices. Unusal field-induced increase in the critical current may be observed as a consequence of the nonlinear distribution of the current in a sample. In type-I superconductors even in the intermediate state the smallest building block turns out to be a flux quantum and the current driven nucleation of flux domains is discretized to a single fluxoid. Domains of opposite flux, when driven towards each other, annihilate through a discretized sequence of single vortex-antivortex pairs. Supported by the Flemish Science Foundation and the Methusalem programme of the Flemish Government. Work done in collaboration with G. Berdiyorov, M.V. Milosevic, Z.L. Xiao, W.K. Kwok and M.L. Latimer.

  20. Auditory virtual environment with dynamic room characteristics for music performances

    NASA Astrophysics Data System (ADS)

    Choi, Daniel Dhaham

    A room-adaptive system was designed to simulate an electro-acoustic space that changes room characteristics in real-time according to the content of sound. In this specific case, the focus of the sound components is on the different styles and genres of music. This system is composed of real-time music recognition algorithms that analyze the different elements of music, determine the desired room characteristics, and output the acoustical parameters via multi-channel room simulation mechanisms. The system modifies the acoustic properties of a space and enables it to "improvise" its acoustical parameters based on the sounds of the music performances.

  1. Navier-Stokes Simulation of the Canard-Wing-Body Longitudinal Dynamic Stability Characteristics

    NASA Technical Reports Server (NTRS)

    Tu, Eugene L.; VanDalsem, William R. (Technical Monitor)

    1996-01-01

    Many modern aircraft are canard-configured for aircraft control and improved aerodynamic performance. Canards can often enhance aircraft cruise performance, maneuverability and agility. For close-coupled canard configurations, the aerodynamic interaction between the canard and wing significantly changes the flow characteristics of the wing. In unsteady flow, such changes in the flow structure and performance of wings can be quite pronounced. Accurate modeling of the unsteady aerodynamics is essential for potential CFD design and analysis of such configurations. A time-accurate numerical simulation is performed to study the unsteady aerodynamic interaction between a canard and wing with emphasis on the effects of the canard on the configuration's dynamic response characteristics. The thin-layer Reynolds-averaged Navier-Stokes Equations with various turbulence models are used in this study. Computations are made on a generic, analytically-defined, close-coupled canard-wing-body configuration which has been the subject of numerous previously published experimental studies during the 1970's to mid-80's. More recently, a series of steady-flow simulations has been performed and published by the author. In the current study, the configuration is given prescribed ramp and oscillatory motions in order to predict characteristics such as the damping-in-pitch and oscillatory longitudinal stability parameters. The current computations are made at high-subsonic and transonic Mach numbers, moderate angles-of- attack from -4 to 20 degrees, and at various pitch rates and reduced frequencies. Comparisons of pressures and integrated force quantities (e.g. lift, drag, pitching moment and selected dynamic parameters) are made with other published computational results and available experimental data. Results showing the unsteady effects of the canard on surface pressures, integrated forces, canard-wing vortex interaction and vortex breakdown will be presented.

  2. Nonlinear optical diglycine hydrochloride: Synthesis, crystal growth and structural characteristics

    NASA Astrophysics Data System (ADS)

    Narayana Moolya, B.; Darmaprakash, S. M.

    2006-07-01

    Diglycine hydrochloride (DGHCl), a new semiorganic nonlinear optical material with the molecular formula C 4H 11O 4Cl, was synthesized at ambient temperature. The solubility of DGHCl in water at varying temperatures was determined. Bulk single crystals were grown by the slow evaporation method at constant temperature. Powder X-ray diffraction patterns of the grown DGHCl were recorded and indexed. Functional groups present in the sample crystals were identified by FTIR spectral analysis. The chemical composition of the synthesized material was confirmed by CHN analysis. Thermal characteristics of DGHCl were determined from the TGA/DTA response curve. The Kurtz powder second harmonic generation (SHG) test showed potential for optical SHG. The UV cut-off of transmission was identified from the UV-VIS absorption spectra. The SHG of DGHCl is discussed on the basis of structural characteristics of the title compound.

  3. Program Structure Combines Segmentation and Dynamic Storage

    NASA Technical Reports Server (NTRS)

    Tiffany, S. H.

    1982-01-01

    Programing techniques incorporate advantages of overlaying into segmented loads while retaining all dynamic load advantages of segmentation, employing those capabilities that best suit mode of operation, whether batch or interactive. User is allowed to load a program automatically in a variable manner, based solely on a single data input to the program, to maintain minimal field lengths for interactive use.

  4. Dynamical mechanisms supporting barred-spiral structures

    NASA Astrophysics Data System (ADS)

    Patsis, P. A.

    We review some recent results of the orbital theory, related with the dynamics of barred-spiral galaxies. The method we use is to study the responses of stellar and gaseous disks when time-independent, external potentials are imposed. These potentials are directly estimated from near-infrared images of disk galaxies. The goal of the work is to detect dynamical mechanisms that reinforce the bars and the spirals in realistic systems. Besides the known mechanism for building bars by quasiperiodic orbits trapped around stable orbits of the {xx} family, we find cases where bars can be supported, to a large extent, by chaotic orbits. These bars are of the ``ansae'' type and their effective potentials are characterized by multiple Lagrangian points roughly along the major axis of the bar. On the other hand the spirals are supported mainly by chaotic orbits and extend usually beyond corotation. We find that the spirals and the outer parts of the bars share the same orbital content. However, we have found also barred-spiral systems with spirals inside corotation, consisting mainly by chaotic orbits. Finally we indicate, that in barred-spiral systems with different pattern speeds for the two components, the dynamics of the spirals can be similar to the dynamics of the spirals of normal spiral galaxies.

  5. Ion-ion dynamic structure factor of warm dense mixtures

    DOE PAGES

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  6. Ion-ion dynamic structure factor of warm dense mixtures

    SciTech Connect

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.

  7. Association between brain structure and phenotypic characteristics in pedophilia.

    PubMed

    Poeppl, Timm B; Nitschke, Joachim; Santtila, Pekka; Schecklmann, Martin; Langguth, Berthold; Greenlee, Mark W; Osterheider, Michael; Mokros, Andreas

    2013-05-01

    Studies applying structural neuroimaging to pedophiles are scarce and have shown conflicting results. Although first findings suggested reduced volume of the amygdala, pronounced gray matter decreases in frontal regions were observed in another group of pedophilic offenders. When compared to non-sexual offenders instead of community controls, pedophiles revealed deficiencies in white matter only. The present study sought to test the hypotheses of structurally compromised prefrontal and limbic networks and whether structural brain abnormalities are related to phenotypic characteristics in pedophiles. We compared gray matter volume of male pedophilic offenders and non-sexual offenders from high-security forensic hospitals using voxel-based morphometry in cross-sectional and correlational whole-brain analyses. The significance threshold was set to p < .05, corrected for multiple comparisons. Compared to controls, pedophiles exhibited a volume reduction of the right amygdala (small volume corrected). Within the pedophilic group, pedosexual interest and sexual recidivism were correlated with gray matter decrease in the left dorsolateral prefrontal cortex (r = -.64) and insular cortex (r = -.45). Lower age of victims was strongly associated with gray matter reductions in the orbitofrontal cortex (r = .98) and angular gyri bilaterally (r = .70 and r = .93). Our findings of specifically impaired neural networks being related to certain phenotypic characteristics might account for the heterogeneous results in previous neuroimaging studies of pedophilia. The neuroanatomical abnormalities in pedophilia seem to be of a dimensional rather than a categorical nature, supporting the notion of a multifaceted disorder.

  8. Structure and dynamics of pentacene on SiO2: From monolayer to bulk structure

    NASA Astrophysics Data System (ADS)

    Brillante, Aldo; Bilotti, Ivano; Della Valle, Raffaele Guido; Venuti, Elisabetta; Girlando, Alberto; Masino, Matteo; Liscio, Fabiola; Milita, Silvia; Albonetti, Cristiano; D'angelo, Pasquale; Shehu, Arian; Biscarini, Fabio

    2012-05-01

    We have used confocal micro Raman spectroscopy, atomic force microscopy (AFM), and x-ray diffraction (XRD) to investigate pentacene films obtained by vacuum deposition on SiO2 substrates. These methods allow us to follow the evolution of lattice structure, vibrational dynamics, and crystal morphology during the growth from monolayer, to TF, and, finally, to bulk crystal. The Raman measurements, supported by the AFM and XRD data, indicate that the film morphology depends on the deposition rate. High deposition rates yield two-dimensional nucleation and quasi-layer-by-layer growth of the T-F form only. Low rates yield three-dimensional nucleation and growth, with phase mixing occurring in sufficiently thick films, where the T-F form is accompanied by the “high-temperature” bulk phase. Our general findings are consistent with those of previous work. However, the Raman measurements, supported by lattice dynamics calculations, provide additional insight into the nature of the TFs, showing that their characteristic spectra originate from a loss of dynamical correlation between adjacent layers.

  9. Structures and Dynamics Division: Research and technology plans for FY 1983 and accomplishments for FY 1982

    NASA Technical Reports Server (NTRS)

    Bales, K. S.

    1983-01-01

    The objectives, expected results, approach, and milestones for research projects of the IPAD Project Office and the impact dynamics, structural mechanics, and structural dynamics branches of the Structures and Dynamics Division are presented. Research facilities are described. Topics covered include computer aided design; general aviation/transport crash dynamics; aircraft ground performance; composite structures; failure analysis, space vehicle dynamics; and large space structures.

  10. Controlled multibody dynamics simulation for large space structures

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Wu, S. C.; Chang, C. W.

    1989-01-01

    Multibody dynamics discipline, and dynamic simulation in control structure interaction (CSI) design are discussed. The use, capabilities, and architecture of the Large Angle Transient Dynamics (LATDYN) code as a simulation tool are explained. A generic joint body with various types of hinge connections; finite element and element coordinate systems; results of a flexible beam spin-up on a plane; mini-mast deployment; space crane and robotic slewing manipulations; a potential CSI test article; and multibody benchmark experiments are also described.

  11. Tribute to the contribution of Gerard Lallenment to structural dynamics

    SciTech Connect

    Los Alamos National Laboratory

    2001-01-01

    The Society for Experimental Mechanics and the International Modal Analysis Conference recognize the remarkable contribution to experimental mechanics, mechanical engineering and structural dynamics of Professor Gerard Lallement, from the University of Franche-Comte, France. A special session is organized during the IMAC-XX to outline the many achievements of Gerard Lallement in the fields of modal analysis, structural system identification, the theory and practice of structural modification, component mode synthesis and finite element model updating. The purpose of this publication is not to provide an exhaustive account of Gerard Lallement's contribution to structural dynamics. Numerous references are provided that should help the interested reader learn more about the many aspects of his work. Instead, the significance of this work is illustrated by discussing the role of structural dynamics in industrial applications and its future challenges. The technical aspects of Gerard Lallement's work are illustrated with a discussion of structural modification, modeling error localization and model updating.

  12. Energy absorption characteristics of nano-composite conical structures

    NASA Astrophysics Data System (ADS)

    Silva, F.; Sachse, S.; Njuguna, J.

    2012-09-01

    The effect of the filler material on the energy absorption capabilities of polyamide 6 composite structures is studied in details in the present paper. The axial dynamic and quasi-static collapse of conical structures was conducted using a high energy drop tower, as well as Instron 5500R electro-mechanical testing machine. The impact event was recorded using a high-speed camera and the fracture surface was investigated using scanning electron microscopy (SEM). The obtained results indicate an important influence of filler material on the energy absorption capabilities of the polymer composites. A significant increase in specific energy absorption (SEA) is observed in polyamide 6 (PA6) reinforced with nano-silica particles (SiO2) and glass-spheres (GS), whereas addition of montmorillonite (MMT) did not change the SEA parameter.

  13. Characteristics of electrohydrodynamic roll structures in laminar planar Couette flow

    NASA Astrophysics Data System (ADS)

    Kourmatzis, Agisilaos; Shrimpton, John S.

    2016-02-01

    The behaviour of an incompressible dielectric liquid subjected to a laminar planar Couette flow with unipolar charge injection is investigated numerically in two dimensions. The computations show new morphological characteristics of roll structures that arise in this forced electro-convection problem. The charge and velocity magnitude distributions between the two parallel electrodes are discussed as a function of the top wall velocity and the EHD Rayleigh number, T for the case of strong charge injection. A wide enough parametric space is investigated such that the observed EHD roll structures progress through three regimes. These regimes are defined by the presence of a single or double-roll free convective structure as observed elsewhere (Vazquez et al 2008 J. Phys. D 41 175303), a sheared or stretched roll structure, and finally by a regime where the perpendicular velocity gradient is sufficient to prevent the generation of a roll. These three regimes have been delineated as a function of the wall to ionic drift velocity {{U}\\text{W}}/κ E , and the T number. In the stretched regime, an increase in {{U}\\text{W}}/κ E can reduce charge and momentum fluctuations whilst in parallel de-stratify charge in the region between the two electrodes. The stretched roll regime is also characterised by a substantial influence of {{U}\\text{W}}/κ E on the steady development time, however in the traditional non-stretched roll structure regime, no influence of {{U}\\text{W}}/κ E on the development time is noted.

  14. The characteristic electronic structure needed for high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Pyper, N. C.; Edwards, P. P.

    1991-01-01

    It is shown that the magnon mechanism proposed by Goddard and co-workers to explain high-temperature superconductivity in oxidized cuprates can also account for such superconductivity in both oxidized barium bismuthate and the electron superconductors based on neodynium cuprate. The specific and characteristic electronic structure required for the operation of the magnon mechanism naturally accounts for why only a small number of basic types of high-temperature superconductors are currently known. This mechanism can readily explain the effects of doping cuprate superconductors with both magnetic and non-magnetic ions.

  15. Computing Nonequilibrium Conformational Dynamics of Structured Nucleic Acid Assemblies.

    PubMed

    Sedeh, Reza Sharifi; Pan, Keyao; Adendorff, Matthew Ralph; Hallatschek, Oskar; Bathe, Klaus-Jürgen; Bathe, Mark

    2016-01-12

    Synthetic nucleic acids can be programmed to form precise three-dimensional structures on the nanometer-scale. These thermodynamically stable complexes can serve as structural scaffolds to spatially organize functional molecules including multiple enzymes, chromophores, and force-sensing elements with internal dynamics that include substrate reaction-diffusion, excitonic energy transfer, and force-displacement response that often depend critically on both the local and global conformational dynamics of the nucleic acid assembly. However, high molecular weight assemblies exhibit long time-scale and large length-scale motions that cannot easily be sampled using all-atom computational procedures such as molecular dynamics. As an alternative, here we present a computational framework to compute the overdamped conformational dynamics of structured nucleic acid assemblies and apply it to a DNA-based tweezer, a nine-layer DNA origami ring, and a pointer-shaped DNA origami object, which consist of 204, 3,600, and over 7,000 basepairs, respectively. The framework employs a mechanical finite element model for the DNA nanostructure combined with an implicit solvent model to either simulate the Brownian dynamics of the assembly or alternatively compute its Brownian modes. Computational results are compared with an all-atom molecular dynamics simulation of the DNA-based tweezer. Several hundred microseconds of Brownian dynamics are simulated for the nine-layer ring origami object to reveal its long time-scale conformational dynamics, and the first ten Brownian modes of the pointer-shaped structure are predicted. PMID:26636351

  16. Dynamic Structure of Emotions Among Individuals with Parkinson's Disease

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Nesselroade, John R.; Shifren, Kim; McArdle, John J.

    2004-01-01

    With few exceptions, the dynamics underlying the mood structures of individuals with Parkinson's Disease have consistently been overlooked. Based on 12 participants' daily self-reports over 72 days, we identified 10 participants whose covariance matrices for positive and negative affect were similar enough to warrant pooling. Dynamic factor models…

  17. Nike Black Brant V high altitude dynamic instability characteristics

    NASA Technical Reports Server (NTRS)

    Montag, W. H.; Walker, L. L., Jr.

    1979-01-01

    Flight experience on the Nike Black Brant V has demonstrated the existence of plume induced flow separation over the fins and aft body of the Black Brant V motor. Modelling of the forces associated with this phenomenon as well as analysis of the resultant vehicle coning motion and its effect on the velocity vector heading are presented. A summary of Nike Black Brant V flight experience with high altitude dynamic instability is included.

  18. Site-Directed Spectroscopic Probes of Actomyosin Structural Dynamics

    PubMed Central

    Thomas, David D.; Kast, David; Korman, Vicci L.

    2010-01-01

    Spectroscopy of myosin and actin has entered a golden age. High-resolution crystal structures of isolated actin and myosin have been used to construct detailed models for the dynamic actomyosin interactions that move muscle. Improved protein mutagenesis and expression technologies have facilitated site-directed labeling with fluorescent and spin probes. Spectroscopic instrumentation has achieved impressive advances in sensitivity and resolution. Here we highlight the contributions of site-directed spectroscopic probes to understanding the structural dynamics of myosin II and its actin complexes in solution and muscle fibers. We emphasize studies that probe directly the movements of structural elements within the myosin catalytic and light-chain domains, and changes in the dynamics of both actin and myosin due to their alternating strong and weak interactions in the ATPase cycle. A moving picture emerges in which single biochemical states produce multiple structural states, and transitions between states of order and dynamic disorder power the actomyosin engine. PMID:19416073

  19. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures

    PubMed Central

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture

  20. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures.

    PubMed

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture

  1. Dynamic Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures.

    PubMed

    Pfleging, Johannes; Stücheli, Marius; Iovita, Radu; Buchli, Jonas

    2015-01-01

    Reconstructing ancient technical gestures associated with simple tool actions is crucial for understanding the co-evolution of the human forelimb and its associated control-related cognitive functions on the one hand, and of the human technological arsenal on the other hand. Although the topic of gesture is an old one in Paleolithic archaeology and in anthropology in general, very few studies have taken advantage of the new technologies from the science of kinematics in order to improve replicative experimental protocols. Recent work in paleoanthropology has shown the potential of monitored replicative experiments to reconstruct tool-use-related motions through the study of fossil bones, but so far comparatively little has been done to examine the dynamics of the tool itself. In this paper, we demonstrate that we can statistically differentiate gestures used in a simple scraping task through dynamic monitoring. Dynamics combines kinematics (position, orientation, and speed) with contact mechanical parameters (force and torque). Taken together, these parameters are important because they play a role in the formation of a visible archaeological signature, use-wear. We present our new affordable, yet precise methodology for measuring the dynamics of a simple hide-scraping task, carried out using a pull-to (PT) and a push-away (PA) gesture. A strain gage force sensor combined with a visual tag tracking system records force, torque, as well as position and orientation of hafted flint stone tools. The set-up allows switching between two tool configurations, one with distal and the other one with perpendicular hafting of the scrapers, to allow for ethnographically plausible reconstructions. The data show statistically significant differences between the two gestures: scraping away from the body (PA) generates higher shearing forces, but requires greater hand torque. Moreover, most benchmarks associated with the PA gesture are more highly variable than in the PT gesture

  2. Structural Dynamics of an Actin Spring

    PubMed Central

    Mahadevan, L.; Riera, C.S.; Shin, Jennifer H.

    2011-01-01

    Actin-based motility in cells is usually associated with either polymerization/depolymerization in the presence of cross-linkers or contractility in the presence of myosin motors. Here, we focus on a third distinct mechanism involving actin in motility, seen in the dynamics of an active actin spring that powers the acrosomal reaction of the horseshoe crab (Limulus polyphemus) sperm. During this process, a 60-μm bent and twisted bundle of cross-linked actin uncoils and becomes straight in a few seconds in the presence of Ca2+. This straightening, which occurs at a constant velocity, allows the acrosome to forcefully penetrate the egg. Synthesizing ultrastructural information with the kinetics, energetics, and imaging of calcium binding allows us to construct a dynamical theory for this mechanochemical engine consistent with our experimental observations. It also illuminates the general mechanism by which energy may be stored in conformational changes and released cooperatively in ordered macromolecular assemblies. PMID:21320427

  3. Structural dynamics, stability, and control of helicopters

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Kraige, L. G.; Hale, A. L.

    1976-01-01

    The dynamic synthesis of a helicopter is reported. The method of approach is a variation of the component mode synthesis in the sense that it regards the aircraft as an assemblage of interconnected substructures. The equations of motion are derived in general form by means of the Lagrangian formulation in conjunction with an orderly kinematical procedure that takes into account the superposition of motion of various substructures, thus circumventing constraint problems.

  4. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  5. A Structural Characterization of Temporal Dynamic Controllability

    NASA Technical Reports Server (NTRS)

    Morris, Paul

    2006-01-01

    An important issue for temporal planners is the ability to handle temporal uncertainty. Recent papers have addressed the question of how to tell whether a temporal network is Dynamically Controllable, i.e., whether the temporal requirements are feasible in the light of uncertain durations of some processes. Previous work has presented an O(N5) algorithm for testing this property. Here, we introduce a new analysis of temporal cycles that leads to an O(N4) algorithm.

  6. Towards Multifunctional Characteristics of Embedded Structures With Carbon Nanotube Yarns

    NASA Technical Reports Server (NTRS)

    Hernandez, Corey D.; Gates, Thomas S.; Kahng, Seun K.

    2006-01-01

    This paper presents recent results on research of achieving multifunctional structures utilizing Carbon Nanotube (CNT) yarns. The investigation centers on creating composite structures with CNT yarns to simultaneously achieve increases in mechanical strength and the ability to sense strain. The CNT yarns used in our experiments are of the single-ply and two-ply variety with the single-ply yarns having diameters on the order of 10-20 m. The yarns are embedded in silicon rubber and polyurethane test specimens. Mechanical tests show an increase in modulus of elasticity, with an additional weight increase of far less than one-percent. Sensing characteristics of the yarns are investigated on stainless steel test beams in an electrical bridge configuration, and are observed to have a strain sensitivity of 0.7mV/V/1000 micro-strain. Also reported are measurements of the average strain distribution along the direction of the CNT yarns on square silicon rubber membranes.

  7. Hydraulic characteristics near streamside structures along the Kenai River, Alaska

    USGS Publications Warehouse

    Dorava, Joseph M.

    1995-01-01

    Hydraulic characteristics, water velocity, depth, and flow direction were measured near eight sites along the Kenai River in southcentral Alaska. Each of the eight sites contained a different type of structure: a road-type boat launch, a canal-type boat launch, a floating dock, a rock retaining wall, a pile-supported dock, a jetty, a concrete retaining wall, and a bank stabilization project near the city of Soldotna. Measurements of hydraulic characteristics were made to determine to what extent the structures affected natural or ambient stream hydraulic characteristics. The results will be used by the Alaska Department of Fish and Game to evaluate assumptions used in their Habitat Evaluation Procedure assessment of juvenile chinook salmon habitat along the river and to improve their understanding of stream hydraulics for use in permitting potential projects. The study included structures along the Kenai River from about 12 to 42 miles upstream from the mouth. Hydraulic characteristics were measured during medium-, high-, and low-flow conditions, as measured at the Kenai River at Soldotna: (1) discharge ranged from 6,310 to 6,480 cubic feet per second during medium flow conditions that were near mean annual flow on June 9-10, 1994; (2) discharge ranged from 14,000 to 14,400 cubic feet per second during high flow conditions that were near peak annual flow conditions on August 2-3, 1994; and (3) discharge ranged from 3,470 to 3,660 cubic feet per second during open-water low-flow conditions on May 8-9, 1995. Measurements made at the structures were compared with measurements made at nearby unaffected natural sites. The floating dock, pile-supported dock, road-type boat launch, and concrete retaining wall did not significantly alter the stream channel area. These structures contributed only hydraulic-roughness type changes. The structures occupied a much smaller area than that of the wetted perimeter of the channel and thus typically had little effect on velocity

  8. Controlling flexible structures with second order actuator dynamics

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Umland, Jeffrey W.; Bellos, John

    1989-01-01

    The control of flexible structures for those systems with actuators that are modeled by second order dynamics is examined. Two modeling approaches are investigated. First a stability and performance analysis is performed using a low order finite dimensional model of the structure. Secondly, a continuum model of the flexible structure to be controlled, coupled with lumped parameter second order dynamic models of the actuators performing the control is used. This model is appropriate in the modeling of the control of a flexible panel by proof-mass actuators as well as other beam, plate and shell like structural numbers. The model is verified with experimental measurements.

  9. Plant Coilin: Structural Characteristics and RNA-Binding Properties

    PubMed Central

    Protopopova, Anna; Yaminsky, Igor; Arutiunian, Alexander; Love, Andrew J.; Taliansky, Michael; Kalinina, Natalia

    2013-01-01

    Cajal bodies (CBs) are dynamic subnuclear compartments involved in the biogenesis of ribonucleoproteins. Coilin is a major structural scaffolding protein necessary for CB formation, composition and activity. The predicted secondary structure of Arabidopsis thaliana coilin (Atcoilin) suggests that the protein is composed of three main domains. Analysis of the physical properties of deletion mutants indicates that Atcoilin might consist of an N-terminal globular domain, a central highly disordered domain and a C-terminal domain containing a presumable Tudor-like structure adjacent to a disordered C terminus. Despite the low homology in amino acid sequences, a similar type of domain organization is likely shared by human and animal coilin proteins and coilin-like proteins of various plant species. Atcoilin is able to bind RNA effectively and in a non-specific manner. This activity is provided by three RNA-binding sites: two sets of basic amino acids in the N-terminal domain and one set in the central domain. Interaction with RNA induces the multimerization of the Atcoilin molecule, a consequence of the structural alterations in the N-terminal domain. The interaction with RNA and subsequent multimerization may facilitate coilin’s function as a scaffolding protein. A model of the N-terminal domain is also proposed. PMID:23320094

  10. Dynamic characteristics of peripheral jet ACV. III - Coupling motion of heaving and pitching

    NASA Astrophysics Data System (ADS)

    Mori, T.; Maeda, H.

    The paper presents the dynamic characteristics of peripheral jet ACV (Air Cushion Vehicle) which has two degrees of freedom, i.e., heaving and pitching motion. The experiments are carried out for an ACV model, noting that the experimental results agree considerably with the analytical values. Furthermore, the response characteristics of ACV induced by the ground board oscillations of various modes are also investigated.

  11. A Comparison of Seismicity Characteristics and Fault Structure Between Stick-Slip Experiments and Nature

    NASA Astrophysics Data System (ADS)

    Goebel, T. H. W.; Sammis, C. G.; Becker, T. W.; Dresen, G.; Schorlemmer, D.

    2015-08-01

    Fault zones contain structural complexity on all scales. This complexity influences fault mechanics including the dynamics of large earthquakes as well as the spatial and temporal distribution of small seismic events. Incomplete earthquake records, unknown stresses, and unresolved fault structures within the crust complicate a quantitative assessment of the parameters that control factors affecting seismicity. To better understand the relationship between fault structure and seismicity, we examined dynamic faulting under controlled conditions in the laboratory by creating saw-cut-guided natural fractures in cylindrical granite samples. The resulting rough surfaces were triaxially loaded to produce a sequence of stick-slip events. During these experiments, we monitored stress, strain, and seismic activity. After the experiments, fault structures were imaged in thin sections and using computer tomography. The laboratory fault zones showed many structural characteristics observed in upper crustal faults, including zones of localized slip embedded in a layer of fault gouge. Laboratory faults also exhibited a several millimeter wide damage zone with decreasing micro-crack density at larger distances from the fault axis. In addition to the structural similarities, we also observed many similarities between our observed distribution of acoustic emissions (AEs) and natural seismicity. The AEs followed the Gutenberg-Richter and Omori-Utsu relationships commonly used to describe natural seismicity. Moreover, we observed a connection between along-strike fault heterogeneity and variations of the Gutenberg-Richter b value. As suggested by natural seismicity studies, areas of low b value marked the nucleation points of large slip events and were located at large asperities within the fault zone that were revealed by post-experimental tomography scans. Our results emphasize the importance of stick-slip experiments for the study of fault mechanics. The direct correlation of

  12. Dynamic Spectral Structure Specifies Vowels for Adults and Children

    PubMed Central

    Nittrouer, Susan; Lowenstein, Joanna H.

    2014-01-01

    The dynamic specification account of vowel recognition suggests that formant movement between vowel targets and consonant margins is used by listeners to recognize vowels. This study tested that account by measuring contributions to vowel recognition of dynamic (i.e., time-varying) spectral structure and coarticulatory effects on stationary structure. Adults and children (four-and seven-year-olds) were tested with three kinds of consonant-vowel-consonant syllables: (1) unprocessed; (2) sine waves that preserved both stationary coarticulated and dynamic spectral structure; and (3) vocoded signals that primarily preserved that stationary, but not dynamic structure. Sections of two lengths were removed from syllable middles: (1) half the vocalic portion; and (2) all but the first and last three pitch periods. Adults performed accurately with unprocessed and sine-wave signals, as long as half the syllable remained; their recognition was poorer for vocoded signals, but above chance. Seven-year-olds performed more poorly than adults with both sorts of processed signals, but disproportionately worse with vocoded than sine-wave signals. Most four-year-olds were unable to recognize vowels at all with vocoded signals. Conclusions were that both dynamic and stationary coarticulated structures support vowel recognition for adults, but children attend to dynamic spectral structure more strongly because early phonological organization favors whole words. PMID:25536845

  13. Optimization of rotor blades for combined structural, performance, and aeroelastic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, David A.; Cheng, Y. P.

    1989-01-01

    The strategies whereby helicopter rotor blades can be optimized for combined structural, inertial, dynamic, aeroelastic, and aerodynamic performance characteristics are outlined. There are three key ingredients in the successful execution of such an interdisciplinary optimization. The first is the definition of a satisfactory performance index that combines all aspects of the problem without too many constraints. The second element is the judicious choice of computationally efficient analysis tools for the various quantitative components in both the cost functional and constraints. The third element is an effective strategy for combining the various disciplines either in parallel or sequential optimizations.

  14. Combustion fume structure and dynamics. Final report

    SciTech Connect

    Flagan, R.C.

    1995-06-29

    An investigation of the fundamental physical processes that govern the structures of fume particles that are produced from the vapor phase in a wide range of high temperature systems has been conducted. The key objective of this study has been to develop models of the evolution of fine particles of refractory materials that are produced from the vapor phase, with particular emphasis on those processes that govern the evolution of ash fumes produced from volatilized mineral matter during coal combustion. To accomplish this goal, the study has included investigations of a number of fundamental aspects of pyrogenous fumes: Structural characterization of agglomerate particles in terms of fractal structure parameters; the relationship between the structures of agglomerate particles and the aerodynamic drag forces they experience; coagulation kinetics of fractal-like particles; sintering of aerosol agglomerates past the early stage of neck formation and incorporating the simultaneous influences of several transport mechanisms.

  15. Thermo-dynamic characteristics of NITINOL-reinforced composite beams

    NASA Astrophysics Data System (ADS)

    Baz, A.; Ro, J.

    The fundamental principles governing the operation of NITINOL-reinforced composite beams are investigated by determining the individual contributions of the composite matrix, the NITINOL fibers, and the shape memory effect to the overall dynamic performance of the beams. The effect of the temperature distribution inside the composite, which results from the activation of a small subset of the NITINOL fibers, on the overall performance of the entire beam was investigated theoretically and experimentally. Particular attention was given to the effects of intentional electrical heating of a selected subset of NITINOL fibers, and the associated thermal energy propagating through the composite, on the unintentional thermal activation of additional subsets of the fibers.

  16. Beam focusing characteristics of diffractive lenses with binary subwavelength structures

    NASA Astrophysics Data System (ADS)

    Feng, Di; Yan, Yingbai; Jin, Guofan; Fan, Shoushan

    2004-09-01

    The diffractive optical elements with binary subwavelength structures have the ability for monolithic integration and can require only single step fabrication, but the subwavelength and aperiodic nature of the diffractive optical elements prevent the use of scalar diffraction theory and the use of coupled-wave theory. To overcome these limitations, we present the rigorous vector analysis and design of diffractive lenses that are finite in extent and have binary subwavelength structures by using a two-dimensional finite-difference time-domain method. By using these effective analysis tools, we analyze the focusing characteristics of continuous profile lenses and binary subwavelength diffractive lenses obtained by generalizing the design approach presented by Farn, for different incidence polarization waves (TE polarization and TM polarization) and for different f-numbers of lenses. The comparative results have shown that the focusing characteristics, including the focal shift, the focal depth, the focal spot size, and the diffractive efficiency, of binary subwavelength diffractive lenses are different from those of continuous profile lenses and are more sensitive to the polarization of incidence wave.

  17. Control/structure interactions of Freedom's solar dynamic modules

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Yunis, I.

    1990-01-01

    The purpose of this paper is to address potential control/structures interaction (CSI) problems of large flexible multibody structures in the presence of pointing and tracking requirements. A control approach is introduced for the simultaneous tracking and vibration control of multibody space structures. The application that is discussed is Space Station Freedom configured with solar dynamic (SD) modules. The SD fine-pointing and tracking requirements may necessitate controller frequencies above the structural natural frequencies of Freedom and the SD modules. It is well known that this can give rise to CSI problems if the controller is designed without due consideration given to the structural dynamics of the system. In this paper, possible CSI problems of Freedom's solar dynamic power systems are demonstrated using a simple lumped mass model. A NASTRAN model of Freedom developed at NASA Lewis is used to demonstrate potential CSI problems and the proposed tracking and vibration control approach.

  18. Structural dynamic and aeroelastic considerations for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Cazier, F. W., Jr.; Ricketts, Rodney H.; Doggett, Robert V., Jr.

    1991-01-01

    Structural dynamic and aeroelastic considerations applicable to hypersonic vehicles are discussed. Emphasis is given to aerospace plane configurations. The definition of aerothermoelasticity and the operational flight environment are reviewed, and structural dynamic and aeroelastic areas of concern are individually discussed, including vibration, landing and taxiing, propellant dynamics, acoustics, lifting surface flutter, panel flutter, control surface buzz, buffeting, gust response, and static aeroelasticity. Recent research results from all-moveable delta-wing aerolastic studies, engine inlet lip aeroelastic analysis, and studies of thermal effects on vibration frequencies, aerodynamic heating effects on flutter, and active control of aeroelastic response are reviewed.

  19. Structural dynamic analysis of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.

    1981-01-01

    This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.

  20. Structure and Dynamics of Coronal Plasma

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1998-01-01

    Brief summaries of the four published papers produced within the present performance period of NASA Grant NAGW-4081 are presented. The full text of the papers are appended to the report. The first paper titled "Coronal Structures Observed in X-rays and H-alpa Structures" was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. It was found that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. The second paper "Differential Magnetic Field Shear in an Active Region" has been published in The Astrophysical Journal. The study compared the three dimensional extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, the authors propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The third paper "Difficulties in Observing Coronal Structure" has been published in the journal Solar Physics. This paper discusses the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by the group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co-spatial at a given location in the corona, and that simple magnetic field

  1. Crushable structure performance determined from reconstructed dynamic forces during impact tests

    SciTech Connect

    Bateman, V.I.

    1995-01-01

    A force reconstruction technique has been used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degrees}) and slapdown (30{degrees}) impact conditions. The dynamic force characteristics for the nose design, determined from these test results, have been used to write a dynamic force specification for a new nose design that will replace the old nose. The dynamic forces are reconstructed from measured acceleration responses with the Sum of Weighted Accelerations Technique (SWAT) developed at Sandia National Laboratories. Axial characterizations for the old nose are presented from tests at two SNL facilities: a rocket rail launcher facility and an 18-Inch horizontal actuator facility. The characterizations for the old nose are compared to the characterizations for two new nose designs. Slapdown characterizations for the old nose are presented. Incorporation of the test results into a dynamic force specification is discussed.

  2. Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase.

    SciTech Connect

    Zhang, R.; Evans, G.; Rotella, F. J.; Westbrook, E. M.; Beno, D.; Huberman, E.; Joachimiak, A.; Collart, F. R.

    1999-01-01

    IMP dehydrogenase (IMPDH) is an essential enzyme that catalyzes the first step unique to GTP synthesis. To provide a basis for the evaluation of IMPDH inhibitors as antimicrobial agents, we have expressed and characterized IMPDH from the pathogenic bacterium Streptococcus pyogenes. Our results show that the biochemical and kinetic characteristics of S. pyogenes IMPDH are similar to other bacterial IMPDH enzymes. However, the lack of sensitivity to mycophenolic acid and the K{sub m} for NAD (1180 {mu}M) exemplify some of the differences between the bacterial and mammalian IMPDH enzymes, making it an attractive target for antimicrobial agents. To evaluate the basis for these differences, we determined the crystal structure of the bacterial enzyme at 1.9 {angstrom} with substrate bound in the catalytic site. The structure was determined using selenomethionine-substituted protein and multiwavelength anomalous (MAD) analysis of data obtained with synchrotron radiation from the undulator beamline (19ID) of the Structural Biology Center at Argonne's Advanced Photon Source. S. pyogenes IMPDH is a tetramer with its four subunits related by a crystallographic 4-fold axis. The protein is composed of two domains: a TIM barrel domain that embodies the catalytic framework and a cystathione {beta}-synthase (CBS) dimer domain of so far unknown function. Using information provided by sequence alignments and the crystal structure, we prepared several site-specific mutants to examine the role of various active site regions in catalysis. These variants implicate the active site flap as an essential catalytic element and indicate there are significant differences in the catalytic environment of bacterial and mammalian IMPDH enzymes. Comparison of the structure of bacterial IMPDH with the known partial structures from eukaryotic organisms will provide an explanation of their distinct properties and contribute to the design of specific bacterial IMPDH inhibitors.

  3. Chemistry in interstellar space. [environment characteristics influencing reaction dynamics

    NASA Technical Reports Server (NTRS)

    Donn, B.

    1973-01-01

    The particular characteristics of chemistry in interstellar space are determined by the unique environmental conditions involved. Interstellar matter is present at extremely low densities. Large deviations from thermodynamic equilibrium are, therefore, to be expected. A relatively intense ultraviolet radiation is present in many regions. The temperatures are in the range from 5 to 200 K. Data concerning the inhibiting effect of small activation energies in interstellar clouds are presented in a table. A summary of measured activation energies or barrier heights for exothermic exchange reactions is also provided. Problems of molecule formation are discussed, taking into account gas phase reactions and surface catalyzed processes.

  4. The dynamics and control of large flexible space structures

    NASA Technical Reports Server (NTRS)

    Bainum, P. M.; Kumar, V. K.; Krishna, R.; Reddy, A. S. S. R.; Diarra, C. M.

    1983-01-01

    Large, flexible orbiting systems proposed for possible use in communications, electronic orbital based mail systems, and solar energy collection are discussed. The size and low weight to area ratio of such systems indicate that system flexibility is now the main consideration in the dynamics and control problem. For such large, flexible systems, both orientation and surface shape control will often be required. A conceptual development plan of a system software capability for use in analysis of the dynamics and control of large space structures technology (LSST) systems is discussed. This concept can be subdivided into four different stages: (1) system dynamics; (2) structural dynamics; (3) application of control algorithms; and (4) simulation of environmental disturbances. Modeling the system dynamics of such systems in orbit is the most fundamental component. Solar radiation pressure effects and orbital and gravity gradient effects are discussed.

  5. Dynamic characteristics of vibration isolation platforms considering the joints of the struts

    NASA Astrophysics Data System (ADS)

    Zhang, Jingrui; Guo, Zixi; Zhang, Yao

    2016-09-01

    This paper discusses the dynamic characteristics of the impacts and corresponding frictions generated by the clearances of joints of vibration isolation platforms for control moment gyroscopes (CMGs) on spacecraft. A contact force model is applied using a nonlinear contact force model, and the frictions in the joints are considered in the dynamic analysis. First, the dynamic characteristics of a single isolation strut with spherical joints were studied, and joints with different initial clearance sizes were separately analyzed. Then, dynamic models of the vibration isolation platform for a CMG cluster with both perfect joints and joints with clearances were established. During the numeral simulation, joints with different elastic moduli were used to study the nonlinear characteristics. Finally, the distributions of the collision points, which can serve as a reference for the reliability and lifetime of a platform, were given.

  6. A dynamic programming algorithm for finding alternative RNA secondary structures.

    PubMed

    Williams, A L; Tinoco, I

    1986-01-10

    Dynamic programming algorithms that predict RNA secondary structure by minimizing the free energy have had one important limitation. They were able to predict only one optimal structure. Given the uncertainties of the thermodynamic data and the effects of proteins and other environmental factors on structure, the optimal structure predicted by these methods may not have biological significance. We present a dynamic programming algorithm that can determine optimal and suboptimal secondary structures for an RNA. The power and utility of the method is demonstrated in the folding of the intervening sequence of the rRNA of Tetrahymena. By first identifying the major secondary structures corresponding to the lowest free energy minima, a secondary structure of possible biological significance is derived.

  7. A preliminary look at control augmented dynamic response of structures

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Jewell, R. E.

    1983-01-01

    The augmentation of structural characteristics, mass, damping, and stiffness through the use of control theory in lieu of structural redesign or augmentation was reported. The standard single-degree-of-freedom system was followed by a treatment of the same system using control augmentation. The system was extended to elastic structures using single and multisensor approaches and concludes with a brief discussion of potential application to large orbiting space structures.

  8. An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes

    NASA Astrophysics Data System (ADS)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2015-06-01

    In this paper, we present an experimental investigation on the energy harvesting performance of dynamically tailored structures based on the concept of embedded acoustic black holes (ABHs). Embedded ABHs allow tailoring the wave propagation characteristics of the host structure creating structural areas with extreme levels of energy density. Experiments are conducted on a tapered plate-like aluminum structure with multiple embedded ABH features. The dynamic response of the structure is tested via laser vibrometry in order to confirm the vibration localization and the passive wavelength sweep characteristic of ABH embedded tapers. Vibrational energy is extracted from the host structure and converted into electrical energy by using ceramic piezoelectric discs bonded on the ABHs and shunted on an external electric circuit. The energy harvesting performance is investigated both under steady state and transient excitation. The experimental results confirm that the dynamic tailoring produces a drastic increase in the harvested energy independently from the nature of the excitation input.

  9. The effect of nonsymmetric pressure stiffness on the dynamic characteristics of Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Christensen, Eric R.

    1993-01-01

    This paper discusses the effect of pressure on the dynamics of pre-stiffened structures such as the Advanced Solid Rocket Motor (ASRM). Previous work in which the stiffness terms resulting from constant pressure were derived has been extended to enable modeling of nonconstant pressure applied over nonenclosed volumes. These conditions will result in nonsymmetric terms in the global stiffness matrix which will not cancel out. Three new pressure stiffness elements incorporating these nonsymmetric terms have been implemented as dummy elements in COSMIC NASTRAN and have been tested on various simple examples as well as an existing ASRM NASTRAN finite element model. The results indicate that for all load cases of practical interest to the ASRM program, the nonsymmetric terms have very little effect on the dynamic characteristics. In addition, the pressure stiffness elements developed in the previous work which assumed constant pressure gave virtually the same results as the new elements even for problems in which the pressures are not constant. The original elements appear to work well as long as the pressure gradient across any individual element is no larger than about 0.75 psi/inch. The new elements are therefore most useful for determining the conditions under which the original pressure stiffness elements can be used.

  10. Hadron structure with light dynamical quarks

    SciTech Connect

    Robert Edwards; David Richards

    2005-07-25

    Generalized parton distributions encompass a wealth of information concerning the three dimensional quark and gluon structure of the nucleon, and thus provide an ideal focus for the study of hadron structure using lattice QCD. The special limits corresponding to form factors and parton distributions are well explored experimentally, providing clear tests of lattice calculations, and the lack of experimental data for more general cases provides opportunities for genuine predictions and for guiding experiment. We present results from hybrid calculations with improved staggered (Asqtad) sea quarks and domain wall valence quarks at pion masses down to 350 MeV.

  11. Degeneracy-driven self-structuring dynamics in selective repertoires.

    PubMed

    Atamas, Sergei P; Bell, Jonathan

    2009-08-01

    Numerous biological interactions, such as interactions between T cell receptors or antibodies with antigens, interactions between enzymes and substrates, or interactions between predators and prey are often not strictly specific. In such less specific, or "sloppy," systems, referred to here as degenerate systems, a given unit of a diverse resource (antigens, enzymatic substrates, prey) is at risk of being recognized and consumed by multiple consumers (lymphocytes, enzymes, predators). In this study, we model generalized degenerate consumer-resource systems of Lotka-Volterra and Verhulst types. In the degenerate systems of Lotka-Volterra, there is a continuum of types of consumer and resource based on variation of a single trait (characteristic, or preference). The consumers experience competition for a continuum of resource types. This non-local interaction system is modeled with partial differential-integral equations and shows spontaneous self-structuring of the consumer population that depends on the degree of interaction degeneracy between resource and consumer, but does not mirror the distribution of resource. We also show that the classical Verhulst (i.e. logistic) single population model can be generalized to a degenerate model, which shows qualitative behavior similar to that in the degenerate Lotka-Volterra model. These results provide better insight into the dynamics of selective systems in biology, suggesting that adaptation of degenerate repertoires is not a simple "mirroring" of the environment by the "fittest" elements of population.

  12. MESSENGER Observation of Mercury's Magnetopause: Structure and Dynamics

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.; Acuna, M. H.; Anderson, B. J.; Baker, D. N.; Benna, M.; Boardsen, S. A.; Gloeckler, G.; Gold, R. E.; Ho, G. C.; Korth, H.; Krimigis, S. M.; Livi, S. A.; McNutt, R. L., Jr.; Raines, J. M.; Sarantos, M.; Schriver, D.; Solomon, S. C.; Travnicek, P.

    2008-01-01

    MESSENGER'S 14 January 2008 encounter with Mercury has provided new observations of the magnetopause of this small magnetosphere, particularly concerning the effect of the direction of the interplanetary magnetic field (IMF) on the structure and dynamics of this boundary. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through Mercury's magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of well-developed flux transfer events (FTEs) was observed in the magnetosheath following some of these southward-B, intervals. The inbound magnetopause crossing seen in the magnetic field measurements is consistent with a transition from the magnetosheath into the plasma sheet. Immediately following MESSENGER'S entry into the magnetosphere, rotational perturbations in the magnetic field similar to those seen at the Earth in association with large-scale plasma sheet vortices driven by Kelvin-Helmholtz waves along the magnetotail boundary at the Earth were observed. The outbound magnetopause occurred during northward IMF B(sub z) and had the characteristics of a tangential discontinuity. These new observations by MESSENGER may be combined and compared with the magnetopause measurements collected by Mariner 10 to derive new understanding of the response of Mercury's magnetopause to IMF direction and its effect on the rate of solar wind energy and mass input to this small magnetosphere.

  13. FE analysis of dynamic characteristics for mill's liners

    NASA Astrophysics Data System (ADS)

    Feng, Xianzhang; Cui, Yanmei; Jiang, Zhiqiang; Hou, Tao

    2009-07-01

    Slab side pressing is an online regulation width technology for continuous casting slab, the liner at the bottom of the framework under the larger impact force, it often can occurrence accident of liner Board broken during working of sizing press rolling mill. In order to analyze force distribution and its peak in the liner of rolling mill during side pressing, liner dynamics model is established using nonlinear function of finite element software, and the contact mode is established for liner and wheel by Hertz law theory. It yields the relations between maximal stress and tap hole in the liner, the design scheme is extracted for improving condition of linerboard's stress, and the calculated results were much inosculated with the measured values. The studied results indicated that the liner's life gets improve obviously in field.

  14. Dynamic characteristics of peripheral jet ACV. I - Heaving motion

    NASA Astrophysics Data System (ADS)

    Mori, T.; Maeda, H.

    The theory of the dynamics of peripheral jet ACV is presented. The flow patterns under the bottom of the ACV are classified into two types, i.e. underfed and overfed regimes. The mathematical models associated with such regimes are presented and the equations of those models are derived. The forced heaving oscillation of a two-dimensional ACV model is investigated experimentally and variations of cushion pressure and lift force are measured and compared with the results obtained by the numerical calculation. The coincidence of these two results seems to be reasonable. The heaving motion of ACV which is induced by the simple harmonic oscillation of the ground board is also analyzed numerically.

  15. Structural Identifiability of Dynamic Systems Biology Models

    PubMed Central

    Villaverde, Alejandro F.

    2016-01-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas. PMID:27792726

  16. Emergence of structured communities through evolutionary dynamics.

    PubMed

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model.

  17. Emergence of structured communities through evolutionary dynamics.

    PubMed

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. PMID:26231415

  18. Structure and Dynamics of Coronal Plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1997-01-01

    During the past year this grant has funded research in the interaction between magnetic fields and the hot plasma in the solar outer atmosphere. The following is a brief summary of the published papers, abstracts and talks which have been supported. The paper 'Coronal Structures Observed in X-rays and H-alpha Structures' was published in the Kofu Symposium proceedings. The study analyzes cool and hot behavior of two x-ray events, a small flare and a surge. We find that a large H-alpha surge appears in x-rays as a very weak event, while a weak H-alpha feature corresponds to the brightest x-ray emission on the disk at the time of the observation. Calculations of the heating necessary to produce these signatures, and implications for the driving and heating mechanisms of flares vs. surges are presented. A copy of the paper is appended to this report. The paper 'Differential Magnetic Field Shear in an Active Region' has been published in The Astrophysical Journal. We have compared the 3D extrapolation of magnetic fields with the observed coronal structure in an active region. Based on the fit between observed coronal structure throughout the volume of the region and the calculated magnetic field configurations, we propose a differential magnetic field shear model for this active region. The decreasing field shear in the outer portions of the AR may indicate a continual relaxation of the magnetic field with time, corresponding to a net transport of helicity outward. The paper 'Difficulties in Observing Coronal Structure' has been accepted for publication in the journal Solar Physics. In this paper we discuss the evidence that the temperature and density structure of the corona are far more complicated than had previously been thought. The discussion is based on five studies carried out by our group on coronal plasma properties, showing that any one x-ray instrument does see all of the plasma present in the corona, that hot and cool material may appear to be co

  19. Health Insurance Coverage at Midlife: Characteristics, Costs, and Dynamics

    PubMed Central

    Johnson, Richard W.; Crystal, Stephen

    1997-01-01

    Recent data from the first two waves of the Health and Retirement Study are analyzed to evaluate prevalence of different types of health insurance, characteristics of different plan types, and changes in coverage as individuals approach retirement age. Although overall rates of coverage are quite high among the middle-aged, the risk of non-coverage is high within many disadvantaged groups, including Hispanics, low-wage earners, and the recently disabled. Sixty percent of individuals with health benefits are enrolled in health maintenance organizations (HMOs) or preferred provider organizations (PPOs). In addition, one-fourth of enrollees in fee-for-service (FFS) plans report restrictions in their access to specialists. PMID:10170345

  20. Introducing Students to Structural Dynamics and Earthquake Engineering

    ERIC Educational Resources Information Center

    Anthoine, Armelle; Marazzi, Francesco; Tirelli, Daniel

    2010-01-01

    The European Laboratory for Structural Assessment (ELSA) is one of the world's main laboratories for seismic studies. Besides its research activities, it also aims to bring applied science closer to the public. This article describes teaching activities based on a demonstration shaking table which is used to introduce the structural dynamics of…

  1. Structural Dynamics of Filament-Wound Booster Rockets

    NASA Technical Reports Server (NTRS)

    Bugg, F. M.

    1987-01-01

    Report summarizes program of measurements and calculations of vibrations in filament-wound composite models of Space Shuttle solid-rocket boosters. Vibrational behavior predicted by finite-element computer model of structural dynamics correlates well with data from tests on full- and quarter-scale models. Computer model developed with NASTRAN general-purpose structural-analysis computer code.

  2. Structure and Dynamics of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Schnack, D. D.

    1994-01-01

    Advanced computational techniques were used to study solar coronal heating and coronal mass ejections. A three dimensional, time dependent resistive magnetohydrodynamic code was used to study the dynamic response of a model corona to continuous, slow, random magnetic footpoint displacements in the photosphere. Three dimensional numerical simulations of the response of the corona to simple smooth braiding flows in the photosphere were calculated to illustrate and understand the spontaneous formation of current filaments. Two dimensional steady state helmet streamer configurations were obtained by determining the time asymptotic state of the interaction of an initially one dimensinal transponic solar wind with a spherical potential dipole field. The disruption of the steady state helmet streamer configuration was studied as a response to shearing of the magnetic footpoints of the closed field lines under the helmet.

  3. Nonlinear Synergies and Multiscale Structural Dynamics in Complex Systems: Theoretical Advances and Applications to Hydroclimate Dynamics

    NASA Astrophysics Data System (ADS)

    Perdigão, R. A. P.

    2015-12-01

    The dynamical evolution of complex coevolving systems is assessed in a novel nonlinear statistical-dynamical framework formally linking nonlinear statistical measures of codependence and emergence with fundamental dynamical interaction laws. The methodological developments are then used to shed light onto fundamental interactions underlying complex behaviour in hydroclimate dynamics. For that purpose, a dynamical model is presented predicting evolving hydroclimatic quantities and their distributions under nonlinearly coevolving geophysical processes. The functional model is based on first principles regulating the dynamics of each system constituent and their synergies, therefore its applicability is general and data-independent, not requiring local calibrations. Moreover, it enables the dynamical estimation of hydroclimatic variations in space and time from the given knowledge at different spatiotemporal conditions. This paves the way for a robust physically based prediction of hydroclimatic changes in unmonitored areas. Validation is achieved by producing, with the dynamical model, a comprehensive spatiotemporal legacy consistent with the observed distributions along with their dynamical and statistical properties and relations. The similarity between simulated and observed distributions is further assessed with robust information-theoretic diagnostics. This study ultimately brings to light emerging signatures of structural change in hydroclimate dynamics arising from nonlinear synergies across spatiotemporal scales, and contributes to a better dynamical understanding and prediction of spatiotemporal regimes, transitions and extremes. The study further sheds light onto a diversity of emerging properties from harmonic to hyper-chaotic dynamics in hydroclimatic systems.

  4. Dynamical and orientational structural crossovers in low-temperature glycerol.

    PubMed

    Seyedi, Salman; Martin, Daniel R; Matyushov, Dmitry V

    2016-07-01

    Mean-square displacements of hydrogen atoms in glass-forming materials and proteins, as reported by incoherent elastic neutron scattering, show kinks in their temperature dependence. This crossover, known as the dynamical transition, connects two approximately linear regimes. It is often assigned to the dynamical freezing of subsets of molecular modes at the point of equality between their corresponding relaxation times and the instrumental observation window. The origin of the dynamical transition in glass-forming glycerol is studied here by extensive molecular dynamics simulations. We find the dynamical transition to occur for both the center-of-mass translations and the molecular rotations at the same temperature, insensitive to changes of the observation window. Both the translational and rotational dynamics of glycerol show a dynamic crossover from the structural to a secondary relaxation at the temperature of the dynamical transition. A significant and discontinuous increase in the orientational Kirkwood factor and in the dielectric constant is observed in the same range of temperatures. No indication is found of a true thermodynamic transition to an ordered low-temperature phase. We therefore suggest that all observed crossovers are dynamic in character. The increase in the dielectric constant is related to the dynamic freezing of dipolar domains on the time scale of simulations.

  5. Dynamical and orientational structural crossovers in low-temperature glycerol.

    PubMed

    Seyedi, Salman; Martin, Daniel R; Matyushov, Dmitry V

    2016-07-01

    Mean-square displacements of hydrogen atoms in glass-forming materials and proteins, as reported by incoherent elastic neutron scattering, show kinks in their temperature dependence. This crossover, known as the dynamical transition, connects two approximately linear regimes. It is often assigned to the dynamical freezing of subsets of molecular modes at the point of equality between their corresponding relaxation times and the instrumental observation window. The origin of the dynamical transition in glass-forming glycerol is studied here by extensive molecular dynamics simulations. We find the dynamical transition to occur for both the center-of-mass translations and the molecular rotations at the same temperature, insensitive to changes of the observation window. Both the translational and rotational dynamics of glycerol show a dynamic crossover from the structural to a secondary relaxation at the temperature of the dynamical transition. A significant and discontinuous increase in the orientational Kirkwood factor and in the dielectric constant is observed in the same range of temperatures. No indication is found of a true thermodynamic transition to an ordered low-temperature phase. We therefore suggest that all observed crossovers are dynamic in character. The increase in the dielectric constant is related to the dynamic freezing of dipolar domains on the time scale of simulations. PMID:27575188

  6. Dynamical and orientational structural crossovers in low-temperature glycerol

    NASA Astrophysics Data System (ADS)

    Seyedi, Salman; Martin, Daniel R.; Matyushov, Dmitry V.

    2016-07-01

    Mean-square displacements of hydrogen atoms in glass-forming materials and proteins, as reported by incoherent elastic neutron scattering, show kinks in their temperature dependence. This crossover, known as the dynamical transition, connects two approximately linear regimes. It is often assigned to the dynamical freezing of subsets of molecular modes at the point of equality between their corresponding relaxation times and the instrumental observation window. The origin of the dynamical transition in glass-forming glycerol is studied here by extensive molecular dynamics simulations. We find the dynamical transition to occur for both the center-of-mass translations and the molecular rotations at the same temperature, insensitive to changes of the observation window. Both the translational and rotational dynamics of glycerol show a dynamic crossover from the structural to a secondary relaxation at the temperature of the dynamical transition. A significant and discontinuous increase in the orientational Kirkwood factor and in the dielectric constant is observed in the same range of temperatures. No indication is found of a true thermodynamic transition to an ordered low-temperature phase. We therefore suggest that all observed crossovers are dynamic in character. The increase in the dielectric constant is related to the dynamic freezing of dipolar domains on the time scale of simulations.

  7. Community structural characteristics and the adoption of fluoridation.

    PubMed Central

    Smith, R A

    1981-01-01

    A study of community structural characteristics associated with fluoridation outcomes was conducted in 47 communities. A three-part outcome distinction was utilized: communities never having publicly considered the fluoridation issue, those rejecting it, and those accepting it. The independent variables reflect the complexity of the community social and economic structure, social integration, and the centralization of authority. Results of mean comparisons show statistically significant differences between the three outcome types on the independent variables. A series of discriminant analyses provides furtheor evidence of how the independent variables are associated with each outcome type. Non-considering communities are shown to be low in complexity, and high in social integration and the centralization of governmental authority. Rejecters are shown to be high in complexity, but low in social integration and centralized authority. Adopters are relatively high on all three sets of variables. Theretical reasoning is provided to support the hypothesis and why these results are expected. The utility of these results and structural explanations in general are discussed, especially for public/environmental health planning and political activities. PMID:7258427

  8. Dynamic Programming for Structured Continuous Markov Decision Problems

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu

    2004-01-01

    We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.

  9. Dynamics and control of diseases in networks with community structure.

    PubMed

    Salathé, Marcel; Jones, James H

    2010-04-08

    The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.

  10. Dynamic kirigami structures for integrated solar tracking

    NASA Astrophysics Data System (ADS)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-09-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within +/-1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  11. Dynamic kirigami structures for integrated solar tracking

    PubMed Central

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  12. Helicity and singular structures in fluid dynamics

    PubMed Central

    Moffatt, H. Keith

    2014-01-01

    Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175

  13. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  14. Dynamic kirigami structures for integrated solar tracking.

    PubMed

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-09-08

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  15. Structure and dynamics of coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, Leon (Principal Investigator)

    1996-01-01

    Progress for the period July 1995 - June 1996 included work on the differential magnetic field shear in an active region; observations and modeling of the solar chromosphere seen in soft X-ray absorption by NIXT; and modeling magnetic flux emergence. These were the subjects of three papers. The plans for the current year include projects on a converging flux model for point-like brightenings around sunspots, and difficulties in observing coronal structure.

  16. Frequency characteristics of air-structural and structural sound transmission in human lungs

    NASA Astrophysics Data System (ADS)

    Shiryaev, A. D.; Korenbaum, V. I.

    2013-11-01

    From an independent sampling of data on luminal probing of the lungs of 20 people, based on an analysis of the phase characteristics of the coherency function of the signal with linear frequency modulation in a frequency band of 80-1000 Hz recorded above the trachea and different areas of the chest, the frequency selectivity of the structural and air-structural transmission variants has been revealed. It has been established that structural sound transmission on average is observed in a band from 100 to 280 Hz and air-structural propagation lies in the frequency range from 100 to 500-700 Hz. Over areas of the lungs characterized by the presence of aerated tissues (the apex and lower lobe), more frequently there is air-structural transmission, whereas in the vicinity of dense organs of the mediastinum (intercapsular region), on the contrary, structural propagation dominates.

  17. Structural concerns in dynamic drop loads on transfer lock mechanisms

    SciTech Connect

    Pfeiffer, P.A.; Moran, T.J.; Kulak, R.F.

    1997-07-01

    Drop loads are usually low probability events that can generate substantial loading to the impacted structures. When the impacted structure contains slender elements, the concern about dynamic buckling must be addressed. The problem of interest here is a structure is also under significant preload, which must be taken into account in the transient analysis. For complex structures, numerical simulations are the only viable option for assessing the transient response to short duration impactive loads. this paper addresses several analysis issues of preloaded structures with slender members subjected to drop loads. A three-dimensional beam element is validated for use in dynamic buckling analysis. the numerical algorithm used to solve the transient response of preloaded structures is discussed. The methodology is applied to an inter-compartment lock that is under significant preloads, and subjected to a drop load.

  18. The dynamics of parabolic flight: Flight characteristics and passenger percepts

    NASA Astrophysics Data System (ADS)

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 s of freefall (0 g) followed by 40 s of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity." Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  19. The dynamics of parabolic flight: flight characteristics and passenger percepts.

    PubMed

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  20. Fluid dynamic characteristics of monopivot magnetic suspension blood pumps.

    PubMed

    Yamane, T; Nishida, M; Asztalos, B; Tsutsui, T; Jikuya, T

    1997-01-01

    A monopivot magnetic suspension blood pump is a centrifugal pump under development with a magnetic suspension and a ceramic pivot to support the impeller with minimum contact. The pump size has been reduced by implementing a direct impeller drive mechanism in place of a magnetic coupling and motor. Flow visualization studies revealed that high shear, which seems to be closely related to hemolysis, concentrates in boundary layers near the walls. This implies that fluid dynamic shear can be reduced not by widening the gap, but by reducing the impeller velocity. Therefore, compared with the results of the previous semi-open curved vane impeller model, impeller velocity was reduced by 30% with a closed impeller having radial straight vanes, and smaller impeller/housing gaps. The volute shape around the impeller tip was also changed such that the outflow from the impeller enters along the center plane of the volute. To examine the effect of the improvements, hemolysis testing was conducted and found that the newly developed closed impeller model generated a lower level of hemolysis than the previous semi-open impeller model. PMID:9360122

  1. Kinematic/Dynamic Characteristics for Visual and Kinesthetic Virtual Environments

    NASA Technical Reports Server (NTRS)

    Bortolussi, Michael R. (Compiler); Adelstein, B. D.; Gold, Miriam

    1996-01-01

    Work was carried out on two topics of principal importance to current progress in virtual environment research at NASA Ames and elsewhere. The first topic was directed at maximizing the temporal dynamic response of visually presented Virtual Environments (VEs) through reorganization and optimization of system hardware and software. The final results of this portion of the work was a VE system in the Advanced Display and Spatial Perception Laboratory at NASA Ames capable of updating at 60 Hz (the maximum hardware refresh rate) with latencies approaching 30 msec. In the course of achieving this system performance, specialized hardware and software tools for measurement of VE latency and analytic models correlating update rate and latency for different system configurations were developed. The second area of activity was the preliminary development and analysis of a novel kinematic architecture for three Degree Of Freedom (DOF) haptic interfaces--devices that provide force feedback for manipulative interaction with virtual and remote environments. An invention disclosure was filed on this work and a patent application is being pursued by NASA Ames. Activities in these two areas are expanded upon below.

  2. The dynamics of parabolic flight: flight characteristics and passenger percepts

    PubMed Central

    Karmali, Faisal; Shelhamer, Mark

    2008-01-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30–60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328

  3. Information diversity in structure and dynamics of simulated neuronal networks.

    PubMed

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Nykter, Matti; Kesseli, Juha; Ruohonen, Keijo; Yli-Harja, Olli; Linne, Marja-Leena

    2011-01-01

    Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  4. A locally preferred structure characterises all dynamical regimes of a supercooled liquid

    NASA Astrophysics Data System (ADS)

    Soklaski, Ryan; Tran, Vy; Nussinov, Zohar; Kelton, K. F.; Yang, Li

    2016-04-01

    Recent experimental results suggest that metallic liquids universally exhibit a high-temperature dynamical crossover, which is correlated with the glass transition temperature (?). We demonstrate, using molecular dynamics results for ?, that this temperature, ?, is linked with cooperative atomic rearrangements that produce domains of connected icosahedra. Supercooling to a new characteristic temperature, ?, is shown to produce higher order cooperative rearrangements amongst connected icosahedra, which manifests as the formation of large Zr-rich connected domains that possess macroscopic proportions of the liquid's icosahedra. This coincides with the decoupling of atomic diffusivities, large-scale domain fluctuations and the onset of glassy dynamics in the liquid. These extensive domains then abruptly stabilise above ? and eventually percolate before the glass is formed. All characteristic temperatures (?, ? and ?) are thus connected by successive manifestations of the structural cooperativity that begins at ?.

  5. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors.

    PubMed

    Wang, Shurong; Dai, Gongxin; Ru, Bin; Zhao, Yuan; Wang, Xiaoliu; Zhou, Jinsong; Luo, Zhongyang; Cen, Kefa

    2016-10-01

    The effects of torrefaction on hemicellulose characteristics and its pyrolysis behaviors were studied in detail. The oxygen content decreased significantly after torrefaction, leading to the increase of high heating value. Two-dimensional perturbation correlation analysis based on diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was performed to characterize the structural evolutions. It was found the dehydration of hydroxyls and the dissociation of branches were the main reactions at low torrefaction temperature. When the temperature further increased, the depolymerization of hemicellulose and the fragmentation of monosaccharide residues occurred. The distributed activation energy model with double Gaussian functions based on reaction-order model was used to investigate the pyrolysis kinetics. The results showed that torrefaction enhanced the activation energy for degradation reactions while lowered that for condensation reactions, and increased the devolatilization contribution of condensation reactions. Besides, torrefaction decreased the yields of typical pyrolytic products, such as acids, furans, alicyclic ketones and so on. PMID:27469091

  6. Impact of structural characteristics on starch digestibility of cooked rice.

    PubMed

    Tamura, Masatsugu; Singh, Jaspreet; Kaur, Lovedeep; Ogawa, Yukiharu

    2016-01-15

    To examine the impact of structural characteristics of cooked rice grains on their starch digestibility, a simulated in vitro gastro-small intestinal digestion technique was applied to intact and homogenised cooked rice samples. The starch hydrolysis percentage increased during simulated small intestinal digestion, in which approximately 65% and 24% of the starch was hydrolysed within the first 5min, for homogenised and intact cooked rice, respectively. The kinetic constant of homogenised cooked rice, which was regarded as an estimated digestion rate, was ∼8 times higher than the intact cooked rice. The homogenised and intact samples were also examined for any microstructural changes occurring during the in vitro digestion process using fluorescent and scanning electron microscopy. In the intact samples, the aleurone layers of the endosperm remained as thin-film like layers during in vitro digestion and thus may be regarded as less digestible materials that influence cooked rice digestibility.

  7. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors.

    PubMed

    Wang, Shurong; Dai, Gongxin; Ru, Bin; Zhao, Yuan; Wang, Xiaoliu; Zhou, Jinsong; Luo, Zhongyang; Cen, Kefa

    2016-10-01

    The effects of torrefaction on hemicellulose characteristics and its pyrolysis behaviors were studied in detail. The oxygen content decreased significantly after torrefaction, leading to the increase of high heating value. Two-dimensional perturbation correlation analysis based on diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was performed to characterize the structural evolutions. It was found the dehydration of hydroxyls and the dissociation of branches were the main reactions at low torrefaction temperature. When the temperature further increased, the depolymerization of hemicellulose and the fragmentation of monosaccharide residues occurred. The distributed activation energy model with double Gaussian functions based on reaction-order model was used to investigate the pyrolysis kinetics. The results showed that torrefaction enhanced the activation energy for degradation reactions while lowered that for condensation reactions, and increased the devolatilization contribution of condensation reactions. Besides, torrefaction decreased the yields of typical pyrolytic products, such as acids, furans, alicyclic ketones and so on.

  8. Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale

    2015-01-01

    Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.

  9. Communication: Role of short chain branching in polymer structure and dynamics.

    PubMed

    Kim, Jun Mo; Baig, Chunggi

    2016-02-28

    A comprehensive understanding of chain-branching effects, essential for establishing general knowledge of the structure-property-phenomenon relationship in polymer science, has not yet been found, due to a critical lack of knowledge on the role of short-chain branches, the effects of which have mostly been neglected in favor of the standard entropic-based concepts of long polymers. Here, we show a significant effect of short-chain branching on the structural and dynamical properties of polymeric materials, and reveal the molecular origins behind the fundamental role of short branches, via atomistic nonequilibrium molecular dynamics and mesoscopic Brownian dynamics by systematically varying the strength of the mobility of short branches. We demonstrate that the fast random Brownian kinetics inherent to short branches plays a key role in governing the overall structure and dynamics of polymers, leading to a compact molecular structure and, under external fields, to a lesser degree of structural deformation of polymer, to a reduced shear-thinning behavior, and to a smaller elastic stress, compared with their linear analogues. Their fast dynamical nature being unaffected by practical flow fields owing to their very short characteristic time scale, short branches would substantially influence (i.e., facilitate) the overall relaxation behavior of polymeric materials under various flowing conditions. PMID:26931673

  10. Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures.

    PubMed

    Iwai, Masakazu; Yokono, Makio; Kurokawa, Kazuo; Ichihara, Akira; Nakano, Akihiko

    2016-01-01

    The intricate molecular processes underlying photosynthesis have long been studied using various analytic approaches. However, the three-dimensional (3D) dynamics of such photosynthetic processes remain unexplored due to technological limitations related to investigating intraorganellar mechanisms in vivo. By developing a system for high-speed 3D laser scanning confocal microscopy combined with high-sensitivity multiple-channel detection, we visualized excitation energy dynamics in thylakoid structures within chloroplasts of live Physcomitrella patens cells. Two distinct thylakoid structures in the chloroplast, namely the grana and stroma lamellae, were visualized three-dimensionally in live cells. The simultaneous detection of the shorter (than ~670 nm) and longer (than ~680 nm) wavelength regions of chlorophyll (Chl) fluorescence reveals different spatial characteristics-irregular and vertical structures, respectively. Spectroscopic analyses showed that the shorter and longer wavelength regions of Chl fluorescence are affected more by free light-harvesting antenna proteins and photosystem II supercomplexes, respectively. The high-speed 3D time-lapse imaging of the shorter and longer wavelength regions also reveals different structural dynamics-rapid and slow movements within 1.5 seconds, respectively. Such structural dynamics of the two wavelength regions of Chl fluorescence would indicate excitation energy dynamics between light-harvesting antenna proteins and photosystems, reflecting the energetically active nature of photosynthetic proteins in thylakoid membranes. PMID:27416900

  11. Communication: Role of short chain branching in polymer structure and dynamics

    NASA Astrophysics Data System (ADS)

    Kim, Jun Mo; Baig, Chunggi

    2016-02-01

    A comprehensive understanding of chain-branching effects, essential for establishing general knowledge of the structure-property-phenomenon relationship in polymer science, has not yet been found, due to a critical lack of knowledge on the role of short-chain branches, the effects of which have mostly been neglected in favor of the standard entropic-based concepts of long polymers. Here, we show a significant effect of short-chain branching on the structural and dynamical properties of polymeric materials, and reveal the molecular origins behind the fundamental role of short branches, via atomistic nonequilibrium molecular dynamics and mesoscopic Brownian dynamics by systematically varying the strength of the mobility of short branches. We demonstrate that the fast random Brownian kinetics inherent to short branches plays a key role in governing the overall structure and dynamics of polymers, leading to a compact molecular structure and, under external fields, to a lesser degree of structural deformation of polymer, to a reduced shear-thinning behavior, and to a smaller elastic stress, compared with their linear analogues. Their fast dynamical nature being unaffected by practical flow fields owing to their very short characteristic time scale, short branches would substantially influence (i.e., facilitate) the overall relaxation behavior of polymeric materials under various flowing conditions.

  12. Live-cell visualization of excitation energy dynamics in chloroplast thylakoid structures.

    PubMed

    Iwai, Masakazu; Yokono, Makio; Kurokawa, Kazuo; Ichihara, Akira; Nakano, Akihiko

    2016-07-15

    The intricate molecular processes underlying photosynthesis have long been studied using various analytic approaches. However, the three-dimensional (3D) dynamics of such photosynthetic processes remain unexplored due to technological limitations related to investigating intraorganellar mechanisms in vivo. By developing a system for high-speed 3D laser scanning confocal microscopy combined with high-sensitivity multiple-channel detection, we visualized excitation energy dynamics in thylakoid structures within chloroplasts of live Physcomitrella patens cells. Two distinct thylakoid structures in the chloroplast, namely the grana and stroma lamellae, were visualized three-dimensionally in live cells. The simultaneous detection of the shorter (than ~670 nm) and longer (than ~680 nm) wavelength regions of chlorophyll (Chl) fluorescence reveals different spatial characteristics-irregular and vertical structures, respectively. Spectroscopic analyses showed that the shorter and longer wavelength regions of Chl fluorescence are affected more by free light-harvesting antenna proteins and photosystem II supercomplexes, respectively. The high-speed 3D time-lapse imaging of the shorter and longer wavelength regions also reveals different structural dynamics-rapid and slow movements within 1.5 seconds, respectively. Such structural dynamics of the two wavelength regions of Chl fluorescence would indicate excitation energy dynamics between light-harvesting antenna proteins and photosystems, reflecting the energetically active nature of photosynthetic proteins in thylakoid membranes.

  13. Dynamic characteristics of Prochlorococcus and Synechococcus consumption by bacterivorous nanoflagellates.

    PubMed

    Christaki, U; Courties, C; Karayanni, H; Giannakourou, A; Maravelias, C; Kormas, K Ar; Lebaron, P

    2002-04-01

    We compared the characteristics of ingestion of Prochlorococcus and Synechococcus by the marine heterotrophic nanoflagellate Pseudobodo sp. and by a mixed nanoflagellate culture (around 3 microm in size) obtained from an open sea oligotrophic area. Maximum ingestion rate on Synechococcus (2.7 Syn flagellate(-1) h(-1)) was reached at concentrations of 5 x 10(5) Syn mL(-1) and decreased between 6 x 10(5) and 1.5 x 10(6) Syn mL(-1). In order to validate laboratory data, one set of data on Synechococcus grazing was obtained during a field study in the oligotrophic northeastern Mediterranean Sea. Ingestion rates by heterotrophic nanoflagellates were related to Synechococcus abundance in the water, and the feeding rate showed a clear diel rhythm with consumption being highest during the night, declining during the day hours, and being lowest at dusk. Ingestion rates on Prochlorococcus increased linearly for the whole range of prey density used (i.e., from 1 x 10(3) to 3 x 10(6) Proc mL(-1)), with maximum ingestion of 6.7 Proc flagellate(-1) h(-1). However, for prey concentrations in the range of 10(3)-10(5), which are usually encountered in aquatic systems, ingestion rates were significantly less than on Synechococcus. In our experiments, both Prochlorococcus and Synechococcus proved to be poor food items for support of nanoflagellate growth.

  14. HIV-1 Protease: Structure, Dynamics and Inhibition

    SciTech Connect

    Louis, John M.; Ishima, R.; Torchia, D.A.; Weber, Irene T.

    2008-06-03

    The HIV-1 protease is synthesized as part of a large Gag-Pol precursor protein. It is responsible for its own release from the precursor and the processing of the Gag and Gag-Pol polyproteins into the mature structural and functional proteins required for virus maturation. Because of its indispensable role, the mature HIV-1 protease dimer has proven to be a successful target for the development of antiviral agents. In the last 5 years, a major emphasis in protease research has been to improve inhibitor design and treatment regimens.

  15. Control of complex networks requires both structure and dynamics

    PubMed Central

    Gates, Alexander J.; Rocha, Luis M.

    2016-01-01

    The study of network structure has uncovered signatures of the organization of complex systems. However, there is also a need to understand how to control them; for example, identifying strategies to revert a diseased cell to a healthy state, or a mature cell to a pluripotent state. Two recent methodologies suggest that the controllability of complex systems can be predicted solely from the graph of interactions between variables, without considering their dynamics: structural controllability and minimum dominating sets. We demonstrate that such structure-only methods fail to characterize controllability when dynamics are introduced. We study Boolean network ensembles of network motifs as well as three models of biochemical regulation: the segment polarity network in Drosophila melanogaster, the cell cycle of budding yeast Saccharomyces cerevisiae, and the floral organ arrangement in Arabidopsis thaliana. We demonstrate that structure-only methods both undershoot and overshoot the number and which sets of critical variables best control the dynamics of these models, highlighting the importance of the actual system dynamics in determining control. Our analysis further shows that the logic of automata transition functions, namely how canalizing they are, plays an important role in the extent to which structure predicts dynamics. PMID:27087469

  16. Method for minimization of solution costs for transient dynamic analysis of nonlinear periodic structures

    SciTech Connect

    Van Kirk, J.S.; Bogard, W.T.; Wood, L.R.

    1982-01-01

    Techniques are described for the transient dynamic analysis of nonlinear periodic structures subjected to time history excitations. These techniques consider the special characteristics of periodic structures in conjunction with the psuedo-force approach in numerical integration to reduce computerized solution costs. A special purpose computer code, based on these techniques, is applied to a specific nonlinear periodic structure: the response of a pressurized water reactor core to a postulated main coolant pipe rupture. Comparisons with a general purpose finite element code, using consistent integration methods, demonstrate the savings in solution cost.

  17. Structure and dynamics of electrical double layers in organic electrolytes

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Qiao, Rui; Feng, Guang

    2010-01-01

    The organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF{sub 4}) in the aprotic solvent of acetonitrile (ACN) is widely used in electrochemical systems such as electrochemical capacitors. In this paper, we examine the solvation of TEA{sup +} and BF{sub 4}{sup -} in ACN, and the structure, capacitance, and dynamics of the electrical double layers (EDLs) in the TEABF{sub 4}-ACN electrolyte using molecular dynamics simulations complemented with quantum density functional theory calculations. The solvation of TEA+ and BF4- ions is found to be much weaker than that of small inorganic ions in aqueous solutions, and the ACN molecules in the solvation shell of both types of ions show only weak packing and orientational ordering. These solvation characteristics are caused by the large size, charge delocalization, and irregular shape (in the case of TEA+ cation) of the ions. Near neutral electrodes, the double-layer structure in the organic electrolyte exhibits a rich organization: the solvent shows strong layering and orientational ordering, ions are significantly contact-adsorbed on the electrode, and alternating layers of cations/anions penetrate ca. 1.1 nm into the bulk electrolyte. The significant contact adsorption of ions and the alternating layering of cation/anion are new features found for EDLs in organic electrolytes. These features essentially originate from the fact that van der Waals interactions between organic ions and the electrode are strong and the partial desolvation of these ions occurs easily, as a result of the large size of the organic ions. Near charged electrodes, distinct counter-ion concentration peaks form, and the ion distribution cannot be described by the Helmholtz model or the Helmholtz + Poisson-Boltzmann model. This is because the number of counter-ions adsorbed on the electrode exceeds the number of electrons on the electrode, and the electrode is over-screened in parts of the EDL. The computed capacitances of the EDLs are in

  18. Dynamics in Sequence Space for RNA Secondary Structure Design.

    PubMed

    Matthies, Marco C; Bienert, Stefan; Torda, Andrew E

    2012-10-01

    We have implemented a method for the design of RNA sequences that should fold to arbitrary secondary structures. A popular energy model allows one to take the derivative with respect to composition, which can then be interpreted as a force and used for Newtonian dynamics in sequence space. Combined with a negative design term, one can rapidly sample sequences which are compatible with a desired secondary structure via simulated annealing. Results for 360 structures were compared with those from another nucleic acid design program using measures such as the probability of the target structure and an ensemble-weighted distance to the target structure.

  19. Structural Dynamics and Control of Large Space Structures, 1982

    NASA Technical Reports Server (NTRS)

    Brumfield, M. L. (Compiler)

    1983-01-01

    Basic research in the control of large space structures is discussed. Active damping and control of flexible beams, active stabilization of flexible antenna feed towers, spacecraft docking, and robust pointing control of large space platform payloads are among the topics discussed.

  20. Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy

    DOE PAGES

    Filenko, Nina A.; Palets, Dmytro B.; Lyubchenko, Yuri L.

    2012-01-01

    Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their populationmore » was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed.« less

  1. Dynamic Identification for Control of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Ibrahim, S. R.

    1985-01-01

    This is a compilation of reports by the one author on one subject. It consists of the following five journal articles: (1) A Parametric Study of the Ibrahim Time Domain Modal Identification Algorithm; (2) Large Modal Survey Testing Using the Ibrahim Time Domain Identification Technique; (3) Computation of Normal Modes from Identified Complex Modes; (4) Dynamic Modeling of Structural from Measured Complex Modes; and (5) Time Domain Quasi-Linear Identification of Nonlinear Dynamic Systems.

  2. Granular media in transformation: dynamics and structure

    NASA Astrophysics Data System (ADS)

    Merceron, Aymeric; Jop, Pierre; Sauret, Alban; SVI, CNRS/Saint-Gobain Team

    2015-11-01

    Sintering, glass melting and other industrially relevant processes turn batches of grains into continuous end products. Such processes involve complex and mostly misunderstood chemical and physical transformations of the granular packing. Affecting the contact network, physicochemical reactions entail mechanical rearrangements. But such reorganizations may also trigger new potential reactions. Granular reactive systems are strongly coupled and need investigations for achieving industrial optimizations. This study is focused on how transformations appearing on its components affect the response of the granular packing. Inert brass disks and grains undergoing well-known transformations like volume decrease are mixed and then confined in a vertical 2D cell. While the system reacts, the granular packing is regularly photographed with a high-resolution camera. Events largely distributed both spatially and temporally occur around reactive grains. Thanks to image processing, this reorganization process is then analyzed. Spatial and temporal amplitudes of events are quantified as well as their local and global impacts on the granular structure.

  3. Structures and Dynamics of Endohedral Scandium Metallofullerenes

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Tansho, M.; Inakuma, M.; Saito, Y.; Sato, H.; Hayashi, N.; Kato, T.; Hashizume, T.; Sakurai, T.

    The endohedral metallofullerenes, such as Sc@C82, Sc2@C84, and Sc3@C82, have been purified and isolated by using two-stage high-performance liquid chromatography (HPLC). The ESR spectrum of the isolated Sc3@C82 exhibits a perfectly symmetric 22 hyperfined splittings with an inherent linewidth of 0.77 Gauss at 220 K, which is consistent with a unique structure that three scandium atoms are encaged triangularly within the C3v isomer of C82. In addition, we report the direct imaging of the isolated discandium fullerene (Sc2@C84) on silicon clean surfaces in an ultrahigh-vacuum environment by utilizing scanning tunneling microscopy (STM). The STM images reveal spherical Sc2@C84 fullerenes, spaced 11.7 Å apart, stacked in close-packed arrays.

  4. Dual attention to dynamically structured naturalistic events.

    PubMed

    Stoffregen, T A; Becklen, R C

    1989-12-01

    Videotapes of two naturalistic events, a basketball-like game and a vocalizing human face, were presented in a dual-task situation, with subjects responding to target events in individual episodes. The fact that the stimulus episodes consisted of natural motions permitted subjects to base their attention on the partially determinate structure that characterizes such motions. Simultaneous visual presentations were in full transparent overlap. the auditory presentations were overlapped spatially. Performance on the dual task improved significantly in all experimental conditions over two days of practice. Performance approached control-group ceiling levels for events available to different modalities (hearing and sight). When information was available only in a single modality, performance was lower over-all, but practice effects were still significant. The results are discussed in the context of a cognitive skills approach to attention.

  5. Multiscale Simulation of Microbe Structure and Dynamics

    PubMed Central

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V.; Cheluvaraja, Srinath C.; Ortoleva, Peter J.

    2012-01-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin. PMID:21802438

  6. Characteristic Lifelength of Coherent Structure in the Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.

    2006-01-01

    A characteristic lifelength is defined by which a Gaussian distribution is fit to data correlated over a 3 sensor array sampling streamwise sidewall pressure. The data were acquired at subsonic, transonic and supersonic speeds aboard a Tu-144. Lifelengths are estimated using the cross spectrum and are shown to compare favorably with Efimtsov's prediction of correlation space scales. Lifelength distributions are computed in the time/frequency domain using an interval correlation technique on the continuous wavelet transform of the original time data. The median values of the lifelength distributions are found to be very close to the frequency averaged result. The interval correlation technique is shown to allow the retrieval and inspection of the original time data of each event in the lifelength distribution, thus providing a means to locate and study the nature of the coherent structure in the turbulent boundary layer. The lifelength data can be converted to lifetimes using the convection velocity. The lifetime of events in the time/frequency domain are displayed in Lifetime Maps. The primary purpose of the paper is to validate these new analysis techniques so that they can be used with confidence to further characterize coherent structure in the turbulent boundary layer.

  7. Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

    NASA Astrophysics Data System (ADS)

    Mueller, B. Y.; Haag, M.; Fähnle, M.

    2016-09-01

    Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.

  8. Dismissing Attachment Characteristics Dynamically Modulate Brain Networks Subserving Social Aversion.

    PubMed

    Krause, Anna Linda; Borchardt, Viola; Li, Meng; van Tol, Marie-José; Demenescu, Liliana Ramona; Strauss, Bernhard; Kirchmann, Helmut; Buchheim, Anna; Metzger, Coraline D; Nolte, Tobias; Walter, Martin

    2016-01-01

    direct prediction of neuronal responses by individual attachment and trauma characteristics and reversely prediction of subjective experience by intrinsic functional connections. We consider these findings of activation of within-network and between-network connectivity modulated by inter-individual differences as substantial for the understanding of interpersonal processes, particularly in clinical settings.

  9. Dismissing Attachment Characteristics Dynamically Modulate Brain Networks Subserving Social Aversion

    PubMed Central

    Krause, Anna Linda; Borchardt, Viola; Li, Meng; van Tol, Marie-José; Demenescu, Liliana Ramona; Strauss, Bernhard; Kirchmann, Helmut; Buchheim, Anna; Metzger, Coraline D.; Nolte, Tobias; Walter, Martin

    2016-01-01

    our observation of direct prediction of neuronal responses by individual attachment and trauma characteristics and reversely prediction of subjective experience by intrinsic functional connections. We consider these findings of activation of within-network and between-network connectivity modulated by inter-individual differences as substantial for the understanding of interpersonal processes, particularly in clinical settings. PMID:27014016

  10. Study on dynamic characteristics' change of hippocampal neuron reduced models caused by the Alzheimer's disease.

    PubMed

    Peng, Yueping; Wang, Jue; Zheng, Chongxun

    2016-01-01

    In the paper, based on the electrophysiological experimental data, the Hippocampal neuron reduced model under the pathology condition of Alzheimer's disease (AD) has been built by modifying parameters' values. The reduced neuron model's dynamic characteristics under effect of AD are comparatively studied. Under direct current stimulation, compared with the normal neuron model, the AD neuron model's dynamic characteristics have obviously been changed. The neuron model under the AD condition undergoes supercritical Andronov-Hopf bifurcation from the rest state to the continuous discharge state. It is different from the neuron model under the normal condition, which undergoes saddle-node bifurcation. So, the neuron model changes into a resonator with monostable state from an integrator with bistable state under AD's action. The research reveals the neuron model's dynamic characteristics' changing under effect of AD, and provides some theoretic basis for AD research by neurodynamics theory.

  11. Compressibility effects on the dynamic characteristics of gas lubricated mechanical components

    NASA Astrophysics Data System (ADS)

    Arghir, Mihai; Matta, Pierre

    2009-11-01

    The present Note deals with the effects of compressibility on the linearized dynamic characteristics of gas lubricated mechanical components (journal and thrust bearings). Although the effect of compressibility on the static characteristics is well known, its influence on the dynamic characteristics is still not clearly understood. The present Note uses Lubrication's simplest model problems (the 1D slider) to qualitatively describe this effect. An analytic solution obtained for the parallel 1D slider depicts the variation of stiffness and damping with the excitation frequency and shows that this nonlinearity must be taken into account for squeeze number larger than 1. A convenient way of handling this nonlinearity in a dynamic system is described for an aerodynamic thrust bearing. To cite this article: M. Arghir, P. Matta, C. R. Mecanique 337 (2009).

  12. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations

    PubMed Central

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-01-01

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840

  13. Nickel-aluminum alloy clusters -- structural and dynamical properties

    SciTech Connect

    Jellinek, J.; Krissinel, E.B.

    1997-08-01

    Structural and dynamical properties of mixed Ni{sub n}Al{sub m} alloy clusters mimicked by a many-body potential are studied computationally for all the possible compositions n and m such that n + m = 13. It is shown that the manifold of the usually very large number of the different possible structural forms can be systematized by introducing classes of structures corresponding to the same concentration of the components, geometry and type of the central atom. General definitions of mixing energy and mixing coefficient are introduced, and it is shown that the energy ordering of the structural forms within each class is governed by the mixing coefficient. The peculiarities of the solid-to-liquid-like transition are described as a function of the concentration of the two types of atoms. These peculiarities are correlated with and explained in terms of the energy spectra of the structural forms. Class-dependent features of the dynamics are described and analyzed.

  14. Simulation of the photogrammetric appendage structural dynamics experiment

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Gilbert, Michael G.; Welch, Sharon S.

    1995-01-01

    The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) uses six video cameras in the Space Shuttle cargo bay to measure vibration of the Russian Mir space station Kvant-ll solar array. It occurs on Shuttle/Mir docking mission STS-74 scheduled for launch in November 1995. The objective of PASDE is to demonstrate photogrammetric technology for measuring 'untargeted' spacecraft appendage structural dynamics. This paper discusses a pre-flight simulation test conducted in July 1995, focusing on the image processing aspects. The flight camera system recorded vibrations of a full-scale structural test article having grids of white lines on black background, similar in appearance to the Mir solar array. Using image correlation analysis, line intersections on the structure are tracked in the video recordings to resolutions of less than 0.1 pixel. Calibration and merging of multiple camera views generated 3-dimensional displacements from which structural modal parameters are then obtained.

  15. Dynamic and thermal analyses of flexible structures in orbit

    NASA Astrophysics Data System (ADS)

    Lin, Chijie

    Due to the launch cost and functional requirements, space structures, such as satellite antenna, deployable structures, solar sails, the space station, and solar panels, are necessarily built lightweight, large, and very flexible. These space structures undergo large orbital rigid body motions as well as large structural deformations caused by gravitational force and other disturbances, such as shuttle jet impingement loading, deployment factor, thermal effects, and debris impact. It is of utmost importance to study thoroughly the dynamic behavior of flexible structures in orbit under various external forces. In this study, first a finite element methodology program based on the absolute nodal coordinate formulation is developed to determine the coupled structural and orbital response of the flexible structure under gravitational and external loading, i.e., gravitational force, impact force, and jet impingement, and thermal loading. It is found from the simulation results that pitch and structural response of the flexible structures are greatly impacted by the initial and loading conditions, such as orbit eccentricity, initial misalignment, etc. The absolute nodal coordinate formulation may lead to inaccurate results due to the fact that the orbit radius is used for element coordinate, which is much greater than the amplitude of the pitch (attitude) motion and deformations of the orbiting structures. Therefore, to improve the accuracy of structural response in the simulation, a floating (moving) frame that is attached with the orbiting structure's center of mass and that moves parallel to the inertia frame fixed at the Earth's center is introduced to separate the attitude motion and structural deformation from the orbit radius. The finite element formulation is developed in this parallel reference frame system for two and three dimensional beam structures. It is then used to study dynamic response of flexible structures in two and three dimensional orbits. In some

  16. Accelerating Dynamic Cardiac MR Imaging Using Structured Sparse Representation

    PubMed Central

    Cai, Nian; Wang, Shengru; Zhu, Shasha

    2013-01-01

    Compressed sensing (CS) has produced promising results on dynamic cardiac MR imaging by exploiting the sparsity in image series. In this paper, we propose a new method to improve the CS reconstruction for dynamic cardiac MRI based on the theory of structured sparse representation. The proposed method user the PCA subdictionaries for adaptive sparse representation and suppresses the sparse coding noise to obtain good reconstructions. An accelerated iterative shrinkage algorithm is used to solve the optimization problem and achieve a fast convergence rate. Experimental results demonstrate that the proposed method improves the reconstruction quality of dynamic cardiac cine MRI over the state-of-the-art CS method. PMID:24454528

  17. Dynamics of opinion forming in structurally balanced social networks.

    PubMed

    Altafini, Claudio

    2012-01-01

    A structurally balanced social network is a social community that splits into two antagonistic factions (typical example being a two-party political system). The process of opinion forming on such a community is most often highly predictable, with polarized opinions reflecting the bipartition of the network. The aim of this paper is to suggest a class of dynamical systems, called monotone systems, as natural models for the dynamics of opinion forming on structurally balanced social networks. The high predictability of the outcome of a decision process is explained in terms of the order-preserving character of the solutions of this class of dynamical systems. If we represent a social network as a signed graph in which individuals are the nodes and the signs of the edges represent friendly or hostile relationships, then the property of structural balance corresponds to the social community being splittable into two antagonistic factions, each containing only friends.

  18. Cluster structure and dynamics in gels and glasses

    NASA Astrophysics Data System (ADS)

    Pastore, R.; de Candia, A.; Fierro, A.; Pica Ciamarra, M.; Coniglio, A.

    2016-07-01

    The dynamical arrest of gels is the consequence of a well defined structural phase transition, leading to the formation of a spanning cluster of bonded particles. The glass transition, instead, is not accompanied by any clear structural signature. Nevertheless, both transitions are characterized by the emergence of dynamical heterogeneities. Reviewing recent results from numerical simulations, we discuss the behavior of dynamical heterogeneities in different systems and show that a clear connection with the structure exists in the case of gels. The emerging picture may also be relevant for the more elusive case of glasses. We show, as an example, that the relaxation process of a simple glass-forming model can be related to a reverse percolation transition and discuss further perspective in this direction.

  19. Identification of Rotorcraft Structural Dynamics from Flight and Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    McKillip, Robert M., Jr.

    1997-01-01

    Excessive vibration remains one one of the most difficult problems that faces the helicopter industry today, affecting all production helicopters at some phase of their development. Vibrations in rotating structures may arise from external periodic dynamic airloads whose frequencies are are close to the natural frequencies of the rotating system itself. The goal for the structures engineer would thus be to design a structure as free from resonance effects as possible. In the case of a helicopter rotor blade these dynamic loads are a consequence of asymmetric airload distribution on the rotor blade in forward flight, leading to a rich collection of higher harmonic airloads that force rotor and airframe response. Accurate prediction of the dynamic characteristics of a helicopter rotor blade will provide the opportunity to affect in a positive manner noise intensity, vibration level, durability, reliability and operating costs by reducing objectionable frequencies or moving them to a different frequency range and thus providing us with a lower vibration rotor. In fact, the dynamic characteristics tend to define the operating limits of a rotorcraft. As computing power has increased greatly over the last decade, researchers and engineers have turned to analyzing the vibrational characteristics of aerospace structures at the design and development stage of the production of an aircraft. Modern rotor blade construction methods lead to products with low mass and low inherent damping so careful design and analysis is required to avoid resonance and an undesirable dynamic performance. In addition, accurate modal analysis is necessary for several current approaches in elastic system identification and active control.

  20. Structural characteristics of developing Nitella internodal cell walls.

    PubMed

    GREEN, P B

    1958-09-25

    The Nilella intermodal cell is formed by a division of the segment cell, the latter being a direct derivative of the shoot apical cell. The internodal cell is remarkable in that it elongates from an initial length of about 20 microns to a mature length of about 60 millimeters. The structures of the apical and segment cells, and the internodal cells in all stages of development were examined with the techniques of interference, polarization, and electron microscopy. The apical and segment cells were found to be isotropic. The upper part of the segment cell, destined to form a node, shows a curious pitted structure that was characteristic of certain node structures. The lower part of the segment cell, destined to become an internodal cell, shows a vague transverse arrangement of fibrils at the inner wall surface. The internodal cells, from the time they are first formed, show negative birefringence and a transverse arrangement of microfibrils at the inner wall surface. The elongation of the internodal cell is characterized by a rise, dip, and rise in both the optical thickness and retardation of the cell wall. The dip in both these variables coincides with the attainment of the maximum relative elongation rate. After the cessation of elongation, wall deposition continues, but the fibrils at .the inner surface of the wall are now seen to occur in fields of nearly parallel microfibrils. These fields, with varying fibrillar directions, may partly overlap each other or may merge with one another. Unlike the growing wall, this wall which is deposited after the end of elongation is isotropic.

  1. Characterization of local complex structures in a recurrence plot to improve nonlinear dynamic discriminant analysis

    NASA Astrophysics Data System (ADS)

    Ding, Hang

    2014-01-01

    Structures in recurrence plots (RPs), preserving the rich information of nonlinear invariants and trajectory characteristics, have been increasingly analyzed in dynamic discrimination studies. The conventional analysis of RPs is mainly focused on quantifying the overall diagonal and vertical line structures through a method, called recurrence quantification analysis (RQA). This study extensively explores the information in RPs by quantifying local complex RP structures. To do this, an approach was developed to analyze the combination of three major RQA variables: determinism, laminarity, and recurrence rate (DLR) in a metawindow moving over a RP. It was then evaluated in two experiments discriminating (1) ideal nonlinear dynamic series emulated from the Lorenz system with different control parameters and (2) data sets of human heart rate regulations with normal sinus rhythms (n = 18) and congestive heart failure (n = 29). Finally, the DLR was compared with seven major RQA variables in terms of discriminatory power, measured by standardized mean difference (DSMD). In the two experiments, DLR resulted in the highest discriminatory power with DSMD = 2.53 and 0.98, respectively, which were 7.41 and 2.09 times the best performance from RQA. The study also revealed that the optimal RP structures for the discriminations were neither typical diagonal structures nor vertical structures. These findings indicate that local complex RP structures contain some rich information unexploited by RQA. Therefore, future research to extensively analyze complex RP structures would potentially improve the effectiveness of the RP analysis in dynamic discrimination studies.

  2. Influence of atomic vacancies on the dynamic characteristics of nanoresonators based on double walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Patel, Ajay M.; Joshi, Anand Y.

    2015-06-01

    The dynamic analysis of double walled carbon nanotubes (DWCNTs) with different boundary conditions has been performed using atomistic finite element method. The double walled carbon nanotube is modeled considering it as a space frame structure similar to a three dimensional beam. The elastic properties of beam element are calculated by considering mechanical characteristics of covalent bonds between the carbon atoms in the hexagonal lattice. Spring elements are used to describe the interlayer interactions between the inner and outer tubes caused due to the van der Waals forces. The mass of each beam element is assumed as point mass at nodes coinciding with carbon atoms at inner and outer wall of DWCNT. It has been reported that atomic vacancies are formed during the manufacturing process in DWCNT which tend to migrate leading to a change in the mechanical characteristics of the same. Simulations have been carried out to visualize the behavior of such defective DWCNTs subjected to different boundary conditions and when used as mass sensing devices. The variation of such atomic vacancies in outer wall of Zigzag and Armchair DWCNT is performed along the length and the change in response is noted. Moreover, as CNTs have been used as mass sensors extensively, the present approach is focused to explore the use of zigzag and armchair DWCNT as sensing device with a mono-atomic vacancy in it. The results clearly state that the dynamic characteristics are greatly influenced by defects like vacancies in it. A higher frequency shift is observed when the vacancy is located away from the fixed end for both Armchair as well as zigzag type of CNTs. A higher frequency shift is reported for armchair CNT for a mass of 10-22 g which remains constant for 10-21 g and then decreases gradually. Comparison with the other experimental and theoretical studies exhibits good association which suggests that defective DWCNTs can further be explored for mass sensing. This investigation is helpful

  3. Improvement on the dynamical performance of a power bipolar static induction transistor with a buried gate structure

    NASA Astrophysics Data System (ADS)

    Yongshun, Wang; Jingjing, Feng; Chunjuan, Liu; Zaixing, Wang; Caizhen, Zhang; Peng, Chang

    2011-11-01

    The failure of a bipolar static induction transistor (BSIT) often occurs in the transient process between the conducting-state and the blocking-state, so a profound understanding of the physical mechanism of the switching process is of significance for designing and fabricating perfect devices. The dynamical characteristics of the transient process between conducting-state and blocking-state BSITs are represented in detail in this paper. The influences of material, structural and technological parameters on the dynamical performances of BSITs are discussed. The mechanism underlying the transient conversion process is analyzed in depth. The technological approaches are developed to improve the dynamical characteristics of BSITs.

  4. Organoactinide chemistry: synthesis, structure, and solution dynamics

    SciTech Connect

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp/sub 2/MX/sub 2/. Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U ..-->.. L ..pi..-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs.

  5. SSME structural dynamic model development, phase 2

    NASA Technical Reports Server (NTRS)

    Foley, M. J.; Wilson, V. L.

    1985-01-01

    A set of test correlated mathematical models of the SSME High Pressure Oxygen Turbopump (HPOTP) housing and rotor assembly was produced. New analysis methods within the EISI/EAL and SPAR systems were investigated and runstreams for future use were developed. The LOX pump models have undergone extensive modification since the first phase of this effort was completed. The rotor assembly from the original model was abandoned and a new, more detailed model constructed. A description of the new rotor math model is presented. Also, the pump housing model was continually modified as additional test data have become available. This model is documented along with measured test results. Many of the more advanced features of the EAL/SPAR finite element analysis system were exercised. These included the cyclic symmetry option, the macro-element procedures, and the fluid analysis capability. In addition, a new tool was developed that allows an automated analysis of a disjoint structure in terms of its component modes. A complete description of the implementation of the Craig-Bampton method is given along with two worked examples.

  6. Structure and dynamics of the Tyrrhenian basin

    SciTech Connect

    Sborshchikov, I.M.; Verjbitsky, E.V.; Schreider, A.A. )

    1988-08-01

    The Tyrrhenian Sea is a recently subsided oceanic basin. Young tholeiitic volcanoes are found in the central part of this sea as well as sea mount fragments of continental blocks formed by Alpine folding complexes. Mesozoic ophiolites are found on Baronie and DeMarchi sea mounts and Site 651 (Leg 107). Soviet investigations show that Baronie serpentinites are covered by thick carbonate rocks of Late Jurassic age, and these deposits are comparable with ophicalcites of the Ligurian Alps. The ophiolites are traced across the basin indicating the connection to north Corsican and Calabrian structures. The fracture zone of 41{degree}N is possibly the fault which controls microplate displacement. Rifting occurred quickly and migrated toward the Eolian arc. There is no direct evidence of regular spreading (linear magnetic anomalies) in the Tyrrhenian Sea now, and opening rate calculations are difficult. Detailed heat-flow data, similar to data of typical spreading centers, allow them to estimate the gradient of the thinning lithosphere outside to axis volcanoes (Vavilov and Marsili). The calculated rifting rate on this basis is about 1-2 cm/year relative to each stretching center. The Tyrrhenian Sea has developed as a back-arc basin within the collision zone of thick continental plates.

  7. Proceedings of Workshop XVI; The dynamic characteristics of faulting inferred from recordings of strong ground motion

    USGS Publications Warehouse

    Boatwright, John; Jacobson, Muriel L.

    1982-01-01

    The strong ground motions radiated by earthquake faulting are controlled by the dynamic characteristics of the faulting process. Although this assertion seems self-evident, seismologists have only recently begun to derive and test quantitative relations between common measures of strong ground motion and the dynamic characteristics of faulting. Interest in this problem has increased dramatically in past several years, however, resulting in a number of important advances. The research presented in this workshop is a significant part of this scientific development. Watching this development occur through the work of many scientists is exciting; to be able to gather a number of these scientists together in one workshop is a remarkable opportunity.

  8. Identification of structural systems with full characteristic matrices under single point excitation

    NASA Astrophysics Data System (ADS)

    Ghafory-Ashtiany, Mohsen; Adhami, Behnam; Khanlari, Karen

    2014-12-01

    The aim of "System Identification" is to determine modal and system properties of structural systems. This is while in "Damage Detection", the identification of system characteristic matrices is as important as or even more important than the identification of frequency characteristics. Because of various constraints - i.e. difficulties in force excitation of structures due to their large size, geometry, and location - in practice only single excitation and partial measurement, at selected degrees of freedom, is possible. In this paper, a single dynamic load was applied to identify a structural system only along one of the degrees of freedom of the structure. Further, responses corresponding to a few degrees of freedom were also measured. To identify a system with this sort of restricted information, a new approach was introduced enabling identification of the structure's parameters of mass, damping and stiffness. Taking into account the significant effect of noise reduction in improving system identification accuracy levels, a noise reduction technique was also proposed. The accuracy of the method was also assessed against noise level and location of single excitation. It was shown that as noise level increases, identification errors will also increase (less than 3.5 percent). It was further observed that applying single force at the first storey of the flexural structure would yield the lowest error levels in the identification results. Later, the method's efficiency and precision were examined through the application of a "closed loop solution" to a six-storey flexural structure, and a four-span Pratt truss. The obtained results showed that the proposed method could act as an effective model in identification of system properties.

  9. Whither Ribosome Structure and Dynamics Research? (A Perspective).

    PubMed

    Frank, Joachim

    2016-09-11

    As high-resolution cryogenic electron microscopy (cryo-EM) structures of ribosomes proliferate, at resolutions that allow atomic interactions to be visualized, this article attempts to give a perspective on the way research on ribosome structure and dynamics may be headed, and particularly the new opportunities we have gained through recent advances in cryo-EM. It is pointed out that single-molecule FRET and cryo-EM form natural complements in the characterization of ribosome dynamics and transitions among equilibrating states of in vitro translational systems. PMID:27178840

  10. Structural dynamics: Probabilistic structural analysis methods. Program overview

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Hopkins, Dale A.

    1991-01-01

    A brief description is provided of the fundamental aspects of a quantification process. Progress since the last structural durability conference in 1989 is summarized. The methodology to date and that to be developed during the life of the program is presented. The uncertain factors are presented. The approach is outlined that is required to achieve component and/or system certification in the shortest possible time for affordable reliability risk. Two new elements appear in a block diagram: (1) uncertainties in human factor, and (2) uncertainties in the computer code. Research to quantify the uncertainties in the human factor was initiated and is discussed.

  11. A Structural Dynamics Approach to the Simulation of Spacecraft Control/Structure Interaction

    NASA Technical Reports Server (NTRS)

    Young, J. W.

    1985-01-01

    A relatively simple approach to the analysis of linear spacecraft control/structure interaction problems is presented. The approach uses a commercially available structural system dynamic analysis package for both controller and plant dynamics, thus obviating the need to transfer data between separate programs. The unilateral coupling between components in the control system block diagram is simulated using sparse matrix stiffness and damping elements available in the structural dynamic code. The approach is illustrated with a series of simple tutorial examples of a rigid spacecraft core with flexible appendages.

  12. Numerical simulation of dynamic processes in biomechanics using the grid-characteristic method

    NASA Astrophysics Data System (ADS)

    Beklemysheva, K. A.; Vasyukov, A. V.; Petrov, I. B.

    2015-08-01

    Results of the numerical simulation of mechanical processes occurring in biological tissues under dynamic actions are presented. The grid-characteristic method on unstructured grids is used to solve the system of equations of mechanics of deformable solids; this method takes into account the characteristic properties of the constitutive system of partial differential equations and produces adequate algorithms on interfaces between media and on the boundaries of integration domains.

  13. The role of local structure in dynamical arrest

    NASA Astrophysics Data System (ADS)

    Royall, C. Patrick; Williams, Stephen R.

    2015-02-01

    Amorphous solids, or glasses, are distinguished from crystalline solids by their lack of long-range structural order. At the level of two-body structural correlations, glassformers show no qualitative change upon vitrifying from a supercooled liquid. Nonetheless the dynamical properties of a glass are so much slower that it appears to take on the properties of a solid. While many theories of the glass transition focus on dynamical quantities, a solid's resistance to flow is often viewed as a consequence of its structure. Here we address the viewpoint that this remains the case for a glass. Recent developments using higher-order measures show a clear emergence of structure upon dynamical arrest in a variety of glass formers and offer the tantalising hope of a structural mechanism for arrest. However a rigorous fundamental identification of such a causal link between structure and arrest remains elusive. We undertake a critical survey of this work in experiments, computer simulation and theory and discuss what might strengthen the link between structure and dynamical arrest. We move on to highlight the relationship between crystallisation and glass-forming ability made possible by this deeper understanding of the structure of the liquid state, and emphasise the potential to design materials with optimal glassforming and crystallisation ability, for applications such as phase-change memory. We then consider aspects of the phenomenology of glassy systems where structural measures have yet to make a large impact, such as polyamorphism (the existence of multiple liquid states), ageing (the time-evolution of non-equilibrium materials below their glass transition) and the response of glassy materials to external fields such as shear.

  14. What Controls the Structure and Dynamics of Earth's Magnetosphere?

    NASA Astrophysics Data System (ADS)

    Eastwood, J. P.; Hietala, H.; Toth, G.; Phan, T. D.; Fujimoto, M.

    2015-05-01

    Unlike most cosmic plasma structures, planetary magnetospheres can be extensively studied in situ. In particular, studies of the Earth's magnetosphere over the past few decades have resulted in a relatively good experimental understanding of both its basic structural properties and its response to changes in the impinging solar wind. In this article we provide a broad overview, designed for researchers unfamiliar with magnetospheric physics, of the main processes and parameters that control the structure and dynamics of planetary magnetospheres, especially the Earth's. In particular, we concentrate on the structure and dynamics of three important regions: the bow shock, the magnetopause and the magnetotail. In the final part of this review we describe the current status of global magnetospheric modelling, which is crucial to placing in situ observations in the proper context and providing a better understanding of magnetospheric structure and dynamics under all possible input conditions. Although the parameter regime experienced in the solar system is limited, the plasma physics that is learned by studying planetary magnetospheres can, in principle, be translated to more general studies of cosmic plasma structures. Conversely, studies of cosmic plasma under a wide range of conditions should be used to understand Earth's magnetosphere under extreme conditions. We conclude the review by discussing this and summarizing some general properties and principles that may be applied to studies of other cosmic plasma structures.

  15. Selecting Earthquake Records for Nonlinear Dynamic Analysis of Structures

    SciTech Connect

    Rodriguez, Mario E.

    2008-07-08

    An area in earthquake risk reduction that needs an urgent examination is the selection of earthquake records for nonlinear dynamic analysis of structures. An often-mentioned shortcoming from results of nonlinear dynamic analyses of structures is that these results are limited to the type of records that these analyses use as input data. This paper proposes a procedure for selecting earthquake records for nonlinear dynamic analysis of structures. This procedure uses a seismic damage index evaluated using the hysteretic energy dissipated by a Single Degree of Freedom System (SDOF) representing a multi-degree-of freedom structure responding to an earthquake record, and the plastic work capacity of the system at collapse. The type of structural system is considered using simple parameters. The proposed method is based on the evaluation of the damage index for a suite of earthquake records and a selected type of structural system. A set of 10 strong ground motion records is analyzed to show an application of the proposed procedure for selecting earthquake records for structural design.

  16. Nonlinear dynamic analysis of quasi-symmetric anisotropic structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.

  17. A Dynamic Photovoltaic Model Incorporating Capacitive and Reverse-Bias Characteristics

    SciTech Connect

    Kim, KA; Xu, CY; Jin, L; Krein, PT

    2013-10-01

    Photovoltaics (PVs) are typically modeled only for their forward-biased dc characteristics, as in the commonly used single-diode model. While this approach accurately models the I-V curve under steady forward bias, it lacks dynamic and reverse-bias characteristics. The dynamic characteristics, primarily parallel capacitance and series inductance, affect operation when a PV cell or string interacts with switching converters or experiences sudden transients. Reverse-bias characteristics are often ignored because PV devices are not intended to operate in the reverse-biased region. However, when partial shading occurs on a string of PVs, the shaded cell can become reverse biased and develop into a hot spot that permanently degrades the cell. To fully examine PV behavior under hot spots and various other faults, reverse-bias characteristics must also be modeled. This study develops a comprehensive mathematical PV model based on circuit components that accounts for forward bias, reverse bias, and dynamic characteristics. Using a series of three experimental tests on an unilluminated PV cell, all required model parameters are determined. The model is implemented in MATLAB Simulink and accurately models the measured data.

  18. pH effects on the structural dynamics of cutinase from Trichoderma reesei: insights from molecular dynamics simulations.

    PubMed

    Duan, Mei Lin; Liu, Lin; Du, Juan; Yao, Xiao Jun

    2015-11-01

    Cutinases are utilized in a variety of industries for the hydrolysis of a broad range of substrates, such as cutin, polyesters, soluble esters, insoluble short- and long-chain triglycerides. The novel cutinase from Trichoderma reesei (Tr) attracted much attention due to its two rare characteristics distinct from the classical cutinases: it possesses a lid covering its active site and its optimal activity at acidic pH. However, the structural basis for pH preference and the function of lid is still not well understood. In this work, total of six initial systems were set up either under acidic or basic pH conditions (closed-apo, open-apo and open-holo). Then, molecular dynamics (MD) simulations were performed to make a better understanding of structural dynamics of Tr cutinase under different pH conditions for the first time. The results mainly suggest that it is easier to open for the lid under an acidic pH condition. In addition, the binding of long-chain triglyceride is more stable at lower pH than higher pH. These findings elucidate that how pH influences Tr cutinase at the atomistic level. The structural and dynamic details would be useful for rational enzyme design for acidic cutinase. PMID:26387959

  19. pH effects on the structural dynamics of cutinase from Trichoderma reesei: insights from molecular dynamics simulations.

    PubMed

    Duan, Mei Lin; Liu, Lin; Du, Juan; Yao, Xiao Jun

    2015-11-01

    Cutinases are utilized in a variety of industries for the hydrolysis of a broad range of substrates, such as cutin, polyesters, soluble esters, insoluble short- and long-chain triglycerides. The novel cutinase from Trichoderma reesei (Tr) attracted much attention due to its two rare characteristics distinct from the classical cutinases: it possesses a lid covering its active site and its optimal activity at acidic pH. However, the structural basis for pH preference and the function of lid is still not well understood. In this work, total of six initial systems were set up either under acidic or basic pH conditions (closed-apo, open-apo and open-holo). Then, molecular dynamics (MD) simulations were performed to make a better understanding of structural dynamics of Tr cutinase under different pH conditions for the first time. The results mainly suggest that it is easier to open for the lid under an acidic pH condition. In addition, the binding of long-chain triglyceride is more stable at lower pH than higher pH. These findings elucidate that how pH influences Tr cutinase at the atomistic level. The structural and dynamic details would be useful for rational enzyme design for acidic cutinase.

  20. Task Characteristics, Structural Characteristics, Organizational Relationships, and Communication Processes: A Contingency Approach to Job Performance. Phase III.

    ERIC Educational Resources Information Center

    Petelle, John L.; Garthright-Petelle, Kathleen

    A study examined the relationships between (1) employee job performance and organizational relationships, (2) employee job performance and communication processes, (3) organizational relationships and communication processes, and (4) task characteristics and structural characteristics. Data were gathered from approximately 200 employees of a state…

  1. Structural and interpersonal characteristics of family meals: associations with adolescent body mass index and dietary patterns.

    PubMed

    Berge, Jerica M; Jin, Seok Won; Hannan, Peter; Neumark-Sztainer, Dianne

    2013-06-01

    The last decade of research has suggested that family meals play an important role in promoting healthful dietary intake in youth. However, little is known about the structural characteristics and interpersonal dynamics of family meals that might help to inform why family meals are protective for youth. The current mixed methods, cross-sectional study conducted in 2010-2011 includes adolescents and parents who participated in two linked population-based studies. Participants included 40 parents (91.5% female) and adolescents (57.5% female) from the Minneapolis/St Paul, MN, area participating in EAT (Eating and Activity Among Teens) 2010 and F-EAT (Families and Eating and Activity Among Teens). The structural (eg, length of the meal, types of foods served) and interpersonal characteristics (eg, communication, emotion/affect management) of family meals were described, and associations between interpersonal dynamics at family meals and adolescent body mass index and dietary intake were examined via direct observational methods. Families were videorecorded during two mealtimes in their homes. Results indicated that family meals were approximately 20 minutes in length, included multiple family members, were typically served family style (70%), and occurred in the kitchen 62% of the time and 38% of the time in another room (eg, family room, office). In addition, significant associations were found between positive interpersonal dynamics (ie, communication, affect management, interpersonal involvement, overall family functioning) at family meals and lower adolescent body mass index and higher vegetable intake. These findings add to the growing body of literature on family meals by providing a better understanding of what is happening at family meals in order to inform obesity-prevention studies and recommendations for providers working with families of youth.

  2. Structural and interpersonal characteristics of family meals: associations with adolescent body mass index and dietary patterns.

    PubMed

    Berge, Jerica M; Jin, Seok Won; Hannan, Peter; Neumark-Sztainer, Dianne

    2013-06-01

    The last decade of research has suggested that family meals play an important role in promoting healthful dietary intake in youth. However, little is known about the structural characteristics and interpersonal dynamics of family meals that might help to inform why family meals are protective for youth. The current mixed methods, cross-sectional study conducted in 2010-2011 includes adolescents and parents who participated in two linked population-based studies. Participants included 40 parents (91.5% female) and adolescents (57.5% female) from the Minneapolis/St Paul, MN, area participating in EAT (Eating and Activity Among Teens) 2010 and F-EAT (Families and Eating and Activity Among Teens). The structural (eg, length of the meal, types of foods served) and interpersonal characteristics (eg, communication, emotion/affect management) of family meals were described, and associations between interpersonal dynamics at family meals and adolescent body mass index and dietary intake were examined via direct observational methods. Families were videorecorded during two mealtimes in their homes. Results indicated that family meals were approximately 20 minutes in length, included multiple family members, were typically served family style (70%), and occurred in the kitchen 62% of the time and 38% of the time in another room (eg, family room, office). In addition, significant associations were found between positive interpersonal dynamics (ie, communication, affect management, interpersonal involvement, overall family functioning) at family meals and lower adolescent body mass index and higher vegetable intake. These findings add to the growing body of literature on family meals by providing a better understanding of what is happening at family meals in order to inform obesity-prevention studies and recommendations for providers working with families of youth. PMID:23567247

  3. Team structure and regulatory focus: the impact of regulatory fit on team dynamic.

    PubMed

    Dimotakis, Nikolaos; Davison, Robert B; Hollenbeck, John R

    2012-03-01

    We report a within-teams experiment testing the effects of fit between team structure and regulatory task demands on task performance and satisfaction through average team member positive affect and helping behaviors. We used a completely crossed repeated-observations design in which 21 teams enacted 2 tasks with different regulatory focus characteristics (prevention and promotion) in 2 organizational structures (functional and divisional), resulting in 84 observations. Results suggested that salient regulatory demands inherent in the task interacted with structure to determine objective and subjective team-level outcomes, such that functional structures were best suited to (i.e., had best fit with) tasks with a prevention regulatory focus and divisional structures were best suited to tasks with a promotion regulatory focus. This contingency finding integrates regulatory focus and structural contingency theories, and extends them to the team level with implications for models of performance, satisfaction, and team dynamics. PMID:22181678

  4. Team structure and regulatory focus: the impact of regulatory fit on team dynamic.

    PubMed

    Dimotakis, Nikolaos; Davison, Robert B; Hollenbeck, John R

    2012-03-01

    We report a within-teams experiment testing the effects of fit between team structure and regulatory task demands on task performance and satisfaction through average team member positive affect and helping behaviors. We used a completely crossed repeated-observations design in which 21 teams enacted 2 tasks with different regulatory focus characteristics (prevention and promotion) in 2 organizational structures (functional and divisional), resulting in 84 observations. Results suggested that salient regulatory demands inherent in the task interacted with structure to determine objective and subjective team-level outcomes, such that functional structures were best suited to (i.e., had best fit with) tasks with a prevention regulatory focus and divisional structures were best suited to tasks with a promotion regulatory focus. This contingency finding integrates regulatory focus and structural contingency theories, and extends them to the team level with implications for models of performance, satisfaction, and team dynamics.

  5. Structure and dynamics of stock market in times of crisis

    NASA Astrophysics Data System (ADS)

    Zhao, Longfeng; Li, Wei; Cai, Xu

    2016-02-01

    Daily correlations among 322 S&P 500 constituent stocks are investigated by means of correlation-based (CB) network. By using the heterogeneous time scales, we identify global expansion and local clustering market behaviors during crises, which are mainly caused by community splits and inter-sector edge number decreases. The CB networks display distinctive community and sector structures. Graph edit distance is applied to capturing the dynamics of CB networks in which drastic structure reconfigurations can be observed during crisis periods. Edge statistics reveal the power-law nature of edges' duration time distribution. Despite the networks' strong structural changes during crises, we still find some long-duration edges that serve as the backbone of the stock market. Finally the dynamical change of network structure has shown its capability in predicting the implied volatility index (VIX).

  6. Synchronization in dynamical networks with unconstrained structure switching.

    PubMed

    del Genio, Charo I; Romance, Miguel; Criado, Regino; Boccaletti, Stefano

    2015-12-01

    We provide a rigorous solution to the problem of constructing a structural evolution for a network of coupled identical dynamical units that switches between specified topologies without constraints on their structure. The evolution of the structure is determined indirectly from a carefully built transformation of the eigenvector matrices of the coupling Laplacians, which are guaranteed to change smoothly in time. In turn, this allows one to extend the master stability function formalism, which can be used to assess the stability of a synchronized state. This approach is independent from the particular topologies that the network visits, and is not restricted to commuting structures. Also, it does not depend on the time scale of the evolution, which can be faster than, comparable to, or even secular with respect to the dynamics of the units.

  7. Synchronization in dynamical networks with unconstrained structure switching.

    PubMed

    del Genio, Charo I; Romance, Miguel; Criado, Regino; Boccaletti, Stefano

    2015-12-01

    We provide a rigorous solution to the problem of constructing a structural evolution for a network of coupled identical dynamical units that switches between specified topologies without constraints on their structure. The evolution of the structure is determined indirectly from a carefully built transformation of the eigenvector matrices of the coupling Laplacians, which are guaranteed to change smoothly in time. In turn, this allows one to extend the master stability function formalism, which can be used to assess the stability of a synchronized state. This approach is independent from the particular topologies that the network visits, and is not restricted to commuting structures. Also, it does not depend on the time scale of the evolution, which can be faster than, comparable to, or even secular with respect to the dynamics of the units. PMID:26764756

  8. The structure and dynamics of boron nitride nanoscrolls.

    PubMed

    Perim, Eric; Galvao, Douglas S

    2009-08-19

    Carbon nanoscrolls (CNSs) are structures formed by rolling up graphene layers into a scroll-like shape. CNNs have been experimentally produced by different groups. Boron nitride nanoscrolls (BNNSs) are similar structures using boron nitride instead of graphene layers. In this paper we report molecular mechanics and molecular dynamics results for the structural and dynamical aspects of BNNS formation. Similarly to CNS, BNNS formation is dominated by two major energy contributions, the increase in the elastic energy and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers. The armchair scrolls are the most stable configuration while zigzag scrolls are metastable structures which can be thermally converted to armchairs. Chiral scrolls are unstable and tend to evolve into zigzag or armchair configurations depending on their initial geometries. The possible experimental routes to produce BNNSs are also addressed. PMID:19636089

  9. The structure and dynamics of boron nitride nanoscrolls

    NASA Astrophysics Data System (ADS)

    Perim, Eric; Galvao, Douglas S.

    2009-08-01

    Carbon nanoscrolls (CNSs) are structures formed by rolling up graphene layers into a scroll-like shape. CNNs have been experimentally produced by different groups. Boron nitride nanoscrolls (BNNSs) are similar structures using boron nitride instead of graphene layers. In this paper we report molecular mechanics and molecular dynamics results for the structural and dynamical aspects of BNNS formation. Similarly to CNS, BNNS formation is dominated by two major energy contributions, the increase in the elastic energy and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers. The armchair scrolls are the most stable configuration while zigzag scrolls are metastable structures which can be thermally converted to armchairs. Chiral scrolls are unstable and tend to evolve into zigzag or armchair configurations depending on their initial geometries. The possible experimental routes to produce BNNSs are also addressed.

  10. Synchronization in dynamical networks with unconstrained structure switching

    NASA Astrophysics Data System (ADS)

    del Genio, Charo I.; Romance, Miguel; Criado, Regino; Boccaletti, Stefano

    2015-12-01

    We provide a rigorous solution to the problem of constructing a structural evolution for a network of coupled identical dynamical units that switches between specified topologies without constraints on their structure. The evolution of the structure is determined indirectly from a carefully built transformation of the eigenvector matrices of the coupling Laplacians, which are guaranteed to change smoothly in time. In turn, this allows one to extend the master stability function formalism, which can be used to assess the stability of a synchronized state. This approach is independent from the particular topologies that the network visits, and is not restricted to commuting structures. Also, it does not depend on the time scale of the evolution, which can be faster than, comparable to, or even secular with respect to the dynamics of the units.

  11. The Factor Structure of Test Task Characteristics and Examinee Performance

    ERIC Educational Resources Information Center

    Carr, Nathan T.

    2006-01-01

    The present study focuses on the task characteristics of reading passages and key sentences in a test of second language reading. Using a new methodological approach to describe variation in test task characteristics and explore how differences in these characteristics might relate to examinee performance, it posed the two following research…

  12. Structural Brain Network Characteristics Can Differentiate CIS from Early RRMS

    PubMed Central

    Muthuraman, Muthuraman; Fleischer, Vinzenz; Kolber, Pierre; Luessi, Felix; Zipp, Frauke; Groppa, Sergiu

    2016-01-01

    Focal demyelinated lesions, diffuse white matter (WM) damage, and gray matter (GM) atrophy influence directly the disease progression in patients with multiple sclerosis. The aim of this study was to identify specific characteristics of GM and WM structural networks in subjects with clinically isolated syndrome (CIS) in comparison to patients with early relapsing-remitting multiple sclerosis (RRMS). Twenty patients with CIS, 33 with RRMS, and 40 healthy subjects were investigated using 3 T-MRI. Diffusion tensor imaging was applied, together with probabilistic tractography and fractional anisotropy (FA) maps for WM and cortical thickness correlation analysis for GM, to determine the structural connectivity patterns. A network topology analysis with the aid of graph theoretical approaches was used to characterize the network at different community levels (modularity, clustering coefficient, global, and local efficiencies). Finally, we applied support vector machines (SVM) to automatically discriminate the two groups. In comparison to CIS subjects, patients with RRMS were found to have increased modular connectivity and higher local clustering, highlighting increased local processing in both GM and WM. Both groups presented increased modularity and clustering coefficients in comparison to healthy controls. SVM algorithms achieved 97% accuracy using the clustering coefficient as classifier derived from GM and 65% using WM from probabilistic tractography and 67% from modularity of FA maps to differentiate between CIS and RRMS patients. We demonstrate a clear increase of modular and local connectivity in patients with early RRMS in comparison to CIS and healthy subjects. Based only on a single anatomic scan and without a priori information, we developed an automated and investigator-independent paradigm that can accurately discriminate between patients with these clinically similar disease entities, and could thus complement the current dissemination-in-time criteria for

  13. Structural and Thermodynamic Characteristics of Amyloidogenic Intermediates of β-2-Microglobulin.

    PubMed

    Chong, Song-Ho; Hong, Jooyeon; Lim, Sulgi; Cho, Sunhee; Lee, Jinkeong; Ham, Sihyun

    2015-09-08

    β-2-microglobulin (β2m) self-aggregates to form amyloid fibril in renal patients taking long-term dialysis treatment. Despite the extensive structural and mutation studies carried out so far, the molecular details on the factors that dictate amyloidogenic potential of β2m remain elusive. Here we report molecular dynamics simulations followed by the solvation thermodynamic analyses on the wild-type β2m and D76N, D59P, and W60C mutants at the native (N) and so-called aggregation-prone intermediate (IT) states, which are distinguished by the native cis- and non-native trans-Pro32 backbone conformations. Three major structural and thermodynamic characteristics of the IT-state relative to the N-state in β2m protein are detected that contribute to the increased amyloidogenic potential: (i) the disruption of the edge D-strand, (ii) the increased solvent-exposed hydrophobic interface, and (iii) the increased solvation free energy (less affinity toward solvent water). Mutation effects on these three factors are shown to exhibit a good correlation with the experimentally observed distinct amyloidogenic propensity of the D76N (+), D59P (+), and W60C (-) mutants (+/- for enhanced/decreased). Our analyses thus identify the structural and thermodynamic characteristics of the amyloidogenic intermediates, which will serve to uncover molecular mechanisms and driving forces in β2m amyloid fibril formation.

  14. Water in channel-like cavities: structure and dynamics.

    PubMed Central

    Sansom, M S; Kerr, I D; Breed, J; Sankararamakrishnan, R

    1996-01-01

    Ion channels contain narrow columns of water molecules. It is of interest to compare the structure and dynamics of such intrapore water with those of the bulk solvent. Molecular dynamics simulations of modified TIP3P water molecules confined within channel-like cavities have been performed and the orientation and dynamics of the water molecules analyzed. Channels were modeled as cylindrical cavities with lengths ranging from 15 to 60 A and radii from 3 to 12 A. At the end of the molecular dynamics simulations water molecules were observed to be ordered into approximately concentric cylindrical shells. The waters of the outermost shell were oriented such that their dipoles were on average perpendicular to the normal of the wall of the cavity. Water dynamics were analyzed in terms of self-diffusion coefficients and rotational reorientation rates. For cavities of radii 3 and 6 A, water mobility was reduced relative to that of simulated bulk water. For 9- and 12-A radii confined water molecules exhibited mobilities comparable with that of the bulk solvent. If water molecules were confined within an hourglass-shaped cavity (with a central radius of 3 A increasing to 12 A at either end) a gradient of water mobility was observed along the cavity axis. Thus, water within simple models of transbilayer channels exhibits perturbations of structure and dynamics relative to bulk water. In particular the reduction of rotational reorientation rate is expected to alter the local dielectric constant within a transbilayer pore. Images FIGURE 6 PMID:8789086

  15. Interfacial ionic ‘liquids’: connecting static and dynamic structures

    DOE PAGES

    Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T.; Fulvio, Pasquale F.; Dai, Sheng; McDonough, John K.; Gogotsi, Yury; et al

    2014-12-05

    It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. In this study, we used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene–RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can bemore » described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. Finally, the results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (~0.15 eV).« less

  16. Interfacial ionic ‘liquids’: connecting static and dynamic structures

    SciTech Connect

    Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T.; Fulvio, Pasquale F.; Dai, Sheng; McDonough, John K.; Gogotsi, Yury; Fenter, Paul

    2014-12-05

    It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. In this study, we used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene–RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. Finally, the results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (~0.15 eV).

  17. Water Determines the Structure and Dynamics of Proteins.

    PubMed

    Bellissent-Funel, Marie-Claire; Hassanali, Ali; Havenith, Martina; Henchman, Richard; Pohl, Peter; Sterpone, Fabio; van der Spoel, David; Xu, Yao; Garcia, Angel E

    2016-07-13

    Water is an essential participant in the stability, structure, dynamics, and function of proteins and other biomolecules. Thermodynamically, changes in the aqueous environment affect the stability of biomolecules. Structurally, water participates chemically in the catalytic function of proteins and nucleic acids and physically in the collapse of the protein chain during folding through hydrophobic collapse and mediates binding through the hydrogen bond in complex formation. Water is a partner that slaves the dynamics of proteins, and water interaction with proteins affect their dynamics. Here we provide a review of the experimental and computational advances over the past decade in understanding the role of water in the dynamics, structure, and function of proteins. We focus on the combination of X-ray and neutron crystallography, NMR, terahertz spectroscopy, mass spectroscopy, thermodynamics, and computer simulations to reveal how water assist proteins in their function. The recent advances in computer simulations and the enhanced sensitivity of experimental tools promise major advances in the understanding of protein dynamics, and water surely will be a protagonist. PMID:27186992

  18. Water Determines the Structure and Dynamics of Proteins.

    PubMed

    Bellissent-Funel, Marie-Claire; Hassanali, Ali; Havenith, Martina; Henchman, Richard; Pohl, Peter; Sterpone, Fabio; van der Spoel, David; Xu, Yao; Garcia, Angel E

    2016-07-13

    Water is an essential participant in the stability, structure, dynamics, and function of proteins and other biomolecules. Thermodynamically, changes in the aqueous environment affect the stability of biomolecules. Structurally, water participates chemically in the catalytic function of proteins and nucleic acids and physically in the collapse of the protein chain during folding through hydrophobic collapse and mediates binding through the hydrogen bond in complex formation. Water is a partner that slaves the dynamics of proteins, and water interaction with proteins affect their dynamics. Here we provide a review of the experimental and computational advances over the past decade in understanding the role of water in the dynamics, structure, and function of proteins. We focus on the combination of X-ray and neutron crystallography, NMR, terahertz spectroscopy, mass spectroscopy, thermodynamics, and computer simulations to reveal how water assist proteins in their function. The recent advances in computer simulations and the enhanced sensitivity of experimental tools promise major advances in the understanding of protein dynamics, and water surely will be a protagonist.

  19. Stochastic Erosion of Fractal Structure in Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Wettlaufer, J. S.

    2014-12-01

    We analyze the effects of stochastic noise on the Lorenz-63 model in the chaotic regime to demonstrate a set of general issues arising in the interpretation of data from nonlinear dynamical systems typical in geophysics. The model is forced using both additive and multiplicative, white and colored noise and it is shown that, through a suitable choice of the noise intensity, both additive and multiplicative noise can produce similar dynamics. We use a recently developed measure, histogram distance, to show the similarity between the dynamics produced by additive and multiplicative forcing. This phenomenon, in a nonlinear fractal structure with chaotic dynamics can be explained by understanding how noise affects the Unstable Periodic Orbits (UPOs) of the system. For delta-correlated noise, the UPOs erode the fractal structure. In the presence of memory in the noise forcing, the time scale of the noise starts to interact with the period of some UPO and, depending on the noise intensity, stochastic resonance may be observed. This also explains the mixing in dissipative dynamical systems in presence of white noise; as the fractal structure is smoothed, the decay of correlations is enhanced, and hence the rate of mixing increases with noise intensity.

  20. Multilevel methods for eigenspace computations in structural dynamics.

    SciTech Connect

    Arbenz, Peter; Lehoucq, Richard B.; Thornquist, Heidi K.; Bennighof, Jeff; Cochran, Bill; Hetmaniuk, Ulrich L.; Muller, Mark; Tuminaro, Raymond Stephen

    2005-01-01

    Modal analysis of three-dimensional structures frequently involves finite element discretizations with millions of unknowns and requires computing hundreds or thousands of eigenpairs. In this presentation we review methods based on domain decomposition for such eigenspace computations in structural dynamics. We distinguish approaches that solve the eigenproblem algebraically (with minimal connections to the underlying partial differential equation) from approaches that tightly couple the eigensolver with the partial differential equation.