Sample records for structures life prediction

  1. Extended Aging Theories for Predictions of Safe Operational Life of Critical Airborne Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Chen, Tony

    2006-01-01

    The previously developed Ko closed-form aging theory has been reformulated into a more compact mathematical form for easier application. A new equivalent loading theory and empirical loading theories have also been developed and incorporated into the revised Ko aging theory for the prediction of a safe operational life of airborne failure-critical structural components. The new set of aging and loading theories were applied to predict the safe number of flights for the B-52B aircraft to carry a launch vehicle, the structural life of critical components consumed by load excursion to proof load value, and the ground-sitting life of B-52B pylon failure-critical structural components. A special life prediction method was developed for the preflight predictions of operational life of failure-critical structural components of the B-52H pylon system, for which no flight data are available.

  2. Fatigue criterion to system design, life and reliability

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.

    1985-01-01

    A generalized methodology to structural life prediction, design, and reliability based upon a fatigue criterion is advanced. The life prediction methodology is based in part on work of W. Weibull and G. Lundberg and A. Palmgren. The approach incorporates the computed life of elemental stress volumes of a complex machine element to predict system life. The results of coupon fatigue testing can be incorporated into the analysis allowing for life prediction and component or structural renewal rates with reasonable statistical certainty.

  3. Practical theories for service life prediction of critical aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Monaghan, Richard C.; Jackson, Raymond H.

    1992-01-01

    A new second-order theory was developed for predicting the service lives of aerospace structural components. The predictions based on this new theory were compared with those based on the Ko first-order theory and the classical theory of service life predictions. The new theory gives very accurate service life predictions. An equivalent constant-amplitude stress cycle method was proposed for representing the random load spectrum for crack growth calculations. This method predicts the most conservative service life. The proposed use of minimum detectable crack size, instead of proof load established crack size as an initial crack size for crack growth calculations, could give a more realistic service life.

  4. Safe Life Propulsion Design Technologies (3rd Generation Propulsion Research and Technology)

    NASA Technical Reports Server (NTRS)

    Ellis, Rod

    2000-01-01

    The tasks outlined in this viewgraph presentation on safe life propulsion design technologies (third generation propulsion research and technology) include the following: (1) Ceramic matrix composite (CMC) life prediction methods; (2) Life prediction methods for ultra high temperature polymer matrix composites for reusable launch vehicle (RLV) airframe and engine application; (3) Enabling design and life prediction technology for cost effective large-scale utilization of MMCs and innovative metallic material concepts; (4) Probabilistic analysis methods for brittle materials and structures; (5) Damage assessment in CMC propulsion components using nondestructive characterization techniques; and (6) High temperature structural seals for RLV applications.

  5. Multiaxial and Thermomechanical Fatigue of Materials: A Historical Perspective and Some Future Challenges

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh

    2013-01-01

    Structural materials used in engineering applications routinely subjected to repetitive mechanical loads in multiple directions under non-isothermal conditions. Over past few decades, several multiaxial fatigue life estimation models (stress- and strain-based) developed for isothermal conditions. Historically, numerous fatigue life prediction models also developed for thermomechanical fatigue (TMF) life prediction, predominantly for uniaxial mechanical loading conditions. Realistic structural components encounter multiaxial loads and non-isothermal loading conditions, which increase potential for interaction of damage modes. A need exists for mechanical testing and development verification of life prediction models under such conditions.

  6. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  7. Turbine blade tip durability analysis

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Laflen, J. H.; Spamer, G. T.

    1981-01-01

    An air-cooled turbine blade from an aircraft gas turbine engine chosen for its history of cracking was subjected to advanced analytical and life-prediction techniques. The utility of advanced structural analysis techniques and advanced life-prediction techniques in the life assessment of hot section components are verified. Three dimensional heat transfer and stress analyses were applied to the turbine blade mission cycle and the results were input into advanced life-prediction theories. Shortcut analytical techniques were developed. The proposed life-prediction theories are evaluated.

  8. A Step Made Toward Designing Microelectromechanical System (MEMS) Structures With High Reliability

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2003-01-01

    The mechanical design of microelectromechanical systems-particularly for micropower generation applications-requires the ability to predict the strength capacity of load-carrying components over the service life of the device. These microdevices, which typically are made of brittle materials such as polysilicon, show wide scatter (stochastic behavior) in strength as well as a different average strength for different sized structures (size effect). These behaviors necessitate either costly and time-consuming trial-and-error designs or, more efficiently, the development of a probabilistic design methodology for MEMS. Over the years, the NASA Glenn Research Center s Life Prediction Branch has developed the CARES/Life probabilistic design methodology to predict the reliability of advanced ceramic components. In this study, done in collaboration with Johns Hopkins University, the ability of the CARES/Life code to predict the reliability of polysilicon microsized structures with stress concentrations is successfully demonstrated.

  9. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  10. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating

    PubMed Central

    Lee, Young-Joo; Cho, Soojin

    2016-01-01

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125

  11. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    2002-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  12. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  13. NASA GRC Fatigue Crack Initiation Life Prediction Models

    NASA Astrophysics Data System (ADS)

    Arya, Vinod K.; Halford, Gary R.

    2002-10-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  14. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2001-01-01

    A methodology is presented for determining the fatigue life of composite structures based on fatigue characterization data and geometric nonlinear finite element (FE) analyses. To demonstrate the approach, predicted results were compared to fatigue tests performed on specimens which represented a tapered composite flange bonded onto a composite skin. In a first step, tension tests were performed to evaluate the debonding mechanisms between the flange and the skin. In a second step, a 2D FE model was developed to analyze the tests. To predict matrix cracking onset, the relationship between the tension load and the maximum principal stresses transverse to the fiber direction was determined through FE analysis. Transverse tension fatigue life data were used to -enerate an onset fatigue life P-N curve for matrix cracking. The resulting prediction was in good agreement with data from the fatigue tests. In a third step, a fracture mechanics approach based on FE analysis was used to determine the relationship between the tension load and the critical energy release rate. Mixed mode energy release rate fatigue life data were used to create a fatigue life onset G-N curve for delamination. The resulting prediction was in good agreement with data from the fatigue tests. Further, the prediction curve for cumulative life to failure was generated from the previous onset fatigue life curves. The results showed that the methodology offers a significant potential to Predict cumulative fatigue life of composite structures.

  15. A life prediction model for laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1990-01-01

    A life prediction methodology for laminated continuous fiber composites subjected to fatigue loading conditions was developed. A summary is presented of research completed. A phenomenological damage evolution law was formulated for matrix cracking which is independent of stacking sequence. Mechanistic and physical support was developed for the phenomenological evolution law proposed above. The damage evolution law proposed above was implemented to a finite element computer program. And preliminary predictions were obtained for a structural component undergoing fatigue loading induced damage.

  16. Crack propagation analysis and fatigue life prediction for structural alloy steel based on metal magnetic memory testing

    NASA Astrophysics Data System (ADS)

    Ni, Chen; Hua, Lin; Wang, Xiaokai

    2018-09-01

    To monitor the crack propagation and predict the fatigue life of ferromagnetic material, the metal magnetic memory (MMM) testing was carried out to the single edge notched specimen made from structural alloy steel under three-point bending fatigue experiment in this paper. The variation of magnetic memory signal Hp (y) in process of fatigue crack propagation was investigated. The gradient K of Hp (y) was investigated and compared with the stress of specimen obtained by finite element analysis. It indicated that the gradient K can qualitatively reflect the distribution and variation of stress. The maximum gradient Kmax and crack size showed a good linear relationship, which indicated that the crack propagation can be estimated by MMM testing. Furthermore, the damage model represented by magnetic memory characteristic was created and a fatigue life prediction method was developed. The fatigue life can be evaluated by the relationship between damage parameter and normalized life. The method was also verified by another specimen. Because of MMM testing, it provided a new approach for predicting fatigue life.

  17. Computational Methods for Failure Analysis and Life Prediction

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Harris, Charles E. (Compiler); Housner, Jerrold M. (Compiler); Hopkins, Dale A. (Compiler)

    1993-01-01

    This conference publication contains the presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Failure Analysis and Life Prediction held at NASA Langley Research Center 14-15 Oct. 1992. The presentations focused on damage failure and life predictions of polymer-matrix composite structures. They covered some of the research activities at NASA Langley, NASA Lewis, Southwest Research Institute, industry, and universities. Both airframes and propulsion systems were considered.

  18. Development of Probabilistic Life Prediction Methodologies and Testing Strategies for MEMS and CMC's

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2003-01-01

    This effort is to investigate probabilistic life prediction methodologies for ceramic matrix composites and MicroElectroMechanical Systems (MEMS) and to analyze designs that determine stochastic properties of MEMS. For CMC's this includes a brief literature survey regarding lifing methodologies. Also of interest for MEMS is the design of a proper test for the Weibull size effect in thin film (bulge test) specimens. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. A main objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures/Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads. A second set of objectives is to determine the applicability/suitability of the CARES/Life methodology for CMC analysis, what changes would be needed to the methodology and software, and if feasible, run a demonstration problem. Also important is an evaluation of CARES/Life coupled to the ANSYS Probabilistic Design System (PDS) and the potential of coupling transient reliability analysis to the ANSYS PDS.

  19. Enhanced CARES Software Enables Improved Ceramic Life Prediction

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1997-01-01

    The NASA Lewis Research Center has developed award-winning software that enables American industry to establish the reliability and life of brittle material (e.g., ceramic, intermetallic, graphite) structures in a wide variety of 21st century applications. The CARES (Ceramics Analysis and Reliability Evaluation of Structures) series of software is successfully used by numerous engineers in industrial, academic, and government organizations as an essential element of the structural design and material selection processes. The latest version of this software, CARES/Life, provides a general- purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. CARES/Life was recently enhanced by adding new modules designed to improve functionality and user-friendliness. In addition, a beta version of the newly-developed CARES/Creep program (for determining the creep life of monolithic ceramic components) has just been released to selected organizations.

  20. NASA Subsonic Rotary Wing Project - Structures and Materials Discipline

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Johnson, Susan M.

    2008-01-01

    The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of: 5.1.1 Life Prediction Methods for Engine Structures & Components 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life 5.2.1 Crashworthiness 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing 5.3.1 Propulsion High Temperature Materials 5.3.2 Lightweight Structures and Noise Integration The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.

  1. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide

    PubMed Central

    Salguero-Gómez, Roberto; Jones, Owen R.; Jongejans, Eelke; Blomberg, Simon P.; Hodgson, David J.; Mbeau-Ache, Cyril; Zuidema, Pieter A.; de Kroon, Hans; Buckley, Yvonne M.

    2016-01-01

    The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast–slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast–slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments. PMID:26699477

  2. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide.

    PubMed

    Salguero-Gómez, Roberto; Jones, Owen R; Jongejans, Eelke; Blomberg, Simon P; Hodgson, David J; Mbeau-Ache, Cyril; Zuidema, Pieter A; de Kroon, Hans; Buckley, Yvonne M

    2016-01-05

    The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast-slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast-slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments.

  3. Life history theory predicts fish assemblage response to hydrologic regimes.

    PubMed

    Mims, Meryl C; Olden, Julian D

    2012-01-01

    The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P < or = 0.05) according to quantile regression. Our results largely support a priori hypotheses of relationships between specific flow indices and relative prevalence of fish life history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales.

  4. On the Use of Equivalent Linearization for High-Cycle Fatigue Analysis of Geometrically Nonlinear Structures

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2003-01-01

    The use of stress predictions from equivalent linearization analyses in the computation of high-cycle fatigue life is examined. Stresses so obtained differ in behavior from the fully nonlinear analysis in both spectral shape and amplitude. Consequently, fatigue life predictions made using this data will be affected. Comparisons of fatigue life predictions based upon the stress response obtained from equivalent linear and numerical simulation analyses are made to determine the range over which the equivalent linear analysis is applicable.

  5. Predicting US Infants' and Toddlers' TV/Video Viewing Rates: Mothers' Cognitions and Structural Life Circumstances

    PubMed Central

    Vaala, Sarah E.; Hornik, Robert C.

    2014-01-01

    There has been rising international concern over media use with children under two. As little is known about the factors associated with more or less viewing among very young children, this study examines maternal factors predictive of TV/video viewing rates among American infants and toddlers. Guided by the Integrative Model of Behavioral Prediction, this survey study examines relationships between children's rates of TV/video viewing and their mothers' structural life circumstances (e.g., number of children in the home; mother's screen use), and cognitions (e.g., attitudes; norms). Results suggest that mothers' structural circumstances and cognitions respectively contribute independent explanatory power to the prediction of children's TV/video viewing. Influence of structural circumstances is partially mediated through cognitions. Mothers' attitudes as well as their own TV/video viewing behavior were particularly predictive of children's viewing. Implications of these findings for international efforts to understand and reduce infant/toddler TV/video exposure are discussed. PMID:25489335

  6. Mechanics of Multifunctional Materials & Microsystems

    DTIC Science & Technology

    2012-03-09

    Mechanics of Materials; Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic...Life Prediction (Materials & Micro-devices); Sensing, Precognition & Diagnosis; Multifunctional Design of Autonomic Systems; Multifunctional...release; distribution is unlimited. 7 VISION: EXPANDED • site specific • autonomic AUTONOMIC AEROSPACE STRUCTURES • Sensing & Precognition • Self

  7. Basis And Application Of The CARES/LIFE Computer Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Janosik, Lesley A.; Gyekenyesi, John P.; Powers, Lynn M.

    1996-01-01

    Report discusses physical and mathematical basis of Ceramics Analysis and Reliability Evaluation of Structures LIFE prediction (CARES/LIFE) computer program, described in "Program for Evaluation of Reliability of Ceramic Parts" (LEW-16018).

  8. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE PAGES

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable conditions.« less

  9. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable conditions.« less

  10. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  11. Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data

    PubMed Central

    Mi, Jinhua; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-01-01

    Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products. PMID:25121138

  12. CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Powers, Lynn M.; Janosik, Lesley A.; Gyekenyesi, John P.

    2003-01-01

    This manual describes the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction (CARES/LIFE) computer program. The program calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/or proof test loading. CARES/LIFE is an extension of the CARES (Ceramic Analysis and Reliability Evaluation of Structures) computer program. The program uses results from MSC/NASTRAN, ABAQUS, and ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES/LIFE accounts for the phenomenon of subcritical crack growth (SCG) by utilizing the power law, Paris law, or Walker law. The two-parameter Weibull cumulative distribution function is used to characterize the variation in component strength. The effects of multiaxial stresses are modeled by using either the principle of independent action (PIA), the Weibull normal stress averaging method (NSA), or the Batdorf theory. Inert strength and fatigue parameters are estimated from rupture strength data of naturally flawed specimens loaded in static, dynamic, or cyclic fatigue. The probabilistic time-dependent theories used in CARES/LIFE, along with the input and output for CARES/LIFE, are described. Example problems to demonstrate various features of the program are also included.

  13. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    Advances in materials, coatings, turbine cooling technology, structural and design concepts, and component-life prediction of helicopter gas-turbine-engine components are presented. Stationary parts including the inlet particle separator, the front frame, rotor tip seals, vanes and combustors and rotating components - compressor blades, disks, and turbine blades - are discussed. Advanced composite materials are considered for the front frame and compressor blades, prealloyed powder superalloys will increase strength and reduce costs of disks, the oxide dispersion strengthened alloys will have 100C higher use temperature in combustors and vanes than conventional superalloys, ceramics will provide the highest use temperature of 1400C for stator vanes and 1370C for turbine blades, and directionally solidified eutectics will afford up to 50C temperature advantage at turbine blade operating conditions. Coatings for surface protection at higher surface temperatures and design trends in turbine cooling technology are discussed. New analytical methods of life prediction such as strain gage partitioning for high temperature prediction, fatigue life, computerized prediction of oxidation resistance, and advanced techniques for estimating coating life are described.

  14. Fatigue crack growth and life prediction under mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Sajith, S.; Murthy, K. S. R. K.; Robi, P. S.

    2018-04-01

    Fatigue crack growth life as a function of crack length is essential for the prevention of catastrophic failures from damage tolerance perspective. In damage tolerance design approach, principles of fracture mechanics are usually applied to predict the fatigue life of structural components. Numerical prediction of crack growth versus number of cycles is essential in damage tolerance design. For cracks under mixed mode I/II loading, modified Paris law (d/a d N =C (ΔKe q ) m ) along with different equivalent stress intensity factor (ΔKeq) model is used for fatigue crack growth rate prediction. There are a large number of ΔKeq models available for the mixed mode I/II loading, the selection of proper ΔKeq model has significant impact on fatigue life prediction. In the present investigation, the performance of ΔKeq models in fatigue life prediction is compared with respect to the experimental findings as there are no guidelines/suggestions available on the selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempt to outline models that would provide accurate and conservative life predictions. Such a study aid the numerical analysts or engineers in the proper selection of the model for numerical simulation of the fatigue life. Moreover, the present investigation also suggests a procedure to enhance the accuracy of life prediction using Paris law.

  15. Above-knee prosthesis design based on fatigue life using finite element method and design of experiment.

    PubMed

    Phanphet, Suwattanarwong; Dechjarern, Surangsee; Jomjanyong, Sermkiat

    2017-05-01

    The main objective of this work is to improve the standard of the existing design of knee prosthesis developed by Thailand's Prostheses Foundation of Her Royal Highness The Princess Mother. The experimental structural tests, based on the ISO 10328, of the existing design showed that a few components failed due to fatigue under normal cyclic loading below the required number of cycles. The finite element (FE) simulations of structural tests on the knee prosthesis were carried out. Fatigue life predictions of knee component materials were modeled based on the Morrow's approach. The fatigue life prediction based on the FE model result was validated with the corresponding structural test and the results agreed well. The new designs of the failed components were studied using the design of experimental approach and finite element analysis of the ISO 10328 structural test of knee prostheses under two separated loading cases. Under ultimate loading, knee prosthesis peak von Mises stress must be less than the yield strength of knee component's material and the total knee deflection must be lower than 2.5mm. The fatigue life prediction of all knee components must be higher than 3,000,000 cycles under normal cyclic loading. The design parameters are the thickness of joint bars, the diameter of lower connector and the thickness of absorber-stopper. The optimized knee prosthesis design meeting all the requirements was recommended. Experimental ISO 10328 structural test of the fabricated knee prosthesis based on the optimized design confirmed the finite element prediction. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Life Prediction/Reliability Data of Glass-Ceramic Material Determined for Radome Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2002-01-01

    Brittle materials, ceramics, are candidate materials for a variety of structural applications for a wide range of temperatures. However, the process of slow crack growth, occurring in any loading configuration, limits the service life of structural components. Therefore, it is important to accurately determine the slow crack growth parameters required for component life prediction using an appropriate test methodology. This test methodology also should be useful in determining the influence of component processing and composition variables on the slow crack growth behavior of newly developed or existing materials, thereby allowing the component processing and composition to be tailored and optimized to specific needs. Through the American Society for Testing and Materials (ASTM), the authors recently developed two test methods to determine the life prediction parameters of ceramics. The two test standards, ASTM 1368 for room temperature and ASTM C 1465 for elevated temperatures, were published in the 2001 Annual Book of ASTM Standards, Vol. 15.01. Briefly, the test method employs constant stress-rate (or dynamic fatigue) testing to determine flexural strengths as a function of the applied stress rate. The merit of this test method lies in its simplicity: strengths are measured in a routine manner in flexure at four or more applied stress rates with an appropriate number of test specimens at each applied stress rate. The slow crack growth parameters necessary for life prediction are then determined from a simple relationship between the strength and the applied stress rate. Extensive life prediction testing was conducted at the NASA Glenn Research Center using the developed ASTM C 1368 test method to determine the life prediction parameters of a glass-ceramic material that the Navy will use for radome applications.

  17. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction.

    PubMed

    Patel, Meenal J; Andreescu, Carmen; Price, Julie C; Edelman, Kathryn L; Reynolds, Charles F; Aizenstein, Howard J

    2015-10-01

    Currently, depression diagnosis relies primarily on behavioral symptoms and signs, and treatment is guided by trial and error instead of evaluating associated underlying brain characteristics. Unlike past studies, we attempted to estimate accurate prediction models for late-life depression diagnosis and treatment response using multiple machine learning methods with inputs of multi-modal imaging and non-imaging whole brain and network-based features. Late-life depression patients (medicated post-recruitment) (n = 33) and older non-depressed individuals (n = 35) were recruited. Their demographics and cognitive ability scores were recorded, and brain characteristics were acquired using multi-modal magnetic resonance imaging pretreatment. Linear and nonlinear learning methods were tested for estimating accurate prediction models. A learning method called alternating decision trees estimated the most accurate prediction models for late-life depression diagnosis (87.27% accuracy) and treatment response (89.47% accuracy). The diagnosis model included measures of age, Mini-mental state examination score, and structural imaging (e.g. whole brain atrophy and global white mater hyperintensity burden). The treatment response model included measures of structural and functional connectivity. Combinations of multi-modal imaging and/or non-imaging measures may help better predict late-life depression diagnosis and treatment response. As a preliminary observation, we speculate that the results may also suggest that different underlying brain characteristics defined by multi-modal imaging measures-rather than region-based differences-are associated with depression versus depression recovery because to our knowledge this is the first depression study to accurately predict both using the same approach. These findings may help better understand late-life depression and identify preliminary steps toward personalized late-life depression treatment. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes

    NASA Technical Reports Server (NTRS)

    Miles, R. N.

    1992-01-01

    This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.

  19. Predicting the remaining service life of concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifton, J.F.

    1991-11-01

    Nuclear power plants are providing, currently, about 17 percent of the U.S. electricity and many of these plants are approaching their licensed life of 40 years. The U.S. Nuclear Regulatory Commission and the Department of Energy`s Oak Ridge National Laboratory are carrying out a program to develop a methodology for assessing the remaining safe-life of the concrete components and structures in nuclear power plants. This program has the overall objective of identifying potential structural safety issues, as well as acceptance criteria, for use in evaluations of nuclear power plants for continued service. The National Institute of Standards and Technology (NIST)more » is contributing to this program by identifying and analyzing methods for predicting the remaining life of in-service concrete materials. This report examines the basis for predicting the remaining service lives of concrete materials of nuclear power facilities. Methods for predicting the service life of new and in-service concrete materials are analyzed. These methods include (1) estimates based on experience, (2) comparison of performance, (3) accelerated testing, (4) stochastic methods, and (5) mathematical modeling. New approaches for predicting the remaining service lives of concrete materials are proposed and recommendations for their further development given. Degradation processes are discussed based on considerations of their mechanisms, likelihood of occurrence, manifestations, and detection. They include corrosion, sulfate attack, alkali-aggregate reactions, frost attack, leaching, radiation, salt crystallization, and microbiological attack.« less

  20. Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1983-01-01

    The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.

  1. Aging Theories for Establishing Safe Life Spans of Airborne Critical Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2003-01-01

    New aging theories have been developed to establish the safe life span of airborne critical structural components such as B-52B aircraft pylon hooks for carrying air-launch drop-test vehicles. The new aging theories use the equivalent-constant-amplitude loading spectrum to represent the actual random loading spectrum with the same damaging effect. The crack growth due to random loading cycling of the first flight is calculated using the half-cycle theory, and then extrapolated to all the crack growths of the subsequent flights. The predictions of the new aging theories (finite difference aging theory and closed-form aging theory) are compared with the classical flight-test life theory and the previously developed Ko first- and Ko second-order aging theories. The new aging theories predict the number of safe flights as considerably lower than that predicted by the classical aging theory, and slightly lower than those predicted by the Ko first- and Ko second-order aging theories due to the inclusion of all the higher order terms.

  2. Social cognitive predictors of first- and non-first-generation college students' academic and life satisfaction.

    PubMed

    Garriott, Patton O; Hudyma, Aaron; Keene, Chesleigh; Santiago, Dana

    2015-04-01

    The present study tested Lent's (2004) social-cognitive model of normative well-being in a sample (N = 414) of first- and non-first-generation college students. A model depicting relationships between: positive affect, environmental supports, college self-efficacy, college outcome expectations, academic progress, academic satisfaction, and life satisfaction was examined using structural equation modeling. The moderating roles of perceived importance of attending college and intrinsic goal motivation were also explored. Results suggested the hypothesized model provided an adequate fit to the data while hypothesized relationships in the model were partially supported. Environmental supports predicted college self-efficacy, college outcome expectations, and academic satisfaction. Furthermore, college self-efficacy predicted academic progress while college outcome expectations predicted academic satisfaction. Academic satisfaction, but not academic progress predicted life satisfaction. The structural model explained 44% of the variance in academic progress, 56% of the variance in academic satisfaction, and 28% of the variance in life satisfaction. Mediation analyses indicated several significant indirect effects between variables in the model while moderation analyses revealed a 3-way interaction between academic satisfaction, intrinsic motivation for attending college, and first-generation college student status on life satisfaction. Results are discussed in terms of applying the normative model of well-being to promote first- and non-first-generation college students' academic and life satisfaction. (c) 2015 APA, all rights reserved).

  3. Fatigue life prediction of bonded primary joints

    NASA Technical Reports Server (NTRS)

    Knauss, J. F.

    1979-01-01

    The validation of a proposed fatigue life prediction methodology was sought through the use of aluminum butt and scarf joint and graphite/epoxy butt joint specimens in a constant amplitude fatigue environment. The structural properties of the HYSOL 9313 adhesive system were obtained by mechanical test of molded heat adhesive specimens. Aluminum contoured double cantilever beam specimens were used to generate crack velocity versus stress intensity factor data. The specific objectives were: (1) to ascertain the feasibility of predicting fatigue failure of an adhesive in a primary bonded composite structure by incorporating linear elastic crack growth behavior; and (2) to ascertain if acoustic emission and/or compliance measurement techniques can be used to detect flaws.

  4. Too risky to settle: avian community structure changes in response to perceived predation risk on adults and offspring

    USGS Publications Warehouse

    Hua, Fangyuan; Fletcher, Robert J.; Sieving, Kathryn E.; Dorazio, Robert M.

    2013-01-01

    Predation risk is widely hypothesized as an important force structuring communities, but this potential force is rarely tested experimentally, particularly in terrestrial vertebrate communities. How animals respond to predation risk is generally considered predictable from species life-history and natural-history traits, but rigorous tests of these predictions remain scarce. We report on a large-scale playback experiment with a forest bird community that addresses two questions: (i) does perceived predation risk shape the richness and composition of a breeding bird community? And (ii) can species life-history and natural-history traits predict prey community responses to different types of predation risk? On 9 ha plots, we manipulated cues of three avian predators that preferentially prey on either adult birds or offspring, or both, throughout the breeding season. We found that increased perception of predation risk led to generally negative responses in the abundance, occurrence and/or detection probability of most prey species, which in turn reduced the species richness and shifted the composition of the breeding bird community. Species-level responses were largely predicted from the key natural-history trait of body size, but we did not find support for the life-history theory prediction of the relationship between species' slow/fast life-history strategy and their response to predation risk.

  5. AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines. Volume 2. Structural Dynamics and Aeroelasticity,

    DTIC Science & Technology

    1988-06-01

    LEVELSKSI C. Q ac ca VANE OVERALL TOTAL-STATIC EXPANSION RATOS * Figure 12. Prediction of Response due to Second Stage Vane. 22-12 SAP /- MAXIMUM...assessment methods, written by Armstrong. The problem of life time prediction is reviewed by Labourdette, who also summarizes ONERA’s research in...applicable to single blades and bladed assemblies. The blade fatigue problem and its assessment methods, and life-time- prediction are considered. Aeroelastic

  6. Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension

    NASA Astrophysics Data System (ADS)

    Zhang, Weiwei; Wang, Xiaosong; Wang, Zhongren; Yuan, Shijian

    2015-03-01

    Cylinder-crown integrated hydraulic press (CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown, which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. As a result, the material strength capacity is better utilized. During the engineering design of cylinder-crown integrated structure, in order to increase the fatigue life, structural optimization on the basis of the adaptive macro genetic algorithms (AMGA) is first conducted to both reduce weight and decrease peak stress. It is shown that the magnitude of the maximum principal stress is decreased by 28.6%, and simultaneously the total weight is reduced by 4.4%. Subsequently, strain-controlled fatigue test is carried out, and the stress-strain hysteresis loops and cyclic hardening curve are obtained. Based on linear fit, the fatigue properties are calculated and used for the fatigue life prediction. It is shown that the predicted fatigue life is significantly increased from 157000 to 1070000 cycles after structural optimization. Finally, according to the optimization design, a 6300 kN CCIHP has been manufactured, and priority application has been also suggested.

  7. Predicting life satisfaction of the Angolan elderly: a structural model.

    PubMed

    Gutiérrez, M; Tomás, J M; Galiana, L; Sancho, P; Cebrià, M A

    2013-01-01

    Satisfaction with life is of particular interest in the study of old age well-being because it has arisen as an important component of old age. A considerable amount of research has been done to explain life satisfaction in the elderly, and there is growing empirical evidence on best predictors of life satisfaction. This research evaluates the predictive power of some aging process variables, on Angolan elderly people's life satisfaction, while including perceived health into the model. Data for this research come from a cross-sectional survey of elderly people living in the capital of Angola, Luanda. A total of 1003 Angolan elderly were surveyed on socio-demographic information, perceived health, active engagement, generativity, and life satisfaction. A Multiple Indicators Multiple Causes model was built to test variables' predictive power on life satisfaction. The estimated theoretical model fitted the data well. The main predictors were those related to active engagement with others. Perceived health also had a significant and positive effect on life satisfaction. Several processes together may predict life satisfaction in the elderly population of Angola, and the variance accounted for it is large enough to be considered relevant. The key factor associated to life satisfaction seems to be active engagement with others.

  8. Life history determines genetic structure and evolutionary potential of host–parasite interactions

    PubMed Central

    Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.

    2009-01-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899

  9. Life history determines genetic structure and evolutionary potential of host-parasite interactions.

    PubMed

    Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C

    2008-12-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.

  10. Energy use in repairs by cover concrete replacement or silane treatment for extending service life of chloride-exposed concrete structures

    NASA Astrophysics Data System (ADS)

    Petcherdchoo, A.

    2018-05-01

    In this study, the service life of repaired concrete structures under chloride environment is predicted. This prediction is performed by considering the mechanism of chloride ion diffusion using the partial differential equation (PDE) of the Fick’s second law. The one-dimensional PDE cannot simply be solved, when concrete structures are cyclically repaired with cover concrete replacement or silane treatment. The difficulty is encountered in solving position-dependent chloride profile and diffusion coefficient after repairs. In order to remedy the difficulty, the finite difference method is used. By virtue of numerical computation, the position-dependent chloride profile can be treated position by position. And, based on the Crank-Nicolson scheme, a proper formulation embedded with position-dependent diffusion coefficient can be derived. By using the aforementioned idea, position- and time-dependent chloride ion concentration profiles for concrete structures with repairs can be calculated and shown, and their service life can be predicted. Moreover, the use of energy in different repair actions is also considered for comparison. From the study, it is found that repairs can control rebar corrosion and/or concrete cracking depending on repair actions.

  11. A computer program for cyclic plasticity and structural fatigue analysis

    NASA Technical Reports Server (NTRS)

    Kalev, I.

    1980-01-01

    A computerized tool for the analysis of time independent cyclic plasticity structural response, life to crack initiation prediction, and crack growth rate prediction for metallic materials is described. Three analytical items are combined: the finite element method with its associated numerical techniques for idealization of the structural component, cyclic plasticity models for idealization of the material behavior, and damage accumulation criteria for the fatigue failure.

  12. Slow Crack Growth and Fatigue Life Prediction of Ceramic Components Subjected to Variable Load History

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2001-01-01

    Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.

  13. On the use of colour reflectivity plots to monitor the structure of the troposphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Rottger, J.; Fu, I. J.; Kuo, F. S.; Liu, C. H.; Chao, J. K.

    1986-01-01

    The radar reflectivity, defined as the range squared corrected power of VHF radar echoes, can be used to monitor and study the temporal development of inversion layer, frontal boundaries and convective turbulence. From typical featurs of upward or downward motion of reflectivity structures, the advection/convection of cold and warm air can be predicted. High resolution color plots appear to be useful to trace and to study the life history of these structures, particularly their persistency, descent and ascent. These displays allow an immediate determination of the tropopause height as well as the determination of the tropopause structure. The life history of warm fronts, cold fronts, and occlusions can be traced, and these reflectivity plots allow detection of even very weak events which cannot be seen in the traditional meteorological data sets. The life history of convective turbulence, particular evolving from the planetary boundary layer, can be tracked quite easily. Its development into strong convection reaching the middle troposphere can be followed and predicted.

  14. Integrated Design Software Predicts the Creep Life of Monolithic Ceramic Components

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated-temperature applications. As design protocols emerge for these material systems, designers must be aware of several innate features, including the degrading ability of ceramics to carry sustained load. Usually, time-dependent failure in ceramics occurs because of two different, delayedfailure mechanisms: slow crack growth and creep rupture. Slow crack growth initiates at a preexisting flaw and continues until a critical crack length is reached, causing catastrophic failure. Creep rupture, on the other hand, occurs because of bulk damage in the material: void nucleation and coalescence that eventually leads to macrocracks which then propagate to failure. Successful application of advanced ceramics depends on proper characterization of material behavior and the use of an appropriate design methodology. The life of a ceramic component can be predicted with the NASA Lewis Research Center's Ceramics Analysis and Reliability Evaluation of Structures (CARES) integrated design programs. CARES/CREEP determines the expected life of a component under creep conditions, and CARES/LIFE predicts the component life due to fast fracture and subcritical crack growth. The previously developed CARES/LIFE program has been used in numerous industrial and Government applications.

  15. Fatigue behavior and life prediction of a SiC/Ti-24Al-11Nb composite under isothermal conditions. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.

    1991-01-01

    Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.

  16. The rate-size trade-off structures intraspecific variation in Daphnia ambigua life history parameters.

    PubMed

    DeLong, John P; Hanley, Torrance C

    2013-01-01

    The identification of trade-offs is necessary for understanding the evolution and maintenance of diversity. Here we employ the supply-demand (SD) body size optimization model to predict a trade-off between asymptotic body size and growth rate. We use the SD model to quantitatively predict the slope of the relationship between asymptotic body size and growth rate under high and low food regimes and then test the predictions against observations for Daphnia ambigua. Close quantitative agreement between observed and predicted slopes at both food levels lends support to the model and confirms that a 'rate-size' trade-off structures life history variation in this population. In contrast to classic life history expectations, growth and reproduction were positively correlated after controlling for the rate-size trade-off. We included 12 Daphnia clones in our study, but clone identity explained only some of the variation in life history traits. We also tested the hypothesis that growth rate would be positively related to intergenic spacer length (i.e. the growth rate hypothesis) across clones, but we found that clones with intermediate intergenic spacer lengths had larger asymptotic sizes and slower growth rates. Our results strongly support a resource-based optimization of body size following the SD model. Furthermore, because some resource allocation decisions necessarily precede others, understanding interdependent life history traits may require a more nested approach.

  17. Very High Cycle Fatigue Failure Analysis and Life Prediction of Cr-Ni-W Gear Steel Based on Crack Initiation and Growth Behaviors.

    PubMed

    Deng, Hailong; Li, Wei; Sakai, Tatsuo; Sun, Zhenduo

    2015-12-02

    The unexpected failures of structural materials in very high cycle fatigue (VHCF) regime have been a critical issue in modern engineering design. In this study, the VHCF property of a Cr-Ni-W gear steel was experimentally investigated under axial loading with the stress ratio of R = -1, and a life prediction model associated with crack initiation and growth behaviors was proposed. Results show that the Cr-Ni-W gear steel exhibits the constantly decreasing S-N property without traditional fatigue limit, and the fatigue strength corresponding to 10⁸ cycles is around 485 MPa. The inclusion-fine granular area (FGA)-fisheye induced failure becomes the main failure mechanism in the VHCF regime, and the local stress around the inclusion play a key role. By using the finite element analysis of representative volume element, the local stress tends to increase with the increase of elastic modulus difference between inclusion and matrix. The predicted crack initiation life occupies the majority of total fatigue life, while the predicted crack growth life is only accounts for a tiny fraction. In view of the good agreement between the predicted and experimental results, the proposed VHCF life prediction model involving crack initiation and growth can be acceptable for inclusion-FGA-fisheye induced failure.

  18. Sensitivity study on durability variables of marine concrete structures

    NASA Astrophysics Data System (ADS)

    Zhou, Xin'gang; Li, Kefei

    2013-06-01

    In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.

  19. A Novel Approach to Rotorcraft Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Everett, Richard A.; Newman, John A.

    2002-01-01

    Damage-tolerance methodology is positioned to replace safe-life methodologies for designing rotorcraft structures. The argument for implementing a damage-tolerance method comes from the fundamental fact that rotorcraft structures typically fail by fatigue cracking. Therefore, if technology permits prediction of fatigue-crack growth in structures, a damage-tolerance method should deliver the most accurate prediction of component life. Implementing damage-tolerance (DT) into high-cycle-fatigue (HCF) components will require a shift from traditional DT methods that rely on detecting an initial flaw with nondestructive inspection (NDI) methods. The rapid accumulation of cycles in a HCF component will result in a design based on a traditional DT method that is either impractical because of frequent inspections, or because the design will be too heavy to operate efficiently. Furthermore, once a HCF component develops a detectable propagating crack, the remaining fatigue life is short, sometimes less than one flight hour, which does not leave sufficient time for inspection. Therefore, designing a HCF component will require basing the life analysis on an initial flaw that is undetectable with current NDI technology.

  20. Major Life Events and Daily Hassles in Predicting Health Status: Methodological Inquiry.

    ERIC Educational Resources Information Center

    Flannery, Raymond B., Jr.

    1986-01-01

    Hypothesized that both major life events and daily hassles would be associated with anxiety and depression symptomatology. While the results partially support the hypothesis, the inconsistent findings suggest methodological flaws in each life stress measure. Reviews these limitations and presents the use of the semi-structured interview as one…

  1. Why is Past Depression the Best Predictor of Future Depression? Stress Generation as a Mechanism of Depression Continuity in Girls

    PubMed Central

    Rudolph, Karen D.; Flynn, Megan; Abaied, Jamie; Groot, Alison; Thompson, Renee

    2009-01-01

    This study examined whether a transactional interpersonal life stress model helps to explain the continuity in depression over time in girls. Youth (86 girls, 81 boys; M age = 12.41, SD = 1.19) and their caregivers participated in a three-wave longitudinal study. Depression and episodic life stress were assessed with semi-structured interviews. Path analysis provided support for a transactional interpersonal life stress model in girls but not in boys, wherein depression predicted the generation of interpersonal stress, which predicted subsequent depression. Moreover, self-generated interpersonal stress partially accounted for the continuity of depression over time. Although depression predicted noninterpersonal stress generation in girls (but not in boys), noninterpersonal stress did not predict subsequent depression. PMID:20183635

  2. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  3. Hot fire test results of subscale tubular combustion chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Jankovsky, Robert S.; Pavli, Albert J.

    1992-01-01

    Advanced, subscale, tubular combustion chambers were built and test fired with hydrogen-oxygen propellants to assess the increase in fatigue life that can be obtained with this type of construction. Two chambers were tested: one ran for 637 cycles without failing, compared to a predicted life of 200 cycles for a comparable smooth-wall milled-channel liner configuration. The other chamber failed at 256 cycles, compared to a predicted life of 118 cycles for a comparable smooth-wall milled-channel liner configuration. Posttest metallographic analysis determined that the strain-relieving design (structural compliance) of the tubular configuration was the cause of this increase in life.

  4. Brief summary of the evolution of high-temperature creep-fatigue life prediction models for crack initiation

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1993-01-01

    The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element analyses, advanced constitutive stress-strain-temperature-time relations, and creep-fatigue-environmental models for crack initiation and propagation. The high-temperature durability methods that have evolved for calculating high-temperature fatigue crack initiation lives of structural engineering materials are addressed. Only a few of the methods were refined to the point of being directly useable in design. Recently, two of the methods were transcribed into computer software for use with personal computers.

  5. Brief summary of the evolution of high-temperature creep-fatigue life prediction models for crack initiation

    NASA Astrophysics Data System (ADS)

    Halford, Gary R.

    1993-10-01

    The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element analyses, advanced constitutive stress-strain-temperature-time relations, and creep-fatigue-environmental models for crack initiation and propagation. The high-temperature durability methods that have evolved for calculating high-temperature fatigue crack initiation lives of structural engineering materials are addressed. Only a few of the methods were refined to the point of being directly useable in design.

  6. Real-time sensing of fatigue crack damage for information-based decision and control

    NASA Astrophysics Data System (ADS)

    Keller, Eric Evans

    Information-based decision and control for structures that are subject to failure by fatigue cracking is based on the following notion: Maintenance, usage scheduling, and control parameter tuning can be optimized through real time knowledge of the current state of fatigue crack damage. Additionally, if the material properties of a mechanical structure can be identified within a smaller range, then the remaining life prediction of that structure will be substantially more accurate. Information-based decision systems can rely one physical models, estimation of material properties, exact knowledge of usage history, and sensor data to synthesize an accurate snapshot of the current state of damage and the likely remaining life of a structure under given assumed loading. The work outlined in this thesis is structured to enhance the development of information-based decision and control systems. This is achieved by constructing a test facility for laboratory experiments on real-time damage sensing. This test facility makes use of a methodology that has been formulated for fatigue crack model parameter estimation and significantly improves the quality of predictions of remaining life. Specifically, the thesis focuses on development of an on-line fatigue crack damage sensing and life prediction system that is built upon the disciplines of Systems Sciences and Mechanics of Materials. A major part of the research effort has been expended to design and fabricate a test apparatus which allows: (i) measurement and recording of statistical data for fatigue crack growth in metallic materials via different sensing techniques; and (ii) identification of stochastic model parameters for prediction of fatigue crack damage. To this end, this thesis describes the test apparatus and the associated instrumentation based on four different sensing techniques, namely, traveling optical microscopy, ultrasonic flaw detection, Alternating Current Potential Drop (ACPD), and fiber-optic extensometry-based compliance, for crack length measurements.

  7. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and the CARES/Creep program.

  8. Life prediction of materials exposed to monotonic and cyclic loading: A new technology survey

    NASA Technical Reports Server (NTRS)

    Stuhrke, W. F.; Carpenter, J. L., Jr.

    1975-01-01

    Reviewed and evaluated technical abstracts for about 100 significant documents are reported relating primarily to life prediction for structural materials exposed to monotonic and cyclic loading, particularly in elevated temperature environments. The abstracts in the report are mostly for publications in the period April 1962 through April 1974. The purpose of this report is to provide, in quick reference form, a dependable source for current information

  9. Fatigue damage prognosis of internal delamination in composite plates under cyclic compression loadings using affine arithmetic as uncertainty propagation tool

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey J.-M.

    Structural health monitoring (SHM) has become indispensable for reducing maintenance costs and increasing the in-service capacity of a structure. The increased use of lightweight composite materials in aircraft structures drastically increased the effects of fatigue induced damage on their critical structural components and thus the necessity to predict the remaining life of those components. Damage prognosis, one of the least investigated fields in SHM, uses the current damage state of the system to forecast its future performance by estimating the expected loading environments. A successful damage prediction model requires the integration of technologies in areas like measurements, materials science, mechanics of materials, and probability theories, but most importantly the quantification of uncertainty in all these areas. In this study, Affine Arithmetic is used as a method for incorporating the uncertainties due to the material properties into the fatigue life prognosis of composite plates subjected to cyclic compressive loadings. When loadings are compressive in nature, the composite plates undergo repeated buckling-unloading of the delaminated layer which induces mixed modes I and II states of stress at the tip of the delamination in the plates. The Kardomateas model-based prediction law is used to predict the growth of the delamination, while the integration of the effects of the uncertainties for modes I and II coefficients in the fatigue life prediction model is handled using Affine arithmetic. The Mode I and Mode II interlaminar fracture toughness and fatigue characterization of the composite plates are first experimentally studied to obtain the material coefficients and fracture toughness, respectively. Next, these obtained coefficients are used in the Kardomateas law to predict the delamination lengths in the composite plates while using Affine Arithmetic to handle their uncertainties. At last, the fatigue characterization of the composite plates during compressive-buckling loadings is experimentally studied, and the delamination lengths obtained are compared with the predicted values to check the performance of Affine Arithmetic as an uncertainty propagation tool.

  10. Weibull-Based Design Methodology for Rotating Aircraft Engine Structures

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin; Hendricks, Robert C.; Soditus, Sherry

    2002-01-01

    The NASA Energy Efficient Engine (E(sup 3)-Engine) is used as the basis of a Weibull-based life and reliability analysis. Each component's life and thus the engine's life is defined by high-cycle fatigue (HCF) or low-cycle fatigue (LCF). Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine Weibull slope increases, the predicted lives decrease. The predicted engine lives L(sub 5) (95 % probability of survival) of approximately 17,000 and 32,000 hr do correlate with current engine maintenance practices without and with refurbishment. respectively. The individual high pressure turbine (HPT) blade lives necessary to obtain a blade system life L(sub 0.1) (99.9 % probability of survival) of 9000 hr for Weibull slopes of 3, 6 and 9, are 47,391 and 20,652 and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9 %, the predicted disk system life L(sub 0.1) can vary from 9,408 to 24,911 hr.

  11. Military engine computational structures technology

    NASA Technical Reports Server (NTRS)

    Thomson, Daniel E.

    1992-01-01

    Integrated High Performance Turbine Engine Technology Initiative (IHPTET) goals require a strong analytical base. Effective analysis of composite materials is critical to life analysis and structural optimization. Accurate life prediction for all material systems is critical. User friendly systems are also desirable. Post processing of results is very important. The IHPTET goal is to double turbine engine propulsion capability by the year 2003. Fifty percent of the goal will come from advanced materials and structures, the other 50 percent will come from increasing performance. Computer programs are listed.

  12. Assessment of concrete damage and strength degradation caused by reinforcement corrosion

    NASA Astrophysics Data System (ADS)

    Nepal, Jaya; Chen, Hua-Peng

    2015-07-01

    Structural performance deterioration of reinforced concrete structures has been extensively investigated, but very limited studies have been carried out to investigate the effect of reinforcement corrosion on time-dependent reliability with consideration of the influence of mechanical characteristics of the bond interface due to corrosion. This paper deals with how corrosion in reinforcement creates different types of defects in concrete structure and how they are responsible for the structural capacity deterioration of corrosion affected reinforced concrete structures during their service life. Cracking in cover concrete due to reinforcement corrosion is investigated by using rebar-concrete model and realistic concrete properties. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution due to reinforcement corrosion, which is examined by the experimental data available. The time-dependent reliability analysis is undertaken to calculate the life time structural reliability of corrosion damaged concrete structures by stochastic deterioration modelling of reinforced concrete. The results from the numerical example show that the proposed approach is capable of evaluating the damage caused by reinforcement corrosion and also predicting the structural reliability of concrete structures during their lifecycle.

  13. Thermal barrier coating life prediction model development, phase 1

    NASA Technical Reports Server (NTRS)

    Demasi, Jeanine T.; Ortiz, Milton

    1989-01-01

    The objective of this program was to establish a methodology to predict thermal barrier coating (TBC) life on gas turbine engine components. The approach involved experimental life measurement coupled with analytical modeling of relevant degradation modes. Evaluation of experimental and flight service components indicate the predominant failure mode to be thermomechanical spallation of the ceramic coating layer resulting from propagation of a dominant near interface crack. Examination of fractionally exposed specimens indicated that dominant crack formation results from progressive structural damage in the form of subcritical microcrack link-up. Tests conducted to isolate important life drivers have shown MCrAlY oxidation to significantly affect the rate of damage accumulation. Mechanical property testing has shown the plasma deposited ceramic to exhibit a non-linear stress-strain response, creep and fatigue. The fatigue based life prediction model developed accounts for the unusual ceramic behavior and also incorporates an experimentally determined oxide rate model. The model predicts the growth of this oxide scale to influence the intensity of the mechanic driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads.

  14. The influence of childhood abuse, adult stressful life events and temperaments on depressive symptoms in the nonclinical general adult population.

    PubMed

    Nakai, Yukiei; Inoue, Takeshi; Toda, Hiroyuki; Toyomaki, Atsuhito; Nakato, Yasuya; Nakagawa, Shin; Kitaichi, Yuji; Kameyama, Rie; Hayashishita, Yoshiyuki; Wakatsuki, Yumi; Oba, Koji; Tanabe, Hajime; Kusumi, Ichiro

    2014-04-01

    Previous studies have shown the interaction between heredity and childhood stress or life events on the pathogenesis of major depression. We hypothesized that childhood abuse, affective temperaments, and adult stressful life events interact and influence depressive symptoms in the general adult population and tested this hypothesis in this study. The 294 participants from the nonclinical general adult population were studied using the following self-administered questionnaire surveys: the Patient Health Questionnaire-9 (PHQ-9), Life Experiences Survey (LES), Temperament Evaluation of the Memphis, Pisa, Paris, and San Diego auto-questionnaire (TEMPS-A), and Child Abuse and Trauma Scale (CATS). The data were analyzed with single and multiple regressions and structural equation modeling (Amos 20.0). Childhood abuse indirectly predicted the severity of the depressive symptoms through affective temperaments measured by TEMPS-A in the structural equation modeling. Four temperaments - depressive, cyclothymic, irritable, and anxious - directly predicted the severity of depressive symptoms and the negative appraisal of life events during the past year. The negative appraisal of life events during the past year mildly, but significantly, predicted the severity of depressive symptoms. The subjects of this study were nonclinical. The findings might not be generalized to patients with mood disorders. This study suggests that childhood abuse, especially neglect, indirectly increased depressive symptoms through increased affective temperaments, which, in turn, increase the negative appraisal of stressful life events. An important role of affective temperaments in the effect of childhood abuse and stressful life events on depressive symptoms was suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Drainage pipe study.

    DOT National Transportation Integrated Search

    1971-05-01

    This report is the result of a research program in which various types of submerged drainage structures were evaluated in an effort to determine the life expectancy of such a structure. California-s method of predicting the behavior pattern of submer...

  16. Personal spiritual values and quality of life: evidence from Chinese college students.

    PubMed

    Zhang, Kaili Chen; Hui, C Harry; Lam, Jasmine; Lau, Esther Yuet Ying; Cheung, Shu-Fai; Mok, Doris Shui Ying

    2014-08-01

    Values are guiding principles in our life. While some studies found spiritual values to be "healthier," Sagiv and Schwartz (Eur J Soc Psychol 30:177-198, 2000) showed that people holding non-spiritual values were higher on affective well-being. We examined the predictive power of these two types of values with a longitudinal data set collected from Chinese students mainly in Hong Kong. Structural equation modeling revealed that spiritual values (as well as family income) positively predicted quality of life a year later. Non-spiritual, self-enhancement values, did not show any association. Results suggest that developing spiritual values may promote well-being through enabling individuals to find meaning and purpose in life.

  17. Predicting the Reliability of Ceramics Under Transient Loads and Temperatures With CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    2003-01-01

    A methodology is shown for predicting the time-dependent reliability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The methodology takes into account the changes in material response that can occur with temperature or time (i.e., changing fatigue and Weibull parameters with temperature or time). This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. The code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  18. TTK Chitra tilting disc heart valve model TC2: An assessment of fatigue life and durability.

    PubMed

    Subhash, N N; Rajeev, Adathala; Sujesh, Sreedharan; Muraleedharan, C V

    2017-08-01

    Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis-based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis-based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.

  19. Prediction of atmospheric degradation data for POPs by gene expression programming.

    PubMed

    Luan, F; Si, H Z; Liu, H T; Wen, Y Y; Zhang, X Y

    2008-01-01

    Quantitative structure-activity relationship models for the prediction of the mean and the maximum atmospheric degradation half-life values of persistent organic pollutants were developed based on the linear heuristic method (HM) and non-linear gene expression programming (GEP). Molecular descriptors, calculated from the structures alone, were used to represent the characteristics of the compounds. HM was used both to pre-select the whole descriptor sets and to build the linear model. GEP yielded satisfactory prediction results: the square of the correlation coefficient r(2) was 0.80 and 0.81 for the mean and maximum half-life values of the test set, and the root mean square errors were 0.448 and 0.426, respectively. The results of this work indicate that the GEP is a very promising tool for non-linear approximations.

  20. AIR VEHICLES INTEGRATION AND TECHNOLOGY RESEARCH (AVIATR) Task Order 0015: Predictive Capability for Hypersonic Structural Response and Life Prediction Phase 1 - Identification of Knowledge Gaps

    DTIC Science & Technology

    2010-08-01

    using load - bearing tanks with parasitic TPS was considered to be a lower weight design when all details were accounted for. The cold structure...share one very key element with the design of load bearing hot structure – the design drive toward thin gauge metallic skin under complex and coupled...39 skin panel joints and their susceptibility to high acoustic loading coupled with transient heating, and hot structure skin deflections and

  1. Towards Practical Carbonation Prediction and Modelling for Service Life Design of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Ekolu, O. S.

    2015-11-01

    Amongst the scientific community, the interest in durability of concrete structures has been high for quite a long time of over 40 years. Of the various causes of degradation of concrete structures, corrosion is the most widespread durability problem and carbonation is one of the two causes of steel reinforcement corrosion. While much scientific understanding has been gained from the numerous carbonation studies undertaken over the past years, it is still presently not possible to accurately predict carbonation and apply it in design of structures. This underscores the complex nature of the mechanisms as influenced by several interactive factors. Based on critical literature and some experience of the author, it is found that there still exist major challenges in establishing a mathematical constitutive relation for realistic carbonation prediction. While most current models employ permeability /diffusion as the main model property, analysis shows that the most practical material property would be compressive strength, which has a low coefficient of variation of 20% compared to 30 to 50% for permeability. This important characteristic of compressive strength, combined with its merit of simplicity and data availability at all stages of a structure's life, promote its potential use in modelling over permeability. By using compressive strength in carbonation prediction, the need for accelerated testing and permeability measurement can be avoided. This paper attempts to examine the issues associated with carbonation prediction, which could underlie the current lack of a sound established prediction method. Suggestions are then made for possible employment of different or alternative approaches.

  2. Sixty-five years of the long march in protein secondary structure prediction: the final stretch?

    PubMed Central

    Yang, Yuedong; Gao, Jianzhao; Wang, Jihua; Heffernan, Rhys; Hanson, Jack; Paliwal, Kuldip; Zhou, Yaoqi

    2018-01-01

    Abstract Protein secondary structure prediction began in 1951 when Pauling and Corey predicted helical and sheet conformations for protein polypeptide backbone even before the first protein structure was determined. Sixty-five years later, powerful new methods breathe new life into this field. The highest three-state accuracy without relying on structure templates is now at 82–84%, a number unthinkable just a few years ago. These improvements came from increasingly larger databases of protein sequences and structures for training, the use of template secondary structure information and more powerful deep learning techniques. As we are approaching to the theoretical limit of three-state prediction (88–90%), alternative to secondary structure prediction (prediction of backbone torsion angles and Cα-atom-based angles and torsion angles) not only has more room for further improvement but also allows direct prediction of three-dimensional fragment structures with constantly improved accuracy. About 20% of all 40-residue fragments in a database of 1199 non-redundant proteins have <6 Å root-mean-squared distance from the native conformations by SPIDER2. More powerful deep learning methods with improved capability of capturing long-range interactions begin to emerge as the next generation of techniques for secondary structure prediction. The time has come to finish off the final stretch of the long march towards protein secondary structure prediction. PMID:28040746

  3. On the monitoring and implications of growing damages caused by manufacturing defects in composite structures

    NASA Astrophysics Data System (ADS)

    Schagerl, M.; Viechtbauer, C.; Hörrmann, S.

    2015-07-01

    Damage tolerance is a classical safety concept for the design of aircraft structures. Basically, this approach considers possible damages in the structure, predicts the damage growth under applied loading conditions and predicts the following decrease of the structural strength. As a fundamental result the damage tolerance approach yields the maximum inspection interval, which is the time a damage grows from a detectable to a critical level. The above formulation of the damage tolerance safety concept targets on metallic structures where the damage is typically a simple fatigue crack. Fiber-reinforced polymers show a much more complex damage behavior, such as delaminationsin laminated composites. Moreover, progressive damage in composites is often initiated by manufacturing defects. The complex manufacturing processes for composite structures almost certainly yield parts with defects, e.g. pores in the matrix or undulations of fibers. From such defects growing damages may start after a certain time of operation. The demand to simplify or even avoid the inspection of composite structures has therefore led to a comeback of the traditional safe-life safety concept. The aim of the so-called safe-life flaw tolerance concept is a structure that is capable of carrying the static loads during operation, despite significant damages and after a representative fatigue load spectrum. A structure with this property does not need to be inspected, respectively monitored at all during its service life. However, its load carrying capability is thereby not fully utilized. This article presents the possible refinement of the state-of-the-art safe-life flaw tolerance concept for composite structures towards a damage tolerance approach considering also the influence of manufacturing defects on damage initiation and growth. Based on fundamental physical relations and experimental observations the challenges when developing damage growth and residual strength curves are discussed.

  4. Impact of active controls technology on structural integrity

    NASA Technical Reports Server (NTRS)

    Noll, Thomas; Austin, Edward; Donley, Shawn; Graham, George; Harris, Terry

    1991-01-01

    This paper summarizes the findings of The Technical Cooperation Program to assess the impact of active controls technology on the structural integrity of aeronautical vehicles and to evaluate the present state-of-the-art for predicting the loads caused by a flight-control system modification and the resulting change in the fatigue life of the flight vehicle. The potential for active controls to adversely affect structural integrity is described, and load predictions obtained using two state-of-the-art analytical methods are given.

  5. Reliability Analysis of Brittle Material Structures - Including MEMS(?) - With the CARES/Life Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2002-01-01

    Brittle materials are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts. thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The CARES/Life code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. For this presentation an interview of the CARES/Life program will be provided. Emphasis will be placed on describing the latest enhancements to the code for reliability analysis with time varying loads and temperatures (fully transient reliability analysis). Also, early efforts in investigating the validity of using Weibull statistics, the basis of the CARES/Life program, to characterize the strength of MEMS structures will be described as as well as the version of CARES/Life for MEMS (CARES/MEMS) being prepared which incorporates single crystal and edge flaw reliability analysis capability. It is hoped this talk will open a dialog for potential collaboration in the area of MEMS testing and life prediction.

  6. Low-cycle thermal fatigue

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1986-01-01

    A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.

  7. A model for the progressive failure of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Lo, D. C.

    1991-01-01

    Laminated continuous fiber polymeric composites are capable of sustaining substantial load induced microstructural damage prior to component failure. Because this damage eventually leads to catastrophic failure, it is essential to capture the mechanics of progressive damage in any cogent life prediction model. For the past several years the authors have been developing one solution approach to this problem. In this approach the mechanics of matrix cracking and delamination are accounted for via locally averaged internal variables which account for the kinematics of microcracking. Damage progression is predicted by using phenomenologically based damage evolution laws which depend on the load history. The result is a nonlinear and path dependent constitutive model which has previously been implemented to a finite element computer code for analysis of structural components. Using an appropriate failure model, this algorithm can be used to predict component life. In this paper the model will be utilized to demonstrate the ability to predict the load path dependence of the damage and stresses in plates subjected to fatigue loading.

  8. Explicit prediction of hail using multimoment microphysics schemes for a hailstorm of 19 March 2014 in eastern China

    NASA Astrophysics Data System (ADS)

    Luo, Liping; Xue, Ming; Zhu, Kefeng; Zhou, Bowen

    2017-07-01

    In the late afternoon of 19 March 2014, a severe hailstorm swept through eastern central Zhejiang province, China. The storm produced golf ball-sized hail, strong winds, and lighting, lasting approximately 1 h over the coastal city of Taizhou. The Advanced Regional Prediction System is used to simulate the hailstorm using different configurations of the Milbrandt-Yau microphysics scheme that predict one, two, or three moments of the hydrometeor particle size distribution. Simulated fields, including accumulated precipitation and maximum estimated hail size (MESH), are verified against rain gauge observations and radar-derived MESH, respectively. For the case of the 19 March 2014 storms, the general evolution is better predicted with multimoment microphysics schemes than with the one-moment scheme; the three-moment scheme produces the best forecast. Predictions from the three-moment scheme qualitatively agree with observations in terms of size and amount of hail reaching the surface. The life cycle of the hailstorm is analyzed, using the most skillful, three-moment forecast. Based upon the tendency of surface hail mass flux, the hailstorm life cycle can be divided into three stages: developing, mature, and dissipating. Microphysical budget analyses are used to examine microphysical processes and characteristics during these three stages. The vertical structures within the storm and their link to environmental shear conditions are discussed; together with the rapid fall of hailstones, these structures and conditions appear to dictate this pulse storm's short life span. Finally, a conceptual model for the life cycle of pulse hailstorms is proposed.

  9. Religiousness, spiritual seeking, and personality: findings from a longitudinal study.

    PubMed

    Wink, Paul; Ciciolla, Lucia; Dillon, Michele; Tracy, Allison

    2007-10-01

    The hypothesis that personality characteristics in adolescence can be used to predict religiousness and spiritual seeking in late adulthood was tested using a structural equation modeling framework to estimate cross-lagged and autoregressive effects in a two-wave panel design. The sample consisted of 209 men and women participants in the Berkeley Guidance and Oakland Growth studies. In late adulthood, religiousness was positively related to Conscientiousness and Agreeableness, and spiritual seeking was related to Openness to Experience. Longitudinal models indicated that Conscientiousness in adolescence significantly predicted religiousness in late adulthood above and beyond adolescent religiousness. Similarly, Openness in adolescence predicted spiritual seeking in late adulthood. The converse effect, adolescent religiousness to personality in late adulthood, was not significant in either model. Among women, adolescent Agreeableness predicted late-life religiousness and adolescent religiousness predicted late-life Agreeableness; both these effects were absent among men. Adolescent personality appears to shape late-life religiousness and spiritual seeking independent of early religious socialization.

  10. Less-structured time in children's daily lives predicts self-directed executive functioning.

    PubMed

    Barker, Jane E; Semenov, Andrei D; Michaelson, Laura; Provan, Lindsay S; Snyder, Hannah R; Munakata, Yuko

    2014-01-01

    Executive functions (EFs) in childhood predict important life outcomes. Thus, there is great interest in attempts to improve EFs early in life. Many interventions are led by trained adults, including structured training activities in the lab, and less-structured activities implemented in schools. Such programs have yielded gains in children's externally-driven executive functioning, where they are instructed on what goal-directed actions to carry out and when. However, it is less clear how children's experiences relate to their development of self-directed executive functioning, where they must determine on their own what goal-directed actions to carry out and when. We hypothesized that time spent in less-structured activities would give children opportunities to practice self-directed executive functioning, and lead to benefits. To investigate this possibility, we collected information from parents about their 6-7 year-old children's daily, annual, and typical schedules. We categorized children's activities as "structured" or "less-structured" based on categorization schemes from prior studies on child leisure time use. We assessed children's self-directed executive functioning using a well-established verbal fluency task, in which children generate members of a category and can decide on their own when to switch from one subcategory to another. The more time that children spent in less-structured activities, the better their self-directed executive functioning. The opposite was true of structured activities, which predicted poorer self-directed executive functioning. These relationships were robust (holding across increasingly strict classifications of structured and less-structured time) and specific (time use did not predict externally-driven executive functioning). We discuss implications, caveats, and ways in which potential interpretations can be distinguished in future work, to advance an understanding of this fundamental aspect of growing up.

  11. Damage prognosis: the future of structural health monitoring.

    PubMed

    Farrar, Charles R; Lieven, Nick A J

    2007-02-15

    This paper concludes the theme issue on structural health monitoring (SHM) by discussing the concept of damage prognosis (DP). DP attempts to forecast system performance by assessing the current damage state of the system (i.e. SHM), estimating the future loading environments for that system, and predicting through simulation and past experience the remaining useful life of the system. The successful development of a DP capability will require the further development and integration of many technology areas including both measurement/processing/telemetry hardware and a variety of deterministic and probabilistic predictive modelling capabilities, as well as the ability to quantify the uncertainty in these predictions. The multidisciplinary and challenging nature of the DP problem, its current embryonic state of development, and its tremendous potential for life-safety and economic benefits qualify DP as a 'grand challenge' problem for engineers in the twenty-first century.

  12. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; Ruff, J. P. C.; Park, J.-S.; Okasinski, J.; Beaudoin, A. J.; Miller, M. P.

    2017-05-01

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present work, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to develop significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. The experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.

  13. Creep fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, Vito; Nissley, David; Lin, Li-Sen Jim

    1985-01-01

    The first two years of a two-phase program aimed at improving the high temperature crack initiation life prediction technology for gas turbine hot section components are discussed. In Phase 1 (baseline) effort, low cycle fatigue (LCF) models, using a data base generated for a cast nickel base gas turbine hot section alloy (B1900+Hf), were evaluated for their ability to predict the crack initiation life for relevant creep-fatigue loading conditions and to define data required for determination of model constants. The variables included strain range and rate, mean strain, strain hold times and temperature. None of the models predicted all of the life trends within reasonable data requirements. A Cycle Damage Accumulation (CDA) was therefore developed which follows an exhaustion of material ductility approach. Material ductility is estimated based on observed similarities of deformation structure between fatigue, tensile and creep tests. The cycle damage function is based on total strain range, maximum stress and stress amplitude and includes both time independent and time dependent components. The CDA model accurately predicts all of the trends in creep-fatigue life with loading conditions. In addition, all of the CDA model constants are determinable from rapid cycle, fully reversed fatigue tests and monotonic tensile and/or creep data.

  14. Life extension of Structural Repairs – A statistical approach towards efficiency improvement

    NASA Astrophysics Data System (ADS)

    Deepashri, N. V.; Kalaiyappan, Mohan

    2018-05-01

    The life extension program of aircraft is taken up whenever aircraft’s intended life reaches close to its DSG (Design Service Goal). The Extended Service Goal (ESG) of an aircraft, in general, and structural repairs, in particular, is arrived at on the basis of F&DT (Fatigue & Damage Tolerance) analysis. Life extension program of aircraft consists of assessment of remaining life of all parts of the aircrafts including structural, mechanical, and electrical and avionics equipment and structural repairs. For life extension of stringer repair, as an example, it is required to re-assess the fatigue life of stringer in the presence of coupling under modified load spectrum. This is achieved by assessing the fatigue life of Web and Outer Flange (OF) part of stringers separately as per F&DT justification philosophy. Assessment of the fatigue life requires determination of stress concentration factor (Kt) for different combination of width, pitch, stringer thickness, coupling thickness and pad-up thickness of all stringer profiles available in different sections of fuselage. Determination of stress concentration factor for Web and Outer Flange of stringer profile covering entire ranges involves substantial number of Finite Element (FE) analysis. In order to optimise the number of FE runs, stress concentration factor is determined under worst repair factors combination (max. plate width; max. thickness; max. pitch; min. rivet dia.; and min. No. of rivets) resulting in conservative value. A parametric study of Web and Outer Flange data across stringer profiles were carried out and proven statistical techniques were used to find the optimal equation to predict stress concentration factor. This in turn reduced number of FE runs substantially for a given range of width, pitch, stringer thickness and so on. The use of optimal equation obtained through regression analysis is able to predict Kt within reasonable accuracy for a given range of inputs.

  15. Investigation of fatigue assessments accuracy for beam weldments considering material data input and FE-mode type

    NASA Astrophysics Data System (ADS)

    Gorash, Yevgen; Comlekci, Tugrul; MacKenzie, Donald

    2017-05-01

    This study investigates the effects of fatigue material data and finite element types on accuracy of residual life assessments under high cycle fatigue. The bending of cross-beam connections is simulated in ANSYS Workbench for different combinations of structural member shapes made of a typical structural steel. The stress analysis of weldments with specific dimensions and loading applied is implemented using solid and shell elements. The stress results are transferred to the fatigue code nCode DesignLife for the residual life prediction. Considering the effects of mean stress using FKM approach, bending and thickness according to BS 7608:2014, fatigue life is predicted using the Volvo method and stress integration rules from ASME Boiler & Pressure Vessel Code. Three different pairs of S-N curves are considered in this work including generic seam weld curves and curves for the equivalent Japanese steel JIS G3106-SM490B. The S-N curve parameters for the steel are identified using the experimental data available from NIMS fatigue data sheets employing least square method and considering thickness and mean stress corrections. The numerical predictions are compared to the available experimental results indicating the most preferable fatigue data input, range of applicability and FE-model formulation to achieve the best accuracy.

  16. Model-Based Fatigue Prognosis of Fiber-Reinforced Laminates Exhibiting Concurrent Damage Mechanisms

    NASA Technical Reports Server (NTRS)

    Corbetta, M.; Sbarufatti, C.; Saxena, A.; Giglio, M.; Goebel, K.

    2016-01-01

    Prognostics of large composite structures is a topic of increasing interest in the field of structural health monitoring for aerospace, civil, and mechanical systems. Along with recent advancements in real-time structural health data acquisition and processing for damage detection and characterization, model-based stochastic methods for life prediction are showing promising results in the literature. Among various model-based approaches, particle-filtering algorithms are particularly capable in coping with uncertainties associated with the process. These include uncertainties about information on the damage extent and the inherent uncertainties of the damage propagation process. Some efforts have shown successful applications of particle filtering-based frameworks for predicting the matrix crack evolution and structural stiffness degradation caused by repetitive fatigue loads. Effects of other damage modes such as delamination, however, are not incorporated in these works. It is well established that delamination and matrix cracks not only co-exist in most laminate structures during the fatigue degradation process but also affect each other's progression. Furthermore, delamination significantly alters the stress-state in the laminates and accelerates the material degradation leading to catastrophic failure. Therefore, the work presented herein proposes a particle filtering-based framework for predicting a structure's remaining useful life with consideration of multiple co-existing damage-mechanisms. The framework uses an energy-based model from the composite modeling literature. The multiple damage-mode model has been shown to suitably estimate the energy release rate of cross-ply laminates as affected by matrix cracks and delamination modes. The model is also able to estimate the reduction in stiffness of the damaged laminate. This information is then used in the algorithms for life prediction capabilities. First, a brief summary of the energy-based damage model is provided. Then, the paper describes how the model is embedded within the prognostic framework and how the prognostics performance is assessed using observations from run-to-failure experiments

  17. Probability of failure prediction for step-stress fatigue under sine or random stress

    NASA Technical Reports Server (NTRS)

    Lambert, R. G.

    1979-01-01

    A previously proposed cumulative fatigue damage law is extended to predict the probability of failure or fatigue life for structural materials with S-N fatigue curves represented as a scatterband of failure points. The proposed law applies to structures subjected to sinusoidal or random stresses and includes the effect of initial crack (i.e., flaw) sizes. The corrected cycle ratio damage function is shown to have physical significance.

  18. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction After 450 kg

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 28,500 hr of operation and processed 466 kg of xenon throughput--more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  19. A Multi-Scale Structural Health Monitoring Approach for Damage Detection, Diagnosis and Prognosis in Aerospace Structures

    DTIC Science & Technology

    2012-01-20

    ultrasonic Lamb waves to plastic strain and fatigue life. Theory was developed and validated to predict second harmonic generation for specific mode... Fatigue and damage generation and progression are processes consisting of a series of interrelated events that span large scales of space and time...strain and fatigue life A set of experiments were completed that worked to relate the acoustic nonlinearity measured with Lamb waves to both the

  20. Changes in need satisfaction and motivation orientation as predictors of psychological and behavioural outcomes in exercise referral.

    PubMed

    Rahman, Rachel Jane; Thogersen-Ntoumani, Cecilie; Thatcher, Joanne; Doust, Jonathan

    2011-11-01

    Employing Self-Determination Theory (Deci & Ryan, 1985) as a theoretical framework, this study examined psychological need satisfaction and motivational regulations as predictors of psychological and behavioural outcomes in exercise referral (ER). ER patients (N = 293; mean age 54.49) completed the measures of motivational regulations, psychological need satisfaction, health-related quality of life, life satisfaction, anxiety, depression and physical activity at entry, exit and 6 months following the end of a supervised exercise programme. Change in (Δ) intrinsic motivation during the scheme significantly predicted adherence and Δ habitual physical activity. Δ psychological need satisfaction from entry to exit significantly predicted Δ habitual physical activity from exit to 6-month follow-up. Δ psychological need satisfaction significantly predicted Δ motivational regulation and Δ psychological outcomes. Contrary to expectations, Δ self-determined regulation did not significantly predict Δ psychological outcomes during the structured part of the scheme, however, it did significantly predict Δ in psychological outcomes from exit to 6-month follow-up. These findings expand on cross-sectional research to demonstrate that psychological need satisfaction during supervised ER longitudinally predicts motivational regulation and psychological outcomes up to 6 months after a structured programme.

  1. Relationships between structural complexity, coral traits, and reef fish assemblages

    NASA Astrophysics Data System (ADS)

    Darling, Emily S.; Graham, Nicholas A. J.; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.; Pratchett, Morgan S.; Wilson, Shaun K.

    2017-06-01

    With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.

  2. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

  3. NASA Langley developments in response calculations needed for failure and life prediction

    NASA Technical Reports Server (NTRS)

    Housner, Jerrold M.

    1993-01-01

    NASA Langley developments in response calculations needed for failure and life predictions are discussed. Topics covered include: structural failure analysis in concurrent engineering; accuracy of independent regional modeling demonstrated on classical example; functional interface method accurately joins incompatible finite element models; interface method for insertion of local detail modeling extended to curve pressurized fuselage window panel; interface concept for joining structural regions; motivation for coupled 2D-3D analysis; compression panel with discontinuous stiffener coupled 2D-3D model and axial surface strains at the middle of the hat stiffener; use of adaptive refinement with multiple methods; adaptive mesh refinement; and studies on quantity effect of bow-type initial imperfections on reliability of stiffened panels.

  4. Prediction of pavement remaining service life based on repetition of load and permanent deformation

    NASA Astrophysics Data System (ADS)

    Usman, R. S.; Setyawan, A.; Suprapto, M.

    2018-03-01

    One of the methods which was applied in the assessment of flexible pavement performance was mechanistic method assuming structures of road pavement to become multi-layer structure for flexible pavement, that the vehicle load working on the pavement layer under repetition with power failure worth 1 (one) unit which was assumed as evenly distributed static load, and therefore the pavement material would provide response in the form of stress, strain, and deflection. This is closely related in order to assess the structure of flexible pavement and to predict the remaining service life on the roads of Pulau Indah sta 0 + 000 to sta. 0 + 845 in Kota Kupang, Nusa Tenggara Timur. The performance appraisal indicator which was used was fatigue cracking happening bottom of the asphalt layer and permanent deformation (rutting) on the surface of subgrade. The strain estimate on the flexible pavement layer structure needs carefulness and high accuracy and therefore a software like KENPAVE which produces horizontal tensile strain of 8,802E-05 and vertical compressive strain of 2,642E-04 was used. By applying equation of The Asphalt Instituteit was obtained repetition of permit load when reaching fatigue cracking (Nf) was 16.071.516 ESAL and permanent deformation (rutting) was 14.703.867 ESAL and also it was predicted the remaining service life of pavement applied the equation of AASTHO 1993 by considering Traffic Multiplier factor (TM 1.8, TM 1.9 and TM 2.0) obtained the remaining life service due to fatigue of 5.51% in the year of 13th (TM 1.8), 7.95% in the year of12th (TM 1.9) and 3.11% (TM 2.0) in the year of 12th, also the remaining service life due to rutting of 4.69% in the year of 12th(TM 1.8), 7.79% in the year of 11th (TM 1.9), and 2.94 in the year of 11th (TM 2.0).

  5. Effect of Prior Aging on Fatigue Behavior of IM7/BMI 5250-4 Composite at 191 C

    DTIC Science & Technology

    2007-06-01

    6 Figure 4. Three stages of fatigue life cycle for general material ....................................... 9 Figure 5...calibration ........ 24 vii Figure 17. Omega thermocouple reader setup .................................................................. 26 Figure...cost and fleet readiness. To assure long- term durability and structural integrity of HTPMC components, reliable experimentally- based life -prediction

  6. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    1999-01-01

    The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.

  7. Life and Damage Monitoring-Using NDI Data Interpretation for Corrosion Damage and Remaining Life Assessments

    DTIC Science & Technology

    2003-02-01

    Holistic Life Prediction Methodology Engineering is a profession based in science, but in the face of limited data or resources, the application of...the process. (see Table 1). "* HLPM uses continuum mechanics but defines limits of applicability - is material and process specific. "* HLPM defines...LEFM - EPFM ?) Nucleated Structure dominated Data base** Tensile/compressive discontinuity (not crack growth buckling inherent) type, size, Appropriate

  8. Flexural fatigue life prediction of closed hat-section using materially nonlinear axial fatigue characteristics

    NASA Technical Reports Server (NTRS)

    Razzaq, Zia

    1989-01-01

    Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.

  9. Continuum Damage Mechanics Used to Predict the Creep Life of Monolithic Ceramics

    NASA Technical Reports Server (NTRS)

    Powers, Lynn M.; Jadaan, Osama M.

    1998-01-01

    Significant improvements in propulsion and power generation for the next century will require revolutionary advances in high-temperature materials and structural design. Advanced ceramics are candidate materials for these elevated temperature applications. High-temperature and long-duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. An analytical methodology in the form of the integrated design program-Ceramics Analysis and Reliability Evaluation of Structures/Creep (CARES/Creep) has been developed by the NASA Lewis Research Center to predict the life of ceramic structural components subjected to creep rupture conditions. This program utilizes commercially available finite element packages and takes into account the transient state of stress and creep strain distributions (stress relaxation as well as the asymmetric response to tension and compression). The creep life of a component is discretized into short time steps, during which the stress distribution is assumed constant. Then, the damage is calculated for each time step on the basis of a modified Monkman-Grant (MMG) creep rupture criterion. The cumulative damage is subsequently calculated as time elapses in a manner similar to Miner's rule for cyclic fatigue loading. Failure is assumed to occur when the normalized cumulative damage at any point in the component reaches unity. The corresponding time is the creep rupture life for that component.

  10. Less-structured time in children's daily lives predicts self-directed executive functioning

    PubMed Central

    Barker, Jane E.; Semenov, Andrei D.; Michaelson, Laura; Provan, Lindsay S.; Snyder, Hannah R.; Munakata, Yuko

    2014-01-01

    Executive functions (EFs) in childhood predict important life outcomes. Thus, there is great interest in attempts to improve EFs early in life. Many interventions are led by trained adults, including structured training activities in the lab, and less-structured activities implemented in schools. Such programs have yielded gains in children's externally-driven executive functioning, where they are instructed on what goal-directed actions to carry out and when. However, it is less clear how children's experiences relate to their development of self-directed executive functioning, where they must determine on their own what goal-directed actions to carry out and when. We hypothesized that time spent in less-structured activities would give children opportunities to practice self-directed executive functioning, and lead to benefits. To investigate this possibility, we collected information from parents about their 6–7 year-old children's daily, annual, and typical schedules. We categorized children's activities as “structured” or “less-structured” based on categorization schemes from prior studies on child leisure time use. We assessed children's self-directed executive functioning using a well-established verbal fluency task, in which children generate members of a category and can decide on their own when to switch from one subcategory to another. The more time that children spent in less-structured activities, the better their self-directed executive functioning. The opposite was true of structured activities, which predicted poorer self-directed executive functioning. These relationships were robust (holding across increasingly strict classifications of structured and less-structured time) and specific (time use did not predict externally-driven executive functioning). We discuss implications, caveats, and ways in which potential interpretations can be distinguished in future work, to advance an understanding of this fundamental aspect of growing up. PMID:25071617

  11. Horticultural activity predicts later localized limb status in a contemporary pre-industrial population.

    PubMed

    Stieglitz, Jonathan; Trumble, Benjamin C; Kaplan, Hillard; Gurven, Michael

    2017-07-01

    Modern humans may have gracile skeletons due to low physical activity levels and mechanical loading. Tests using pre-historic skeletons are limited by the inability to assess behavior directly, while modern industrialized societies possess few socio-ecological features typical of human evolutionary history. Among Tsimane forager-horticulturalists, we test whether greater activity levels and, thus, increased loading earlier in life are associated with greater later-life bone status and diminished age-related bone loss. We used quantitative ultrasonography to assess radial and tibial status among adults aged 20+ years (mean ± SD age = 49 ± 15; 52% female). We conducted systematic behavioral observations to assess earlier-life activity patterns (mean time lag between behavioural observation and ultrasound = 12 years). For a subset of participants, physical activity was again measured later in life, via accelerometry, to determine whether earlier-life time use is associated with later-life activity levels. Anthropometric and demographic data were collected during medical exams. Structural decline with age is reduced for the tibia (female: -0.25 SDs/decade; male: 0.05 SDs/decade) versus radius (female: -0.56 SDs/decade; male: -0.20 SDs/decade), which is expected if greater loading mitigates bone loss. Time allocation to horticulture, but not hunting, positively predicts later-life radial status (β Horticulture  = 0.48, p = 0.01), whereas tibial status is not significantly predicted by subsistence or sedentary leisure participation. Patterns of activity- and age-related change in bone status indicate localized osteogenic responses to loading, and are generally consistent with the logic of bone functional adaptation. Nonmechanical factors related to subsistence lifestyle moderate the association between activity patterns and bone structure. © 2017 Wiley Periodicals, Inc.

  12. Aeroaging - A New Collaboration between Life Sciences Experts and Aerospace Engineers.

    PubMed

    Vellas, M; Fualdes, C; Morley, J E; Dray, C; Rodriguez-Manas, L; Meyer, A; Michel, L; Rolland, Y; Gourinat, Y

    2017-01-01

    An open discussion between experts from life sciences and aeronautics has been held in order to investigate how both area of research overlap and could be relevant to each other, precisely on the topic of aging. Similarities in aging processes and prediction methodologies have been identified between human aging and aircraft aging. Two axis of collaboration have been raised: 1) The identification of the determinants in Aircraft aging (structural aging). 2) The development of P4 Systems medicine inspired new methodologies in the predictive maintenance.

  13. Uncertainty aggregation and reduction in structure-material performance prediction

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  14. Exposure to stressful life events during pregnancy predicts psychotic experiences via behaviour problems in childhood.

    PubMed

    Betts, Kim S; Williams, Gail M; Najman, Jakob M; Scott, James; Alati, Rosa

    2014-12-01

    Exposure to stressful life events during pregnancy has been associated with later schizophrenia in offspring. We explore how prenatal stress and neurodevelopmental abnormalities in childhood associate to increase the risk of later psychotic experiences. Participants from the Mater University Study of Pregnancy (MUSP), an Australian based, pre-birth cohort study were examined for lifetime DSM-IV positive psychotic experiences at 21 years by a semi-structured interview (n = 2227). Structural equation modelling suggested psychotic experiences were best represented with a bifactor model including a general psychosis factor and two group factors. We tested for an association between prenatal stressful life events with the psychotic experiences, and examined for potential moderation and mediation by behaviour problems and cognitive ability in childhood. Prenatal stressful life events predicted psychotic experiences indirectly via behaviour problems at child age five years, and this relationship was not confounded by maternal stressful life events at child age five. We found no statistical evidence for an interaction between prenatal stressful life events and behaviour problems or cognitive ability. The measurable effect of prenatal stressful life events on later psychotic experiences in offspring manifested as behaviour problems by age 5. By identifying early abnormal behavioural development as an intermediary, this finding further confirms the role of prenatal stress to later psychotic disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Durability of sealants exposed to outdoor weathering and hot compression cycles

    Treesearch

    Gregory T. Schueneman; Steven Lacher; Christopher G. Hunt; Christopher C. White; Donald L. Hunston

    2011-01-01

    Sealants play an important role in weatherproofing structures by filling gaps and preventing air and water intrusion. When incorrectly selected or improperly applied, they may fail quickly, compromising durability of the structure. To ensure reliability and prevent the need for costly repairs to structures, it is necessary to measure durability and predict life...

  16. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  17. Analytical Methodology for Predicting the Onset of Widespread Fatigue Damage in Fuselage Structure

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Newman, James C., Jr.; Piascik, Robert S.; Starnes, James H., Jr.

    1996-01-01

    NASA has developed a comprehensive analytical methodology for predicting the onset of widespread fatigue damage in fuselage structure. The determination of the number of flights and operational hours of aircraft service life that are related to the onset of widespread fatigue damage includes analyses for crack initiation, fatigue crack growth, and residual strength. Therefore, the computational capability required to predict analytically the onset of widespread fatigue damage must be able to represent a wide range of crack sizes from the material (microscale) level to the global structural-scale level. NASA studies indicate that the fatigue crack behavior in aircraft structure can be represented conveniently by the following three analysis scales: small three-dimensional cracks at the microscale level, through-the-thickness two-dimensional cracks at the local structural level, and long cracks at the global structural level. The computational requirements for each of these three analysis scales are described in this paper.

  18. Effects of Early Life Stress on Depression, Cognitive Performance, and Brain Morphology

    PubMed Central

    Saleh, Ayman; Potter, Guy G.; McQuoid, Douglas R.; Boyd, Brian; Turner, Rachel; MacFall, James R; Taylor, Warren D.

    2016-01-01

    Background Childhood early life stress (ELS) increases risk of adulthood Major Depressive Disorder (MDD) and is associated with altered brain structure and function. It is unclear whether specific ELSs affect depression risk, cognitive function and brain structure. Methods This cross-sectional study included 64 antidepressant-free depressed and 65 never depressed individuals. Both groups reported a range of ELSs on the Early Life Stress Questionnaire, completed neuropsychological testing and 3T MRI. Neuropsychological testing assessed domains of episodic memory, working memory, processing speed and executive function. MRI measures included cortical thickness and regional gray matter volumes, with a priori focus on cingulate cortex, orbitofrontal cortex (OFC), amygdala, caudate and hippocampus. Results Of 19 ELSs, only emotional abuse, sexual abuse and severe family conflict independently predicted adulthood MDD diagnosis. The effect of total ELS score differed between groups. Greater ELS exposure was associated with slower processing speed and smaller OFC volumes in depressed subjects, but faster speed and larger volumes in nondepressed subjects. In contrast, exposure to ELSs predictive of depression had similar effects in both diagnostic groups. Individuals reporting predictive ELSs exhibited poorer processing speed and working memory performance, smaller volumes of the lateral OFC and caudate, and decreased cortical thickness in multiple areas including the insula bilaterally. Predictive ELS exposure was also associated with smaller left hippocampal volume in depressed subjects. Conclusion Findings suggest an association between childhood trauma exposure and adulthood cognitive function and brain structure. These relationships appear to differ between individuals who do and do not develop depression. PMID:27682320

  19. Hot fire fatigue testing results for the compliant combustion chamber

    NASA Technical Reports Server (NTRS)

    Pavli, Albert J.; Kazaroff, John M.; Jankovsky, Robert S.

    1992-01-01

    A hydrogen-oxygen subscale rocket combustion chamber was designed incorporating an advanced design concept to reduce strain and increase life. The design permits unrestrained thermal expansion of a circumferential direction and, thereby, provides structural compliance during the thermal cycling of hot-fire testing. The chamber was built and test fired at a chamber pressure of 4137 kN/sq m (600 psia) and a hydrogen-oxygen mixture ratio of 6.0. Compared with a conventional milled-channel configuration, the new structurally compliant chamber had a 134 or 287 percent increase in fatigue life, depending on the life predicted for the conventional configuration.

  20. FY17 Status Report on the Micromechanical Finite Element Modeling of Creep Fracture of Grade 91 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messner, M. C.; Truster, T. J.; Cochran, K. B.

    Advanced reactors designed to operate at higher temperatures than current light water reactors require structural materials with high creep strength and creep-fatigue resistance to achieve long design lives. Grade 91 is a ferritic/martensitic steel designed for long creep life at elevated temperatures. It has been selected as a candidate material for sodium fast reactor intermediate heat exchangers and other advanced reactor structural components. This report focuses on the creep deformation and rupture life of Grade 91 steel. The time required to complete an experiment limits the availability of long-life creep data for Grade 91 and other structural materials. Design methodsmore » often extrapolate the available shorter-term experimental data to longer design lives. However, extrapolation methods tacitly assume the underlying material mechanisms causing creep for long-life/low-stress conditions are the same as the mechanisms controlling creep in the short-life/high-stress experiments. A change in mechanism for long-term creep could cause design methods based on extrapolation to be non-conservative. The goal for physically-based microstructural models is to accurately predict material response in experimentally-inaccessible regions of design space. An accurate physically-based model for creep represents all the material mechanisms that contribute to creep deformation and damage and predicts the relative influence of each mechanism, which changes with loading conditions. Ideally, the individual mechanism models adhere to the material physics and not an empirical calibration to experimental data and so the model remains predictive for a wider range of loading conditions. This report describes such a physically-based microstructural model for Grade 91 at 600° C. The model explicitly represents competing dislocation and diffusional mechanisms in both the grain bulk and grain boundaries. The model accurately recovers the available experimental creep curves at higher stresses and the limited experimental data at lower stresses, predominately primary creep rates. The current model considers only one temperature. However, because the model parameters are, for the most part, directly related to the physics of fundamental material processes, the temperature dependence of the properties are known. Therefore, temperature dependence can be included in the model with limited additional effort. The model predicts a mechanism shift for 600° C at approximately 100 MPa from a dislocation- dominated regime at higher stress to a diffusion-dominated regime at lower stress. This mechanism shift impacts the creep life, notch-sensitivity, and, likely, creep ductility of Grade 91. In particular, the model predicts existing extrapolation methods for creep life may be non-conservative when attempting to extrapolate data for higher stress creep tests to low stress, long-life conditions. Furthermore, the model predicts a transition from notchstrengthening behavior at high stress to notch-weakening behavior at lower stresses. Both behaviors may affect the conservatism of existing design methods.« less

  1. Composite Stress Rupture: A New Reliability Model Based on Strength Decay

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2012-01-01

    A model is proposed to estimate reliability for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures. This new reliability model is generated by assuming a strength degradation (or decay) over time. The model suggests that most of the strength decay occurs late in life. The strength decay model will be shown to predict a response similar to that predicted by a traditional reliability model for stress rupture based on tests at a single stress level. In addition, the model predicts that even though there is strength decay due to proof loading, a significant overall increase in reliability is gained by eliminating any weak vessels, which would fail early. The model predicts that there should be significant periods of safe life following proof loading, because time is required for the strength to decay from the proof stress level to the subsequent loading level. Suggestions for testing the strength decay reliability model have been made. If the strength decay reliability model predictions are shown through testing to be accurate, COPVs may be designed to carry a higher level of stress than is currently allowed, which will enable the production of lighter structures

  2. Damage Precursor Investigation of Fiber-Reinforced Composite Materials Under Fatigue Loads

    DTIC Science & Technology

    2013-09-01

    19.21, 215713. Thostenson, E. T.; Chou, T.‐W. Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing ...composite structural life and the goal of the proposed research program to develop self -responsive engineered composites. Over 80%‒90% of the life of a...composite material. It is also envisaged to investigate and develop self -responsive engineered composite materials that provide an accurate health

  3. Generation separation in simple structured life cycles: models and 48 years of field data on a tea tortrix moth.

    PubMed

    Yamanaka, Takehiko; Nelson, William A; Uchimura, Koichiro; Bjørnstad, Ottar N

    2012-01-01

    Population cycles have fascinated ecologists since the early nineteenth century, and the dynamics of insect populations have been central to understanding the intrinsic and extrinsic biological processes responsible for these cycles. We analyzed an extraordinary long-term data set (every 5 days for 48 years) of a tea tortrix moth (Adoxophyes honmai) that exhibits two dominant cycles: an annual cycle with a conspicuous pattern of four or five single-generation cycles superimposed on it. General theory offers several candidate mechanisms for generation cycles. To evaluate these, we construct and parameterize a series of temperature-dependent, stage-structured models that include intraspecific competition, parasitism, mate-finding Allee effects, and adult senescence, all in the context of a seasonal environment. By comparing the observed dynamics with predictions from the models, we find that even weak larval competition in the presence of seasonal temperature forcing predicts the two cycles accurately. None of the other mechanisms predicts the dynamics. Detailed dissection of the results shows that a short reproductive life span and differential winter mortality among stages are the additional life-cycle characteristics that permit the sustained cycles. Our general modeling approach is applicable to a wide range of organisms with temperature-dependent life histories and is likely to prove particularly useful in temperate systems where insect pest outbreaks are both density and temperature dependent. © 2011 by The University of Chicago.

  4. Predicting the Reliability of Brittle Material Structures Subjected to Transient Proof Test and Service Loading

    NASA Astrophysics Data System (ADS)

    Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.

    Brittle materials today are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts, thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing brittle material components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The NASA CARES/Life 1 (Ceramic Analysis and Reliability Evaluation of Structure/Life) code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. This capability includes predicting the time-dependent failure probability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The developed methodology allows for changes in material response that can occur with temperature or time (i.e. changing fatigue and Weibull parameters with temperature or time). For this article an overview of the transient reliability methodology and how this methodology is extended to account for proof testing is described. The CARES/Life code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  5. Advances in Fatigue and Fracture Mechanics Analyses for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.

  6. Advances in Fatigue and Fracture Mechanics Analyses for Metallic Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    2000-01-01

    This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked metallic structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.

  7. Air Vehicle Integration and Technology Research (AVIATR). Delivery Order 0023: Predictive Capability for Hypersonic Structural Response and Life Prediction: Phase 2 - Detailed Design of Hypersonic Cruise Vehicle Hot-Structure

    DTIC Science & Technology

    2012-05-01

    30 Figure 5.0.1 Phase II Analysis Process ...panel study the panel selection process followed a review of the outer skin environment investigated during the HTV-3X program which was suitable as...Subsequently, Panel 1B was down-selected from the screening process as it was observed to be subjected to stronger thermal field contributions due to fuel

  8. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  9. Predicting Suicidal Ideation in Adolescent Boys and Girls: The Role of Psychological Maturity, Personality Traits, Depression and Life Satisfaction.

    PubMed

    Morales-Vives, Fabia; Dueñas, Jorge Manuel

    2018-04-10

    In recent years, suicide rates have increased in adolescents and the young population, so these age groups are considered as populations at risk. Considering that suicidal ideation is the first sign of possible future suicide behavior, the objective of this study is to determine the relative importance of psychological maturity, personality, depression and life satisfaction in predicting suicidal ideation in adolescents. Results show that depressive symptoms is the variable that best predicts suicidal ideation, but psychological maturity, life satisfaction and emotional stability are predictors as well (R2 = .51, p < .001). However, the Multigroup Structural Equation Models analyses carried out show that emotional stability has an indirect relationship with suicidal ideation, through its relationship with depressive symptoms, life satisfaction and identity. Two Multigroup Structural Equation Models were proposed to better understand the relationships between these variables for each sex. The results show that the fit of the model that includes the variable Self-reliance is better for boys than for girls (chi-square contributions of 8.175 for girls and 1.978 for boys) unlike the other model (chi-square contributions of 0.288 for girls and 1.650 for boys). These results suggest that the psychological maturity subscale Self-reliance play a role in suicidal ideation in males but not in females. Although there have been no previous studies on the role of psychological maturity as a predictor of suicidal phenomena, the current study suggests that it is a feature to be considered in the prediction of adolescent suicidal ideation.

  10. The construction of life prediction models for the design of Stirling engine heater components

    NASA Technical Reports Server (NTRS)

    Petrovich, A.; Bright, A.; Cronin, M.; Arnold, S.

    1983-01-01

    The service life of Stirling-engine heater structures of Fe-based high-temperature alloys is predicted using a numerical model based on a linear-damage approach and published test data (engine test data for a Co-based alloy and tensile-test results for both the Co-based and the Fe-based alloys). The operating principle of the automotive Stirling engine is reviewed; the economic and technical factors affecting the choice of heater material are surveyed; the test results are summarized in tables and graphs; the engine environment and automotive duty cycle are characterized; and the modeling procedure is explained. It is found that the statistical scatter of the fatigue properties of the heater components needs to be reduced (by decreasing the porosity of the cast material or employing wrought material in fatigue-prone locations) before the accuracy of life predictions can be improved.

  11. Life prediction of materials exposed to monotonic and cyclic loading: Bibliography

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Stuhrke, W. F.

    1975-01-01

    This bibliography is comprised of approximately 1200 reference citations related to the mechanics of failure in aerospace structures. Most of the references are for information on life prediction for materials exposed to monotonic and cyclic loading in elevated temperature environments such as that in the hot end of a gas turbine engine. Additional citations listed are for documents on the thermal and mechanical effects on solar cells in the cryogenic vacuum environment; radiation effects on high temperature mechanical properties; and high cycle fatigue technology as applicable to gas turbine engine bearings. The bibliography represents a search of the literature published in the period April 1962 through April 1974 and is largely limited to documents published in the United States. It is a companion volume to NASA CR-134750, Life Prediction of Materials Exposed to Monotonic and cyclic Loading - A Technology Survey.

  12. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  13. Structural integrity of engineering composite materials: a cracking good yarn.

    PubMed

    Beaumont, Peter W R; Soutis, Costas

    2016-07-13

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  14. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    DOE PAGES

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.; ...

    2017-03-15

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less

  15. Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mach, J. C.; Budrow, C. J.; Pagan, D. C.

    Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present paper, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to developmore » significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. Finally, the experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.« less

  16. Design of Critical Components

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Zaretsky, Erwin V.

    2001-01-01

    Critical component design is based on minimizing product failures that results in loss of life. Potential catastrophic failures are reduced to secondary failures where components removed for cause or operating time in the system. Issues of liability and cost of component removal become of paramount importance. Deterministic design with factors of safety and probabilistic design address but lack the essential characteristics for the design of critical components. In deterministic design and fabrication there are heuristic rules and safety factors developed over time for large sets of structural/material components. These factors did not come without cost. Many designs failed and many rules (codes) have standing committees to oversee their proper usage and enforcement. In probabilistic design, not only are failures a given, the failures are calculated; an element of risk is assumed based on empirical failure data for large classes of component operations. Failure of a class of components can be predicted, yet one can not predict when a specific component will fail. The analogy is to the life insurance industry where very careful statistics are book-kept on classes of individuals. For a specific class, life span can be predicted within statistical limits, yet life-span of a specific element of that class can not be predicted.

  17. Mechanisms for Breast Cancer Cell Resistance to Doxorubicin and Solutions to Resistance and Side Effects

    DTIC Science & Technology

    2001-10-01

    doxorubicin and epidoxorubicin, doxoform and epidoxoform, respectively. The following results were obtained during the grant period: 1) The crystal structure ...diazadioxabicyclic structure . This structure contrasts with that of doxoform which is a dimeric conjugate with a bisoxazolidinylmethane structure . The... structural difference results from the stereochemistry at the 4’-position. Epidoxoform has a predicted half-life of more than 2 h in the vascular system

  18. Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster

    NASA Astrophysics Data System (ADS)

    Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song

    2015-02-01

    The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.

  19. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    2001-01-01

    The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.

  20. The structural equation analysis of childhood abuse, adult stressful life events, and temperaments in major depressive disorders and their influence on refractoriness

    PubMed Central

    Toda, Hiroyuki; Inoue, Takeshi; Tsunoda, Tomoya; Nakai, Yukiei; Tanichi, Masaaki; Tanaka, Teppei; Hashimoto, Naoki; Nakato, Yasuya; Nakagawa, Shin; Kitaichi, Yuji; Mitsui, Nobuyuki; Boku, Shuken; Tanabe, Hajime; Nibuya, Masashi; Yoshino, Aihide; Kusumi, Ichiro

    2015-01-01

    Background Previous studies have shown the interaction between heredity and childhood stress or life events on the pathogenesis of a major depressive disorder (MDD). In this study, we tested our hypothesis that childhood abuse, affective temperaments, and adult stressful life events interact and influence the diagnosis of MDD. Patients and methods A total of 170 healthy controls and 98 MDD patients were studied using the following self-administered questionnaire surveys: the Patient Health Questionnaire-9 (PHQ-9), the Life Experiences Survey, the Temperament Evaluation of the Memphis, Pisa, Paris, and San Diego Autoquestionnaire, and the Child Abuse and Trauma Scale (CATS). The data were analyzed with univariate analysis, multivariable analysis, and structural equation modeling. Results The neglect scores of the CATS indirectly predicted the diagnosis of MDD through cyclothymic and anxious temperament scores of the Temperament Evaluation of the Memphis, Pisa, Paris, and San Diego Autoquestionnaire in the structural equation modeling. Two temperaments – cyclothymic and anxious – directly predicted the diagnosis of MDD. The validity of this result was supported by the results of the stepwise multivariate logistic regression analysis as follows: three factors – neglect, cyclothymic, and anxious temperaments – were significant predictors of MDD. Neglect and the total CATS scores were also predictors of remission vs treatment-resistance in MDD patients independently of depressive symptoms. Limitations The sample size was small for the comparison between the remission and treatment-resistant groups in MDD patients in multivariable analysis. Conclusion This study suggests that childhood abuse, especially neglect, indirectly predicted the diagnosis of MDD through increased affective temperaments. The important role as a mediator of affective temperaments in the effect of childhood abuse on MDD was suggested. PMID:26316754

  1. Equivalent linearization for fatigue life estimates of a nonlinear structure

    NASA Technical Reports Server (NTRS)

    Miles, R. N.

    1989-01-01

    An analysis is presented of the suitability of the method of equivalent linearization for estimating the fatigue life of a nonlinear structure. Comparisons are made of the fatigue life of a nonlinear plate as predicted using conventional equivalent linearization and three other more accurate methods. The excitation of the plate is assumed to be Gaussian white noise and the plate response is modeled using a single resonant mode. The methods used for comparison consist of numerical simulation, a probabalistic formulation, and a modification of equivalent linearization which avoids the usual assumption that the response process is Gaussian. Remarkably close agreement is obtained between all four methods, even for cases where the response is significantly linear.

  2. Local Debonding and Fiber Breakage in Composite Materials Modeled Accurately

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2001-01-01

    A prerequisite for full utilization of composite materials in aerospace components is accurate design and life prediction tools that enable the assessment of component performance and reliability. Such tools assist both structural analysts, who design and optimize structures composed of composite materials, and materials scientists who design and optimize the composite materials themselves. NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package (http://www.grc.nasa.gov/WWW/LPB/mac) addresses this need for composite design and life prediction tools by providing a widely applicable and accurate approach to modeling composite materials. Furthermore, MAC/GMC serves as a platform for incorporating new local models and capabilities that are under development at NASA, thus enabling these new capabilities to progress rapidly to a stage in which they can be employed by the code's end users.

  3. The Relationship Between Social Support and Subjective Well-Being Across Age

    PubMed Central

    Salthouse, Timothy A.; Oishi, Shigehiro; Jeswani, Sheena

    2014-01-01

    The relationships among types of social support and different facets of subjective well-being (i.e., life satisfaction, positive affect, and negative affect) were examined in a sample of 1,111 individuals between the ages of 18 and 95. Using structural equation modeling we found that life satisfaction was predicted by enacted and perceived support, positive affect was predicted by family embeddedness and provided support, and negative affect was predicted by perceived support. When personality variables were included in a subsequent model, the influence of the social support variables were generally reduced. Invariance analyses conducted across age groups indicated that there were no substantial differences in predictors of the different types of subjective well-being across age. PMID:25045200

  4. Development of a Composite Delamination Fatigue Life Prediction Methodology

    NASA Technical Reports Server (NTRS)

    OBrien, Thomas K.

    2009-01-01

    Delamination is one of the most significant and unique failure modes in composite structures. Because of a lack of understanding of the consequences of delamination and the inability to predict delamination onset and growth, many composite parts are unnecessarily rejected upon inspection, both immediately after manufacture and while in service. NASA Langley is leading the efforts in the U.S. to develop a fatigue life prediction methodology for composite delamination using fracture mechanics. Research being performed to this end will be reviewed. Emphasis will be placed on the development of test standards for delamination characterization, incorporation of approaches for modeling delamination in commercial finite element codes, and efforts to mature the technology for use in design handbooks and certification documents.

  5. Estimating the fates of organic contaminants in an aquifer using QSAR.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2013-01-01

    The quantitative structure activity relationship (QSAR) model, BIOWIN, was modified to more accurately estimate the fates of organic contaminants in an aquifer. The predictions from BIOWIN were modified to include oxidation and sorption effects. The predictive model therefore included the effects of sorption, biodegradation, and oxidation. A total of 35 organic compounds were used to validate the predictive model. The majority of the ratios of predicted half-life to measured half-life were within a factor of 2 and no ratio values were greater than a factor of 5. In addition, the accuracy of estimating the persistence of organic compounds in the sub-surface was superior when modified by the relative fraction adsorbed to the solid phase, 1/Rf, to that when modified by the remaining fraction of a given compound adsorbed to a solid, 1 - fs.

  6. Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch

    NASA Astrophysics Data System (ADS)

    Mahajan, Akshay D.; Murthy, A. Ramachandra; Nanda Kumar, M. R.; Gopinath, Smitha

    2018-06-01

    It is known that damage tolerant analysis has two objectives, namely, remaining life prediction and residual strength evaluation. To achieve the these objectives, determination of accurate and reliable fracture parameter is very important. XFEM methodologies for fatigue and fracture analysis of cracked aluminium panels repaired with different patch shapes made of single boron/epoxy have been developed. Heaviside and asymptotic crack tip enrichment functions are employed to model the crack. XFEM formulations such as displacement field formulation and element stiffness matrix formulation are presented. Domain form of interaction integral is employed to determine Stress Intensity Factor of repaired cracked panels. Computed SIFs are incorporated in Paris crack growth model to predict the remaining fatigue life. The residual strength has been computed by using the remaining life approach, which accounts for both crack growth constants and no. of cycles to failure. From the various studies conducted, it is observed that repaired panels have significant effect on reduction of the SIF at the crack tip and hence residual strength as well as remaining life of the patched cracked panels are improved significantly. The predicted remaining life and residual strength will be useful for design of structures/components under fatigue loading.

  7. Probabilistic Prediction of Lifetimes of Ceramic Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Gyekenyesi, John P.; Jadaan, Osama M.; Palfi, Tamas; Powers, Lynn; Reh, Stefan; Baker, Eric H.

    2006-01-01

    ANSYS/CARES/PDS is a software system that combines the ANSYS Probabilistic Design System (PDS) software with a modified version of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) Version 6.0 software. [A prior version of CARES/Life was reported in Program for Evaluation of Reliability of Ceramic Parts (LEW-16018), NASA Tech Briefs, Vol. 20, No. 3 (March 1996), page 28.] CARES/Life models effects of stochastic strength, slow crack growth, and stress distribution on the overall reliability of a ceramic component. The essence of the enhancement in CARES/Life 6.0 is the capability to predict the probability of failure using results from transient finite-element analysis. ANSYS PDS models the effects of uncertainty in material properties, dimensions, and loading on the stress distribution and deformation. ANSYS/CARES/PDS accounts for the effects of probabilistic strength, probabilistic loads, probabilistic material properties, and probabilistic tolerances on the lifetime and reliability of the component. Even failure probability becomes a stochastic quantity that can be tracked as a response variable. ANSYS/CARES/PDS enables tracking of all stochastic quantities in the design space, thereby enabling more precise probabilistic prediction of lifetimes of ceramic components.

  8. Do workaholism and work engagement predict employee well-being and performance in opposite directions?

    PubMed

    Shimazu, Akihito; Schaufeli, Wilmar B; Kubota, Kazumi; Kawakami, Norito

    2012-01-01

    This study investigated the distinctiveness between workaholism and work engagement by examining their longitudinal relationships (measurement interval=7 months) with well-being and performance in a sample of 1,967 Japanese employees from various occupations. Based on a previous cross-sectional study (Shimazu & Schaufeli, 2009), we expected that workaholism predicts future unwell-being (i.e., high ill-health and low life satisfaction) and poor job performance, whereas work engagement predicts future well-being (i.e., low ill-health and high life satisfaction) and superior job performance. T1-T2 changes in ill-health, life satisfaction and job performance were measured as residual scores that were then included in the structural equation model. Results showed that workaholism and work engagement were weakly and positively related to each other. In addition, workaholism was related to an increase in ill-health and to a decrease in life satisfaction. In contrast, work engagement was related to a decrease in ill-health and to increases in both life satisfaction and job performance. These findings suggest that workaholism and work engagement are two different kinds of concepts that are oppositely related to well-being and performance.

  9. Status of the NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test After 30,352 Hours of Operation

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.

    2010-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is tasked with significantly improving and extending the capabilities of current state-of-the-art NSTAR thruster. The service life capability of the NEXT ion thruster is being assessed by thruster wear test and life-modeling of critical thruster components, such as the ion optics and cathodes. The NEXT Long-Duration Test (LDT) was initiated to validate and qualify the NEXT thruster propellant throughput capability. The NEXT thruster completed the primary goal of the LDT; namely to demonstrate the project qualification throughput of 450 kg by the end of calendar year 2009. The NEXT LDT has demonstrated 30,352 hr of operation and processed 490 kg of xenon throughput--surpassing the NSTAR Extended Life Test hours demonstrated and more than double the throughput demonstrated by the NSTAR flight-spare. Thruster performance changes have been consistent with a priori predictions. Thruster erosion has been minimal and consistent with the thruster service life assessment, which predicts the first failure mode at greater than 750 kg throughput. The life-limiting failure mode for NEXT is predicted to be loss of structural integrity of the accelerator grid due to erosion by charge-exchange ions.

  10. Eco-genetic modeling of contemporary life-history evolution.

    PubMed

    Dunlop, Erin S; Heino, Mikko; Dieckmann, Ulf

    2009-10-01

    We present eco-genetic modeling as a flexible tool for exploring the course and rates of multi-trait life-history evolution in natural populations. We build on existing modeling approaches by combining features that facilitate studying the ecological and evolutionary dynamics of realistically structured populations. In particular, the joint consideration of age and size structure enables the analysis of phenotypically plastic populations with more than a single growth trajectory, and ecological feedback is readily included in the form of density dependence and frequency dependence. Stochasticity and life-history trade-offs can also be implemented. Critically, eco-genetic models permit the incorporation of salient genetic detail such as a population's genetic variances and covariances and the corresponding heritabilities, as well as the probabilistic inheritance and phenotypic expression of quantitative traits. These inclusions are crucial for predicting rates of evolutionary change on both contemporary and longer timescales. An eco-genetic model can be tightly coupled with empirical data and therefore may have considerable practical relevance, in terms of generating testable predictions and evaluating alternative management measures. To illustrate the utility of these models, we present as an example an eco-genetic model used to study harvest-induced evolution of multiple traits in Atlantic cod. The predictions of our model (most notably that harvesting induces a genetic reduction in age and size at maturation, an increase or decrease in growth capacity depending on the minimum-length limit, and an increase in reproductive investment) are corroborated by patterns observed in wild populations. The predicted genetic changes occur together with plastic changes that could phenotypically mask the former. Importantly, our analysis predicts that evolutionary changes show little signs of reversal following a harvest moratorium. This illustrates how predictions offered by eco-genetic models can enable and guide evolutionarily sustainable resource management.

  11. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.

    1991-01-01

    This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  12. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.; Nagpal, Vinod K.; Sutjahjo, Edhi

    1991-01-01

    Predictive methods/computer codes for the computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component are discussed. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of acoustic noise generated from a vibrating component, degradation in material properties of a composite laminate at use temperature, dynamic response of acoustically excited hot multilayered composite structure, degradation in the first ply strength of the excited structure due to acoustic loading, and acoustic fatigue resistance of the excited structure, including the propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisture) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  13. Accelerated life assessment of coating on the radar structure components in coastal environment.

    PubMed

    Liu, Zhe; Ming, ZhiMao

    2016-07-04

    This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.

  14. Structures Division

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.

  15. Structures Division 1994 Annual Report

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1994 are presented.

  16. NASA Office of Aeronautical and Space Technology Summer Workshop. Volume 6: Structures and dynamics panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Structural requirements for future space missions were defined in relation to technology needs and payloads. Specific areas examined include: large area space structures (antennas, solar array structures, and platforms); a long, slender structure or boom used to support large objects from the shuttle or hold two bodies apart in space; and advanced composite structures for cost effective weight reductions. Other topics discussed include: minimum gage concepts, high temperature components, load and response determination and control, and reliability and life prediction.

  17. Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling

    NASA Astrophysics Data System (ADS)

    Jiang, Liang

    ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed based on the strain-energy consideration, and the measured temperature could be utilized as an index for fatigue-life prediction.

  18. Process and Structural Health Monitoring of Composite Structures with Embedded Fiber Optic Sensors and Piezoelectric Transducers

    NASA Astrophysics Data System (ADS)

    Keulen, Casey James

    Advanced composite materials are becoming increasingly more valuable in a plethora of engineering applications due to properties such as tailorability, low specific strength and stiffness and resistance to fatigue and corrosion. Compared to more traditional metallic and ceramic materials, advanced composites such as carbon, aramid or glass reinforced plastic are relatively new and still require research to optimize their capabilities. Three areas that composites stand to benefit from improvement are processing, damage detection and life prediction. Fiber optic sensors and piezoelectric transducers show great potential for advances in these areas. This dissertation presents the research performed on improving the efficiency of advanced composite materials through the use of embedded fiber optic sensors and surface mounted piezoelectric transducers. Embedded fiber optic sensors are used to detect the presence of resin during the injection stage of resin transfer molding, monitor the degree of cure and predict the remaining useful life while in service. A sophisticated resin transfer molding apparatus was developed with the ability of embedding fiber optics into the composite and a glass viewing window so that resin flow sensors could be verified visually. A novel technique for embedding optical fiber into both 2- and 3-D structures was developed. A theoretical model to predict the remaining useful life was developed and a systematic test program was conducted to verify this model. A network of piezoelectric transducers was bonded to a composite panel in order to develop a structural health monitoring algorithm capable of detecting and locating damage in a composite structure. A network configuration was introduced that allows for a modular expansion of the system to accommodate larger structures and an algorithm based on damage progression history was developed to implement the network. The details and results of this research are contained in four manuscripts that are included in Appendices A-D while the body of the dissertation provides background information and a summary of the results.

  19. Disease Management: The Need for a Focus on Broader Self-Management Abilities and Quality of Life

    PubMed Central

    Nieboer, Anna Petra

    2015-01-01

    Abstract The study objective was to investigate long-term effects of disease management programs (DMPs) on (1) health behaviors (smoking, physical exercise); (2) self-management abilities (self-efficacy, investment behavior, initiative taking); and (3) physical and mental quality of life among chronically ill patients. The study also examined whether (changes in) health behaviors and self-management abilities predicted quality of life. Questionnaires were sent to all 5076 patients participating in 18 Dutch DMPs in 2010 (T0; 2676 [53%] respondents). Two years later (T1), questionnaires were sent to 4350 patients still participating in DMPs (1722 [40%] respondents). Structured interviews were held with the 18 DMP project leaders. DMP implementation improved patients' health behavior and physical quality of life, but mental quality of life and self-management abilities declined over time. Changes in patients' investment behavior predicted physical quality of life at T1 (P<.001); physical activity, investment behavior (both P<.05), and self-efficacy (P<.01) at T0, and changes in self-efficacy and investment behavior (both P<.001) predicted patients' mental quality of life at T1. The long-term benefits of these DMPs include successful improvement of chronically ill patients' health behaviors and physical quality of life. However, these programs were not able to improve or maintain broader self-management abilities or mental quality of life, highlighting the need to focus on these abilities and overall quality of life. As coproducers of care, patients should be stimulated and enabled to manage their health and quality of life. (Population Health Management 2015;18:246–255) PMID:25607246

  20. Disease Management: The Need for a Focus on Broader Self-Management Abilities and Quality of Life.

    PubMed

    Cramm, Jane Murray; Nieboer, Anna Petra

    2015-08-01

    The study objective was to investigate long-term effects of disease management programs (DMPs) on (1) health behaviors (smoking, physical exercise); (2) self-management abilities (self-efficacy, investment behavior, initiative taking); and (3) physical and mental quality of life among chronically ill patients. The study also examined whether (changes in) health behaviors and self-management abilities predicted quality of life. Questionnaires were sent to all 5076 patients participating in 18 Dutch DMPs in 2010 (T0; 2676 [53%] respondents). Two years later (T1), questionnaires were sent to 4350 patients still participating in DMPs (1722 [40%] respondents). Structured interviews were held with the 18 DMP project leaders. DMP implementation improved patients' health behavior and physical quality of life, but mental quality of life and self-management abilities declined over time. Changes in patients' investment behavior predicted physical quality of life at T1 (P<.001); physical activity, investment behavior (both P<.05), and self-efficacy (P<.01) at T0, and changes in self-efficacy and investment behavior (both P<.001) predicted patients' mental quality of life at T1. The long-term benefits of these DMPs include successful improvement of chronically ill patients' health behaviors and physical quality of life. However, these programs were not able to improve or maintain broader self-management abilities or mental quality of life, highlighting the need to focus on these abilities and overall quality of life. As coproducers of care, patients should be stimulated and enabled to manage their health and quality of life.

  1. Computational structural mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1988-01-01

    The computational structural mechanics (CSM) program at Lewis encompasses the formulation and solution of structural mechanics problems and the development of integrated software systems to computationally simulate the performance, durability, and life of engine structures. It is structured to supplement, complement, and, whenever possible, replace costly experimental efforts. Specific objectives are to investigate unique advantages of parallel and multiprocessing for reformulating and solving structural mechanics and formulating and solving multidisciplinary mechanics and to develop integrated structural system computational simulators for predicting structural performance, evaluating newly developed methods, and identifying and prioritizing improved or missing methods.

  2. Computational structural mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1989-01-01

    The computational structural mechanics (CSM) program at Lewis encompasses the formulation and solution of structural mechanics problems and the development of integrated software systems to computationally simulate the performance, durability, and life of engine structures. It is structured to supplement, complement, and, whenever possible, replace costly experimental efforts. Specific objectives are to investigate unique advantages of parallel and multiprocessing for reformulating and solving structural mechanics and formulating and solving multidisciplinary mechanics and to develop integrated structural system computational simulators for predicting structural performance, evaluating newly developed methods, and identifying and prioritizing improved or missing methods.

  3. [A predictive model for the quality of sexual life in hysterectomized women].

    PubMed

    Urrutia, María Teresa; Araya, Alejandra; Rivera, Soledad; Viviani, Paola; Villarroel, Luis

    2007-03-01

    The effects of hysterectomy on sexuality has been extensively studied. To establish a model to predict the quality of sexual life in hysterectomized women, six months after surgery. Analytical, longitudinal and prospective study of 90 hysterectomized women aged 45+/-7 years. Two structured interviews at the time of surgery and six months later were carried out to determine the characteristics of sexuality and communication within the couple. In the two interviews, communication and the quality of sexual life were described as "good" in 72 and 77% of women, respectively (NS). The variables that had a 40% influence on the quality of sexual life sixth months after surgery, were oophorectomy status, the presence of orgasm, the characteristics of communication and the basal sexuality with the couple. The sexuality of the hysterectomized women will depend, on a great extent, of pre-surgical variables. Therefore, it is important to consider these variables for the education of hysterectomized women.

  4. Fracture mechanics approach to estimate fatigue lives of welded lap-shear specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Poh -Sang; Pan, Jwo

    A full range of stress intensity factor solutions for a kinked crack with finite length is developed as a function of weld width and the sheet thickness. When used with the main crack solutions (global stress intensity factors) in terms of the applied load and the specimen geometric parameters, the fatigue lived of the kinked crack can be estimated for the laser-welded lap-shear specimens. The predicted curve for the load range-fatigue life passes through the cluster of experimental data and is in good agreement. A classical solution associated with an infinitesimal kink is also employed. Furthermore, its life prediction tendsmore » to overestimate the actual fatigue life. In addition, the traditional fatigue life estimation based on structural stress is performed for completeness. As a result, this non-fracture mechanics approach only agrees well with the experimental data under high cyclic load conditions.« less

  5. Fracture mechanics approach to estimate fatigue lives of welded lap-shear specimens

    DOE PAGES

    Lam, Poh -Sang; Pan, Jwo

    2015-06-29

    A full range of stress intensity factor solutions for a kinked crack with finite length is developed as a function of weld width and the sheet thickness. When used with the main crack solutions (global stress intensity factors) in terms of the applied load and the specimen geometric parameters, the fatigue lived of the kinked crack can be estimated for the laser-welded lap-shear specimens. The predicted curve for the load range-fatigue life passes through the cluster of experimental data and is in good agreement. A classical solution associated with an infinitesimal kink is also employed. Furthermore, its life prediction tendsmore » to overestimate the actual fatigue life. In addition, the traditional fatigue life estimation based on structural stress is performed for completeness. As a result, this non-fracture mechanics approach only agrees well with the experimental data under high cyclic load conditions.« less

  6. Lifetime Reliability Prediction of Ceramic Structures Under Transient Thermomechanical Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Jadaan, Osama J.; Gyekenyesi, John P.

    2005-01-01

    An analytical methodology is developed to predict the probability of survival (reliability) of ceramic components subjected to harsh thermomechanical loads that can vary with time (transient reliability analysis). This capability enables more accurate prediction of ceramic component integrity against fracture in situations such as turbine startup and shutdown, operational vibrations, atmospheric reentry, or other rapid heating or cooling situations (thermal shock). The transient reliability analysis methodology developed herein incorporates the following features: fast-fracture transient analysis (reliability analysis without slow crack growth, SCG); transient analysis with SCG (reliability analysis with time-dependent damage due to SCG); a computationally efficient algorithm to compute the reliability for components subjected to repeated transient loading (block loading); cyclic fatigue modeling using a combined SCG and Walker fatigue law; proof testing for transient loads; and Weibull and fatigue parameters that are allowed to vary with temperature or time. Component-to-component variation in strength (stochastic strength response) is accounted for with the Weibull distribution, and either the principle of independent action or the Batdorf theory is used to predict the effect of multiaxial stresses on reliability. The reliability analysis can be performed either as a function of the component surface (for surface-distributed flaws) or component volume (for volume-distributed flaws). The transient reliability analysis capability has been added to the NASA CARES/ Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code. CARES/Life was also updated to interface with commercially available finite element analysis software, such as ANSYS, when used to model the effects of transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.

  7. Air Vehicle Integration and Technology Research (AVIATR). Task Order 0023: Predictive Capability for Hypersonic Structural Response and Life Prediction: Phase 2 - Detailed Design of Hypersonic Cruise Vehicle Hot-Structure

    DTIC Science & Technology

    2012-02-01

    x Approved for public release; distribution unlimited. I-DEAS/ TMG Thermal analysis software IR Initial Review ITAR International Traffic in Arms...the finite element code I- DEAS/ TMG . A mesh refinement study was conducted on the first panel to determine the mesh density required to accurately...ng neer ng, pera ons ec no ogy oe ng esearc ec no ogy • heat transfer analysis conducted with I-DEAS/ TMG exercises mapping of temperatures to

  8. The Enduring Predictive Significance of Early Maternal Sensitivity: Social and Academic Competence through Age 32 Years

    ERIC Educational Resources Information Center

    Raby, K. Lee; Roisman, Glenn I.; Fraley, R. Chris; Simpson, Jeffry A.

    2015-01-01

    This study leveraged data from the Minnesota Longitudinal Study of Risk and Adaptation (N = 243) to investigate the predictive significance of maternal sensitivity during the first 3 years of life for social and academic competence through age 32 years. Structural model comparisons replicated previous findings that early maternal sensitivity…

  9. AIR VEHICLE INTEGRATION AND TECHNOLOGY RESEARCH (AVIATR) Task Order 0015: Predictive Capability for Hypersonic Structural Response and Life Prediction: Phase 1-Identification of Knowledge Gaps, Volume 1: Nonproprietary Version

    DTIC Science & Technology

    2010-09-01

    22 Figure 23. Flow Type and the reference empirical model ............................................................ 24 Figure 24. Baseline...Trajectory ...................................................................................................... 25 Figure 25. Flow Features Important...94 viii GLOSSARY ACCTE Advanced Ceramic Composites for Turbine Engines AFRL Air Force Research Laboratory AoA Angle of Attack ASE

  10. Resources predicting positive and negative affect during the experience of stress: a study of older Asian Indian immigrants in the United States.

    PubMed

    Diwan, Sadhna; Jonnalagadda, Satya S; Balaswamy, Shantha

    2004-10-01

    Using the life stress model of psychological well-being, in this study we examined risks and resources predicting the occurrence of both positive and negative affect among older Asian Indian immigrants who experienced stressful life events. We collected data through a telephone survey of 226 respondents (aged 50 years and older) in the Southeastern United States. We used hierarchical, negative binomial regression analyses to examine correlates of positive and negative affect. Different coping resources influenced positive and negative affect when stressful life events were controlled for. Being female was a common risk factor for poorer positive and increased negative affect. Satisfaction with friendships and a cultural or ethnic identity that is either bicultural or more American were predictive of greater positive affect. Greater religiosity and increased mastery were resources predicting less negative affect. Cognitive and structural interventions that increase opportunities for social integration, increasing mastery, and addressing spiritual concerns are discussed as ways of coping with stress to improve the well-being of individuals in this immigrant community.

  11. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon.

    PubMed

    Vähä, Juha-Pekka; Erkinaro, Jaakko; Niemelä, Eero; Primmer, Craig R

    2007-07-01

    Defining populations and identifying ecological and life-history characteristics affecting genetic structure is important for understanding species biology and hence, for managing threatened or endangered species or populations. In this study, populations of the world's largest indigenous Atlantic salmon (Salmo salar) stock were first inferred using model-based clustering methods, following which life-history and habitat variables best predicting the genetic diversity of populations were identified. This study revealed that natal homing of Atlantic salmon within the Teno River system is accurate at least to the tributary level. Generally, defining populations by main tributaries was observed to be a reasonable approach in this large river system, whereas in the mainstem of the river, the number of inferred populations was fewer than the number of distinct sampling sites. Mainstem and headwater populations were genetically more diverse and less diverged, while each tributary fostered a distinct population with high genetic differentiation and lower genetic diversity. Population structure and variation in genetic diversity among populations were poorly explained by geographical distance. In contrast, age-structure, as estimated by the proportion of multisea-winter spawners, was the most predictive variable in explaining the variation in the genetic diversity of the populations. This observation, being in agreement with theoretical predictions, emphasizes the essence of large multisea-winter females in maintaining the genetic diversity of populations. In addition, the unique genetic diversity of populations, as estimated by private allele richness, was affected by the ease of accessibility of a site, with more difficult to access sites having lower unique genetic diversity. Our results show that despite this species' high capacity for migration, tributaries foster relatively closed populations with little gene flow which will be important to consider when developing management strategies for the system.

  12. Population-level genetic variation and climate change in a biodiversity hotspot

    PubMed Central

    2017-01-01

    Introduction Estimated future climate scenarios can be used to predict where hotspots of endemism may occur over the next century, but life history, ecological and genetic traits will be important in informing the varying responses within myriad taxa. Essential to predicting the consequences of climate change to individual species will be an understanding of the factors that drive genetic structure within and among populations. Here, I review the factors that influence the genetic structure of plant species in California, but are applicable elsewhere; existing levels of genetic variation, life history and ecological characteristics will affect the ability of an individual taxon to persist in the presence of anthropogenic change. Factors influencing the distribution of genetic variation Persistence in the face of climate change is likely determined by life history characteristics: dispersal ability, generation time, reproductive ability, degree of habitat specialization, plant–insect interactions, existing genetic diversity and availability of habitat or migration corridors. Existing levels of genetic diversity in plant populations vary based on a number of evolutionary scenarios that include endemism, expansion since the last glacial maximum, breeding system and current range sizes. Regional priorities and examples A number of well-documented examples are provided from the California Floristic Province. Some predictions can be made for the responses of plant taxa to rapid environmental changes based on geographic position, evolutionary history, existing genetic variation, and ecological amplitude. Conclusions, Solutions and Recommendations The prediction of how species will respond to climate change will require a synthesis drawing from population genetics, geography, palaeontology and ecology. The important integration of the historical factors that have shaped the distribution and existing genetic structure of California’s plant taxa will enable us to predict and prioritize the conservation of species and areas most likely to be impacted by rapid climate change, human disturbance and invasive species. PMID:28069633

  13. Population-level genetic variation and climate change in a biodiversity hotspot.

    PubMed

    Schierenbeck, Kristina A

    2017-01-01

    Estimated future climate scenarios can be used to predict where hotspots of endemism may occur over the next century, but life history, ecological and genetic traits will be important in informing the varying responses within myriad taxa. Essential to predicting the consequences of climate change to individual species will be an understanding of the factors that drive genetic structure within and among populations. Here, I review the factors that influence the genetic structure of plant species in California, but are applicable elsewhere; existing levels of genetic variation, life history and ecological characteristics will affect the ability of an individual taxon to persist in the presence of anthropogenic change. Persistence in the face of climate change is likely determined by life history characteristics: dispersal ability, generation time, reproductive ability, degree of habitat specialization, plant-insect interactions, existing genetic diversity and availability of habitat or migration corridors. Existing levels of genetic diversity in plant populations vary based on a number of evolutionary scenarios that include endemism, expansion since the last glacial maximum, breeding system and current range sizes. A number of well-documented examples are provided from the California Floristic Province. Some predictions can be made for the responses of plant taxa to rapid environmental changes based on geographic position, evolutionary history, existing genetic variation, and ecological amplitude. The prediction of how species will respond to climate change will require a synthesis drawing from population genetics, geography, palaeontology and ecology. The important integration of the historical factors that have shaped the distribution and existing genetic structure of California's plant taxa will enable us to predict and prioritize the conservation of species and areas most likely to be impacted by rapid climate change, human disturbance and invasive species. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Using RNA Sequence and Structure for the Prediction of Riboswitch Aptamer: A Comprehensive Review of Available Software and Tools

    PubMed Central

    Antunes, Deborah; Jorge, Natasha A. N.; Caffarena, Ernesto R.; Passetti, Fabio

    2018-01-01

    RNA molecules are essential players in many fundamental biological processes. Prokaryotes and eukaryotes have distinct RNA classes with specific structural features and functional roles. Computational prediction of protein structures is a research field in which high confidence three-dimensional protein models can be proposed based on the sequence alignment between target and templates. However, to date, only a few approaches have been developed for the computational prediction of RNA structures. Similar to proteins, RNA structures may be altered due to the interaction with various ligands, including proteins, other RNAs, and metabolites. A riboswitch is a molecular mechanism, found in the three kingdoms of life, in which the RNA structure is modified by the binding of a metabolite. It can regulate multiple gene expression mechanisms, such as transcription, translation initiation, and mRNA splicing and processing. Due to their nature, these entities also act on the regulation of gene expression and detection of small metabolites and have the potential to helping in the discovery of new classes of antimicrobial agents. In this review, we describe software and web servers currently available for riboswitch aptamer identification and secondary and tertiary structure prediction, including applications. PMID:29403526

  15. (PS)2: protein structure prediction server version 3.0.

    PubMed

    Huang, Tsun-Tsao; Hwang, Jenn-Kang; Chen, Chu-Huang; Chu, Chih-Sheng; Lee, Chi-Wen; Chen, Chih-Chieh

    2015-07-01

    Protein complexes are involved in many biological processes. Examining coupling between subunits of a complex would be useful to understand the molecular basis of protein function. Here, our updated (PS)(2) web server predicts the three-dimensional structures of protein complexes based on comparative modeling; furthermore, this server examines the coupling between subunits of the predicted complex by combining structural and evolutionary considerations. The predicted complex structure could be indicated and visualized by Java-based 3D graphics viewers and the structural and evolutionary profiles are shown and compared chain-by-chain. For each subunit, considerations with or without the packing contribution of other subunits cause the differences in similarities between structural and evolutionary profiles, and these differences imply which form, complex or monomeric, is preferred in the biological condition for the subunit. We believe that the (PS)(2) server would be a useful tool for biologists who are interested not only in the structures of protein complexes but also in the coupling between subunits of the complexes. The (PS)(2) is freely available at http://ps2v3.life.nctu.edu.tw/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases

    PubMed Central

    Wollenberg Valero, Katharina C.; Garcia-Porta, Joan; Rodríguez, Ariel; Arias, Mónica; Shah, Abhijeet; Randrianiaina, Roger Daniel; Brown, Jason L.; Glaw, Frank; Amat, Felix; Künzel, Sven; Metzler, Dirk; Isokpehi, Raphael D.; Vences, Miguel

    2017-01-01

    Anuran amphibians undergo major morphological transitions during development, but the contribution of their markedly different life-history phases to macroevolution has rarely been analysed. Here we generate testable predictions for coupling versus uncoupling of phenotypic evolution of tadpole and adult life-history phases, and for the underlying expression of genes related to morphological feature formation. We test these predictions by combining evidence from gene expression in two distantly related frogs, Xenopus laevis and Mantidactylus betsileanus, with patterns of morphological evolution in the entire radiation of Madagascan mantellid frogs. Genes linked to morphological structure formation are expressed in a highly phase-specific pattern, suggesting uncoupling of phenotypic evolution across life-history phases. This gene expression pattern agrees with uncoupled rates of trait evolution among life-history phases in the mantellids, which we show to have undergone an adaptive radiation. Our results validate a prevalence of uncoupling in the evolution of tadpole and adult phenotypes of frogs. PMID:28504275

  17. The structure of late-life depressive symptoms across a 20-year span: a taxometric investigation.

    PubMed

    Holland, Jason M; Schutte, Kathleen K; Brennan, Penny L; Moos, Rudolf H

    2010-03-01

    Past studies of the underlying structure of depressive symptoms have yielded mixed results, with some studies supporting a continuous conceptualization and others supporting a categorical one. However, no study has examined this research question with an exclusively older adult sample, despite the potential uniqueness of late-life depressive symptoms. In the present study, the underlying structure of late-life depressive symptoms was examined among a sample of 1,289 individuals across 3 waves of data collection spanning 20 years. The authors employed a taxometric methodology using indicators of depression derived from the Research Diagnostic Criteria (R. L. Spitzer, J. Endicott, & E. Robins, 1978). Maximum eigenvalue analyses and inchworm consistency tests generally supported a categorical conceptualization and identified a group that was primarily characterized by thoughts about death and suicide. However, compared to a categorical depression variable, depressive symptoms treated continuously were generally better predictors of relevant criterion variables. These findings suggest that thoughts of death and suicide may characterize a specific type of late-life depression, yet a continuous conceptualization still typically maximizes the predictive utility of late-life depressive symptoms.

  18. Understanding the biological underpinnings of ecohydrological processes

    NASA Astrophysics Data System (ADS)

    Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.

    2012-12-01

    Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.

  19. Neuroticism and Extraversion in Youth Predict Mental Wellbeing and Life Satisfaction 40 Years Later

    PubMed Central

    Gale, Catharine R; Booth, Tom; Mõttus, René; Kuh, Diana; Deary, Ian J

    2014-01-01

    Neuroticism and Extraversion are linked with current wellbeing, but it is unclear whether these traits in youth predict wellbeing decades later. We applied structural equation modelling to data from 4583 people from the MRC National Survey of Health and Development. We examined the effects of Neuroticism and Extraversion at ages 16 and 26 years on mental wellbeing and life satisfaction at age 60-64 and explored the mediating roles of psychological and physical health. Extraversion had direct, positive effects on both measures of wellbeing. The impact of Neuroticism on both wellbeing and life satisfaction was largely indirect through susceptibility to psychological distress and physical health problems. Personality dispositions in youth have enduring influence on wellbeing assessed about forty years later. PMID:24563560

  20. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model

    PubMed Central

    Li, Xiaoqing; Wang, Yu

    2018-01-01

    Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology. PMID:29351254

  1. Protein asparagine deamidation prediction based on structures with machine learning methods.

    PubMed

    Jia, Lei; Sun, Yaxiong

    2017-01-01

    Chemical stability is a major concern in the development of protein therapeutics due to its impact on both efficacy and safety. Protein "hotspots" are amino acid residues that are subject to various chemical modifications, including deamidation, isomerization, glycosylation, oxidation etc. A more accurate prediction method for potential hotspot residues would allow their elimination or reduction as early as possible in the drug discovery process. In this work, we focus on prediction models for asparagine (Asn) deamidation. Sequence-based prediction method simply identifies the NG motif (amino acid asparagine followed by a glycine) to be liable to deamidation. It still dominates deamidation evaluation process in most pharmaceutical setup due to its convenience. However, the simple sequence-based method is less accurate and often causes over-engineering a protein. We introduce structure-based prediction models by mining available experimental and structural data of deamidated proteins. Our training set contains 194 Asn residues from 25 proteins that all have available high-resolution crystal structures. Experimentally measured deamidation half-life of Asn in penta-peptides as well as 3D structure-based properties, such as solvent exposure, crystallographic B-factors, local secondary structure and dihedral angles etc., were used to train prediction models with several machine learning algorithms. The prediction tools were cross-validated as well as tested with an external test data set. The random forest model had high enrichment in ranking deamidated residues higher than non-deamidated residues while effectively eliminated false positive predictions. It is possible that such quantitative protein structure-function relationship tools can also be applied to other protein hotspot predictions. In addition, we extensively discussed metrics being used to evaluate the performance of predicting unbalanced data sets such as the deamidation case.

  2. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model.

    PubMed

    Xin, Jingzhou; Zhou, Jianting; Yang, Simon X; Li, Xiaoqing; Wang, Yu

    2018-01-19

    Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology.

  3. Creep Life Prediction of Ceramic Components Using the Finite Element Based Integrated Design Program (CARES/Creep)

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1997-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. Such long life requirements necessitate subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this work is to present a design methodology for predicting the lifetimes of structural components subjected to multiaxial creep loading. This methodology utilizes commercially available finite element packages and takes into account the time varying creep stress distributions (stress relaxation). In this methodology, the creep life of a component is divided into short time steps, during which, the stress and strain distributions are assumed constant. The damage, D, is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. For components subjected to predominantly tensile loading, failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity.

  4. Development of Testing Methodologies for the Mechanical Properties of MEMS

    NASA Technical Reports Server (NTRS)

    Ekwaro-Osire, Stephen

    2003-01-01

    This effort is to investigate and design testing strategies to determine the mechanical properties of MicroElectroMechanical Systems (MEMS) as well as investigate the development of a MEMS Probabilistic Design Methodology (PDM). One item of potential interest is the design of a test for the Weibull size effect in pressure membranes. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. However, the primary area of investigation will most likely be analysis and modeling of material interfaces for strength as well as developing a strategy to handle stress singularities at sharp corners, filets, and material interfaces. This will be a continuation of the previous years work. The ultimate objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads.

  5. On the Problems of Cracking and the Question of Structural Integrity of Engineering Composite Materials

    NASA Astrophysics Data System (ADS)

    Beaumont, Peter W. R.

    2014-02-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.

  6. Menopausal symptoms: do life events predict severity of symptoms in peri- and post-menopause?

    PubMed

    Pimenta, Filipa; Leal, Isabel; Maroco, João; Ramos, Catarina

    2012-08-01

    Hormonal changes during menopausal transition are linked to physical and psychological symptoms' emergence. This study aims to explore if life events predict menopausal symptoms. This cross-sectional research encompasses a community sample of 992 women who answered to socio-demographic, health, menopause-related and lifestyle questionnaires; menopausal symptoms and life events were assessed with validated instruments. Structural equation modeling was used to build a causal model. Menopausal status predicted only three symptoms: skin/facial hair changes (β=.136; p=.020), sexual (β=.157; p=.004) and, marginally, vasomotor symptoms (β=.094; p=.054). Life events predicted depressive mood (β=-.391; p=.002), anxiety (β=-.271; p=.003), perceived cognitive impairment (β=-.295; p=.003), body shape changes (β=-.136; p=.031), aches/pain (β=-.212; p=.007), skin/facial hair changes (β=-.171; p=.021), numbness (β=-.169; p=.015), perceived loss of control (β=-.234; p=.008), mouth, nails and hair changes (β=-.290; p=.004), vasomotor (β=-.113; p=.044) and sexual symptoms (β=-.208; p=.009). Although women in peri- and post-menopausal manifested higher symptoms' severity than their pre-menopausal counterparts, only three of the menopausal symptoms assessed were predicted by menopausal status. Since the vast majority of menopausal symptoms' severity was significantly influenced by the way women perceived their recent life events, it is concluded that the symptomatology exacerbation, in peri- and post-menopausal women, might be due to life conditions and events, rather than hormonal changes (nonetheless, the inverse influence should be investigated in future studies). Therefore, these should be accounted for in menopause-related clinical and research settings. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Stirling engine - Approach for long-term durability assessment

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Bartolotta, Paul A.; Halford, Gary R.; Freed, Alan D.

    1992-01-01

    The approach employed by NASA Lewis for the long-term durability assessment of the Stirling engine hot-section components is summarized. The approach consists of: preliminary structural assessment; development of a viscoplastic constitutive model to accurately determine material behavior under high-temperature thermomechanical loads; an experimental program to characterize material constants for the viscoplastic constitutive model; finite-element thermal analysis and structural analysis using a viscoplastic constitutive model to obtain stress/strain/temperature at the critical location of the hot-section components for life assessment; and development of a life prediction model applicable for long-term durability assessment at high temperatures. The approach should aid in the provision of long-term structural durability and reliability of Stirling engines.

  8. [Relationships between suicide attitudes and perception of life purpose and meaning of life in college students].

    PubMed

    Xie, Xingli; Zou, Bing; Huang, Zhongyan

    2012-10-01

    To investigate the suicide attitudes of college students and analyze the impact of the perception of life purpose and meaning of life on their suicide attitudes using structural equation modeling. A total of 1050 college students were tested by Suicide Attitude Questionnaire (QSA), Purpose in Life test (PIL) and Chinese version of Meaning of Life questionnaire (C-MLQ). A theoretical model was established for confirming the influence of the purpose in life and meaning in life on suicide attitudes of the college students. The college students had generally a negative attitude towards suicide. The female students tended to show more objective attitudes towards suicide and the students from rural areas had a stronger attitude against euthanasia.The meanings and purposes in life were closely correlated with the attitudes towards suicide, and the structural equation modeling well fitted the data (Χ(2)/df=1.924, GFI=0.936, AGFI=0.915, NFI=0.937, CFI=0.940, and RMSEA=0.045). The perception of meaning and purposes in life had a direct predictive value on the suicide attitude of the college students, and the presumptions derived from the theoretical model were strongly supported by structural equation modeling. The perceptions in meanings in life and purposes in livelihood have important influence on the suicide attitudes of college students, and intervention with effective life education should be administered to guide the suicide attitude of the college students.

  9. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.

    PubMed

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-05-08

    As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models.

  10. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades

    PubMed Central

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-01-01

    As one of fracture critical components of an aircraft engine, accurate life prediction of a turbine blade to disk attachment is significant for ensuring the engine structural integrity and reliability. Fatigue failure of a turbine blade is often caused under multiaxial cyclic loadings at high temperatures. In this paper, considering different failure types, a new energy-critical plane damage parameter is proposed for multiaxial fatigue life prediction, and no extra fitted material constants will be needed for practical applications. Moreover, three multiaxial models with maximum damage parameters on the critical plane are evaluated under tension-compression and tension-torsion loadings. Experimental data of GH4169 under proportional and non-proportional fatigue loadings and a case study of a turbine disk-blade contact system are introduced for model validation. Results show that model predictions by Wang-Brown (WB) and Fatemi-Socie (FS) models with maximum damage parameters are conservative and acceptable. For the turbine disk-blade contact system, both of the proposed damage parameters and Smith-Watson-Topper (SWT) model show reasonably acceptable correlations with its field number of flight cycles. However, life estimations of the turbine blade reveal that the definition of the maximum damage parameter is not reasonable for the WB model but effective for both the FS and SWT models. PMID:28772873

  11. Research at USAFA 2011

    DTIC Science & Technology

    2011-01-01

    field repair technique for enamel -coated steel used in reinforcing concrete structures. In addition to solving real problems, these efforts provide...projects are varied and range from designing and validating repairs, performing residual life analysis, augmenting the current crack growth prediction

  12. Workaholism vs. work engagement: the two different predictors of future well-being and performance.

    PubMed

    Shimazu, Akihito; Schaufeli, Wilmar B; Kamiyama, Kimika; Kawakami, Norito

    2015-02-01

    This study investigated the distinctiveness of two types of heavy work investment (i.e., workaholism and work engagement) by examining their 2-year longitudinal relationships with employee well-being and job performance. Based on a previous cross-sectional study by Shimazu and Schaufeli (Ind Health 47:495-502, 2009) and a shorter term longitudinal study by Shimazu et al. (Ind Health 50:316-21, 2012; measurement interval = 7 months), we predicted that workaholism predicts long-term future unwell-being (i.e., high ill-health and low life satisfaction) and poor job performance, whereas work engagement predicts future well-being (i.e., low ill-health and high life satisfaction) and superior job performance. A two-wave survey was conducted among employees from one Japanese company, and valid data from 1,196 employees was analyzed using structural equation modeling. T1-T2 changes in ill-health, life satisfaction, and job performance were measured as residual scores, which were included in the structural equation model. Workaholism and work engagement were weakly and positively related to each other. In addition, and as expected, workaholism was related to an increase in ill-health and to a decrease in life satisfaction. In contrast, and also as expected, work engagement was related to increases in both life satisfaction and job performance and to a decrease in ill-health. Although workaholism and work engagement are weakly positively related, they constitute two different concepts. More specifically, workaholism has negative consequences across an extended period of 2 years, whereas work engagement has positive consequences in terms of well-being and performance. Hence, workaholism should be prevented and work engagement should be stimulated.

  13. Research on strength attenuation law of concrete in freezing - thawing environment

    NASA Astrophysics Data System (ADS)

    Xiao, qianhui; Cao, zhiyuan; Li, qiang

    2018-03-01

    By rapid freezing and thawing method, the experiments of concrete have been 300 freeze-thaw cycles specimens in the water. The cubic compression strength value under different freeze-thaw cycles was measured. By analyzing the test results, the water-binder ratio of the concrete under freeze-thaw environments, fly ash and air entraining agent is selected dosage recommendations. The exponential attenuation prediction model and life prediction model of compression strength of concrete under freezing-thawing cycles considering the factors of water-binder ratio, fly ash content and air-entraining agent dosage were established. The model provides the basis for predicting the durability life of concrete under freezing-thawing environment. It also provides experimental basis and references for further research on concrete structures with antifreeze requirements.

  14. A mechanics framework for a progressive failure methodology for laminated composites

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Allen, David H.; Lo, David C.

    1989-01-01

    A laminate strength and life prediction methodology has been postulated for laminated composites which accounts for the progressive development of microstructural damage to structural failure. A damage dependent constitutive model predicts the stress redistribution in an average sense that accompanies damage development in laminates. Each mode of microstructural damage is represented by a second-order tensor valued internal state variable which is a strain like quantity. The mechanics framework together with the global-local strategy for predicting laminate strength and life is presented in the paper. The kinematic effects of damage are represented by effective engineering moduli in the global analysis and the results of the global analysis provide the boundary conditions for the local ply level stress analysis. Damage evolution laws are based on experimental results.

  15. The use of test structures for reliability prediction and process control of integrated circuits and photovoltaics

    NASA Astrophysics Data System (ADS)

    Trachtenberg, I.

    How a reliability model might be developed with new data from accelerated stress testing, failure mechanisms, process control monitoring, and test structure evaluations is illustrated. The effects of the acceleration of temperature on operating life is discussed. Test structures that will further accelerate the failure rate are discussed. Corrosion testing is addressed. The uncoated structure is encapsulated in a variety of mold compounds and subjected to pressure-cooker testing.

  16. Fracture mechanics methodology: Evaluation of structural components integrity

    NASA Astrophysics Data System (ADS)

    Sih, G. C.; de Oliveira Faria, L.

    1984-09-01

    The application of fracture mechanics to structural-design problems is discussed in lectures presented in the AGARD Fracture Mechanics Methodology course held in Lisbon, Portugal, in June 1981. The emphasis is on aeronautical design, and chapters are included on fatigue-life prediction for metals and composites, the fracture mechanics of engineering structural components, failure mechanics and damage evaluation of structural components, flaw-acceptance methods, and reliability in probabilistic design. Graphs, diagrams, drawings, and photographs are provided.

  17. Reliability analysis applied to structural tests

    NASA Technical Reports Server (NTRS)

    Diamond, P.; Payne, A. O.

    1972-01-01

    The application of reliability theory to predict, from structural fatigue test data, the risk of failure of a structure under service conditions because its load-carrying capability is progressively reduced by the extension of a fatigue crack, is considered. The procedure is applicable to both safe-life and fail-safe structures and, for a prescribed safety level, it will enable an inspection procedure to be planned or, if inspection is not feasible, it will evaluate the life to replacement. The theory has been further developed to cope with the case of structures with initial cracks, such as can occur in modern high-strength materials which are susceptible to the formation of small flaws during the production process. The method has been applied to a structure of high-strength steel and the results are compared with those obtained by the current life estimation procedures. This has shown that the conventional methods can be unconservative in certain cases, depending on the characteristics of the structure and the design operating conditions. The suitability of the probabilistic approach to the interpretation of the results from full-scale fatigue testing of aircraft structures is discussed and the assumptions involved are examined.

  18. Sequence co-evolution gives 3D contacts and structures of protein complexes

    PubMed Central

    Hopf, Thomas A; Schärfe, Charlotta P I; Rodrigues, João P G L M; Green, Anna G; Kohlbacher, Oliver; Sander, Chris; Bonvin, Alexandre M J J; Marks, Debora S

    2014-01-01

    Protein–protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions, and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein–protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein–protein interaction networks and used for interaction predictions at residue resolution. DOI: http://dx.doi.org/10.7554/eLife.03430.001 PMID:25255213

  19. Factors Controlling Stress Rupture of Fiber-Reinforced Ceramic Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Yun, H. M.

    1999-01-01

    The successful application of fiber-reinforced ceramic matrix composites (CMC) depends strongly on maximizing material rupture life over a wide range of temperatures and applied stresses. The objective of this paper is to examine the various intrinsic and extrinsic factors that control the high-temperature stress rupture of CMC for stresses below and above those required for cracking of the 0 C plies (Regions I and II, respectively). Using creep-rupture results for a variety of ceramic fibers and rupture data for CMC reinforced by these fibers, it is shown that in those cases where the matrix carries little structural load, CMC rupture conditions can be predicted very well from the fiber behavior measured under the appropriate test environment. As such, one can then examine the intrinsic characteristics of the fibers in order to develop design guidelines for selecting fibers and fiber microstructures in order to maximize CMC rupture life. For those cases where the fiber interfacial coatings are unstable in the test environment, CMC lives are generally worse than those predicted by fiber behavior alone. For those cases where the matrix can support structural load, CMC life can even be greater provided matrix creep behavior is properly controlled. Thus the achievement of long CMC rupture life requires understanding and optimizing the behavior of all constituents in the proper manner.

  20. Testing and design life analysis of polyurea liner materials

    NASA Astrophysics Data System (ADS)

    Ghasemi Motlagh, Siavash

    Certainly, water pipes, as part of an underground infrastructure system, play a key role in maintaining quality of life, health, and wellbeing of human kind. As these potable water pipes reach the end of their useful life, they create high maintenance costs, loss of flow capacity, decreased water quality, and increased dissatisfaction. There are several different pipeline renewal techniques available for different applications, among which linings are most commonly used for the renewal of water pipes. Polyurea is a lining material applied to the interior surface of the deteriorated host pipe using spray-on technique. It is applied to structurally enhance the host pipe and provide a barrier coating against further corrosion or deterioration. The purpose of this study was to establish a relationship between stress, strain and time. The results obtained from these tests were used in predicting the strength of the polyurea material during its planned 50-year design life. In addition to this, based on the 10,000 hours experimental data, curve fitting and Findley power law models were employed to predict long-term behavior of the material. Experimental results indicated that the tested polyurea material offers a good balance of strength and stiffness and can be utilized in structural enhancement applications of potable water pipes.

  1. Examining the nomological network of satisfaction with work-life balance.

    PubMed

    Grawitch, Matthew J; Maloney, Patrick W; Barber, Larissa K; Mooshegian, Stephanie E

    2013-07-01

    This study expands on past work-life research by examining the nomological network of satisfaction with work-life balance-the overall appraisal or global assessment of how one manages time and energy across work and nonwork domains. Analyses using 456 employees at a midsized organization indicated expected relationships with bidirectional conflict, bidirectional facilitation, and satisfaction with work and nonwork life. Structural equation modeling supported the utility of satisfaction with balance as a unique component of work-life interface perceptions. Results also indicated that satisfaction with balance mediated the relationship between some conflict/facilitation and life satisfaction outcomes, though conflict and facilitation maintained unique predictive validity on domain specific outcomes (i.e., work-to-life conflict and facilitation with work life satisfaction; life-to-work conflict and facilitation with nonwork life satisfaction). PsycINFO Database Record (c) 2013 APA, all rights reserved.

  2. Development of finite element models to predict dynamic bridge response.

    DOT National Transportation Integrated Search

    1997-10-01

    Dynamic response has long been recognized as one of the significant factors affecting the service life and safety of bridge structures. Even though considerable research, both analytical and experimental, has been devoted to dynamic bridge behavior, ...

  3. Progress in materials and structures at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.; Lauver, R. W.; Halford, G. R.; Davies, R. L.

    1980-01-01

    The development of power and propulsion system technology is discussed. Specific emphasis is placed on the following: high temperature materials; composite materials; advanced design and life prediction; and nondestructive evaluation. Future areas of research are also discussed.

  4. Do burnout and work engagement predict depressive symptoms and life satisfaction? A three-wave seven-year prospective study.

    PubMed

    Hakanen, Jari J; Schaufeli, Wilmar B

    2012-12-10

    Burnout and work engagement have been viewed as opposite, yet distinct states of employee well-being. We investigated whether work-related indicators of well-being (i.e. burnout and work engagement) spill-over and generalize to context-free well-being (i.e. depressive symptoms and life satisfaction). More specifically, we examined the causal direction: does burnout/work engagement lead to depressive symptoms/life satisfaction, or the other way around? Three surveys were conducted. In 2003, 71% of all Finnish dentists were surveyed (n=3255), and the response rate of the 3-year follow-up was 84% (n=2555). The second follow-up was conducted four years later with a response rate of 86% (n=1964). Structural equation modeling was used to investigate the cross-lagged associations between the study variables across time. Burnout predicted depressive symptoms and life dissatisfaction from T1 to T2 and from T2 to T3. Conversely, work engagement had a negative effect on depressive symptoms and a positive effect on life satisfaction, both from T1 to T2 and from T2 to T3, even after adjusting for the impact of burnout at every occasion. The study was conducted among one occupational group, which limits its generalizability. Work-related well-being predicts general wellbeing in the long-term. For example, burnout predicts depressive symptoms and not vice versa. In addition, burnout and work engagement are not direct opposites. Instead, both have unique, incremental impacts on life satisfaction and depressive symptoms. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A coupled aero-structural model of a HAWT blade for dynamic load and response prediction in time-domain for health monitoring applications

    NASA Astrophysics Data System (ADS)

    Sauder, Heather Scot

    To reach the high standards set for renewable energy production in the US and around the globe, wind turbines with taller towers and longer blades are being designed for onshore and offshore wind developments to capture more energy from higher winds aloft and a larger rotor diameter. However, amongst all the wind turbine components wind turbine blades are still the most prone to damage. Given that wind turbine blades experience dynamic loads from multiple sources, there is a need to be able to predict the real-time load, stress distribution and response of the blade in a given wind environment for damage, flutter and fatigue life predictions. Current methods of wind-induced response analysis for wind turbine blades use approximations that are not suitable for wind turbine blade airfoils which are thick, and therefore lead to inaccurate life predictions. Additionally, a time-domain formulation can prove to be especially advantageous for predicting aerodynamic loads on wind turbine blades since they operate in a turbulent atmospheric boundary layer. This will help to analyze the blades on wind turbines that operate individually or in a farm setting where they experience high turbulence in the wake of another wind turbine. A time-domain formulation is also useful for examining the effects of gusty winds that are transient in nature like in gust fronts, thunderstorms or extreme events such as hurricanes, microbursts, and tornadoes. Time-domain methods present the opportunity for real-time health monitoring strategies that can easily be used with finite element methods for prediction of fatigue life or onset of flutter instability. The purpose of the proposed work is to develop a robust computational model to predict the loads, stresses and response of a wind turbine blade in operating and extreme wind conditions. The model can be used to inform health monitoring strategies for preventative maintenance and provide a realistic number of stress cycles that the blade will experience for fatigue life prediction procedures. To fill in the gaps in the existing knowledge and meet the overall goal of the proposed research, the following objectives were accomplished: (a) improve the existing aeroelastic (motion- and turbulence-induced) load models to predict the response of wind turbine blade airfoils to understand its behavior in turbulent wind, (b) understand, model and predict the response of wind turbine blades in transient or gusty wind, boundary-layer wind and incoherent wind over the span of the blade, (c) understand the effects of aero-structural coupling between the along-wind, cross-wind and torsional vibrations, and finally (d) develop a computational tool using the improved time-domain load model to predict the real-time load, stress distribution and response of a given wind turbine blade during operating and parked conditions subject to a specific wind environment both in a short and long term for damage, flutter and fatigue life predictions.

  6. Predicting what extra-terrestrials will be like: and preparing for the worst.

    PubMed

    Morris, Simon Conway

    2011-02-13

    It is difficult to imagine evolution in alien biospheres operating in any manner other than Darwinian. Yet, it is also widely assumed that alien life-forms will be just that: strange, un-nerving and probably repulsive. There are two reasons for this view. First, it is assumed that the range of habitable environments available to extra-terrestrial life is far wider than on Earth. I suggest, however, that terrestrial life is close to the physical and chemical limits of life anywhere. Second, it is a neo-Darwinian orthodoxy that evolution lacks predictability; imagining what extra-terrestrial life would look like in any detail is a futile exercise. To the contrary, I suggest that the outcomes of evolution are remarkably predictable. This, however, leads us to consider two opposites, both of which should make our blood run cold. The first, and actually extremely unlikely, is that alien biospheres will be strikingly similar to our terrestrial equivalent and that in such biospheres intelligence will inevitably emerge. The reasons for this revolve around the ubiquity of evolutionary convergence, the determinate structure of the Tree of Life and molecular inherency. But if something like a human is an inevitability, why do I also claim that the first possibility is 'extremely unlikely'? Simply because the other possibility is actually the correct answer. Paradoxically, we and our biosphere are completely alone. So which is worse? Meeting ourselves or meeting nobody?

  7. Secondary structure of the 3'-noncoding region of flavivirus genomes: comparative analysis of base pairing probabilities.

    PubMed

    Rauscher, S; Flamm, C; Mandl, C W; Heinz, F X; Stadler, P F

    1997-07-01

    The prediction of the complete matrix of base pairing probabilities was applied to the 3' noncoding region (NCR) of flavivirus genomes. This approach identifies not only well-defined secondary structure elements, but also regions of high structural flexibility. Flaviviruses, many of which are important human pathogens, have a common genomic organization, but exhibit a significant degree of RNA sequence diversity in the functionally important 3'-NCR. We demonstrate the presence of secondary structures shared by all flaviviruses, as well as structural features that are characteristic for groups of viruses within the genus reflecting the established classification scheme. The significance of most of the predicted structures is corroborated by compensatory mutations. The availability of infectious clones for several flaviviruses will allow the assessment of these structural elements in processes of the viral life cycle, such as replication and assembly.

  8. An eco-physiological model of the impact of temperature on Aedes aegypti life history traits.

    PubMed

    Padmanabha, Harish; Correa, Fabio; Legros, Mathieu; Nijhout, H Fredrick; Lord, Cynthia; Lounibos, L Philip

    2012-12-01

    Physiological processes mediate the impact of ecological conditions on the life histories of insect vectors. For the dengue/chikungunya mosquito, Aedes aegypti, three life history traits that are critical to urban population dynamics and control are: size, development rate and starvation mortality. In this paper we make use of prior laboratory experiments on each of these traits at 2°C intervals between 20 and 30°C, in conjunction with eco-evolutionary theory and studies on A.aegypti physiology, in order to develop a conceptual and mathematical framework that can predict their thermal sensitivity. Our model of reserve dependent growth (RDG), which considers a potential tradeoff between the accumulation of reserves and structural biomass, was able to robustly predict laboratory observations, providing a qualitative improvement over the approach most commonly used in other A.aegypti models. RDG predictions of reduced size at higher temperatures, but increased reserves relative to size, are supported by the available evidence in Aedes spp. We offer the potentially general hypothesis that temperature-size patterns in mosquitoes are driven by a net benefit of finishing the growing stage with proportionally greater reserves relative to structure at warmer temperatures. By relating basic energy flows to three fundamental life history traits, we provide a mechanistic framework for A.aegypti development to which ecological complexity can be added. Ultimately, this could provide a framework for developing and field testing hypotheses on how processes such as climate variation, density dependent regulation, human behavior or control strategies may influence A.aegypti population dynamics and disease risk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Early social networks predict survival in wild bottlenose dolphins.

    PubMed

    Stanton, Margaret A; Mann, Janet

    2012-01-01

    A fundamental question concerning group-living species is what factors influence the evolution of sociality. Although several studies link adult social bonds to fitness, social patterns and relationships are often formed early in life and are also likely to have fitness consequences, particularly in species with lengthy developmental periods, extensive social learning, and early social bond-formation. In a longitudinal study of bottlenose dolphins (Tursiops sp.), calf social network structure, specifically the metric eigenvector centrality, predicted juvenile survival in males. Additionally, male calves that died post-weaning had stronger ties to juvenile males than surviving male calves, suggesting that juvenile males impose fitness costs on their younger counterparts. Our study indicates that selection is acting on social traits early in life and highlights the need to examine the costs and benefits of social bonds during formative life history stages.

  10. "Harder, Better, Faster, Stronger": Negative Comparison on Facebook and Adolescents' Life Satisfaction Are Reciprocally Related.

    PubMed

    Frison, Eline; Eggermont, Steven

    2016-03-01

    Social networking sites, such as Facebook, offer adolescent users an ideal platform for negative comparison (i.e., experiencing negative feelings from social comparison). Although such negative comparison on Facebook has been associated with users' well-being, the reciprocal relations between the two remain unclear, particularly in an adolescent sample. To examine this reciprocal process, a two-wave study among a representative sample of Flemish adolescents was set up (N Time1 = 1,840). Data were analyzed using structural equation modeling. Cross-lagged analyses indicated that negative comparison on Facebook predicted decreases in life satisfaction over time. Conversely, lower scores on life satisfaction predicted increases in negative comparison on Facebook. The discussion focuses on the understanding of these findings, key limitations, directions for future research, and implications for prevention and intervention strategies.

  11. Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight

    NASA Astrophysics Data System (ADS)

    Hu, Weifei; Park, Dohyun; Choi, DongHoon

    2013-12-01

    A composite blade structure for a 2 MW horizontal axis wind turbine is optimally designed. Design requirements are simultaneously minimizing material cost and blade weight while satisfying the constraints on stress ratio, tip deflection, fatigue life and laminate layup requirements. The stress ratio and tip deflection under extreme gust loads and the fatigue life under a stochastic normal wind load are evaluated. A blade element wind load model is proposed to explain the wind pressure difference due to blade height change during rotor rotation. For fatigue life evaluation, the stress result of an implicit nonlinear dynamic analysis under a time-varying fluctuating wind is converted to the histograms of mean and amplitude of maximum stress ratio using the rainflow counting algorithm Miner's rule is employed to predict the fatigue life. After integrating and automating the whole analysis procedure an evolutionary algorithm is used to solve the discrete optimization problem.

  12. Predicting the conformations of peptides and proteins in early evolution. A review article submitted to Biology Direct

    PubMed Central

    Milner-White, E James; Russell, Michael J

    2008-01-01

    Considering that short, mainly heterochiral, polypeptides with a high glycine content are expected to have played a prominent role in evolution at the earliest stage of life before nucleic acids were available, we review recent knowledge about polypeptide three-dimensional structure to predict the types of conformations they would have adopted. The possible existence of such structures at this time leads to a consideration of their functional significance, and the consequences for the course of evolution. This article was reviewed by Bill Martin, Eugene Koonin and Nick Grishin. PMID:18226248

  13. Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.

    2016-01-01

    The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.

  14. Structural Life and Reliability Metrics: Benchmarking and Verification of Probabilistic Life Prediction Codes

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Soditus, Sherry; Hendricks, Robert C.; Zaretsky, Erwin V.

    2002-01-01

    Over the past two decades there has been considerable effort by NASA Glenn and others to develop probabilistic codes to predict with reasonable engineering certainty the life and reliability of critical components in rotating machinery and, more specifically, in the rotating sections of airbreathing and rocket engines. These codes have, to a very limited extent, been verified with relatively small bench rig type specimens under uniaxial loading. Because of the small and very narrow database the acceptance of these codes within the aerospace community has been limited. An alternate approach to generating statistically significant data under complex loading and environments simulating aircraft and rocket engine conditions is to obtain, catalog and statistically analyze actual field data. End users of the engines, such as commercial airlines and the military, record and store operational and maintenance information. This presentation describes a cooperative program between the NASA GRC, United Airlines, USAF Wright Laboratory, U.S. Army Research Laboratory and Australian Aeronautical & Maritime Research Laboratory to obtain and analyze these airline data for selected components such as blades, disks and combustors. These airline data will be used to benchmark and compare existing life prediction codes.

  15. Distributed Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.

    2014-01-01

    Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS

  16. Scaling and saturation laws for the expansion of concrete exposed to sulfate attack.

    PubMed

    Monteiro, Paulo J M

    2006-08-01

    Reinforced concrete structures exposed to aggressive environments often require repair or retrofit even though they were designed to last >50 years. This statement is especially true for structures subjected to sulfate attack. It is critical that fundamental models of life prediction be developed for durability of concrete. Based on experimental results obtained over a 40-year period, scaling and saturation laws were formulated for concrete exposed to sulfate solution. These features have not been considered in current models used to predict life cycle of concrete exposed to aggressive environment. The mathematical analysis shows that porous concrete made with high and moderate water-to-cement ratios develops a definite scaling law after an initiation time. The scaling coefficient depends on the cement composition but does not depend on the original water-to-cement ratio. Dense concrete made with low water-to-cement ratios develops a cyclic saturation curve. An index for "potential of damage" is created to allow engineers to design concrete structures with better precision and cement chemists to develop portland cements with optimized composition.

  17. Motivational processes and well-being in cardiac rehabilitation: a self-determination theory perspective.

    PubMed

    Rahman, Rachel Jane; Hudson, Joanne; Thøgersen-Ntoumani, Cecilie; Doust, Jonathan H

    2015-01-01

    This research examined the processes underpinning changes in psychological well-being and behavioural regulation in cardiac rehabilitation (CR) patients using self-determination theory (SDT). A repeated measures design was used to identify the longitudinal relationships between SDT variables, psychological well-being and exercise behaviour during and following a structured CR programme. Participants were 389 cardiac patients (aged 36-84 years; M(age) = 64 ± 9 years; 34.3% female) referred to a 12-week-supervised CR programme. Psychological need satisfaction, behavioural regulation, health-related quality of life, physical self-worth, anxiety and depression were measured at programme entry, exit and six month post-programme. During the programme, increases in autonomy satisfaction predicted positive changes in behavioural regulation, and improvements in competence and relatedness satisfaction predicted improvements in behavioural regulation and well-being. Competence satisfaction also positively predicted habitual physical activity. Decreases in external regulation and increases in intrinsic motivation predicted improvements in physical self-worth and physical well-being, respectively. Significant longitudinal relationships were identified whereby changes during the programme predicted changes in habitual physical activity and the mental quality of life from exit to six month follow-up. Findings provide insight into the factors explaining psychological changes seen during CR. They highlight the importance of increasing patients' perceptions of psychological need satisfaction and self-determined motivation to improve well-being during the structured component of a CR programme and longer term physical activity.

  18. From cheminformatics to structure-based design: Web services and desktop applications based on the NAOMI library.

    PubMed

    Bietz, Stefan; Inhester, Therese; Lauck, Florian; Sommer, Kai; von Behren, Mathias M; Fährrolfes, Rainer; Flachsenberg, Florian; Meyder, Agnes; Nittinger, Eva; Otto, Thomas; Hilbig, Matthias; Schomburg, Karen T; Volkamer, Andrea; Rarey, Matthias

    2017-11-10

    Nowadays, computational approaches are an integral part of life science research. Problems related to interpretation of experimental results, data analysis, or visualization tasks highly benefit from the achievements of the digital era. Simulation methods facilitate predictions of physicochemical properties and can assist in understanding macromolecular phenomena. Here, we will give an overview of the methods developed in our group that aim at supporting researchers from all life science areas. Based on state-of-the-art approaches from structural bioinformatics and cheminformatics, we provide software covering a wide range of research questions. Our all-in-one web service platform ProteinsPlus (http://proteins.plus) offers solutions for pocket and druggability prediction, hydrogen placement, structure quality assessment, ensemble generation, protein-protein interaction classification, and 2D-interaction visualization. Additionally, we provide a software package that contains tools targeting cheminformatics problems like file format conversion, molecule data set processing, SMARTS editing, fragment space enumeration, and ligand-based virtual screening. Furthermore, it also includes structural bioinformatics solutions for inverse screening, binding site alignment, and searching interaction patterns across structure libraries. The software package is available at http://software.zbh.uni-hamburg.de. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Predicting fatigue service life extension of RC bridges with externally bonded CFRP repairs : [project brief].

    DOT National Transportation Integrated Search

    2015-12-01

    Externally bonded carbon fiber reinforced polymer composites (CFRPs) are increasingly used to : repair concrete bridges. CFRP design techniques are a proven approach for enhancing the strength : of existing structures. This project investigated the d...

  20. Development of local calibration factors and design criteria values for mechanistic-empirical pavement design.

    DOT National Transportation Integrated Search

    2015-08-01

    A mechanistic-empirical (ME) pavement design procedure allows for analyzing and selecting pavement structures based : on predicted distress progression resulting from stresses and strains within the pavement over its design life. The Virginia : Depar...

  1. Reliability and Creep/Fatigue Analysis of a CMC Component

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.; Gyekenyesi, John P.

    2007-01-01

    High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight and enable higher operating temperatures requiring less cooling; thus leading to increased engine efficiencies. There is a need for convenient design tools that can accommodate various loading conditions and material data with their associated uncertainties to estimate the minimum predicted life as well as the failure probabilities of a structural component. This paper presents a review of the life prediction and probabilistic analyses performed for a CMC turbine stator vane. A computer code, NASALife, is used to predict the life of a 2-D woven silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) turbine stator vane due to a mission cycle which induces low cycle fatigue and creep. The output from this program includes damage from creep loading, damage due to cyclic loading and the combined damage due to the given loading cycle. Results indicate that the trends predicted by NASALife are as expected for the loading conditions used for this study. In addition, a combination of woven composite micromechanics, finite element structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Results indicate that reducing the scatter in proportional limit strength of the vane material has the greatest effect in improving the overall reliability of the CMC vane.

  2. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size

    PubMed Central

    Wang, Qiang; Zhang, Wei; Jiang, Shan

    2015-01-01

    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625

  3. Blade life span, structural investment, and nutrient allocation in giant kelp.

    PubMed

    Rodriguez, Gabriel E; Reed, Daniel C; Holbrook, Sally J

    2016-10-01

    The turnover of plant biomass largely determines the amount of energy flowing through an ecosystem and understanding the processes that regulate turnover has been of interest to ecologists for decades. Leaf life span theory has proven useful in explaining patterns of leaf turnover in relation to resource availability, but the predictions of this theory have not been tested for macroalgae. We measured blade life span, size, thickness, nitrogen content, pigment content, and maximum photosynthetic rate (P max) in the giant kelp (Macrocystis pyrifera) along a strong resource (light) gradient to test whether the predictions of leaf life span theory applied to this alga. We found that shorter blade life spans and larger blade areas were associated with increased light availability. In addition, nitrogen and P max decreased with blade age, and their decrease was greater in shorter lived blades. These observations are generally consistent with patterns observed for higher plants and the prevailing theory of leaf life span. By contrast, variation observed in pigments of giant kelp was inconsistent with that predicted by leaf life span theory, as blades growing in the most heavily shaded portion of the forest had the lowest chlorophyll content. This result may reflect the dual role of macroalgal blades in carbon fixation and nutrient absorption and the ability of giant kelp to modify blade physiology to optimize the acquisition of light and nutrients. Thus, the marine environment may place demands on resource acquisition and allocation that have not been previously considered with respect to leaf life span optimization.

  4. Towards a Delamination Fatigue Methodology for Composite Materials

    NASA Technical Reports Server (NTRS)

    OBrien, Thomas K.

    2007-01-01

    A methodology that accounts for both delaminaton onset and growth in composite structural components is proposed for improved fatigue life prediction to reduce life cycle costs and improve accept/reject criteria for manufacturing flaws. The benefits of using a Delamination Onset Threshold (DOT) approach in combination with a Modified Damage Tolerance (MDT) approach is highlighted. The use of this combined approach to establish accept/reject criteria, requiring less conservative initial manufacturing flaw sizes, is illustrated.

  5. Serviceability modeling : predicting and extending the useful service life of FRT-plywood roof sheathing

    Treesearch

    Jerrold E. Winandy

    2000-01-01

    One of the most, if not the most, efficient methods of extending our existing forest resource is to prolong the service life of wood currently in-service by using those existing structures to meet our future needs (Hamilton and Winandy 1998). It is currently estimated that over 7 x 109 m3 (3 trillion bd. ft) of wood is currently in service within the United States of...

  6. Predicting health-related quality of life in cancer patients receiving chemotherapy: a structural equation approach using the self-control model.

    PubMed

    Park, Yu-Ri; Park, Eun-Young; Kim, Jung-Hee

    2017-11-09

    According to the self-control model, self-control works as a protective factor and a psychological resource. Although an understanding of the effect(s) of peripheral neuropathy on quality of life is important to healthcare professionals, previous studies do not facilitate broad comprehension in this regard. The purpose of this cross-sectional study was to test the multidimensional assumptions of quality of life of patients with cancer, with focus on their self-control. A structural equation model was tested on patients with cancer at the oncology clinic of a university hospital where patients received chemotherapy. A model was tested using structural equation modeling, which allows the researcher to find the empirical evidence by testing a measurement model and a structural model. The model comprised three variables, self-control, health related quality of life, and chemotherapy-induced peripheral neuropathy. Among the variables, self-control was the endogenous and mediating variable. The proposed models showed good fit indices. Self-control partially mediated chemotherapy-induced peripheral neuropathy and quality of life. It was found that the physical symptoms of peripheral neuropathy influenced health-related quality of life both indirectly and directly. Self-control plays a significant role in the protection and promotion of physical and mental health in various stressful situations, and thus, as a psychological resource, it plays a significant role in quality of life. Our results can be used to develop a quality of life model for patients receiving chemotherapy and as a theoretical foundation for the development of appropriate nursing interventions.

  7. A model of burnout and life satisfaction amongst nurses.

    PubMed

    Demerouti, E; Bakker, A B; Nachreiner, F; Schaufeli, W B

    2000-08-01

    This study, among 109 German nurses, tested a theoretically derived model of burnout and overall life satisfaction. The model discriminates between two conceptually different categories of working conditions, namely job demands and job resources. It was hypothesized that: (1) job demands, such as demanding contacts with patients and time pressure, are most predictive of exhaustion; (2) job resources, such as (poor) rewards and (lack of) participation in decision making, are most predictive of disengagement from work; and (3) job demands and job resources have an indirect impact on nurses' life satisfaction, through the experience of burnout (i.e., exhaustion and disengagement). A model including each of these relationships was tested simultaneously with structural equations modelling. Results confirm the strong effects of job demands and job resources on exhaustion and disengagement respectively, and the mediating role of burnout between the working conditions and life satisfaction. These findings contribute to existing knowledge about antecedents and consequences of occupational burnout, and provide guidelines for interventions aimed at preventing or reducing burnout among nurses.

  8. Incorporation of Half-Cycle Theory Into Ko Aging Theory for Aerostructural Flight-Life Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Tran, Van T.; Chen, Tony

    2007-01-01

    The half-cycle crack growth theory was incorporated into the Ko closed-form aging theory to improve accuracy in the predictions of operational flight life of failure-critical aerostructural components. A new crack growth computer program was written for reading the maximum and minimum loads of each half-cycle from the random loading spectra for crack growth calculations and generation of in-flight crack growth curves. The unified theories were then applied to calculate the number of flights (operational life) permitted for B-52B pylon hooks and Pegasus adapter pylon hooks to carry the Hyper-X launching vehicle that air launches the X-43 Hyper-X research vehicle. A crack growth curve for each hook was generated for visual observation of the crack growth behavior during the entire air-launching or captive flight. It was found that taxiing and the takeoff run induced a major portion of the total crack growth per flight. The operational life theory presented can be applied to estimate the service life of any failure-critical structural components.

  9. Positive and negative life events and personality traits in predicting course of depression and anxiety.

    PubMed

    Spinhoven, P; Elzinga, B M; Hovens, J G F M; Roelofs, K; van Oppen, P; Zitman, F G; Penninx, B W J H

    2011-12-01

    To examine the prognostic value of personality dimensions and negative and positive life events for diagnostic and symptom course trajectories in depressive and anxiety disorder. A total of 1209 subjects (18-65 years) with depressive and/or anxiety disorder were recruited in primary and specialized mental health care. Personality dimensions at baseline were assessed with the NEO-FFI and incidence and date of life events retrospectively with a structured interview at 2-year follow-up. DSM-IV-based diagnostic interviews as well as life chart assessments allowed course assessment at both the diagnostic and symptom trajectory level over 2 years. Life events were significantly related to diagnostic and symptom course trajectories of depression and anxiety also after correcting for sociodemographic and clinical characteristics. Only negative life events prospectively predicted longer time to remission of depressive disorder. Prospective associations of neuroticism and extraversion with prognosis of anxiety and depression were greatly reduced after correcting for baseline severity and duration of index disorder. Personality traits did not moderate the effect of life events on 2-year course indicators. Negative life events have an independent effect on diagnostic and symptom course trajectories of depression and to a lesser extent anxiety unconfounded by sociodemographic, clinical, and personality characteristics. © 2011 John Wiley & Sons A/S.

  10. Dispositional hope and life satisfaction among older adults attending lifelong learning programs.

    PubMed

    Oliver, A; Tomás, J M; Montoro-Rodriguez, J

    2017-09-01

    The aim of this study is to explore the indirect effects of dispositional hope in the life satisfaction of older adults attending a lifelong learning program at the University of Valencia, Spain. We examine the mediating impact of dispositional hope regarding its ability to impact life satisfaction while considering affective and confidant social support, perceived health and leisure activities, consciousness and spirituality as predictors. Analysis were based on survey data (response rate 77.4%) provided by 737 adults 55 years old or more (Mean age=65.41, SD=6.60; 69% woman). A structural model with latent variables was specified and estimated in Mplus. The results show the ability of just a few variables to sum up a reasonable model to apply to successful aging population. All these variables are correlated and significantly predict hope with the exception of health. The model additionally includes significant positive indirect effects from spirituality, affective support and consciousness on satisfaction. The model has a good fit in terms of both the measurement and structural model. Regarding predictive power, these comprehensive four main areas of successful aging account for 42% of hope and finally for one third of the life satisfaction variance. Results support the mediating role of dispositional hope on the life satisfaction among older adults attending lifelong learning programs. These findings also support the MacArthur model of successful aging adapted to older adults with high levels of functional, social and cognitive ability. Dispositional hope, perceived health, and social support were the strongest predictors of satisfaction with life. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. What predicts nurse faculty members' intent to stay in the academic organization? A structural equation model of a national survey of nursing faculty.

    PubMed

    Candela, Lori; Gutierrez, Antonio P; Keating, Sarah

    2015-04-01

    To investigate the relations among several factors regarding the academic context within a nationally representative sample of U.S. nursing faculty. Correlational design using structural equation modeling to explore the predictive nature of several factors related to the academic organization and the work life of nursing faculty. A survey was used to evaluate several aspects of the work life of U.S. nursing faculty members. Nursing faculty members in academic organizations across the U.S. serving at either CCNE- or NLNAC-accredited institutions of higher education. Standard confirmatory factor analysis was used to assess the validity of a proposed measurement model, and structural equation modeling was used to evaluate the validity of a structural/latent variable model. Several direct and indirect effects were observed among the factors under investigation. Of special importance, perceptions of nurse administration's support and perceived teaching expertise positively predicted U.S. nursing faculty members' intent to stay in the academic organization. Understanding the way that nursing faculty members' perceptions of the various factors common to the academic context interact with intent to stay in the academic organization is essential for faculty and nursing administrators. This information can assist administrators in obtaining more resources for faculty development to lobby for additional faculty in order to meet the teaching, research, and service missions of the organization; and to personalize relationships with individual faculty members to understand their needs and acknowledge their efforts. Published by Elsevier Ltd.

  12. Direct and indirect influences of childhood abuse on depression symptoms in patients with major depressive disorder.

    PubMed

    Hayashi, Yumi; Okamoto, Yasumasa; Takagaki, Koki; Okada, Go; Toki, Shigeru; Inoue, Takeshi; Tanabe, Hajime; Kobayakawa, Makoto; Yamawaki, Shigeto

    2015-10-14

    It is known that the onset, progression, and prognosis of major depressive disorder are affected by interactions between a number of factors. This study investigated how childhood abuse, personality, and stress of life events were associated with symptoms of depression in depressed people. Patients with major depressive disorder (N = 113, 58 women and 55 men) completed the Beck Depression Inventory-II (BDI-II), the Neuroticism Extroversion Openness Five Factor Inventory (NEO-FFI), the Child Abuse and Trauma Scale (CATS), and the Life Experiences Survey (LES), which are self-report scales. Results were analyzed with correlation analysis and structural equation modeling (SEM), by using SPSS AMOS 21.0. Childhood abuse directly predicted the severity of depression and indirectly predicted the severity of depression through the mediation of personality. Negative life change score of the LES was affected by childhood abuse, however it did not predict the severity of depression. This study is the first to report a relationship between childhood abuse, personality, adulthood life stresses and the severity of depression in depressed patients. Childhood abuse directly and indirectly predicted the severity of depression. These results suggest the need for clinicians to be receptive to the possibility of childhood abuse in patients suffering from depression. SEM is a procedure used for hypothesis modeling and not for causal modeling. Therefore, the possibility of developing more appropriate models that include other variables cannot be excluded.

  13. Emotional intelligence in older adults: psychometric properties of the TMMS-24 and relationship with psychological well-being and life satisfaction.

    PubMed

    Delhom, I; Gutierrez, M; Lucas-Molina, B; Meléndez, J C

    2017-08-01

    Aging is a process during which important changes occur in different areas of development and emotional intelligence plays an essential role. The objective of this study was twofold: first, to validate the TMMS-24 in an older population; and second, to examine the mediating role of life satisfaction in the relationship between emotional intelligence and psychological well-being. The sample consisted of 215 older adults (60.15% women) with a mean age of 69.56 (SD = 6.42), without cognitive impairment. Data on emotional intelligence, satisfaction with life, and psychological well-being were obtained through the TMMS-24, the SWLS, and Ryff's psychological well-being scales, respectively. Confirmatory factor analyses and structural equation modeling were conducted. Confirmatory factor analyses confirmed the three-dimensional structure of the TMMS-24. The total scale showed an internal consistency of 0.90, ranging from 0.84 to 0.85 for the subscales. Structural equation modeling indicated that emotional intelligence exerted an influence on psychological well-being both directly and indirectly through life satisfaction. These findings show that the TMMS-24 has adequate psychometric properties for assessing emotional intelligence in elderly participants, and they indicate that emotional intelligence influences cognitive and affective judgments of life satisfaction, with these judgments of life satisfaction predicting psychological well-being.

  14. STRUCTURAL SCALE LIFE PREDICTION OF AERO STRUCTURES EXPERIENCING COMBINED EXTREME ENVIRONMENTS

    DTIC Science & Technology

    2017-07-01

    representation is converted into a tetrahedral FE mesh using the software DREAM .3D. Due to a special voxel-identification scheme the FE mesh includes...research team met with DREAM .3D developers at AFRL (Drs. Mike Groeber and Sean Donegan) to discuss possible solutions. Together, the group proposed the...development of a DREAM .3D extension that can leverage the topological data structure within DREAM .3D instead of relying on an image-based

  15. Excitation, response, and fatigue life estimation methods for the structural design of externally blown flaps

    NASA Technical Reports Server (NTRS)

    Ungar, E. E.; Chandiramani, K. L.; Barger, J. E.

    1972-01-01

    Means for predicting the fluctuating pressures acting on externally blown flap surfaces are developed on the basis of generalizations derived from non-dimensionalized empirical data. Approaches for estimation of the fatigue lives of skin-stringer and honeycomb-core sandwich flap structures are derived from vibration response analyses and panel fatigue data. Approximate expressions for fluctuating pressures, structural response, and fatigue life are combined to reveal the important parametric dependences. The two-dimensional equations of motion of multi-element flap systems are derived in general form, so that they can be specialized readily for any particular system. An introduction is presented of an approach to characterizing the excitation pressures and structural responses which makes use of space-time spectral concepts and promises to provide useful insights, as well as experimental and analytical savings.

  16. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1988-01-01

    A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.

  17. Life Prediction of Turbine Blade Nickel Base Superalloy Single Crystals.

    DTIC Science & Technology

    1986-08-01

    mechanical properties between single crystals and the DS version of Mar-M200. Soon it was recognized again through the mechanical property - structure ... property achievements demonstrated by screening and simulated engine tests. 1 Single crystals are the results of extensive investigation on the mechanical ...behavior, (especially fatigue and creep) of, and the structure - property correlations in the equiaxed and directionally solidified (DS) nickel-base

  18. A nonlinear viscoelastic approach to durability predictions for polymer based composite structures

    NASA Technical Reports Server (NTRS)

    Brinson, Hal F.

    1991-01-01

    Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures are outlined.

  19. A nonlinear viscoelastic approach to durability predictions for polymer based composite structures

    NASA Technical Reports Server (NTRS)

    Brinson, Hal F.; Hiel, C. C.

    1990-01-01

    Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures is outlined.

  20. Life Extending Control. [mechanical fatigue in reusable rocket engines

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.

    1991-01-01

    The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed. Based on cyclic life prediction, an approach to life extending control, called the Life Management Approach, is proposed. A second approach, also based on cyclic life prediction, called the implicit approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.

  1. Life extending control: A concept paper

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Merrill, Walter C.

    1991-01-01

    The concept of Life Extending Control is defined. Life is defined in terms of mechanical fatigue life. A brief description is given of the current approach to life prediction using a local, cyclic, stress-strain approach for a critical system component. An alternative approach to life prediction based on a continuous functional relationship to component performance is proposed.Base on cyclic life prediction an approach to Life Extending Control, called the Life Management Approach is proposed. A second approach, also based on cyclic life prediction, called the Implicit Approach, is presented. Assuming the existence of the alternative functional life prediction approach, two additional concepts for Life Extending Control are presented.

  2. Infant pain-related negative affect at 12 months of age: early infant and caregiver predictors.

    PubMed

    Din Osmun, Laila; Pillai Riddell, Rebecca; Flora, David B

    2014-01-01

    To examine the predictive relationships of early infant and caregiver variables on expressed pain-related negative affect duration at the 12-month immunization. Infants and their caregivers (N = 255) were followed during immunization appointments over the first year of life. Latent growth curve modeling in a structural equation modeling context was used. Higher levels of initial infant pain reactivity at 2 months and caregiver emotional availability averaged across 2, 4, and 6 months of age were related to larger decreases in the duration of infant negative affect over the first 6 months of life. Longer duration of infant negative affect at 2 months and poorer regulation of infant negative affect over the first 6 months of life predicted longer durations of infant negative affect by 12 months. Infant negative affect at 12 months was a function of both infant factors and the quality of caregiver interactive behaviors (emotional availability) in early infancy.

  3. Predictors of life disability in trichotillomania.

    PubMed

    Tung, Esther S; Flessner, Christopher A; Grant, Jon E; Keuthen, Nancy J

    2015-01-01

    Limited research has investigated disability and functional impairment in trichotillomania (TTM) subjects. This study examined the relationships between hair pulling (HP) style and severity and disability while controlling for mood severity. Disability was measured in individual life areas (work, social, and family/home life) instead of as a total disability score as in previous studies. One hundred fifty three adult hair pullers completed several structured interviews and self-report instruments. HP style and severity, as well as depression, anxiety, and stress were correlated with work, social, and family/home life impairment on the Sheehan Disability Scale (SDS). Multiple regression analyses were performed to determine significant predictors of life impairment. Depressive severity was a significant predictor for all SDS life areas. In addition, interference/avoidance associated with HP was a predictor for work and social life disability. Distress from HP was a significant predictor of social and family/home life disability. Focused HP score and anxiety were significant predictors of family/home life disability. As expected, depression in hair pullers predicted disability across life domains. Avoiding work and social situations can seriously impair functioning in those life domains. Severity of distress and worry about HP may be most elevated in social situations with friends and family and thus predict impairment in those areas. Finally, since HP often occurs at home, time spent in focused hair pulling would have a greater negative impact on family and home responsibilities than social and work life. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Personality and the Leading Behavioral Contributors of Mortality

    PubMed Central

    Turiano, Nicholas A.; Chapman, Benjamin P.; Gruenewald, Tara L.; Mroczek, Daniel K.

    2014-01-01

    Objective Personality traits predict both health behaviors and mortality risk across the life course. However, there are few investigations that have examined these effects in a single study. Thus, there are limitations in assessing if health behaviors explain why personality predicts health and longevity. Method Utilizing 14-year mortality data from a national sample of over 6,000 adults from the Midlife in the United States Study, we tested whether alcohol use, smoking behavior, and waist circumference mediated the personality–mortality association. Results After adjusting for demographic variables, higher levels of Conscientiousness predicted a 13% reduction in mortality risk over the follow-up. Structural equation models provided evidence that heavy drinking, smoking, and greater waist circumference significantly mediated the Conscientiousness–mortality association by 42%. Conclusion The current study provided empirical support for the health-behavior model of personality— Conscientiousness influences the behaviors persons engage in and these behaviors affect the likelihood of poor health outcomes. Findings highlight the usefulness of assessing mediation in a structural equation modeling framework when testing proportional hazards. In addition, the current findings add to the growing literature that personality traits can be used to identify those at risk for engaging in behaviors that deteriorate health and shorten the life span. PMID:24364374

  5. An Ecological Analysis of the Effects of Deviant Peer Clustering on Sexual Promiscuity, Problem Behavior, and Childbearing from Early Adolescence to Adulthood: An Enhancement of the Life History Framework

    PubMed Central

    Dishion, Thomas J.; Ha, Thao; Véronneau, Marie-Hélène

    2012-01-01

    This study proposes the inclusion of peer relationships in a life history perspective on adolescent problem behavior. Longitudinal analyses were used to examine deviant peer clustering as the mediating link between attenuated family ties, peer marginalization, and social disadvantage in early adolescence and sexual promiscuity in middle adolescence and childbearing by early adulthood. Specifically, 998 youth and their families were assessed at age 11 years and periodically through age 24 years. Structural equation modeling revealed that the peer-enhanced life history model provided a good fit to the longitudinal data, with deviant peer clustering strongly predicting adolescent sexual promiscuity and other correlated problem behaviors. Sexual promiscuity, as expected, also strongly predicted the number of children by age 22–24 years. Consistent with a life history perspective, family social disadvantage directly predicted deviant peer clustering and number of children in early adulthood, controlling for all other variables in the model. These data suggest that deviant peer clustering is a core dimension of a fast life history strategy, with strong links to sexual activity and childbearing. The implications of these findings are discussed with respect to the need to integrate an evolutionary-based model of self-organized peer groups in developmental and intervention science. PMID:22409765

  6. An ecological analysis of the effects of deviant peer clustering on sexual promiscuity, problem behavior, and childbearing from early adolescence to adulthood: an enhancement of the life history framework.

    PubMed

    Dishion, Thomas J; Ha, Thao; Véronneau, Marie-Hélène

    2012-05-01

    The authors propose that peer relationships should be included in a life history perspective on adolescent problem behavior. Longitudinal analyses were used to examine deviant peer clustering as the mediating link between attenuated family ties, peer marginalization, and social disadvantage in early adolescence and sexual promiscuity in middle adolescence and childbearing by early adulthood. Specifically, 998 youths, along with their families, were assessed at age 11 years and periodically through age 24 years. Structural equation modeling revealed that the peer-enhanced life history model provided a good fit to the longitudinal data, with deviant peer clustering strongly predicting adolescent sexual promiscuity and other correlated problem behaviors. Sexual promiscuity, as expected, also strongly predicted the number of children by ages 22-24 years. Consistent with a life history perspective, family social disadvantage directly predicted deviant peer clustering and number of children in early adulthood, controlling for all other variables in the model. These data suggest that deviant peer clustering is a core dimension of a fast life history strategy, with strong links to sexual activity and childbearing. The implications of these findings are discussed with respect to the need to integrate an evolutionary-based model of self-organized peer groups in developmental and intervention science.

  7. Life modeling of thermal barrier coatings for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1989-01-01

    Thermal barrier coating life models developed under the NASA Lewis Research Center's Hot Section Technology (HOST) Program are summarized. An initial laboratory model and three design-capable models are discussed. Current understanding of coating failure mechanisms are also summarized. The materials and structural aspects of thermal barrier coatings have been successfully integrated under the HOST program to produce models which may now or in the near future be used in design. Efforts on this program continue at Pratt and Whitney Aircraft where their model is being extended to the life prediction of physical vapor deposited thermal barrier coatings.

  8. Perceptions of Parental Awareness of Emotional Responses to Stressful Life Events.

    PubMed

    Jobe-Shields, Lisa; Parra, Gilbert R; Buckholdt, Kelly E

    2013-10-01

    There is a need to better understand family processes related to recovery from past stressful life events. The present study aimed to investigate links between perceptions of parental awareness regarding stressful life events, continued event-related rumination, and current symptoms of depression. Students at a diverse, urban university completed a life events checklist and a semi-structured interview regarding family processing of stressful life events, as well as self-report measures of event-related rumination and depression. Results indicated that perceptions of mothers' and fathers' awareness of sadness regarding stressful life events as well as mothers' and fathers' verbal event processing predicted symptoms of event-related rumination and depression. Results support the inclusion of perceptions of parental awareness in the understanding of how emerging adults continue to cope with past stressful life events.

  9. Essentialist beliefs about homosexuality: structure and implications for prejudice.

    PubMed

    Haslam, Nick; Levy, Sheri R

    2006-04-01

    The structure of beliefs about the nature of homosexuality, and their association with antigay attitudes, were examined in three studies (Ns = 309, 487, and 216). Contrary to previous research, three dimensions were obtained: the belief that homosexuality is biologically based, immutable, and fixed early in life; the belief that it is cross-culturally and historically universal; and the belief that it constitutes a discrete, entitative type with defining features. Study 1 supported a three-factor structure for essentialist beliefs about male homosexuality. Study 2 replicated this structure with confirmatory factor analysis, extended it to beliefs about lesbianism, showed that all three dimensions predicted antigay attitudes, and demonstrated that essentialist beliefs mediate associations between prejudice and gender, ethnicity, and religiosity. Study 3 replicated the belief structure and mediation effects in a community sample and showed that essentialist beliefs predict antigay prejudice independently of right-wing authoritarianism, social dominance orientation, and political conservatism.

  10. A Micromechanics-Based Method for Multiscale Fatigue Prediction

    NASA Astrophysics Data System (ADS)

    Moore, John Allan

    An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.

  11. Ab initio theory and modeling of water.

    PubMed

    Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C; Calegari Andrade, Marcos F; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L; Perdew, John P; Wu, Xifan

    2017-10-10

    Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice I h at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner.

  12. Ab initio theory and modeling of water

    PubMed Central

    Chen, Mohan; Ko, Hsin-Yu; Remsing, Richard C.; Calegari Andrade, Marcos F.; Santra, Biswajit; Sun, Zhaoru; Selloni, Annabella; Car, Roberto; Klein, Michael L.; Perdew, John P.; Wu, Xifan

    2017-01-01

    Water is of the utmost importance for life and technology. However, a genuinely predictive ab initio model of water has eluded scientists. We demonstrate that a fully ab initio approach, relying on the strongly constrained and appropriately normed (SCAN) density functional, provides such a description of water. SCAN accurately describes the balance among covalent bonds, hydrogen bonds, and van der Waals interactions that dictates the structure and dynamics of liquid water. Notably, SCAN captures the density difference between water and ice Ih at ambient conditions, as well as many important structural, electronic, and dynamic properties of liquid water. These successful predictions of the versatile SCAN functional open the gates to study complex processes in aqueous phase chemistry and the interactions of water with other materials in an efficient, accurate, and predictive, ab initio manner. PMID:28973868

  13. Bibliography of information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Shaffer, R. A.; Smith, D. M.

    1973-01-01

    A bibliography of approximately 1500 reference citations related to six problem areas in the mechanics of failure in aerospace structures is presented. The bibliography represents a search of the literature published in the ten year period 1962-1972 and is largely limited to documents published in the United States. Listings are subdivided into the six problem areas: (1) life prediction of structural materials; (2) fracture toughness data; (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. An author index is included.

  14. Structural analysis of cylindrical thrust chambers, volume 3

    NASA Technical Reports Server (NTRS)

    Pearson, M. L.

    1981-01-01

    A system of three computer programs is described for use in conjunction with the BOPAGE finite element program. The programs are demonstrated by analyzing cumulative plastic deformation in a regeneratively cooled rocket thrust chamber. The codes provide the capability to predict geometric and material nonlinear behavior of cyclically loaded structures without performing a cycle-by-cycle analysis over the life of the structure. The program set consists of a BOPACE restart tape reader routine, and extrapolation program and a plot package.

  15. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation

    PubMed Central

    Pagliaccio, David; Luby, Joan L.; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S.; Belden, Andrew C.; Botteron, Kelly N.; Harms, Michael P.; Barch, Deanna M.

    2015-01-01

    Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within four hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9–14 year olds; N=120). Whole-brain regression analyses indicated that increasing genetic ‘risk’ predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic ‘risk’ and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. PMID:26595470

  16. Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation.

    PubMed

    Pagliaccio, David; Luby, Joan L; Bogdan, Ryan; Agrawal, Arpana; Gaffrey, Michael S; Belden, Andrew C; Botteron, Kelly N; Harms, Michael P; Barch, Deanna M

    2015-11-01

    Internalizing pathology is related to alterations in amygdala resting state functional connectivity, potentially implicating altered emotional reactivity and/or emotion regulation in the etiological pathway. Importantly, there is accumulating evidence that stress exposure and genetic vulnerability impact amygdala structure/function and risk for internalizing pathology. The present study examined whether early life stress and genetic profile scores (10 single nucleotide polymorphisms within 4 hypothalamic-pituitary-adrenal axis genes: CRHR1, NR3C2, NR3C1, and FKBP5) predicted individual differences in amygdala functional connectivity in school-age children (9- to 14-year-olds; N = 120). Whole-brain regression analyses indicated that increasing genetic "risk" predicted alterations in amygdala connectivity to the caudate and postcentral gyrus. Experience of more stressful and traumatic life events predicted weakened amygdala-anterior cingulate cortex connectivity. Genetic "risk" and stress exposure interacted to predict weakened connectivity between the amygdala and the inferior and middle frontal gyri, caudate, and parahippocampal gyrus in those children with the greatest genetic and environmental risk load. Furthermore, amygdala connectivity longitudinally predicted anxiety symptoms and emotion regulation skills at a later follow-up. Amygdala connectivity mediated effects of life stress on anxiety and of genetic variants on emotion regulation. The current results suggest that considering the unique and interacting effects of biological vulnerability and environmental risk factors may be key to understanding the development of altered amygdala functional connectivity, a potential factor in the risk trajectory for internalizing pathology. (c) 2015 APA, all rights reserved).

  17. Predicting students' physical activity and health-related well-being: a prospective cross-domain investigation of motivation across school physical education and exercise settings.

    PubMed

    Standage, Martyn; Gillison, Fiona B; Ntoumanis, Nikos; Treasure, Darren C

    2012-02-01

    A three-wave prospective design was used to assess a model of motivation guided by self-determination theory (Ryan & Deci, 2008) spanning the contexts of school physical education (PE) and exercise. The outcome variables examined were health-related quality of life (HRQoL), physical self-concept (PSC), and 4 days of objectively assessed estimates of activity. Secondary school students (n = 494) completed questionnaires at three separate time points and were familiarized with how to use a sealed pedometer. Results of structural equation modeling supported a model in which perceptions of autonomy support from a PE teacher positively predicted PE-related need satisfaction (autonomy, competence, and relatedness). Competence predicted PSC, whereas relatedness predicted HRQoL. Autonomy and competence positively predicted autonomous motivation toward PE, which in turn positively predicted autonomous motivation toward exercise (i.e., 4-day pedometer step count). Autonomous motivation toward exercise positively predicted step count, HRQoL, and PSC. Results of multisample structural equation modeling supported gender invariance. Suggestions for future work are discussed.

  18. On the Use of 3dB Qualification Margin for Structural Parts on Expendable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Yunis, Isam

    2007-01-01

    The standard random vibration qualification test used for Expendable Launch Vehicle components is Maximum Predicted Environment (MPE) + 6dB for a duration of 4 times the service life of the part. This can be a severe qualification test for these fatigue-sensitive structures. This paper uses flight data from several launch vehicles to establish that reducing the qualification approach to MPE+3dB for the duration of the peak environment (1x life) is valid for fatigue-sensitive structural components. Items that can be classified as fatigue-sensitive are probes, ducts, tubing, bellows, hoses, and any non-functional structure. Non-functional structure may be flight critical or carry fluid, but it cannot include any moving parts or electronics. This reduced qualification approach does not include primary or secondary structure which would be exclusively designed by peak loads, either transient or quasi-static, that are so large and of so few cycles as to make fatigue a moot point.

  19. Unravelling the structure of species extinction risk for predictive conservation science.

    PubMed

    Lee, Tien Ming; Jetz, Walter

    2011-05-07

    Extinction risk varies across species and space owing to the combined and interactive effects of ecology/life history and geography. For predictive conservation science to be effective, large datasets and integrative models that quantify the relative importance of potential factors and separate rapidly changing from relatively static threat drivers are urgently required. Here, we integrate and map in space the relative and joint effects of key correlates of The International Union for Conservation of Nature-assessed extinction risk for 8700 living birds. Extinction risk varies significantly with species' broad-scale environmental niche, geographical range size, and life-history and ecological traits such as body size, developmental mode, primary diet and foraging height. Even at this broad scale, simple quantifications of past human encroachment across species' ranges emerge as key in predicting extinction risk, supporting the use of land-cover change projections for estimating future threat in an integrative setting. A final joint model explains much of the interspecific variation in extinction risk and provides a remarkably strong prediction of its observed global geography. Our approach unravels the species-level structure underlying geographical gradients in extinction risk and offers a means of disentangling static from changing components of current and future threat. This reconciliation of intrinsic and extrinsic, and of past and future extinction risk factors may offer a critical step towards a more continuous, forward-looking assessment of species' threat status based on geographically explicit environmental change projections, potentially advancing global predictive conservation science.

  20. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species.

    PubMed

    Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R

    2015-06-01

    Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts.

  1. Engine Structures Modeling Software System (ESMOSS)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Engine Structures Modeling Software System (ESMOSS) is the development of a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components, and substructures which can be transferred to finite element analysis programs such as NASTRAN. The NASA Lewis Engine Structures Program is concerned with the development of technology for the rational structural design and analysis of advanced gas turbine engines with emphasis on advanced structural analysis, structural dynamics, structural aspects of aeroelasticity, and life prediction. Fundamental and common to all of these developments is the need for geometric and analytical model descriptions at various engine assembly levels which are generated using ESMOSS.

  2. Turbine Engine Hot Section Technology, 1987

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Presentations were made concerning the development of design analysis tools for combustor liners, turbine vanes, and turbine blades. Presentations were divided into six sections: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response and life prediction methods.

  3. An Advanced Buffet Load Alleviation System

    NASA Technical Reports Server (NTRS)

    Burnham, Jay K.; Pitt, Dale M.; White, Edward V.; Henderson, Douglas A.; Moses, Robert W.

    2001-01-01

    This paper describes the development of an advanced buffet load alleviation (BLA) system that utilizes distributed piezoelectric actuators in conjunction with an active rudder to reduce the structural dynamic response of the F/A-18 aircraft vertical tails to buffet loads. The BLA system was defined analytically with a detailed finite-element-model of the tail structure and piezoelectric actuators. Oscillatory aerodynamics were included along with a buffet forcing function to complete the aeroservoelastic model of the tail with rudder control surface. Two single-input-single-output (SISO) controllers were designed, one for the active rudder and one for the active piezoelectric actuators. The results from the analytical open and closed loop simulations were used to predict the system performance. The objective of this BLA system is to extend the life of vertical tail structures and decrease their life-cycle costs. This system can be applied to other aircraft designs to address suppression of structural vibrations on military and commercial aircraft.

  4. Experimental Verification of a Progressive Damage Model for IM7/5260 Laminates Subjected to Tension-Tension Fatigue

    NASA Technical Reports Server (NTRS)

    Coats, Timothy W.; Harris, Charles E.

    1995-01-01

    The durability and damage tolerance of laminated composites are critical design considerations for airframe composite structures. Therefore, the ability to model damage initiation and growth and predict the life of laminated composites is necessary to achieve structurally efficient and economical designs. The purpose of this research is to experimentally verify the application of a continuum damage model to predict progressive damage development in a toughened material system. Damage due to monotonic and tension-tension fatigue was documented for IM7/5260 graphite/bismaleimide laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables to predict stiffness loss in unnotched laminates. A damage dependent finite element code predicted the stiffness loss for notched laminates with good agreement to experimental data. It was concluded that the continuum damage model can adequately predict matrix damage progression in notched and unnotched laminates as a function of loading history and laminate stacking sequence.

  5. Analysis on mechanics response of long-life asphalt pavement at moist hot heavy loading area

    NASA Astrophysics Data System (ADS)

    Xu, Xinquan; Li, Hao; Wu, Chuanhai; Li, Shanqiang

    2018-04-01

    Based on the durability of semi-rigid base asphalt pavement test road in Guangdong Yunluo expressway, by comparing the mechanics response of modified semi-rigid base, RCC base and inverted semi-rigid base with the state of continuous, using four unit five parameter model to evaluate rut depth of asphalt pavement structure, and through commonly used fatigue life prediction model to evaluate fatigue performance of three types of asphalt pavement structure. Theoretical calculation and four years tracking observation results of test road show that rut depth of modified semi-rigid base asphalt pavement is the minimum, the road performance is the best, and the fatigue performance is the optimal.

  6. Test Method for the Fatigue Life of Layered TiB/Ti Functionally Graded Beams Subjected to Fully Reversed Bending

    NASA Astrophysics Data System (ADS)

    Byrd, Larry; Rickerd, Greg; Wyen, Travis; Cooley, Glenn; Quast, Jeff

    2008-02-01

    Sonic fatigue of aircraft is characterized by fully reversed bending of components subjected to acoustic excitation. This problem is compounded in high temperature environments because solutions for acoustics which tend to result in stiff structures make thermal problems worse. Conversely solutions to the thermal problem which allow expansion often fail in the presence of high acoustic levels. Errors in fatigue life prediction in the combined environment often range from a factor of 4 to 10. This results in either heavy, overly stiff structure or premature failure. This work will test the hypothesis that the fatigue life of a layered functionally graded material (FGM) will be dominated by the failure of the stiffest outer layer. This is based on the observation that for isotropic materials the life is approximately 90% crack initiation and only 10% crack growth before failure. Four sets of cantilever specimens will be tested using an electro-mechanical shaker for base excitation. The excitation will be narrow band random around the fundamental frequency. Two sets of specimens are of uniform composition consisting of 85%TiB/Ti and two are graded specimens consisting of layers that vary from commercially pure titanium to 85%TiB/Ti. Strain vs number of cycles to failure curves will be generated with both constant amplitude sine and narrow band random around the fundamental frequency excitation. The results will be examined to compare life of the uniform material to the functionally graded material. Also to be studied will be the use of Miner's rule to predict the fatigue life of the randomly excited specimens.

  7. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  8. Rolling Bearing Life Prediction-Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Zaretsky, E V; Poplawski, J. V.; Miller, C. R.

    2000-01-01

    Comparisons were made between the life prediction formulas of Lundberg and Palmgren, Ioannides and Harris, and Zaretsky and full-scale ball and roller bearing life data. The effect of Weibull slope on bearing life prediction was determined. Life factors are proposed to adjust the respective life formulas to the normalized statistical life distribution of each bearing type. The Lundberg-Palmgren method resulted in the most conservative life predictions compared to Ioannides and Harris, and Zaretsky methods which produced statistically similar results. Roller profile can have significant effects on bearing life prediction results. Roller edge loading can reduce life by as much as 98 percent. The resultant predicted life not only depends on the life equation used but on the Weibull slope assumed, the least variation occurring with the Zaretsky equation. The load-life exponent p of 10/3 used in the American National Standards Institute (ANSI)/American Bearing Manufacturers Association (ABMA)/International Organization for Standardization (ISO) standards is inconsistent with the majority roller bearings designed and used today.

  9. Managing the equipment service life in rendering engineering support to NPP operation

    NASA Astrophysics Data System (ADS)

    Ryasnyy, S. I.

    2015-05-01

    Apart from subjecting metal to nondestructive testing and determining its actual state, which are the traditional methods used for managing the service life of NPP equipment during its operation, other approaches closely linked with rendering engineering support to NPP operation have emerged in recent decades, which, however, have been covered in publications to a lesser extent. Service life management matters occupy the central place in the structure of engineering support measures. Application of the concept of repairing NPP equipment based on assessing its technical state and the risk of its failure makes it possible to achieve significantly smaller costs for maintenance and repairs and produce a larger amount of electricity due to shorter planned outages. Decreasing the occurrence probability of a process-related abnormality through its prediction is a further development of techniques for monitoring the technical state of equipment and systems. The proposed and implemented procedure for predicting the occurrence of process-related deviations from normal NPP operation opens the possibility to record in the online mode the trends in changes of process parameters that are likely to lead to malfunctions in equipment operation and to reduce the probability of power unit unloading when an abnormal technical state of equipment occurs and develops by recording changes in the state at an early stage and taking timely corrective measures. The article presents the structure of interconnections between the objectives and conditions of adjustment and commissioning tests, in which the management of equipment service life (saving and optimizing the service life) occupies the central place. Special attention is paid to differences in resource saving and optimization measures.

  10. Three Dimensional Numerical Simulation and Characterization of Crack Growth in the Weld Region of a Friction Stir Welded Structure

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.

    2013-01-01

    Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures

  11. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    NASA Technical Reports Server (NTRS)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  12. The relationship between psychological resources, social resources, and depression: results from older spousal caregivers in Hong Kong.

    PubMed

    Chow, Esther O W; Ho, Henry C Y

    2012-01-01

    The rapidly ageing population in Hong Kong has led to a major concern in providing care for the elderly. Due to the current social changes in Hong Kong, such as smaller family size, longer life spans, and increasing employment demands, spouses increasingly serve as the primary caregivers for older adults. To explore the mental health of older spousal caregivers, this study investigated the relationships between psychological resources, social resources, and depression. One hundred fifty-eight spousal caregivers aged 55 and above were recruited from 13 caregiver resource centres in Hong Kong. Data were collected using structured questionnaires. Hierarchical regression analysis revealed that the number of duties and psychological resources including purpose in life, caregiver burden, and personal wellbeing explained 56% of the variance in depression. Logistic regression analysis further indicated that purpose in life predicted the likelihood of depression reported by caregivers. Social resources did not significantly predict depression. Results suggest that mental health enhancement programs should be developed for Chinese spousal caregivers with a focus on purpose in life, burden, and personal wellbeing.

  13. Sensitivity to disgust, stigma, and adjustment to life with a colostomy

    PubMed Central

    Smith, Dylan M.; Loewenstein, George; Rozin, Paul; Sherriff, Ryan L.; Ubel, Peter A.

    2007-01-01

    We examined whether trait disgust sensitivity predicts well-being in colostomy patients, and whether disgust predicts stigmatizing attitudes about colostomy in non-patients. 195 patients with a colostomy returned a mailed survey including measures of disgust sensitivity, life satisfaction, mood, and feelings of being stigmatized. We also conducted an internet-survey of a non-patient sample (n = 523). In the patient sample, we observed negative correlations between a bowel-specific measure of disgust sensitivity and life satisfaction (r = −.34, p<.01), and colostomy adjustment ( r = −.42, p<.01), and a positive correlation with feeling stigmatized because of the colostomy (r = .54, p<.01). Correlations between a general trait disgust measure and these outcomes were more modest. A structural equation model indicated that colostomy patients who had high disgust sensitivity felt more stigmatized, and this was in turn strongly related to lower life satisfaction. Concordantly, in the non-patient sample we observed that disgust sensitivity was a significant, positive predictor of wanting less contact with colostomy patients (r = .22, p < .01). PMID:17940585

  14. Reminiscence functions and the health of Israeli Holocaust survivors as compared to other older Israelis and older Canadians.

    PubMed

    O'Rourke, Norm; Bachner, Yaacov G; Cappeliez, Philippe; Chaudhury, Habib; Carmel, Sara

    2015-01-01

    Existing research with English-speaking samples indicates that various ways in which older adults recall their past affect both their physical and mental health. Self-positive reminiscence functions (i.e. identity, problem-solving, death preparation) correlate and predict mental health in later life whereas self-negative functions (i.e. bitterness revival, boredom reduction, intimacy maintenance) correlate and predict the physical health of older adults. For this study, we recruited 295 Israeli Holocaust survivors to ascertain if early life trauma affects these associations between reminiscence and health. In order to distinguish cross-national differences from survivor-specific effects, we also recruited two comparative samples of other older Israelis (not Holocaust survivors; n = 205) and a second comparative sample of 335 older Canadians. Three separate structural equation models were computed to replicate this tripartite reminiscence and health model. Coefficients for self-negative functions significantly differed between survivors and both Canadians and other older Israelis, and between Canadians and both Israeli samples. However, no differences were found between prosocial and self-positive functions. Moreover, the higher order structure of reminiscence and health appears largely indistinguishable across these three groups. Early life trauma does not appear to fundamentally affect associations between reminiscence and health. These findings underscore the resilience of Holocaust survivors.

  15. Affective temperaments play an important role in the relationship between child abuse and the diagnosis of bipolar disorder.

    PubMed

    Toda, Hiroyuki; Inoue, Takeshi; Tanichi, Masaaki; Saito, Taku; Nakagawa, Shin; Masuya, Jiro; Tanabe, Hajime; Yoshino, Aihide; Kusumi, Ichiro

    2018-04-01

    In previous studies, various components such as environmental and genetic factors have been shown to contribute to the development of bipolar disorder (BD). This study investigated how multiple factors, including child abuse, adult life events, and affective temperaments, are interrelated and how they affect the diagnosis of BD. A total of 170 healthy controls and 75 BD patients completed the following self-administered questionnaires: the Patient Health Questionnaire-9 evaluating the severity of depressive symptoms; the Child Abuse and Trauma Scale (CATS) evaluating child abuse; the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego autoquestionnaire (TEMPS-A) evaluating affective temperaments; and the Life Experiences Survey (LES) evaluating negative and positive adult life events. The data were subjected to univariate analysis, multivariable analysis, and structural equation modeling. The structural equation modeling showed that the diagnosis of BD was indirectly predicted by the neglect and sexual abuse scores of the CATS through four affective temperaments (depressive, cyclothymic, irritable, and anxious) of the TEMPS-A and directly predicted by these four affective temperaments. This study suggested that affective temperament plays an important role as a mediator in the influence of child abuse on BD diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Structural Analysis of Composite Flywheels: an Integrated NDE and FEM Approach

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George; Trudell, Jeffrey

    2001-01-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake-like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 48,000 rpm for rotor A and 34,000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  17. Decoding of human hand actions to handle missing limbs in neuroprosthetics.

    PubMed

    Belić, Jovana J; Faisal, A Aldo

    2015-01-01

    The only way we can interact with the world is through movements, and our primary interactions are via the hands, thus any loss of hand function has immediate impact on our quality of life. However, to date it has not been systematically assessed how coordination in the hand's joints affects every day actions. This is important for two fundamental reasons. Firstly, to understand the representations and computations underlying motor control "in-the-wild" situations, and secondly to develop smarter controllers for prosthetic hands that have the same functionality as natural limbs. In this work we exploit the correlation structure of our hand and finger movements in daily-life. The novelty of our idea is that instead of averaging variability out, we take the view that the structure of variability may contain valuable information about the task being performed. We asked seven subjects to interact in 17 daily-life situations, and quantified behavior in a principled manner using CyberGlove body sensor networks that, after accurate calibration, track all major joints of the hand. Our key findings are: (1) We confirmed that hand control in daily-life tasks is very low-dimensional, with four to five dimensions being sufficient to explain 80-90% of the variability in the natural movement data. (2) We established a universally applicable measure of manipulative complexity that allowed us to measure and compare limb movements across tasks. We used Bayesian latent variable models to model the low-dimensional structure of finger joint angles in natural actions. (3) This allowed us to build a naïve classifier that within the first 1000 ms of action initiation (from a flat hand start configuration) predicted which of the 17 actions was going to be executed-enabling us to reliably predict the action intention from very short-time-scale initial data, further revealing the foreseeable nature of hand movements for control of neuroprosthetics and tele operation purposes. (4) Using the Expectation-Maximization algorithm on our latent variable model permitted us to reconstruct with high accuracy (<5-6° MAE) the movement trajectory of missing fingers by simply tracking the remaining fingers. Overall, our results suggest the hypothesis that specific hand actions are orchestrated by the brain in such a way that in the natural tasks of daily-life there is sufficient redundancy and predictability to be directly exploitable for neuroprosthetics.

  18. Morphological plasticity reduces the effect of poor developmental conditions on fledging age in mourning doves

    PubMed Central

    Miller, David A.

    2010-01-01

    Developmental plasticity can be integral in adapting organisms to the environment experienced during growth. Adaptive plastic responses may be especially important in prioritizing development in response to stress during ontogeny. To evaluate this, I examined how developmental conditions for mourning doves related to early growth and how this affected fledging age, an important life-history transition for birds. The life history of mourning doves is consistent with strong selective pressure to minimize fledging age. Therefore, I predicted that in the face of nutritional stress associated with experimental brood-size increases, young would prioritize growth to structures that promote early fledging to reduce the effect of slowed overall growth on fledging age. Increasing brood size slowed overall structural growth of nestlings and affected the relative allocation of growth among different body parts. Total wing area was the best predictor of fledging age and individuals from larger broods had larger wings relative to overall body size. Although nestlings from larger broods fledged at later ages owing to slower overall growth, prioritization of wing growth reduced this effect by an estimated 1.6 days relative to the delay if plasticity among body parts had not occurred. This was an 11 per cent reduction in the predicted developmental time it took to reach this important life-history transition. Results demonstrate that preferential allocation to wing growth can affect the timing of this life-history transition and that morphological plasticity during development can have adaptive near-term effects during avian development. PMID:20129984

  19. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants

    PubMed Central

    Yu, Zheng-Yong; Liu, Qiang; Liu, Yunhan

    2017-01-01

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi–Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings. PMID:28792487

  20. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.

    PubMed

    Yu, Zheng-Yong; Zhu, Shun-Peng; Liu, Qiang; Liu, Yunhan

    2017-08-09

    Based on the critical plane approach, a simple and efficient multiaxial fatigue damage parameter with no additional material constants is proposed for life prediction under uniaxial/multiaxial proportional and/or non-proportional loadings for titanium alloy TC4 and nickel-based superalloy GH4169. Moreover, two modified Ince-Glinka fatigue damage parameters are put forward and evaluated under different load paths. Results show that the generalized strain amplitude model provides less accurate life predictions in the high cycle life regime and is better for life prediction in the low cycle life regime; however, the generalized strain energy model is relatively better for high cycle life prediction and is conservative for low cycle life prediction under multiaxial loadings. In addition, the Fatemi-Socie model is introduced for model comparison and its additional material parameter k is found to not be a constant and its usage is discussed. Finally, model comparison and prediction error analysis are used to illustrate the superiority of the proposed damage parameter in multiaxial fatigue life prediction of the two aviation alloys under various loadings.

  1. Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the CARES/Creep program.

  2. Computational structural mechanics for engine structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1989-01-01

    The computational structural mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures. It is structured to mainly supplement, complement, and whenever possible replace, costly experimental efforts which are unavoidable during engineering research and development programs. Specific objectives include: investigate unique advantages of parallel and multiprocesses for: reformulating/solving structural mechanics and formulating/solving multidisciplinary mechanics and develop integrated structural system computational simulators for: predicting structural performances, evaluating newly developed methods, and for identifying and prioritizing improved/missing methods needed. Herein the CSM program is summarized with emphasis on the Engine Structures Computational Simulator (ESCS). Typical results obtained using ESCS are described to illustrate its versatility.

  3. Structural health monitoring apparatus and methodology

    NASA Technical Reports Server (NTRS)

    Giurgiutiu, Victor (Inventor); Yu, Lingyu (Inventor); Bottai, Giola Santoni (Inventor)

    2011-01-01

    Disclosed is an apparatus and methodology for structural health monitoring (SHM) in which smart devices interrogate structural components to predict failure, expedite needed repairs, and thus increase the useful life of those components. Piezoelectric wafer active sensors (PWAS) are applied to or integrated with structural components and various data collected there from provide the ability to detect and locate cracking, corrosion, and disbanding through use of pitch-catch, pulse-echo, electro/mechanical impedance, and phased array technology. Stand alone hardware and an associated software program are provided that allow selection of multiple types of SHM investigations as well as multiple types of data analysis to perform a wholesome investigation of a structure.

  4. An Experimental and Analytical Investigation of Stirling Space Power Converter Heater Head

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Bartolotta, Paul; Tong, Mike; Allen, Gorden

    1995-01-01

    NASA has identified the Stirling power converter as a prime candidate for the next generation power system for space applications requiring 60000 hr of operation. To meet this long-term goal, several critical components of the power converter have been analyzed using advanced structural assessment methods. Perhaps the most critical component, because of its geometric complexity and operating environment, is the power converter's heater head. This report describes the life assessment of the heater head which includes the characterization of a viscoplastic material model, the thermal and structural analyses of the heater head, and the interpolation of fatigue and creep test results of a nickel-base superalloy, Udimet 720 LI (Low Inclusions), at several elevated temperatures for life prediction purposes.

  5. Profiles of neurological outcome prediction among intensivists.

    PubMed

    Racine, Eric; Dion, Marie-Josée; Wijman, Christine A C; Illes, Judy; Lansberg, Maarten G

    2009-12-01

    Advances in intensive care medicine have increased survival rates of patients with critical neurological conditions. The focus of prognostication for such patients is therefore shifting from predicting chances of survival to meaningful neurological recovery. This study assessed the variability in long-term outcome predictions among physicians and aimed to identify factors that may account for this variability. Based on a clinical vignette describing a comatose patient suffering from post-anoxic brain injury intensivists were asked in a semi-structured interview about the patient's specific neurological prognosis and about prognostication in general. Qualitative research methods were used to identify areas of variability in prognostication and to classify physicians according to specific prognostication profiles. Quantitative statistics were used to assess for associations between prognostication profiles and physicians' demographic and practice characteristics. Eighteen intensivists participated. Functional outcome predictions varied along an evaluative dimension (fair/good-poor) and a confidence dimension (certain-uncertain). More experienced physicians tended to be more pessimistic about the patient's functional outcome and more certain of their prognosis. Attitudes toward quality of life varied along an evaluative dimension (good-poor) and a "style" dimension (objective-subjective). Older and more experienced physicians were more likely to express objective judgments of quality of life and to predict a worse quality of life for the patient than their younger and less experienced counterparts. Various prognostication profiles exist among intensivists. These may be dictated by factors such as physicians' age and clinical experience. Awareness of these associations may be a first step to more uniform prognostication.

  6. Life extending control for rocket engines

    NASA Technical Reports Server (NTRS)

    Lorenzo, C. F.; Saus, J. R.; Ray, A.; Carpino, M.; Wu, M.-K.

    1992-01-01

    The concept of life extending control is defined. A brief discussion of current fatigue life prediction methods is given and the need for an alternative life prediction model based on a continuous functional relationship is established. Two approaches to life extending control are considered: (1) the implicit approach which uses cyclic fatigue life prediction as a basis for control design; and (2) the continuous life prediction approach which requires a continuous damage law. Progress on an initial formulation of a continuous (in time) fatigue model is presented. Finally, nonlinear programming is used to develop initial results for life extension for a simplified rocket engine (model).

  7. Integrity of Ceramic Parts Predicted When Loads and Temperatures Fluctuate Over Time

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2004-01-01

    Brittle materials are being used, and being considered for use, for a wide variety of high performance applications that operate in harsh environments, including static and rotating turbine parts for unmanned aerial vehicles, auxiliary power units, and distributed power generation. Other applications include thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and microelectromechanical systems (MEMS). In order for these high-technology ceramics to be used successfully for structural applications that push the envelope of materials capabilities, design engineers must consider that brittle materials are designed and analyzed differently than metallic materials. Unlike ductile metals, brittle materials display a stochastic strength response because of the combination of low fracture toughness and the random nature of the size, orientation, and distribution of inherent microscopic flaws. This plus the fact that the strength of a component under load may degrade over time because of slow crack growth means that a probabilistic-based life-prediction methodology must be used when the tradeoffs of failure probability, performance, and useful life are being optimized. The CARES/Life code (which was developed at the NASA Glenn Research Center) predicts the probability of ceramic components failing from spontaneous catastrophic rupture when these components are subjected to multiaxial loading and slow crack growth conditions. Enhancements to CARES/Life now allow for the component survival probability to be calculated when loading and temperature vary over time.

  8. Thermomechanical deformation in the presence of metallurgical changes

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.

    1985-01-01

    Nonisothermal testing that can be used as a basis of a nonisothermal representation is discussed. Related tests regarding metallurgical changes that occur in other high temperature structural alloys are discussed. A viscoplastic constitutive model capable of qualitatively representing the behavioral features was formulated. This model is used to assess the differences in ultimate life prediction in some typical nonisothermal structural problems when the constitutive model does or does not account for metallurgically induced thermomechanical history dependence.

  9. Turbine Engine Hot Section Technology, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Presentations were made concerning the hot section environment and behavior of combustion liners, turbine blades, and waves. The presentations were divided into six sessions: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, and surface properties. The principal objective of each session was to disseminate research results to date, along with future plans. Topics discussed included modeling of thermal and fluid flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior, stress-strain response, and life prediction methods.

  10. Reengineering Aircraft Structural Life Prediction Using a Digital Twin

    DTIC Science & Technology

    2011-01-01

    that exaflop-per-second computers will become available: “extrapolation of current hardware trends suggests that exascale systems could be available in...vol. 28, no. 5, pp. 339–350, 2002. [4] H. Simon, T. Zacharia, and R. Stevens, Modeling and Sim- ulation at the Exascale for Energy and the Environment

  11. Onset of alveolar recirculation in the developing lungs and its consequence on nanoparticle deposition in the pulmonary acinus

    PubMed Central

    Henry, Frank S.

    2015-01-01

    The structure of the gas exchange region of the human lung (the pulmonary acinus) undergoes profound change in the first few years of life. In this paper, we investigate numerically how the change in alveolar shape with time affects the rate of nanoparticle deposition deep in the lung during postnatal development. As human infant data is unavailable, we use a rat model of lung development. The process of postnatal lung development in the rat is remarkably similar to that of the human, and the structure of the rat acinus is indistinguishable from that of the human acinus. The current numerical predictions support our group's recent in vivo findings, which were also obtained by using growing rat lung models, that nanoparticle deposition in infants is strongly affected by the change in the structure of the pulmonary acinus. In humans, this major structural change occurs over the first 2 yr of life. Our current predictions would suggest that human infants at the age of ∼2 yr might be most at risk to the harmful effects of air pollution. Our results also suggest that dose estimates for inhalation therapies using nanoparticles, based on fully developed adult lungs with simple body weight scaling, are likely to overestimate deposition by up to 55% for newborns and underestimate deposition by up to 17% for 2-yr-old infants. PMID:26494453

  12. A review of fracture mechanics life technology

    NASA Technical Reports Server (NTRS)

    Besuner, P. M.; Harris, D. O.; Thomas, J. M.

    1986-01-01

    Lifetime prediction technology for structural components subjected to cyclic loads is examined. The central objectives of the project are: (1) to report the current state of the art, and (2) recommend future development of fracture mechanics-based analytical tools for modeling subcritical fatigue crack growth in structures. Of special interest is the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. The authors conducted a survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.

  13. Prediction of dynamic strains on a monopile offshore wind turbine using virtual sensors

    NASA Astrophysics Data System (ADS)

    Iliopoulos, A. N.; Weijtjens, W.; Van Hemelrijck, D.; Devriendt, C.

    2015-07-01

    The monitoring of the condition of the offshore wind turbine during its operational states offers the possibility of performing accurate assessments of the remaining life-time as well as supporting maintenance decisions during its entire life. The efficacy of structural monitoring in the case of the offshore wind turbine, though, is undermined by the practical limitations connected to the measurement system in terms of cost, weight and feasibility of sensor mounting (e.g. at muddline level 30m below the water level). This limitation is overcome by reconstructing the full-field response of the structure based on the limited number of measured accelerations and a calibrated Finite Element Model of the system. A modal decomposition and expansion approach is used for reconstructing the responses at all degrees of freedom of the finite element model. The paper will demonstrate the possibility to predict dynamic strains from acceleration measurements based on the aforementioned methodology. These virtual dynamic strains will then be evaluated and validated based on actual strain measurements obtained from a monitoring campaign on an offshore Vestas V90 3 MW wind turbine on a monopile foundation.

  14. A review of fracture mechanics life technology

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Besuner, P. M.; Harris, D. O.

    1985-01-01

    Current lifetime prediction technology for structural components subjected to cyclic loads was reviewed. The central objectives of the project were to report the current state of and recommend future development of fracture mechanics-based analytical tools for modeling and forecasting subcritical fatigue crack growth in structures. Of special interest to NASA was the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. A survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology were conducted. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include: development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.

  15. Oceanography and life history predict contrasting genetic population structure in two Antarctic fish species

    PubMed Central

    Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R

    2015-01-01

    Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a ‘seascape genetics’ approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts. PMID:26029262

  16. Estimation of fatigue life using electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Lim, Yee Yan; Soh, Chee Kiong

    2010-04-01

    Fatigue induced damage is often progressive and gradual in nature. Structures subjected to large number of fatigue load cycles will encounter the process of progressive crack initiation, propagation and finally fracture. Monitoring of structural health, especially for the critical components, is therefore essential for early detection of potential harmful crack. Recent advent of smart materials such as piezo-impedance transducer adopting the electromechanical impedance (EMI) technique and wave propagation technique are well proven to be effective in incipient damage detection and characterization. Exceptional advantages such as autonomous, real-time and online, remote monitoring may provide a cost-effective alternative to the conventional structural health monitoring (SHM) techniques. In this study, the main focus is to investigate the feasibility of characterizing a propagating fatigue crack in a structure using the EMI technique as well as estimating its remaining fatigue life using the linear elastic fracture mechanics (LEFM) approach. Uniaxial cyclic tensile load is applied on a lab-sized aluminum beam up to failure. Progressive shift in admittance signatures measured by the piezo-impedance transducer (PZT patch) corresponding to increase of loading cycles reflects effectiveness of the EMI technique in tracing the process of fatigue damage progression. With the use of LEFM, prediction of the remaining life of the structure at different cycles of loading is possible.

  17. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  18. Isothermal life prediction of composite lamina using a damage mechanics approach

    NASA Technical Reports Server (NTRS)

    Abuelfoutouh, Nader M.; Verrilli, Michael J.; Halford, Gary R.

    1989-01-01

    A method for predicting isothermal plastic fatigue life of a composite lamina is presented in which both fibers and matrix are isotropic materials. In general, the fatigue resistances of the matrix, fibers, and interfacial material must be known in order to predict composite fatigue life. Composite fatigue life is predicted using only the matrix fatigue resistance due to inelasticity micromechanisms. The effect of the fiber orientation on loading direction is accounted for while predicting composite life. The application is currently limited to isothermal cases where the internal thermal stresses that might arise from thermal strain mismatch between fibers and matrix are negligible. The theory is formulated to predict the fatigue life of a composite lamina under either load or strain control. It is applied currently to predict the life of tungsten-copper composite lamina at 260 C under tension-tension load control. The calculated life of the lamina is in good agreement with available composite low cycle fatigue data.

  19. Accounting for Uncertainties in Strengths of SiC MEMS Parts

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel; Evans, Laura; Beheim, Glen; Trapp, Mark; Jadaan, Osama; Sharpe, William N., Jr.

    2007-01-01

    A methodology has been devised for accounting for uncertainties in the strengths of silicon carbide structural components of microelectromechanical systems (MEMS). The methodology enables prediction of the probabilistic strengths of complexly shaped MEMS parts using data from tests of simple specimens. This methodology is intended to serve as a part of a rational basis for designing SiC MEMS, supplementing methodologies that have been borrowed from the art of designing macroscopic brittle material structures. The need for this or a similar methodology arises as a consequence of the fundamental nature of MEMS and the brittle silicon-based materials of which they are typically fabricated. When tested to fracture, MEMS and structural components thereof show wide part-to-part scatter in strength. The methodology involves the use of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) software in conjunction with the ANSYS Probabilistic Design System (PDS) software to simulate or predict the strength responses of brittle material components while simultaneously accounting for the effects of variability of geometrical features on the strength responses. As such, the methodology involves the use of an extended version of the ANSYS/CARES/PDS software system described in Probabilistic Prediction of Lifetimes of Ceramic Parts (LEW-17682-1/4-1), Software Tech Briefs supplement to NASA Tech Briefs, Vol. 30, No. 9 (September 2006), page 10. The ANSYS PDS software enables the ANSYS finite-element-analysis program to account for uncertainty in the design-and analysis process. The ANSYS PDS software accounts for uncertainty in material properties, dimensions, and loading by assigning probabilistic distributions to user-specified model parameters and performing simulations using various sampling techniques.

  20. Large-displacement structural durability analyses of simple bend specimen emulating rocket nozzle liners

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R.

    1994-01-01

    Large-displacement elastic and elastic-plastic, finite-element stress-strain analyses of an oxygen-tree high-conductivity (OFHC) copper plate specimen were performed using an updated Lagrangian formulation. The plate specimen is intended for low-cost experiments that emulate the most important thermomechanical loading and failure modes of a more complex rocket nozzle. The plate, which is loaded in bending at 593 C, contains a centrally located and internally pressurized channel. The cyclic crack initiation lives were estimated using the results from the analyses and isothermal strain-controlled low-cycle fatigue data for OFHC copper. A comparison of the predicted and experimental cyclic lives showed that an elastic analysis predicts a longer cyclic life than that observed in experiments by a factor greater than 4. The results from elastic-plastic analysis for the plate bend specimen, however, predicted a cyclic life in close agreement with experiment, thus justifying the need for the more rigorous stress-strain analysis.

  1. Paternal and maternal influences on the psychological well-being of Chinese adolescents.

    PubMed

    Shek, D T

    1999-08-01

    Adolescents' (N = 378) perceptions of and satisfaction with parenting styles, perceived parent-adolescent conflict, perceived frequency of parent-adolescent communication and related feelings, perceived parent-adolescent relationship, and mental health were assessed with rating scales and structured interviews on 2 occasions separated by 1 year. Results showed that the questionnaire and interview measures at each time could be grouped into 2 stable factors: Paternal Parenthood Qualities (PPQ) and Maternal Parenthood Qualities (MPQ). Although both factors generally had significant concurrent and longitudinal correlations with adolescents' mental health, PPQ at Time 1-predicted changes in adolescent life satisfaction, hopelessness, self-esteem, purpose in life, and general psychiatric morbidity at Time 2, whereas MPQ at Time 1 did not predict those changes. Adolescents' mental health at Time 1 was found to predict changes in MPQ but not PPQ at Time 2. Relative to maternal qualities, paternal qualities were generally found to exert a stronger impact on adolescent psychological well-being.

  2. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  3. Early changes in socioeconomic status do not predict changes in body mass in the first decade of life.

    PubMed

    Starkey, Leighann; Revenson, Tracey A

    2015-04-01

    Many studies link childhood socioeconomic status (SES) to body mass index (BMI), but few account for the impact of socioeconomic mobility throughout the lifespan. This study aims to investigate the impact of socioeconomic mobility on changes in BMI in childhood. Analyses tested whether [1] socioeconomic status influences BMI, [2] changes in socioeconomic status impact changes in BMI, and [3] timing of socioeconomic status mobility impacts BMI. Secondary data spanning birth to age 9 were analyzed. SES and BMI were investigated with gender, birth weight, maternal race/ethnicity, and maternal nativity as covariates. Autoregressive structural equation modeling and latent growth modeling were used. Socioeconomic status in the first year of life predicted body mass index. Child covariates were consistently associated with body mass index. Rate of change in socioeconomic status did not predict change in body mass index. The findings suggest that early socioeconomic status may most influence body mass in later childhood.

  4. Transient Reliability Analysis Capability Developed for CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2001-01-01

    The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has been developed to perform reliability analysis for components that undergo proof testing involving transient loads. This methodology was developed for environmentally assisted crack growth (crack growth as a function of time and loading), but it will be extended to account for cyclic fatigue (crack growth as a function of load cycles) as well.

  5. Light Water Reactor Sustainability Program: Survey of Models for Concrete Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin W.; Huang, Hai

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have predictive tools to address concerns related to aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to review and document the main aging mechanismsmore » of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.« less

  6. Analysis of Phenix end-of-life natural convection test with the MARS-LMR code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, H. Y.; Ha, K. S.; Lee, K. L.

    The end-of-life test of Phenix reactor performed by the CEA provided an opportunity to have reliable and valuable test data for the validation and verification of a SFR system analysis code. KAERI joined this international program for the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main objectives of this study were to evaluate the capability of existing SFR system analysis code MARS-LMR and to identify any limitation of the code. The analysis was performed in three stages: pre-test analysis, blind posttest analysis, and final post-test analysis. In the pre-test analysis, the design conditionsmore » provided by the CEA were used to obtain a prediction of the test. The blind post-test analysis was based on the test conditions measured during the tests but the test results were not provided from the CEA. The final post-test analysis was performed to predict the test results as accurate as possible by improving the previous modeling of the test. Based on the pre-test analysis and blind test analysis, the modeling for heat structures in the hot pool and cold pool, steel structures in the core, heat loss from roof and vessel, and the flow path at core outlet were reinforced in the final analysis. The results of the final post-test analysis could be characterized into three different phases. In the early phase, the MARS-LMR simulated the heat-up process correctly due to the enhanced heat structure modeling. In the mid phase before the opening of SG casing, the code reproduced the decrease of core outlet temperature successfully. Finally, in the later phase the increase of heat removal by the opening of the SG opening was well predicted with the MARS-LMR code. (authors)« less

  7. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed Central

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0–20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary. PMID:27973530

  8. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  9. Modelling biological invasions: species traits, species interactions, and habitat heterogeneity.

    PubMed

    Cannas, Sergio A; Marco, Diana E; Páez, Sergio A

    2003-05-01

    In this paper we explore the integration of different factors to understand, predict and control ecological invasions, through a general cellular automaton model especially developed. The model includes life history traits of several species in a modular structure interacting multiple cellular automata. We performed simulations using field values corresponding to the exotic Gleditsia triacanthos and native co-dominant trees in a montane area. Presence of G. triacanthos juvenile bank was a determinant condition for invasion success. Main parameters influencing invasion velocity were mean seed dispersal distance and minimum reproductive age. Seed production had a small influence on the invasion velocity. Velocities predicted by the model agreed well with estimations from field data. Values of population density predicted matched field values closely. The modular structure of the model, the explicit interaction between the invader and the native species, and the simplicity of parameters and transition rules are novel features of the model.

  10. Nonlinear ultrasonics for material state awareness

    NASA Astrophysics Data System (ADS)

    Jacobs, L. J.

    2014-02-01

    Predictive health monitoring of structural components will require the development of advanced sensing techniques capable of providing quantitative information on the damage state of structural materials. By focusing on nonlinear acoustic techniques, it is possible to measure absolute, strength based material parameters that can then be coupled with uncertainty models to enable accurate and quantitative life prediction. Starting at the material level, this review will present current research that involves a combination of sensing techniques and physics-based models to characterize damage in metallic materials. In metals, these nonlinear ultrasonic measurements can sense material state, before the formation of micro- and macro-cracks. Typically, cracks of a measurable size appear quite late in a component's total life, while the material's integrity in terms of toughness and strength gradually decreases due to the microplasticity (dislocations) and associated change in the material's microstructure. This review focuses on second harmonic generation techniques. Since these nonlinear acoustic techniques are acoustic wave based, component interrogation can be performed with bulk, surface and guided waves using the same underlying material physics; these nonlinear ultrasonic techniques provide results which are independent of the wave type used. Recent physics-based models consider the evolution of damage due to dislocations, slip bands, interstitials, and precipitates in the lattice structure, which can lead to localized damage.

  11. Accelerated testing of space mechanisms

    NASA Technical Reports Server (NTRS)

    Murray, S. Frank; Heshmat, Hooshang

    1995-01-01

    This report contains a review of various existing life prediction techniques used for a wide range of space mechanisms. Life prediction techniques utilized in other non-space fields such as turbine engine design are also reviewed for applicability to many space mechanism issues. The development of new concepts on how various tribological processes are involved in the life of the complex mechanisms used for space applications are examined. A 'roadmap' for the complete implementation of a tribological prediction approach for complex mechanical systems including standard procedures for test planning, analytical models for life prediction and experimental verification of the life prediction and accelerated testing techniques are discussed. A plan is presented to demonstrate a method for predicting the life and/or performance of a selected space mechanism mechanical component.

  12. Correlation of RNA secondary structure statistics with thermodynamic stability and applications to folding.

    PubMed

    Wu, Johnny C; Gardner, David P; Ozer, Stuart; Gutell, Robin R; Ren, Pengyu

    2009-08-28

    The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.

  13. Social cognitive predictors of academic and life satisfaction: Measurement and structural equivalence across three racial/ethnic groups.

    PubMed

    Sheu, Hung-Bin; Mejia, Araceli; Rigali-Oiler, Marybeth; Primé, Dominic R; Chong, Shiqin Stephanie

    2016-07-01

    Data of 306 Caucasian American, 284 Asian American, and 259 Latino/a American college students were analyzed in this study to test a modified version of Lent and Brown's (2006, 2008) satisfaction model in the academic context. In addition to the full set of variables hypothesized in the original model, the modified academic satisfaction model also included independent and interdependent self-construals to represent one's cultural orientations. Comparisons between the hypothesized model and 2 alternative models showed that direct paths from extraversion and emotional stability added significantly to the predictions of academic satisfaction and life satisfaction for all 3 racial/ethnic groups while those from independent and interdependent self-construals also had the same effects for Latino/a American students. The hypothesized model offered excellent fit to the data of all 3 racial/ethnic groups. Consistent with theoretical prediction, academic supports, self-efficacy, outcome expectations, or goal progress formed pathways that mediated the relations of personality traits and self-construals to academic satisfaction or life satisfaction across 3 groups. Although full measurement equivalence (configural invariance and metric invariance) was observed, 4 structural paths and 16 indirect effects differed significantly by race/ethnicity. Most of these differences in structural paths and indirect effects occurred between Caucasian Americans and Asian Americans. On balance, findings of the study provided evidence for the cross-racial/ethnic validity of the modified academic satisfaction model while identifying racial/ethnic differences that might have useful clinical implications. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Goal-directedness and personal identity as correlates of life outcomes.

    PubMed

    Goldman, Barry M; Masterson, Suzanne S; Locke, Edwin A; Groth, Markus; Jensen, David G

    2002-08-01

    Although much research has been conducted on goal setting, researchers have not examined goal-directedness or propensity to set goals as a stable human characteristic in adults. In this study, a survey was developed and distributed to 104 adult participants to assess their goal-directedness, personal identity, and various life outcomes. A theoretical model was developed and tested using structural equation modeling that proposed that both goal-directedness and personal identity should positivcly influence important life outcomes. Analysis showed that goal-directedness and personal identity are positively related to personal well-being, salary, and marital satisfaction. Further, personal identity was positively related to job satisfaction but, contrary to related research, goal-directedness did not predict job satisfaction.

  15. Corrosion Prediction with Parallel Finite Element Modeling for Coupled Hygro-Chemo Transport into Concrete under Chloride-Rich Environment

    PubMed Central

    Na, Okpin; Cai, Xiao-Chuan; Xi, Yunping

    2017-01-01

    The prediction of the chloride-induced corrosion is very important because of the durable life of concrete structure. To simulate more realistic durability performance of concrete structures, complex scientific methods and more accurate material models are needed. In order to predict the robust results of corrosion initiation time and to describe the thin layer from concrete surface to reinforcement, a large number of fine meshes are also used. The purpose of this study is to suggest more realistic physical model regarding coupled hygro-chemo transport and to implement the model with parallel finite element algorithm. Furthermore, microclimate model with environmental humidity and seasonal temperature is adopted. As a result, the prediction model of chloride diffusion under unsaturated condition was developed with parallel algorithms and was applied to the existing bridge to validate the model with multi-boundary condition. As the number of processors increased, the computational time decreased until the number of processors became optimized. Then, the computational time increased because the communication time between the processors increased. The framework of present model can be extended to simulate the multi-species de-icing salts ingress into non-saturated concrete structures in future work. PMID:28772714

  16. Predicting recreational fishing use of offshore petroleum platforms in the Central Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, W.R. Jr.

    1987-01-01

    This study is based on the premise that properly sited artificial reefs for optimal human recreational use, a predictive model based upon the marine travel patterns and behavior of marine recreational fishermen, is needed. This research used data gathered from a previous study that addressed the recreational fishing use of offshore oil and gas structures (Ditton and Auyong 1984); on-site data were also collected. The primary research objective was to generate a predictive model that can be applied to artificial-reef development efforts elsewhere. This study investigated the recreational-user patterns of selected petroleum platforms structures in the Central Gulf of Mexico.more » The petroleum structures offshore from the Louisiana coastline provide a unique research tool. Although intended to facilitate the exploration and recovery of hydrocarbons, petroleum platforms also serve as defacto artificial reefs, providing habitat for numerous species of fish and other marine life. Petroleum platforms were found to be the principal fishing destinations within the study area. On-site findings reveal that marine recreational fishermen were as mobile on water, as they are on land. On-site findings were used to assist in the development of a predictive model.« less

  17. Hierarchical learning induces two simultaneous, but separable, prediction errors in human basal ganglia.

    PubMed

    Diuk, Carlos; Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew; Niv, Yael

    2013-03-27

    Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously.

  18. Factors affecting quality of life in adults with epilepsy in Taiwan: A cross-sectional, correlational study.

    PubMed

    Chen, Hsiu-Fang; Tsai, Yun-Fang; Hsi, Mo-Song; Chen, Jui-Chen

    2016-05-01

    The purpose of this study was to assess eight factors considered important for quality of life in persons with epilepsy in order to determine which of these components affect quality of life in adults with epilepsy in Taiwan. A cross-sectional, correlational study using structured questionnaires assessed 260 patients with epilepsy purposively sampled from a medical center in Northern Taiwan. Health-related quality of life (HRQoL) was evaluated with the Quality of Life in Epilepsy-31 (QOLIE-31) questionnaire. Data also included personal and health-related characteristics, knowledge of epilepsy, efficacy in the self-management of epilepsy, and social support. Scores for the QOLIE-31 were correlated with the following factors: (1) demographic characteristics of age, gender, and income; (2) sleep quality; (3) symptoms of anxiety and depression; (4) epilepsy-specific variables: seizure frequency; types, number, and frequency of antiepileptic drugs (AEDs); and adverse events of AEDs; and (5) social support. Stepwise regression analysis showed that seven factors were predictive for quality of life: anxiety, depression, adverse events of AEDs, social support, seizure frequency of at least once in three months, household income of NT$ 40,001-100,000, and male gender. These factors accounted for 58.2% of the variance of quality of life. Our study assessed multiple factors in an examination of relationships and predictive factors for quality of life in adults with epilepsy in Taiwan. Knowledge of these contributing factors can assist health-care providers when evaluating patients with epilepsy to help target interventions for improving quality of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Higher impact of female than male migration on population structure in large mammals.

    PubMed

    Tiedemann, R; Hardy, O; Vekemans, X; Milinkovitch, M C

    2000-08-01

    We simulated large mammal populations using an individual-based stochastic model under various sex-specific migration schemes and life history parameters from the blue whale and the Asian elephant. Our model predicts that genetic structure at nuclear loci is significantly more influenced by female than by male migration. We identified requisite comigration of mother and offspring during gravidity and lactation as the primary cause of this phenomenon. In addition, our model predicts that the common assumption that geographical patterns of mitochondrial DNA (mtDNA) could be translated into female migration rates (Nmf) will cause biased estimates of maternal gene flow when extensive male migration occurs and male mtDNA haplotypes are included in the analysis.

  20. Associations among depressive symptoms, childhood abuse, neuroticism, and adult stressful life events in the general adult population.

    PubMed

    Ono, Kotaro; Takaesu, Yoshikazu; Nakai, Yukiei; Shimura, Akiyoshi; Ono, Yasuyuki; Murakoshi, Akiko; Matsumoto, Yasunori; Tanabe, Hajime; Kusumi, Ichiro; Inoue, Takeshi

    2017-01-01

    Recent studies have suggested that the interactions among several factors affect the onset, progression, and prognosis of major depressive disorder. This study investigated how childhood abuse, neuroticism, and adult stressful life events interact with one another and affect depressive symptoms in the general adult population. A total of 413 participants from the nonclinical general adult population completed the Patient Health Questionnaire-9, the Child Abuse and Trauma Scale, the neuroticism subscale of the shortened Eysenck Personality Questionnaire - Revised, and the Life Experiences Survey, which are self-report scales. Structural equation modeling (Mplus version 7.3) and single and multiple regressions were used to analyze the data. Childhood abuse, neuroticism, and negative evaluation of life events increased the severity of the depressive symptoms directly. Childhood abuse also indirectly increased the negative appraisal of life events and the severity of the depressive symptoms through enhanced neuroticism in the structural equation modeling. There was recall bias in this study. The causal relationship was not clear because this study was conducted using a cross-sectional design. This study suggested that neuroticism is the mediating factor for the two effects of childhood abuse on adulthood depressive symptoms and negative evaluation of life events. Childhood abuse directly and indirectly predicted the severity of depressive symptoms.

  1. Bipolar radiofrequency ablation of spinal tumors: predictability, safety and outcome.

    PubMed

    Gazis, Angelos N; Beuing, Oliver; Franke, Jörg; Jöllenbeck, Boris; Skalej, Martin

    2014-04-01

    Bone metastases are often the cause of tumor-associated pain and reduction of quality of life. For patients that cannot be treated by surgery, a local minimally invasive therapy such as radiofrequency ablation can be a useful option. In cases in which tumorous masses are adjacent to vulnerable structures, the monopolar radiofrequency can cause severe neuronal damage because of the unpredictability of current flow. The aim of this study is to show that the bipolar radiofrequency ablation provides an opportunity to safely treat such spinal lesions because of precise predictability of the emerging ablation zone. Prospective cohort study of 36 patients undergoing treatment at a single institution. Thirty-six patients in advanced tumor stage with primary or secondary tumor involvement of spine undergoing radiofrequency ablation. Prediction of emerging ablation zone. Clinical outcome of treated patients. X-ray-controlled treatment of 39 lesions by bipolar radiofrequency ablation. Magnetic resonance imaging was performed pre- and postinterventionally. Patients were observed clinically during their postinterventional stay. The extent of the ablation zones was predictable to the millimeter because it did not cross the peri-interventional planned dorsal and ventral boundaries in any case. No complications were observed. Ablation of tumorous masses adjacent to vulnerable structures is feasible and predictable by using the bipolar radiofrequency ablation. Damage of neuronal structures can be avoided through precise prediction of the ablation area. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Fatigue life estimation of a 1D aluminum beam under mode-I loading using the electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Lim, Yee Yan; Kiong Soh, Chee

    2011-12-01

    Structures in service are often subjected to fatigue loads. Cracks would develop and lead to failure if left unnoticed after a large number of cyclic loadings. Monitoring the process of fatigue crack propagation as well as estimating the remaining useful life of a structure is thus essential to prevent catastrophe while minimizing earlier-than-required replacement. The advent of smart materials such as piezo-impedance transducers (lead zirconate titanate, PZT) has ushered in a new era of structural health monitoring (SHM) based on non-destructive evaluation (NDE). This paper presents a series of investigative studies to evaluate the feasibility of fatigue crack monitoring and estimation of remaining useful life using the electromechanical impedance (EMI) technique employing a PZT transducer. Experimental tests were conducted to study the ability of the EMI technique in monitoring fatigue crack in 1D lab-sized aluminum beams. The experimental results prove that the EMI technique is very sensitive to fatigue crack propagation. A proof-of-concept semi-analytical damage model for fatigue life estimation has been developed by incorporating the linear elastic fracture mechanics (LEFM) theory into the finite element (FE) model. The prediction of the model matches closely with the experiment, suggesting the possibility of replacing costly experiments in future.

  3. Evaluation of methods for determining hardware projected life

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An investigation of existing methods of predicting hardware life is summarized by reviewing programs having long life requirements, current research efforts on long life problems, and technical papers reporting work on life predicting techniques. The results indicate that there are no accurate quantitative means to predict hardware life for system level hardware. The effectiveness of test programs and the cause of hardware failures is considered.

  4. Coverage of whole proteome by structural genomics observed through protein homology modeling database

    PubMed Central

    Yamaguchi, Akihiro; Go, Mitiko

    2006-01-01

    We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics. PMID:17146617

  5. Identifying structural elements needed for development of a predictive life-history model for pallid and shovelnose sturgeons

    USGS Publications Warehouse

    Wildhaber, Mark L.; DeLonay, A.J.; Papoulias, D.M.; Galat, D.L.; Jacobson, R.B.; Simpkins, D.G.; Braaten, P.J.; Korschgen, C.E.; Mac, M.J.

    2011-01-01

    Intensive management of the Missouri and Mississippi Rivers has resulted in dramatic changes to the river systems and their biota. These changes have been implicated in the decline of the pallid sturgeon (Scaphirhynchus albus), which has been listed as a United States federal endangered species. The sympatric shovelnose sturgeon (S. platorynchus) is more common and widespread but has also been in decline. The decline of pallid sturgeon is considered symptomatic of poor reproductive success and low or no recruitment. In order to organize information about these species and provide a basis for future development of a predictive model to help guide recovery efforts, we present an expert-vetted, conceptual life-history framework that incorporates the factors that affect reproduction, growth, and survival of shovelnose and pallid sturgeons.

  6. Stressful Life Events Predict Eating Disorder Relapse Following Remission: Six-Year Prospective Outcomes

    PubMed Central

    Grilo, Carlos M.; Pagano, Maria E.; Stout, Robert L.; Markowitz, John C.; Ansell, Emily B.; Pinto, Anthony; Zanarini, Mary C.; Yen, Shirley; Skodol, Andrew E.

    2012-01-01

    Objective To examine prospectively the natural course of bulimia nervosa (BN) and eating disorder not-otherwise-specified (EDNOS) and test for the effects of stressful life events (SLE) on relapse after remission from these eating disorders. Method 117 female patients with BN (N = 35) or EDNOS (N = 82) were prospectively followed for 72 months using structured interviews performed at baseline, 6- and 12-months, and then yearly thereafter. ED were assessed with the structured clinical interview for DSM-IV, and monitored over time with the longitudinal interval follow-up evaluation. Personality disorders were assessed with the diagnostic interview for DSM-IV-personality-disorders, and monitored over time with the follow-along-version. The occurrence and specific timing of SLE were assessed with the life events assessment interview. Cox proportional-hazard-regression-analyses tested associations between time-varying levels of SLE and ED relapse, controlling for comorbid psychiatric disorders, ED duration, and time-varying personality-disorder status. Results ED relapse probability was 43%; BN and EDNOS did not differ in time to relapse. Negative SLE significantly predicted ED relapse; elevated work and social stressors were significant predictors. Psychiatric comorbidity, ED duration, and time-varying personality-disorder status were not significant predictors. Discussion Higher work and social stress represent significant warning signs for triggering relapse for women with remitted BN and EDNOS. PMID:21448971

  7. Probabilistic Analysis of Aircraft Gas Turbine Disk Life and Reliability

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Zaretsky, Erwin V.; August, Richard

    1999-01-01

    Two series of low cycle fatigue (LCF) test data for two groups of different aircraft gas turbine engine compressor disk geometries were reanalyzed and compared using Weibull statistics. Both groups of disks were manufactured from titanium (Ti-6Al-4V) alloy. A NASA Glenn Research Center developed probabilistic computer code Probable Cause was used to predict disk life and reliability. A material-life factor A was determined for titanium (Ti-6Al-4V) alloy based upon fatigue disk data and successfully applied to predict the life of the disks as a function of speed. A comparison was made with the currently used life prediction method based upon crack growth rate. Applying an endurance limit to the computer code did not significantly affect the predicted lives under engine operating conditions. Failure location prediction correlates with those experimentally observed in the LCF tests. A reasonable correlation was obtained between the predicted disk lives using the Probable Cause code and a modified crack growth method for life prediction. Both methods slightly overpredict life for one disk group and significantly under predict it for the other.

  8. Test plan. GCPS task 7, subtask 7.1: IHM development

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.

    1994-01-01

    The overall objective of Task 7 is to identify cost-effective life cycle integrated health management (IHM) approaches for a reusable launch vehicle's primary structure. Acceptable IHM approaches must: eliminate and accommodate faults through robust designs, identify optimum inspection/maintenance periods, automate ground and on-board test and check-out, and accommodate and detect structural faults by providing wide and localized area sensor and test coverage as required. These requirements are elements of our targeted primary structure low cost operations approach using airline-like maintenance by exception philosophies. This development plan will follow an evolutionary path paving the way to the ultimate development of flight-quality production, operations, and vehicle systems. This effort will be focused on maturing the recommended sensor technologies required for localized and wide area health monitoring to a technology readiness level (TRL) of 6 and to establish flight ready system design requirements. The following is a brief list of IHM program objectives: design out faults by analyzing material properties, structural geometry, and load and environment variables and identify failure modes and damage tolerance requirements; design in system robustness while meeting performance objectives (weight limitations) of the reusable launch vehicle primary structure; establish structural integrity margins to preclude the need for test and checkout and predict optimum inspection/maintenance periods through life prediction analysis; identify optimum fault protection system concept definitions combining system robustness and integrity margins established above with cost effective health monitoring technologies; and use coupons, panels, and integrated full scale primary structure test articles to identify, evaluate, and characterize the preferred NDE/NDI/IHM sensor technologies that will be a part of the fault protection system.

  9. A Multidimensional Screening Tool for Preschoolers with Externalizing Behavior: Factor Structure and Factorial Invariance

    ERIC Educational Resources Information Center

    Vancraeyveldt, Caroline; Verschueren, Karine; Wouters, Sofie; Van Craeyevelt, Sanne; Colpin, Hilde

    2014-01-01

    Externalizing behavior (EB) in preschool has been found to predict maladjustment later in life. Therefore, it is important to identify children most at risk for continuing EB beyond preschool. To date, a number of questionnaires are available for teachers to assist in identifying those children. A frequently overlooked aspect in this screening…

  10. Turbine Engine Hot Section Technology (HOST)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research and plans concerning aircraft gas turbine engine hot section durability problems were discussed. Under the topics of structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation specific points addressed were the thermal and fluid environment around liners, blades, and vanes, material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components.

  11. Explaining Entrepreneurial Behavior: Dispositional Personality Traits, Growth of Personal Entrepreneurial Resources, and Business Idea Generation

    ERIC Educational Resources Information Center

    Obschonka, Martin; Silbereisen, Rainer K.; Schmitt-Rodermund, Eva

    2012-01-01

    Applying a life-span approach of human development and using the example of science-based business idea generation, the authors used structural equation modeling to test a mediation model for predicting entrepreneurial behavior in a sample of German scientists (2 measurement occasions; Time 1, N = 488). It was found that recalled early…

  12. Predicting landscape sensitivity to present and future floods in the Pacific Northwest, USA

    Treesearch

    Mohammad Safeeq; Gordon E. Grant; Sarah L. Lewis; Brian Staab

    2015-01-01

    Floods are the most frequent natural disaster, causing more loss of life and property than any other in the USA. Floods also strongly influence the structure and function of watersheds, stream channels, and aquatic ecosystems. The Pacific Northwest is particularly vulnerable to climatically driven changes in flood frequency and magnitude, because snowpacks that...

  13. A Novel Probabilistic Multi-Scale Modeling and Sensing Framework for Fatigue Life Prediction of Aerospace Structures and Materials: DCT Project

    DTIC Science & Technology

    2012-08-25

    Accel- erated Crystal Plasticity FEM Simulations (submitted). 5. M. Anahid, M. Samal and S. Ghosh, Dwell fatigue crack nucleation model based on using...4] M. Anahid, M. K. Samal , and S. Ghosh. Dwell fatigue crack nucleation model based on crystal plasticity finite element simulations of

  14. Predicting current serviceability and residual service life of plywood roof sheathing using kinetics-based models

    Treesearch

    J.E. Winandy; P.K. Lebow; J.F. Murphy

    2002-01-01

    Research programs throughout North America are increasingly focusing on understanding and defining the salient issues of wood durability and maintaining and extending the serviceability of existing wood structures. This report presents the findings and implications of a 10-year research program, carried out at the USDA Forest Service, Forest Products Laboratory, to...

  15. Natural Selection on Female Life-History Traits in Relation to Socio-Economic Class in Pre-Industrial Human Populations

    PubMed Central

    Pettay, Jenni E.; Helle, Samuli; Jokela, Jukka; Lummaa, Virpi

    2007-01-01

    Life-history theory predicts that resource scarcity constrains individual optimal reproductive strategies and shapes the evolution of life-history traits. In species where the inherited structure of social class may lead to consistent resource differences among family lines, between-class variation in resource availability should select for divergence in optimal reproductive strategies. Evaluating this prediction requires information on the phenotypic selection and quantitative genetics of life-history trait variation in relation to individual lifetime access to resources. Here, we show using path analysis how resource availability, measured as the wealth class of the family, affected the opportunity and intensity of phenotypic selection on the key life-history traits of women living in pre-industrial Finland during the 1800s and 1900s. We found the highest opportunity for total selection and the strongest selection on earlier age at first reproduction in women of the poorest wealth class, whereas selection favoured older age at reproductive cessation in mothers of the wealthier classes. We also found clear differences in female life-history traits across wealth classes: the poorest women had the lowest age-specific survival throughout their lives, they started reproduction later, delivered fewer offspring during their lifetime, ceased reproduction younger, had poorer offspring survival to adulthood and, hence, had lower fitness compared to the wealthier women. Our results show that the amount of wealth affected the selection pressure on female life-history in a pre-industrial human population. PMID:17622351

  16. Overview of Aerothermodynamic Loads Definition Study

    NASA Technical Reports Server (NTRS)

    Povinelli, L. A.

    1985-01-01

    The Aerothermodynamic Loads Definition were studied to develop methods to more accurately predict the operating environment in the space shuttle main engine (SSME) components. Development of steady and time-dependent, three-dimensional viscous computer codes and experimental verification and engine diagnostic testing are considered. The steady, nonsteady, and transient operating loads are defined to accurately predict powerhead life. Improvements in the structural durability of the SSME turbine drive systems depends on the knowledge of the aerothermodynamic behavior of the flow through the preburner, turbine, turnaround duct, gas manifold, and injector post regions.

  17. An Assessment of Fatigue Damage and Crack Growth Prediction Techniques (L’Evaluation de l’Endommagement en Fatigue et les Techniques de Prediction de la Propagation des Fissures)

    DTIC Science & Technology

    1994-03-01

    reality the structure of even one individual aircraft consists of many bat- ches and the tens of thousand of cars of one type manufactured in even...generated neural network power spectral densities of surface pressures are used to augment existing data and then load an elastic finite clement...investigated for possible use in augmenting this information which is required for fatigue life calculations. Since empennage environments on fighter

  18. Viscoelastic behavior and life-time predictions

    NASA Technical Reports Server (NTRS)

    Dillard, D. A.; Brinson, H. F.

    1985-01-01

    Fiber reinforced plastics were considered for many structural applications in automotive, aerospace and other industries. A major concern was and remains the failure modes associated with the polymer matrix which serves to bind the fibers together and transfer the load through connections, from fiber to fiber and ply to ply. An accelerated characterization procedure for prediction of delayed failures was developed. This method utilizes time-temperature-stress-moisture superposition principles in conjunction with laminated plate theory. Because failures are inherently nonlinear, the testing and analytic modeling for both moduli and strength is based upon nonlinear viscoelastic concepts.

  19. Probabilistic Assessment of National Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Shiao, M.; Chamis, C. C.

    1996-01-01

    A preliminary probabilistic structural assessment of the critical section of National Wind Tunnel (NWT) is performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) computer code. Thereby, the capabilities of NESSUS code have been demonstrated to address reliability issues of the NWT. Uncertainties in the geometry, material properties, loads and stiffener location on the NWT are considered to perform the reliability assessment. Probabilistic stress, frequency, buckling, fatigue and proof load analyses are performed. These analyses cover the major global and some local design requirements. Based on the assumed uncertainties, the results reveal the assurance of minimum 0.999 reliability for the NWT. Preliminary life prediction analysis results show that the life of the NWT is governed by the fatigue of welds. Also, reliability based proof test assessment is performed.

  20. A trait-based framework to understand life history of mycorrhizal fungi.

    PubMed

    Chagnon, Pierre-Luc; Bradley, Robert L; Maherali, Hafiz; Klironomos, John N

    2013-09-01

    Despite the growing appreciation for the functional diversity of arbuscular mycorrhizal (AM) fungi, our understanding of the causes and consequences of this diversity is still poor. In this opinion article, we review published data on AM fungal functional traits and attempt to identify major axes of life history variation. We propose that a life history classification system based on the grouping of functional traits, such as Grime's C-S-R (competitor, stress tolerator, ruderal) framework, can help to explain life history diversification in AM fungi, successional dynamics, and the spatial structure of AM fungal assemblages. Using a common life history classification framework for both plants and AM fungi could also help in predicting probable species associations in natural communities and increase our fundamental understanding of the interaction between land plants and AM fungi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  2. Integrated NDE and FEM characterization of composite rotors

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.

    2001-08-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 48 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  3. An Integrated NDE and FEM Characterization of Composite Rotors

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.

    2000-01-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 49 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  4. The effect of crack width on the service life of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Van Hung, Nguyen; Viet Hung, Vu; Viet, Tran Bao

    2018-04-01

    Reinforced concrete has become a widely used construction material around the world. Nowadays, the assessment of deterioration and life expectancy of reinforced concrete structure is very important and necessary as concrete is a complex material with brittle failure. Under the effect of load and over time, cracks occur in the structure, significantly reducing its performance and durability. Therefore, a number of models for predicting the penetration of chloride ions into the concrete were proposed to assess the durability of the structure. In the study performed by T B Viet (2016) [1], the author proposed a new theoretical model, especially considering the effects of macro and micro cracking on the diffusion coefficient of chloride ion in the cracked concrete. The following experimental results, in term of electrical indication of concrete’s ability to resist chloride ion penetration, are used to calculate the lifespan of a reinforced concrete structure according to Dura Crete approach [8] with different crack widths to evaluate the accuracy and reliability of the above model in the range of concrete compressive strength of 30-70MPa.

  5. Thermal-mechanical fatigue of high temperature structural materials

    NASA Astrophysics Data System (ADS)

    Renauld, Mark Leo

    Experimental and analytical methods were developed to address the effect of thermal-mechanical strain cycling on high temperature structural materials under uniaxial and biaxial stress states. Two materials were used in the investigation, a nickel-base superalloy of low ductility, IN-738LC and a high ductility material, 316 stainless steel. A uniaxial life prediction model for the IN-738LC material was based on tensile hysteresis energy measured in stabilized, mid-life hysteresis loops. Hold-time effects and temperature cycling were incorporated in the hysteresis energy approach. Crack growth analysis was also included in the model to predict the number of TMF cycles to initiate and grow a fatigue crack through the coating. The nickel-base superalloy, IN-738LC, was primarily tested in out-of-phase (OP) TMF with a temperature range from 482-871sp°C (900-1600sp°F) under continuous and compressive hold-time cycling. IN-738LC fatigue specimens were coated either with an aluminide, NiCoCrAlHfSi overlay or CoNiCrAlY overlay coating on the outer surface of the specimen. Metallurgical failure analysis via optical and scanning electron microscopy, was used to characterize failure behavior of both substrate and coating materials. Type 316 SS was subjected to continuous biaxial strain cycling with an in-phase (IP) TMF loading and a temperature range from 399-621sp°C (750-1150sp°F). As a result, a biaxial TMF life prediction model was proposed on the basis of an extended isothermal fatigue model. The model incorporates a frequency effect and phase factors to assess the different damage mechanisms observed during TMF loading. The model was also applied to biaxial TMF data generated on uncoated IN-738LC.

  6. Affective temperaments play an important role in the relationship between childhood abuse and depressive symptoms in major depressive disorder.

    PubMed

    Toda, Hiroyuki; Inoue, Takeshi; Tsunoda, Tomoya; Nakai, Yukiei; Tanichi, Masaaki; Tanaka, Teppei; Hashimoto, Naoki; Takaesu, Yoshikazu; Nakagawa, Shin; Kitaichi, Yuji; Boku, Shuken; Tanabe, Hajime; Nibuya, Masashi; Yoshino, Aihide; Kusumi, Ichiro

    2016-02-28

    Previous studies have shown that various factors, such as genetic and environmental factors, contribute to the development of major depressive disorder (MDD). The aim of this study is to clarify how multiple factors, including affective temperaments, childhood abuse and adult life events, are involved in the severity of depressive symptoms in MDD. A total of 98 participants with MDD were studied using the following self-administered questionnaire surveys: Patient Health Questionnaire-9 measuring the severity of depressive symptoms; Life Experiences Survey (LES) measuring negative and positive adult life events; Temperament Evaluation of the Memphis, Pisa, Paris, and San Diego auto-questionnaire (TEMPS-A) measuring affective temperaments; and the Child Abuse and Trauma Scale (CATS) measuring childhood abuse. The data were analyzed using single and multiple regression analyses and structural equation modeling (SEM). The neglect score reported by CATS indirectly predicted the severity of depressive symptoms through affective temperaments measured by TEMPS-A in SEM. Four temperaments (depressive, cyclothymic, irritable, and anxious) directly predicted the severity of depressive symptoms. The negative change in the LES score also directly predicted severity. This study suggests that childhood abuse, especially neglect, indirectly increases the severity of depressive symptoms through increased scores of affective temperaments in MDD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Creep Crack Initiation and Growth Behavior for Ni-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Nagumo, Yoshiko; Yokobori, A. Toshimitsu, Jr.; Sugiura, Ryuji; Ozeki, Go; Matsuzaki, Takashi

    The structural components which are used in high temperature gas turbines have various shapes which may cause the notch effect. Moreover, the site of stress concentration might have the heterogeneous microstructural distribution. Therefore, it is necessary to clarify the creep fracture mechanism for these materials in order to predict the life of creep fracture with high degree of accuracy. In this study, the creep crack growth tests were performed using in-situ observational testing machine with microscope to observe the creep damage formation and creep crack growth behavior. The materials used are polycrystalline Ni-base superalloy IN100 and directionally solidified Ni-base superalloy CM247LC which were developed for jet engine turbine blades and gas turbine blades in electric power plants, respectively. The microstructural observation of the test specimens was also conducted using FE-SEM/EBSD. Additionally, the analyses of two-dimensional elastic-plastic creep finite element using designed methods were conducted to understand the effect of microstructural distribution on creep damage formation. The experimental and analytical results showed that it is important to determine the creep crack initiation and early crack growth to predict the life of creep fracture and it is indicated that the highly accurate prediction of creep fracture life could be realized by measuring notch opening displacement proposed as the RNOD characteristic.

  8. Aging and Down syndrome: implications for physical therapy.

    PubMed

    Barnhart, Robert C; Connolly, Barbara

    2007-10-01

    The number of people over the age of 60 years with lifelong developmental delays is predicted to double by 2030. Down syndrome (DS) is the most frequent chromosomal cause of developmental delays. As the life expectancy of people with DS increases, changes in body function and structure secondary to aging have the potential to lead to activity limitations and participation restrictions for this population. The purpose of this update is to: (1) provide an overview of the common body function and structure changes that occur in adults with DS as they age (thyroid dysfunction, cardiovascular disorders, obesity, musculoskeletal disorders, Alzheimer disease, depression) and (2) apply current research on exercise to the prevention of activity limitations and participation restrictions. As individuals with DS age, a shift in emphasis from disability prevention to the prevention of conditions that lead to activity and participation limitations must occur. Exercise programs appear to have potential to positively affect the overall health of adults with DS, thereby increasing the quality of life and years of healthy life for these individuals.

  9. Longitudinal Associations Between Teasing and Health-related Quality of Life Among Treatment-seeking Overweight and Obese Youth

    PubMed Central

    Steele, Ric G.

    2012-01-01

    Objectives To examine concurrent and prospective associations between perceptions of teasing and health-related quality of life (HRQOL) over the course of a behavioral/educational intervention and the subsequent year in a sample of overweight and obese children and adolescents. Method A clinical sample of 93 overweight or obese youths (ages 7–17 years) and 1 parent/guardian completed measures of teasing and HRQOL at pre- and posttreatment and follow-up assessments. Structural equation modeling was used to examine the factor structure of the measures and to assess prospective associations over a 15-month period. Results Results indicate that, concurrently, weight-related teasing is inversely associated with HRQOL and that, prospectively, HRQOL is inversely associated with subsequent teasing. Conclusions Study findings are suggestive of a directional relationship with lower quality of life predicting subsequent higher levels of teasing. Results suggest the potential for interventions designed to improve HRQOL to reduce teasing experiences for overweight and obese youth. PMID:22262915

  10. Types of provincial structure and population health.

    PubMed

    Young, Frank W; Rodriguez, Eunice

    2005-01-01

    This paper explores the potential of using large administrative units for studies of population health within a country. The objective is to illustrate a new way of defining structural dimensions and to use them in examining variation in life expectancy rates. We use data from the 50 provinces of Spain as a case study. A factor analysis of organizational items such as schools, hotels and medical personnel is employed to define and generate "collective" measures for well-known provincial types, in this case: urban, commercial, industrial and tourist provinces. The scores derived from the factor analysis are then used in a regression model to predict life expectancy. The City-centered and Commercial provinces showed positive correlations with life expectancy while those for the Tourist provinces were negative. The industrial type was nonsignificant. Explanations of these correlations are proposed and the advantages and disadvantages of this exploratory technique are reviewed. The use of this technique for generating an overview of social organization and population health is discussed.

  11. In silico methods for co-transcriptional RNA secondary structure prediction and for investigating alternative RNA structure expression.

    PubMed

    Meyer, Irmtraud M

    2017-05-01

    RNA transcripts are the primary products of active genes in any living organism, including many viruses. Their cellular destiny not only depends on primary sequence signals, but can also be determined by RNA structure. Recent experimental evidence shows that many transcripts can be assigned more than a single functional RNA structure throughout their cellular life and that structure formation happens co-transcriptionally, i.e. as the transcript is synthesised in the cell. Moreover, functional RNA structures are not limited to non-coding transcripts, but can also feature in coding transcripts. The picture that now emerges is that RNA structures constitute an additional layer of information that can be encoded in any RNA transcript (and on top of other layers of information such as protein-context) in order to exert a wide range of functional roles. Moreover, different encoded RNA structures can be expressed at different stages of a transcript's life in order to alter the transcript's behaviour depending on its actual cellular context. Similar to the concept of alternative splicing for protein-coding genes, where a single transcript can yield different proteins depending on cellular context, it is thus appropriate to propose the notion of alternative RNA structure expression for any given transcript. This review introduces several computational strategies that my group developed to detect different aspects of RNA structure expression in vivo. Two aspects are of particular interest to us: (1) RNA secondary structure features that emerge during co-transcriptional folding and (2) functional RNA structure features that are expressed at different times of a transcript's life and potentially mutually exclusive. Copyright © 2017. Published by Elsevier Inc.

  12. Warming and Resource Availability Shift Food Web Structure and Metabolism

    PubMed Central

    O'Connor, Mary I.; Piehler, Michael F.; Leech, Dina M.; Anton, Andrea; Bruno, John F.

    2009-01-01

    Climate change disrupts ecological systems in many ways. Many documented responses depend on species' life histories, contributing to the view that climate change effects are important but difficult to characterize generally. However, systematic variation in metabolic effects of temperature across trophic levels suggests that warming may lead to predictable shifts in food web structure and productivity. We experimentally tested the effects of warming on food web structure and productivity under two resource supply scenarios. Consistent with predictions based on universal metabolic responses to temperature, we found that warming strengthened consumer control of primary production when resources were augmented. Warming shifted food web structure and reduced total biomass despite increases in primary productivity in a marine food web. In contrast, at lower resource levels, food web production was constrained at all temperatures. These results demonstrate that small temperature changes could dramatically shift food web dynamics and provide a general, species-independent mechanism for ecological response to environmental temperature change. PMID:19707271

  13. Self-efficacy and quality of life in adults who stutter.

    PubMed

    Carter, Alice; Breen, Lauren; Yaruss, J Scott; Beilby, Janet

    2017-12-01

    Self-efficacy has emerged as a potential predictor of quality of life for adults who stutter. Research has focused primarily on the positive relationship self-efficacy has to treatment outcomes, but little is known about the relationship between self-efficacy and quality of life for adults who stutter. The purpose of this mixed- methods study is to determine the predictive value of self-efficacy and its relationship to quality of life for adults who stutter. The Self-Efficacy Scale for Adult Stutterers and the Overall Assessment of the Speaker's Experience with Stuttering were administered to 39 adults who stutter, aged 18- 77. Percentage of syllables stuttered was calculated from a conversational speech sample as a measure of stuttered speech frequency. Qualitative interviews with semi-structured probes were conducted with 10 adults and analyzed using thematic analysis to explore the lived experience of adults who stutter. Self-efficacy emerged as a strong positive predictor of quality of life for adults living with a stuttered speech disorder. Stuttered speech frequency was a moderate negative predictor of self-efficacy. Major qualitative themes identified from the interviews with the participants were: encumbrance, self-concept, confidence, acceptance, life-long journey, treatment, and support. Results provide clarity on the predictive value of self-efficacy and its relationship to quality of life and stuttered speech frequency. Findings highlight that the unique life experiences of adults who stutter require a multidimensional approach to the assessment and treatment of stuttered speech disorders. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  14. Rolling Bearing Life Prediction, Theory, and Application

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    2016-01-01

    A tutorial is presented outlining the evolution, theory, and application of rolling-element bearing life prediction from that of A. Palmgren, 1924; W. Weibull, 1939; G. Lundberg and A. Palmgren, 1947 and 1952; E. Ioannides and T. Harris, 1985; and E. Zaretsky, 1987. Comparisons are made between these life models. The Ioannides-Harris model without a fatigue limit is identical to the Lundberg-Palmgren model. The Weibull model is similar to that of Zaretsky if the exponents are chosen to be identical. Both the load-life and Hertz stress-life relations of Weibull, Lundberg and Palmgren, and Ioannides and Harris reflect a strong dependence on the Weibull slope. The Zaretsky model decouples the dependence of the critical shear stress-life relation from the Weibull slope. This results in a nominal variation of the Hertz stress-life exponent. For 9th- and 8th-power Hertz stress-life exponents for ball and roller bearings, respectively, the Lundberg-Palmgren model best predicts life. However, for 12th- and 10th-power relations reflected by modern bearing steels, the Zaretsky model based on the Weibull equation is superior. Under the range of stresses examined, the use of a fatigue limit would suggest that (for most operating conditions under which a rolling-element bearing will operate) the bearing will not fail from classical rolling-element fatigue. Realistically, this is not the case. The use of a fatigue limit will significantly overpredict life over a range of normal operating Hertz stresses. (The use of ISO 281:2007 with a fatigue limit in these calculations would result in a bearing life approaching infinity.) Since the predicted lives of rolling-element bearings are high, the problem can become one of undersizing a bearing for a particular application. Rules had been developed to distinguish and compare predicted lives with those actually obtained. Based upon field and test results of 51 ball and roller bearing sets, 98 percent of these bearing sets had acceptable life results using the Lundberg- Palmgren equations with life adjustment factors to predict bearing life. That is, they had lives equal to or greater than that predicted. The Lundberg-Palmgren model was used to predict the life of a commercial turboprop gearbox. The life prediction was compared with the field lives of 64 gearboxes. From these results, the roller bearing lives exhibited a load-life exponent of 5.2, which correlated with the Zaretsky model. The use of the ANSI/ABMA and ISO standards load-life exponent of 10/3 to predict roller bearing life is not reflective of modern roller bearings and will underpredict bearing lives.

  15. A portrait of a sucker using landscape genetics: how colonization and life history undermine the idealized dendritic metapopulation.

    PubMed

    Salisbury, Sarah J; McCracken, Gregory R; Keefe, Donald; Perry, Robert; Ruzzante, Daniel E

    2016-09-01

    Dendritic metapopulations have been attributed unique properties by in silico studies, including an elevated genetic diversity relative to a panmictic population of equal total size. These predictions have not been rigorously tested in nature, nor has there been full consideration of the interacting effects among contemporary landscape features, colonization history and life history traits of the target species. We tested for the effects of dendritic structure as well as the relative importance of life history, environmental barriers and historical colonization on the neutral genetic structure of a longnose sucker (Catostomus catostomus) metapopulation in the Kogaluk watershed of northern Labrador, Canada. Samples were collected from eight lakes, genotyped with 17 microsatellites, and aged using opercula. Lakes varied in differentiation, historical and contemporary connectivity, and life history traits. Isolation by distance was detected only by removing two highly genetically differentiated lakes, suggesting a lack of migration-drift equilibrium and the lingering influence of historical factors on genetic structure. Bayesian analyses supported colonization via the Kogaluk's headwaters. The historical concentration of genetic diversity in headwaters inferred by this result was supported by high historical and contemporary effective sizes of the headwater lake, T-Bone. Alternatively, reduced allelic richness in headwaters confirmed the dendritic structure's influence on gene flow, but this did not translate to an elevated metapopulation effective size. A lack of equilibrium and upstream migration may have dampened the effects of dendritic structure. We suggest that interacting historical and contemporary factors prevent the achievement of the idealized traits of a dendritic metapopulation in nature. © 2016 John Wiley & Sons Ltd.

  16. Small-crack effects in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  17. Health-related quality of life 6 months after burns among hospitalized patients: Predictive importance of mental disorders and burn severity.

    PubMed

    Palmu, Raimo; Partonen, Timo; Suominen, Kirsi; Saarni, Samuli I; Vuola, Jyrki; Isometsä, Erkki

    2015-06-01

    Major burns are likely to have a strong impact on health-related quality of life (HRQoL). We investigated the level of and predictors for quality of life at 6 months after acute burn. Consecutive acute adult burn patients (n=107) admitted to the Helsinki Burn Centre were examined with a structured diagnostic interview (SCID) at baseline, and 92 patients (86%) were re-examined at 6 months after injury. During follow-up 55% (51/92) suffered from at least one mental disorder. The mean %TBSA was 9. TBSA of men did not differ from that of women. Three validated instruments (RAND-36, EQ-5, 15D) were used to evaluate the quality of life at 6 months. All the measures (RAND-36, EQ-5, 15D) consistently indicated mostly normal HRQoL at 6 months after burn. In the multivariate linear regression model, %TBSA predicted HRQoL in one dimension (role limitations caused by physical health problems, p=0.039) of RAND-36. In contrast, mental disorders overall and particularly major depressive disorder (MDD) during follow-up (p-values of 0.001-0.002) predicted poor HRQoL in all dimensions of RAND-36. HRQoL of women was worse than that of men. Self-perceived HRQoL among acute burn patients at 6 months after injury seems to be mostly as good as in general population studies in Finland. The high standard of acute treatment and the inclusion of small burns (%TBSA<5) in the cohort may partly explain the weak effect of burn itself on HRQoL. Mental disorders strongly predicted HRQoL at 6 months. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  18. Recent developments of the NESSUS probabilistic structural analysis computer program

    NASA Technical Reports Server (NTRS)

    Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.

    1992-01-01

    The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.

  19. Computational Design of a Thermostable Mutant of Cocaine Esterase via Molecular Dynamics Simulations

    PubMed Central

    Huang, Xiaoqin; Gao, Daquan; Zhan, Chang-Guo

    2015-01-01

    Cocaine esterase (CocE) has been known as the most efficient native enzyme for metabolizing the naturally occurring cocaine. A major obstacle to the clinical application of CocE is the thermoinstability of native CocE with a half-life of only ~11 min at physiological temperature (37°C). It is highly desirable to develop a thermostable mutant of CocE for therapeutic treatment of cocaine overdose and addiction. To establish a structure-thermostability relationship, we carried out molecular dynamics (MD) simulations at 400 K on wild-type CocE and previously known thermostable mutants, demonstrating that the thermostability of the active form of the enzyme correlates with the fluctuation (characterized as the RMSD and RMSF of atomic positions) of the catalytic residues (Y44, S117, Y118, H287, and D259) in the simulated enzyme. In light of the structure-thermostability correlation, further computational modeling including MD simulations at 400 K predicted that the active site structure of the L169K mutant should be more thermostable. The prediction has been confirmed by wet experimental tests showing that the active form of the L169K mutant had a half-life of 570 min at 37°C, which is significantly longer than those of the wild-type and previously known thermostable mutants. The encouraging outcome suggests that the high-temperature MD simulations and the structure-thermostability may be considered as a valuable tool for computational design of thermostable mutants of an enzyme. PMID:21373712

  20. Monitoring Damage Accumulation in Ceramic Matrix Composites Using Electrical Resistivity

    NASA Technical Reports Server (NTRS)

    Smith, Craig E.; Morscher, Gregory N.; Xia, Zhenhai H.

    2008-01-01

    The electric resistance of woven SiC fiber reinforced SiC matrix composites were measured under tensile loading conditions. The results show that the electrical resistance is closely related to damage and that real-time information about the damage state can be obtained through monitoring of the resistance. Such self-sensing capability provides the possibility of on-board/in-situ damage detection and accurate life prediction for high-temperature ceramic matrix composites. Woven silicon carbide fiber-reinforced silicon carbide (SiC/SiC) ceramic matrix composites (CMC) possess unique properties such as high thermal conductivity, excellent creep resistance, improved toughness, and good environmental stability (oxidation resistance), making them particularly suitable for hot structure applications. In specific, CMCs could be applied to hot section components of gas turbines [1], aerojet engines [2], thermal protection systems [3], and hot control surfaces [4]. The benefits of implementing these materials include reduced cooling air requirements, lower weight, simpler component design, longer service life, and higher thrust [5]. It has been identified in NASA High Speed Research (HSR) program that the SiC/SiC CMC has the most promise for high temperature, high oxidation applications [6]. One of the critical issues in the successful application of CMCs is on-board or insitu assessment of the damage state and an accurate prediction of the remaining service life of a particular component. This is of great concern, since most CMC components envisioned for aerospace applications will be exposed to harsh environments and play a key role in the vehicle s safety. On-line health monitoring can enable prediction of remaining life; thus resulting in improved safety and reliability of structural components. Monitoring can also allow for appropriate corrections to be made in real time, therefore leading to the prevention of catastrophic failures. Most conventional nondestructive evaluation (NDE) techniques such as ultrasonic C-scan, x-ray, thermography, and eddy current are limited since they require structural components of complex geometry to be taken out of service for a substantial length of time for post-damage inspection and assessment. Furthermore, the typical NDE techniques are useful for identifying large interlaminar flaws, but insensitive to CMC materials flaws developed perpendicular to the surface under tensile creep conditions. There are techniques such as piezoelectric sensor [7,8], and optical fiber [9,10] that could be used for on-line health monitoring of CMC structures. However, these systems involve attaching an external sensor or putting special fibers in CMC composites, which would be problematic at high temperature applications.

  1. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Powers, L. M.; Jadaan, O. M.; Gyekenyesi, J. P.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural application such as in advanced turbine engine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilizes commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life, of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the Ceramics Analysis and Reliability Evaluation of Structures/CREEP (CARES/CREEP) integrated design program, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benchmark problems and engine components are included.

  2. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Powers, L. M.; Jadaan, O. M.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilized commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the CARES/CREEP (Ceramics Analysis and Reliability Evaluation of Structures/CREEP) integrated design programs, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benechmark problems and engine components are included.

  3. RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS.

    PubMed

    Piatkowski, Pawel; Kasprzak, Joanna M; Kumar, Deepak; Magnus, Marcin; Chojnowski, Grzegorz; Bujnicki, Janusz M

    2016-01-01

    RNA encompasses an essential part of all known forms of life. The functions of many RNA molecules are dependent on their ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is laborious and challenging, and therefore, the majority of known RNAs remain structurally uncharacterized. To address this problem, computational structure prediction methods were developed that either utilize information derived from known structures of other RNA molecules (by way of template-based modeling) or attempt to simulate the physical process of RNA structure formation (by way of template-free modeling). All computational methods suffer from various limitations that make theoretical models less reliable than high-resolution experimentally determined structures. This chapter provides a protocol for computational modeling of RNA 3D structure that overcomes major limitations by combining two complementary approaches: template-based modeling that is capable of predicting global architectures based on similarity to other molecules but often fails to predict local unique features, and template-free modeling that can predict the local folding, but is limited to modeling the structure of relatively small molecules. Here, we combine the use of a template-based method ModeRNA with a template-free method SimRNA. ModeRNA requires a sequence alignment of the target RNA sequence to be modeled with a template of the known structure; it generates a model that predicts the structure of a conserved core and provides a starting point for modeling of variable regions. SimRNA can be used to fold small RNAs (<80 nt) without any additional structural information, and to refold parts of models for larger RNAs that have a correctly modeled core. ModeRNA can be either downloaded, compiled and run locally or run through a web interface at http://genesilico.pl/modernaserver/ . SimRNA is currently available to download for local use as a precompiled software package at http://genesilico.pl/software/stand-alone/simrna and as a web server at http://genesilico.pl/SimRNAweb . For model optimization we use QRNAS, available at http://genesilico.pl/qrnas .

  4. Drug Distribution. Part 1. Models to Predict Membrane Partitioning.

    PubMed

    Nagar, Swati; Korzekwa, Ken

    2017-03-01

    Tissue partitioning is an important component of drug distribution and half-life. Protein binding and lipid partitioning together determine drug distribution. Two structure-based models to predict partitioning into microsomal membranes are presented. An orientation-based model was developed using a membrane template and atom-based relative free energy functions to select drug conformations and orientations for neutral and basic drugs. The resulting model predicts the correct membrane positions for nine compounds tested, and predicts the membrane partitioning for n = 67 drugs with an average fold-error of 2.4. Next, a more facile descriptor-based model was developed for acids, neutrals and bases. This model considers the partitioning of neutral and ionized species at equilibrium, and can predict membrane partitioning with an average fold-error of 2.0 (n = 92 drugs). Together these models suggest that drug orientation is important for membrane partitioning and that membrane partitioning can be well predicted from physicochemical properties.

  5. Hierarchical Learning Induces Two Simultaneous, But Separable, Prediction Errors in Human Basal Ganglia

    PubMed Central

    Tsai, Karin; Wallis, Jonathan; Botvinick, Matthew

    2013-01-01

    Studies suggest that dopaminergic neurons report a unitary, global reward prediction error signal. However, learning in complex real-life tasks, in particular tasks that show hierarchical structure, requires multiple prediction errors that may coincide in time. We used functional neuroimaging to measure prediction error signals in humans performing such a hierarchical task involving simultaneous, uncorrelated prediction errors. Analysis of signals in a priori anatomical regions of interest in the ventral striatum and the ventral tegmental area indeed evidenced two simultaneous, but separable, prediction error signals corresponding to the two levels of hierarchy in the task. This result suggests that suitably designed tasks may reveal a more intricate pattern of firing in dopaminergic neurons. Moreover, the need for downstream separation of these signals implies possible limitations on the number of different task levels that we can learn about simultaneously. PMID:23536092

  6. Predictive Structure-Based Toxicology Approaches To Assess the Androgenic Potential of Chemicals.

    PubMed

    Trisciuzzi, Daniela; Alberga, Domenico; Mansouri, Kamel; Judson, Richard; Novellino, Ettore; Mangiatordi, Giuseppe Felice; Nicolotti, Orazio

    2017-11-27

    We present a practical and easy-to-run in silico workflow exploiting a structure-based strategy making use of docking simulations to derive highly predictive classification models of the androgenic potential of chemicals. Models were trained on a high-quality chemical collection comprising 1689 curated compounds made available within the CoMPARA consortium from the US Environmental Protection Agency and were integrated with a two-step applicability domain whose implementation had the effect of improving both the confidence in prediction and statistics by reducing the number of false negatives. Among the nine androgen receptor X-ray solved structures, the crystal 2PNU (entry code from the Protein Data Bank) was associated with the best performing structure-based classification model. Three validation sets comprising each 2590 compounds extracted by the DUD-E collection were used to challenge model performance and the effectiveness of Applicability Domain implementation. Next, the 2PNU model was applied to screen and prioritize two collections of chemicals. The first is a small pool of 12 representative androgenic compounds that were accurately classified based on outstanding rationale at the molecular level. The second is a large external blind set of 55450 chemicals with potential for human exposure. We show how the use of molecular docking provides highly interpretable models and can represent a real-life option as an alternative nontesting method for predictive toxicology.

  7. Proof test and fatigue crack growth modeling on 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Poe, C. C., Jr.; Dawicke, D. S.

    1990-01-01

    Pressure proof testing of aircraft fuselage structures has been suggested as a means of screening critical crack sizes and of extending their useful life. The objective of this paper is to study the proof-test concept and to model the crack-growth process on a ductile material. Simulated proof and operational fatigue life tests have been conducted on cracked panels made of 2024-T3 aluminum alloy sheet material. A fatigue crack-closure model was modified to simulate the proof test and operational fatigue cycling. Using crack-growth rate and resistance-curve data, the model was able to predict crack growth during and after the proof load. These tests and analyses indicate that the proof test increases fatigue life; but the beneficial life, after a 1.33 or 1.5 proof, was less than a few hundred cycles.

  8. Modeling Bivariate Change in Individual Differences: Prospective Associations Between Personality and Life Satisfaction.

    PubMed

    Hounkpatin, Hilda Osafo; Boyce, Christopher J; Dunn, Graham; Wood, Alex M

    2017-09-18

    A number of structural equation models have been developed to examine change in 1 variable or the longitudinal association between 2 variables. The most common of these are the latent growth model, the autoregressive cross-lagged model, the autoregressive latent trajectory model, and the latent change score model. The authors first overview each of these models through evaluating their different assumptions surrounding the nature of change and how these assumptions may result in different data interpretations. They then, to elucidate these issues in an empirical example, examine the longitudinal association between personality traits and life satisfaction. In a representative Dutch sample (N = 8,320), with participants providing data on both personality and life satisfaction measures every 2 years over an 8-year period, the authors reproduce findings from previous research. However, some of the structural equation models overviewed have not previously been applied to the personality-life satisfaction relation. The extended empirical examination suggests intraindividual changes in life satisfaction predict subsequent intraindividual changes in personality traits. The availability of data sets with 3 or more assessment waves allows the application of more advanced structural equation models such as the autoregressive latent trajectory or the extended latent change score model, which accounts for the complex dynamic nature of change processes and allows stronger inferences on the nature of the association between variables. However, the choice of model should be determined by theories of change processes in the variables being studied. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Early-life family structure and microbially induced cancer risk.

    PubMed

    Blaser, Martin J; Nomura, Abraham; Lee, James; Stemmerman, Grant N; Perez-Perez, Guillermo I

    2007-01-01

    Cancer may follow exposure to an environmental agent after many decades. The bacterium Helicobacter pylori, known to be acquired early in life, increases risk for gastric adenocarcinoma, but other factors are also important. In this study, we considered whether early-life family structure affects the risk of later developing gastric cancer among H. pylori+ men. We examined a long-term cohort of Japanese-American men followed for 28 y, and performed a nested case-control study among those carrying H. pylori or the subset carrying the most virulent cagA+ H. pylori strains to address whether family structure predicted cancer development. We found that among the men who were H. pylori+ and/or cagA+ (it is possible to be cagA+ and H. pylori- if the H. pylori test is falsely negative), belonging to a large sibship or higher birth order was associated with a significantly increased risk of developing gastric adenocarcinoma late in life. For those with cagA+ strains, the risk of developing gastric cancer was more than twice as high (odds ratio 2.2; 95% confidence interval 1.2-4.0) among those in a sibship of seven or more individuals than in a sibship of between one and three persons. These results provide evidence that early-life social environment plays a significant role in risk of microbially induced malignancies expressing five to eight decades later, and these findings lead to new models to explain these interactions.

  10. The influence of habitat structure on energy allocation tactics in an estuarine batch spawner

    NASA Astrophysics Data System (ADS)

    Brigolin, D.; Cavraro, F.; Zanatta, V.; Pastres, R.; Malavasi, S.

    2016-04-01

    Trade-off between fecundity and survival was tested in a batch spawner, the Mediterranean killifish Aphanius fasciatus, using an integrated modelling-data approach based on previously collected empirical data. Two sites of the lagoon of Venice (Northern Adriatic sea, Italy) were selected in order to compare the energy allocation between growth and reproduction in two contrasting habitats. These were characterised by high and comparable level of richness in basal resources, but showed two different mortality schedules: an open natural salt marsh, exposed to high level of predation, and a confined artificial site protected from piscivorous predation. By means of a bioenergetic Scope for Growth model, developed and calibrated for the specific goals of this work, we compared the average individual life history between the two habitats. The average individual life history is characterised by a higher number of spawning events and lower per-spawning investment in the confined site exposed to lower predation risk, compared to the site connected with the open lagoon. Thus, model predictions suggest that habitat structure with different extrinsic mortality schedules may shape the life history strategy in modulating the pattern of energy allocation. Model application highlights the central role of energy partitioning through batch spawning, in determining the life history strategy. The particular ovary structure of a batch spawner seems therefore to allow the fish to modulate timing and investment of spawning events, shaping the optimal life history in relation to the environmental conditions.

  11. Health Risk Perceptions and Exercise in Older Adulthood: An Application of Protection Motivation Theory.

    PubMed

    Ruthig, Joelle C

    2016-09-01

    Protection Motivation Theory (PMT) was applied to explore the relationship between perceived risk of acute health crises and intent to exercise. Interviews of 351 community-living older adults assessed prior physical activity (PPA), all PMT components, and exercise intent. A multi-group structural equation model revealed gender differences in PMT predictors of exercise intent. PPA, age, self-efficacy, and response efficacy directly predicted men's intent. Women's PPA and age predicted PMT components of self-efficacy and response costs, which predicted intent. Findings have implications for devising interventions to enhance physical activity in later life by targeting different PMT components for older men and women. © The Author(s) 2014.

  12. Volumetric brain magnetic resonance imaging predicts functioning in bipolar disorder: A machine learning approach.

    PubMed

    Sartori, Juliana M; Reckziegel, Ramiro; Passos, Ives Cavalcante; Czepielewski, Leticia S; Fijtman, Adam; Sodré, Leonardo A; Massuda, Raffael; Goi, Pedro D; Vianna-Sulzbach, Miréia; Cardoso, Taiane de Azevedo; Kapczinski, Flávio; Mwangi, Benson; Gama, Clarissa S

    2018-08-01

    Neuroimaging studies have been steadily explored in Bipolar Disorder (BD) in the last decades. Neuroanatomical changes tend to be more pronounced in patients with repeated episodes. Although the role of such changes in cognition and memory is well established, daily-life functioning impairments bulge among the consequences of the proposed progression. The objective of this study was to analyze MRI volumetric modifications in BD and healthy controls (HC) as possible predictors of daily-life functioning through a machine learning approach. Ninety-four participants (35 DSM-IV BD type I and 59 HC) underwent clinical and functioning assessments, and structural MRI. Functioning was assessed using the Functioning Assessment Short Test (FAST). The machine learning analysis was used to identify possible candidates of regional brain volumes that could predict functioning status, through a support vector regression algorithm. Patients with BD and HC did not differ in age, education and marital status. There were significant differences between groups in gender, BMI, FAST score, and employment status. There was significant correlation between observed and predicted FAST score for patients with BD, but not for controls. According to the model, the brain structures volumes that could predict FAST scores were: left superior frontal cortex, left rostral medial frontal cortex, right white matter total volume and right lateral ventricle volume. The machine learning approach demonstrated that brain volume changes in MRI were predictors of FAST score in patients with BD and could identify specific brain areas related to functioning impairment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Reliability Assessment of Graphite Specimens under Multiaxial Stresses

    NASA Technical Reports Server (NTRS)

    Sookdeo, Steven; Nemeth, Noel N.; Bratton, Robert L.

    2008-01-01

    An investigation was conducted to predict the failure strength response of IG-100 nuclear grade graphite exposed to multiaxial stresses. As part of this effort, a review of failure criteria accounting for the stochastic strength response is provided. The experimental work was performed in the early 1990s at the Oak Ridge National Laboratory (ORNL) on hollow graphite tubes under the action of axial tensile loading and internal pressurization. As part of the investigation, finite-element analysis (FEA) was performed and compared with results of FEA from the original ORNL report. The new analysis generally compared well with the original analysis, although some discrepancies in the location of peak stresses was noted. The Ceramics Analysis and Reliability Evaluation of Structures Life prediction code (CARES/Life) was used with the FEA results to predict the quadrants I (tensile-tensile) and quadrant IV (compression-tension) strength response of the graphite tubes for the principle of independent action (PIA), the Weibull normal stress averaging (NSA), and the Batdorf multiaxial failure theories. The CARES/Life reliability analysis showed that all three failure theories gave similar results in quadrant I but that in quadrant IV, the PIA and Weibull normal stress-averaging theories were not conservative, whereas the Batdorf theory was able to correlate well with experimental results. The conclusion of the study was that the Batdorf theory should generally be used to predict the reliability response of graphite and brittle materials in multiaxial loading situations.

  14. Lifing of Engine Components

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The successful development of advanced aerospace engines depends greatly on the capabilities of high performance materials and structures. Advanced materials, such as nickel based single crystal alloys, metal foam, advanced copper alloys, and ceramics matrix composites, have been engineered to provide higher engine temperature and stress capabilities. Thermal barrier coatings have been developed to improve component durability and fuel efficiency, by reducing the substrate hot wall metal temperature and protecting against oxidation and blanching. However, these coatings are prone to oxidation and delamination failures. In order to implement the use of these materials in advanced engines, it is necessary to understand and model the evolution of damage of the metal substrate as well as the coating under actual engine conditions. The models and the understanding of material behavior are utilized in the development of a life prediction methodology for hot section components. The research activities were focused on determining the stress and strain fields in an engine environment under combined thermo-mechanical loads to develop life prediction methodologies consistent with the observed damage formation of the coating and the substrates.

  15. Parent-Teacher Association, Soup Kitchen, Church, or the Local Civic Club? Life Stage Indicators of Volunteer Domain.

    PubMed

    Carr, Dawn C; King, Katherine; Matz-Costa, Christina

    2015-04-01

    Gaps in existing literature hinder our knowledge of how life stage-related identities (e.g., worker, parent, student, etc.) influence individuals' decisions about whether and how to get involved in community service. Interventions to increase volunteerism throughout the life course require a more nuanced understanding of this relationship. We use multinomial logistic models to analyze how life phase factors relate to involvement in different types of voluntary organizations across the adult life course in the Chicago Community Adult Health Study. Half of the adults did not volunteer. Those who did volunteer were categorized as charitable, youth-oriented, religious, civic, or multidomain volunteers. Age, employment, family structure, demographics, and self-rated health differentially predicted volunteering in specific domains. Findings from this study suggest that recruitment and retention efforts employed by different nonprofit organizations may be more effective if they take into consideration the life phase factors that enhance or detract from likelihood of engagement. © The Author(s) 2015.

  16. The role of interpersonal sensitivity, social support, and quality of life in rural older adults.

    PubMed

    Wedgeworth, Monika; LaRocca, Michael A; Chaplin, William F; Scogin, Forrest

    The mental health of elderly individuals in rural areas is increasingly relevant as populations age and social structures change. While social support satisfaction is a well-established predictor of quality of life, interpersonal sensitivity symptoms may diminish this relation. The current study extends the findings of Scogin et al by investigating the relationship among interpersonal sensitivity, social support satisfaction, and quality of life among rural older adults and exploring the mediating role of social support in the relation between interpersonal sensitivity and quality of life (N = 128). Hierarchical regression revealed that interpersonal sensitivity and social support satisfaction predicted quality of life. In addition, bootstrapping resampling supported the role of social support satisfaction as a mediator between interpersonal sensitivity symptoms and quality of life. These results underscore the importance of nurses and allied health providers in assessing and attending to negative self-perceptions of clients, as well as the perceived quality of their social networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Structural mapping of the coiled-coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins.

    PubMed

    Waldman, Vincent M; Stanage, Tyler H; Mims, Alexandra; Norden, Ian S; Oakley, Martha G

    2015-06-01

    The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N- and C- terminal regions pack against one another to form a globular ATPase domain. This "head" domain is connected to a central, globular, "hinge" or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50-nm coiled-coil domain of MukB, the divergent SMC protein found in γ-proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled-coil domain. We find that, in contrast to the relatively complicated coiled-coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled-coil interruptions. Near the middle of the domain is a break in coiled-coil structure in which there are three more residues on the C-terminal strand than on the N-terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled-coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled-coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans. © 2015 Wiley Periodicals, Inc.

  18. MRI uncovers disrupted hippocampal microstructure that underlies memory impairments after early-life adversity.

    PubMed

    Molet, Jenny; Maras, Pamela M; Kinney-Lang, Eli; Harris, Neil G; Rashid, Faisal; Ivy, Autumn S; Solodkin, Ana; Obenaus, Andre; Baram, Tallie Z

    2016-12-01

    Memory and related cognitive functions are progressively impaired in a subgroup of individuals experiencing childhood adversity and stress. However, it is not possible to identify vulnerable individuals early, a crucial step for intervention. In this study, high-resolution magnetic resonance imaging (MRI) and intra-hippocampal diffusion tensor imaging (DTI) were employed to examine for structural signatures of cognitive adolescent vulnerabilities in a rodent model of early-life adversity. These methods were complemented by neuroanatomical and functional assessments of hippocampal network integrity during adolescence, adulthood and middle-age. The high-resolution MRI identified selective loss of dorsal hippocampal volume, and intra-hippocampal DTI uncovered disruption of dendritic structure, consistent with disrupted local connectivity, already during late adolescence in adversity-experiencing rats. Memory deteriorated over time, and stunting of hippocampal dendritic trees was apparent on neuroanatomical analyses. Thus, disrupted hippocampal neuronal structure and connectivity, associated with cognitive impairments, are detectable via non-invasive imaging modalities in rats experiencing early-life adversity. These high-resolution imaging approaches may constitute promising tools for prediction and assessment of at-risk individuals in the clinic. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1974-01-01

    Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.

  20. Simulation of physiological systems in order to evaluate and predict the human condition in a space flight

    NASA Technical Reports Server (NTRS)

    Verigo, V. V.

    1979-01-01

    Simulation models were used to study theoretical problems of space biology and medicine. The reaction and adaptation of the main physiological systems to the complex effects of space flight were investigated. Mathematical models were discussed in terms of their significance in the selection of the structure and design of biological life support systems.

  1. PTSD Symptoms and Self-Rated Recovery among Adult Sexual Assault Survivors: The Effects of Traumatic Life Events and Psychosocial Variables

    ERIC Educational Resources Information Center

    Najdowski, Cynthia J.; Ullman, Sarah E.

    2009-01-01

    Prior research has demonstrated that self-blame is predictive of more posttraumatic stress disorder (PTSD) symptoms and poorer recovery (Frazier, 2003; Koss, Figueredo, & Prince, 2002), and perceived control over recovery is associated with less distress (Frazier, 2003) in adult sexual assault (ASA) survivors. A structural equation model was…

  2. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.

    PubMed

    Fatihhi, S J; Harun, M N; Abdul Kadir, Mohammed Rafiq; Abdullah, Jaafar; Kamarul, T; Öchsner, Andreas; Syahrom, Ardiyansyah

    2015-10-01

    Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p < 0.05) in fatigue for both types of loading, whilst uniaxial loading has indicated better values in most cases.

  3. Nondestructive evaluation using dipole model analysis with a scan type magnetic camera

    NASA Astrophysics Data System (ADS)

    Lee, Jinyi; Hwang, Jiseong

    2005-12-01

    Large structures such as nuclear power, thermal power, chemical and petroleum refining plants are drawing interest with regard to the economic aspect of extending component life in respect to the poor environment created by high pressure, high temperature, and fatigue, securing safety from corrosion and exceeding their designated life span. Therefore, technology that accurately calculates and predicts degradation and defects of aging materials is extremely important. Among different methods available, nondestructive testing using magnetic methods is effective in predicting and evaluating defects on the surface of or surrounding ferromagnetic structures. It is important to estimate the distribution of magnetic field intensity for applicable magnetic methods relating to industrial nondestructive evaluation. A magnetic camera provides distribution of a quantitative magnetic field with a homogeneous lift-off and spatial resolution. It is possible to interpret the distribution of magnetic field when the dipole model was introduced. This study proposed an algorithm for nondestructive evaluation using dipole model analysis with a scan type magnetic camera. The numerical and experimental considerations of the quantitative evaluation of several sizes and shapes of cracks using magnetic field images of the magnetic camera were examined.

  4. Can weekly noise levels of urban road traffic, as predominant noise source, estimate annual ones?

    PubMed

    Prieto Gajardo, Carlos; Barrigón Morillas, Juan Miguel; Rey Gozalo, Guillermo; Vílchez-Gómez, Rosendo

    2016-11-01

    The effects of noise pollution on human quality of life and health were recognised by the World Health Organisation a long time ago. There is a crucial dilemma for the study of urban noise when one is looking for proven methodologies that can allow, on the one hand, an increase in the quality of predictions, and on the other hand, saving resources in the spatial and temporal sampling. The temporal structure of urban noise is studied in this work from a different point of view. This methodology, based on Fourier analysis, is applied to several measurements of urban noise, mainly from road traffic and one-week long, carried out in two cities located on different continents and with different sociological life styles (Cáceres, Spain and Talca, Chile). Its capacity to predict annual noise levels from weekly measurements is studied. The relation between this methodology and the categorisation method is also analysed.

  5. Autonomy support, basic psychological needs and well-being in Mexican athletes.

    PubMed

    López-Walle, Jeanette; Balaguer, Isabel; Castillo, Isabel; Tristán, José

    2012-11-01

    Based on Basic Needs Theory, one of the mini-theories of Self-determination Theory (Ryan & Deci, 2002), the present study had two objectives: (a) to test a model in the Mexican sport context based on the following sequence: perceived coach autonomy support, basic psychological needs satisfaction, and psychological well-being, and b) to analyze the mediational effect of the satisfaction of perceived coach autonomy support on indicators of psychological well-being (satisfaction with life and subjective vitality). Six hundred and sixty-nine young Mexican athletes (Boys = 339; Girls = 330; M(age) = 13.95) filled out a questionnaire assessing the study variables. Structural equations analyses revealed that perceived coach autonomy support predicted satisfaction of the basic psychological needs for autonomy, competence, and relatedness. Furthermore, basic need satisfaction predicted subjective vitality and satisfaction with life. Autonomy, competence and relatedness partially mediated the path from perceived coach autonomy support to psychological well-being in young Mexican athletes.

  6. Empirical modeling of environment-enhanced fatigue crack propagation in structural alloys for component life prediction

    NASA Technical Reports Server (NTRS)

    Richey, Edward, III

    1995-01-01

    This research aims to develop the methods and understanding needed to incorporate time and loading variable dependent environmental effects on fatigue crack propagation (FCP) into computerized fatigue life prediction codes such as NASA FLAGRO (NASGRO). In particular, the effect of loading frequency on FCP rates in alpha + beta titanium alloys exposed to an aqueous chloride solution is investigated. The approach couples empirical modeling of environmental FCP with corrosion fatigue experiments. Three different computer models have been developed and incorporated in the DOS executable program. UVAFAS. A multiple power law model is available, and can fit a set of fatigue data to a multiple power law equation. A model has also been developed which implements the Wei and Landes linear superposition model, as well as an interpolative model which can be utilized to interpolate trends in fatigue behavior based on changes in loading characteristics (stress ratio, frequency, and hold times).

  7. Predicted effect of dynamic load on pitting fatigue life for low-contact-ratio spur gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1986-01-01

    How dynamic load affects the surface pitting fatigue life of external spur gears was predicted by using the NASA computer program TELSGE. Parametric studies were performed over a range of various gear parameters modeling low-contact-ratio involute spur gears. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact. Gear mesh operating speed strongly affected predicted dynamic load and life. Meshes operating at a resonant speed or one-half the resonant speed had significantly shorter lives. Dynamic life factors for gear surface pitting fatigue were developed on the basis of the parametric studies. In general, meshes with higher contact ratios had higher dynamic life factors than meshes with lower contact ratios. A design chart was developed for hand calculations of dynamic life factors.

  8. Risk and protective factors for structural brain ageing in the eighth decade of life.

    PubMed

    Ritchie, Stuart J; Tucker-Drob, Elliot M; Cox, Simon R; Dickie, David Alexander; Del C Valdés Hernández, Maria; Corley, Janie; Royle, Natalie A; Redmond, Paul; Muñoz Maniega, Susana; Pattie, Alison; Aribisala, Benjamin S; Taylor, Adele M; Clarke, Toni-Kim; Gow, Alan J; Starr, John M; Bastin, Mark E; Wardlaw, Joanna M; Deary, Ian J

    2017-11-01

    Individuals differ markedly in brain structure, and in how this structure degenerates during ageing. In a large sample of human participants (baseline n = 731 at age 73 years; follow-up n = 488 at age 76 years), we estimated the magnitude of mean change and variability in changes in MRI measures of brain macrostructure (grey matter, white matter, and white matter hyperintensity volumes) and microstructure (fractional anisotropy and mean diffusivity from diffusion tensor MRI). All indices showed significant average change with age, with considerable heterogeneity in those changes. We then tested eleven socioeconomic, physical, health, cognitive, allostatic (inflammatory and metabolic), and genetic variables for their value in predicting these differences in changes. Many of these variables were significantly correlated with baseline brain structure, but few could account for significant portions of the heterogeneity in subsequent brain change. Physical fitness was an exception, being correlated both with brain level and changes. The results suggest that only a subset of correlates of brain structure are also predictive of differences in brain ageing.

  9. Understanding Quality of Life in Adults with Spinal Cord Injury Via SCI-Related Needs and Secondary Complications.

    PubMed

    Sweet, Shane N; Noreau, Luc; Leblond, Jean; Dumont, Frédéric S

    2014-01-01

    Understanding the factors that can predict greater quality of life (QoL) is important for adults with spinal cord injury (SCI), given that they report lower levels of QoL than the general population. To build a conceptual model linking SCI-related needs, secondary complications, and QoL in adults with SCI. Prior to testing the conceptual model, we aimed to develop and evaluate the factor structure for both SCI-related needs and secondary complications. Individuals with a traumatic SCI (N = 1,137) responded to an online survey measuring 13 SCI-related needs, 13 secondary complications, and the Life Satisfaction Questionnaire to assess QoL. The SCI-related needs and secondary complications were conceptualized into factors, tested with a confirmatory factor analysis, and subsequently evaluated in a structural equation model to predict QoL. The confirmatory factor analysis supported a 2-factor model for SCI related needs, χ(2)(61, N = 1,137) = 250.40, P <.001, comparative fit index (CFI) = .93, root mean square error of approximation (RMSEA) = .05, standardized root mean square residual (SRMR) = .04, and for 11 of the 13 secondary complications, χ(2)(44, N = 1,137) = 305.67, P < .001, CFI = .91, RMSEA = .060, SRMR = .033. The final 2 secondary complications were kept as observed constructs. In the structural model, both vital and personal development unmet SCI-related needs (β = -.22 and -.20, P < .05, respectively) and the neuro-physiological systems factor (β = -.45, P < .05) were negatively related with QoL. Identifying unmet SCI-related needs of individuals with SCI and preventing or managing secondary complications are essential to their QoL.

  10. Remaining Useful Life Estimation in Prognosis: An Uncertainty Propagation Problem

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Goebel, Kai

    2013-01-01

    The estimation of remaining useful life is significant in the context of prognostics and health monitoring, and the prediction of remaining useful life is essential for online operations and decision-making. However, it is challenging to accurately predict the remaining useful life in practical aerospace applications due to the presence of various uncertainties that affect prognostic calculations, and in turn, render the remaining useful life prediction uncertain. It is challenging to identify and characterize the various sources of uncertainty in prognosis, understand how each of these sources of uncertainty affect the uncertainty in the remaining useful life prediction, and thereby compute the overall uncertainty in the remaining useful life prediction. In order to achieve these goals, this paper proposes that the task of estimating the remaining useful life must be approached as an uncertainty propagation problem. In this context, uncertainty propagation methods which are available in the literature are reviewed, and their applicability to prognostics and health monitoring are discussed.

  11. Psychometrics and life history strategy: the structure and validity of the High K Strategy Scale.

    PubMed

    Copping, Lee T; Campbell, Anne; Muncer, Steven

    2014-03-22

    In this paper, we critically review the conceptualization and implementation of psychological measures of life history strategy associated with Differential K theory. The High K Strategy Scale (HKSS: Giosan, 2006) was distributed to a large British sample (n = 809) with the aim of assessing its factor structure and construct validity in relation to theoretically relevant life history variables: age of puberty, age of first sexual encounter, and number of sexual partners. Exploratory and confirmatory factor analyses indicated that the HKSS in its current form did not show an adequate statistical fit to the data. Modifications to improve fit indicated four correlated factors (personal capital, environmental stability, environmental security, and social capital). Later puberty in women was positively associated with measures of the environment and personal capital. Among men, contrary to Differential K predictions but in line with female mate preferences, earlier sexual debut and more sexual partners were positively associated with more favorable environments and higher personal and social capital. We raise concerns about the use of psychometric indicators of lifestyle and personality as proxies for life history strategy when they have not been validated against objective measures derived from contemporary life history theory and when their status as causes, mediators, or correlates has not been investigated.

  12. On the Psychometric Study of Human Life History Strategies.

    PubMed

    Richardson, George B; Sanning, Blair K; Lai, Mark H C; Copping, Lee T; Hardesty, Patrick H; Kruger, Daniel J

    2017-01-01

    This article attends to recent discussions of validity in psychometric research on human life history strategy (LHS), provides a constructive critique of the extant literature, and describes strategies for improving construct validity. To place the psychometric study of human LHS on more solid ground, our review indicates that researchers should (a) use approaches to psychometric modeling that are consistent with their philosophies of measurement, (b) confirm the dimensionality of life history indicators, and (c) establish measurement invariance for at least a subset of indicators. Because we see confirming the dimensionality of life history indicators as the next step toward placing the psychometrics of human LHS on more solid ground, we use nationally representative data and structural equation modeling to test the structure of middle adult life history indicators. We found statistically independent mating competition and Super-K dimensions and the effects of parental harshness and childhood unpredictability on Super-K were consistent with past research. However, childhood socioeconomic status had a moderate positive effect on mating competition and no effect on Super-K, while unpredictability did not predict mating competition. We conclude that human LHS is more complex than previously suggested-there does not seem to be a single dimension of human LHS among Western adults and the effects of environmental components seem to vary between mating competition and Super-K.

  13. Toward automated biochemotype annotation for large compound libraries.

    PubMed

    Chen, Xian; Liang, Yizeng; Xu, Jun

    2006-08-01

    Combinatorial chemistry allows scientists to probe large synthetically accessible chemical space. However, identifying the sub-space which is selectively associated with an interested biological target, is crucial to drug discovery and life sciences. This paper describes a process to automatically annotate biochemotypes of compounds in a library and thus to identify bioactivity related chemotypes (biochemotypes) from a large library of compounds. The process consists of two steps: (1) predicting all possible bioactivities for each compound in a library, and (2) deriving possible biochemotypes based on predictions. The Prediction of Activity Spectra for Substances program (PASS) was used in the first step. In second step, structural similarity and scaffold-hopping technologies are employed. These technologies are used to derive biochemotypes from bioactivity predictions and the corresponding annotated biochemotypes from MDL Drug Data Report (MDDR) database. About a one million (982,889) commercially available compound library (CACL) has been tested using this process. This paper demonstrates the feasibility of automatically annotating biochemotypes for large libraries of compounds. Nevertheless, some issues need to be considered in order to improve the process. First, the prediction accuracy of PASS program has no significant correlation with the number of compounds in a training set. Larger training sets do not necessarily increase the maximal error of prediction (MEP), nor do they increase the hit structural diversity. Smaller training sets do not necessarily decrease MEP, nor do they decrease the hit structural diversity. Second, the success of systematic bioactivity prediction relies on modeling, training data, and the definition of bioactivities (biochemotype ontology). Unfortunately, the biochemotype ontology was not well developed in the PASS program. Consequently, "ill-defined" bioactivities can reduce the quality of predictions. This paper suggests the ways in which the systematic bioactivities prediction program should be improved.

  14. Life prediction for high temperature low cycle fatigue of two kinds of titanium alloys based on exponential function

    NASA Astrophysics Data System (ADS)

    Mu, G. Y.; Mi, X. Z.; Wang, F.

    2018-01-01

    The high temperature low cycle fatigue tests of TC4 titanium alloy and TC11 titanium alloy are carried out under strain controlled. The relationships between cyclic stress-life and strain-life are analyzed. The high temperature low cycle fatigue life prediction model of two kinds of titanium alloys is established by using Manson-Coffin method. The relationship between failure inverse number and plastic strain range presents nonlinear in the double logarithmic coordinates. Manson-Coffin method assumes that they have linear relation. Therefore, there is bound to be a certain prediction error by using the Manson-Coffin method. In order to solve this problem, a new method based on exponential function is proposed. The results show that the fatigue life of the two kinds of titanium alloys can be predicted accurately and effectively by using these two methods. Prediction accuracy is within ±1.83 times scatter zone. The life prediction capability of new methods based on exponential function proves more effective and accurate than Manson-Coffin method for two kinds of titanium alloys. The new method based on exponential function can give better fatigue life prediction results with the smaller standard deviation and scatter zone than Manson-Coffin method. The life prediction results of two methods for TC4 titanium alloy prove better than TC11 titanium alloy.

  15. Roles of attachment and self-esteem: impact of early life stress on depressive symptoms among Japanese institutionalized children.

    PubMed

    Suzuki, Hanako; Tomoda, Akemi

    2015-02-05

    Although exposure to early life stress is known to affect mental health, the underlying mechanisms of its impacts on depressive symptoms among institutionalized children and adolescents have been little studied. To investigate the role of attachment and self-esteem in association with adverse childhood experiences (ACEs) and depressive symptoms, 342 children (149 boys, 193 girls; age range 9-18 years old, mean age = 13.5 ± 2.4) living in residential foster care facilities in Japan completed questionnaires related to internal working models, self-esteem, and depressive symptoms. Their care workers completed questionnaires on ACEs. Structural equation modeling (SEM) was created and the goodness of fit was examined (CMIN = 129.223, df = 1.360, GFI = .959, AGFI = .936, CFI = .939, RMSEA = .033). Maltreatment negatively predicted scores on secure attachment, but positively predicted scores on avoidant and ambivalent attachment. The secure attachment score negatively predicted depressive symptoms. The ambivalent attachment score positively predicted depressive symptoms both directly and through self-esteem, whereas the avoidant attachment score positively predicted depressive symptoms only directly. Maltreatment neither directly predicts self-esteem nor depressive symptoms, and parental illness/death and parental sociopathic behaviors did not predict any variables. Results show that the adversity of child maltreatment affects depression through attachment styles and low self-esteem among institutionalized children. Implications of child maltreatment and recommendations for child welfare services and clinical interventions for institutionalized children are discussed.

  16. Creep-Fatigue Relationsihps in Electroactive Polymer Systems and Predicted Effects in an Actuator Design

    NASA Technical Reports Server (NTRS)

    Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac

    2009-01-01

    The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.

  17. Examining the mediational role of psychological flexibility, pain catastrophizing, and visceral sensitivity in the relationship between psychological distress, irritable bowel symptom frequency, and quality of life.

    PubMed

    Cassar, G E; Knowles, S; Youssef, G J; Moulding, R; Uiterwijk, D; Waters, L; Austin, D W

    2018-06-08

    The aim of the current study was to use Structural Equation Modelling (SEM) to examine whether psychological flexibility (i.e. mindfulness, acceptance, valued-living) mediates the relationship between distress, irritable bowel syndrome (IBS) symptom frequency, and quality of life (QoL). Ninety-two individuals participated in the study (12 male, 80 female, M age  = 36.24) by completing an online survey including measures of visceral sensitivity, distress, IBS-related QoL, mindfulness, bowel symptoms, pain catastrophizing, acceptance, and valued-living. A final model with excellent fit was identified. Psychological distress significantly and directly predicted pain catastrophizing, valued-living, and IBS symptom frequency. Pain catastrophizing directly predicted visceral sensitivity and acceptance, while visceral sensitivity significantly and directly predicted IBS symptom frequency and QoL. Symptom frequency also had a direct and significant relationship with QoL. The current findings suggest that interventions designed to address unhelpful cognitive processes related to visceral sensitivity, pain catastrophizing, and psychological distress may be of most benefit to IBS-related QoL.

  18. Life prediction and constitutive behavior

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1983-01-01

    One of the primary drivers that prompted the initiation of the hot section technology (HOST) program was the recognized need for improved cyclic durability of costly hot section components. All too frequently, fatigue in one form or another was directly responsible for the less than desired durability, and prospects for the future weren't going to improve unless a significant effort was mounted to increase our knowledge and understanding of the elements governing cyclic crack initiation and propagation lifetime. Certainly one of the important factors is the ability to perform accurate structural stress-strain analyses on a routine basis to determine the magnitudes of the localized stresses and strains since it is these localized conditions that govern the initiation and crack growth processes. Developing the ability to more accurately predict crack initiation lifetimes and cyclic crack growth rates for the complex loading conditions found in turbine engine hot sections is of course the ultimate goal of the life prediction research efforts. It has been found convenient to divide the research efforts into those dealing with nominally isotropic and anisotropic alloys; the latter for application to directionally solidified and single crystal turbine blades.

  19. FLAPS (Fatigue Life Analysis Programs): Computer Programs to Predict Cyclic Life Using the Total Strain Version of Strainrange Partitioning and Other Life Prediction Methods. Users' Manual and Example Problems, Version 1.0

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Halford, Gary R. (Technical Monitor)

    2003-01-01

    This manual presents computer programs FLAPS for characterizing and predicting fatigue and creep-fatigue resistance of metallic materials in the high-temperature, long-life regime for isothermal and nonisothermal fatigue. The programs use the Total Strain version of Strainrange Partitioning (TS-SRP), and several other life prediction methods described in this manual. The user should be thoroughly familiar with the TS-SRP and these life prediction methods before attempting to use any of these programs. Improper understanding can lead to incorrect use of the method and erroneous life predictions. An extensive database has also been developed in a parallel effort. The database is probably the largest source of high-temperature, creep-fatigue test data available in the public domain and can be used with other life-prediction methods as well. This users' manual, software, and database are all in the public domain and can be obtained by contacting the author. The Compact Disk (CD) accompanying this manual contains an executable file for the FLAPS program, two datasets required for the example problems in the manual, and the creep-fatigue data in a format compatible with these programs.

  20. Fracture Analysis of Semi-Elliptical Surface Cracks in Ductile Materials

    NASA Technical Reports Server (NTRS)

    Daniewicz, S. R.; Newman, J. C., Jr.; Leach, A. M.

    2004-01-01

    Accurate life assessment of structural components may require advanced life prediction criteria and methodologies. Structural components often exhibit several different types of defects, among the most prevalent being surface cracks. A semi-elliptical surface crack subjected to monotonic loading will exhibit stable crack growth until the crack has reached a critical size, at which the crack loses stability and fracture ensues (Newman, 2000). The shape and geometry of the flaw are among the most influential factors. When considering simpler crack configurations, such as a through-the-thickness crack, a three-dimensional (3D) geometry may be modeled under the approximation of two-dimensional (2D) plane stress or plane strain. The more complex surface crack is typically modeled numerically with the Finite Element Method (FEM). A semi-elliptical surface crack is illustrated in Figure 1-1.

  1. Optimization of nonlinear, non-Gaussian Bayesian filtering for diagnosis and prognosis of monotonic degradation processes

    NASA Astrophysics Data System (ADS)

    Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.

    2018-05-01

    The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.

  2. The importance of mRNA structure in determining the pathogenicity of synonymous and non-synonymous mutations in haemophilia

    PubMed Central

    Hamasaki-Katagiri, Nobuko; Lin, Brian C.; Simon, Jonathan; Hunt, Ryan C.; Schiller, Tal; Russek-Cohen, Estelle; Komar, Anton A.; Bar, Haim; Kimchi-Sarfaty, Chava

    2016-01-01

    Introduction Mutational analysis is commonly used to support the diagnosis and management of haemophilia. This has allowed for the generation of large mutation databases which provide unparalleled insight into genotype-phenotype relationships. Haemophilia is associated with inversions, deletions, insertions, nonsense and missense mutations. Both synonymous and non-synonymous mutations influence the base pairing of messenger RNA (mRNA), which can alter mRNA structure, cellular half-life and ribosome processivity/elongation. However, the role of mRNA structure in determining the pathogenicity of point mutations in haemophilia has not been evaluated. Aim To evaluate mRNA thermodynamic stability and associated RNA prediction software as a means to distinguish between neutral and disease-associated mutations in haemophilia. Methods Five mRNA structure prediction software programs were used to assess the thermodynamic stability of mRNA fragments carrying neutral vs. disease-associated and synonymous vs. non-synonymous point mutations in F8, F9 and a third X-linked gene, DMD (dystrophin). Results In F8 and DMD, disease-associated mutations tend to occur in more structurally stable mRNA regions, represented by lower MFE (minimum free energy) levels. In comparing multiple software packages for mRNA structure prediction, a 101–151 nucleotide fragment length appears to be a feasible range for structuring future studies. Conclusion mRNA thermodynamic stability is one predictive characteristic, which when combined with other RNA and protein features, may offer significant insight when screening sequencing data for novel disease-associated mutations. Our results also suggest potential utility in evaluating the mRNA thermodynamic stability profile of a gene when determining the viability of interchanging codons for biological and therapeutic applications. PMID:27933712

  3. Stress in the City: Influence of Urban Social Stress and Violence on Pregnancy and Postpartum Quality of Life among Adolescent and Young Mothers.

    PubMed

    Willie, Tiara C; Powell, Adeya; Kershaw, Trace

    2016-02-01

    Adolescent and young mothers transitioning from pregnancy to postpartum need to maintain an optimal quality of life. Stress and exposure to violence (e.g., intimate partner violence (IPV), nonpartner violence) are predictors of poor quality of life for adult women; however, these associations remain understudied among adolescent and young mothers in urban areas. Guided by the social ecological model, the current study created a latent variable, urban social stress, to examine the impact of the urban social environment (i.e., stressful life events, discrimination, family stress, and neighborhood problems) on the quality of life of adolescent and young mothers during both pregnancy and postpartum. The current study is a secondary data analysis of a prospective cohort study of 296 expectant young mothers recruited at obstetrics and gynecology clinics. Results from structural equation and multigroup models found that higher urban social stress predicted lower mental and physical quality of life during pregnancy, but these associations were significantly stronger for IPV-exposed and nonpartner violence-exposed mothers. In the postpartum period, higher urban social stress predicted lower mental and physical quality of life, but these associations were significantly stronger for IPV-unexposed and nonpartner violence-exposed mothers. Stress reduction programs need to help adolescent and young mothers in urban areas develop stress management skills specific to urban social stress. Pregnancy and parenting programs need to be tailored to the specific needs of young mothers in urban areas by becoming sensitive to the role of IPV and nonpartner violence in these young women's lives.

  4. Socio-demographics, spirituality, and quality of life among community-dwelling and institutionalized older adults: A structural equation model.

    PubMed

    Soriano, Christian Albert F; Sarmiento, Winona D; Songco, Francis Justin G; Macindo, John Rey B; Conde, Alita R

    2016-01-01

    The increasing life expectancy of the population prompts an array of health conditions that impair an older adults' quality of life (QoL). Although demographics and spirituality have been associated with QoL, limited literature elucidated the exact mechanisms of their interactions, especially in a culturally-diverse country like Philippines. Hence, this study determined the relationship among socio-demographics, spirituality, and QoL of Filipino older adults in a community and institutional setting. A predictive-correlational study among 200 randomly-selected community-dwelling and institutionalized older adults was conducted, with a 99% power and a medium effect size. Data were collected using a three-part questionnaire from September to November 2015. The questionnaire was composed of the robotfoto, Spirituality Assessment Scale, and modified Older People's Quality of Life which assessed socio-demographics, spirituality, and QoL. Analysis showed that institutionalization in a nursing home positively and negatively affected spirituality and QoL, generating an acceptable model (χ(2)/df=2.12, RMSEA=0.08, and CFI=0.95). The negative direct effect of institutionalization on social relationship, leisure, & social activities QoL (β=-0.42, p<0.01) also initiates a cascade of indirect negative effects on both spirituality and QoL dimensions. The development of a structural model illustrating the interrelationship of socio-demographics, spirituality, and QoL helps healthcare professionals in predicting facets of spirituality and QoL that can be compromised by living in a nursing home. This understanding provides impetus in evaluating and refining geriatric healthcare programs, policies, and protocols to render individualized, holistic care in a socially-cohesive environment among older adults. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Factor structure of the Child Health Questionnaire Parent Form-50 and predictors of health-related quality of life in children with epilepsy.

    PubMed

    Ferro, Mark A; Landgraf, Jeanne M; Speechley, Kathy N

    2013-10-01

    The present study investigated the higher-order summary factor structure of the Child Health Questionnaire Parent Form-50 (CHQ) in a sample of children with new-onset epilepsy. The secondary aim was to identify risk factors predicting health-related quality of life (HRQL) 24 months post-diagnosis. Data came from the Health-related Quality of Life in Children with Epilepsy Study (HERQULES, N = 374), a multi-site study documenting HRQL among children with epilepsy from diagnosis through 24 months. Confirmatory factor analysis was used to determine goodness of fit between the original structure of the CHQ and HERQULES data. Multiple regression was used to identify risk factors at diagnosis for HRQL at 24 months. The models demonstrated good fit: baseline: CFI = 0.945; TLI = 0.941; WRMR = 1.461; RMSEA = 0.058; 24 months: CFI = 0.957; TLI = 0.954; WRMR = 1.393; RMSEA = 0.055. Factor loadings were high and no cross-loadings observed (first order: λ = 0.27-0.99, 0.24-0.98; second order: λ = 0.69-0.86, 0.54-0.92; p < 0.001 for all). Controlling for HRQL at diagnosis, predictors for better 24-month HRQL were as follows: physical health: fewer cognitive problems (p = 0.023) and parents with fewer depressive symptoms (p = 0.049); psychosocial health: older parent age (p = 0.043), fewer behavior problems (p = 0.004), and families with better functioning (p = 0.008) and fewer demands (p = 0.009). The CHQ higher-order summary factor structure was replicated in a sample of children with new-onset epilepsy, and child and family risk factors at diagnosis were found to predict HRQL 24 months post-diagnosis. These findings suggest it is possible to identify at-risk children early in the illness process and provide impetus for adopting family-centered care practices.

  6. Microcracking, microcrack-induced delamination, and longitudinal splitting of advanced composite structures

    NASA Technical Reports Server (NTRS)

    Nairn, John A.

    1992-01-01

    A combined analytical and experimental study was conducted to analyze microcracking, microcrack-induced delamination, and longitudinal splitting in polymer matrix composites. Strain energy release rates, calculated by a variational analysis, were used in a failure criterion to predict microcracking. Predictions and test results were compared for static, fatigue, and cyclic thermal loading. The longitudinal splitting analysis accounted for the effects of fiber bridging. Test data are analyzed and compared for longitudinal splitting and delamination under mixed-mode loading. This study emphasizes the importance of using fracture mechanics analyses to understand the complex failure processes that govern composite strength and life.

  7. Relationship between brain function (aEEG) and brain structure (MRI) and their predictive value for neurodevelopmental outcome of preterm infants.

    PubMed

    Hüning, Britta; Storbeck, Tobias; Bruns, Nora; Dransfeld, Frauke; Hobrecht, Julia; Karpienski, Julia; Sirin, Selma; Schweiger, Bernd; Weiss, Christel; Felderhoff-Müser, Ursula; Müller, Hanna

    2018-05-22

    To improve the prediction of neurodevelopmental outcome in very preterm infants, this study used the combination of amplitude-integrated electroencephalography (aEEG) within the first 72 h of life and cranial magnetic resonance imaging (MRI) at term equivalent age. A single-center cohort of 38 infants born before 32 weeks of gestation was subjected to both investigations. Structural measurements were performed on MRI. Multiple regression analysis was used to identify independent factors including functional and structural brain measurements associated with outcome at a corrected age of 24 months. aEEG parameters significantly correlated with MRI measurements. Reduced deep gray matter volume was associated with low Burdjalov Score on day 3 (p < 0.0001) and day 1-3 (p = 0.0012). The biparietal width and the transcerebellar diameter were related to Burdjalov Score on day 1 (p = 0.0111; p = 0.0002). The final multiple regression analysis revealed independent predictors of neurodevelopmental outcome: intraventricular hemorrhage (p = 0.0060) and interhemispheric distance (p = 0.0052) for mental developmental index; Burdjalov Score day 1 (p = 0.0201) and interhemispheric distance (p = 0.0142) for psychomotor developmental index. Functional aEEG parameters were associated with altered brain maturation on MRI. The combination of aEEG and MRI contributes to the prediction of outcome at 24 months. What is Known: • Prematurity remains a risk factor for impaired neurodevelopment. • aEEG is used to measure brain activity in preterm infants and cranial MRI is performed to identify structural gray and white matter abnormalities with impact on neurodevelopmental outcome. What is New: • aEEG parameters observed within the first 72 h of life were associated with altered deep gray matter volumes, biparietal width, and transcerebellar diameter at term equivalent age. • The combination of aEEG and MRI contributes to the prediction of neurodevelopmental outcome at 2 years of corrected age in very preterm infants.

  8. Predicting the potentials, solubilities and stabilities of metal-acetylacetonates for non-aqueous redox flow batteries using density functional theory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucharyson, J. F.; Cheng, L.; Tung, S. O.

    New active materials are needed to improve the performance and reduce the cost of non-aqueous redox flow batteries (RFBs) for grid-scale energy storage applications. Efforts to develop better performing materials, which have largely been empirical, would benefit from a better understanding of relationships between structural, electronic and RFB-relevant functional properties. This paper focuses on metal-acetylacetonates, a class of metal coordination complexes that has shown promise for use in RFBs, and describes correlations between their experimentally measured standard potentials, solubilities, and stabilities (cycle lifes), and selected chemical, structural and electronic properties determined from Density Functional Theory (DFT) calculations. The training setmore » consisted of 16 complexes including 5 different metals and 11 different substituents on the acetylacetonate ligand. Standard potentials for those compounds were calculated and are in good agreement with experimentally measured results. A predictive equation based on the solvation energies and dipole moments, two easily computed properties, reasonably modeled the experimentally determined solubilities. Importantly, we were able to identify a descriptor for the stability of acetylacetonates. The experimentally determined stability, quantified as the cycle life to a given degree of degradation, correlated with the percentage of the highest occupied (HOMO) or lowest unoccupied molecular orbital (LUMO) on the metal of the complex. This percentage is influenced by the degree of ligand innocence (irreducibility), and complexes with the most innocent ligands yielded the most stable redox reactions. To this end, VO(acetylacetonate)(2) and Fe(acetylacetonate)(3), with nearly 80% of the HOMO and LUMO on the metal, possessed the most stable oxidation and reduction half-reactions, respectively. The structure-function relationships and correlations presented in this paper could be used to predict new, highly soluble and stable complexes for RFB applications.« less

  9. Structural and functional aspects of social support as predictors of mental and physical health trajectories: Whitehall II cohort study.

    PubMed

    Hakulinen, Christian; Pulkki-Råback, Laura; Jokela, Markus; E Ferrie, Jane; Aalto, Anna-Mari; Virtanen, Marianna; Kivimäki, Mika; Vahtera, Jussi; Elovainio, Marko

    2016-07-01

    Social support is associated with better health. However, only a limited number of studies have examined the association of social support with health from the adult life course perspective and whether this association is bidirectional. Participants (n=6797; 30% women; age range from 40 to 77 years) who were followed from 1989 (phase 2) to 2006 (phase 8) were selected from the ongoing Whitehall II Study. Structural and functional social support was measured at follow-up phases 2, 5 and 7. Mental and physical health was measured at five consecutive follow-up phases (3-8). Social support predicted better mental health, and certain functional aspects of social support, such as higher practical support and higher levels of negative aspects in social relationships, predicted poorer physical health. The association between negative aspects of close relationships and physical health was found to strengthen over the adult life course. In women, the association between marital status and mental health weakened until the age of approximately 60 years. Better mental and physical health was associated with higher future social support. The strength of the association between social support and health may vary over the adult life course. The association with health seems to be bidirectional. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Age, growth and population structure of invasive lionfish (Pterois volitans/miles) in northeast Florida using a length-based, age-structured population model.

    PubMed

    Johnson, Eric G; Swenarton, Mary Katherine

    2016-01-01

    The effective management of invasive species requires detailed understanding of the invader's life history. This information is essential for modeling population growth and predicting rates of expansion, quantifying ecological impacts and assessing the efficacy of removal and control strategies. Indo-Pacific lionfish ( Pterois volitans/miles ) have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with documented negative impacts on native ecosystems. To better understand the life history of this species, we developed and validated a length-based, age-structured model to investigate age, growth and population structure in northeast Florida. The main findings of this study were: (1) lionfish exhibited rapid growth with seasonal variation in growth rates; (2) distinct cohorts were clearly identifiable in the length-frequency data, suggesting that lionfish are recruiting during a relatively short period in summer; and (3) the majority of lionfish were less than two years old with no lionfish older than three years of age, which may be the result of culling efforts as well as ontogenetic habitat shifts to deeper water.

  11. Age, growth and population structure of invasive lionfish (Pterois volitans/miles) in northeast Florida using a length-based, age-structured population model

    PubMed Central

    2016-01-01

    The effective management of invasive species requires detailed understanding of the invader’s life history. This information is essential for modeling population growth and predicting rates of expansion, quantifying ecological impacts and assessing the efficacy of removal and control strategies. Indo-Pacific lionfish (Pterois volitans/miles) have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with documented negative impacts on native ecosystems. To better understand the life history of this species, we developed and validated a length-based, age-structured model to investigate age, growth and population structure in northeast Florida. The main findings of this study were: (1) lionfish exhibited rapid growth with seasonal variation in growth rates; (2) distinct cohorts were clearly identifiable in the length-frequency data, suggesting that lionfish are recruiting during a relatively short period in summer; and (3) the majority of lionfish were less than two years old with no lionfish older than three years of age, which may be the result of culling efforts as well as ontogenetic habitat shifts to deeper water. PMID:27920953

  12. Understanding the relationships between self-esteem, experiential avoidance, and paranoia: structural equation modelling and experience sampling studies.

    PubMed

    Udachina, Alisa; Thewissen, Viviane; Myin-Germeys, Inez; Fitzpatrick, Sam; O'kane, Aisling; Bentall, Richard P

    2009-09-01

    Hypothesized relationships between experiential avoidance (EA), self-esteem, and paranoia were tested using structural equation modeling in a sample of student participants (N = 427). EA in everyday life was also investigated using the Experience Sampling Method in a subsample of students scoring high (N = 17) and low (N = 15) on paranoia. Results showed that paranoid students had lower self-esteem and reported higher levels of EA than nonparanoid participants. The interactive influence of EA and stress predicted negative self-esteem: EA was particularly damaging at high levels of stress. Greater EA and higher social stress independently predicted lower positive self-esteem. Low positive self-esteem predicted engagement in EA. A direct association between EA and paranoia was also found. These results suggest that similar mechanisms may underlie EA and thought suppression. Although people may employ EA to regulate self-esteem, this strategy is maladaptive as it damages self-esteem, incurs cognitive costs, and fosters paranoid thinking.

  13. Predicting Structure-Function Relations and Survival following Surgical and Bronchoscopic Lung Volume Reduction Treatment of Emphysema.

    PubMed

    Mondoñedo, Jarred R; Suki, Béla

    2017-02-01

    Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction.

  14. Predicting Structure-Function Relations and Survival following Surgical and Bronchoscopic Lung Volume Reduction Treatment of Emphysema

    PubMed Central

    Mondoñedo, Jarred R.

    2017-01-01

    Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction. PMID:28182686

  15. Autocorrelation structure at rest predicts value correlates of single neurons during reward-guided choice

    PubMed Central

    Cavanagh, Sean E; Wallis, Joni D; Kennerley, Steven W; Hunt, Laurence T

    2016-01-01

    Correlates of value are routinely observed in the prefrontal cortex (PFC) during reward-guided decision making. In previous work (Hunt et al., 2015), we argued that PFC correlates of chosen value are a consequence of varying rates of a dynamical evidence accumulation process. Yet within PFC, there is substantial variability in chosen value correlates across individual neurons. Here we show that this variability is explained by neurons having different temporal receptive fields of integration, indexed by examining neuronal spike rate autocorrelation structure whilst at rest. We find that neurons with protracted resting temporal receptive fields exhibit stronger chosen value correlates during choice. Within orbitofrontal cortex, these neurons also sustain coding of chosen value from choice through the delivery of reward, providing a potential neural mechanism for maintaining predictions and updating stored values during learning. These findings reveal that within PFC, variability in temporal specialisation across neurons predicts involvement in specific decision-making computations. DOI: http://dx.doi.org/10.7554/eLife.18937.001 PMID:27705742

  16. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  17. Family (Dis)Advantage and Life Course Expectations*

    PubMed Central

    Johnson, Monica Kirkpatrick; Hitlin, Steven

    2016-01-01

    Optimistic assessments of life chances can positively influence life outcomes, but conflicting theories suggest these assessments either reflect structural privilege or develop as a result of childhood hardship. In addition, competing hypotheses suggest that these assessments may matter differently depending on who holds them. We examine whether family socioeconomic status shapes adolescents’ expectations about how successful their lives will turn out. We distinguish generalized life expectations (GLE), capturing anticipated success in life across multiple domains, from intergenerational comparative expectations (ICE), which register expectations about improvement relative to observed success within the respondent’s family lineage. We find that adolescents from higher socioeconomic status families are simultaneously more optimistic about their likely success in life (GLE) but less likely to anticipate relative improvement in life success across generations (ICE). Holding high GLE in combination with low ICE predicted doing better in adulthood across a range of health, attainment, and well-being outcomes, though in most cases high GLE, regardless of ICE, was the key. These beneficial patterns are, for the most part, at least as beneficial for socioeconomically disadvantaged youth as they are for advantaged youth. PMID:28408766

  18. How long will my mouse live? Machine learning approaches for prediction of mouse life span.

    PubMed

    Swindell, William R; Harper, James M; Miller, Richard A

    2008-09-01

    Prediction of individual life span based on characteristics evaluated at middle-age represents a challenging objective for aging research. In this study, we used machine learning algorithms to construct models that predict life span in a stock of genetically heterogeneous mice. Life-span prediction accuracy of 22 algorithms was evaluated using a cross-validation approach, in which models were trained and tested with distinct subsets of data. Using a combination of body weight and T-cell subset measures evaluated before 2 years of age, we show that the life-span quartile to which an individual mouse belongs can be predicted with an accuracy of 35.3% (+/-0.10%). This result provides a new benchmark for the development of life-span-predictive models, but improvement can be expected through identification of new predictor variables and development of computational approaches. Future work in this direction can provide tools for aging research and will shed light on associations between phenotypic traits and longevity.

  19. The predictive value of post-traumatic stress disorder symptoms for quality of life: a longitudinal study of physically injured victims of non-domestic violence

    PubMed Central

    Johansen, Venke A; Wahl, Astrid K; Eilertsen, Dag Erik; Weisaeth, Lars; Hanestad, Berit R

    2007-01-01

    Background Little is known about longitudinal associations between post-traumatic stress disorder (PTSD) and quality of life (QoL) after exposure to violence. The aims of the current study were to examine quality of life (QoL) and the predictive value of post-traumatic stress disorder (PTSD) for QoL in victims of non-domestic violence over a period of 12 months. Methods A single-group (n = 70) longitudinal design with three repeated measures over a period of 12 months were used. Posttraumatic psychological symptoms were assessed by using the Impact of Event Scale, a 15-item self-rating questionnaire comprising two subscales (intrusion and avoidance) as a screening instrument for PTSD. The questionnaire WHOQOL-Bref was used to assess QoL. The WHOQOL-BREF instrument comprises 26 items, which measure the following broad domains: physical health, psychological health, social relationships, and environment. Results of the analysis were summarized by fitting Structural Equation Modelling (SEM). Results For each category of PTSD (probable cases, risk level cases and no cases), the mean levels of the WHOQOL-Bref subscales (the four domains and the two single items) were stable across time of assessment. Individuals who scored as probable PTSD or as risk level cases had significantly lower scores on the QoL domains such as physical health, psychological health, social relationships and environmental than those without PTSD symptoms. In addition, the two items examining perception of overall quality of life and perception of overall health in WHOQOL showed the same results according to PTSD symptoms such as QoL domains. PTSD symptoms predicted lower QoL at all three assessments. Similarly PTSD symptoms at T1 predicted lower QoL at T2 and PTSD symptoms at T2 predicted lower QoL at T3. Conclusion The presence of PTSD symptoms predicted lower QoL, both from an acute and prolonged perspective, in victims of non-domestic violence. Focusing on the individual's perception of his/her QoL in addition to the illness may increase the treatment priorities and efforts. PMID:17517126

  20. The predictive value of post-traumatic stress disorder symptoms for quality of life: a longitudinal study of physically injured victims of non-domestic violence.

    PubMed

    Johansen, Venke A; Wahl, Astrid K; Eilertsen, Dag Erik; Weisaeth, Lars; Hanestad, Berit R

    2007-05-21

    Little is known about longitudinal associations between post-traumatic stress disorder (PTSD) and quality of life (QoL) after exposure to violence. The aims of the current study were to examine quality of life (QoL) and the predictive value of post-traumatic stress disorder (PTSD) for QoL in victims of non-domestic violence over a period of 12 months. A single-group (n = 70) longitudinal design with three repeated measures over a period of 12 months were used. Posttraumatic psychological symptoms were assessed by using the Impact of Event Scale, a 15-item self-rating questionnaire comprising two subscales (intrusion and avoidance) as a screening instrument for PTSD. The questionnaire WHOQOL-Bref was used to assess QoL. The WHOQOL-BREF instrument comprises 26 items, which measure the following broad domains: physical health, psychological health, social relationships, and environment. Results of the analysis were summarized by fitting Structural Equation Modelling (SEM). For each category of PTSD (probable cases, risk level cases and no cases), the mean levels of the WHOQOL-Bref subscales (the four domains and the two single items) were stable across time of assessment. Individuals who scored as probable PTSD or as risk level cases had significantly lower scores on the QoL domains such as physical health, psychological health, social relationships and environmental than those without PTSD symptoms. In addition, the two items examining perception of overall quality of life and perception of overall health in WHOQOL showed the same results according to PTSD symptoms such as QoL domains. PTSD symptoms predicted lower QoL at all three assessments. Similarly PTSD symptoms at T1 predicted lower QoL at T2 and PTSD symptoms at T2 predicted lower QoL at T3. The presence of PTSD symptoms predicted lower QoL, both from an acute and prolonged perspective, in victims of non-domestic violence. Focusing on the individual's perception of his/her QoL in addition to the illness may increase the treatment priorities and efforts.

  1. Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects.

    PubMed

    Ziegler, G; Ridgway, G R; Dahnke, R; Gaser, C

    2014-08-15

    Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18-94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects

    PubMed Central

    Ziegler, G.; Ridgway, G.R.; Dahnke, R.; Gaser, C.

    2014-01-01

    Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18–94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. PMID:24742919

  3. Effects of High-Intensity Interval Training versus Continuous Training on Physical Fitness, Cardiovascular Function and Quality of Life in Heart Failure Patients.

    PubMed

    Benda, Nathalie M M; Seeger, Joost P H; Stevens, Guus G C F; Hijmans-Kersten, Bregina T P; van Dijk, Arie P J; Bellersen, Louise; Lamfers, Evert J P; Hopman, Maria T E; Thijssen, Dick H J

    2015-01-01

    Physical fitness is an important prognostic factor in heart failure (HF). To improve fitness, different types of exercise have been explored, with recent focus on high-intensity interval training (HIT). We comprehensively compared effects of HIT versus continuous training (CT) in HF patients NYHA II-III on physical fitness, cardiovascular function and structure, and quality of life, and hypothesize that HIT leads to superior improvements compared to CT. Twenty HF patients (male:female 19:1, 64±8 yrs, ejection fraction 38±6%) were allocated to 12-weeks of HIT (10*1-minute at 90% maximal workload-alternated by 2.5 minutes at 30% maximal workload) or CT (30 minutes at 60-75% of maximal workload). Before and after intervention, we examined physical fitness (incremental cycling test), cardiac function and structure (echocardiography), vascular function and structure (ultrasound) and quality of life (SF-36, Minnesota living with HF questionnaire (MLHFQ)). Training improved maximal workload, peak oxygen uptake (VO2peak) related to the predicted VO2peak, oxygen uptake at the anaerobic threshold, and maximal oxygen pulse (all P<0.05), whilst no differences were present between HIT and CT (N.S.). We found no major changes in resting cardiovascular function and structure. SF-36 physical function score improved after training (P<0.05), whilst SF-36 total score and MLHFQ did not change after training (N.S.). Training induced significant improvements in parameters of physical fitness, although no evidence for superiority of HIT over CT was demonstrated. No major effect of training was found on cardiovascular structure and function or quality of life in HF patients NYHA II-III. Nederlands Trial Register NTR3671.

  4. [Thermodynamics of the origin of life, evolution and aging].

    PubMed

    Gladyshev, G P

    2014-01-01

    Briefly discusses the history of the search of thermodynamic approach to explain the origin of life, evolution and aging of living beings. The origin of life is the result of requirement by the quasi-equilibrium hierarchical thermodynamics, in particular, the supramolecular thermodynamics. The evolution and aging of living beings is accompanied with changes of chemical and supramolecular compositions of living bodies, as well as with changes in the composition and structure of all hierarchies of the living world. The thermodynamic principle of substance stability predicts the existence of a single genetic code in our universe. The thermodynamic theory optimizes physiology and medicine and recommends antiaging diets and medicines. Hierarchical thermodynamics forms the design diversity of culture and art. The thermodynamic theory of origin of life, evolution and aging is the development of Clausius-Gibbs thermodynamics. Hierarchical thermodynamics is the mirror of Darwin-Wallace's-theory.

  5. History of major depressive disorder prospectively predicts worse quality of life in women with breast cancer.

    PubMed

    Jim, Heather S L; Small, Brent J; Minton, Susan; Andrykowski, Michael; Jacobsen, Paul B

    2012-06-01

    Data are scarce about whether past history of major depressive disorder in the absence of current depression places breast cancer patients at risk for worse quality of life. The current study prospectively examined quality of life during chemotherapy in breast cancer patients with a history of resolved major depressive disorder (n = 29) and no history of depression (n = 144). Women with Stages 0-II breast cancer were assessed prior to and at the completion of chemotherapy. Major depressive disorder was assessed via structured interview and quality of life with the SF-36. Patients with past major depressive disorder displayed greater declines in physical functioning relative to patients with no history of depression (p ≤ 0.01). Findings suggest that breast cancer patients with a history of resolved major depressive disorder are at increased risk for declines in physical functioning during chemotherapy relative to patients with no history of depression.

  6. Uncertainty Quantification in Remaining Useful Life of Aerospace Components using State Space Models and Inverse FORM

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar; Goebel, Kai

    2013-01-01

    This paper investigates the use of the inverse first-order reliability method (inverse- FORM) to quantify the uncertainty in the remaining useful life (RUL) of aerospace components. The prediction of remaining useful life is an integral part of system health prognosis, and directly helps in online health monitoring and decision-making. However, the prediction of remaining useful life is affected by several sources of uncertainty, and therefore it is necessary to quantify the uncertainty in the remaining useful life prediction. While system parameter uncertainty and physical variability can be easily included in inverse-FORM, this paper extends the methodology to include: (1) future loading uncertainty, (2) process noise; and (3) uncertainty in the state estimate. The inverse-FORM method has been used in this paper to (1) quickly obtain probability bounds on the remaining useful life prediction; and (2) calculate the entire probability distribution of remaining useful life prediction, and the results are verified against Monte Carlo sampling. The proposed methodology is illustrated using a numerical example.

  7. Function of Hero and Heroine in Women's Formula Fiction: A Gaining of Self through Separation, Identification, and Assimilation.

    ERIC Educational Resources Information Center

    Moffitt, Mary Anne

    Romance novels have become increasingly popular and sexually explicit, in part because women may gain a sense of self through reading them and perhaps in reaction to the patriarchal structure of society. Women may seek escape and a sense of self-identity through the novels'"larger-than-life" characters and predictable endings. Readers of…

  8. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  9. NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 736 kg of Propellant Throughput

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar-electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced mission capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to qualify the thruster propellant throughput capability. The thruster has set electric propulsion records for the longest operating duration, highest propellant throughput, and most total impulse demonstrated. At the time of this publication, the NEXT LDT has surpassed 42,100 h of operation, processed more than 736 kg of xenon propellant, and demonstrated greater than 28.1 MN s total impulse. Thruster performance has been steady with negligible degradation. The NEXT thruster design has mitigated several lifetime limiting mechanisms encountered in the NSTAR design, including the NSTAR first failure mode, thereby drastically improving thruster capabilities. Component erosion rates and the progression of the predicted life-limiting erosion mechanism for the thruster compare favorably to pretest predictions based upon semi-empirical ion thruster models used in the thruster service life assessment. Service life model validation has been accomplished by the NEXT LDT. Assuming full-power operation until test article failure, the models and extrapolated erosion data predict penetration of the accelerator grid grooves after more than 45,000 hours of operation while processing over 800 kg of xenon propellant. Thruster failure due to degradation of the accelerator grid structural integrity is expected after groove penetration.

  10. NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 736 kg of Propellant Throughput

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2012-01-01

    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar-electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced mission capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to qualify the thruster propellant throughput capability. The thruster has set electric propulsion records for the longest operating duration, highest propellant throughput, and most total impulse demonstrated. At the time of this publication, the NEXT LDT has surpassed 42,100 h of operation, processed more than 736 kg of xenon propellant, and demonstrated greater than 28.1 MN s total impulse. Thruster performance has been steady with negligible degradation. The NEXT thruster design has mitigated several lifetime limiting mechanisms encountered in the NSTAR design, including the NSTAR first failure mode, thereby drastically improving thruster capabilities. Component erosion rates and the progression of the predicted life-limiting erosion mechanism for the thruster compare favorably to pretest predictions based upon semi-empirical ion thruster models used in the thruster service life assessment. Service life model validation has been accomplished by the NEXT LDT. Assuming full-power operation until test article failure, the models and extrapolated erosion data predict penetration of the accelerator grid grooves after more than 45,000 hours of operation while processing over 800 kg of xenon propellant. Thruster failure due to degradation of the accelerator grid structural integrity is expected after

  11. Subjective Life Expectancy Among College Students.

    PubMed

    Rodemann, Alyssa E; Arigo, Danielle

    2017-09-14

    Establishing healthy habits in college is important for long-term health. Despite existing health promotion efforts, many college students fail to meet recommendations for behaviors such as healthy eating and exercise, which may be due to low perceived risk for health problems. The goals of this study were to examine: (1) the accuracy of life expectancy predictions, (2) potential individual differences in accuracy (i.e., gender and conscientiousness), and (3) potential change in accuracy after inducing awareness of current health behaviors. College students from a small northeastern university completed an electronic survey, including demographics, initial predictions of their life expectancy, and their recent health behaviors. At the end of the survey, participants were asked to predict their life expectancy a second time. Their health data were then submitted to a validated online algorithm to generate calculated life expectancy. Participants significantly overestimated their initial life expectancy, and neither gender nor conscientiousness was related to the accuracy of these predictions. Further, subjective life expectancy decreased from initial to final predictions. These findings suggest that life expectancy perceptions present a unique-and potentially modifiable-psychological process that could influence college students' self-care.

  12. Effects of sensitivity to life stress on uncinate fasciculus segments in early adolescence

    PubMed Central

    King, Lucy S.; Leong, Josiah K.; Colich, Natalie L.; Humphreys, Kathryn L.; Ordaz, Sarah J.; Gotlib, Ian H.

    2017-01-01

    Abstract Previous research suggests that exposure to early life stress (ELS) affects the structural integrity of the uncinate fasciculus (UF), a frontolimbic white matter tract that undergoes protracted development throughout adolescence. Adolescence is an important transitional period characterized by the emergence of internalizing psychopathology such as anxiety, particularly in individuals with high levels of stress sensitivity. We examined the relations among sensitivity to ELS, structural integrity of the UF, and anxiety symptoms in 104 early adolescents. We conducted structured interviews to assess exposure to ELS and obtained subjective and objective ratings of stress severity, from which we derived an index of ELS sensitivity. We also acquired diffusion MRI and conducted deterministic tractography to visualize UF trajectories and to compute measures of structural integrity from three distinct segments of the UF: frontal, insular, temporal. We found that higher sensitivity to ELS predicted both reduced fractional anisotropy in right frontal UF and higher levels of anxiety symptoms. These findings suggest that fibers in frontal UF, which are still developing throughout adolescence, are most vulnerable to the effects of heightened sensitivity to ELS, and that reduced structural integrity of frontal UF may underlie the relation between early stress and subsequent internalizing psychopathology. PMID:28460088

  13. Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins

    NASA Astrophysics Data System (ADS)

    Basu, Sankar; Söderquist, Fredrik; Wallner, Björn

    2017-05-01

    The focus of the computational structural biology community has taken a dramatic shift over the past one-and-a-half decades from the classical protein structure prediction problem to the possible understanding of intrinsically disordered proteins (IDP) or proteins containing regions of disorder (IDPR). The current interest lies in the unraveling of a disorder-to-order transitioning code embedded in the amino acid sequences of IDPs/IDPRs. Disordered proteins are characterized by an enormous amount of structural plasticity which makes them promiscuous in binding to different partners, multi-functional in cellular activity and atypical in folding energy landscapes resembling partially folded molten globules. Also, their involvement in several deadly human diseases (e.g. cancer, cardiovascular and neurodegenerative diseases) makes them attractive drug targets, and important for a biochemical understanding of the disease(s). The study of the structural ensemble of IDPs is rather difficult, in particular for transient interactions. When bound to a structured partner, an IDPR adapts an ordered conformation in the complex. The residues that undergo this disorder-to-order transition are called protean residues, generally found in short contiguous stretches and the first step in understanding the modus operandi of an IDP/IDPR would be to predict these residues. There are a few available methods which predict these protean segments from their amino acid sequences; however, their performance reported in the literature leaves clear room for improvement. With this background, the current study presents `Proteus', a random forest classifier that predicts the likelihood of a residue undergoing a disorder-to-order transition upon binding to a potential partner protein. The prediction is based on features that can be calculated using the amino acid sequence alone. Proteus compares favorably with existing methods predicting twice as many true positives as the second best method (55 vs. 27%) with a much higher precision on an independent data set. The current study also sheds some light on a possible `disorder-to-order' transitioning consensus, untangled, yet embedded in the amino acid sequence of IDPs. Some guidelines have also been suggested for proceeding with a real-life structural modeling involving an IDPR using Proteus.

  14. Cultural variation in the use of current life satisfaction to predict the future.

    PubMed

    Oishi, S; Wyer, R S; Colcombe, S J

    2000-03-01

    Three studies examined cultural and situational influences on the tendency for people to use their current life satisfaction to predict future life events. On the basis of the self-enhancement literature, it was predicted that either writing about a positive personal experience or reading about another's negative experience would lead European Americans to focus their attention on internal attributes and thus would lead them to use their current life satisfaction in predicting the future. Conversely, on the basis of the self-criticism literature, it was predicted that these same conditions would lead Asian Americans to focus their attention on external factors and, therefore, would decrease their likelihood of using their current life satisfaction to predict the future. Studies 1 and 2 supported these hypotheses. Study 3 showed that these patterns could be obtained by subliminally priming concepts associated with individualism and collectivism.

  15. Developing a Graphical User Interface to Automate the Estimation and Prediction of Risk Values for Flood Protective Structures using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Hasan, M.; Helal, A.; Gabr, M.

    2014-12-01

    In this project, we focus on providing a computer-automated platform for a better assessment of the potential failures and retrofit measures of flood-protecting earth structures, e.g., dams and levees. Such structures play an important role during extreme flooding events as well as during normal operating conditions. Furthermore, they are part of other civil infrastructures such as water storage and hydropower generation. Hence, there is a clear need for accurate evaluation of stability and functionality levels during their service lifetime so that the rehabilitation and maintenance costs are effectively guided. Among condition assessment approaches based on the factor of safety, the limit states (LS) approach utilizes numerical modeling to quantify the probability of potential failures. The parameters for LS numerical modeling include i) geometry and side slopes of the embankment, ii) loading conditions in terms of rate of rising and duration of high water levels in the reservoir, and iii) cycles of rising and falling water levels simulating the effect of consecutive storms throughout the service life of the structure. Sample data regarding the correlations of these parameters are available through previous research studies. We have unified these criteria and extended the risk assessment in term of loss of life through the implementation of a graphical user interface to automate input parameters that divides data into training and testing sets, and then feeds them into Artificial Neural Network (ANN) tool through MATLAB programming. The ANN modeling allows us to predict risk values of flood protective structures based on user feedback quickly and easily. In future, we expect to fine-tune the software by adding extensive data on variations of parameters.

  16. A comparison of reliability and conventional estimation of safe fatigue life and safe inspection intervals

    NASA Technical Reports Server (NTRS)

    Hooke, F. H.

    1972-01-01

    Both the conventional and reliability analyses for determining safe fatigue life are predicted on a population having a specified (usually log normal) distribution of life to collapse under a fatigue test load. Under a random service load spectrum, random occurrences of load larger than the fatigue test load may confront and cause collapse of structures which are weakened, though not yet to the fatigue test load. These collapses are included in reliability but excluded in conventional analysis. The theory of risk determination by each method is given, and several reasonably typical examples have been worked out, in which it transpires that if one excludes collapse through exceedance of the uncracked strength, the reliability and conventional analyses gave virtually identical probabilities of failure or survival.

  17. Subjective adult identity and casual sexual behavior.

    PubMed

    Lyons, Heidi Ann

    2015-12-01

    A majority of Americans have a casual sexual experience before transitioning to adulthood. Little research has yet to examine how identity influences causal sexual behavior. The current study fills this gap in the literature by examining if subjective adult identity predicts casual sexual behavior net of life course transitions in a national sample of Americans. To answer this research question, the Longitudinal Study of Adolescent to Adult Health is utilized. Structural equation modeling results show the older and more adult-like individuals feel the less likely they are to report a recent casual sexual partner. Once life course factors are included in the model, subjective identity is no longer associated with casual sex. Practitioners who work with adult populations need to consider how life course transitions influence casual sexual behavior.

  18. Subjective adult identity and casual sexual behavior

    PubMed Central

    Lyons, Heidi Ann

    2015-01-01

    A majority of Americans have a casual sexual experience before transitioning to adulthood. Little research has yet to examine how identity influences causal sexual behavior. The current study fills this gap in the literature by examining if subjective adult identity predicts casual sexual behavior net of life course transitions in a national sample of Americans. To answer this research question, the Longitudinal Study of Adolescent to Adult Health is utilized. Structural equation modeling results show the older and more adult-like individuals feel the less likely they are to report a recent casual sexual partner. Once life course factors are included in the model, subjective identity is no longer associated with casual sex. Practitioners who work with adult populations need to consider how life course transitions influence casual sexual behavior. PMID:27065759

  19. Effect of Individual Component Life Distribution on Engine Life Prediction

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Hendricks, Robert C.; Soditus, Sherry M.

    2003-01-01

    The effect of individual engine component life distributions on engine life prediction was determined. A Weibull-based life and reliability analysis of the NASA Energy Efficient Engine was conducted. The engine s life at a 95 and 99.9 percent probability of survival was determined based upon the engine manufacturer s original life calculations and assumed values of each of the component s cumulative life distributions as represented by a Weibull slope. The lives of the high-pressure turbine (HPT) disks and blades were also evaluated individually and as a system in a similar manner. Knowing the statistical cumulative distribution of each engine component with reasonable engineering certainty is a condition precedent to predicting the life and reliability of an entire engine. The life of a system at a given reliability will be less than the lowest-lived component in the system at the same reliability (probability of survival). Where Weibull slopes of all the engine components are equal, the Weibull slope had a minimal effect on engine L(sub 0.1) life prediction. However, at a probability of survival of 95 percent (L(sub 5) life), life decreased with increasing Weibull slope.

  20. Social Cognitive Predictors of Interest in Research Among Life Sciences Academics

    NASA Astrophysics Data System (ADS)

    Sawitri, Dian R.; Nurtjahjanti, Harlina; Prasetyo, Anggun R.

    2018-02-01

    Research interest is the degree to which an individual is interested in conducting research-related activities. Nowadays, Indonesian higher education academics are expected to be research productive, especially those in life sciences. However, what predicts interest in research among life sciences academics is rarely known. We surveyed 240 life sciences academics (64.6% female, mean age = 31.91 years) from several higher degree institutions in Indonesia, using interest in research, research self-efficacy, and research outcome expectations questionnaires. We used social cognitive career theory which proposes that individual’s interests are the results of the interaction between one’s self-efficacy beliefs and outcome expectations overtime. Structural equation modelling demonstrated that research self-efficacy was directly and indirectly associated with interest in research via research outcome expectations. Understanding the social cognitive predictors of interest in research contributes to an understanding of the associations between research self-efficacy, outcome expectations, and interest in research. Recommendations for life sciences academics, faculties, and higher education institutions are discussed.

  1. Habitat-based constraints on food web structure and parasite life cycles.

    PubMed

    Rossiter, Wayne; Sukhdeo, Michael V K

    2014-04-01

    Habitat is frequently implicated as a powerful determinant of community structure and species distributions, but few studies explicitly evaluate the relationship between habitat-based patterns of species' distributions and the presence or absence of trophic interactions. The complex (multi-host) life cycles of parasites are directly affected by these factors, but almost no data exist on the role of habitat in constraining parasite-host interactions at the community level. In this study the relationship(s) between species abundances, distributions and trophic interactions (including parasitism) were evaluated in the context of habitat structure (classic geomorphic designations of pools, riffles and runs) in a riverine community (Raritan River, Hunterdon County, NJ, USA). We report 121 taxa collected over a 2-year period, and compare the observed food web patterns to null model expectations. The results show that top predators are constrained to particular habitat types, and that species' distributions are biased towards pool habitats. However, our null model (which incorporates cascade model assumptions) accurately predicts the observed patterns of trophic interactions. Thus, habitat strongly dictates species distributions, and patterns of trophic interactions arise as a consequence of these distributions. Additionally, we find that hosts utilized in parasite life cycles are more overlapping in their distributions, and this pattern is more pronounced among those involved in trophic transmission. We conclude that habitat structure may be a strong predictor of parasite transmission routes, particularly within communities that occupy heterogeneous habitats.

  2. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages

    PubMed Central

    2017-01-01

    Bark beetles play an important role as agents of natural renovation and regeneration in coniferous forests. Several studies have documented the metabolic capacity of bacteria associated with the gut, body surface, and oral secretions of these insects; however, little is known about how the bacterial community structure changes during the life cycle of the beetles. This study represents the first comprehensive analysis of the bacterial community of the gut of the bark beetle D. rhizophagus during the insect’s life cycle using 454 pyrosequencing. A total of 4 bacterial phyla, 7 classes, 15 families and 23 genera were identified. The α-diversity was low, as demonstrated in previous studies. The dominant bacterial taxa belonged to the Enterobacteriaceae and Pseudomonadaceae families. This low α-diversity can be attributed to the presence of defensive chemical compounds in conifers or due to different morpho-physiological factors in the gut of these insects acting as strong selective factors. Members of the genera Rahnella, Serratia, Pseudomonas and Propionibacterium were found at all life stages, and the first three genera, particularly Rahnella, were predominant suggesting the presence of a core microbiome in the gut. Significant differences in β-diversity were observed, mainly due to bacterial taxa present at low frequencies and only in certain life stages. The predictive functional profiling indicated metabolic pathways related to metabolism of amino acids and carbohydrates, and membrane transport as the most significant in the community. These differences in the community structure might be due to several selective factors, such as gut compartmentalization, physicochemical conditions, and microbial interactions. PMID:28406998

  3. Computational design of a thermostable mutant of cocaine esterase via molecular dynamics simulations.

    PubMed

    Huang, Xiaoqin; Gao, Daquan; Zhan, Chang-Guo

    2011-06-07

    Cocaine esterase (CocE) has been known as the most efficient native enzyme for metabolizing naturally occurring cocaine. A major obstacle to the clinical application of CocE is the thermoinstability of native CocE with a half-life of only ∼11 min at physiological temperature (37 °C). It is highly desirable to develop a thermostable mutant of CocE for therapeutic treatment of cocaine overdose and addiction. To establish a structure-thermostability relationship, we carried out molecular dynamics (MD) simulations at 400 K on wild-type CocE and previously known thermostable mutants, demonstrating that the thermostability of the active form of the enzyme correlates with the fluctuation (characterized as the root-mean square deviation and root-mean square fluctuation of atomic positions) of the catalytic residues (Y44, S117, Y118, H287, and D259) in the simulated enzyme. In light of the structure-thermostability correlation, further computational modelling including MD simulations at 400 K predicted that the active site structure of the L169K mutant should be more thermostable. The prediction has been confirmed by wet experimental tests showing that the active form of the L169K mutant had a half-life of 570 min at 37 °C, which is significantly longer than those of the wild-type and previously known thermostable mutants. The encouraging outcome suggests that the high-temperature MD simulations and the structure-thermostability relationship may be considered as a valuable tool for the computational design of thermostable mutants of an enzyme.

  4. The prediction of drug metabolism, tissue distribution, and bioavailability of 50 structurally diverse compounds in rat using mechanism-based absorption, distribution, and metabolism prediction tools.

    PubMed

    De Buck, Stefan S; Sinha, Vikash K; Fenu, Luca A; Gilissen, Ron A; Mackie, Claire E; Nijsen, Marjoleen J

    2007-04-01

    The aim of this study was to assess a physiologically based modeling approach for predicting drug metabolism, tissue distribution, and bioavailability in rat for a structurally diverse set of neutral and moderate-to-strong basic compounds (n = 50). Hepatic blood clearance (CL(h)) was projected using microsomal data and shown to be well predicted, irrespective of the type of hepatic extraction model (80% within 2-fold). Best predictions of CL(h) were obtained disregarding both plasma and microsomal protein binding, whereas strong bias was seen using either blood binding only or both plasma and microsomal protein binding. Two mechanistic tissue composition-based equations were evaluated for predicting volume of distribution (V(dss)) and tissue-to-plasma partitioning (P(tp)). A first approach, which accounted for ionic interactions with acidic phospholipids, resulted in accurate predictions of V(dss) (80% within 2-fold). In contrast, a second approach, which disregarded ionic interactions, was a poor predictor of V(dss) (60% within 2-fold). The first approach also yielded accurate predictions of P(tp) in muscle, heart, and kidney (80% within 3-fold), whereas in lung, liver, and brain, predictions ranged from 47% to 62% within 3-fold. Using the second approach, P(tp) prediction accuracy in muscle, heart, and kidney was on average 70% within 3-fold, and ranged from 24% to 54% in all other tissues. Combining all methods for predicting V(dss) and CL(h) resulted in accurate predictions of the in vivo half-life (70% within 2-fold). Oral bioavailability was well predicted using CL(h) data and Gastroplus Software (80% within 2-fold). These results illustrate that physiologically based prediction tools can provide accurate predictions of rat pharmacokinetics.

  5. A population model of chaparral vegetation response to frequent wildfires.

    PubMed

    Lucas, Timothy A; Johns, Garrett; Jiang, Wancen; Yang, Lucie

    2013-12-01

    The recent increase in wildfire frequency in the Santa Monica Mountains (SMM) may substantially impact plant community structure. Species of Chaparral shrubs represent the dominant vegetation type in the SMM. These species can be divided into three life history types according to their response to wildfires. Nonsprouting species are completely killed by fire and reproduce by seeds that germinate in response to a fire cue, obligate sprouting species survive by resprouting from dormant buds in a root crown because their seeds are destroyed by fire, and facultative sprouting species recover after fire both by seeds and resprouts. Based on these assumptions, we developed a set of nonlinear difference equations to model each life history type. These models can be used to predict species survivorship under varying fire return intervals. For example, frequent fires can lead to localized extinction of nonsprouting species such as Ceanothus megacarpus while several facultative sprouting species such as Ceanothus spinosus and Malosma (Rhus) laurina will persist as documented by a longitudinal study in a biological preserve in the SMM. We estimated appropriate parameter values for several chaparral species using 25 years of data and explored parameter relationships that lead to equilibrium populations. We conclude by looking at the survival strategies of these three species of chaparral shrubs under varying fire return intervals and predict changes in plant community structure under fire intervals of short return. In particular, our model predicts that an average fire return interval of greater than 12 years is required for 50 % of the initial Ceanothus megacarpus population and 25 % of the initial Ceanothus spinosus population to survive. In contrast, we predict that the Malosma laurina population will have 90 % survivorship for an average fire return interval of at least 6 years.

  6. Individual variation in baseline and stress-induced corticosterone and prolactin levels predicts parental effort by nesting mourning doves

    USGS Publications Warehouse

    Miller, David A.; Vleck, Carol M.; Otis, David L.

    2009-01-01

    Endocrine systems have an important mechanistic role in structuring life-history trade-offs. During breeding, individual variation in prolactin (PRL) and corticosterone (CORT) levels affects behavioral and physiological processes that drive trade-offs between reproduction and self-maintenance. We examined patterns in baseline (BL) and stress induced (SI; level following a standard capture-restraint protocol) levels of PRL and CORT for breeding mourning doves (Zenaida macroura). We determined whether the relationship of adult condition and parental effort to hormone levels in wild birds was consistent with life-history predictions. Both BL PRL and BL CORT level in adults were positively related to nestling weight at early nestling ages, consistent with the prediction of a positive relationship of hormone levels to current parental effort of adults and associated increased energy demand. Results are consistent with the two hormones acting together at baseline levels to limit negative effects of CORT on reproduction while maintaining beneficial effects such as increased foraging for nestling feeding. Our data did not support predictions that SI responses would vary in response to nestling or adult condition. The magnitude of CORT response in the parents to our capture-restraint protocol was negatively correlated with subsequent parental effort. Average nestling weights for adults with the highest SI CORT response were on average 10–15% lighter than expected for their age in follow-up visits after the stress event. Our results demonstrated a relationship between individual hormone levels and within population variation in parental effort and suggested that hormonal control plays an important role in structuring reproductive decisions for mourning doves.

  7. Individual variation in baseline and stress-induced corticosterone and prolactin levels predicts parental effort by nesting mourning doves

    USGS Publications Warehouse

    Miller, David A.; Vleck, Carol M.; Otis, David L.

    2009-01-01

    Endocrine systems have an important mechanistic role in structuring life-history trade-offs. During breeding, individual variation in prolactin (PRL) and corticosterone (CORT) levels affects behavioral and physiological processes that drive trade-offs between reproduction and self-maintenance. We examined patterns in baseline (BL) and stress induced (SI; level following a standard capture-restraint protocol) levels of PRL and CORT for breeding mourning doves (Zenaida macroura). We determined whether the relationship of adult condition and parental effort to hormone levels in wild birds was consistent with life-history predictions. Both BL PRL and BL CORT level in adults were positively related to nestling weight at early nestling ages, consistent with the prediction of a positive relationship of hormone levels to current parental effort of adults and associated increased energy demand. Results are consistent with the two hormones acting together at baseline levels to limit negative effects of CORT on reproduction while maintaining beneficial effects such as increased foraging for nestling feeding. Our data did not support predictions that SI responses would vary in response to nestling or adult condition. The magnitude of CORT response in the parents to our capture-restraint protocol was negatively correlated with subsequent parental effort. Average nestling weights for adults with the highest SI CORT response were on average 10–15% lighter than expected for their age in follow-up visits after the stress event. Our results demonstrated a relationship between individual hormone levels and within population variation in parental effort and suggested that hormonal control plays an important role in structuring reproductive decisions for mourning doves.

  8. Integrating prospective longitudinal data: modeling personality and health in the Terman Life Cycle and Hawaii Longitudinal Studies.

    PubMed

    Kern, Margaret L; Hampson, Sarah E; Goldberg, Lewis R; Friedman, Howard S

    2014-05-01

    The present study used a collaborative framework to integrate 2 long-term prospective studies: the Terman Life Cycle Study and the Hawaii Personality and Health Longitudinal Study. Within a 5-factor personality-trait framework, teacher assessments of child personality were rationally and empirically aligned to establish similar factor structures across samples. Comparable items related to adult self-rated health, education, and alcohol use were harmonized, and data were pooled on harmonized items. A structural model was estimated as a multigroup analysis. Harmonized child personality factors were then used to examine markers of physiological dysfunction in the Hawaii sample and mortality risk in the Terman sample. Harmonized conscientiousness predicted less physiological dysfunction in the Hawaii sample and lower mortality risk in the Terman sample. These results illustrate how collaborative, integrative work with multiple samples offers the exciting possibility that samples from different cohorts and ages can be linked together to directly test life span theories of personality and health. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  9. For Whom the Mind Wanders, and When, Varies Across Laboratory and Daily-Life Settings.

    PubMed

    Kane, Michael J; Gross, Georgina M; Chun, Charlotte A; Smeekens, Bridget A; Meier, Matt E; Silvia, Paul J; Kwapil, Thomas R

    2017-09-01

    Undergraduates ( N = 274) participated in a weeklong daily-life experience-sampling study of mind wandering after being assessed in the lab for executive-control abilities (working memory capacity; attention-restraint ability; attention-constraint ability; and propensity for task-unrelated thoughts, or TUTs) and personality traits. Eight times a day, electronic devices prompted subjects to report on their current thoughts and context. Working memory capacity and attention abilities predicted subjects' TUT rates in the lab, but predicted the frequency of daily-life mind wandering only as a function of subjects' momentary attempts to concentrate. This pattern replicates prior daily-life findings but conflicts with laboratory findings. Results for personality factors also revealed different associations in the lab and daily life: Only neuroticism predicted TUT rate in the lab, but only openness predicted mind-wandering rate in daily life (both predicted the content of daily-life mind wandering). Cognitive and personality factors also predicted dimensions of everyday thought other than mind wandering, such as subjective judgments of controllability of thought. Mind wandering in people's daily environments and TUTs during controlled and artificial laboratory tasks have different correlates (and perhaps causes). Thus, mind-wandering theories based solely on lab phenomena may be incomplete.

  10. Rapid and accurate prediction of degradant formation rates in pharmaceutical formulations using high-performance liquid chromatography-mass spectrometry.

    PubMed

    Darrington, Richard T; Jiao, Jim

    2004-04-01

    Rapid and accurate stability prediction is essential to pharmaceutical formulation development. Commonly used stability prediction methods include monitoring parent drug loss at intended storage conditions or initial rate determination of degradants under accelerated conditions. Monitoring parent drug loss at the intended storage condition does not provide a rapid and accurate stability assessment because often <0.5% drug loss is all that can be observed in a realistic time frame, while the accelerated initial rate method in conjunction with extrapolation of rate constants using the Arrhenius or Eyring equations often introduces large errors in shelf-life prediction. In this study, the shelf life prediction of a model pharmaceutical preparation utilizing sensitive high-performance liquid chromatography-mass spectrometry (LC/MS) to directly quantitate degradant formation rates at the intended storage condition is proposed. This method was compared to traditional shelf life prediction approaches in terms of time required to predict shelf life and associated error in shelf life estimation. Results demonstrated that the proposed LC/MS method using initial rates analysis provided significantly improved confidence intervals for the predicted shelf life and required less overall time and effort to obtain the stability estimation compared to the other methods evaluated. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association.

  11. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  12. Fracture study of windshield glass panes

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y.

    1987-01-01

    The major stresses which cause crack propagation in windshield glass panes are induced by bending moments which result from the pressure differentials across the panes. Hence the stress intensity factors for the finite plate with the semi-elliptical surface flaw and edge crack under the bending moments are examined. The results show that the crack growth will be upperbound if it is computed by using the stress intensity factor for the finite plate with the edge crack subjected to pure bending moments. Furthermore, if the ratio of crack depth to plate thickness, a/t, is within 0.3, the stress intensity factor can be conservatively assumed to be constant at the value of a/t equal to zero. A simplified equation to predict the structural life of glass panes is derived based on constant stress intensity factor. The accuracy of structural life is mainly dependent on how close the empirical parameter, m, can be estimated.

  13. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  14. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  15. Imagining life with an ostomy: Does a video intervention improve quality-of-life predictions for a medical condition that may elicit disgust?☆

    PubMed Central

    Angott, Andrea M.; Comerford, David A.; Ubel, Peter A.

    2014-01-01

    Objective To test a video intervention as a way to improve predictions of mood and quality-of-life with an emotionally evocative medical condition. Such predictions are typically inaccurate, which can be consequential for decision making. Method In Part 1, people presently or formerly living with ostomies predicted how watching a video depicting a person changing his ostomy pouch would affect mood and quality-of-life forecasts for life with an ostomy. In Part 2, participants from the general public read a description about life with an ostomy; half also watched a video depicting a person changing his ostomy pouch. Participants’ quality-of-life and mood forecasts for life with an ostomy were assessed. Results Contrary to our expectations, and the expectations of people presently or formerly living with ostomies, the video did not reduce mood or quality-of-life estimates, even among participants high in trait disgust sensitivity. Among low-disgust participants, watching the video increased quality-of-life predictions for ostomy. Conclusion Video interventions may improve mood and quality-of-life forecasts for medical conditions, including those that may elicit disgust, such as ostomy. Practice implications Video interventions focusing on patients’ experience of illness continue to show promise as components of decision aids, even for emotionally charged health states such as ostomy. PMID:23177398

  16. Method of Fatigue-Life Prediction for an Asphalt Mixture Based on the Plateau Value of Permanent Deformation Ratio.

    PubMed

    Sun, Yazhen; Fang, Chenze; Wang, Jinchang; Yuan, Xuezhong; Fan, Dong

    2018-05-03

    Laboratory predictions for the fatigue life of an asphalt mixture under cyclic loading based on the plateau value (PV) of the permanent deformation ratio (PDR) were carried out by three-point bending fatigue tests. The influence of test conditions on the recovery ratio of elastic deformation (RRED), the permanent deformation (PD) and PDR, and the trends of RRED, PD, and PDR were studied. The damage variable was defined by using PDR, and the relation of the fatigue life to PDR was determined by analyzing the damage evolution process. The fatigue equation was established based on the PV of PDR and the fatigue life was predicted by analyzing the relation of the fatigue life to the PV. The results show that the RRED decreases with the increase of the number of loading cycles, and the elastic recovery ability of the asphalt mixture gradually decreases. The two mathematical models proposed are based on the change laws of the RRED, and the PD can well describe the change laws. The RRED or the PD cannot well predict the fatigue life because they do not change monotonously with the fatigue life, and one part of the deformation causes the damage and the other part causes the viscoelastic deformation. The fatigue life decreases with the increase of the PDR. The average PDR in the second stage is taken as the PV, and the fatigue life decreases in a power law with the increase of the PV. The average relative error of the fatigue life predicted by the fatigue equation to the test fatigue life is 5.77%. The fatigue equation based on PV can well predict the fatigue life.

  17. Gender Differences in Contextual Predictors of Urban, Early Adolescents' Subjective Well-Being

    ERIC Educational Resources Information Center

    Vera, Elizabeth M.; Moallem, B. Isabel; Vacek, Kimberly R.; Blackmon, Sha'kema; Coyle, Laura D.; Gomez, Kenia L.; Lamp, Kristen; Langrehr, Kimberly J.; Luginbuhl, Paula; Mull, Megan K.; Telander, Kyle J.; Steele, J. Corey

    2012-01-01

    Gender differences in predicting subjective well-being (SWB) were examined in 168 urban adolescents. School satisfaction predicted life satisfaction for boys; for girls, family satisfaction predicted life satisfaction and neighborhood satisfaction predicted negative affect. Self-esteem predicted positive affect for both genders, but friends…

  18. Experimental verification of a progressive damage model for composite laminates based on continuum damage mechanics. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Coats, Timothy William

    1994-01-01

    Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.

  19. Life prediction of thermal-mechanical fatigue using strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Manson, S. S.

    1975-01-01

    This paper describes the applicability of the method of Strainrange Partitioning to the life prediction of thermal-mechanical strain-cycling fatigue. An in-phase test on 316 stainless steel is analyzed as an illustrative example. The observed life is in excellent agreement with the life predicted by the method using the recently proposed Step-Stress Method of experimental partitioning, the Interaction Damage Rule, and the life relationships determined at an isothermal temperature of 705 C. Implications of the present study are discussed relative to the general thermal fatigue problem.

  20. Life prediction of thermal-mechanical fatigue using strain-range partitioning

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Manson, S. S.

    1975-01-01

    The applicability is described of the method of Strainrange Partitioning to the life prediction of thermal-mechanical strain-cycling fatigue. An in-phase test on 316 stainless steel is analyzed as an illustrative example. The observed life is in excellent agreement with the life predicted by the method using the recently proposed Step-Stress Method of experimental partitioning, the Interation Damage Rule, and the life relationships determined at an isothermal temperature of 705 C. Implications of the study are discussed relative to the general thermal fatigue problem.

  1. Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry.

    PubMed

    Allen, Frank H; Motherwell, W D Samuel

    2002-06-01

    The Cambridge Structural Database (CSD) and its associated software systems have formed the basis for more than 800 research applications in structural chemistry, crystallography and the life sciences. Relevant references, dating from the mid-1970s, and brief synopses of these papers are collected in a database, DBUse, which is freely available via the CCDC website. This database has been used to review research applications of the CSD in organic chemistry, including supramolecular applications, and in organic crystal chemistry. The review concentrates on applications that have been published since 1990 and covers a wide range of topics, including structure correlation, conformational analysis, hydrogen bonding and other intermolecular interactions, studies of crystal packing, extended structural motifs, crystal engineering and polymorphism, and crystal structure prediction. Applications of CSD information in studies of crystal structure precision, the determination of crystal structures from powder diffraction data, together with applications in chemical informatics, are also discussed.

  2. Depression, Suicidal Behaviour, and Mental Disorders in Older Aboriginal Australians

    PubMed Central

    Shen, Yu-Tang; Radford, Kylie; Daylight, Gail; Cumming, Robert; Broe, Tony G. A.; Draper, Brian

    2018-01-01

    Aboriginal Australians experience higher levels of psychological distress, which may develop from the long-term sequelae of social determinants and adversities in early and mid-life. There is little evidence available on the impact of these on the mental health of older Aboriginal Australians. This study enrolled 336 Aboriginal Australian participants over 60 years from 5 major urban and regional areas in NSW, utilizing a structured interview on social determinants, and life-time history of physical and mental conditions; current psychosocial determinants and mental health. Univariate and multivariate analyses were utilized to examine the link between these determinants and current depressive scores and suicidality. There was a high rate of life-time depression (33.3%), current late-life depression (18.1%), and suicidal ideation (11.1%). Risk factors strongly associated with late-life depression included sleep disturbances, a history of suicidal behaviour, suicidal ideation in late-life and living in a regional location. This study supports certain historical and psychosocial factors predicting later depression in old age, and highlights areas to target for prevention strategies. PMID:29510527

  3. Depression, Suicidal Behaviour, and Mental Disorders in Older Aboriginal Australians.

    PubMed

    Shen, Yu-Tang; Radford, Kylie; Daylight, Gail; Cumming, Robert; Broe, Tony G A; Draper, Brian

    2018-03-04

    Aboriginal Australians experience higher levels of psychological distress, which may develop from the long-term sequelae of social determinants and adversities in early and mid-life. There is little evidence available on the impact of these on the mental health of older Aboriginal Australians. This study enrolled 336 Aboriginal Australian participants over 60 years from 5 major urban and regional areas in NSW, utilizing a structured interview on social determinants, and life-time history of physical and mental conditions; current psychosocial determinants and mental health. Univariate and multivariate analyses were utilized to examine the link between these determinants and current depressive scores and suicidality. There was a high rate of life-time depression (33.3%), current late-life depression (18.1%), and suicidal ideation (11.1%). Risk factors strongly associated with late-life depression included sleep disturbances, a history of suicidal behaviour, suicidal ideation in late-life and living in a regional location. This study supports certain historical and psychosocial factors predicting later depression in old age, and highlights areas to target for prevention strategies.

  4. Life history strategy and young adult substance use.

    PubMed

    Richardson, George B; Chen, Ching-Chen; Dai, Chia-Liang; Swoboda, Christopher M

    2014-11-03

    This study tested whether life history strategy (LHS) and its intergenerational transmission could explain young adult use of common psychoactive substances. We tested a sequential structural equation model using data from the National Longitudinal Survey of Youth. During young adulthood, fast LHS explained 61% of the variance in overall liability for substance use. Faster parent LHS predicted poorer health and lesser alcohol use, greater neuroticism and cigarette smoking, but did not predict fast LHS or overall liability for substance use among young adults. Young adult neuroticism was independent of substance use controlling for fast LHS. The surprising finding of independence between parent and child LHS casts some uncertainty upon the identity of the parent and child LHS variables. Fast LHS may be the primary driver of young adult use of common psychoactive substances. However, it is possible that the young adult fast LHS variable is better defined as young adult mating competition. We discuss our findings in depth, chart out some intriguing new directions for life history research that may clarify the dimensionality of LHS and its mediation of the intergenerational transmission of substance use, and discuss implications for substance abuse prevention and treatment.

  5. Results of inphase axial-torsional fatigue experiments on 304 stainless steel

    NASA Technical Reports Server (NTRS)

    Bonacuse, Peter J.; Kalluri, Sreeramesh

    1989-01-01

    A series of axial-torsional, inphase, strain-controlled, low-cycle fatigue tests were performed at room temperature on tubular specimens of 304 stainless steel. The program was conducted in cooperation with the task group on multiaxial fatigue research of ASTM committee E-09. The objective was to quantify the variability in multiaxial test results among several laboratories. Only included is data which was generated at the NASA Lewis Research Center's High Temperature Fatigue and Structures Laboratory. The experimental equipment and procedures used are described. The tubular specimens were polished on the outer surface to aid in the use of a cellulose film surface replication technique for crack detection. However, cracking initiated predominantly on the internal surface for all specimens. Honing of the bore of the tubular specimens lessened but did not entirely eliminate this problem. The observed fatigue lives are compared with lives calculated from three multiaxial life models. Constants for the life prediction models were obtained from uniaxial and torsional tests performed on the same heat of material. The observed fatigue lives agreed with calculated lives to within a factor of two for all but one of the life prediction models.

  6. Gratefulness and subjective well-being: Social connectedness and presence of meaning as mediators.

    PubMed

    Liao, Kelly Yu-Hsin; Weng, Chih-Yuan

    2018-04-01

    The association between gratefulness and well-being is well established; however, few studies have examined the mechanisms that underlie this association. The broaden-and-build theory (Fredrickson, 1998, 2001) posits that positive emotions broaden individuals' momentary thought-action repertoires, which serve to build personal resources that can be drawn upon during future stressful encounters. Based on this theory, the current study examined whether gratefulness, a positive emotion, would build social and cognitive resources in terms of social connectedness and presence of meaning in life (i.e., mediators), which subsequently contribute to subjective well-being (SWB). A total of 232 students participated in an online survey at 2 different time points (3 months apart). The mediational hypothesis was tested by latent change score analyses using structural equation modeling techniques. The results showed that changes in gratefulness predicted changes in social connectedness and presence of meaning in life, which, in turn, predicted changes in SWB. The study's findings provided further support for the broaden-and-build theory and suggested that gratefulness is an important positive emotion that contributes to SWB through increased social connectedness and a greater presence of meaning in life. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. A 3.5 year diary study: Remembering and life story importance are predicted by different event characteristics.

    PubMed

    Thomsen, Dorthe Kirkegaard; Jensen, Thomas; Holm, Tine; Olesen, Martin Hammershøj; Schnieber, Anette; Tønnesvang, Jan

    2015-11-01

    Forty-five participants described and rated two events each week during their first term at university. After 3.5 years, we examined whether event characteristics rated in the diary predicted remembering, reliving, and life story importance at the follow-up. In addition, we examined whether ratings of life story importance were consistent across a three year interval. Approximately 60% of events were remembered, but only 20% of these were considered above medium importance to life stories. Higher unusualness, rehearsal, and planning predicted whether an event was remembered 3.5 years later. Higher goal-relevance, importance, emotional intensity, and planning predicted life story importance 3.5 years later. There was a moderate correlation between life story importance rated three months after the diary and rated at the 3.5 year follow-up. The results suggest that autobiographical memory and life stories are governed by different mechanisms and that life story memories are characterized by some degree of stability. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Validation of mechanical models for reinforced concrete structures: Presentation of the French project ``Benchmark des Poutres de la Rance''

    NASA Astrophysics Data System (ADS)

    L'Hostis, V.; Brunet, C.; Poupard, O.; Petre-Lazar, I.

    2006-11-01

    Several ageing models are available for the prediction of the mechanical consequences of rebar corrosion. They are used for service life prediction of reinforced concrete structures. Concerning corrosion diagnosis of reinforced concrete, some Non Destructive Testing (NDT) tools have been developed, and have been in use for some years. However, these developments require validation on existing concrete structures. The French project “Benchmark des Poutres de la Rance” contributes to this aspect. It has two main objectives: (i) validation of mechanical models to estimate the influence of rebar corrosion on the load bearing capacity of a structure, (ii) qualification of the use of the NDT results to collect information on steel corrosion within reinforced-concrete structures. Ten French and European institutions from both academic research laboratories and industrial companies contributed during the years 2004 and 2005. This paper presents the project that was divided into several work packages: (i) the reinforced concrete beams were characterized from non-destructive testing tools, (ii) the mechanical behaviour of the beams was experimentally tested, (iii) complementary laboratory analysis were performed and (iv) finally numerical simulations results were compared to the experimental results obtained with the mechanical tests.

  9. Predictive and Treatment Validity of Life Satisfaction and the Quality of Life Inventory

    ERIC Educational Resources Information Center

    Frisch, Michael B.; Clark, Michelle P.; Rouse, Steven V.; Rudd, M. David; Paweleck, Jennifer K.; Greenstone, Andrew; Kopplin, David A.

    2005-01-01

    The clinical and positive psychology usefulness of quality of life, well-being, and life satisfaction assessments depends on their ability to predict important outcomes and to detect intervention-related change. These issues were explored in the context of a program of instrument validation for the Quality of Life Inventory (QOLI) involving 3,927…

  10. Structural tailoring of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Brown, K. W.; Hopkins, Dale A.

    1988-01-01

    The Structural Tailoring of Advanced Turboprops (STAT) computer program was developed to perform numerical optimization on highly swept propfan blades. The optimization procedure seeks to minimize an objective function defined as either: (1) direct operating cost of full scale blade or, (2) aeroelastic differences between a blade and its scaled model, by tuning internal and external geometry variables that must satisfy realistic blade design constraints. The STAT analysis system includes an aerodynamic efficiency evaluation, a finite element stress and vibration analysis, an acoustic analysis, a flutter analysis, and a once-per-revolution forced response life prediction capability. STAT includes all relevant propfan design constraints.

  11. PARS: a web server for the prediction of Protein Allosteric and Regulatory Sites.

    PubMed

    Panjkovich, Alejandro; Daura, Xavier

    2014-05-01

    The regulation of protein activity is a key aspect of life at the molecular level. Unveiling its details is thus crucial to understanding signalling and metabolic pathways. The most common and powerful mechanism of protein-function regulation is allostery, which has been increasingly calling the attention of medicinal chemists due to its potential for the discovery of novel therapeutics. In this context, PARS is a simple and fast method that queries protein dynamics and structural conservation to identify pockets on a protein structure that may exert a regulatory effect on the binding of a small-molecule ligand.

  12. Prediction of Hydrolysis Products of Organic Chemicals under Environmental pH Conditions.

    PubMed

    Tebes-Stevens, Caroline; Patel, Jay M; Jones, W Jack; Weber, Eric J

    2017-05-02

    Cheminformatics-based software tools can predict the molecular structure of transformation products using a library of transformation reaction schemes. This paper presents the development of such a library for abiotic hydrolysis of organic chemicals under environmentally relevant conditions. The hydrolysis reaction schemes in the library encode the process science gathered from peer-reviewed literature and regulatory reports. Each scheme has been ranked on a scale of one to six based on the median half-life in a data set compiled from literature-reported hydrolysis rates. These ranks are used to predict the most likely transformation route when more than one structural fragment susceptible to hydrolysis is present in a molecule of interest. Separate rank assignments are established for pH 5, 7, and 9 to represent standard conditions in hydrolysis studies required for registration of pesticides in Organisation for Economic Co-operation and Development (OECD) member countries. The library is applied to predict the likely hydrolytic transformation products for two lists of chemicals, one representative of chemicals used in commerce and the other specific to pesticides, to evaluate which hydrolysis reaction pathways are most likely to be relevant for organic chemicals found in the natural environment.

  13. Reserve-building activities attenuate treatment burden in chronic illness: The mediating role of appraisal and social support

    PubMed Central

    Schwartz, Carolyn E; Zhang, Jie; Michael, Wesley; Eton, David T; Rapkin, Bruce D

    2018-01-01

    This study examines the importance of four psychosocial factors—personality, cognitive appraisal of quality of life, social support, and current reserve-building—in predicting treatment burden in chronically ill patients. Chronically ill patients (n = 446) completed web-based measures. Structural equation modeling was used to investigate psychosocial factors predicting treatment burden. Reserve-building activities indirectly reduced treatment burden by: (1) reducing health worries appraisals, (2) reducing financial difficulties, (3) increasing calm and peaceful appraisals, and (4) increasing perceived social support. These findings point to key behaviors that chronically ill people can use to attenuate their treatment burden. PMID:29785278

  14. Nonlinear and progressive failure aspects of transport composite fuselage damage tolerance

    NASA Technical Reports Server (NTRS)

    Walker, Tom; Ilcewicz, L.; Murphy, Dan; Dopker, Bernhard

    1993-01-01

    The purpose is to provide an end-user's perspective on the state of the art in life prediction and failure analysis by focusing on subsonic transport fuselage issues being addressed in the NASA/Boeing Advanced Technology Composite Aircraft Structure (ATCAS) contract and a related task-order contract. First, some discrepancies between the ATCAS tension-fracture test database and classical prediction methods is discussed, followed by an overview of material modeling work aimed at explaining some of these discrepancies. Finally, analysis efforts associated with a pressure-box test fixture are addressed, as an illustration of modeling complexities required to model and interpret tests.

  15. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth.

    PubMed

    Mulkidjanian, Armen Y; Galperin, Michael Y

    2009-08-24

    The accompanying article (A.Y. Mulkidjanian, Biology Direct 4:26) puts forward a detailed hypothesis on the role of zinc sulfide (ZnS) in the origin of life on Earth. The hypothesis suggests that life emerged within compartmentalized, photosynthesizing ZnS formations of hydrothermal origin (the Zn world), assembled in sub-aerial settings on the surface of the primeval Earth. If life started within photosynthesizing ZnS compartments, it should have been able to evolve under the conditions of elevated levels of Zn2+ ions, byproducts of the ZnS-mediated photosynthesis. Therefore, the Zn world hypothesis leads to a set of testable predictions regarding the specific roles of Zn2+ ions in modern organisms, particularly in RNA and protein structures related to the procession of RNA and the "evolutionarily old" cellular functions. We checked these predictions using publicly available data and obtained evidence suggesting that the development of the primeval life forms up to the stage of the Last Universal Common Ancestor proceeded in zinc-rich settings. Testing of the hypothesis has revealed the possible supportive role of manganese sulfide in the primeval photosynthesis. In addition, we demonstrate the explanatory power of the Zn world concept by elucidating several points that so far remained without acceptable rationalization. In particular, this concept implies a new scenario for the separation of Bacteria and Archaea and the origin of Eukarya. The ability of the Zn world hypothesis to generate non-trivial veritable predictions and explain previously obscure items gives credence to its key postulate that the development of the first life forms started within zinc-rich formations of hydrothermal origin and was driven by solar UV irradiation. This concept implies that the geochemical conditions conducive to the origin of life may have persisted only as long as the atmospheric CO2 pressure remained above ca. 10 bar. This work envisions the first Earth biotopes as photosynthesizing and habitable areas of porous ZnS and MnS precipitates around primeval hot springs. Further work will be needed to provide details on the life within these communities and to elucidate the primordial (bio)chemical reactions. This article was reviewed by Arcady Mushegian, Eugene Koonin, and Patrick Forterre. For the full reviews, please go to the Reviewers' reports section.

  16. On the origin of life in the Zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth

    PubMed Central

    Mulkidjanian, Armen Y; Galperin, Michael Y

    2009-01-01

    Background The accompanying article (A.Y. Mulkidjanian, Biology Direct 4:26) puts forward a detailed hypothesis on the role of zinc sulfide (ZnS) in the origin of life on Earth. The hypothesis suggests that life emerged within compartmentalized, photosynthesizing ZnS formations of hydrothermal origin (the Zn world), assembled in sub-aerial settings on the surface of the primeval Earth. Results If life started within photosynthesizing ZnS compartments, it should have been able to evolve under the conditions of elevated levels of Zn2+ ions, byproducts of the ZnS-mediated photosynthesis. Therefore, the Zn world hypothesis leads to a set of testable predictions regarding the specific roles of Zn2+ ions in modern organisms, particularly in RNA and protein structures related to the procession of RNA and the "evolutionarily old" cellular functions. We checked these predictions using publicly available data and obtained evidence suggesting that the development of the primeval life forms up to the stage of the Last Universal Common Ancestor proceeded in zinc-rich settings. Testing of the hypothesis has revealed the possible supportive role of manganese sulfide in the primeval photosynthesis. In addition, we demonstrate the explanatory power of the Zn world concept by elucidating several points that so far remained without acceptable rationalization. In particular, this concept implies a new scenario for the separation of Bacteria and Archaea and the origin of Eukarya. Conclusion The ability of the Zn world hypothesis to generate non-trivial veritable predictions and explain previously obscure items gives credence to its key postulate that the development of the first life forms started within zinc-rich formations of hydrothermal origin and was driven by solar UV irradiation. This concept implies that the geochemical conditions conducive to the origin of life may have persisted only as long as the atmospheric CO2 pressure remained above ca. 10 bar. This work envisions the first Earth biotopes as photosynthesizing and habitable areas of porous ZnS and MnS precipitates around primeval hot springs. Further work will be needed to provide details on the life within these communities and to elucidate the primordial (bio)chemical reactions. Reviewers This article was reviewed by Arcady Mushegian, Eugene Koonin, and Patrick Forterre. For the full reviews, please go to the Reviewers' reports section. PMID:19703275

  17. Predictive and Incremental Validity of Global and Domain-Based Adolescent Life Satisfaction Reports

    ERIC Educational Resources Information Center

    Haranin, Emily C.; Huebner, E. Scott; Suldo, Shannon M.

    2007-01-01

    Concurrent, predictive, and incremental validity of global and domain-based adolescent life satisfaction reports are examined with respect to internalizing and externalizing behavior problems. The Students' Life Satisfaction Scale (SLSS), Multidimensional Students' Life Satisfaction Scale (MSLSS), and measures of internalizing and externalizing…

  18. Life prediction systems for critical rotating components

    NASA Technical Reports Server (NTRS)

    Cunningham, Susan E.

    1993-01-01

    With the advent of advanced materials in rotating gas turbine engine components, the methodologies for life prediction of these parts must also increase in sophistication and capability. Pratt & Whitney's view of generic requirements for composite component life prediction systems are presented, efforts underway to develop these systems are discussed, and industry participation in key areas requiring development is solicited.

  19. Candidate Predictors of Health-Related Quality of Life of Colorectal Cancer Survivors: A Systematic Review

    PubMed Central

    van der Linden, Bernadette W.A.; Winkels, Renate M.; van Duijnhoven, Fränzel J.; Mols, Floortje; van Roekel, Eline H.; Kampman, Ellen; Beijer, Sandra; Weijenberg, Matty P.

    2016-01-01

    The population of colorectal cancer (CRC) survivors is growing and many survivors experience deteriorated health-related quality of life (HRQoL) in both early and late post-treatment phases. Identification of CRC survivors at risk for HRQoL deterioration can be improved by using prediction models. However, such models are currently not available for oncology practice. As a starting point for developing prediction models of HRQoL for CRC survivors, a comprehensive overview of potential candidate HRQoL predictors is necessary. Therefore, a systematic literature review was conducted to identify candidate predictors of HRQoL of CRC survivors. Original research articles on associations of biopsychosocial factors with HRQoL of CRC survivors were searched in PubMed, Embase, and Google Scholar. Two independent reviewers assessed eligibility and selected articles for inclusion (N = 53). Strength of evidence for candidate HRQoL predictors was graded according to predefined methodological criteria. The World Health Organization’s International Classification of Functioning, Disability and Health (ICF) was used to develop a biopsychosocial framework in which identified candidate HRQoL predictors were mapped across the main domains of the ICF: health condition, body structures and functions, activities, participation, and personal and environmental factors. The developed biopsychosocial ICF framework serves as a basis for selecting candidate HRQoL predictors, thereby providing conceptual guidance for developing comprehensive, evidence-based prediction models of HRQoL for CRC survivors. Such models are useful in clinical oncology practice to aid in identifying individual CRC survivors at risk for HRQoL deterioration and could also provide potential targets for a biopsychosocial intervention aimed at safeguarding the HRQoL of at-risk individuals. Implications for Practice: More and more people now survive a diagnosis of colorectal cancer. The quality of life of these cancer survivors is threatened by health problems persisting for years after diagnosis and treatment. Early identification of survivors at risk of experiencing low quality of life in the future is thus important for taking preventive measures. Clinical prediction models are tools that can help oncologists identify at-risk individuals. However, such models are currently not available for clinical oncology practice. This systematic review outlines candidate predictors of low quality of life of colorectal cancer survivors, providing a firm conceptual basis for developing prediction models. PMID:26911406

  20. Effects of Harsh and Unpredictable Environments in Adolescence on Development of Life History Strategies

    PubMed Central

    Figueredo, Aurelio José; Ellis, Bruce J.

    2010-01-01

    The National Longitudinal Study of Adolescent Health data were used to test predictions from life history theory. We hypothesized that (1) in young adulthood an emerging life history strategy would exist as a common factor underlying many life history traits (e.g., health, relationship stability, economic success), (2) both environmental harshness and unpredictability would account for unique variance in expression of adolescent and young adult life history strategies, and (3) adolescent life history traits would predict young adult life history strategy. These predictions were supported. The current findings suggest that the environmental parameters of harshness and unpredictability have concurrent effects on life history development in adolescence, as well as longitudinal effects into young adulthood. In addition, life history traits appear to be stable across developmental time from adolescence into young adulthood. PMID:20634914

  1. Structural Benchmark Creep Testing for the Advanced Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.; Shah, Ashwin R.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for use on long duration Science missions such as lunar applications, Mars rovers, and deep space missions. For the inherent long life times required, a structurally significant design limit for the heater head component of the ASRG Advanced Stirling Convertor (ASC) is creep deformation induced at low stress levels and high temperatures. Demonstrating proof of adequate margins on creep deformation and rupture for the operating conditions and the MarM-247 material of construction is a challenge that the NASA Glenn Research Center is addressing. The combined analytical and experimental program ensures integrity and high reliability of the heater head for its 17-year design life. The life assessment approach starts with an extensive series of uniaxial creep tests on thin MarM-247 specimens that comprise the same chemistry, microstructure, and heat treatment processing as the heater head itself. This effort addresses a scarcity of openly available creep properties for the material as well as for the virtual absence of understanding of the effect on creep properties due to very thin walls, fine grains, low stress levels, and high-temperature fabrication steps. The approach continues with a considerable analytical effort, both deterministically to evaluate the median creep life using nonlinear finite element analysis, and probabilistically to calculate the heater head s reliability to a higher degree. Finally, the approach includes a substantial structural benchmark creep testing activity to calibrate and validate the analytical work. This last element provides high fidelity testing of prototypical heater head test articles; the testing includes the relevant material issues and the essential multiaxial stress state, and applies prototypical and accelerated temperature profiles for timely results in a highly controlled laboratory environment. This paper focuses on the last element and presents a preliminary methodology for creep rate prediction, the experimental methods, test challenges, and results from benchmark testing of a trial MarM-247 heater head test article. The results compare favorably with the analytical strain predictions. A description of other test findings is provided, and recommendations for future test procedures are suggested. The manuscript concludes with describing the potential impact of the heater head creep life assessment and benchmark testing effort on the ASC program.

  2. The unfoldomics decade: an update on intrinsically disordered proteins.

    PubMed

    Dunker, A Keith; Oldfield, Christopher J; Meng, Jingwei; Romero, Pedro; Yang, Jack Y; Chen, Jessica Walton; Vacic, Vladimir; Obradovic, Zoran; Uversky, Vladimir N

    2008-09-16

    Our first predictor of protein disorder was published just over a decade ago in the Proceedings of the IEEE International Conference on Neural Networks (Romero P, Obradovic Z, Kissinger C, Villafranca JE, Dunker AK (1997) Identifying disordered regions in proteins from amino acid sequence. Proceedings of the IEEE International Conference on Neural Networks, 1: 90-95). By now more than twenty other laboratory groups have joined the efforts to improve the prediction of protein disorder. While the various prediction methodologies used for protein intrinsic disorder resemble those methodologies used for secondary structure prediction, the two types of structures are entirely different. For example, the two structural classes have very different dynamic properties, with the irregular secondary structure class being much less mobile than the disorder class. The prediction of secondary structure has been useful. On the other hand, the prediction of intrinsic disorder has been revolutionary, leading to major modifications of the more than 100 year-old views relating protein structure and function. Experimentalists have been providing evidence over many decades that some proteins lack fixed structure or are disordered (or unfolded) under physiological conditions. In addition, experimentalists are also showing that, for many proteins, their functions depend on the unstructured rather than structured state; such results are in marked contrast to the greater than hundred year old views such as the lock and key hypothesis. Despite extensive data on many important examples, including disease-associated proteins, the importance of disorder for protein function has been largely ignored. Indeed, to our knowledge, current biochemistry books don't present even one acknowledged example of a disorder-dependent function, even though some reports of disorder-dependent functions are more than 50 years old. The results from genome-wide predictions of intrinsic disorder and the results from other bioinformatics studies of intrinsic disorder are demanding attention for these proteins. Disorder prediction has been important for showing that the relatively few experimentally characterized examples are members of a very large collection of related disordered proteins that are wide-spread over all three domains of life. Many significant biological functions are now known to depend directly on, or are importantly associated with, the unfolded or partially folded state. Here our goal is to review the key discoveries and to weave these discoveries together to support novel approaches for understanding sequence-function relationships. Intrinsically disordered protein is common across the three domains of life, but especially common among the eukaryotic proteomes. Signaling sequences and sites of posttranslational modifications are frequently, or very likely most often, located within regions of intrinsic disorder. Disorder-to-order transitions are coupled with the adoption of different structures with different partners. Also, the flexibility of intrinsic disorder helps different disordered regions to bind to a common binding site on a common partner. Such capacity for binding diversity plays important roles in both protein-protein interaction networks and likely also in gene regulation networks. Such disorder-based signaling is further modulated in multicellular eukaryotes by alternative splicing, for which such splicing events map to regions of disorder much more often than to regions of structure. Associating alternative splicing with disorder rather than structure alleviates theoretical and experimentally observed problems associated with the folding of different length, isomeric amino acid sequences. The combination of disorder and alternative splicing is proposed to provide a mechanism for easily "trying out" different signaling pathways, thereby providing the mechanism for generating signaling diversity and enabling the evolution of cell differentiation and multicellularity. Finally, several recent small molecules of interest as potential drugs have been shown to act by blocking protein-protein interactions based on intrinsic disorder of one of the partners. Study of these examples has led to a new approach for drug discovery, and bioinformatics analysis of the human proteome suggests that various disease-associated proteins are very rich in such disorder-based drug discovery targets.

  3. Creation of Woven Structures Impacting Self-cleaning Superoleophobicity

    NASA Astrophysics Data System (ADS)

    Lim, Jihye

    For protection of human life from harmful or toxic liquids in working areas, solid surface resistance to liquid with low surface tension (e.g. oil) should be achieved in the outermost layer of protective clothing. Based on the literature review, multiscale structures were emphasized because they can increase roughness on a solid surface and create more void spaces of different sizes. The roughness and void spaces contribute to creating a liquid-vapor interface and reducing the liquid contact area to the solid surface. Woven fabric inherently consists of multiscale structures by its construction: microscale in a yarn structure and macroscale in a fabric structure. When the solid surface tension is low relative to oil, creating an appropriate structural geometry will become a critical way to obtain a superoleophobic surface for oil-resistance. Theoretical modeling and experiments with actual fabric samples were utilized to predict and prove the highest performing structural geometry in woven fabric, respectively. The theoretical geometric modeling accounted for the different weave structures, the yarn compression by the yarn flattening factor, e, and the void space by the void space ratio to the fiber or yarn diameter, T, impacting the liquid apparent contact angle on a fabric surface. The Cassie-Baxter equations were developed using Young's contact angle, thetae, thetae and e, or thetae, e, and T, to predict the liquid apparent contact angle for different geometries. In addition, to prevent a liquid's penetration into a solid structure, the ranges of the protuberance height (>> h2) and distance (< 4ℓ 2 cap) were predicted by the definition of the Laplace pressure, the capillary pressure, and the sagging phenomenon. Those predictions were in strong agreement with the results from the empirical experiment using the actual woven fabric samples. This study identified the impact of the geometries in yarn and woven fabric structures on the fabric resistance against oil through theoretical modeling and experiments. The results suggest particular weave structures, the range of the void space (or the protuberance distance) and the protuberance height in the yarn and fabric structures for the highest performing self-cleaning superoleophobic woven fabric surface.

  4. Neonatal Hypoxia, Hippocampal Atrophy, and Memory Impairment: Evidence of a Causal Sequence

    PubMed Central

    Cooper, Janine M.; Gadian, David G.; Jentschke, Sebastian; Goldman, Allan; Munoz, Monica; Pitts, Georgia; Banks, Tina; Chong, W. Kling; Hoskote, Aparna; Deanfield, John; Baldeweg, Torsten; de Haan, Michelle; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-01-01

    Neonates treated for acute respiratory failure experience episodes of hypoxia. The hippocampus, a structure essential for memory, is particularly vulnerable to such insults. Hence, some neonates undergoing treatment for acute respiratory failure might sustain bilateral hippocampal pathology early in life and memory problems later in childhood. We investigated this possibility in a cohort of 40 children who had been treated neonatally for acute respiratory failure but were free of overt neurological impairment. The cohort had mean hippocampal volumes (HVs) significantly below normal control values, memory scores significantly below the standard population means, and memory quotients significantly below those predicted by their full scale IQs. Brain white matter volume also fell below the volume of the controls, but brain gray matter volumes and scores on nonmnemonic neuropsychological tests were within the normal range. Stepwise linear regression models revealed that the cohort's HVs were predictive of degree of memory impairment, and gestational age at treatment was predictive of HVs: the younger the age, the greater the atrophy. We conclude that many neonates treated for acute respiratory failure sustain significant hippocampal atrophy as a result of the associated hypoxia and, consequently, show deficient memory later in life. PMID:24343890

  5. A Comparative Study of Some Dynamic Stall Models

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Kaza, K. R. V.

    1987-01-01

    Three semi-empirical aerodynamic stall models are compared with respect to their lift and moment hysteresis loop prediction, limit cycle behavior, easy implementation, and feasibility in developing the parameters required for stall flutter prediction of advanced turbines. For the comparison of aeroelastic response prediction including stall, a typical section model and a plate structural model are considered. The response analysis includes both plunging and pitching motions of the blades. In model A, a correction to the angle of attack is applied when the angle of attack exceeds the static stall angle. In model B, a synthesis procedure is used for angles of attack above static stall angles and the time history effects are accounted through the Wagner function. In both models the life and moment coefficients for angle of attack below stall are obtained from tabular data for a given Mach number and angle of attack. In model C, referred to an the ONERA model, the life and moment coefficients are given in the form of two differential equations, one for angles below stall, and the other for angles above stall. The parameters of those equations are nonlinear functions of the angle of attack.

  6. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    PubMed Central

    Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-01-01

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064

  7. Neonatal hypoxia, hippocampal atrophy, and memory impairment: evidence of a causal sequence.

    PubMed

    Cooper, Janine M; Gadian, David G; Jentschke, Sebastian; Goldman, Allan; Munoz, Monica; Pitts, Georgia; Banks, Tina; Chong, W Kling; Hoskote, Aparna; Deanfield, John; Baldeweg, Torsten; de Haan, Michelle; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-06-01

    Neonates treated for acute respiratory failure experience episodes of hypoxia. The hippocampus, a structure essential for memory, is particularly vulnerable to such insults. Hence, some neonates undergoing treatment for acute respiratory failure might sustain bilateral hippocampal pathology early in life and memory problems later in childhood. We investigated this possibility in a cohort of 40 children who had been treated neonatally for acute respiratory failure but were free of overt neurological impairment. The cohort had mean hippocampal volumes (HVs) significantly below normal control values, memory scores significantly below the standard population means, and memory quotients significantly below those predicted by their full scale IQs. Brain white matter volume also fell below the volume of the controls, but brain gray matter volumes and scores on nonmnemonic neuropsychological tests were within the normal range. Stepwise linear regression models revealed that the cohort's HVs were predictive of degree of memory impairment, and gestational age at treatment was predictive of HVs: the younger the age, the greater the atrophy. We conclude that many neonates treated for acute respiratory failure sustain significant hippocampal atrophy as a result of the associated hypoxia and, consequently, show deficient memory later in life. © The Author 2013. Published by Oxford University Press.

  8. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.

    PubMed

    Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-06-26

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  9. Childhood negative emotionality predicts biobehavioral dysregulation 15 years later

    PubMed Central

    Hagan, Melissa J.; Luecken, Linda J.; Modecki, Kathryn L.; Sandler, Irwin N.; Wolchik, Sharlene A.

    2016-01-01

    The temperamental trait of negative emotionality (NE) plays an important role in maladaptation among adults experiencing significant life stress. However, the prospective relation between childhood NE and subsequent inter-related behavioral, emotional, and biological dysregulation in later life has not yet been established among children who experience early adversity. Using a longitudinal sample of youth who experienced parental divorce during childhood (N = 160; 53% male; 83% White), we tested the hypothesis that childhood NE would predict physiological, emotional, and behavioral dysregulation 15 years later. NE was assessed by maternal report when youth were between 9-12 years old. Fifteen years later, young adults (mean age = 25.55 years) participated in a psychosocial stress task to assess cortisol reactivity and reported on internalizing symptoms and problematic alcohol use. Structural equation modeling revealed that higher childhood NE predicted significantly greater alcohol use, internalizing symptoms, and total cortisol output during a stress task 15 years later. Importantly, these findings held adjusting for childhood internalizing symptoms. In addition, problematic alcohol use was associated with greater cortisol reactivity and internalizing symptoms. Findings suggest that childhood NE is a critical risk marker for interrelated forms of dysregulation in young adulthood among at-risk youth. PMID:27100364

  10. Environmental proxies of antigen exposure explain variation in immune investment better than indices of pace of life.

    PubMed

    Horrocks, Nicholas P C; Hegemann, Arne; Ostrowski, Stéphane; Ndithia, Henry; Shobrak, Mohammed; Williams, Joseph B; Matson, Kevin D; Tieleman, B I

    2015-01-01

    Investment in immune defences is predicted to covary with a variety of ecologically and evolutionarily relevant axes, with pace of life and environmental antigen exposure being two examples. These axes may themselves covary directly or inversely, and such relationships can lead to conflicting predictions regarding immune investment. If pace of life shapes immune investment then, following life history theory, slow-living, arid zone and tropical species should invest more in immunity than fast-living temperate species. Alternatively, if antigen exposure drives immune investment, then species in antigen-rich tropical and temperate environments are predicted to exhibit higher immune indices than species from antigen-poor arid locations. To test these contrasting predictions we investigated how variation in pace of life and antigen exposure influence immune investment in related lark species (Alaudidae) with differing life histories and predicted risks of exposure to environmental microbes and parasites. We used clutch size and total number of eggs laid per year as indicators of pace of life, and aridity, and the climatic variables that influence aridity, as correlates of antigen abundance. We quantified immune investment by measuring four indices of innate immunity. Pace of life explained little of the variation in immune investment, and only one immune measure correlated significantly with pace of life, but not in the predicted direction. Conversely, aridity, our proxy for environmental antigen exposure, was predictive of immune investment, and larks in more mesic environments had higher immune indices than those living in arid, low-risk locations. Our study suggests that abiotic environmental variables with strong ties to environmental antigen exposure can be important correlates of immunological variation.

  11. Testing the predictions of the existential constructivist theory of suicide in a college student sample.

    PubMed

    Lockman, Jennifer D; Servaty-Seib, Heather L

    2018-04-01

    There is a lack of empirically supported theories explaining suicidal ideation and few theories describe how suicidal ideation can be prevented in the context of normative human development. Rogers (2001) proposed an existential constructivist theory of suicide (ECTS) wherein existential distress and the inability to reconstruct meaning from adverse life events contribute to suicidal ideation. The ECTS includes a distinct focus on meaning reconstruction from adverse life events, which is congruent with existing research on college students and developmental frameworks used by counseling psychologists. Thus, in the present study, we tested the predictions of the ECTS in a college student sample. We collected data online from 195 college students (i.e., ages 18-25) attending a large, Midwestern university and analyzed the data using structural equation modeling. Findings provided partial support for the original ECTS. Post hoc analyses of an alternate ECTS model indicated that existential distress mediated the negative association between meaning reconstruction and suicidal ideation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 3; Constant Stress and Cyclic Stress Experiments

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on advanced structural ceramics tested under constant stress and cyclic stress loading at ambient and elevated temperatures. The data fit to the relation between the time to failure and applied stress (or maximum applied stress in cyclic loading) was very reasonable for most of the materials studied. It was also found that life prediction for cyclic stress loading from data of constant stress loading in the exponential formulation was in good agreement with the experimental data, resulting in a similar degree of accuracy as compared with the power-law formulation. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important slow-crack-growth (SCG) parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  13. A comparison of fatigue life prediction methodologies for rotorcraft

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.

    1990-01-01

    Because of the current U.S. Army requirement that all new rotorcraft be designed to a 'six nines' reliability on fatigue life, this study was undertaken to assess the accuracy of the current safe life philosophy using the nominal stress Palmgrem-Miner linear cumulative damage rule to predict the fatigue life of rotorcraft dynamic components. It has been shown that this methodology can predict fatigue lives that differ from test lives by more than two orders of magnitude. A further objective of this work was to compare the accuracy of this methodology to another safe life method called the local strain approach as well as to a method which predicts fatigue life based solely on crack growth data. Spectrum fatigue tests were run on notched (k(sub t) = 3.2) specimens made of 4340 steel using the Felix/28 tests fairly well, being slightly on the unconservative side of the test data. The crack growth method, which is based on 'small crack' crack growth data and a crack-closure model, also predicted the fatigue lives very well with the predicted lives being slightly longer that the mean test lives but within the experimental scatter band. The crack growth model was also able to predict the change in test lives produced by the rainflow reconstructed spectra.

  14. Study on Fatigue Performance of Composite Bolted Joints with Bolt-Hole Delamination

    NASA Astrophysics Data System (ADS)

    Liu, M. J.; Yu, S.; Zhao, Q. Y.

    2018-03-01

    Fatigue performance of composite structure with imperfections is a challenging subject at present. Based on cohesive zone method and multi-continuum theory, delamination evolution response and fatigue life prediction of a 3D composite single-lap joint with a bolt-hole have been investigated through computer codes Abaqus and Fe-safe. Results from the comparison of a perfect composite bolted joint with another defect one indicates that a relatively small delamination damage around the bolt hole brings about significant degradation of local material performance. More notably, fatigue life of stress concentration region of composite bolted joints is highly sensitive to external loads, as an increase of 67% cyclic load amplitude leads to an decrease of 99.5% local fatigue life in this study. However, the numerical strategy for solving composite fatigue problems is meaningful to engineering works.

  15. Perceived versus used workplace flexibility in Singapore: predicting work-family fit.

    PubMed

    Jones, Blake L; Scoville, D Phillip; Hill, E Jeffrey; Childs, Geniel; Leishman, Joan M; Nally, Kathryn S

    2008-10-01

    This study examined the relationship of 2 types of workplace flexibility to work-family fit and work, personal, and marriage-family outcomes using data (N = 1,601) representative of employed persons in Singapore. We hypothesized that perceived and used workplace flexibility would be positively related to the study variables. Results derived from structural equation modeling revealed that perceived flexibility predicted work-family fit; however, used flexibility did not. Work-family fit related positively to each work, personal, and marriage-family outcome; however, workplace flexibility only predicted work and personal outcomes. Findings suggest work-family fit may be an important facilitating factor in the interface between work and family life, relating directly to marital satisfaction and satisfaction in other family relationships. Implications of these findings are discussed. Copyright 2008 APA, all rights reserved.

  16. Utilizing Dental Electronic Health Records Data to Predict Risk for Periodontal Disease.

    PubMed

    Thyvalikakath, Thankam P; Padman, Rema; Vyawahare, Karnali; Darade, Pratiksha; Paranjape, Rhucha

    2015-01-01

    Periodontal disease is a major cause for tooth loss and adversely affects individuals' oral health and quality of life. Research shows its potential association with systemic diseases like diabetes and cardiovascular disease, and social habits such as smoking. This study explores mining potential risk factors from dental electronic health records to predict and display patients' contextualized risk for periodontal disease. We retrieved relevant risk factors from structured and unstructured data on 2,370 patients who underwent comprehensive oral examinations at the Indiana University School of Dentistry, Indianapolis, IN, USA. Predicting overall risk and displaying relationships between risk factors and their influence on the patient's oral and general health can be a powerful educational and disease management tool for patients and clinicians at the point of care.

  17. Four-year prospective evaluation of the relationship between meaning in life and smoking status

    PubMed Central

    2013-01-01

    Background To date, all investigations on the relationship between smoking and perceived level of meaning in life have used cross-sectional designs. Therefore, the purpose of the present prospective study, conducted with a four-year time lag, was to test the predictive power of the life meaning construct concerning changes in smoking status. Methods The data of 4,294 respondents (40.3% male, Mage = 54.7 ± 16.5 yrs) from the Hungarian Epidemiological Panel Survey were analyzed using the Kruskal-Wallis and Mann–Whitney U-test and structural equation modeling (SEM) with a nominal outcome variable. Gender, age, and educational level were included in the study as covariates. Results On the bivariate level, results showed that both baseline and follow-up meaning in life scores were higher in stable non-smokers when compared to stable smokers. However, quitters and starters differed from stable non-smokers in their baseline but not in follow-up life meaning scores. The other relationships (stable smokers vs. quitters; stable smokers vs. starters, starters vs. quitters) were non-significant in both time points. According to the SEM-analysis, a higher sense of meaning in life measured at baseline and follow-up is associated with a lower likelihood (OR = 0.54, z = 2.80, p = 0.005; OR = 0.64, z = 2.88, p = 0.004, respectively) of being a stable smoker compared to being a stable non-smoker, confirming the expected relationship between smoking and decreased level of meaning in life. However, neither baseline nor follow-up life meaning scores predicted significantly quitting and uptake of smoking. Conclusions If future research from other cultures verifies the protective role of a higher level of meaning in life against smoking, then smoking prevention and cessation programs will also have to include such components that help individuals experience more meaning in their lives. PMID:23433067

  18. Eccentric loading of microtensile specimens

    NASA Technical Reports Server (NTRS)

    Trapp, Mark A.

    2004-01-01

    Ceramic materials have a lower density than most metals and are capable of performing at extremely high temperatures. The utility of these materials is obvious; however, the fracture strength of brittle materials is not easily predicted and often varies greatly. Characteristically, brittle materials lack ductility and do not yield as other materials. Ceramics materials are naturally populated with microscopic cracks due to fabrication techniques. Upon application of a load, stress concentration occurs at the root of these cracks and fracture will eventually occur at some not easily predicted strength. In order to use ceramics in any application some design methodology must exist from which a component can be placed into service. This design methodology is CARES/LIFE (Ceramics Analysis and Reliability Evaluation of Structures) which has been developed and refined at NASA over the last several decades. The CARES/LIFE computer program predicts the probability of failure of a ceramic component over its service life. CARES combines finite element results from a commercial FE (finite element) package such as ANSYS and experimental results to compute the abovementioned probability of failure. Over the course of several tests CARES has had great success in predicting the life of various ceramic components and has been used throughout industry. The latest challenge is to verify that CARES is valid for MEMS (Micro-Electro Mechanical Systems). To investigate a series of microtensile specimens were fractured in the laboratory. From this data, material parameters were determined and used to predict a distribution of strength for other specimens that exhibit a known stress concentration. If the prediction matches the experimental results then these parameters can be applied to a desired component outside of the laboratory. During testing nearly half of the tensile Specimens fractured at a location that was not expected and hence not captured in the FE model. It has been my duty to investigate the nature of this phenomenon in hopes of finding a better correlation between theory and empirical results. To investigate I built complete FE models of all of the tensile specimens using ANSYS. It is suspected that some misalignment naturally occurs during testing and thus additional bending stresses are present in the specimens. I modeled this eccentric loading and ran several FE trials using ANSYS/PDS (a probabilistic design system in ANSYS). My objective this summer has been familiarize myself with the CARES/LIFE program in hopes of using it in conjunction with ANSYS to help verify that CARES is applicable to MEMS-scale (greater that 1 micron, less than 1 millimeter) components.

  19. Life histories predict genetic diversity and population structure within three species of octopus targeted by small-scale fisheries in Northwest Mexico.

    PubMed

    Domínguez-Contreras, José F; Munguia-Vega, Adrian; Ceballos-Vázquez, Bertha P; Arellano-Martínez, Marcial; García-Rodríguez, Francisco J; Culver, Melanie; Reyes-Bonilla, Hector

    2018-01-01

    The fishery for octopus in Northwest Mexico has increased to over 2,000 tons annually, but to date the specific composition of the catch has been ignored. With at least three main species targeted by artisanal fisheries in the region with distinct life histories, the lack of basic biological information about the distribution, metapopulation size and structure of each species could impede effective fisheries management to avoid overexploitation. We tested if different life histories of three species of octopus could help predict observed patterns of genetic diversity, population dynamics, structure and connectivity and how this information could be relevant to the sustainable management of the fishery. We sequenced two mitochondrial genes and genotyped seven nuclear microsatellite loci to identify the distribution of each species in 20 locations from the Gulf of California and the west coast of the Baja California peninsula. We tested five hypotheses derived from population genetic theory based on differences in the fecundity and dispersal potential for each species. We discovered that Octopus bimaculoides with low fecundity and direct development (without a planktonic phase) had lower average effective population size and genetic diversity, but higher levels of kinship, population structure, and richness of private alleles, than the other two species. These features indicated limited dispersal and high local recruitment. In contrast, O. bimaculatus and O. hubbsorum with higher fecundity and planktonic phase as paralarvae had higher effective population size and genetic diversity, and overall lower kinship and population structure than O. bimaculoides . These observations supported higher levels of gene flow over a larger geographical scale. O. bimaculatus with the longest planktonic paralarval duration and therefore larger dispersal potential had differences in the calculated parameters possibly associated with increased connectivity. We propose O. bimaculoides is more susceptible to over exploitation of small, isolated populations and could have longer recovery times than the other two species. This species may benefit from distinct fishery management within each local population. O. bimaculatus and O. hubbsorum may benefit from fishery management that takes into account metapopulation structure over larger geographic scales and the directionality and magnitude of larval dispersal driven by ocean currents and population connectivity among individuals of each locality. The distribution of each species and variations in their reproductive phenology is also important to consider when establishing marine reserves or seasonal fishing closures.

  20. Glass Fibre/Epoxy Resin Interface Life-Time Prediction.

    DTIC Science & Technology

    1983-04-01

    RD-Ai32 26 GLASS FIBRE /POXY RESIN INTERFACE LIFE-TIME PREDICTION 1/1 (U) BRISTOL UNIV (ENGLAND) H H WILLS PHYSICS LAB K H RSHBEE ET AL. APR 83...D 3005-MS GLASS FIBRE /EPOXY RESIN INTERFACE LIFE-TIME PREDICTION - Final Report by K H G Ashbee, Principal Investigator R Ho~l J P Sargent Elizabeth...REPORT h PERIOD COVERED. Glass Fibre /Epoxy Resin Interface Life-time F-inal Technical 11’ port PreictonApril 1981 - A:’ril 1983 6. PERFORMING ORG. REPORT

Top