NASA Lewis Research Center/university graduate research program on engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1985-01-01
NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.
NASA Lewis Research Center/University Graduate Research Program on Engine Structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1985-01-01
NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.
Ahmad, Shireen; De Oliveira, Gildasio S; McCarthy, Robert J
2013-01-01
The enhancement of resident research education has been proposed to increase the number of academic anesthesiologists with the skills and knowledge to conduct meaningful research. Program directors (PDs) of the U.S. anesthesiology residency programs were surveyed to evaluate the status of research education during residency training and to test the hypothesis that structured programs result in greater resident research productivity based on resident publications. Survey responses were solicited from 131 anesthesiology residency PDs. Seventy-four percent of PDs responded to the survey. Questions evaluated department demographic information, the extent of faculty research activity, research resources and research funding in the department, the characteristics of resident research education and resident research productivity, departmental support for resident research, and perceived barriers to resident research education. Thirty-two percent of programs had a structured resident research education program. Structured programs were more likely to be curriculum based, require resident participation in a research project, and provide specific training in presentation and writing skills. Productivity expectations were similar between structured and nonstructured programs. Forty percent of structured programs had > 20% of trainees with a publication in the last 2 years compared with 14% of departments with unstructured programs (difference, 26%; 99% confidence interval [CI], 8%-51%; P = 0.01). The percentage of programs that had research rotations for ≥2 months was not different between the structured and the nonstructured programs. A research rotation of >2 months did not increase the percentage of residents who had published an article within the last 2 months compared with a research rotation of <2 months (difference, 13%; 99% CI, 10%-37%; P = 0.14). There was no difference in the percentage of faculty involved in research in structured compared with unstructured research education. In programs with <20% of faculty involved in research, 15% reported >20% of residents with a publication in the last 2 years compared with 36% in programs with >20% of faculty involvement (difference, 21%; 99% CI, -4% to 46%; P = 0.03). Our findings suggest that structured residency research programs are associated with higher resident research productivity. The program duration and the fraction of faculty in resident research education did not significantly increase research productivity. Research training is an integral component of resident education, but the mandatory enhancement of resident research education will require a significant change in the culture of academic anesthesiology leadership and faculty.
Program of Research in Structures and Dynamics
NASA Technical Reports Server (NTRS)
1988-01-01
The Structures and Dynamics Program was first initiated in 1972 with the following two major objectives: to provide a basic understanding and working knowledge of some key areas pertinent to structures, solid mechanics, and dynamics technology including computer aided design; and to provide a comprehensive educational and research program at the NASA Langley Research Center leading to advanced degrees in the structures and dynamics areas. During the operation of the program the research work was done in support of the activities of both the Structures and Dynamics Division and the Loads and Aeroelasticity Division. During the period of 1972 to 1986 the Program provided support for two full-time faculty members, one part-time faculty member, three postdoctoral fellows, one research engineer, eight programmers, and 28 graduate research assistants. The faculty and staff of the program have published 144 papers and reports, and made 70 presentations at national and international meetings, describing their research findings. In addition, they organized and helped in the organization of 10 workshops and national symposia in the structures and dynamics areas. The graduate research assistants and the students enrolled in the program have written 20 masters theses and 2 doctoral dissertations. The overall progress is summarized.
An Overview: NASA LeRC Structures Programs
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1998-01-01
A workshop on National Structures Programs was held, jointly sponsored by the AIAA Structures Technical Committee, the University of Virginia's Center for Advanced Computational Technology and NASA. The Objectives of the Workshop were to: provide a forum for discussion of current Government-sponsored programs in the structures area; identify high potential research areas for future aerospace systems; and initiate suitable interaction mechanisms with the managers of structures programs. The presentations covered structures programs at NASA, DOD (AFOSR, ONR, ARO and DARPA), and DOE. This publication is the presentation of the Structures and Acoustics Division of the NASA Lewis Research Center. The Structures and Acoustics Division has its genesis dating back to 1943. It is responsible for NASA research related to rotating structures and structural hot sections of both airbreathing and rocket engines. The work of the division encompasses but is not limited to aeroelasticity, structural life prediction and reliability, fatigue and fracture, mechanical components such as bearings, gears, and seals, and aeroacoustics. These programs are discussed and the names of responsible individuals are provided for future reference.
Helicopter crashworthiness research program
NASA Technical Reports Server (NTRS)
Farley, Gary L.; Boitnott, Richard L.; Carden, Huey D.
1988-01-01
Results are presented from the U.S. Army-Aerostructures Directorate/NASA-Langley Research Center joint research program on helicopter crashworthiness. Through the on-going research program an in-depth understanding was developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method predicting the energy-absorption capability of beams was developed.
Parametric study of track response
DOT National Transportation Integrated Search
1977-12-01
This report was prepared as part of the Improved Track Structures Research Program : managed by the Transportation Systems Center. This program is sponsored by the : Office of Rail Safety Research, Improved Track Structures Research Division, of : th...
NASA Technical Reports Server (NTRS)
Dow, Marvin B.; Dexter, H. Benson
1997-01-01
Summary results are presented from the research conducted on woven, braided, knitted and stitched (textile) composites at the Langley Research Center and under the NASA Advanced Composites Technology (ACT) Program in the period from 1985 to 1997. The report also includes an annotated bibliography of 270 U.S. publications on textile composites (with their abstracts). Two major research areas are discussed: (1) the general research in textile composites performed throughout the period under the direction of the Langley Research Center and (2) the development of textile composite aircraft structures by industry under the NASA ACT Program. The annotated bibliography is organized in three subsections: (1) general textiles R&D under the auspices of Langley, (2) ACT Program development of textile structural components, and (3) textiles research by individuals and organizations not associated with the ACT Program. An author index is provided for the reports and documents.
Intensive English Programs in the United States: An Overview of Structure and Mentoring
ERIC Educational Resources Information Center
Thompson, Amy S.
2013-01-01
Although English as a second language (ESL) programs are common in the United States, there is surprisingly little research documenting the existing structures and mentoring strategies they use. This lack of research could be partly due to ESL programs' widely varying internal structures (Larson, 1990) and the fact that they are often marginalized…
Aeronautics Research and Technology Program and specific objectives, fiscal year 1982
NASA Technical Reports Server (NTRS)
Olstad, W. B.
1981-01-01
The Aeronautics Research and Technology program is broken down into two program areas (research and technology base, and systems technology programs) which are further broken down into succeedingly more detailed activities to form a work breakdown structure for the aeronautics program: program area, program/discipline objective, specific objective, and research and technology objective and plan (RTOP). A detailed view of this work breakdown structure down to the specific objective level is provided, and goals or objectives at each of these levels are set forth. What is to be accomplished and why are addressed, but not how. The letter falls within the domain of the RTOP.
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.
1997-01-01
Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.
Research peer exchange, 2017 : final report.
DOT National Transportation Integrated Search
2017-04-01
State DOT research programs are applied research programs, historically focused on materials and structures. In the last several years, the pace and nature of FDOTs research program have evolved. Increased emphasis on implementation and performanc...
M. A. Ritter; S. R. Duwadi
1998-01-01
In 1991, the USDA Forest Service, Forest Products Laboratory (FPL) and the Federal Highway Administration (FHWA) formed a joint cooperative research program for wood transportation structures. Development and execution of this program was based on a national assessment of research needs and priorities. In the 5 years since completion of the research needs assessment,...
Utilization of the Building-Block Approach in Structural Mechanics Research
NASA Technical Reports Server (NTRS)
Rouse, Marshall; Jegley, Dawn C.; McGowan, David M.; Bush, Harold G.; Waters, W. Allen
2005-01-01
In the last 20 years NASA has worked in collaboration with industry to develop enabling technologies needed to make aircraft safer and more affordable, extend their lifetime, improve their reliability, better understand their behavior, and reduce their weight. To support these efforts, research programs starting with ideas and culminating in full-scale structural testing were conducted at the NASA Langley Research Center. Each program contained development efforts that (a) started with selecting the material system and manufacturing approach; (b) moved on to experimentation and analysis of small samples to characterize the system and quantify behavior in the presence of defects like damage and imperfections; (c) progressed on to examining larger structures to examine buckling behavior, combined loadings, and built-up structures; and (d) finally moved to complicated subcomponents and full-scale components. Each step along the way was supported by detailed analysis, including tool development, to prove that the behavior of these structures was well-understood and predictable. This approach for developing technology became known as the "building-block" approach. In the Advanced Composites Technology Program and the High Speed Research Program the building-block approach was used to develop a true understanding of the response of the structures involved through experimentation and analysis. The philosophy that if the structural response couldn't be accurately predicted, it wasn't really understood, was critical to the progression of these programs. To this end, analytical techniques including closed-form and finite elements were employed and experimentation used to verify assumptions at each step along the way. This paper presents a discussion of the utilization of the building-block approach described previously in structural mechanics research and development programs at NASA Langley Research Center. Specific examples that illustrate the use of this approach are included from recent research and development programs for both subsonic and supersonic transports.
Kanna, Balavenkatesh; Deng, Changchun; Erickson, Savil N; Valerio, Jose A; Dimitrov, Vihren; Soni, Anita
2006-10-17
In the United States, the Accreditation Council of graduate medical education (ACGME) requires all accredited Internal medicine residency training programs to facilitate resident scholarly activities. However, clinical experience and medical education still remain the main focus of graduate medical education in many Internal Medicine (IM) residency-training programs. Left to design the structure, process and outcome evaluation of the ACGME research requirement, residency-training programs are faced with numerous barriers. Many residency programs report having been cited by the ACGME residency review committee in IM for lack of scholarly activity by residents. We would like to share our experience at Lincoln Hospital, an affiliate of Weill Medical College Cornell University New York, in designing and implementing a successful structured research curriculum based on ACGME competencies taught during a dedicated "research rotation". Since the inception of the research rotation in 2004, participation of our residents among scholarly activities has substantially increased. Our residents increasingly believe and appreciate that research is an integral component of residency training and essential for practice of medicine. Internal medicine residents' outlook in research can be significantly improved using a research curriculum offered through a structured and dedicated research rotation. This is exemplified by the improvement noted in resident satisfaction, their participation in scholarly activities and resident research outcomes since the inception of the research rotation in our internal medicine training program.
Kanna, Balavenkatesh; Deng, Changchun; Erickson, Savil N; Valerio, Jose A; Dimitrov, Vihren; Soni, Anita
2006-01-01
Background In the United States, the Accreditation Council of graduate medical education (ACGME) requires all accredited Internal medicine residency training programs to facilitate resident scholarly activities. However, clinical experience and medical education still remain the main focus of graduate medical education in many Internal Medicine (IM) residency-training programs. Left to design the structure, process and outcome evaluation of the ACGME research requirement, residency-training programs are faced with numerous barriers. Many residency programs report having been cited by the ACGME residency review committee in IM for lack of scholarly activity by residents. Methods We would like to share our experience at Lincoln Hospital, an affiliate of Weill Medical College Cornell University New York, in designing and implementing a successful structured research curriculum based on ACGME competencies taught during a dedicated "research rotation". Results Since the inception of the research rotation in 2004, participation of our residents among scholarly activities has substantially increased. Our residents increasingly believe and appreciate that research is an integral component of residency training and essential for practice of medicine. Conclusion Internal medicine residents' outlook in research can be significantly improved using a research curriculum offered through a structured and dedicated research rotation. This is exemplified by the improvement noted in resident satisfaction, their participation in scholarly activities and resident research outcomes since the inception of the research rotation in our internal medicine training program. PMID:17044924
Diversifying Science: Underrepresented Student Experiences in Structured Research Programs
ERIC Educational Resources Information Center
Hurtado, Sylvia; Cabrera, Nolan L.; Lin, Monica H.; Arellano, Lucy; Espinosa, Lorelle L.
2009-01-01
Targeting four institutions with structured science research programs for undergraduates, this study focuses on how underrepresented students experience science. Several key themes emerged from focus group discussions: learning to become research scientists, experiences with the culture of science, and views on racial and social stigma.…
Space Research and Technology Program: Program and specific objectives, document approval
NASA Technical Reports Server (NTRS)
1982-01-01
A detailed view of the Space Research and Technology program work breakdown structure is provided down to the specific objective level. Goals or objectives at each of these levels are set forth. The specific objective narratives are structured into several parts. First, a short paragraph statement of the specific objective is given. This is followed by a list of subobjectives. A list of targets is then provided for those areas of the specific objective that are amenable to a quantitative description of technical accomplishment and schedule. Fluid and thermal physics, materials and structures, computer science and electronics, space energy conversion, multidisciplinary research, controls and human factors, chemical propulsion, spacecraft systems, transportation systems, platform systems, and spacecraft systems technology comprise the principal research programs.
Structures and Dynamics Division research and technology plans, fiscal year, 1981
NASA Technical Reports Server (NTRS)
Bales, K. S.
1981-01-01
The objectives, expected results, approach, and FY 81 milestones for the Structures and Dynamics Division's research program are presented. This information will be useful in program coordination with other government organizations in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Bales, Kay S.
1988-01-01
Presented are the Objectives, FY 1988 Plans, Approach, and FY 1988 Milestones for the Structures and Dynamics Division (Langley Research Center) research programs. FY 1987 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.
1992-01-01
The presentation gives a partial overview of research and development underway in the Structures Division of LeRC, which collectively is referred to as the Computational Structures Technology Program. The activities in the program are diverse and encompass four major categories: (1) composite materials and structures; (2) probabilistic analysis and reliability; (3) design optimization and expert systems; and (4) computational methods and simulation. The approach of the program is comprehensive and entails exploration of fundamental theories of structural mechanics to accurately represent the complex physics governing engine structural performance, formulation, and implementation of computational techniques and integrated simulation strategies to provide accurate and efficient solutions of the governing theoretical models by exploiting the emerging advances in computer technology, and validation and verification through numerical and experimental tests to establish confidence and define the qualities and limitations of the resulting theoretical models and computational solutions. The program comprises both in-house and sponsored research activities. The remainder of the presentation provides a sample of activities to illustrate the breadth and depth of the program and to demonstrate the accomplishments and benefits that have resulted.
A programing system for research and applications in structural optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.
1981-01-01
The paper describes a computer programming system designed to be used for methodology research as well as applications in structural optimization. The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities existing in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of contraints and design variables. Features shown in numerical examples include: (1) variability of structural layout and overall shape geometry, (2) static strength and stiffness constraints, (3) local buckling failure, and (4) vibration constraints. The paper concludes with a review of the further development trends of this programing system.
NASA Technical Reports Server (NTRS)
Miura, H.; Schmit, L. A., Jr.
1976-01-01
The program documentation and user's guide for the ACCESS-1 computer program is presented. ACCESS-1 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure. Implementation of the computer program, preparation of input data and basic program structure are described, and three illustrative examples are given.
NASA-UVa light aerospace alloy and structures technology program
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.
1991-01-01
The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.
Commercial jet transport crashworthiness
NASA Technical Reports Server (NTRS)
Widmayer, E.; Brende, O. B.
1982-01-01
The results of a study to identify areas of research and approaches that may result in improved occupant survivability and crashworthiness of transport aircraft are given. The study defines areas of structural crashworthiness for transport aircraft which might form the basis for a research program. A 10-year research and development program to improve the structural impact resistance of general aviation and commercial jet transport aircraft is planned. As part of this program parallel studies were conducted to review the accident experience of commercial transport aircraft, assess the accident performance of structural components and the status of impact resistance technology, and recommend areas of research and development for that 10-year plan. The results of that study are also given.
Stahmer, Aubyn C.
2007-01-01
Autism researchers have identified a set of common effective practice elements for early intervention (EI) (e.g., intensive programming). The current study examined the reported about use of common elements of effective interventions in community EI settings. Eighty EI providers reported about their programs. The majority of participants reported using common effective elements, however, the depth and quality of the use of these elements was highly variable. Taking community program structure into account in future research will facilitate the development of methodologies, which immediately fit into the context of community programming rather than requiring program adaptation for use in the real world. Recommendations for using current community program structure to improve use of evidence-based practices are discussed. PMID:17086438
Software Requirements Engineering Methodology (Development)
1979-06-01
Higher Order Software [20]; and the Michael Jackson Design Methodology [21]. Although structured programming constructs have proven to be more useful...reviewed here. Similarly, the manual techniques for software design (e.g., HIPO Diagrams, Nassi-Schneidermann charts, Top-Down Design, the Michael ... Jackson Design Methodology, Yourdon’s Structured Design) are not addressed. 6.1.3 Research Programs There are a number of research programs underway
NASA Astrophysics Data System (ADS)
Swindell, Paul; Doyle, Jon; Roach, Dennis
2017-02-01
The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1981-01-01
The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-10-01
This document supersedes the previous one, taking into account changes that have taken place in the CFS Science and Technology (S and T) program structure and organization, and in the structure of the Program of Energy Research and Development, the source of funding for CFS bioenergy research. It explains the rationale and overall objective for the bioenergy research program and briefly reviews the accomplishments to date. It indicates the planning context within which the program operates, states the specific objectives for the period of the plan, and details the strategic priorities developed for this period. Finally, it outlines the implementationmore » process for the plan.« less
An Overview of 2014 SBIR Phase I and Phase II Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.
2015-01-01
NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Materials and Structures for Extreme Environments. The technologies cover a wide spectrum of applications such as high temperature environmental barrier coating systems, deployable space structures, solid oxide fuel cells, and self-lubricating hard coatings for extreme temperatures. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.
NASA Technical Reports Server (NTRS)
Bales, Kay S.
1989-01-01
The Objectives, FY 1989 Plans, Approach, and FY 1989 Milestones for the Structural Mechanics Division's research programs are presented. Fiscal year 1988 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Bales, Kay S.
1990-01-01
The Objectives, FY 1990 Plans, Approach, and FY 1990 Milestones for the Structural Mechanics Division's research programs are presented. FY 1989 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Bales, K. S.
1986-01-01
Presented are the Objectives, FY 1986 Plans, Approach, and FY 1986 Milestones for the Structures and Dynamics Division's research programs. FY 1985 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Fertis, D. G.
1983-01-01
On June 1, 1980, the University of Akron and the NASA Lewis Research Center (LERC) established a Graduate Cooperative Fellowship Program in the specialized areas of Engine Structural Analysis and Dynamics, Computational Mechanics, Mechanics of Composite Materials, and Structural Optimization, in order to promote and develop requisite technologies in these areas of engine technology. The objectives of this program are consistent with those of the NASA Engine Structure Program in which graduate students of the University of Akron participate by conducting research at Lewis. This report is the second on this grant and summarizes the second and third year research effort, which includes the participation of five graduate students where each student selects one of the above areas as his special field of interest. Each student is required to spend 30 percent of his educational training time at the NASA Lewis Research Center and the balance at the University of Akron. His course work is judiciously selected and tailored to prepare him for research work in his field of interest. A research topic is selected for each student while in residence at the NASA Lewis Research Center, which is also approved by the faculty of the University of Akron as his thesis topic for a Master's and/or a Ph.D. degree.
NASA Technical Reports Server (NTRS)
Tolson, Robert H.
2000-01-01
The objectives of the cooperative effort with NASA was to conduct research related to aerospace structures and to increase the quality and quantity of highly trained engineers knowledgeable about aerospace structures. The program has successfully met the objectives and has been of significant benefit to NASA LARC, the GWU and the nation. The program was initiated with 3 students in 1994 under the direction of Dr. Robert Tolson as the Principal Investigator. Since initiation, 14 students have been involved in the program, resulting in 11 MS degrees with 2 more expected in 2000. The 11 MS theses and projects are listed. For technology transfer purposes some research is not reported in thesis form. Graduates from the program have been hired at aerospace and other companies across the nation, providing GWU and LARC with important industry and government contacts.
Overview of mechanics of materials branch activities in the computational structures area
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1992-01-01
Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1996-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures.
Program of Research and Education in Aerospace Structures
NASA Technical Reports Server (NTRS)
Whitesides, John L.; Johansen, Laurie W.
2005-01-01
Since its inception in January 2003, the program has provided support for 1 research professor and a total of 10 Graduate Research Scholar Assistants of these all 10 have completed their MS degree program. The program has generated 10 MS thesis. Final report lists papers presented in seminars for the period January 1, 2003 through June 30, 2005.
A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, K. E.; Fasanella, E. L.
2003-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.
ERIC Educational Resources Information Center
Teller, Romney P.
2011-01-01
The researcher utilized a qualitative approach to conduct a program evaluation of the organization where he is employed. The study intended to serve as a program evaluation for the structured in-house mentoring program at a large aerospace corporation (A-Corp). This program evaluation clarified areas in which the current mentoring program is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Pape, Yann; Rosseel, Thomas M.
The Joint Department of Energy (DOE)-Electric Power Research Institute (EPRI) Program (Light Water Reactor Sustainability (LWRS) Program–Material Pathway–Concrete and Long-Term Operation (LTO) Program) and US Nuclear Regulatory Commission (NRC) research studies aim at understanding the most prominent degradation modes and their effects on the long-term operation of concrete structures to nuclear power generation. Based on the results of the Expanded Materials Degradation Analysis (EMDA), (NUREG/CR-7153, ORNL/TM-2011/545), irradiated concrete and alkali-silica reaction (ASR)-affected concrete structures are the two prioritized topics of on-going research. This report focuses specifically on the topic of irradiated concrete and summarizes the main accomplishments obtained by thismore » joint program, but also provides an overview of current relevant activities domestically and internationally. Possible paths forward are also suggested to help near-future orientation of this program.« less
A Framework for Assessing Developmental Education Programs
ERIC Educational Resources Information Center
Goldwasser, Molly; Martin, Kimberly; Harris, Eugenia
2017-01-01
This paper presents a framework for educators, administrators, and researchers to assess distinct facets of developmental education programs. The researchers review the literature on best practices in developmental education with regards to program cost, program structure, and student placement procedures. This paper also identifies seven model…
NASA Technical Reports Server (NTRS)
Bales, Kay S.
1987-01-01
This paper presents the Objectives, FY 1987 Plans, Approach, and FY 1987 Milestones for the Structures and Dynamics Division's research programs. FY 1986 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Bales, K. S.
1985-01-01
The objectives, FY 1985 plans, approach, and FY 1985 milestones for the Structures and Dynamics Division's research programs are presented. The FY 1984 accomplishments are presented where applicable. This information is useful in program coordination with other government organizations in areas of mutual interest.
E-Mentoring for Social Equity: Review of Research to Inform Program Development
ERIC Educational Resources Information Center
Single, Peg Boyle; Single, Richard M.
2005-01-01
The advent of user-friendly email programs and web browsers created possibilities for widespread use of e-mentoring programs. In this review of the research, we presented the history of e-mentoring programs and defined e-mentoring and structured e-mentoring programs, focusing on large-scale e-mentoring programs that addressed issues of social…
EPA Response to BOSC Report on ORD Research Programs
The Air, Climate, and Energy research program is structured to provide research results that address EPA priorities and mandates, meet partners’ needs, fill knowledge gaps, and complement broader efforts across the federal government.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.
1991-01-01
The general objective of the Light Aerospace Alloy and Structures Technology (LA2ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures in close collaboration with Langley researchers. Specific technical objectives are established for each research project. Relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanic analyses, measurement advances, and a pool of educated graduate students are sought.
General aviation crash safety program at Langley Research Center
NASA Technical Reports Server (NTRS)
Thomson, R. G.
1976-01-01
The purpose of the crash safety program is to support development of the technology to define and demonstrate new structural concepts for improved crash safety and occupant survivability in general aviation aircraft. The program involves three basic areas of research: full-scale crash simulation testing, nonlinear structural analyses necessary to predict failure modes and collapse mechanisms of the vehicle, and evaluation of energy absorption concepts for specific component design. Both analytical and experimental methods are being used to develop expertise in these areas. Analyses include both simplified procedures for estimating energy absorption capabilities and more complex computer programs for analysis of general airframe response. Full-scale tests of typical structures as well as tests on structural components are being used to verify the analyses and to demonstrate improved design concepts.
A Program Structure for Event-Based Speech Synthesis by Rules within a Flexible Segmental Framework.
ERIC Educational Resources Information Center
Hill, David R.
1978-01-01
A program structure based on recently developed techniques for operating system simulation has the required flexibility for use as a speech synthesis algorithm research framework. This program makes synthesis possible with less rigid time and frequency-component structure than simpler schemes. It also meets real-time operation and memory-size…
Staff survey of organizational structure and process for a Public Health Department.
Dwyer, J J
1995-01-01
A survey of 227 North York Public Health Department (NYPHD) staff provided their perspective on the organizational structure. They perceived that (a) the departmental and divisional organizational structures are effective for program delivery, (b) the Central Resources structure and divisional and departmental reporting structures are moderately effective for program delivery, (c) the decentralized office structure is an advantage for service delivery but less so for administration and intra-division and inter-division communication, (d) the mandatory program structure involves low to moderate interdisciplinary teamwork and moderately impacts service delivery, (e) intra-division and management-staff communication are fair but inter-division and office communication are between poor and fair, (f) education, research, and service are moderately integrated, and (g) the divisional and departmental work atmospheres are a little positive. Management perceived greater participation in program planning, more frequent communication with other divisions, a number of education and research opportunities from various divisions/units, and more management recognition than front line staff did.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edger A., Jr.
1996-01-01
This progress report covers achievements made between January 1 and June 30, 1966 on the NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. . The accomplishments presented in this report are: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures. Collective accomplishments between January and June of 1996 include: 4 journal or proceedings publications, 1 NASA progress report, 4 presentations at national technical meetings, and 2 PhD dissertations published.
NASA Technical Reports Server (NTRS)
Walker, K. P.
1981-01-01
Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response.
Government-Sponsored Programs on Structures Technology
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)
1997-01-01
This document contains the presentations from the joint UVA/AIAA workshops on Government-Sponsored Programs on Structures Technology, held on April 6, 1997 in Kissimmee, Florida and on September 4, 1997 in Hampton, Virginia. Workshop attendees were the Members and Friends of the AIAA Structures Technical Committee. The objectives of the workshops were to: (a) provide a forum for discussion of current government-sponsored programs in the structures area; (b) identify high-potential research areas for future aerospace systems; and (c) initiate suitable interaction mechanisms with the managers of structures programs.
NASA Astrophysics Data System (ADS)
Sambrotto, R.
2015-12-01
The Secondary School Field Research Program is a field and laboratory internship for high school students at the Lamont-Doherty Earth Observatory. Over the past 11 years it has grown into a significant program, engaging approximately 50 high school and college students each summer, most of them from ethnic and economic groups that are under-represented in the STEM fields. The internships are based on research-driven science questions on estuarine physics, chemistry, ecology and the paleo-environment. Field studies are linked to associated laboratory analyses whose results are reported by the students as a final project. For the past two years, we have focused on the transition to an institutional program, with sustainable funding and organizational structures. At a grant-driven institution whose mission is largely restricted to basic research, institutionalization has not been an easy task. To leverage scarce resources we have implemented a layered structure that relies on near-peer mentoring. So a typical research team might include a mix of new and more experienced high school students, a college student, a high school science teacher and a Lamont researcher as a mentor. Graduates of the program are employed to assist with administration. Knowledge and best practices diffuse through the organization in an organic, if not entirely structured, fashion. We have found that a key to long-term funding has been survival: as we have sustained a successful program and developed a model adapted to Lamont's unique environment, we have attracted longer term core financing on which grant-driven extensions can be built. The result is a highly flexible program that is student-centered in the context of a broader research culture connecting our participants with the advantages of working at a premier soft-money research institution.
Structural Precursors to Identity Processes: The Role of Proximate Social Structures
ERIC Educational Resources Information Center
Merolla, David M.; Serpe, Richard T.; Stryker, Sheldon; Schultz, P. Wesley
2012-01-01
This research investigates how participation in college-based science-training programs increases student intention to pursue a scientific career. Using identity theory, we delineate three levels of social structure and conceptualize science-training programs as proximate social structures. Results from a sample of 892 undergraduate science…
The National Astronomy Consortium Summer Student Research Program at NRAO-Socorro: Year 2 structure
NASA Astrophysics Data System (ADS)
Mills, Elisabeth A.; Sheth, Kartik; Giles, Faye; Perez, Laura M.; Arancibia, Demian; Burke-Spolaor, Sarah
2016-01-01
I will present a summary of the program structure used for the second year of hosting a summer student research cohort of the National Astronomy Consortium (NAC) at the National Radio Astronomy Observatory in Socorro, NM. The NAC is a program partnering physics and astronomy departments in majority and minority-serving institutions across the country. The primary aim of this program is to support traditionally underrepresented students interested in pursuing a career in STEM through a 9-10 week summer astronomy research project and a year of additional mentoring after they return to their home institution. I will describe the research, professional development, and inclusivity goals of the program, and show how these were used to create a weekly syllabus for the summer. I will also highlight several unique aspects of this program, including the recruitment of remote mentors for students to better balance the gender and racial diversity of available role models for the students, as well as the hosting of a contemporaneous series of visiting diversity speakers. Finally, I will discuss structures for continuing to engage, interact with, and mentor students in the academic year following the summer program. A goal of this work going forward is to be able to make instructional and organizational materials from this program available to other sites interested in joining the NAC or hosting similar programs at their own institution.
NASA Technical Reports Server (NTRS)
Davis, John G., Jr.
1992-01-01
NASA's Advanced Composites Program (ACT) was initiated in 1988. A National Research Announcement was issued to solicit innovative ideas that could significantly contribute to development and demonstration of an integrated technology data base and confidence level that permits cost-effective use of composite primary structures in transport aircraft. Fifteen contracts were awarded by the Spring of 1989 and the participants include commercial and military airframe manufacturers, materials developers and suppliers, universities, and government laboratories. The program approach is to develop materials, structural mechanics methodology, design concepts, and fabrication procedures that offer the potential to make composite structures cost-effective compared to aluminum structure. Goals for the ACT program included 30-50 percent weight reduction, 20-25 percent acquisition cost reduction, and provided the scientific basis for predicting materials and structures performance. This paper provides an overview of the ACT program status, plans, and selected technical accomplishments. Sixteen additional papers, which provide more detailed information on the research and development accomplishments, are contained in this publication.
Review of Ice-Induced Scour Impacts to Navigation and Structures
2017-07-17
ER D C SR -1 7- 3 Navigation Systems Research Program Review of Ice-Induced Scour Impacts to Navigation and Structures En gi ne er R...unlimited. The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges...reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. Navigation Systems Research Program ERDC SR-17
NASA Technical Reports Server (NTRS)
Dow, Marvin B.
1987-01-01
Composites research conducted at the Langley Research Center during the period from 1975 to 1986 is described, and an annotated bibliography of over 600 documents (with their abstracts) is presented. The research includes Langley basic technology and the composite primary structures element of the NASA Aircraft Energy Efficiency (ACEE) Program. The basic technology documents cited in the bibliography are grouped according to the research activity such as design and analysis, fatigue and fracture, and damage tolerance. The ACEE documents cover development of composite structures for transport aircraft.
Small Business Innovation Research, Post-Phase II Opportunity Assessment
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
This report outlines current Small Business Innovation Research (SBIR) Post-Phase II opportunity contract award results for the SBIR technology program from 2007 to 2011 for NASA's Aeronautics Research Mission Directorate (ARMD), Human Exploration and Operations Mission Directorate (HEOMD), Science Mission Directorate (SMD), and Space Technology Mission Directorate (STMD). The report provides guidelines for incorporating SBIR technology into NASA programs and projects and provides a quantitative overview of the post-Phase II award patterns that correspond with each mission directorate at NASA Glenn Research Center (GRC). In recent years, one of NASA's goals has been to not only transfer SBIR technologies to commercial industries, but to ensure that NASA mission directorates incorporate SBIR technologies into their program and project activities. Before incorporating technologies into MD programs, it is important to understand each mission directorate structure because each directorate has different objectives and needs. The directorate program structures follow.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1997-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Here, we report on progress achieved between July I and December 31, 1996. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report are summarized as follows. Three research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals, (2) Aerospace Materials Science, and (3) Mechanics of Materials for Light Aerospace Structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiegler, J.O.
1986-06-01
The report is divided into the following: structural characterization, high-temperature alloy research, structural ceramics, radiation effects, structure and properties of surfaces and interfaces, and collaborative research centers. (DLC)
scientist with a background in electronic structure calculations for semiconducting materials. He joined Program. Research Interests His research interests include prediction of band-structure, optical , electrical, and transport properties from electronic structure theory; photovoltaic and thermoelectric
NASA-UVA light aerospace alloy and structures technology program
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Thornton, Earl A.; Stoner, Glenn E.; Swanson, Robert E.; Wawner, Franklin E., Jr.; Wert, John A.
1989-01-01
The report on progress achieved in accomplishing of the NASA-UVA Light Aerospace Alloy and Structures Technology Program is presented. The objective is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys and associated thermal gradient structures in close collaboration with researchers. The efforts will produce basic understanding of material behavior, new monolithic and composite alloys, processing methods, solid and fluid mechanics analyses, measurement advances, and a pool of educated graduate students. The presented accomplishments include: research on corrosion fatigue of Al-Li-Cu alloy 2090; research on the strengthening effect of small In additions to Al-Li-Cu alloys; research on localized corrosion of Al-Li alloys; research on stress corrosion cracking of Al-Li-Cu alloys; research on fiber-matrix reaction studies (Ti-1100 and Ti-15-3 matrices containing SCS-6, SCS-9, and SCS-10 fibers); and research on methods for quantifying non-random particle distribution in materials that has led to generation of a set of computer programs that can detect and characterize clusters in particles.
The Value of Emic Research in Sport for Development and Peace Programs
ERIC Educational Resources Information Center
Wahrman, Hillel; Zach, Sima
2018-01-01
This paper demonstrates the value of researching the emic perceptions expressed by participants of sport for development and peace (SDP) programs about their program. An Israeli SDP program was chosen which addresses Arab children's educational needs through sport. Ten semi-structured interviews were held with participants: two Jewish male…
An Overview of Materials Structures for Extreme Environments Efforts for 2015 SBIR Phases I and II
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2017-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for Agency projects. This report highlights innovative SBIR 2015 Phase I and II projects that specifically address areas in Materials and Structures for Extreme Environments, one of six core competencies at NASA Glenn Research Center. Each article describes an innovation, defines its technical objective, and highlights NASA applications as well as commercial and industrial applications. Ten technologies are featured: metamaterials-inspired aerospace structures, metallic joining to advanced ceramic composites, multifunctional polyolefin matrix composite structures, integrated reacting fluid dynamics and predictive materials degradation models for propulsion system conditions, lightweight inflatable structural airlock (LISA), copolymer materials for fused deposition modeling 3-D printing of nonstandard plastics, Type II strained layer superlattice materials development for space-based focal plane array applications, hydrogenous polymer-regolith composites for radiation-shielding materials, a ceramic matrix composite environmental barrier coating durability model, and advanced composite truss printing for large solar array structures. This report serves as an opportunity for NASA engineers, researchers, program managers, and other personnel to learn about innovations in this technology area as well as possibilities for collaboration with innovative small businesses that could benefit NASA programs and projects.
NASA-UVA light aerospace alloy and structures technology program (LA(sup 2)ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.
1992-01-01
The general objective of the Light Aerospace Alloy and Structures Technology (LA(sup 2)ST) Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with Langley researchers. Specific technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material behavior and microstructure, new monolithic and composite alloys, advanced processing methods, new solid and fluid mechanics analyses, measurement advances, and critically, a pool of educated graduate students for aerospace technologies. Four research areas are being actively investigated, including: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.
Energy absorption of composite material and structure
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1987-01-01
Results are presented from a joint research program on helicopter crashworthiness conducted by the U.S. Army Aerostructures Directorate and NASA Langley. Through the ongoing research program an in-depth understanding has been developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method of predicting the energy-absorption capability of beams was developed.
Out-of-school settings as a developmental context for children and youth.
Vandell, Deborah Lowe; Pierce, Kim M; Dadisman, Kimberly
2005-01-01
Since the 1990s, there has been a growing recognition of the importance of the out-of-school context for children and adolescents. Fueled in part by family demographics that include substantial numbers of employed mothers and single mothers, in part by concerns about poor academic performance and problem behaviors, and in part by intensified efforts to find ways to promote positive youth development, researchers and practitioners have focused their attention on two particular out-of-school settings: after-school programs and structured activities. The research findings pertaining to full-time (i.e., 5 days a week) after-school programs are mixed, which may reflect the substantial heterogeneity of the programs in terms of children being served, the types of activities offered, and the training and background of the staff. The federal funding of the 21st Century CLCs and various state and local initiatives has increased the numbers of low-income and English-learning students participating in after-school programs. A substantial number of programs are becoming more school-like. The available research suggests that (under some conditions) attending after-school programs is linked to improved social and academic outcomes. Children are more likely to show academic and social benefits when staff-child relationships are positive and nonconflictual, when programs offer a variety of age-appropriate activities from which children can select those of interest, and when children attend on a regular basis. The research findings about voluntary structured activities are more straightforward. Participation in these activities has been consistently linked to positive academic and social developmental outcomes in numerous studies. What appears to be key is that the activities are voluntary, are characterized by sustained engagement and effort, and provide opportunities to build or develop skills. Although the available research has begun to inform our understanding of the out-of-school context, further research is sorely needed. First, there is a need for research to identify the social, cognitive, and linguistic processes by which participation in programs and structured activities influences child and youth developmental outcomes. For example, researchers need to consider the competitiveness of sport activities in relation to children's social and emotional functioning. Researchers also might examine after-school experiences as settings in which complex thought processes can develop. Heath (1999) has conducted initial work in the area of language development by obtaining language samples during voluntary structured activities and analyzing their content. In the initial samples, students engaged in few sustained conversations on a topic and they frequently changed topics. After 3-4 weeks at the program, however, Heath noted substantial changes in the students' conversations and language. The use of conditionals (should, would, could) increased. She also noted increases in strategies to obtain clarifications from others and increases in the use of shifted registers and genres. Heath's (1999) linguistic analyses in conjunction with research that considers social and motivational processes underscore the broader point that the out-of-school context is complex and multi-layered and likely to be of substantial importance in the lives of children and youth. Research is needed to identify other important developmental processes in programs and structured activities. A promising procedure for identifying these processes is experience sampling (Csikszentmihalyi & Larson, 1987; Larson, 1989). Experience sampling methodology allows researchers to collect systematic data about an individual's activities, thoughts, and affective states by obtaining reports from participants at multiple randomly sampled points in time. Participants are signaled to provide a report in a variety of ways, such as with beepers or alarm watches. This record of experiences is not usually captured by other data collection methods. For example, program observations provide data on observed activities, interactions, and program climate, but do not offer insights into students' feelings and experiences within the after-school environment. Questionnaire and survey data are retrospective, asking respondents to recall past experiences and feelings regarding their after-school activities. Experience sampling could be used to examine any number of processes in after-school programs and structured activities. A better understanding of the effects of program content also is needed. Whether after-school programs should focus exclusively on enrichment activities or exclusively on academic activities, or include both enrichment and academic components, is the subject of heated debate. Some after-school scholars (Halpern, 1999; Heath, 1999; Eccles, in press) have argued forcefully that a focus on academics undermines the unique strengths and role of programs, and that programs should emphasize extracurricular enrichment activities. Others (Noam, 2004) have supported the move by policy makers and educators to make programs more academic, with an emphasis on homework help, tutoring, and preparation for academic achievement tests. The effects of different approaches to after-school programming have not been evaluated systematically. Research that describes, compares, and then tests effects of different program content models is needed to determine which types of programs are successful in attracting and keeping students (a necessary condition for programs to effect change), and to determine whether different types of programs are differentially associated with improvements in student outcomes such as school attendance, academic achievement, social competencies, and behavioral adjustment. A related question is whether structured activities that are obligatory or required have the same effects as voluntary structured activities do. Researchers also should further examine the impact of different attendance patterns on child developmental outcomes. We do not have solid information about optimal intensity and duration of attendance in terms of outcomes. There are suggestions in the literature that long-term, frequent attendance at programs is associated with positive outcomes for low-income children. Research needs to examine whether these results hold for middle-income children and youth as well. Finally, experimental studies should be conducted in which children and adolescents are randomly assigned to after-school programs and structured activities. All of the research to date on structured activities, and most of the research on after-school programs, has been nonexperimental, so questions about selection bias remain. Experimental studies in which children and adolescents are randomly assigned to participation in programs and activities would be a valuable next step in understanding relations between participation and child and youth outcomes. Such research should not be conducted until we have more information about the components of high-quality programming in terms of program content and developmental processes, however.
Characteristics of research tracks in dermatology residency programs: a national survey.
Narala, Saisindhu; Loh, Tiffany; Shinkai, Kanade; Paravar, Taraneh
2017-12-15
Pursuing research is encouraged in dermatology residency programs. Some programs offer specific research or investigative tracks. Currently, there is little data on the structure or scope of research tracks in dermatology residency programs. An anonymous online survey was distributed to the Association of Professors of Dermatology listserve in 2016. Program directors of dermatology residency programs in the United States were asked to participate and 38 of the 95 program directors responded. The survey results confirmed that a 2+2 research track, which is two years of clinical training followed by two years of research, was the most common investigator trackmodel and may promote an academic career at the resident's home institution. Further studies will help determine the most effective research track models to promote long-term outcomes.
Hypersonic airframe structures: Technology needs and flight test requirements
NASA Technical Reports Server (NTRS)
Stone, J. E.; Koch, L. C.
1979-01-01
Hypersonic vehicles, that may be produced by the year 2000, were identified. Candidate thermal/structural concepts that merit consideration for these vehicles were described. The current status of analytical methods, materials, manufacturing techniques, and conceptual developments pertaining to these concepts were reviewed. Guidelines establishing meaningful technology goals were defined and twenty-eight specific technology needs were identified. The extent to which these technology needs can be satisfied, using existing capabilities and facilities without the benefit of a hypersonic research aircraft, was assessed. The role that a research aircraft can fill in advancing this technology was discussed and a flight test program was outlined. Research aircraft thermal/structural design philosophy was also discussed. Programs, integrating technology advancements with the projected vehicle needs, were presented. Program options were provided to reflect various scheduling and cost possibilities.
Terrain Mechanics and Modeling Research Program: Enhanced Vehicle Dynamics Module
2009-05-01
ER D C/ G SL T R- 09 -8 Terrain Mechanics and Modeling Research Program Enhanced Vehicle Dynamics Module Daniel C. Creighton, George...public release; distribution is unlimited. Terrain Mechanics and Modeling Research Program ERDC/GSL TR-09-8 May 2009 Enhanced Vehicle Dynamics...Module Daniel C. Creighton, George B. McKinley, and Randolph A. Jones Geotechnical and Structures Laboratory U.S. Army Engineer Research and
Overview of demonstrator program of Japanese Smart Materials and Structure System project
NASA Astrophysics Data System (ADS)
Tajima, Naoyuki; Sakurai, Tateo; Sasajima, Mikio; Takeda, Nobuo; Kishi, Teruo
2003-08-01
The Japanese Smart Material and Structure System Project started in 1998 as five years' program that funded by METI (Ministry of Economy, Trade and Industry) and supported by NEDO (New Energy and Industrial Technology Development Organization). Total budget of five years was finally about 3.8 billion Japanese yen. This project has been conducted as the Academic Institutions Centered Program, namely, one of collaborated research and development among seven universities (include one foreign university), seventeen Industries (include two foreign companies), and three national laboratories. At first, this project consisted of four research groups that were structural health monitoring, smart manufacturing, active/adaptive structures, and actuator material/devices. Two years later, we decided that two demonstrator programs should be added in order to integrate the developed sensor and actuator element into the smart structure system and verify the research and development results of above four research groups. The application target of these demonstrators was focused to the airplane, and two demonstrators that these shapes simulate to the fuselage of small commercial airplane (for example, Boeing B737) had been established. Both demonstrators are cylindrical structures with 1.5 m in diameter and 3 m in length that the first demonstrator has CFRP skin-stringer and the second one has CFRP skin. The first demonstrator integrates the following six innovative techniques: (1) impact monitoring using embedded small diameter optical fiber sensors newly developed in this program, (2) impact monitoring using the integrated acoustic emission (AE) systems, (3) whole-field strain mapping using the BOTDR/FBG integrated system, (4) damage suppression using embedded shape memory alloy (SMA) films, (5) maximum and cyclic strain sensing using smart composite patches, and (6) smart manufacturing using the integrated sensing system. The second one is for demonstrating the suppression of vibration and acoustic noise generated in the composite cylindrical structure. In this program, High-performance PZT actuators/sensors developed in this program are also installed. The whole tests and evaluations have now been finished. This paper presents the outline of demonstrator programs, followed by six presentations that show the detail verification results of industrial demonstration themes.
BCTR: Biological and Chemical Technologies Research 1994 annual summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, G.
1995-02-01
The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance,more » goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.« less
1976-06-01
and End-Cuts Program ( PLEC ). A special program to aid in fabrication of complex three-dimensional pipe structures, which is of special interest to...LENGTH AND END-CUTS PROGRAM ( PL E C) PROGRAM DESCRIPTION 1. PROGRAM CAPABILITIES The Pipe Length and End- Cuts ( PLEC ) Development Program allows the...required categories: a. Definition Input This type of input by the ’ PLEC ’ Program can be divided in two is used to define a three-dimensional structure
38 CFR 1.15 - Standards for program evaluation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the data. (f) Each program evaluation requires a systematic research design to collect the data necessary to measure the objectives. This research design should conform to the following: (1) Rationale. The research design for each evaluation should contain a specific rationale and should be structured...
Exploring DNA Structure with Cn3D
ERIC Educational Resources Information Center
Porter, Sandra G.; Day, Joseph; McCarty, Richard E.; Shearn, Allen; Shingles, Richard; Fletcher, Linnea; Murphy, Stephanie; Pearlman, Rebecca
2007-01-01
Researchers in the field of bioinformatics have developed a number of analytical programs and databases that are increasingly important for advancing biological research. Because bioinformatics programs are used to analyze, visualize, and/or compare biological data, it is likely that the use of these programs will have a positive impact on biology…
[Cut a long story too short: Challenges in clinical research].
Stallmach, A; Hagel, S; Bruns, T; Bauer, M
2012-03-01
Clinical research reflects a mandatory prerequisite to translate basic research into clinical practice. While a lack of available qualified doctors to fill positions in hospitals as well as in the ambulant sector has prompted political decisions to counteract, Germany has witnessed an insidious deterioration of clinical research over time and compared to other industrialized countries. Measures to prevent an increasing loss of academic profile have to tackle all aspects from undergraduate to postgraduate training to attract highly skilled doctors in sustainable structures to reflourish academic medicine. Cornerstones to achieve these goals involve establishing of structured graduate programs, acknowledgment of time spend in clinical research in residency programs, extra occupational opportunities to achieve dual qualification (e. g. Master programs in clinical research) as well as independent positions with inherent carrier perspectives in academic medicine for doctors interested in clinical and translational research. © Georg Thieme Verlag KG Stuttgart · New York.
Creep and creep-rupture behaviour of wood-based structural panels
Theodore L. Laufenberg; L. C. Palka; J. Dobbin McNatt
This paper summarizes a cooperative research program between the USDA Forest Service, Forest Products Laboratory (FPL), in Madison, Wisconsin, and Forintek Canada Corp. in Vancouver, British Columbia, Canada. This research program provided...
Analyses of track-related railroad accident data
DOT National Transportation Integrated Search
1978-12-01
The Federal Railroad Administration (FRA), as part if a comprehensive research program, has sponsored the Improved Track Structures Research Program (ITSRP) at the Transportation Systems Center (TSC). The study, documented in this report, supports th...
High Gradient Accelerator Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temkin, Richard
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less
A study of the minority college programs at the NASA Johnson Space Center
NASA Technical Reports Server (NTRS)
Tryman, Mfanya Donald
1987-01-01
Research programs in science and engineering at predominantly black and white universities which assist in training and furthering the capabilities of minorities in the field, are examined. The Minority Graduate Researcher's Program and the Historically Black College and University Program were the focus of this research. The objectives included investigating the organizational structure and processes of the programs, how they are run, how they differ, defining particular administrative tasks for these programs, the collection of data related to these programs, and recommending ways in which these programs can be improved for greater efficiency and effectiveness through the Equal Opportunity Programs Office.
NASA Astrophysics Data System (ADS)
Yang, Peilu
2013-03-01
In the first place, the article discusses the theory, content, development, and questions about structured programming design. The further extension on this basement provides the cycle structure in computer language is the sequence structure, branch structure, and the cycle structure with independence. Through the deeply research by the writer, we find the non-independence and reach the final simplification about the computer language design. In the first, the writer provides the language structure of linear structure (I structure) and curvilinear structure (Y structure). This makes the computer language has high proficiency with simplification during the program exploration. The research in this article is corresponding with the widely used dualistic structure in the computer field. Moreover, it is greatly promote the evolution of computer language.
New Directions in NASA's Materials Science Program
NASA Technical Reports Server (NTRS)
Gillies, Donald C.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Recently, NASA's Microgravity Research Division was re-aligned to match the Agency's increasing awareness of the importance of biological and nano-structural sciences. The Division has become the Physical Sciences Research section within the newly created Office of Biological and Physical Research. Within materials science and in the last few years, new programs aimed at biomaterials have been initiated. Results from these programs and also new research pertaining to materials for radiation protection will be discussed.
Snapshot of Active Flow Control Research at NASA Langley
NASA Technical Reports Server (NTRS)
Washburn, A. E.; Gorton, S. Althoff; Anders, S. G.
2002-01-01
NASA Langley is aggressively investigating the potential advantages of active flow control as opposed to more traditional aerodynamic techniques. Many of these techniques will be blended with advanced materials and structures to further enhance payoff. Therefore a multi-disciplinary approach to technology development is being attempted that includes researchers from the more historical disciplines of fluid mechanics. acoustics, material science, structural mechanics, and control theory. The overall goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids rather than on specific engineering problems. An organizational view of current research activities at NASA Langley in active flow control as supported by several programs such as the Morphing Project under Breakthrough Vehicle Technologies Program (BVT). the Ultra-Efficient Engine Technology Program (UEET), and the 21st Century Aircraft Technology Program (TCAT) is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research, as part of the fundamental NASA R and D (research and development) program. will be demonstrated as either bench-top experiments, wind-tunnel investigations, or in flight tests. Later they will be transferred to more applied research programs within NASA, DOD (Department of Defense), and U.S. industry.
U.S. perspective on technology demonstration experiments for adaptive structures
NASA Technical Reports Server (NTRS)
Aswani, Mohan; Wada, Ben K.; Garba, John A.
1991-01-01
Evaluation of design concepts for adaptive structures is being performed in support of several focused research programs. These include programs such as Precision Segmented Reflector (PSR), Control Structure Interaction (CSI), and the Advanced Space Structures Technology Research Experiment (ASTREX). Although not specifically designed for adaptive structure technology validation, relevant experiments can be performed using the Passive and Active Control of Space Structures (PACOSS) testbed, the Space Integrated Controls Experiment (SPICE), the CSI Evolutionary Model (CEM), and the Dynamic Scale Model Test (DSMT) Hybrid Scale. In addition to the ground test experiments, several space flight experiments have been planned, including a reduced gravity experiment aboard the KC-135 aircraft, shuttle middeck experiments, and the Inexpensive Flight Experiment (INFLEX).
U.S. Nuclear Regulatory Commission natural analogue research program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovach, L.A.; Ott, W.R.
1995-09-01
This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process.
NASA Technical Reports Server (NTRS)
Putnam, T. W.
1984-01-01
The X-29A aircraft is the first manned, experimental high-performance aircraft to be fabricated and flown in many years. The approach for expanding the X-29 flight envelope and collecting research data is described including the methods for monitoring wind divergence, flutter, and aeroservoelastic coupling of the aerodynamic forces with the structure and the flight-control system. Examples of the type of flight data to be acquired are presented along with types of aircraft maneuvers that will be flown. A brief description of the program management structure is also presented and the program schedule is discussed.
Space research and technology overview
NASA Technical Reports Server (NTRS)
Reck, Gregory M.
1992-01-01
A series of viewgraphs are presented that describe NASA's space research and technology activities. The following areas are covered: NASA organizational structure, overall program/mission objectives, program elements and milestones, planning and resources, accomplishments, and the role of NASA Centers.
Graduate engineering research participation in aeronautics
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1986-01-01
The Aeronautics Graduate Research Program commenced in 1971, with the primary goal of engaging students who qualified for regular admission to the Graduate School of Engineering at Old Dominion University in a graduate engineering research and study program in collaboration with NASA Langley Research Center, Hampton, Virginia. The format and purposes of this program are discussed. Student selection and program statistics are summarized. Abstracts are presented in the folowing areas: aircraft design, aerodynamics, lift/drag characteristics; avionics; fluid mechanics; solid mechanics; instrumentation and measurement techniques; thermophysical properties experiments; large space structures; earth orbital dynamics; and environmental engineering.
ERIC Educational Resources Information Center
Drisko, James; Hunnicutt, Christie; Berenson, Laura
2015-01-01
The Group for the Advancement of Doctoral Education (GADE) promotes excellence in PhD education in Social Work. GADE's 2013 Quality Guidelines for PhD Programs heavily emphasize preparation for research. Little is known, however, about the details of the contemporary social work PhD program structure and curriculum. Several prior surveys have…
Research Program for Vibration Control in Structures
NASA Technical Reports Server (NTRS)
Mingori, D. L.; Gibson, J. S.
1986-01-01
Purpose of program to apply control theory to large space structures (LSS's) and design practical compensator for suppressing vibration. Program models LSS as distributed system. Control theory applied to produce compensator described by functional gains and transfer functions. Used for comparison of robustness of low- and high-order compensators that control surface vibrations of realistic wrap-rib antenna. Program written in FORTRAN for batch execution.
An Overview-NASA LeRC Structures Program
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
1997-01-01
The Structures and Acoustics Division of the NASA Lewis Research Center has its genesis dating back to 1943. It has been an independent Division at Lewis since 1979. Its two primary capabilities are performance and life analysis of static and dynamic systems such as those found in aircraft and spacecraft propulsion systems and experimental verification of these analyses. Research is conducted in-house, through university grants and contracts, and through cooperative programs with industry. Our work directly supports NASA's Advanced Subsonic Technology (AST), Smart Green Engine, Fast Quiet Engine, High-Temperature Materials and Processing (HiTEMP), Hybrid Hyperspeed Propulsion, Rotorcraft, High-Speed Research (HSR), and Aviation Safety Program (AvSP). A general overview is given discussing these programs and other technologies that are being developed at NASA LeRC.
NOAA Office of Exploration and Research > About OER > Program Review
Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations Strategic Plan Media News Room OER Symposium Overview Organization Guiding Documents Organizational Structure Map of Program Review Home About OER Overview Organization Guiding Documents Organizational Structure Map of
Thermal-Structures and Materials Testing Laboratory
NASA Technical Reports Server (NTRS)
Teate, Anthony A.
1997-01-01
Since its inception and successful implementation in 1997 at James Madison University, the Thermal Structures and Materials Testing Laboratory (T-SaMTL) funded by the NASA Langley Research Center is evolving into one of the University's premier and exemplary efforts to increase minority representation in the sciences and mathematics. Serving ten (10) students and faculty directly and almost fifty (50) students indirectly, T-SAMTL, through its recruitment efforts, workshops, mentoring program, tutorial services and its research and computational laboratories has marked the completion of the first year with support from NASA totaling $ 100,000. Beginning as an innovative academic research and mentoring program for underrepresented minority science and mathematics students, the program now boasts a constituency which consists of 50% graduating seniors in the spring of 1998 with 50% planning to go to graduate school. The program's intent is to increase the number of underrepresented minorities who receive doctoral degrees in the sciences by initiating an academically enriched research program aimed at strengthening the academic and self actualization skills of undergraduate students with the potential to pursue doctoral study in the sciences. The program provides financial assistance, academic enrichment, and professional and personal development support for minority students who demonstrate the potential and strong desire to pursue careers in the sciences and mathematics. James Madison University was awarded the first $100,000, in April 1997, by The NASA Langley Research Center for establishment and support of its Thermal Structures and Materials Testing
Fellowships in community pharmacy research: Experiences of five schools and colleges of pharmacy.
Snyder, Margie E; Frail, Caitlin K; Gernant, Stephanie A; Bacci, Jennifer L; Coley, Kim C; Colip, Lauren M; Ferreri, Stefanie P; Hagemeier, Nicholas E; McGivney, Melissa Somma; Rodis, Jennifer L; Smith, Megan G; Smith, Randall B
2016-01-01
To describe common facilitators, challenges, and lessons learned in 5 schools and colleges of pharmacy in establishing community pharmacy research fellowships. Five schools and colleges of pharmacy in the United States. Schools and colleges of pharmacy with existing community partnerships identified a need and ability to develop opportunities for pharmacists to engage in advanced research training. Community pharmacy fellowships, each structured as 2 years long and in combination with graduate coursework, have been established at the University of Pittsburgh, Purdue University, East Tennessee State University, University of North Carolina at Chapel Hill, and The Ohio State University. Program directors from each of the 5 community pharmacy research fellowships identified common themes pertaining to program structure, outcomes, and lessons learned to assist others planning similar programs. Common characteristics across the programs include length of training, prerequisites, graduate coursework, mentoring structure, and immersion into a pharmacist patient care practice. Common facilitators have been the existence of strong community pharmacy partnerships, creating a fellowship advisory team, and networking. A common challenge has been recruitment, with many programs experiencing at least one year without filling the fellowship position. All program graduates (n = 4) have been successful in securing pharmacy faculty positions. Five schools and colleges of pharmacy share similar experiences in implementing community pharmacy research fellowships. Early outcomes show promise for this training pathway in growing future pharmacist-scientists focused on community pharmacy practice. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Fellowships in Community Pharmacy Research: Experiences of Five Schools and Colleges of Pharmacy
Snyder, Margie E.; Frail, Caitlin K.; Gernant, Stephanie A.; Bacci, Jennifer L.; Coley, Kim C.; Colip, Lauren M.; Ferreri, Stefanie P.; Hagemeier, Nicholas E.; McGivney, Melissa Somma; Rodis, Jennifer L.; Smith, Megan G.; Smith, Randall B.
2017-01-01
Objective To describe common facilitators, challenges, and lessons learned of five schools and colleges of pharmacy in establishing community pharmacy research fellowships. Setting Five schools and colleges of pharmacy in the United States. Practice Description Schools and colleges of pharmacy with existing community partnerships identified a need and ability to develop opportunities for pharmacists to engage in advanced research training. Practice Innovation Community pharmacy fellowships, each structured as two years in length and in combination with graduate coursework, have been established at the University of Pittsburgh, Purdue University, East Tennessee State University, University of North Carolina at Chapel Hill and The Ohio State University. Evaluation Program directors from each of the five community pharmacy research fellowships identified common themes pertaining to program structure, outcomes, and lessons learned to assist others planning similar programs. Results Common characteristics across the programs include length of training, pre-requisites, graduate coursework, mentoring structure, and immersion into a pharmacist patient care practice. Common facilitators have been the existence of strong community pharmacy partnerships, creating a fellowship advisory team, and networking. A common challenge has been recruitment, with many programs experiencing at least one year without filling the fellowship position. All program graduates (n=4) have been successful in securing pharmacy faculty positions. Conclusion Five schools and colleges of pharmacy share similar experiences in implementing community pharmacy research fellowships. Early outcomes show promise for this training pathway in growing future pharmacist-scientists focused on community pharmacy practice. PMID:27083852
Postdoctoral training in posttraumatic stress disorder research.
Sloan, Denise M; Vogt, Dawne; Wisco, Blair E; Keane, Terence M
2015-03-01
Postdoctoral training is increasingly common in the field of psychology. Although many individuals pursue postdoctoral training in psychology, guidelines for research training programs at this level do not exist. The rapid advances in the field, particularly with respect to genetics, neuroimaging, and data analytic approaches, require clinical scientists to possess knowledge and expertise across a broad array of areas. Postdoctoral training is often needed to acquire such a skill set. This paper describes a postdoctoral training program designed for individuals pursuing academic careers in traumatic stress disorders research. In this paper, we describe the structure of our training program, challenges we have faced during the 15 years of its existence, and how we have addressed these challenges. We conclude with a presentation of outcome data for the training program and a discussion of how training programs in other settings might be structured. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
DOT National Transportation Integrated Search
2014-10-01
This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...
Paina, Ligia; Ssengooba, Freddie; Waswa, Douglas; M'imunya, James M; Bennett, Sara
2013-05-20
Whether and how research training programs contribute to research network development is underexplored. The Fogarty International Center (FIC) has supported overseas research training programs for over two decades. FIC programs could provide an entry point in the development of research networks and collaborations. We examine whether FIC's investment in research training contributed to the development of networks and collaborations in two countries with longstanding FIC investments - Uganda and Kenya - and the factors which facilitated this process. As part of two case studies at Uganda's Makerere University and Kenya's University of Nairobi, we conducted 53 semi-structured in-depth interviews and nine focus group discussions. To expand on our case study findings, we conducted a focused bibliometric analysis on two purposively selected topic areas to examine scientific productivity and used online network illustration tools to examine the resulting network structures. FIC support made important contributions to network development. Respondents from both Uganda and Kenya confirmed that FIC programs consistently provided trainees with networking skills and exposure to research collaborations, primarily within the institutions implementing FIC programs. In both countries, networks struggled with inclusiveness, particularly in HIV/AIDS research. Ugandan respondents perceived their networks to be more cohesive than Kenyan respondents did. Network cohesiveness was positively correlated with the magnitude and longevity of FIC's programs. Support from FIC grants to local and regional research network development and networking opportunities, such as conferences, was rare. Synergies between FIC programs and research grants helped to solidify and maintain research collaborations. Networks developed where FIC's programs focused on a particular institution, there was a critical mass of trainees with similar interests, and investments for network development were available from early implementation. Networks were less likely to emerge where FIC efforts were thinly scattered across multiple institutions. The availability of complementary research grants created opportunities for researchers to collaborate in grant writing, research implementation, and publications. FIC experiences in Uganda and Kenya showcase the important role of research training programs in creating and sustaining research networks. FIC programs should consider including support to research networks more systematically in their capacity development agenda.
Research as Profession and Practice: Frameworks for Guiding the Responsible Conduct of Research.
Chen, Jiin-Yu
2016-01-01
Programs in the responsible conduct of research (RCR) vary between institutions, demonstrated by disparate structures and goals. These variations may be attributed to the absence of grounding frameworks within which to examine research and RCR education programs. This article examines research as a practice and a profession, using these frames to draw out defining features of research and the moral obligations entailed. Situating research within virtue ethics can clarify how researchers might cultivate the virtues necessary for meeting its obligations and aims. By elucidating these features, these perspectives can serve to guide the development of RCR education programs.
NASA Technical Reports Server (NTRS)
1979-01-01
The accompanying photos show two types of offshore oil platforms used by Exxon Corporation. In the upper photo is a leg-supported gravity platform; the other structure is a "jackettype" platform, built in sections, towed to sea and assembled on-site. In construction of platforms like these, Exxon Production Research Company, Houston, Texas, conducts extensive structural investigations of decks, supporting members and other platform components, making use of the NASTRAN @ (NASA Structural Analysis) computer program. NASTRAN is a predictive tool which analyzes a computerized design and reports how the structure will react to a great many conditions it will encounter in its operational environment; in this case, NASTRAN studies the effects of waves, winds, ocean storms and other stress-inducing factors. NASTRAN allows Exxon Production Research to perform more complex and more detailed analysis than was possible with previous programs. The same program has also been used by Exxon Research and Engineering Company, Florham Park, New Jersey, in analysis of pressure vessels, turbine components and composite building boards.
Summary of U.S. research on wood transportation structures
M. A. Ritter; R. C. Moody; S. R. Duwadi
1996-01-01
An extensive U.S. research program to further develop wood utilization in transportation structures is currently in progress as a joint effort of the USDA Forest Service, Forest Products Laboratory, and the U.S. Department of Transportation, Federal Highway Administration. This research is funded primarily by U.S. legislation and involves cooperative research with...
Status of DSMT research program
NASA Technical Reports Server (NTRS)
Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.
1991-01-01
The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.
A programing system for research and applications in structural optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Rogers, J. L., Jr.
1981-01-01
The flexibility necessary for such diverse utilizations is achieved by combining, in a modular manner, a state-of-the-art optimization program, a production level structural analysis program, and user supplied and problem dependent interface programs. Standard utility capabilities in modern computer operating systems are used to integrate these programs. This approach results in flexibility of the optimization procedure organization and versatility in the formulation of constraints and design variables. Features shown in numerical examples include: variability of structural layout and overall shape geometry, static strength and stiffness constraints, local buckling failure, and vibration constraints.
Abma, Tineke A; Pittens, Carina A C M; Visse, Merel; Elberse, Janneke E; Broerse, Jacqueline E W
2015-12-01
The Dialogue Model for research agenda-setting, involving multiple stakeholders including patients, was developed and validated in the Netherlands. However, there is little insight into whether and how patient involvement is sustained during the programming and implementation of research agendas. To understand how the Dialogue Model can be optimised by focusing on programming and implementation, in order to stimulate the inclusion of (the perspectives of) patients in research. A responsive evaluation of the programming and implementation phases of nine agenda-setting projects that had used the Dialogue Model for agenda-setting was conducted. Fifty-four semi-structured interviews were held with different stakeholders (patients, researchers, funding agencies). Three focus groups with patients, funding agencies and researchers (16 participants) were organized to validate the findings. Patient involvement in programming and implementation of the research agendas was limited. This was partly related to poor programming and implementation, partly to pitfalls in earlier phases of the agenda-setting. Optimization of the Dialogue Model is possible by attending to the nature of the agenda and its intended use in earlier phases. Attention should also be given to the ambassadors and intended users of agenda topics. Support is needed during programming and implementation to organize patient involvement and adapt organizational structures like review procedures. In all phases the attitude to patient involvement, stakeholder participation, especially of researchers, and formal and informal relationships between parties need to be addressed to build a strong relationship with a shared goal. Patient involvement in agenda-setting is not automatically followed by patient involvement in programming and implementation. More attention should be paid, in earlier stages, to the attitude and engagement of researchers and funding agencies. © 2014 John Wiley & Sons Ltd.
Rodríguez, J; Premier, G C; Dinsdale, R; Guwy, A J
2009-01-01
Mathematical modelling in environmental biotechnology has been a traditionally difficult resource to access for researchers and students without programming expertise. The great degree of flexibility required from model implementation platforms to be suitable for research applications restricts their use to programming expert users. More user friendly software packages however do not normally incorporate the necessary flexibility for most research applications. This work presents a methodology based on Excel and Matlab-Simulink for both flexible and accessible implementation of mathematical models by researchers with and without programming expertise. The models are almost fully defined in an Excel file in which the names and values of the state variables and parameters are easily created. This information is automatically processed in Matlab to create the model structure and almost immediate model simulation, after only a minimum Matlab code definition, is possible. The framework proposed also provides programming expert researchers with a highly flexible and modifiable platform on which to base more complex model implementations. The method takes advantage of structural generalities in most mathematical models of environmental bioprocesses while enabling the integration of advanced elements (e.g. heuristic functions, correlations). The methodology has already been successfully used in a number of research studies.
NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1993-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies.
A Program on Biochemical and Biomedical Engineering.
ERIC Educational Resources Information Center
San, Ka-Yiu; McIntire, Larry V.
1989-01-01
Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)
Structure of NCI Cooperative Groups Program Prior to NCTN
Learn how the National Cancer Institute’s Cooperative Groups Program was structured prior to its being replaced by NCI’s National Clinical Trials Network (NCTN). The NCTN gives funds and other support to cancer research organizations to conduct cancer clinical trials.
The NASA hypersonic research engine program
NASA Technical Reports Server (NTRS)
Rubert, Kennedy F.; Lopez, Henry J.
1992-01-01
An overview is provided of the NASA Hypersonic Research Engine Program. The engine concept is described which was evolved, and the accomplishments of the program are summarized. The program was undertaken as an in-depth program of hypersonic airbreathing propulsion research to provide essential inputs to future prototype engine development and decision making. An airbreathing liquid hydrogen fueled research oriented scramjet was to be developed to certain performance goals. The work was many faceted, required aerodynamic design evaluation, structures development, and development of flight systems such as the fuel and control system, but the main objective was the study of the internal aerothermodynamics of the propulsion system.
ORD Human Health Risk Assessment (HHRA) Research Program Mid-Cycle Progress Report and Review - 2010
The principal charge to the BOSC reviewers was to evaluate ORD’s HHRA Program from a program assessment framework relative to program relevance, structure, performance, quality, leadership, communication, and outcomes.
Innovative Materials for Aircraft Morphing
NASA Technical Reports Server (NTRS)
Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.
1997-01-01
Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.
Partitioning problems in parallel, pipelined and distributed computing
NASA Technical Reports Server (NTRS)
Bokhari, S.
1985-01-01
The problem of optimally assigning the modules of a parallel program over the processors of a multiple computer system is addressed. A Sum-Bottleneck path algorithm is developed that permits the efficient solution of many variants of this problem under some constraints on the structure of the partitions. In particular, the following problems are solved optimally for a single-host, multiple satellite system: partitioning multiple chain structured parallel programs, multiple arbitrarily structured serial programs and single tree structured parallel programs. In addition, the problems of partitioning chain structured parallel programs across chain connected systems and across shared memory (or shared bus) systems are also solved under certain constraints. All solutions for parallel programs are equally applicable to pipelined programs. These results extend prior research in this area by explicitly taking concurrency into account and permit the efficient utilization of multiple computer architectures for a wide range of problems of practical interest.
NASA Technical Reports Server (NTRS)
Bales, K. S.
1984-01-01
The Objectives, Expected Results, Approach, and Fiscal Year FY 1984 Milestones for the Structures and Dynamics Division's research programs are examined. The FY 1983 Accomplishments are presented where applicable.
Cultural sensitivity in public health: defined and demystified.
Resnicow, K; Baranowski, T; Ahluwalia, J S; Braithwaite, R L
1999-01-01
There is consensus that health promotion programs should be culturally sensitive (CS). Yet, despite the ubiquitous nature of CS within public health research and practice, there has been surprisingly little attention given to defining CS or delineating a framework for developing culturally sensitive programs and practitioners. This paper describes a model for understanding CS from a public health perspective; describes a process for applying this model in the development of health promotion and disease prevention interventions; and highlights research priorities. Cultural sensitivity is defined by two dimensions: surface and deep structures. Surface structure involves matching intervention materials and messages to observable, "superficial" characteristics of a target population. This may involve using people, places, language, music, food, locations, and clothing familiar to, and preferred by, the target audience. Surface structure refers to how well interventions fit within a specific culture. Deep structure involves incorporating the cultural, social, historical, environmental and psychological forces that influence the target health behavior in the proposed target population. Whereas surface structure generally increases the "receptivity" or "acceptance" of messages, deep structure conveys salience. Techniques, borrowed from social marketing and health communication theory, for developing culturally sensitive interventions are described. Research is needed to determine the effectiveness of culturally sensitive programs.
High Speed Research Program Structural Acoustics Multi-Year Summary Report
NASA Technical Reports Server (NTRS)
Beier, Theodor H.; Bhat, Waman V.; Rizzi, Stephen A.; Silcox, Richard J.; Simpson, Myles A.
2005-01-01
This report summarizes the work conducted by the Structural Acoustics Integrated Technology Development (ITD) Team under NASA's High Speed Research (HSR) Phase II program from 1993 to 1999. It is intended to serve as a reference for future researchers by documenting the results of the interior noise and sonic fatigue technology development activities conducted during this period. For interior noise, these activities included excitation modeling, structural acoustic response modeling, development of passive treatments and active controls, and prediction of interior noise. For sonic fatigue, these activities included loads prediction, materials characterization, sonic fatigue code development, development of response reduction techniques, and generation of sonic fatigue design requirements. Also included are lessons learned and recommendations for future work.
Early Exposure to Research: Outcomes of the ASTER Certification Program
ERIC Educational Resources Information Center
Griffard, Phyllis Baudoin; Golkowska, Krystyna
2013-01-01
This paper discusses a novel structure for providing a high-impact, first year experience for science students. ASTER (Access to Science Through Experience in Research) is an extracurricular certification program designed to introduce our students to the research culture via seminar attendance, journal clubs, book clubs, and lab visits.…
ERIC Educational Resources Information Center
Wingard, Crystal Burroughs
2017-01-01
The present action research study describes an Interactive Mathematics Review Program (IMRP) developed by the participant-researcher to enable remedial algebra students to learn in a cooperative classroom with pedagogy that promoted collaboration and hands-on, active learning. Data are comprised of surveys, field notes, semi-structured interviews,…
Teaching Note--Creating an Integrative Research Learning Environment for BSW and MSW Students
ERIC Educational Resources Information Center
Inoue, Megumi; Tsai, Laura Cordisco; Lee, JoAnn S.; Ihara, Emily S.; Tompkins, Catherine J.; Aguimatang, Jose; Fountain, Kathleen; Hudson, Sonya
2017-01-01
Research courses are often the least popular among BSW and MSW students because the connection between social work practice and research is not always evident. This teaching note introduces the structure of the Social Work integrative Research Lab (SWiRL), which was implemented in a social work program without a doctoral program at a large public…
NASA Technical Reports Server (NTRS)
Cassenti, B. N.
1983-01-01
The results of a 10-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are presented. The implementation of the theory in the MARC nonlinear finite element code is discussed, and instructions for the computational application of the theory are provided.
Chief, Structural Biophysics Laboratory | Center for Cancer Research
The SBL Chief is expected to establish a strong research program in structural biology/biophysics in addition to providing leadership of the SBL and the structural biology community in the NCI Intramural Program. Applicants should hold a Ph.D., M.D./Ph.D., or equivalent doctoral degree in a relevant discipline, and should possess outstanding communication skills and documented leadership experience. Tenured faculty or industrial scientists of equivalent rank with a demonstrated commitment to structural biophysics should apply. Salary will be commensurate with experience and accomplishments. This position is not restricted to U.S. citizens. A full civil service package of benefits (including health insurance, life insurance, and retirement) is available. This position is subject to a background investigation. The NIH is dedicated to building a diverse community in its training and employment programs.
The Mini-Mast CSI testbed: Lessons learned
NASA Technical Reports Server (NTRS)
Tanner, Sharon E.; Belvin, W. Keith; Horta, Lucas G.; Pappa, R. S.
1993-01-01
The Mini-Mast testbed was one of the first large scale Controls-Structure-Interaction (CSI) systems used to evaluate state-of-the-art methodology in flexible structure control. Now that all the testing at Langley Research Center has been completed, a look back is warranted to evaluate the program. This paper describes some of the experiences and technology development studies by NASA, university, and industry investigators. Lessons learned are presented from three categories: the testbed development, control methods, and the operation of a guest investigator program. It is shown how structural safety margins provided a realistic environment to simulate on-orbit CSI research, even though they also reduced the research flexibility afforded to investigators. The limited dynamic coupling between the bending and torsion modes of the cantilevered test article resulted in highly successful SISO and MIMO controllers. However, until accurate models were obtained for the torque wheel actuators, sensors, filters, and the structure itself, most controllers were unstable. Controls research from this testbed should be applicable to cantilevered appendages of future large space structures.
Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program
NASA Technical Reports Server (NTRS)
Hoffman, E. L.; Payne, L.; Carter, A. L.
1975-01-01
Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.
Alford, Rebecca F.; Dolan, Erin L.
2017-01-01
Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology. PMID:29216185
Alford, Rebecca F; Leaver-Fay, Andrew; Gonzales, Lynda; Dolan, Erin L; Gray, Jeffrey J
2017-12-01
Computational biology is an interdisciplinary field, and many computational biology research projects involve distributed teams of scientists. To accomplish their work, these teams must overcome both disciplinary and geographic barriers. Introducing new training paradigms is one way to facilitate research progress in computational biology. Here, we describe a new undergraduate program in biomolecular structure prediction and design in which students conduct research at labs located at geographically-distributed institutions while remaining connected through an online community. This 10-week summer program begins with one week of training on computational biology methods development, transitions to eight weeks of research, and culminates in one week at the Rosetta annual conference. To date, two cohorts of students have participated, tackling research topics including vaccine design, enzyme design, protein-based materials, glycoprotein modeling, crowd-sourced science, RNA processing, hydrogen bond networks, and amyloid formation. Students in the program report outcomes comparable to students who participate in similar in-person programs. These outcomes include the development of a sense of community and increases in their scientific self-efficacy, scientific identity, and science values, all predictors of continuing in a science research career. Furthermore, the program attracted students from diverse backgrounds, which demonstrates the potential of this approach to broaden the participation of young scientists from backgrounds traditionally underrepresented in computational biology.
Computational structural mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1989-01-01
The computational structural mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures. It is structured to mainly supplement, complement, and whenever possible replace, costly experimental efforts which are unavoidable during engineering research and development programs. Specific objectives include: investigate unique advantages of parallel and multiprocesses for: reformulating/solving structural mechanics and formulating/solving multidisciplinary mechanics and develop integrated structural system computational simulators for: predicting structural performances, evaluating newly developed methods, and for identifying and prioritizing improved/missing methods needed. Herein the CSM program is summarized with emphasis on the Engine Structures Computational Simulator (ESCS). Typical results obtained using ESCS are described to illustrate its versatility.
Dagher, Michael M; Atieh, Jessica A; Soubra, Marwa K; Khoury, Samia J; Tamim, Hani; Kaafarani, Bilal R
2016-06-06
Most educational institutions lack a structured system that provides undergraduate students with research exposure in the medical field. The objective of this paper is to describe the structure of the Medical Research Volunteer Program (MRVP) which was established at the American University of Beirut, Lebanon, as well as to assess the success of the program. The MRVP is a program that targets undergraduate students interested in becoming involved in the medical research field early on in their academic career. It provides students with an active experience and the opportunity to learn from and support physicians, clinical researchers, basic science researchers and other health professionals. Through this program, students are assigned to researchers and become part of a research team where they observe and aid on a volunteer basis. This paper presents the MRVP's four major pillars: the students, the faculty members, the MRVP committee, and the online portal. Moreover, details of the MRVP process are provided. The success of the program was assessed by carrying out analyses using information gathered from the MRVP participants (both students and faculty). Satisfaction with the program was assessed using a set of questions rated on a Likert scale, ranging from 1 (lowest satisfaction) to 5 (highest satisfaction). A total of 211 students applied to the program with a total of 164 matches being completed. Since the beginning of the program, three students have each co-authored a publication in peer-reviewed journals with their respective faculty members. The majority of the students rated the program positively. Of the total number of students who completed the program period, 35.1 % rated the effectiveness of the program with a 5, 54.8 % rated 4, and 8.6 % rated 3. A small number of students gave lower ratings of 2 and 1 (1.1 % and 0.4 %, respectively). The MRVP is a program that provides undergraduate students with the opportunity to learn about research firsthand as they volunteer and aid in different research projects. This program also provides faculty members with the help to conduct their research projects and opportunity to influence future generations. It was shown that so far the MRVP has been successful in reaching its goals, for both students and faculty.
NASA Technical Reports Server (NTRS)
1984-01-01
The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.
Aeronautics research and technology program and specific objectives
NASA Technical Reports Server (NTRS)
1981-01-01
Aeronautics research and technology program objectives in fluid and thermal physics, materials and structures, controls and guidance, human factors, multidisciplinary activities, computer science and applications, propulsion, rotorcraft, high speed aircraft, subsonic aircraft, and rotorcraft and high speed aircraft systems technology are addressed.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.
1992-01-01
The NASA-UVa Light Aerospace Alloy and Structure Technology (LAST) Program continues to maintain a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1992. The objectives of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of the next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with Langley researchers. Technical objectives are established for each research project. We aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies. The accomplishments presented in this report cover topics including: (1) Mechanical and Environmental Degradation Mechanisms in Advance Light Metals and Composites; (2) Aerospace Materials Science; (3) Mechanics of Materials and Composites for Aerospace Structures; and (4) Thermal Gradient Structures.
Steadman, Patrick E; Crudden, Johanna; Boutis, Kathy
2015-09-01
Prospective research studies often advance clinical practice in the emergency department (ED), but they can be costly and difficult to perform. In this report, we describe the implementation of a volunteer university student research assistant program that provides students exposure to medicine and clinical research while simultaneously increasing the capacity of an ED's research program. This type of program provides 15 hours per day of research assistant coverage for patient screening and enrolment for minimal risk research studies, and screening for higher risk studies. The latter is true without the added burden or costs of co-administering university course credit or pay for service, which are common features of most of these types of programs currently in operation. We have shown that our volunteer-based program is effective for an ED's research success as well as for its student participants. For other EDs interested in adopting similar programs, we provide the details on how to get such a program started and highlight the structure and non-monetary incentives that facilitate a program's ongoing success.
An overview of the NASA textile composites program
NASA Technical Reports Server (NTRS)
Dexter, H. Benson
1993-01-01
The NASA Langley Research Center is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structures. In addition to in-house research, the program includes major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house research is focused on science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of innovative design concepts, cost-effective fabrication, and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3-D weaving, 2-D and 3-D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials. The goals of the NASA Langley-sponsored research program are to demonstrate technology readiness with subscale composite components by 1995 and to verify the performance of full-scale composite primary aircraft structural components by 1997. The status of textile reinforced composite structural elements under development by Boeing, Douglas, Lockheed, and Grumman are presented. Included are braided frames and woven/stitched wing and fuselage panels.
The NASA controls-structures interaction technology program
NASA Technical Reports Server (NTRS)
Newsom, Jerry R.; Layman, W. E.; Waites, H. B.; Hayduk, R. J.
1990-01-01
The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program.
Structural Metadata Research in the Ears Program
2005-01-01
detecting structural information in the word stream (the so-called “structural MDE” portion of the EARS program); other MDE efforts on speaker ... diarization are overviewed in [13]. The rest of this paper is organized as follows. We describe the structural MDE tasks, performance measurement, and corpora...tems have only recently been introduced, with NIST reporting re- sults with the Wilcoxon signed rank test for speaker -level average score differences
Iwayanagi, Takao; Miyamoto, Sei; Konno, Takeshi; Mizutani, Hisashi; Hirai, Tomohiro; Shigemoto, Yasumasa; Gojobori, Takashi; Sugawara, Hideaki
2012-09-01
The Targeted Proteins Research Program (TPRP) promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan is the phase II of structural biology project (2007-2011) following the Protein 3000 Project (2002-2006) in Japan. While the phase I Protein 3000 Project put partial emphasis on the construction and maintenance of pipelines for structural analyses, the TPRP is dedicated to revealing the structures and functions of the targeted proteins that have great importance in both basic research and industrial applications. To pursue this objective, 35 Targeted Proteins (TP) Projects selected in the three areas of fundamental biology, medicine and pharmacology, and food and environment are tightly collaborated with 10 Advanced Technology (AT) Projects in the four fields of protein production, structural analyses, chemical library and screening, and information platform. Here, the outlines and achievements of the 35 TP Projects are summarized in the system named TP Atlas. Progress in the diversified areas is described in the modules of Graphical Summary, General Summary, Tabular Summary, and Structure Gallery of the TP Atlas in the standard and unified format. Advances in TP Projects owing to novel technologies stemmed from AT Projects and collaborative research among TP Projects are illustrated as a hallmark of the Program. The TP Atlas can be accessed at http://net.genes.nig.ac.jp/tpatlas/index_e.html .
Next Generation Active Buffet Suppression System
NASA Technical Reports Server (NTRS)
Galea, Stephen C.; Ryall, Thomas G.; Henderson, Douglas A.; Moses, Robert W.; White, Edward V.; Zimcik, David G.
2003-01-01
Buffeting is an aeroelastic phenomenon that is common to high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. These loads result in significant random stresses, which may cause fatigue damage leading to restricted capabilities and availability of the aircraft. This paper describes an international collaborative research activity among Australia, Canada and the United States involving the use of active structural control to alleviate the damaging structural response to these loads. The research program is being co-ordinated by the Air Force Research Laboratory (AFRL) and is being conducted under the auspices of The Technical Cooperative Program (TTCP). This truly unique collaborative program has been developed to enable each participating country to contribute resources toward a program that coalesces a broad range of technical knowledge and expertise into a single investigation. This collaborative program is directed toward a full-scale test of an F/A-18 empennage, which is an extension of an earlier initial test. The current program aims at applying advanced directional piezoactuators, the aircraft rudder, switch mode amplifiers and advanced control strategies on a full-scale structure to demonstrate the enhanced performance and capability of the advanced active BLA control system in preparation for a flight test demonstration.
Microgravity sciences application visiting scientist program
NASA Technical Reports Server (NTRS)
Glicksman, Martin; Vanalstine, James
1995-01-01
Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.
Predictors of Global Quality in Family Child Care Homes: Structural and Belief Characteristics
ERIC Educational Resources Information Center
Hughes-Belding, Kere; Hegland, Susan; Stein, Amanda; Sideris, John; Bryant, Donna
2012-01-01
Research Findings: With a substantial number of young children receiving care in family child care settings, an examination of the characteristics, both structural and attitudinal, that predict program quality is warranted. The current study examines gaps in the research by examining both structural characteristics and provider beliefs that…
ERIC Educational Resources Information Center
Hopper, Larry J., Jr.; Schumacher, Courtney; Stachnik, Justin P.
2013-01-01
The Student Operational Aggie Doppler Radar Project (SOAP) involved 95 undergraduates in a research and education program to better understand the climatology of storms in southeast Texas from 2006-2010. This paper describes the structure, components, and implementation of the 1-credit-hour research course, comparing first-year participants'…
Materials processing in space program tasks
NASA Technical Reports Server (NTRS)
Mckannan, E. C. (Editor)
1978-01-01
A list of active research tasks as of the end of 1978 of the Materials Processing in Space Program of the Office of Space and Terrestrial Applications, involving several NASA Centers and other organizations is reported. An overview of the program scope for managers and scientists in industry, university and government communities is provided. The program, its history, strategy and overall goal; the organizational structures and people involved; and each research task are described. Tasks are categorized by ground based research according to four process areas. Cross references to the performing organizations and principal investigators are provided.
NASA Astrophysics Data System (ADS)
Sullivan, W. N.
The Darrieus-type Vertical Axis Wind Turbine (VAWT) presents a variety of unusual structural problems to designers. The level of understanding of these structural problems governs, to a large degree, the success or failure of today's rotor designs. A survey is presented of the technology available for rotor structural design with emphasis on the DOE research program now underway. Itemizations are included of the major structural issues unique to the VAWT along with discussion of available analysis techniques for each problem area. It is concluded that tools are available to at least approximately address the most important problems. However, experimental data for confirmation is rather limited in terms of volume and the range of rotor configurations tested.
PREFACE: International Conference on Advanced Structural and Functional Materials Design 2008
NASA Astrophysics Data System (ADS)
Kakeshita, Tomoyuki
2009-07-01
The Ministry of Education, Culture, Sports, Science and Technology of Japan started the Priority Assistance for the Formation of Worldwide Renowned Centers of Research - Global COE Program. This program is based on the competitive principle where a third party evaluation decides which program to support and to give priority support to the formation of world-class centers of research. Our program Center of Excellence for Advanced Structural and Functional Materials Design was selected as one of 13 programs in the field of Chemistry and Materials Science. This center is composed of two materials-related Departments in the Graduate School of Engineering: Materials and Manufacturing Science and Adaptive Machine Systems, and 4 Research Institutes: Center for Atomic and Molecular Technologies, Welding and Joining Research Institute, Institute of Scientific and Industrial Research and Research Center for Ultra-High Voltage Electron Microscopy. Recently, materials research, particularly that of metallic materials, has specialized only in individual elemental characteristics and narrow specialty fields, and there is a feeling that the original role of materials research has been forgotten. The 6 educational and research organizations which make up the COE program cooperatively try to develop new advanced structural and functional materials and achieve technological breakthrough for their fabrication processes from electronic, atomic, microstructural and morphological standpoints, focusing on their design and application: development of high performance structural materials such as space plane and turbine blades operating under a severe environment, new fabrication and assembling methods for electronic devices, development of evaluation technique for materials reliability, and development of new biomaterials for regeneration of biological hard tissues. The aim of this international conference was to report the scientific progress in our Global COE program and also to discuss related research topics. The organizing committee gratefully thanks participants for presenting their recent results and for discussions with our COE members and international attendees. November 2008 Professor Tomoyuki Kakeshita Chairman of the Conference Vice Dean, Graduate School of Engineering, Osaka University, Division of Materials and Manufacturing Science, Graduate School of Engineering Leader of Global COE Program, Osaka University, ''Center of Excellence for Advanced Structural and Functional Materials Design'' Organization Chairman: T Kakeshita (Osaka University) Advisory Board:H Mehrer (University Münster, Germany), E K H Salje (University of Cambridge, United Kingdom), H-E Schaefer (University of Stuttgart, Germany), P Veyssiere (CNRS-ONERA, France) Organizing Committee: T Kakeshita, H Araki, H Fujii, S Fujimoto, Y Fujiwara, A Hirose, S Kirihara, M Mochizuki, H Mori, T Nagase, H Nakajima, T Nakano, R Nakatani, K Nogi, Y Setsuhara, Y Shiratsuchi, T Tanaka, T Terai, H Tsuchiya, N Tsuji, H Utsunomiya, H Yasuda, H Yasuda (Osaka University) Executive Committee: T Kakeshita, S Fujimoto, Y Fujiwara, A Hirose, T Tanaka, H Yasuda (Osaka University) Conference Secretariat: Y Fujiwara (Osaka University) Proceedings Editors: T Kakeshita and Y Fujiwara (Osaka University) Conference photograph
A Snapshot of After-School Program Research Literature. Research Watch. D&A Report No. 13.10
ERIC Educational Resources Information Center
Rhea, Anisa
2013-01-01
After-school programs, also commonly referred to as out-of-school time and expanded learning opportunities, are typically described as safe, structured programs that offer an array of adult supervised activities to promote the learning and development of kindergarten through high school students outside of the school day (Beckett et al., 2009;…
ERIC Educational Resources Information Center
Horzum, Mehmet Baris; Kaymak, Zeliha Demir; Gungoren, Ozlem Canan
2015-01-01
The relationship between online learning readiness, academic motivations, and perceived learning was investigated via structural equation modeling in the research. The population of the research consisted of 750 students who studied using the online learning programs of Sakarya University. 420 of the students who volunteered for the research and…
Resident research in internal medicine training programs.
Alguire, P C; Anderson, W A; Albrecht, R R; Poland, G A
1996-02-01
To determine how well medical residency programs are prepared to meet the new Accreditation Council of Graduate Medical Education (ACGME) accreditation guidelines for resident scholarly activity. Cross-sectional study using a mailed survey. Program directors of all ACGME-accredited internal medicine residency programs. Program directors were asked to list the scholarly activities and products of their residents and their programs' minimal expectations for resident research; available academic, faculty, technical, and personnel support for resident research; perceived barriers to resident research; and the desired educational and skill outcomes of resident research. The responses of university-based training programs were compared with those of non-university-based programs. 271 program directors returned the survey, yielding a response rate of 65%. Ninety-seven percent of all programs have established scholarly guidelines consistent with accreditation requirements. Although only 37% of programs reported having an organized, comprehensive research curriculum, 70% taught skills important to research. Technical support and resources were generally available for resident research; the most frequently cited barrier to resident research was lack of resident time. University-based and non-university-based training programs differed in important ways. Generally, non-university-based programs had more research activity and structure, and they exceeded university-based programs in the number of oral and poster presentations given at local, state, and national professional meetings. Most programs have in place the basic elements conducive to resident research. Program directors have identified and teach educational outcomes and skills that are likely to have lifelong benefits for most of their graduates.
Service evaluation of aircraft composite structural components
NASA Technical Reports Server (NTRS)
Brooks, W. A., Jr.; Dow, M. B.
1973-01-01
The advantages of the use of composite materials in structural applications have been identified in numerous engineering studies. Technology development programs are underway to correct known deficiencies and to provide needed improvements. However, in the final analysis, flight service programs are necessary to develop broader acceptance of, and confidence in, any new class of materials such as composites. Such flight programs, initiated by NASA Langley Research Center, are reviewed. These programs which include the selectively reinforced metal and the all-composite concepts applied to both secondary and primary aircraft structural components, are described and current status is indicated.
ERIC Educational Resources Information Center
Packard, Richard D.; Dereshiwsky, Mary I.
This paper presents research findings concerning the Career Ladder pilot test program in Arizona. The program is designed to reward and motivate teachers based on performance. One of the program's key features is the flexibility and innovation allowed to participating districts in their individual development of program designs and structures. An…
Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines
NASA Astrophysics Data System (ADS)
Elbaz, Johann; Cecconello, Alessandro; Fan, Zhiyuan; Govorov, Alexander O.; Willner, Itamar
2013-06-01
DNA nanotechnology is a rapidly developing research area in nanoscience. It includes the development of DNA machines, tailoring of DNA nanostructures, application of DNA nanostructures for computing, and more. Different DNA machines were reported in the past and DNA-guided assembly of nanoparticles represents an active research effort in DNA nanotechnology. Several DNA-dictated nanoparticle structures were reported, including a tetrahedron, a triangle or linear nanoengineered nanoparticle structures; however, the programmed, dynamic reversible switching of nanoparticle structures and, particularly, the dictated switchable functions emerging from the nanostructures, are missing elements in DNA nanotechnology. Here we introduce DNA catenane systems (interlocked DNA rings) as molecular DNA machines for the programmed, reversible and switchable arrangement of different-sized gold nanoparticles. We further demonstrate that the machine-powered gold nanoparticle structures reveal unique emerging switchable spectroscopic features, such as plasmonic coupling or surface-enhanced fluorescence.
Development of stitched/RTM composite primary structures
NASA Technical Reports Server (NTRS)
Kullerd, Susan M.; Dow, Marvin B.
1992-01-01
The goal of the NASA Advanced Composites Technology (ACT) Program is to provide the technology required to gain the full benefit of weight savings and performance offered by composite primary structures. Achieving the goal is dependent on developing composite materials and structures which are damage tolerant and economical to manufacture. Researchers at NASA LaRC and Douglas Aircraft Company are investigating stitching reinforcement combined with resin transfer molding (RTM) to create structures meeting the ACT program goals. The Douglas work is being performed under a NASA contract entitled Innovative Composites Aircraft Primary Structures (ICAPS). The research is aimed at materials, processes and structural concepts for application in both transport wings and fuselages. Empirical guidelines are being established for stitching reinforcement in primary structures. New data are presented in this paper for evaluation tests of thick (90-ply) and thin (16-ply) stitched laminates, and from selection tests of RTM composite resins. Tension strength, compression strength and post-impact compression strength data are reported. Elements of a NASA LaRC program to expand the science base for stitched/RTM composites are discussed.
Designing Undergraduate Research Experiences: A Multiplicity of Options
NASA Astrophysics Data System (ADS)
Manduca, C. A.
2001-12-01
Research experiences for undergraduate students can serve many goals including: developing student understanding of the process of science; providing opportunities for students to develop professional skills or test career plans; completing publishable research; enabling faculty professional development; or enhancing the visibility of a science program. The large range of choices made in the design of an undergraduate research program or opportunity must reflect the goals of the program, the needs and abilities of the students and faculty, and the available resources including both time and money. Effective program design, execution, and evaluation can all be enhanced if the goals of the program are clearly articulated. Student research experiences can be divided into four components: 1) defining the research problem; 2) developing the research plan or experiment design; 3) collecting and interpreting data, and 4) communicating results. In each of these components, the program can be structured in a wide variety of ways and students can be given more or less guidance or freedom. While a feeling of ownership of the research project appears to be very important, examples of successful projects displaying a wide range of design decisions are available. Work with the Keck Geology Consortium suggests that four strategies can enhance the likelihood of successful student experiences: 1) students are well-prepared for research experience (project design must match student preparation); 2) timelines and events are structured to move students through intermediate goals to project completion; 3) support for the emotional, financial, academic and technical challenges of a research project is in place; 4) strong communications between students and faculty set clear expectations and enable mid-course corrections in the program or project design. Creating a research culture for the participants or embedding a project in an existing research culture can also assist students in completing a successful research experience. Outstanding undergraduate research experiences can take place in a wide variety of settings and serve a wide variety of student and faculty needs if projects are designed with these goals in mind.
Program of Research in Aeronautics
NASA Technical Reports Server (NTRS)
1981-01-01
A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.
Measurement Plan for the Characterization of the Load Environment for Cross Ties and Fasteners
DOT National Transportation Integrated Search
1977-04-01
This report was prepared as a part of the Improved Track Structures Research Program sponsored by the Office of Rail Safety Research of the Federal Railroad Administration. The report is a planning document for a track measurement program to obtain d...
Mendelian Genetics: Paradigm, Conjecture, or Research Program.
ERIC Educational Resources Information Center
Oldham, V.; Brouwer, W.
1984-01-01
Applies Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos' methodology of competing research programs to a historical biological episode. Suggests using Kuhn's model (emphasizing the nonrational basis of science) and Popper's model (emphasizing the rational basis of science) in…
Biological Diversity Research: An Analysis
James W. McMinn
1991-01-01
An appropriate yardstick for a biodiversity program is how it affects the persistence of viable populations. A coordinated program of biodiversity research could be structured under three overlapping subject areas: (1) threatened, endangered, and sensitive species; (2) restoration of missing, underrepresented, or declining communities; and (3) general principles and...
Basic Research in Artificial Intelligence and Foundations of Programming
1980-05-01
and Their Decision Problems, Proceedings Seventh ACM Symposium on Principles of Programming Languages, Las Vegas (Jan. 1980), pp. 62-67. 5. Z. Manna and...Semantics, Comunicaciones Tecnicas (in Spanish). Blue Series: monographs. Center 1 17. Nevatia, R., T.O. Binford; Structured for Research in Applied
Exploring the Engagement Effects of Visual Programming Language for Data Structure Courses
ERIC Educational Resources Information Center
Chang, Chih-Kai; Yang, Ya-Fei; Tsai, Yu-Tzu
2017-01-01
Previous research indicates that understanding the state of learning motivation enables researchers to deeply understand students' learning processes. Studies have shown that visual programming languages use graphical code, enabling learners to learn effectively, improve learning effectiveness, increase learning fun, and offering various other…
Structured Sensory Trauma Interventions
ERIC Educational Resources Information Center
Steele, William; Kuban, Caelan
2010-01-01
This article features the National Institute of Trauma and Loss in Children (TLC), a program that has demonstrated via field testing, exploratory research, time series studies, and evidence-based research studies that its Structured Sensory Intervention for Traumatized Children, Adolescents, and Parents (SITCAP[R]) produces statistically…
Development of a surgical educational research program-fundamental principles and challenges.
Ahmed, Kamran; Ibrahim, Amel; Anderson, Oliver; Patel, Vanash M; Zacharakis, Emmanouil; Darzi, Ara; Paraskeva, Paraskevas; Athanasiou, Thanos
2011-05-15
Surgical educational research is the scientific investigation of any aspect of surgical learning, teaching, training, and assessment. The research into development and validation of educational tools is vital to optimize patient care. This can be accomplished by establishing high quality educational research programs within academic surgical departments. This article aims to identify the components involved in educational research and describes the challenges as well as solutions to establishing a high quality surgical educational research program. A variety of sources including journal articles, books, and online literature were reviewed in order to determine the pathways involved in conducting educational research and establishing a research program. It is vital to ensure that educational research is acceptable, innovative, robust in design, funded correctly, and disseminated successfully. Challenges faced by the current surgical research programs include structural organization, academic support, credibility, time, funding, relevance, and growth. The solutions to these challenges have been discussed. To ensure research in surgical education is of high quality and yields credible results, strong leadership in the organization of an educational research program is necessary. Copyright © 2011 Elsevier Inc. All rights reserved.
Thiry, Heather; Weston, Timothy J.; Laursen, Sandra L.; Hunter, Anne-Barrie
2012-01-01
This mixed-methods study explores differences in novice and experienced undergraduate students’ perceptions of their cognitive, personal, and professional gains from engaging in scientific research. The study was conducted in four different undergraduate research (UR) programs at two research-extensive universities; three of these programs had a focus on the biosciences. Seventy-three entry-level and experienced student researchers participated in in-depth, semi-structured interviews and completed the quantitative Undergraduate Research Student Self-Assessment (URSSA) instrument. Interviews and surveys assessed students’ developmental outcomes from engaging in UR. Experienced students reported distinct personal, professional, and cognitive outcomes relative to their novice peers, including a more sophisticated understanding of the process of scientific research. Students also described the trajectories by which they developed not only the intellectual skills necessary to advance in science, but also the behaviors and temperament necessary to be a scientist. The findings suggest that students benefit from multi-year UR experiences. Implications for UR program design, advising practices, and funding structures are discussed. PMID:22949423
NASA Technical Reports Server (NTRS)
Smith, P. J.; Thomson, L. W.; Wilson, R. D.
1986-01-01
NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Astrophysics Data System (ADS)
Gangloff, Richard P.; Scully, John R.; Starke, Edgar A., Jr.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1994-03-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986, and continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between July 1 and December 31, 1993. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and critically, a pool of educated graduate students for aerospace technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-02
This report consists of three separate but related reports. They are (1) Human Resource Development, (2) Carbon-based Structural Materials Research Cluster, and (3) Data Parallel Algorithms for Scientific Computing. To meet the objectives of the Human Resource Development plan, the plan includes K--12 enrichment activities, undergraduate research opportunities for students at the state`s two Historically Black Colleges and Universities, graduate research through cluster assistantships and through a traineeship program targeted specifically to minorities, women and the disabled, and faculty development through participation in research clusters. One research cluster is the chemistry and physics of carbon-based materials. The objective of thismore » cluster is to develop a self-sustaining group of researchers in carbon-based materials research within the institutions of higher education in the state of West Virginia. The projects will involve analysis of cokes, graphites and other carbons in order to understand the properties that provide desirable structural characteristics including resistance to oxidation, levels of anisotropy and structural characteristics of the carbons themselves. In the proposed cluster on parallel algorithms, research by four WVU faculty and three state liberal arts college faculty are: (1) modeling of self-organized critical systems by cellular automata; (2) multiprefix algorithms and fat-free embeddings; (3) offline and online partitioning of data computation; and (4) manipulating and rendering three dimensional objects. This cluster furthers the state Experimental Program to Stimulate Competitive Research plan by building on existing strengths at WVU in parallel algorithms.« less
Structure and Functions of Pediatric Aerodigestive Programs: A Consensus Statement.
Boesch, R Paul; Balakrishnan, Karthik; Acra, Sari; Benscoter, Dan T; Cofer, Shelagh A; Collaco, Joseph M; Dahl, John P; Daines, Cori L; DeAlarcon, Alessandro; DeBoer, Emily M; Deterding, Robin R; Friedlander, Joel A; Gold, Benjamin D; Grothe, Rayna M; Hart, Catherine K; Kazachkov, Mikhail; Lefton-Greif, Maureen A; Miller, Claire Kane; Moore, Paul E; Pentiuk, Scott; Peterson-Carmichael, Stacey; Piccione, Joseph; Prager, Jeremy D; Putnam, Philip E; Rosen, Rachel; Rutter, Michael J; Ryan, Matthew J; Skinner, Margaret L; Torres-Silva, Cherie; Wootten, Christopher T; Zur, Karen B; Cotton, Robin T; Wood, Robert E
2018-02-07
Aerodigestive programs provide coordinated interdisciplinary care to pediatric patients with complex congenital or acquired conditions affecting breathing, swallowing, and growth. Although there has been a proliferation of programs, as well as national meetings, interest groups and early research activity, there is, as of yet, no consensus definition of an aerodigestive patient, standardized structure, and functions of an aerodigestive program or a blueprint for research prioritization. The Delphi method was used by a multidisciplinary and multi-institutional panel of aerodigestive providers to obtain consensus on 4 broad content areas related to aerodigestive care: (1) definition of an aerodigestive patient, (2) essential construct and functions of an aerodigestive program, (3) identification of aerodigestive research priorities, and (4) evaluation and recognition of aerodigestive programs and future directions. After 3 iterations of survey, consensus was obtained by either a supermajority of 75% or stability in median ranking on 33 of 36 items. This included a standard definition of an aerodigestive patient, level of participation of specific pediatric disciplines in a program, essential components of the care cycle and functions of the program, feeding and swallowing assessment and therapy, procedural scope and volume, research priorities and outcome measures, certification, coding, and funding. We propose the first consensus definition of the aerodigestive care model with specific recommendations regarding associated personnel, infrastructure, research, and outcome measures. We hope that this may provide an initial framework to further standardize care, develop clinical guidelines, and improve outcomes for aerodigestive patients. Copyright © 2018 by the American Academy of Pediatrics.
The NCI Community Oncology Research Program: what every clinician needs to know.
McCaskill-Stevens, Worta; Lyss, Alan P; Good, Marge; Marsland, Thomas; Lilenbaum, Rogerio
2013-01-01
Research in the community setting is essential for the translation of advances in cancer research into practice and improving cancer care for all populations. The National Cancer Institute is proposing a new community-based program, NCI Community Oncology Research Program (NCORP), which is the alignment of two existing programs, the Community Clinical Oncology Program, Minority-Based Community Clinical Oncology Program, and their Research Bases, and the National Cancer Institute's Community Cancer Centers Program. NCROP will support cancer control, prevention, treatment, and screening clinical trials and expand its research scope to include cancer care delivery research. Cancer disparities research will be integrated into studies across the continuum of NCORP research. Input from current NCI-funded community investigators provides critical insight into the challenges faced by oncology practices within various organizational structures. Furthermore, these investigators identify the resources, both administrative and clinical, that will be required in the community setting to support cancer care delivery research and to meet the requirements for a new generation of clinical research. The American Society for Clinical Oncology (ASCO) has initiated a forum to focus on the conduct of clinical research in the community setting. Resources are being developed to help practices in managing cancer care in community settings.
Biomedical and environmental sciences programs at the Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, C.R.; Johnson, C.A.
1988-02-01
This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.
United States Air Force Graduate Student Research Program. 1989 Program Technical Report. Volume 1
1989-12-01
Analysis is required to supplement the experimental observations, which requires the formulation of a realistic model of the physical problem...RECOMMENDATION: a . From our point of view, the research team considere the NASTRAN model correct due to the vibrational frequencies, but we are still...structure of the program was understood, attempts were made to change the model from a thunderstorm simulation
Economic Evaluation of Computerized Structural Analysis
NASA Technical Reports Server (NTRS)
Fortin, P. E.
1985-01-01
This completed effort involved a technical and economic study of the capabilities of computer programs in the area of structural analysis. The applicability of the programs to NASA projects and to other users was studied. The applications in other industries was explored including both research and development and applied areas. The costs of several alternative analysis programs were compared. A literature search covered applicable technical literature including journals, trade publications and books. In addition to the literature search, several commercial companies that have developed computerized structural analysis programs were contacted and their technical brochures reviewed. These programs include SDRC I-DEAS, MSC/NASTRAN, SCADA, SUPERSAP, NISA/DISPLAY, STAAD-III, MICAS, GTSTRUDL, and STARS. These programs were briefly reviewed as applicable to NASA projects.
Long-term Ecological Research: Coweeta History and Perspectives
Wayne T. Swank; Judith L. Meyer; Deyree A. Crossley
2001-01-01
The Coweeta Hydrologic Laboratory-Institute of Ecology cooperative research program is one of the longest continuous collaborations on forest-ecosystem structure and function between a federal agency and academia in the country. Formally established in 1968, the program continues to mature in scientific scope, interdisciplinary expertise, administrative challenges,...
(Durability of building materials and components)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, D.J.
1990-11-27
The traveler participated in the fourth meeting of RILEM 100-TSL, Techniques for Service Life Prediction,'' and The Fifth International Conference on Durability of Building Materials and Components.'' In addition, the traveler met with staff members at Taywood Engineering Ltd., Electricite de France, and AEA Technology. The meeting pertained to performance of concrete materials in nuclear power plant structures, time variation of concrete material properties, methods for evaluating concrete structures, and modeling to predict the effects of degradation factors on concrete materials. As many of the concrete structures in general civil engineering applications as well as nuclear power plant applications inmore » Europe are aging, there is increasing emphasis on assessing the durability of these structures. Information was provided of direct application to the Structural Aging Program which would not have been available without these visits. Of equal, or possibly more importance, was the individual contacts established at the organizations visited. Each organization was extremely interested in both the approach and scope of the Structural Aging Program and requested that they be informed of progress. The initial steps were taken to cooperate with several of these researchers and this should help the Structural Aging Program keep abreast of related European activities. In summary, information obtained during this trip will benefit the ongoing Structural Aging Program by informing Oak Ridge National Laboratory (ORNL) of the extensive European research programs addressing the durability of concrete structures, and also by forming and strengthening acquaintances with counterparts in other countries, thus enhancing the basis for possible international cooperation.« less
NASA-UVA light aerospace alloy and structures technology program (LA2ST)
NASA Technical Reports Server (NTRS)
Starke, Edgar A., Jr.; Gangloff, Richard P.; Herakovich, Carl T.; Scully, John R.; Shiflet, Gary J.; Stoner, Glenn E.; Wert, John A.
1995-01-01
The NASA-UVa Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. Here, we report on progress achieved between July 1 and December 31, 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.
Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, G.
1998-03-01
The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including amore » bibliography of published work, patents, and awards arising from work supported by the program.« less
NASA Astrophysics Data System (ADS)
Fine, Rana A.; Walker, Dan
In June 1996, the National Research Council (NRC) formed the Committee on Major U.S. Oceanographic Research Programs to foster coordination among the large programs (e.g., World Ocean Circulation Experiment, Ocean Drilling Program, Ridge Interdisciplinary Global Experiment, and others) and examine their role in ocean research. In particular, the committee is charged with (1) enhancing information sharing and the coordinated implementation of the research plans of the major ongoing and future programs; (2) assisting the federal agencies and ocean sciences community in identifying gaps, as well as appropriate followon activities to existing programs; (3) making recommendations on how future major ocean programs should be planned, structured and organized; and (4) evaluating the impact of major ocean programs on the understanding of the oceans, development of research facilities, education, and collegiality in the academic community. The activity was initiated at the request of the National Science Foundation (NSF) Division of Ocean Sciences, is overseen by the NRC's Ocean Studies Board (OSB), and is funded by both NSF and the Office of Naval Research.
An Analysis of Research Quality and Productivity at Six Academic Orthopaedic Residencies.
Osborn, Patrick M; Ames, S Elizabeth; Turner, Norman S; Caird, Michelle S; Karam, Matthew D; Mormino, Matthew A; Krueger, Chad A
2018-06-06
It remains largely unknown what factors impact the research productivity of residency programs. We hypothesized that dedicated resident research time would not affect the quantity and quality of a program's peer-reviewed publication within orthopedic residencies. These findings may help programs improve structure their residency programs to maximize core competencies. Three hundred fifty-nine residents and 240 staff from six different US orthopedic residency programs were analyzed. All publications published by residents and faculty at each program from January 2007 to December 2015 were recorded. SCImago Journal Rankings (SJR) were found for each journal. There were no significant differences in publications by residents at each program (p > 0.05). Faculty with 10+ years of on staff, had significantly more publications than those with less than 10years (p < 0.01). Programs with increased resident research time did not consistently produce publications with higher SJR than those without dedicated research time. Increased dedicated resident research time did not increase resident publication rates or lead to publications with higher SJR. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Environmental Sciences Division: Summaries of research in FY 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principalmore » investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.« less
NASA Technical Reports Server (NTRS)
Gohn, G. S.; Bruce, T. S.; Catchings, R. D.; Emry, S. R.; Johnson, G. H.; Levine, J. S.; McFarland, E. R.; Poag, C. W.; Powars, D. S.
2001-01-01
The Chesapeake Bay impact structure is the focus of an ongoing federal-state-local research program. Recent core drilling and geophysical surveys address the formative processes and hydrogeologic properties of this major "wet-target" impact. Additional information is contained in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Mostmore » of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.« less
NASA Astrophysics Data System (ADS)
Barron, Darcy; Peticolas, Laura; Multiverse Team at UC Berkeley's Space Sciences Lab
2018-01-01
The Advancing Space Science through Undergraduate Research Experience (ASSURE) summer REU program is an NSF-funded REU site at the Space Sciences Lab at UC Berkeley that first started in summer 2014. The program recruits students from all STEM majors, targeting underserved students including community college students and first-generation college students. The students have little or no research experience and a wide variety of academic backgrounds, but have a shared passion for space sciences and astronomy. We will describe our program's structure and the components we have found successful in preparing and supporting both the students and their research advisors for their summer research projects. This includes an intensive first week of introductory lectures and tutorials at the start of the program, preparing students for working in an academic research environment. The program also employs a multi-tiered mentoring system, with layers of support for the undergraduate student cohort, as well as graduate student and postdoctoral research advisors.
Workshop on High-Field NMR and Biological Applications
NASA Astrophysics Data System (ADS)
Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.
NASA Microgravity Science and Applications Program
NASA Technical Reports Server (NTRS)
1992-01-01
Key elements of the microgravity research program as conducted by the Microgravity Science and Applications Division (MSAD) within the Office of Space Science and Applications (OSSA) during fiscal year (FY) 1992 are described. This NASA funded program supported investigators from the university, industry, and government research communities. The program's goals, the approach taken to achieve those goals, and the resources that were available are summarized. It provides a 'snapshot' of the Program's status at the end of FY 1992 and reviews highlights and progress in the ground and flight-based research during the year. It also describes four major space missions that flew during FY 1992, the advanced technology development (ATD) activities, and the plans to use the research potential of Space Station Freedom and other advanced carriers. The MSAD program structure encompassed five research areas: (1) Biotechnology, (2) Combustion Science, (3) Fluid Physics, (4) Materials Science, and (5) Benchmark Physics.
Nadig, Nandita R; Vanderbilt, Allison A; Ford, Dee W; Schnapp, Lynn M; Pastis, Nicholas J
2015-04-01
Individual fellowship programs are challenged to find a format of training that not only meets the Accreditation Council for Graduate Medical Education requirements, but also grooms fellows to be trusted clinicians, and encourages them to enter academic careers. This study was undertaken as part of an internal effort to evaluate and revise the program structure of the pulmonary/critical care medicine fellowship at the Medical University of South Carolina. Our objectives were to characterize variation in the training structure and specifically research opportunities of university pulmonary/critical care medicine fellowship programs, and to identify factors associated with fellow retention in academic medicine and research. A 30-item survey was developed through rigorous internal review and was administered via email. Descriptive statistics, Cronbach's alpha, correlations, Wilcoxon sign-rank test, and ANOVA were carried out. We had a response rate of 52%. Program directors reported that, within the past 5 years, 38% of their fellows remained in academic medicine and 20% remained in academics with significant research focus. We found a statistically significant association between obtaining a master's degree and remaining in academics (r = 0.559; P < 0.008). The survey also revealed statistically significant relationships between scholarly requirements (grant proposals, peer-reviewed original research projects) and the percent of fellows who graduated and remained in academics. This survey offers some insights that may be useful to fellowship program directors. In particular, advanced education in research and maximizing scholarly activities might be associated with increased academic retention among fellowship trainees.
Mission Possible: The Sea Semester Program.
ERIC Educational Resources Information Center
Saveland, Robert N.; Stoner, Allan W.
1985-01-01
The "Research Vessel Westward" provides a sea-going research laboratory for students from various disciplines to learn oceanography concepts and research techniques while earning university credit. Descriptions of equipment, organizational structure, and student research responsibilities are presented. (DH)
NASA Technical Reports Server (NTRS)
Thomas, Leann; Utley, Dawn
2006-01-01
While there has been extensive research in defining project organizational structures for traditional projects, little research exists to support high technology government project s organizational structure definition. High-Technology Government projects differ from traditional projects in that they are non-profit, span across Government-Industry organizations, typically require significant integration effort, and are strongly susceptible to a volatile external environment. Systems Integration implementation has been identified as a major contributor to both project success and failure. The literature research bridges program management organizational planning, systems integration, organizational theory, and independent project reports, in order to assess Systems Integration (SI) organizational structure selection for improving the high-technology government project s probability of success. This paper will describe the methodology used to 1) Identify and assess SI organizational structures and their success rate, and 2) Identify key factors to be used in the selection of these SI organizational structures during the acquisition strategy process.
Multidisciplinary research in space sciences and engineering with emphasis on theoretical chemistry
NASA Technical Reports Server (NTRS)
Hirschfelder, J. O.; Curtiss, C. F.
1974-01-01
A broad program is reported of research in theoretical chemistry, particularly in molecular quantum and statistical mechanics, directed toward determination of the physical and chemical properties of materials, relation of these macroscopic properties to properties of individual molecules, and determination of the structure and properties of the individual molecules. Abstracts are presented for each research project conducted during the course of the program.
ERIC Educational Resources Information Center
Au, Kathryn Hu-pei
The purpose of this paper is to outline a set of principles to guide research on the early education of Hawaiian children. The paper discusses what R. Tharp and R. Gallimore term a "climax program," or combination of program elements which produces a desired social outcome. How research efforts can be structured to contribute to the…
A Model for a Single Unmanned Aircraft Systems (UAS) Program Office Managing Joint ISR Capabilities
2017-10-01
reduction in manning from the multiple program office structure to the new single program management model. Additional information regarding this...OFFICE MANAGING JOINT ISR CAPABILITIES by Angela E. Burris A Research Report Submitted to the Faculty In Partial Fulfillment of...research paper is to answer how a single management office could provide greater agility for unmanned aircraft systems (UAS); supporting Joint concepts
Cancer Genetics and Signaling | Center for Cancer Research
The Cancer, Genetics, and Signaling (CGS) Group at the National Cancer Institute at Frederick offers a competitive postdoctoral training and mentoring program focusing on molecular and genetic aspects of cancer. The CGS Fellows Program is designed to attract and train exceptional postdoctoral fellows interested in pursuing independent research career tracks. CGS Fellows participate in a structured mentoring program designed for scientific and career development and transition to independent positions.
Microgravity Science and Applications Program Tasks, 1984 Revision
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1985-01-01
This report is a compilation of the active research tasks as of the end of the fiscal year 1984 of the Microgravity Science and Applications Program, NASA-Office of Space Science and Applications, involving several NASA centers and other organizations. The purpose of the document is to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The report is structured to include an introductory description of the program, strategy and overall goal; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications. The tasks are grouped into six categories: (1) electronic materials; (2) solidification of metals, alloys, and composites; (3) fluid dynamics and transports; (4) biotechnology; (5) glasses and ceramics; and (6) combustion.
Band Structure and Optical Gain of InGaAs/GaAsBi Type-II Quantum Wells Modeled by the k · p Model
NASA Astrophysics Data System (ADS)
Wang, Chang; Pan, Wenwu; Kolokolov, Konstantin; Wang, Shumin
2018-05-01
Not Available Supported by the National Basic Research Program of China under Grant No 2014CB643902, the Key Program of Natural Science Foundation of China under Grant No 61334004, the National Natural Science Foundation of China under Grant No 61404152, and the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA5-1, the Foundation of National Laboratory for Infrared Physics, the Key Research Program of the Chinese Academy of Sciences under Grant No KGZD-EW-804, and the Creative Research Group Project of Natural Science Foundation of China under Grant No 61321492.
Leadership Development in Higher Education Programs
ERIC Educational Resources Information Center
Eddy, Pamela; Rao, Michael
2009-01-01
A doctorate is increasingly a credential for community college leaders, yet much remains unknown about the structure of doctoral programs and links between course requirements and practitioner needs. Programs awarding an Ed.D. more often focus on skill-oriented coursework, whereas Ph.D. programs have greater emphasis on research. This study…
Examining the Role of Multicultural Competence in Leadership Program Design
ERIC Educational Resources Information Center
Wilson, Amy B.
2015-01-01
Research examining the multicultural competence of leadership educators across a variety of institutions demonstrated variance based on leadership program structure, program elements, and the ways in which diversity was addressed in the program. The Multicultural Competence in Student Affairs-Preliminary 2 (MCSA-P2) scale was used to measure…
NASA Technical Reports Server (NTRS)
Heldenfels, R. R.
1982-01-01
Research on structural problems associated with aerodynamic heating, conducted by the National Advisory Committee for Aeronautics (NACA) during its last decade are described. The text of a special presentation given at the NASA Symposium on Computational Aspects of Heat Transfer in Structure is presented. Some early thermostructural research activities using charts is also discussed. The prinicipal message of the paper is that although vehicle oriented research programs speed development of new technology for specific missions, too much effort may be expended on developing technology which is never used because a vehicle is never built. A healthy research program must provide freedom to explore new ideas that have no obvious applications at the time to generate the technology that makes important, unanticipated flight or vehicle opportunities possible.
ERIC Educational Resources Information Center
Coyne, Michael D.; Zipoli, Richard P., Jr.; Chard, David J.; Faggella-Luby, Michael; Ruby, Maureen; Santoro, Lana E.; Baker, Scott
2009-01-01
This article examines the role of direct instruction in promoting listening and reading comprehension. Instructional examples from 2 programs of intervention research focused on improving comprehension; the Story Read Aloud Program and the Embedded Story Structure Routine are used to illustrate principles of direct instruction. An analysis of…
DOT National Transportation Integrated Search
2016-09-01
To support the peer exchange focus on improving the visibility and impact of the research : program, the agenda (Appendix A) was structured around five key topic areas presented : below. The NHDOT planning team developed amplifying questions for each...
ERIC Educational Resources Information Center
Hatch, Deryl K.; Bohlig, E. Michael
2016-01-01
The definition and description of student success programs in the literature (e.g., orientation, first-year seminars, learning communities, etc.) suggest underlying programmatic similarities. Yet researchers to date typically depend on ambiguous labels to delimit studies, resulting in loosely related but separate research lines and few…
An Overview of SBIR Phase 2 Materials Structures for Extreme Environments
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2015-01-01
Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.
NASA Technical Reports Server (NTRS)
Rummel, John D.; Harper, Lynn; Andersen, Dale
1992-01-01
The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life in the universe. To do this, the Exobiology Program seeks to provide a critical framework and some key research to allow NASA to bear the combined talents and capabilities of the agency and the scientific community, and the unique opportunities afforded by space exploration. To provide structure and direction to the quest for answers, the Exobiology Program has instituted a comprehensive research program divided into four elements which are being implemented at several of NASA's research centers and in the university community. These program elements correspond to the four major epochs in the evolution of living systems: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life. The overall research program is designed to trace the pathways leading from the origin of the universe through the major epochs in the story of life.
Feasibility of modern airships - Preliminary assessment
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1977-01-01
Attention is given to the NASA program, Feasibility Study of Modern Airships, initiated to investigate potential research and technology programs associated with airship development. A historical survey of the program is presented, including the development of past airship concepts, aerodynamical and design improvements, structure and material concepts, and research in controls, avionics, instrumentation, flight operations, and ground handling. A mission analysis was carried out which considered passenger and cargo transportation, heavy-lift, short-haul applications, surveillance missions, and the transportation of natural gas. A vehicle parametric analysis examined the entire range of airship concepts, discussing both conventional airships and hybrids. Various design options were evaluated, such as choice of structural materials, use of boundary-layer control, and choice of lifting gas.
Saudi Arabia's experience in solar energy applications
NASA Astrophysics Data System (ADS)
Huraib, Fahad S.
The progress in solar energy research in Saudi Arabia is discussed with emphasis on the efforts of a government research entity - King Adbulaziz City for Science and Technology (KACST). Three programs currently underway at KACST are considered: the continuation of activities initiated under the Solar Energy Research American/Saudi (SOLERAS) program, a Saudi/German program, and projects developed and conducted completely by KACST. The objectives, management structure, and program organization of SOLEARS are outlined, and attention is focused on urban, rural/agricultural, and industrial applications as well as resource development activities and accomplishments. Solar-hydrogen projects pursued together with Germany are reviewed, and their objectives, program management, and technical plans are covered. Domestic programs dealing with photovoltaic-powered lightning and hot-water systems are summarized.
NASA Technical Reports Server (NTRS)
Abel, Irving
1997-01-01
An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.
Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Richard P.; Gold, Steven H.
2016-07-01
The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements inmore » the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.« less
Solid earth science in the 1990s. Volume 1: Program plan
NASA Technical Reports Server (NTRS)
1991-01-01
This is volume one of a three volume series. A plan for solid earth science research for the next decade is outlined. The following topics are addressed: scientific requirements; status of current research; major new emphasis in the 1990's; interagency and international participation; and the program implementation plan. The following fields are represented: plate motion and deformation; lithospheric structure and evolution; volcanology; land surface (processes of change); earth structure and dynamics; earth rotation and reference frames; and geopotential fields. Other topics of discussion include remote sensing, space missions, and space techniques.
High Speed Research Program Sonic Fatigue
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul
2005-01-01
The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, G.; Bair, K.; Ross, J.
1994-03-01
The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listingmore » of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.« less
Pritchard, Shane A; Blackstock, Felicity C; Keating, Jennifer L; Nestel, Debra
2017-11-01
The inclusion of simulated patients (SPs) in health professional education is growing internationally. However, there is limited evidence for best practice in SP methodology. This study investigated how experienced SP educators support SPs in providing SP-based education for health professional students. Experienced SP educators were identified via relevant professional associations, peer-reviewed publications, and peer referral. Semi-structured individual interviews were conducted via telephone. Data were analyzed independently by three researchers using principles of inductive thematic analysis. Four themes were identified that represent the key structural components of SP programs considered by educators seeking to optimize learning for health professional students in SP programs: managing SPs by operationalizing an effective program, selecting SPs by rigorously screening for suitability, preparing SPs by educating for a specific scenario, and directing SPs by leading safe and meaningful interactions. Within these components, subthemes were described, with considerable variation in approaches. Key structural components to SP programs were consistently described by experienced SP educators who operationalize them. A framework has been proposed to assist educators in designing high-quality SP programs that support SPs and learners. Future research is required to evaluate and refine this framework and other evidence-based resources for SP educators.
ERIC Educational Resources Information Center
Bender, Lloyd D.; And Others
Effective rural development planning depends on facts and analysis based, not on rural averages, but on the diverse social and economic structure of rural America. Programs tailored to particular types of rural economies may be more effective than generalized programs. Because of their unique characteristics, government policies and economic…
ERIC Educational Resources Information Center
Gay, Jennifer L.; Trevarthen, Grace
2013-01-01
Less than half of the adults in the United States meet national guidelines for physical activity. Physical activity programs can induce short-term improvements in physical activity. To develop effective interventions, researchers and practitioners should consider the timing, location, and social structure patterns of participants. Using a pretest,…
An institutional review board-based clinical research quality assurance program.
Lad, Pramod M; Dahl, Rebecca
2013-01-01
Despite the acknowledged importance of quality assurance in the clinical research process, the problem of how such a program should be implemented at the level of an academic teaching hospital or a similar institution has not been addressed in the literature. Despite the fact that quality assurance is expected in programs which certify and accredit Institutional Review Boards (IRBs), very little is known about the role of the IRB in programs of clinical research quality assurance. In this article we consider the definition of clinical research quality assurance, and describe a program designed to achieve it. The key elements of such a program are education at the site level, which has both mandatory and voluntary components, and an auditing and monitoring program, which reinforces the education on quality assurance. The role of the IRB in achieving the program goals and the organizational placement of the quality assurance program within the IRB structure and function are important items of discussion.
An approximate methods approach to probabilistic structural analysis
NASA Technical Reports Server (NTRS)
Mcclung, R. C.; Millwater, H. R.; Wu, Y.-T.; Thacker, B. H.; Burnside, O. H.
1989-01-01
A major research and technology program in Probabilistic Structural Analysis Methods (PSAM) is currently being sponsored by the NASA Lewis Research Center with Southwest Research Institute as the prime contractor. This program is motivated by the need to accurately predict structural response in an environment where the loadings, the material properties, and even the structure may be considered random. The heart of PSAM is a software package which combines advanced structural analysis codes with a fast probability integration (FPI) algorithm for the efficient calculation of stochastic structural response. The basic idea of PAAM is simple: make an approximate calculation of system response, including calculation of the associated probabilities, with minimal computation time and cost, based on a simplified representation of the geometry, loads, and material. The deterministic solution resulting should give a reasonable and realistic description of performance-limiting system responses, although some error will be inevitable. If the simple model has correctly captured the basic mechanics of the system, however, including the proper functional dependence of stress, frequency, etc. on design parameters, then the response sensitivities calculated may be of significantly higher accuracy.
Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes
NASA Technical Reports Server (NTRS)
Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.
1996-01-01
Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.
1994-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. Projects are being conducted by graduate students and faculty advisors in the Department of Materials Science and Engineering, as well as in the Department of Civil Engineering and Applied Mechanics, at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. Here, we report on progress achieved between January 1 and June 30, 1994. These results were presented at the Fifth Annual NASA LA2ST Grant Review Meeting held at the Langley Research Center in July of 1994. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, lightweight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies.
Development problem analysis of correlation leak detector’s software
NASA Astrophysics Data System (ADS)
Faerman, V. A.; Avramchuk, V. S.; Marukyan, V. M.
2018-05-01
In the article, the practical application and the structure of the correlation leak detectors’ software is studied and the task of its designing is analyzed. In the first part of the research paper, the expediency of the facilities development of correlation leak detectors for the following operating efficiency of public utilities exploitation is shown. The analysis of the functional structure of correlation leak detectors is conducted and its program software tasks are defined. In the second part of the research paper some development steps of the software package – requirement forming, program structure definition and software concept creation – are examined in the context of the usage experience of the hardware-software prototype of correlation leak detector.
Benefits assessment of advanced public transportation systems (APTS)
DOT National Transportation Integrated Search
1996-07-01
This report documents work performed under FTA's Advance Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techno...
Survey of NASA research on crash dynamics
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Carden, H. D.; Hayduk, R. J.
1984-01-01
Ten years of structural crash dynamics research activities conducted on general aviation aircraft by the National Aeronautics and Space Administration (NASA) are described. Thirty-two full-scale crash tests were performed at Langley Research Center, and pertinent data on airframe and seat behavior were obtained. Concurrent with the experimental program, analytical methods were developed to help predict structural behavior during impact. The effects of flight parameters at impact on cabin deceleration pulses at the seat/occupant interface, experimental and analytical correlation of data on load-limiting subfloor and seat configurations, airplane section test results for computer modeling validation, and data from emergency-locator-transmitter (ELT) investigations to determine probable cause of false alarms and nonactivations are assessed. Computer programs which provide designers with analytical methods for predicting accelerations, velocities, and displacements of collapsing structures are also discussed.
NASTRAN users' experience of Avco Aerostructures Division
NASA Technical Reports Server (NTRS)
Blackburn, C. L.; Wilhelm, C. A.
1973-01-01
The NASTRAN experiences of a major structural design and fabrication subcontractor that has less engineering personnel and computer facilities than those available to large prime contractors are discussed. Efforts to obtain sufficient computer capacity and the development and implementation of auxiliary programs to reduce manpower requirements are described. Applications of the NASTRAN program for training users, checking out auxiliary programs, performing in-house research and development, and structurally analyzing an Avco designed and manufactured missile case are presented.
Stiers, William; Barisa, Mark; Stucky, Kirk; Pawlowski, Carey; Van Tubbergen, Marie; Turner, Aaron P; Hibbard, Mary; Caplan, Bruce
2015-05-01
This study describes the results of a multidisciplinary conference (the Baltimore Conference) that met to develop consensus guidelines for competency specification and measurement in postdoctoral training in rehabilitation psychology. Forty-six conference participants were chosen to include representatives of rehabilitation psychology training and practice communities, representatives of psychology accreditation and certification bodies, persons involved in medical education practice and research, and consumers of training programs (students). Consensus education and training guidelines were developed that specify the key competencies in rehabilitation psychology postdoctoral training, and structured observation checklists were developed for their measurement. This study continues the development of more than 50 years of thinking about education and training in rehabilitation psychology and builds on the existing work to further advance the development of guidelines in this area. The conference developed aspirational guidelines for competency specification and measurement in rehabilitation psychology postdoctoral training (i.e., for studying the outcomes of these training programs). Structured observation of trainee competencies allows examination of actual training outcomes in relation to intended outcomes and provides a methodology for studying how program outcomes are related to program structures and processes so that program improvement can occur. Best practices in applying program evaluation research methods to the study of professional training programs are discussed. (c) 2015 APA, all rights reserved).
FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samara, G.A.
1997-05-01
The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfacesmore » for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.« less
Reid Ponte, Patricia; Hayman, Laura L; Berry, Donna L; Cooley, Mary E
2015-01-01
The University of Massachusetts Boston and Dana-Farber/Harvard Cancer Center joined forces in 2009 to create a Postdoctoral Nursing Research Fellowship in Cancer and Health Disparities. In combining the resources of a large university and a research-intensive service institution, the postdoctoral program provides a new model for preparing nurse scientists to conduct independent research that advances nursing knowledge and interdisciplinary understanding of complex health issues. The multifaceted program consists of educational programming, research training, and career planning components. Additionally, each fellow is assigned a nurse scientist mentor and interdisciplinary co-mentor. The mentors support the fellows with scholarly activities and research training and help the fellows craft individualized career plans, including proposals for postfellowship career development research. In this article, the postdoctoral program leaders describe the program structure, strategies used to recruit minority and nonminority candidates, and data describing program outcomes and share lessons learned and recommendations for organizations that may be interested in establishing similar postdoctoral fellowships at their institutions. Copyright © 2015 Elsevier Inc. All rights reserved.
Gone, Joseph P; Blumstein, Katherine P; Dominic, David; Fox, Nickole; Jacobs, Joan; Lynn, Rebecca S; Martinez, Michelle; Tuomi, Ashley
2017-06-01
Many urban American Indian community members lack access to knowledgeable participation in indigenous spiritual practices. And yet, these sacred traditional activities remain vitally important to their reservation-based kin. In response, our research team partnered with an urban American Indian health center in Detroit for purposes of developing a structured program to facilitate more ready access to participation in indigenous spiritual knowledge and practices centered on the sweat lodge ceremony. Following years of preparation and consultation, we implemented a pilot version of the Urban American Indian Traditional Spirituality Program in the spring of 2016 for 10 urban AI community participants. Drawing on six first-person accounts about this program, we reflect on its success as a function of participant meaningfulness, staff support, mitigated sensitivities, and program structure. We believe that these observations will enable other community psychologists to undertake similar program development in service to innovative and beneficial impacts on behalf of their community partners. © Society for Community Research and Action 2017.
DAST in Flight just after Structural Failure of Right Wing
NASA Technical Reports Server (NTRS)
1980-01-01
Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.
[Program of studies on psychiatric epidemiology in Argentina. General report].
Casullo, M M
1980-12-01
This paper is an outline of a wide program that is currently under development in the large territory of Argentina. The Director of the Program is Dr. Fernando Pagés Larraya; it is supported by the National Council of Scientific Researches (CONICET) and the National Board of Mental Health. The general purpose of the program is to study the prevalence of mental disorders in different ethnographic areas within the country. Epidemiology allows the forecasting of disease occurence. A research work this area may be qualified "effective" if it provides useful data for prevention programs. Therefore, it is necessary that researches and professional responsibles of Mental Health Governmental decissions work together. This rapprochment is being attempted in developing the Argentine research program. It has a cross-cultural approach. It can be called "a way of thinking" as opposed to a precise methodology. A considerable variety of research tools are being used, depending on the specific purposes and the characteristics of the ethnographic areas. One of the main difficulties in choosing a technique for "case-finding" is uncertainty about where to place the "cut-off point" between presence and absence of illness. In this program the Present State Examination (PSE) is used in population surveys of large urban centers. It is a semi-structured interview that has been extensively tested. In small rural communities, the work is done using "key-informants" and applying the snow-ball sample technique. One specific purpose of the research is the study of the modal personality structure in each ethnographic area, formulated in terms of the Holtzman Inkblot Test. The paper shows the relationships between purposes, research tools and responsible professionals. There is hardly time or surplus intellectual energy for polemic and alienation between clinicians and social scientists. Theories, methodologies, research data and prevention programs have not developed harmoniously. We need to carry out research work not divorced from Public Health responsible authorities, in order to avoid that useful data from Epidemiological Studies will not be used in prevention programs.
Designing and implementing an authentic science research program
NASA Astrophysics Data System (ADS)
Rosvally, Harry Edward, Jr.
Science research programs have become a popular elective course in high schools around the country. As the popularity of these programs grows, school districts need a guide by which to implement science research in their own schools. This study sought to provide this information by answering the following questions: (1) What are the most important features in existing research program models? (2) How do schools that have an existing research program define "success"? (3) How do different factors (i.e., budget, professional development, scheduling, recruitment effort, curriculum, and mentors) affect the scope and implementation of a research program? (4) Which features and factors support inclusiveness as a goal for a research program? (5) What kinds of indicators are appropriate for assessing the progress toward an inclusive science research program? After reviewing the literature, six sites with existing research programs were selected for participation in the study. Interviews with teachers and students were conducted during site visits. Interviews with mentors were conducted by telephone. Although the six models in this study were different from one another, there were common characteristics. Students conducted their own review of the literature. Upon completion of the actual research, students published or otherwise communicated their findings to the larger scientific community through regional and national competitions and non-competitive science symposia. This study was also able to identify significant elements that contribute to successful programs. These included: teacher selection; budget requirements; mentor qualities; recruitment and retention practices; and overall structure. As a result of the findings during the research, this study makes recommendations for the successful implementation of a research program.
NASA/NSF Antarctic Science Working Group
NASA Technical Reports Server (NTRS)
Stoklosa, Janis H.
1990-01-01
A collection of viewgraphs on NASA's Life Sciences Biomedical Programs is presented. They show the structure of the Life Sciences Division; the tentative space exploration schedule from the present to 2018; the biomedical programs with their objectives, research elements, and methodological approaches; validation models; proposed Antarctic research as an analog for space exploration; and the Science Working Group's schedule of events.
Education and Capacity Building with Research: A Possible Case for Future Earth
ERIC Educational Resources Information Center
Fukushima, Yasuhiro; Ishimura, Gakushi; Komasinski, Andrew James; Omoto, Reiko; Managi, Shunsuke
2017-01-01
Purpose: This paper aims to suggest the structure of a platform for education and capacity building for Future Earth, which is an intensive program open to the eight stakeholders and which utilizes existing research programs/facilities associated with Future Earth. An intention of this paper is to facilitate a policy brief for projects associated…
Student Success Skills: An Evidence-Based Cognitive and Social Change Theory for Student Achievement
ERIC Educational Resources Information Center
Lemberger, Matthew E.; Brigman, Greg; Webb, Linda; Moore, Molly M.
2012-01-01
An overview of the Student Success Skills program is offered, including descriptions of the curricular structure, extant research support related to SSS effectiveness for academic achievement and improved school behaviors, and a theory of change for student development. Recent research has demonstrated the value of the SSS program as it connects…
J.E. Winandy; P.K. Lebow; J.F. Murphy
2002-01-01
Research programs throughout North America are increasingly focusing on understanding and defining the salient issues of wood durability and maintaining and extending the serviceability of existing wood structures. This report presents the findings and implications of a 10-year research program, carried out at the USDA Forest Service, Forest Products Laboratory, to...
Advanced public transportation system deployment in the United States
DOT National Transportation Integrated Search
1999-01-01
This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...
Advanced public transportation systems : the state of the art update 2000
DOT National Transportation Integrated Search
2000-12-01
This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, communication, information, computer...
LTA structures and materials technology
NASA Technical Reports Server (NTRS)
Mayer, N. J.
1975-01-01
The state-of-the-art concerning structures and materials technology is reviewed. It is shown that many present materials developments resulting from balloon and aircraft research programs can be applied to new concepts in LTA vehicles. Both buoyant and semi-buoyant vehicles utilize similar approaches to solving structural problems and could involve pressurized non-rigid and unpressurized rigid structures. System designs common to both and vital to structural integrity include much of the past technology as well. Further research is needed in determination of structural loads, especially in future design concepts.
Recent advances in active noise and vibration control at NASA Langley Research Center
NASA Astrophysics Data System (ADS)
Gibbs, Gary P.; Cabell, Randolph H.; Palumbo, Daniel L.; Silcox, Richard J.; Turner, Travis L.
2002-11-01
Over the past 15 years NASA has investigated the use of active control technology for aircraft interior noise. More recently this work has been supported through the Advanced Subsonic Technology Noise Reduction Program (1994-2001), High Speed Research Program (1994-1999), and through the Quiet Aircraft Technology Program (2000-present). The interior environment is recognized as an important element in flight safety, crew communications and fatigue, as well as passenger comfort. This presentation will overview research in active noise and vibration control relating to interior noise being investigated by NASA. The research to be presented includes: active control of aircraft fuselage sidewall transmission due to turbulent boundary layer or jet noise excitation, active control of interior tones due to propeller excitation of aircraft structures, and adaptive stiffening of structures for noise, vibration, and fatigue control. Work on actuator technology ranging from piezoelectrics, shape memory actuators, and fluidic actuators will be described including applications. Control system technology will be included that is experimentally based, real-time, and adaptive.
Ponte, Patricia Reid; Hayman, Laura L; Berry, Donna L; Cooley, Mary E
2016-01-01
The University of Massachusetts Boston and Dana-Farber/Harvard Cancer Center joined forces in 2009 to create a Postdoctoral Nursing Research Fellowship in Cancer and Health Disparities. In combining the resources of a large university and a research-intensive service institution, the postdoctoral program provides a new model for preparing nurse scientists to conduct independent research that advances nursing knowledge and interdisciplinary understanding of complex health issues. The multi-faceted program consists of educational programming, research training, and career planning components. Additionally, each fellow is assigned a nurse scientist mentor and interdisciplinary co-mentor. The mentors support the fellows with scholarly activities and research training and help the fellows craft individualized career plans, including proposals for post-fellowship career development research. In this article, the postdoctoral program leaders describe the program structure, strategies used to recruit minority and non-minority candidates, and data describing program outcomes, and share lessons learned and recommendations for organizations that may be interested in establishing similar postdoctoral fellowships at their institutions. PMID:25771193
NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Scully, John R.; Stoner, Glenn E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1993-01-01
The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program continues a high level of activity. Progress achieved between 1 Jan. and 30 Jun. 1993 is reported. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and thermal gradient structures in collaboration with NASA-Langley researchers. The following projects are addressed: environmental fatigue of Al-Li-Cu alloys; mechanisms of localized corrosion and environmental fracture in Al-Cu-Li-Mg-Ag alloy X2095 and compositional variations; the effect of zinc additions on the precipitation and stress corrosion cracking behavior of alloy 8090; hydrogen interactions with Al-Li-Cu alloy 2090 and model alloys; metastable pitting of aluminum alloys; cryogenic fracture toughness of Al-Cu-Li + In alloys; the fracture toughness of Weldalite (TM); elevated temperature cracking of advanced I/M aluminum alloys; response of Ti-1100/SCS-6 composites to thermal exposure; superplastic forming of Weldalite (TM); research to incorporate environmental effects into fracture mechanics fatigue life prediction codes such as NASA FLAGRO; and thermoviscoplastic behavior.
DOT National Transportation Integrated Search
2011-10-01
The objectives of the peer exchange were to explore and identify: : Effective research advisory council structures : Strategic research topic/focus areas : Effective research project selection practices : Effective strategies to embed...
NASA Technical Reports Server (NTRS)
Brooks, W. A., Jr.; Mathauser, E. E.; Pride, R. A.
1972-01-01
The use of composite materials to selectively reinforce metallic structures provides a low-cost way to reduce weight and a means of minimizing the risks usually associated with the introduction of new materials. An overview is presented of the NASA Langley Research Center programs to identify the advantages and to develop the potential of the selective reinforcement approach to the use of composites. These programs have shown that selective reinforcement provides excellent strength and stiffness improvements to metallic structures. Significant weight savings can be obtained in a cost effective manner. Flight service programs which have been initiated to validate further the merits of selective reinforcement are described.
ERIC Educational Resources Information Center
Wangila, M. J.; Martin, W.; Ronald, M.
2015-01-01
This study examined the effect of Programmed Instruction on students' attitude towards Structure of the Atom and the Periodic Table (SAPT) among mixed (co-educational) secondary schools of Butere district, Kakamega county, Kenya. The quasi-experimental research design was adopted, using the nonrandomized Solomon four-group as a model. The sample…
NASA Technical Reports Server (NTRS)
1980-01-01
A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.
NASA-UVA light aerospace alloy and structures technology program
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.
1990-01-01
The objective of the Light Aerospace Alloy and Structures Technology Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. Individual technical objectives are established for each project. Efforts aim to produce basic understanding of material behavior, monolithic and composite alloys, processing methods, solid and mechanics analyses, measurement advances, and a pool of educated graduate students. Progress is reported for 11 areas of study.
Cone-beam micro-CT system based on LabVIEW software.
Ionita, Ciprian N; Hoffmann, Keneth R; Bednarek, Daniel R; Chityala, Ravishankar; Rudin, Stephen
2008-09-01
Construction of a cone-beam computed tomography (CBCT) system for laboratory research usually requires integration of different software and hardware components. As a result, building and operating such a complex system require the expertise of researchers with significantly different backgrounds. Additionally, writing flexible code to control the hardware components of a CBCT system combined with designing a friendly graphical user interface (GUI) can be cumbersome and time consuming. An intuitive and flexible program structure, as well as the program GUI for CBCT acquisition, is presented in this note. The program was developed in National Instrument's Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical language and is designed to control a custom-built CBCT system but has been also used in a standard angiographic suite. The hardware components are commercially available to researchers and are in general provided with software drivers which are LabVIEW compatible. The program structure was designed as a sequential chain. Each step in the chain takes care of one or two hardware commands at a time; the execution of the sequence can be modified according to the CBCT system design. We have scanned and reconstructed over 200 specimens using this interface and present three examples which cover different areas of interest encountered in laboratory research. The resulting 3D data are rendered using a commercial workstation. The program described in this paper is available for use or improvement by other researchers.
Research and development activities in unified control-structure modeling and design
NASA Technical Reports Server (NTRS)
Nayak, A. P.
1985-01-01
Results of work to develop a unified control/structures modeling and design capability for large space structures modeling are presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. Parallel research done by other researchers is reviewed. The development of a methodology for global design optimization is recommended as a long-term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization.
ERIC Educational Resources Information Center
Brue, Krystal L.; Brue, Shawn A.
2016-01-01
Women's leadership training programs provide organizations opportunities to value women leaders as organizational resources. This qualitative research utilized phenomenological methodology to examine lived experiences of seven alumni of a women's-only leadership program. We conducted semi-structured interviews to clarify what learning elements…
FY 1978 aeronautics and space technology program summary
NASA Technical Reports Server (NTRS)
1977-01-01
Highlights of the aeronautics program include research on aircraft energy efficiency, supersonic cruise aircraft, vertical takeoff and landing aircraft, short haul/short takeoff and landing aircraft, and general aviation aircraft. The space technology program includes work on space structures, propulsion systems, power systems, materials, and electronics.
A survey of experiments and experimental facilities for control of flexible structures
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.; Juang, Jer-Nan; Klose, Gerhard J.
1989-01-01
This paper presents a survey of U.S. ground experiments and facilities dedicated to the study of active control of flexible structures. The facilities will be briefly described in terms of capability, configuration, size and instrumentation. Topics on the experiments include vibration suppression, slewing and system identification. Future research directions, particularly of the NASA Langley Research Center's Controls/Structures Interaction (CSI) ground test program, will be discussed.
Cost-efficient manufacturing of composite structures
NASA Technical Reports Server (NTRS)
Freeman, W. Tom; Davis, John G.; Johnston, Norman J.
1991-01-01
The Advanced Composites Technology (ACT) program is seeking research breakthroughs that will allow structures made of graphite epoxy materials to replace metals in the wings and fuselages of future aircrafts. NASA's goals are to reduce acquisition cost by 20 to 25 percent, structural weight for a resized aircraft by 40 to 50 percent, and the number of parts by half compared to current production aluminum aircraft. The innovative structural concepts, materials, and fabrication techniques emerging from the ACT program are described, and the relationship between aerospace developments and industrial, commercial, and sporting goods applications are discussed.
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1990-01-01
Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
Advanced public transportation systems : the state of the art
DOT National Transportation Integrated Search
1991-03-01
This report documents one of the early initiatives of UMTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communi...
Advanced public transportation systems deployment in the United States : year 2002 update
DOT National Transportation Integrated Search
2003-06-01
This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...
Advanced public transportation systems deployment in the United States : year 2000 update
DOT National Transportation Integrated Search
2002-05-01
This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...
Advanced public transportation systems deployment in the United States : year 2004 update
DOT National Transportation Integrated Search
2005-06-01
This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...
Advanced public transportation systems : the state of the art update of 1998
DOT National Transportation Integrated Search
1998-01-01
This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, computer, and communica...
Advanced Public Transportation Systems Deployment in the United States, Year 2000, Update
DOT National Transportation Integrated Search
2002-05-01
This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...
DOT National Transportation Integrated Search
1996-08-01
The report documents work performed under the FTA Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication tech...
Advanced Public Transportation Systems Deployment in the United States. Update, January 1999
DOT National Transportation Integrated Search
1999-01-01
This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...
Advanced public transportation systems deployment in the United States : update, January 1999
DOT National Transportation Integrated Search
1999-01-01
This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advances navigation, information, and communication techn...
Increasing chronic disease research capacity in Guatemala through a mentoring program.
Barnoya, Joaquin; Monzon, Jose C; Colditz, Graham A
2013-09-12
The Chronic Disease Research Fellowship Program (RFP) aims to build the research capacity of recent medical graduates to support the development of chronic disease control strategies. Guatemala is undergoing an epidemiologic transition. However, given the way universities and the health care system are structured, it lacks an environment that fosters research careers and generates the required knowledge to implement sound public health policies and clinical strategies. The RFP was implemented at the Cardiovascular Unit of Guatemala. This 4-year Program recruited two one-year fellows and provided funding to define a research topic, write a protocol and implement the research. Strong emphasis is placed on developing skills in knowledge translation and exchange to bridge the "know-do" gap. Close mentoring relationships between the Principal Investigator and former and current fellows are fostered through the Program. The mentoring Program has generated strategic data to support the implementation of sound chronic disease control strategies, mainly related to tobacco control. Results have been presented nationally and internationally. Research training has included principles of biostatistics and epidemiology, and a journal club. The Program is increasingly generating interest among medical graduates to pursue further research training abroad and is building local research capacity. Fellows and research assistants have created a research network in Guatemala and abroad. The main obstacle the Program faces is ensuring long-term sustainability. A mentoring program can lead to an increase in research interest and capacity in a low-income country with little research infrastructure.
A New Direction for the NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Stinson, Thomas N. (Technical Monitor)
2002-01-01
In 2001 NASA created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. The Enterprise has recently completed an assessment of the science prioritization from which the future materials science ISS type payloads will be implemented. Science accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight and ground investigator program. These investigators will use the various capabilities of the ISS lab facilities to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on radiation shielding, nanomaterials, propulsion materials, and biomaterials type research. The Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for the flight research environment. A summary will explain the concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program.
A New Direction for NASA Materials Science Research Using the International Space Station
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)
2001-01-01
NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.
Development of a Digital Image Measurement System
NASA Technical Reports Server (NTRS)
2004-01-01
An unexpected tragedy took place on April 28, 1988, when the roof of an Aloha Airlines 737 aircraft ripped open at 24,000 feet, killing a flight attendant and injuring eight people. The in-flight structural failure of Aloha Flight 243 s 19-year-old aircraft prompted NASA Langley Research Center to join with colleagues at the U.S. Federal Aviation Administration and the U.S. Air Force to initiate the Nation's first Aging Aircraft Research program. One of the program's essential goals was to develop reliable, predictive methods for assessing the residual strength of aging aerospace structures.
ERIC Educational Resources Information Center
Follmer, D. Jake; Gomez, Esther; Zappe, Sarah; Kumar, Manish
2017-01-01
This study examined how a collaborative research environment in a structured research experience impacts undergraduate student outcomes. Students demonstrated significant gains in research skills and provided positive appraisals of their collaborative experiences. Emphasis on collaboration among students in an undergraduate research program…
ERIC Educational Resources Information Center
Gahungu, Athanase; Freeman, Karen A.
2015-01-01
Evaluation of an international, grant-funded program must communicate the program's value to a variety of stakeholders: the funder, the agency operating the program and its community, and the citizens of the country where the program is implemented. An intercultural research team can achieve that goal only through a thought-out strategy. This…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gary E.; Diefenderfer, Heida L.; Ebberts, Blaine D.
The purpose ofthis document is to describe research, monitoring, and evaluation (RME) for the Federal Columbia River Estuary Program. The intent of this RME effort is to provide data and information to evaluate progress toward meeting program goals and objectives and support decision-making in the Estuary Program. The goal of the Estuary Program is to understand, conserve, and restore the estuary ecosystem to improve the performance of listed salmonid populations. The Estuary Program has five general objectives, designed to fulfill the program goal, as follows. 1. Understand the primary stressors affecting ecosystem controlling factors, such as ocean conditions and invasivemore » species. 2. Conserve and restore factors controlling ecosystem structures and processes, such as hydrodynamics and water quality. 3. Increase the quantity and quality of ecosystem structures, i.e., habitats, juvenile salmonids use during migration through the estuary. 4. Maintain the food web to benefit salmonid performance. 5. Improve salmonid performance in terms of life history diversity, foraging success, growth, and survival. The goal of estuary RME is to provide pertinent and timely research and monitoring information to planners, implementers, and managers of the Estuary Program. In conclusion, the estuary RME effort is designed to meet the research and monitoring needs of the estuary Program using an adaptive management process. Estuary RME's success and usefulness will depend on the actual conduct of adaptive management, as embodied in the objectives, implrementation, data, reporting, and synthesis, evaluation, and decision-making described herein.« less
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1997-01-01
A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.
NASA Technical Reports Server (NTRS)
1989-01-01
The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.
A novel approach in formulation of special transition elements: Mesh interface elements
NASA Technical Reports Server (NTRS)
Sarigul, Nesrin
1991-01-01
The objective of this research program is in the development of more accurate and efficient methods for solution of singular problems encountered in various branches of mechanics. The research program can be categorized under three levels. The first two levels involve the formulation of a new class of elements called 'mesh interface elements' (MIE) to connect meshes of traditional elements either in three dimensions or in three and two dimensions. The finite element formulations are based on boolean sum and blending operators. MEI are being formulated and tested in this research to account for the steep gradients encountered in aircraft and space structure applications. At present, the heat transfer and structural analysis problems are being formulated from uncoupled theory point of view. The status report: (1) summarizes formulation for heat transfer and structural analysis; (2) explains formulation of MEI; (3) examines computational efficiency; and (4) shows verification examples.
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Peterson, Lee D.; Hachkowski, M. Roman; Hinkle, Jason D.; Hardaway, Lisa R.
1998-01-01
The present paper summarizes results from an ongoing research program conducted jointly by the University of Colorado and NASA Langley Research Center since 1994. This program has resulted in general guidelines for the design of high-precision deployment mechanisms, and tests of prototype deployable structures incorporating these mechanisms have shown microdynamically stable behavior (i.e., dimensional stability to parts per million). These advancements have resulted from the identification of numerous heretofore unknown microdynamic and micromechanical response phenomena, and the development of new test techniques and instrumentation systems to interrogate these phenomena. In addition, recent tests have begun to interrogate nanomechanical response of materials and joints and have been used to develop an understanding of nonlinear nanodynamic behavior in microdynamically stable structures. The ultimate goal of these efforts is to enable nano-precision active control of micro-precision deployable structures (i.e., active control to a resolution of parts per billion).
The Structure of the New York City School System: Research Problems and Research Agenda.
ERIC Educational Resources Information Center
Hanushek, Eric A.; Hochman, Harold
Current dissatisfaction with operations of the New York City school system calls for policy proposals based on a better understanding of the system, rather than on economic issues. Any policy proposals aimed at reform must describe the goals of suggested programs and indicate how they relate to the goals of other programs. An evaluation of student…
Mathemagenic Activities Program: [Reports on Cognitive/Language Development].
ERIC Educational Resources Information Center
Smock, Charles D., Ed.
This set of 13 research reports, bulletins and papers is a product of the Mathemagenic Activities Program (MAP) for early childhood education of the University of Georgia Follow Through Program. Based on Piagetian theory, the MAP provides sequentially structured sets of curriculum materials and processes that are designed to continually challenge…
Evaluation of Children's After-School Programs in Taiwan: FAHP Approach
ERIC Educational Resources Information Center
Lee, Amy H. I.; Yang, Chih-Neng; Lin, Chun-Yu
2012-01-01
The need of after-school programs has become urgent for school-age children in many industrialized countries due to social structure changes. This research develops a hierarchical framework to evaluate after-school programs from two distinct aspects--service quality from parents' perspectives and marketing strategy from operators'…
DAST Mated to B-52 on Ramp - Close-up
NASA Technical Reports Server (NTRS)
1979-01-01
Technicians mount a BQM-43 Firebee II drone on the wing pylon of NASA's B-52B launch aircraft. The drone was test flown as part of the Drones for Aerodynamic and Structural Testing (DAST) program. Research flights of drones with modified wings for the DAST program were conducted from 1977 to 1983. After the initial flights of Firebee II 72-1564, it was fitted with the Instrumented Standard Wing (also called the 'Blue Streak' wing). The first free flight attempt on March 7, 1979, was aborted before launch due to mechanical problems with the HH-53 recovery helicopter. The next attempt, on March 9, 1979, was successful. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.
Composite structural materials
NASA Technical Reports Server (NTRS)
Loewy, R.; Wiberley, S. E.
1986-01-01
Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.
Research Associate | Center for Cancer Research
PROGRAM DESCRIPTION The Basic Science Program (BSP) pursues independent, multidisciplinary research in basic and applied molecular biology, immunology, retrovirology, cancer biology, and human genetics. Research efforts and support are an integral part of the Center for Cancer Research (CCR) at the Frederick National Laboratory for Cancer Research (FNLCR). KEY ROLES/RESPONSIBILITIES - Research Associate III Dr. Zbigniew Dauter is the head investigator of the Synchrotron Radiation Research Section (SRRS) of CCR’s Macromolecular Crystallography Laboratory. The Synchrotron Radiation Research Section is located at Argonne National Laboratory, Argonne, Illinois; this is the site of the largest U.S. synchrotron facility. The SRRS uses X-ray diffraction technique to solve crystal structures of various proteins and nucleic acids of biological and medical relevance. The section is also specializing in analyzing crystal structures at extremely high resolution and accuracy and in developing methods of effective diffraction data collection and in using weak anomalous dispersion effects to solve structures of macromolecules. The areas of expertise are: Structural and molecular biology Macromolecular crystallography Diffraction data collection Dr. Dauter requires research support in these areas, and the individual will engage in the purification and preparation of samples, crystallize proteins using various techniques, and derivatize them with heavy atoms/anomalous scatterers, and establish conditions for cryogenic freezing. Individual will also participate in diffraction data collection at the Advanced Photon Source. In addition, the candidate will perform spectroscopic and chromatographic analyses of protein and nucleic acid samples in the context of their purity, oligomeric state and photophysical properties.
ACToR Chemical Structure processing using Open Source ...
ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d
Interdisciplinary research training in substance abuse and addictions.
Thompson, Elaine Adams
2013-01-01
Considerable evidence shows that the management of complex problems of and related to substance abuse and addictions require comprehensive approaches based on solid research. Nonetheless, timely and widespread dissemination of research findings remains uncommon, hindering nursing practice, impeding the health of individuals and families, and imposing untoward costs for society. Shifts in science paradigms underscore the need for efficient and effective interdisciplinary research teams to carry out innovative research within a translational science framework. This means that early career investigators will need the knowledge and skills to conduct research as part of an interdisciplinary team and to contribute systematically to translational research in the area of substance abuse and addictions. This brief report describes a nursing research training program sponsored by the National Institute on Drug Abuse that evolved into an interdisciplinary program administrated within a school of nursing. Factors conducive to program development are described, along with the structure and elements of the program and examples of the scholars' projects and accomplishments. The common benefits of interdisciplinary research training for both predoctoral and postdoctoral research scholars include consistent exposure to new and alternative scientific models and methodological approaches as well as endurance of cross-discipline network connections. Benefits and challenges of this program carry implications for the design of future nursing research training programs in the field of substance abuse and addictions.
Recent Progress and Development of Crystal Structure Analysis of Enzymes and Other Proteins
NASA Astrophysics Data System (ADS)
Tanokura, Masaru; Nagata, Koji; Miyazono, Ken-Ichi; Miyakawa, Takuya; Okai, Masahiko
Structural biology has made tremendous progress in this decade. Here we briefly introduce the Target Proteins Research Program, a national project promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The program aims to reveal the structure and function of proteins that are of great importance in both academic research and industrial application. We also summarize the results of structure-function analyses of (i) transcriptional regulatory proteins useful for the breading of drought and heat stress tolerant crops, (ii) useful enzymes for the production of chiral compounds, and (iii) useful enzymes for the degradation of environmental pollution substances. These results can be utilized in various areas of industries, to enhance food production, to improve the efficiency of pharmaceutical compound production, and to promote the bioremediation of contaminated soil and water.
Development of stitching reinforcement for transport wing panels
NASA Technical Reports Server (NTRS)
Palmer, Raymond J.; Dow, Marvin B.; Smith, Donald L.
1991-01-01
The NASA Advanced Composites Technology (ACT) program has the objective of providing the technology required to obtain the full benefit of weight savings and performance improvements offered by composite primary aircraft structures. Achieving the objective is dependent upon developing composite materials and structures which are damage tolerant and economical to manufacture. Researchers are investigating stitching reinforcement combined with resin transfer molding to produce materials meeting the ACT program objective. Research is aimed at materials, processes, and structural concepts for application in both transport wings and fuselages, but the emphasis to date has been on wing panels. Empirical guidelines are being established for stitching reinforcement in structures designed for heavy loads. Results are presented from evaluation tests investigating stitching types, threads, and density (penetrations per square inch). Tension strength, compression strength, and compression after impact data are reported.
NASA Technical Reports Server (NTRS)
1988-01-01
The fifth year of the Center for Advanced Materials was marked primarily by the significant scientific accomplishments of the research programs. The Electronics Materials program continued its work on the growth and characterization of gallium arsenide crystals, and the development of theories to understand the nature and distribution of defects in the crystals. The High Tc Superconductivity Program continued to make significant contributions to the field in theoretical and experimental work on both bulk materials and thin films and devices. The Ceramic Processing group developed a new technique for cladding YBCO superconductors for high current applications in work with the Electric Power Research Institute. The Polymers and Composites program published a number of important studies involving atomistic simulations of polymer surfaces with excellent correlations to experimental results. The new Enzymatic Synthesis of Materials project produced its first fluorinated polymers and successfully began engineering enzymes designed for materials synthesis. The structural Materials Program continued work on novel alloys, development of processing methods for advanced ceramics, and characterization of mechanical properties of these materials, including the newly documented characterization of cyclic fatigue crack propagation behavior in toughened ceramics. Finally, the Surface Science and Catalysis program made significant contributions to the understanding of microporous catalysts and the nature of surface structures and interface compounds.
Multidisciplinary analysis of actively controlled large flexible spacecraft
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Young, John W.; Sutter, Thomas R.
1986-01-01
The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given.
A systematic review of integrative oncology programs
Seely, D.M.; Weeks, L.C.; Young, S.
2012-01-01
Objective This systematic review set out to summarize the research literature describing integrative oncology programs. Methods Searches were conducted of 9 electronic databases, relevant journals (hand searched), and conference abstracts, and experts were contacted. Two investigators independently screened titles and abstracts for reports describing examples of programs that combine complementary and conventional cancer care. English-, French-, and German-language articles were included, with no date restriction. From the articles located, descriptive data were extracted according to 6 concepts: description of article, description of clinic, components of care, administrative structure, process of care, and measurable outcomes used. Results Of the 29 programs included, most were situated in the United States (n = 12, 41%) and England (n = 10, 34%). More than half (n = 16, 55%) operate within a hospital, and 7 (24%) are community-based. Clients come through patient self-referral (n = 15, 52%) and by referral from conventional health care providers (n = 9, 31%) and from cancer agencies (n = 7, 24%). In 12 programs (41%), conventional care is provided onsite; 7 programs (24%) collaborate with conventional centres to provide integrative care. Programs are supported financially through donations (n = 10, 34%), cancer agencies or hospitals (n = 7, 24%), private foundations (n = 6, 21%), and public funds (n = 3, 10%). Nearly two thirds of the programs maintain a research (n = 18, 62%) or evaluation (n = 15, 52%) program. Conclusions The research literature documents a growing number of integrative oncology programs. These programs share a common vision to provide whole-person, patient-centred care, but each program is unique in terms of its structure and operational model. PMID:23300368
Methodologies for Combined Loads Tests Using a Multi-Actuator Test Machine
NASA Technical Reports Server (NTRS)
Rouse, Marshall
2013-01-01
The NASA Langley COmbined Loads Test System (COLTS) Facility was designed to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. Structural tests have been conducted in COLTS that address structural integrity issues of metallic and fiber reinforced composite aerospace structures in support of NASA Programs (i.e. the Aircraft Structural Integrity (ASIP) Program, High-Speed-Research program and the Supersonic Project, NASA Engineering and Safety Center (NESC) Composite Crew Module Project, and the Environmentally Responsible Aviation Program),. This paper presents experimental results for curved panels subjected to mechanical and internal pressure loads using a D-box test fixture. Also, results are presented that describe use of a checkout beam for development of testing procedures for a combined mechanical and pressure loading test of a Multi-bay box. The Multi-bay box test will be used to experimentally verify the structural performance of the Multi-bay box in support of the Environmentally Responsible Aviation Project at NASA Langley.
Advanced public transportation systems: the state of the art, update '92
DOT National Transportation Integrated Search
1992-03-01
This report documents one of the components of FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication t...
Advanced public transportation systems : the state of the art, update '94
DOT National Transportation Integrated Search
1994-01-01
This report documents one of the components of FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication t...
ERIC Educational Resources Information Center
Kuruyer, Hayriye Gül; Akyol, Hayati; Karli Oguz, Kader; Has, Arzu Ceylan
2017-01-01
The main purpose of the current study is to explain the effect of an enrichment reading program on the cognitive processes and neural structures of children experiencing reading difficulties. The current study was carried out in line with a single-subject research method and the between-subjects multiple probe design belonging to this method. This…
Fault-Tolerant Control For A Robotic Inspection System
NASA Technical Reports Server (NTRS)
Tso, Kam Sing
1995-01-01
Report describes first phase of continuing program of research on fault-tolerant control subsystem of telerobotic visual-inspection system. Goal of program to develop robotic system for remotely controlled visual inspection of structures in outer space.
Getting from A to IRB: developing an institutional review board at a historically black university.
Howard, Daniel L; Boyd, Carlton L; Nelson, Daniel K; Godley, Paul
2010-03-01
Shaw University, the oldest historically black college or university in the southern USA, recently partnered with the University of North Carolina at Chapel Hill, a major research institution in North Carolina, to further develop Shaw's research infrastructure. One aim of the partnership involved establishing a human research ethics committee and an accompanying administrative structure and research ethics education program. This paper describes the process of developing an entire human research protection program de novo through collaboration with and mentoring by the members of the human research protection program at a nearby major research institution. This paper provides a detailed description of the aims, procedures, accomplishments, and challenges involved in such a project, which may serve as a useful model for other primarily teaching institutions wishing to develop research infrastructure and ethical capacity.
Getting From A to IRB: Developing an Institutional Review Board at a Historically Black University
Howard, Daniel L.; Boyd, Carlton L.; Nelson, Daniel K.; Godley, Paul
2011-01-01
Shaw University, the oldest historically black college or university in the southern USA, recently partnered with the University of North Carolina at Chapel Hill, a major research institution in North Carolina, to further develop Shaw’s research infrastructure. One aim of the partnership involved establishing a human research ethics committee and an accompanying administrative structure and research ethics education program. This paper describes the process of developing an entire human research protection program de novo through collaboration with and mentoring by the members of the human research protection program at a nearby major research institution. This paper provides a detailed description of the aims, procedures, accomplishments, and challenges involved in such a project, which may serve as a useful model for other primarily teaching institutions wishing to develop research infrastructure and ethical capacity. PMID:20235865
Industry-university cooperation/research
NASA Technical Reports Server (NTRS)
Whitten, Raymond P.
1991-01-01
The paper concentrates on the commercial development of space programs through cooperative research with the U.S. universities and industry. The origins of the programs are discussed, beginning with the Communication Satellite Act of 1963. The National Space Policy is outlined, and the creation of NASA's Office of Commercial Programs is emphasized, along with its Centers for the Commercial Development of Space. It is noted that the centers are consortia of university, industry, and government involved in commercial-space-technology database development and research and testing of potentially valuable products and services. The center titles, locations, and brief descriptions for such area of research as remote sensing, life sciences, materials processing, space power, space propulsion, materials and space structures, and automation and robotics centers are listed, along with some results of the programs.
Experiment Configurations for the DAST
NASA Technical Reports Server (NTRS)
1978-01-01
This image shows three vehicle configurations considered for the Drones for Aerodynamic and Structural Testing (DAST) program, conducted at NASA's Dryden Flight Research Center between 1977 and 1983. The DAST project planned for three wing configurations. These were the Instrumented Standard Wing (ISW), the Aeroelastic Research Wing-1 (ARW-1), and the ARW-2. After the DAST-1 crash, project personnel fitted a second Firebee II with a rebuilt ARW-1 wing. Due to the project's ending, it never flew the ARW-2 wing. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.
NASA Technical Reports Server (NTRS)
1980-01-01
The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.
NASA aeronautics R&T - A resource for aircraft design
NASA Technical Reports Server (NTRS)
Olstad, W. B.
1981-01-01
This paper discusses the NASA aeronautics research and technology program from the viewpoint of the aircraft designer. The program spans the range from fundamental research to the joint validation with industry of technology for application into product development. Examples of recent developments in structures, materials, aerodynamics, controls, propulsion systems, and safety technology are presented as new additions to the designer's handbook. Finally, the major thrusts of NASA's current and planned programs which are keyed to revolutionary advances in materials science, electronics, and computer technology are addressed.
Byrne, Fiona; Grace, Rebekah; Tredoux, Jaimie; Kemp, Lynn
2016-06-01
Objective The aims of the present paper were to: (1) review the research literature that contributes to an understanding of the role of volunteer home visiting programs in supporting the health and well being of families with young children; and (2) propose a conceptual model outlining service pathways for families in need of additional support. Methods An integrative literature review method was used, with a mix of electronic and manual search methods for the period January 1980-January 2014. Forty-five studies were identified that met the inclusion criteria for review and were coded according to themes developed a priori. Results There is little formal research that has examined the effectiveness of volunteer home visiting programs for supporting family health and well being. The available research suggests that volunteer home visiting programs provide socioemotional support through structured social relationships; however, there is limited empirical evidence to explicate the factors that contribute to these outcomes. Conclusion In recognition of the importance of peer support for new parents, the not-for-profit sector has been involved in providing volunteer home visiting services to families for decades. However, the body of research to support this work is characterised by methodological limitations, and rigorous evidence is limited. What is clear anecdotally and qualitatively from the existing research is that parents who are in need of additional support value engagement with a community volunteer. These structured social relationships appear to fulfil a service need within the community, helping build bridges to support social networks, and thus complementing professional services and relationships. Overall, structured social relationships in the form of volunteer home visiting programs appear to provide an important pathway to support family health and well being. Findings from the existing research are mixed and often characterised by methodological limitations, pointing to a need for further rigorous research. What is known about the topic? Volunteer family support programs have been an important part of the service landscape for vulnerable families, both nationally and internationally, for many years. Anecdotal reports suggest that this is a valued form of support that increases a sense of community connectedness and breaks down barriers for families in accessing other community support services. What does this paper add? This paper proposes a model identifying broad service pathways impacting on family health and well being that takes into account the importance of structured social relationships and social connectedness. What are the implications for practitioners? The proposed model may encourage discussion by practitioners and organisations interested in models of support for families who are socially isolated and/or in need of assistance to access and engage with services within the community.
Rancourt, R; Ballantine, C
1990-01-01
Previous research has demonstrated that practitioners within the same profession share a common approach to knowledge acquisition and transmission. A search for the identification of this common approach to knowledge in physiotherapy was undertaken using the Epistemic Orientation Model. The research reported was premised on the assumption that students admitted to physiotherapy programs in Canada possess an epistemic orientation that is similar to the epistemological structure of the knowledge base considered important to the program. Using a standardized instrument known as the Knowledge Accessing Modes Inventory (KAMI) to measure epistemic orientation, data were collected from a sample (N = 59) of first- and third-year students registered in a physiotherapy program in a central Canadian university. The data indicated that a high degree of association exists between the epistemological structure subsumed in the knowledge base deemed essential to gain admission to the program and the dominant rational epistemic mode of the practitioners-to-be. Based on the results, the article examines the usefulness of the epistemic orientation concept on activities within the profession. Implications for professional development are noted and avenues for further research are suggested.
Testa, Maria; Livingston, Jennifer A; VanZile-Tamsen, Carol
2011-02-01
A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women's sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided.
Research in planetary studies and operation of the Mauna Kea Observatory
NASA Technical Reports Server (NTRS)
Cruikshank, Dale P.
1986-01-01
The research programs are highlighted in the following areas: major planets; planetary satellites and rings; asteroids; comets; dark organic matter; theoretical and analytical structures; extrasolar planetary; and telescopes.
Multidisciplinary collaboration as a sustainable research model for device development.
Chandra, Ankur
2013-02-01
The concurrent problems of research sustainability and decreased clinician involvement with medical device development can be jointly addressed through a novel, multidisciplinary solution. The University of Rochester Cardiovascular Device Design Program is a sustainable program in medical device design supported through a collaboration between the Schools of Medicine and Engineering. This article provides a detailed description of the motivation for starting the program, the current structure of the program, the methods of financial sustainability, and the direct impact it intends to have on the national vascular surgery community. The further expansion of this program and encouragement for development of similar programs throughout the country aims to address many of our current challenges in both research funding and device development education. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Morris, Cynthia D; McCracken, Karen; Samuels, Mary; Orwoll, Eric
2014-06-01
We have created an education and career development program within the CTSA structure at OHSU that serves the entire institution. We believe that this is unusual in scope among CTSA programs and has contributed to an increase in career development funding and research skills among fellows and faculty. While the key element is the institutional scope, important elements include: Tailoring programs of emphasis to points of inflection on the career pathway. Minimizing barriers to education by creating a flexible, tuition-free program. An integrated one-stop education and career development approach. An institutional program for career development award applicants as well as recipients. This career development program was developed within the context of a midsize health science university but the overall strategy may be applied to other CTSAs to simplify and reduce costs of education program development.
A Descriptive Study of Nursing Peer-Review Programs in US Magnet® Hospitals.
Roberts, Holli; Cronin, Sherill Nones
2017-04-01
The goal of this study was to assess the types of nursing peer review (NPR) programs in US Magnet® organizations. The 2 most predominant models of NPR programs in the literature are performance evaluation and clinical peer review. The literature on clinical peer review is primarily descriptive, outlining structures and anecdotal outcomes. Participants from hospitals holding Magnet recognition were selected using a stratified random-sampling method. A survey developed by the researchers assessed the presence of NPR. If clinical NPR was in place, program design, evaluation measurements, and barriers were explored. Findings suggest wide variability in NPR models. More than one-third of the respondents conduct peer evaluation as the only mechanism of NPR. Most hospitals with a clinical peer-review program reported a case review structure and process measurements not supported by data. The variations noted in this study suggest more research is needed to measure the effectiveness of NPR models and associated outcomes.
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Morea, S. F.
1985-01-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Morea, S. F.
1985-01-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
NASA Astrophysics Data System (ADS)
Marsik, S. J.; Morea, S. F.
1985-03-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.
Health Care Merged With Senior Housing: Description and Evaluation of a Successful Program.
Barry, Theresa Teta
2017-01-01
Objective: This article describes and evaluates a successful partnership between a large health care organization and housing for seniors. The program provides on-site, primary care visits by a physician and a nurse in addition to intensive social services to residents in an affordable senior housing apartment building located in Pennsylvania. Per Donabedian's "Structure-Process-Outcome" model, the program demonstrated positive health care outcomes for its participants via a prescribed structure. To provide guidance for replication in similar settings, we qualitatively evaluated the processes by which successful outcomes were obtained. Methods: With program structures in place and outcomes measured, this case study collected and analyzed qualitative information taken from key informant interviews on care processes involved in the program. Themes were extracted from semistructured interviews and used to describe the processes that helped and hindered the program. Results and Discussion: Common processes were identified across respondents; however, the nuanced processes that lead to successful outcomes suggest that defined structures and processes may not be sufficient to produce similar outcomes in other settings. Further research is needed to determine the program's replicability and policy implications.
Marshall Space Flight Center Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Six, N. F. (Compiler)
2015-01-01
The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm-hot intergalactic medium filament. Our goal is to continue the Faculty Fellowship effort with Center funds in succeeding summers.
NCI National Clinical Trials Network Structure
Learn about how the National Clinical Trials Network (NCTN) is structured. The NCTN is a program of the National Cancer Institute that gives funds and other support to cancer research organizations to conduct cancer clinical trials.
WisDOT research peer exchange, October 16-19, 2006.
DOT National Transportation Integrated Search
2006-10-01
The overall theme for the peer exchange was program evaluation with an emphasis on : performance measures, effectiveness, structure, and partnerships (especially with universities). : The meetings were structured around four main topic areas: Partner...
NOAA Office of Exploration and Research > About OER > Program Review >
OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate Locations
ERIC Educational Resources Information Center
Shreiber, David I.; Moghe, Prabhas V.; Roth, Charles M.
2015-01-01
Research Experiences for Undergraduates (REU) sites widely serve as the first major research gateway for undergraduates seeking a structured research experience. Given their lack of prior research skills, and the highly compressed duration of the REU programs, these students frequently encounter barriers to a seamless transition into a new…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, S.C.
1988-03-01
This study provides a comparison of US and foreign government spending for energy conservation research and development (R and D). The countries included in this analysis are: the United States, United Kingdom, France, Sweden, West Germany, and Japan. The approach of this paper was to compare the research program of each country at a high level of aggregation with the US Department of Energy (DOE) program structure. This paper does not allow for differences in the way each country defines or accounts for research.
Group-Advantaged Training of Research (GATOR): A Metamorphosis of Mentorship
ERIC Educational Resources Information Center
Edwards, Thea M.; Smith, Barbara K.; Watts, Danielle L.; Germain-Aubrey, Charlotte C.; Roark, Alison M.; Bybee, Seth M.; Cox, Clayton E.; Hamlin, Heather J.; Guillette, Louis J., Jr.
2011-01-01
We describe Group-Advantaged Training of Research (GATOR), a yearlong structured program at the University of Florida that guided graduate student mentors and their undergraduate mentees through the mentored research process. Using the national Survey of Undergraduate Research Experiences for an academic year, we found that outcomes for our…
Kingsley, Karl; O'Malley, Susan; Stewart, Tanis; Howard, Katherine M
2008-01-01
Background Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their students. Methods A series of structured seminars, incorporating faculty research, was designed for first-year dental students at the University of Nevada, Las Vegas, School of Dental Medicine to reinforce and support the concepts and skills taught in concurrent courses. A structured research enrichment period was also created to facilitate student engagement in active research using faculty and student curricular release time. Course evaluations and surveys were administered to gauge student perceptions of the curricular integration of research, the impact of these seminars on recruitment to the research program, and overall levels of student satisfaction with research enrichment. Results The analysis of course surveys revealed that students perceived the research-containing seminars effectively illustrated concepts, were logically sequenced, and were well-integrated into their curriculum. In addition, analysis of surveys revealed that the Integration Seminar courses motivated students to engage in research enrichment. Finally, this analysis provided evidence that students were very satisfied with their overall learning experience during research enrichment. Conclusion Curricular integration is one method of improving the teaching and learning of complicated and inter-related concepts, providing an opportunity to incorporate research training and objectives into traditionally separate didactic courses. Despite the benefits of curricular integration, finding the most appropriate points of integration, obtaining release time for curricular development and for research engagement, and funding predoctoral student research remain issues to be addressed in ways that reflect the character of the faculty and the goals of each institution. PMID:18284692
Kingsley, Karl; O'Malley, Susan; Stewart, Tanis; Howard, Katherine M
2008-02-19
Research programs within medical and dental schools are important vehicles for biomedical and clinical discovery, serving as effective teaching and learning tools by providing situations in which predoctoral students develop problem-solving and critical-thinking skills. Although research programs at many medical and dental schools are well-established, they may not be well integrated into the predoctoral curriculum to effectively support the learning objectives for their students. A series of structured seminars, incorporating faculty research, was designed for first-year dental students at the University of Nevada, Las Vegas, School of Dental Medicine to reinforce and support the concepts and skills taught in concurrent courses. A structured research enrichment period was also created to facilitate student engagement in active research using faculty and student curricular release time. Course evaluations and surveys were administered to gauge student perceptions of the curricular integration of research, the impact of these seminars on recruitment to the research program, and overall levels of student satisfaction with research enrichment. The analysis of course surveys revealed that students perceived the research-containing seminars effectively illustrated concepts, were logically sequenced, and were well-integrated into their curriculum. In addition, analysis of surveys revealed that the Integration Seminar courses motivated students to engage in research enrichment. Finally, this analysis provided evidence that students were very satisfied with their overall learning experience during research enrichment. Curricular integration is one method of improving the teaching and learning of complicated and inter-related concepts, providing an opportunity to incorporate research training and objectives into traditionally separate didactic courses. Despite the benefits of curricular integration, finding the most appropriate points of integration, obtaining release time for curricular development and for research engagement, and funding predoctoral student research remain issues to be addressed in ways that reflect the character of the faculty and the goals of each institution.
Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery
NASA Technical Reports Server (NTRS)
1993-01-01
A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.
Small engine technology programs
NASA Technical Reports Server (NTRS)
Niedzwiecki, Richard W.
1987-01-01
Small engine technology programs being conducted at the NASA Lewis Research Center are described. Small gas turbine research is aimed at general aviation, commutercraft, rotorcraft, and cruise missile applications. The Rotary Engine Program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. There is a strong element of synergism between the various programs in several respects. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The Heavy Duty Diesel Transport (HDTT), rotary technology, and the compound cycle programs are all examining approached to minimum heat rejection, or adiabatic systems employing advanced materials. The Automotive Gas Turbine (AGT) program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbines will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
...) Program. This CRADA Program is an extension of collaboration opportunities solicited by NIH or developed... health mission of the NIH. These collaboration opportunities are structured under the authority of 15 U.S... use of such additional information. The collaboration will be governed by CRADA terms that address...
Comparing Universal and Targeted Pre-Kindergarten Programs. Research Brief
ERIC Educational Resources Information Center
Dotterer, Aryn M.; Burchinal, Margaret; Bryant, Donna; Early, Diane; Pianta, Robert C.
2012-01-01
This study compared universal (available to all children) and targeted (offered only to children with specific risk factors) Pre-Kindergarten programs. Results showed that two aspects of structural quality (e.g., hours per day and teacher education) were higher in universal programs, but process quality (e.g., child interactions and feedback) was…
Harvard University Program on Technology and Society; Fifth Annual Report, 1968-1969.
ERIC Educational Resources Information Center
Mesthene, Emmanuel G.
The fifth annual report of Harvard University's Program on Technology and Society describes current research in the Program's major areas of concentration--namely the effects of technological change on the life of the individual in society, social and individual values, the political organization of society, and the structure and processes of…
Accreditation of Health Educational Programs. Part 1: Staff Working Papers.
ERIC Educational Resources Information Center
Study of Accreditation of Selected Health Educational Programs, Washington, DC.
This publication contains the first set of working papers concerned with structure, financing, research, and expansion as they relate to the accreditation of health education programs conducted by professional agencies. Texts of these papers are included: (1) "Historical Introduction to Accreditation of Health Educational Programs" by W.K. Selden,…
Primary Mental Health in Elementary Schools: Its Impact on Psychosocial Measures.
ERIC Educational Resources Information Center
Munoz, Marco A.
The Primary Mental Health Project (PMHP) is a research-based, selective program implemented by the Jefferson County Public Schools. The goal of the program is to enhance learning and other school-related competencies. Key structural components of the program include a focus on young children, early screening and selection, use of paraprofessionals…
How Academics in Undergraduate Business Programs at an Australian University View Sustainability
ERIC Educational Resources Information Center
von der Heidt, Tania; Lamberton, Geoffrey
2014-01-01
This article explores conceptualisations of sustainability and perceptions of its importance in curriculum held by business subject and program leaders. Results are reported from an empirical study of the first-year Bachelor of Business program at an Australian university. Research data was collected in 16 semi-structured, in-depth interviews with…
Wood in transportation program-- an overview
Sheila Rimal Duwadi; Michael A. Ritter; Edward Cesa
2000-01-01
Research and demonstration bridge projects to further develop wood for transportation structures increased substantially in the United States in 1988 under a legislative action by the U.S. Congress known as the Timber Bridge Initiative. This program, renamed the Wood in Transportation Program, continues today and is administered by the Forest Service. FHWA became...
Coordinating a Large, Amalgamated REU Program with Multiple Funding Sources
ERIC Educational Resources Information Center
Fiorini, Eugene; Myers, Kellen; Naqvi, Yusra
2017-01-01
In this paper, we discuss the challenges of organizing a large REU program amalgamated from multiple funding sources, including diverse participants, mentors, and research projects. We detail the program's structure, activities, and recruitment, and we hope to demonstrate that the organization of this REU is not only beneficial to its…
How to Recognize a Quality Technical Education Program.
ERIC Educational Resources Information Center
Doty, Charles R.
Criteria for the evaluation of quality technical educational programs must be identified if follow-up studies are to be effective. Current research shows that problems in the development of such criteria include the tendency to evaluate programs on the basis of organizational structure rather than on the quality of the instructional program…
The role of treatment fidelity on outcomes during a randomized field trial of an autism intervention
Mandell, David S; Stahmer, Aubyn C; Shin, Sujie; Xie, Ming; Reisinger, Erica; Marcus, Steven C
2013-01-01
This randomized field trial comparing Strategies for Teaching based on Autism Research and Structured Teaching enrolled educators in 33 kindergarten-through-second-grade autism support classrooms and 119 students, aged 5–8 years in the School District of Philadelphia. Students were assessed at the beginning and end of the academic year using the Differential Ability Scales. Program fidelity was measured through video coding and use of a checklist. Outcomes were assessed using linear regression with random effects for classroom and student. Average fidelity was 57% in Strategies for Teaching based on Autism Research classrooms and 48% in Structured Teaching classrooms. There was a 9.2-point (standard deviation = 9.6) increase in Differential Ability Scales score over the 8-month study period, but no main effect of program. There was a significant interaction between fidelity and group. In classrooms with either low or high program fidelity, students in Strategies for Teaching based on Autism Research experienced a greater gain in Differential Ability Scales score than students in Structured Teaching (11.2 vs 5.5 points and 11.3 vs 8.9 points, respectively). In classrooms with moderate fidelity, students in Structured Teaching experienced a greater gain than students in Strategies for Teaching based on Autism Research (10.1 vs 4.4 points). The results suggest significant variability in implementation of evidence-based practices, even with supports, and also suggest the need to address challenging issues related to implementation measurement in community settings. PMID:23592849
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.
2011-10-01
The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.
Fuchs, Jonathan; Kouyate, Aminta; Kroboth, Liz; McFarland, Willi
2016-01-01
Structured, mentored research programs for high school and undergraduate students from underrepresented minority (URM) backgrounds are needed to increase the diversity of our nation’s biomedical research workforce. In particular, a robust pipeline of investigators from the communities disproportionately affected by the HIV epidemic is needed not only for fairness and equity but for insights and innovations to address persistent racial and ethnic disparities in new infections. We created the Summer HIV/AIDS Research Program (SHARP) at the San Francisco Department of Public Health for URM undergraduates as a 12-week program of hands-on research experience, one-on-one mentoring by a senior HIV investigator, didactic seminars for content and research methods, and networking opportunities. The first four cohorts (2012–2015) of SHARP gained research skills, built confidence in their abilities and self-identified as scientists. In addition, the majority of program alumni is employed in research positions and has been admitted to or is pursuing graduate degree programs in fields related to HIV prevention. While we await empirical studies of specific mentoring strategies at early educational stages, programs that engage faculty who are sensitive to the unique challenges facing diverse students and who draw lessons from established mentoring frameworks can help build an inclusive generation of HIV researchers. PMID:27066986
Fuchs, Jonathan; Kouyate, Aminta; Kroboth, Liz; McFarland, Willi
2016-09-01
Structured, mentored research programs for high school and undergraduate students from underrepresented minority (URM) backgrounds are needed to increase the diversity of our nation's biomedical research workforce. In particular, a robust pipeline of investigators from the communities disproportionately affected by the HIV epidemic is needed not only for fairness and equity but for insights and innovations to address persistent racial and ethnic disparities in new infections. We created the Summer HIV/AIDS Research Program (SHARP) at the San Francisco Department of Public Health for URM undergraduates as a 12-week program of hands-on research experience, one-on-one mentoring by a senior HIV investigator, didactic seminars for content and research methods, and networking opportunities. The first four cohorts (2012-2015) of SHARP gained research skills, built confidence in their abilities and self-identified as scientists. In addition, the majority of program alumni is employed in research positions and has been admitted to or is pursuing graduate degree programs in fields related to HIV prevention. While we await empirical studies of specific mentoring strategies at early educational stages, programs that engage faculty who are sensitive to the unique challenges facing diverse students and who draw lessons from established mentoring frameworks can help build an inclusive generation of HIV researchers.
Health economics and outcomes research fellowship practices reviewed.
Suh, Kangho; Gabriel, Susan; Adams, Michelle A; Arcona, Steve
2015-01-01
The guidelines for health economics and outcomes research (HEOR) fellowship training programs devised by the American College of Clinical Pharmacy (ACCP) and the International Society of Pharmacoeconomics and Outcomes Research (ISPOR) suggest that continuous improvements are made to ensure that postgraduate training through didactic and professional experiences prepare fellows for HEOR research careers. The HEOR Fellowship Program at Novartis Pharmaceuticals Corporation was standardized to enhance the fellows' HEOR research understanding and align professional skill sets with the ACCP-ISPOR Fellowship Program Guidelines. Based on feedback from an internal task force comprised of HEOR employees and current and former fellows, the HEOR Fellowship Program was normatively and qualitatively assessed to evaluate the current curricular program. Fellowship program activities were instituted to ensure that the suggested minimum level requirements established by the guidelines were being met. Research opportunities enabling fellows to work hand-in-hand with other fellows and HEOR professionals were emphasized. Curricular enhancements in research methodology and professional training and development, and materials for a structured journal club focusing on specific methodological and HEOR research topics were developed. A seminar series (e.g., creating SMART Goals, StrengthsFinder 2.0) and professional courses (e.g., ISPOR short courses, statistics.com) were included to enhance the fellows' short- and long-term professional experience. Additional program attributes include an online reference library developed to enrich the current research facilities and a Statistical Analysis Software training program. Continuously assessing and updating HEOR fellowship programs keeps programs up-to-date in the latest HEOR concepts and approaches used to evaluate health care, both professionally and educationally. Copyright © 2015 Elsevier Inc. All rights reserved.
United States Air Force Graduate Student Research Program. Program Management Report
1988-12-01
PRELIMINARY STRUCTURAL DESIGN/OPTIMIZATION by Richard A. Swift ABSTRACT Finite element analysis for use in structural design has advanced to the point where...Plates Subjected Gregory Schoeppner to Low Velocity Impact *** Same Report as Prof. William Wolfe * 57 Finite Element Analysis for Preliminary Richard...and dynamic load conditions using both radial and bias- ply tires. A detailed three-dimensional finite - element model of the wheel was generated for
Reframing the Interpretation of Sex Worker Health: A Behavioral–Structural Approach
Tuminez, Astrid S.
2011-01-01
Expanding sexually transmitted infection (STI) epidemics in many parts of Asia increase the importance of effective human immunodeficiency virus (HIV)/STI prevention programs for female sex workers. Designing sex worker health research and programs demands a well-stated conceptual approach, especially when one is interpreting the relationship between local policy environments and sex worker health. However, the core principles of the 2 most common conceptual approaches used in sex worker health programs—abolitionism and empowerment—have frequently divergent assumptions and implications. The abolitionist approach sees major aspects of the sex industry as fundamentally coercive and exploitative of women and supports dismantling all or parts of the sex sector. The empowerment approach strengthens sex workers’ agency and rights in order to build collective self-efficacy and have women invested in implementing their own HIV/STI prevention programs. This review compares these approaches using implication analysis and empirical cases from Asia. The misperception of an unresolvable gap between the 2 approaches ignores common ground that forms the basis of a new behavioral–structural conceptual framework. Explicitly accounting for the interaction between female sex worker behaviors and larger structures and policies, a behavioral–structural approach may provide a solid foundation for sex work research and programs. PMID:22043033
McDonnell Douglas Helicopter Company independent research and development: Preparing for the future
NASA Technical Reports Server (NTRS)
Haggerty, Allen C.
1988-01-01
During the 1970's and 80's, research has produced the technology that is seen in aircraft such as the LHX and future models. The technology is discussed that is reaching maturity and moving into the application stage of future programs. Technology is discussed in six major areas: advanced concepts, analysis techniques, structures, systems, simulation, and research and development facilities. The partnership of McDonnell Douglas Helicopter Co. and the government in developing these technologies is illustrated in several programs.
Testa, Maria; Livingston, Jennifer A.; VanZile-Tamsen, Carol
2011-01-01
A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women’s sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided. PMID:21307032
Keyser, Donna J; Abedin, Zainab; Schultz, Dana J; Pincus, Harold Alan
2012-08-01
In light of the growing trend toward formalized research mentorship for effectively transmitting the values, standards, and practices of science from one generation of researchers to the next, this article provides the results of an exploratory study. It reports on research mentorship in the context of interdisciplinary geriatric research based on experiences with the RAND/Hartford Program for Building Interdisciplinary Geriatric Research Centers. At the end of the 2-year funding period, staff from the RAND Coordinating Center conducted 60- to 90-minute open-ended telephone interviews with the co-directors of the seven centers. Questions focused on interdisciplinary mentorship activities, barriers to implementing these activities, and strategies for overcoming them, as well as a self-assessment tool with regard to programs, policies, and structures across five domains, developed to encourage research mentorship. In addition, the mentees at the centers were surveyed to assess their experiences with interdisciplinary mentoring and the center. According to the interviewees, some barriers to successful interdisciplinary mentoring included the mentor's lack of time, structural support, and the lack of a clear definition of interdisciplinary research. Most centers had formal policies in place for mentor identification and limited policies on mentor incentives. Mentees uniformly reported their relationships with their mentors as positive. More than 50% of mentees reported having a primary mentor from within their discipline and had more contact with their primary mentor than their secondary mentors. Further research is needed to understand the complexity of institutional levers that emerging programs might employ to encourage and support research mentorship. © 2012, Copyright the Authors Journal compilation © 2012, The American Geriatrics Society.
Durairajanayagam, Damayanthi; Kashou, Anthony H; Tatagari, Sindhuja; Vitale, Joseph; Cirenza, Caroline; Agarwal, Ashok
2015-01-01
Background The American Center for Reproductive Medicine's summer internship course in reproductive medicine and research at Cleveland Clinic is a rigorous, results-oriented annual program that began in 2008 to train both local and international students in the fundamentals of scientific research and writing. The foremost goal of the program is to encourage premedical and medical students to aspire toward a career as a physician–scientist. The internship provides participants with an opportunity to engage in original bench research and scientific writing while developing theoretical knowledge and soft skills. This study describes selected survey responses from interns who participated in the 2014 internship program. The objective of these surveys was to elicit the interns' perspective on the internship program, its strengths and weaknesses, and to obtain insight into potential areas for improvement. Methods Questionnaires were structured around the five fundamental aspects of the program: 1) theoretical knowledge, 2) bench research, 3) scientific writing, 4) mentorship, and 5) soft skills. In addition, an exit survey gathered information on factors that attracted the interns to the program, communication with mentors, and overall impression of the research program. Results The opportunity to experience hands-on bench research and scientific writing, personalized mentorship, and the reputation of the institution were appreciated and ranked highly among the interns. Nearly 90% of the interns responded that the program was beneficial and well worth the time and effort invested by both interns and faculty. Conclusion The outcomes portrayed in this study will be useful in the implementation of new programs or refinement of existing medical research training programs. PMID:26563960
Structural dynamics and control of large space structures. [conference
NASA Technical Reports Server (NTRS)
Lightner, E. B. (Compiler)
1981-01-01
The focus of the workshop was the basic research program assembled by LaRC to address the fundamental technology deficiencies that were identified in several studies on large space systems (LSS) conducted by NASA in the last several years. The staffs of the respective participants were assembled at the workshop to review the current state of research in the control technology for large structural systems and to plan the efforts that would be pursued by their respective organizations.
A finite element program for postbuckling calculations (PSTBKL)
NASA Technical Reports Server (NTRS)
Simitses, G. T.; Carlson, R. L.; Riff, R.
1991-01-01
The object of the research reported herein was to develop a general mathematical model and solution methodologies for analyzing the structural response of thin, metallic shell structures under large transient, cyclic, or static thermochemical loads. This report describes the computer program resulting from the research. Among the system responses associated with these loads and conditions are thermal buckling, creep buckling, and ratcheting. Thus geometric and material nonlinearities (of high order) have been anticipated and are considered in developing the mathematical model. The methodology is demonstrated through different problems of extension, shear, and of planar curved beams. Moreover, importance of the inclusion of large strains is clearly demonstrated, through the chosen applications.
NASA Astrophysics Data System (ADS)
Fu, Linyun; Ma, Xiaogang; Zheng, Jin; Goldstein, Justin; Duggan, Brian; West, Patrick; Aulenbach, Steve; Tilmes, Curt; Fox, Peter
2014-05-01
This poster will show how we used a case-driven iterative methodology to develop an ontology to represent the content structure and the associated provenance information in a National Climate Assessment (NCA) report of the US Global Change Research Program (USGCRP). We applied the W3C PROV-O ontology to implement a formal representation of provenance. We argue that the use case-driven, iterative development process and the application of a formal provenance ontology help efficiently incorporate domain knowledge from earth and environmental scientists in a well-structured model interoperable in the context of the Web of Data.
Coetzee, Tanya; Hoffmann, Willem A; de Roubaix, Malcolm
2015-10-01
The amended research ethics policy at a South African University required the ethics review of undergraduate research projects, prompting the need to explore the content and teaching approach of research ethics education in health science undergraduate programs. Two qualitative data collection strategies were used: document analysis (syllabi and study guides) and semi-structured interviews with research methodology coordinators. Five main themes emerged: (a) timing of research ethics courses, (b) research ethics course content, (c) sub-optimal use of creative classroom activities to facilitate research ethics lectures, (d) understanding the need for undergraduate project research ethics review, and (e) research ethics capacity training for research methodology lecturers and undergraduate project supervisors. © The Author(s) 2015.
DOT National Transportation Integrated Search
1971-05-01
This report is the result of a research program in which various types of submerged drainage structures were evaluated in an effort to determine the life expectancy of such a structure. California-s method of predicting the behavior pattern of submer...
Base connections for signal/sign structures : [summary].
DOT National Transportation Integrated Search
2012-01-01
During six weeks in 2004, four major hurricanes struck Florida, and extreme wind-loading caused several large cantilever sign structures on the Interstate to fail. The Florida Department of Transportation (FDOT) began a research program to address th...
NOAA Office of Exploration and Research > About OER > Program Review >
About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate About OER Overview Organization Guiding Documents Organizational Structure Map of Staff and Affiliate
Senior Projects in Materials Research.
ERIC Educational Resources Information Center
Buxton, Richard
1999-01-01
A program in a materials/prototyping lab provided the structure for a year-long research activity. Students could test physical properties of a specific material or explore the use of a material in a new application. (Author/JOW)
Materials processing in space programs tasks. [NASA research tasks
NASA Technical Reports Server (NTRS)
Pentecost, E.
1981-01-01
Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.
Supersonic cruise research aircraft structural studies: Methods and results
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Gross, D.; Kurtze, W.; Newsom, J.; Wrenn, G.; Greene, W.
1981-01-01
NASA Langley Research Center SCAR in-house structural studies are reviewed. In methods development, advances include a new system of integrated computer programs called ISSYS, progress in determining aerodynamic loads and aerodynamically induced structural loads (including those due to gusts), flutter optimization for composite and metal airframe configurations using refined and simplified mathematical models, and synthesis of active controls. Results given address several aspects of various SCR configurations. These results include flutter penalties on composite wing, flutter suppression using active controls, roll control effectiveness, wing tip ground clearance, tail size effect on flutter, engine weight and mass distribution influence on flutter, and strength and flutter optimization of new configurations. The ISSYS system of integrated programs performed well in all the applications illustrated by the results, the diversity of which attests to ISSYS' versatility.
Mendelian genetics: Paradigm, conjecture, or research program
NASA Astrophysics Data System (ADS)
Oldham, V.; Brouwer, W.
Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos's methodology of competing research programs are applied to a historical episode in biology. Each of these three models offers a different explanatory system for the development, neglect, and eventual acceptance of Mendel's paradigm of inheritance. The authors conclude that both rational and nonrational criteria play an important role during times of crisis in science, when different research programs compete for acceptance. It is suggested that Kuhn's model, emphasizing the nonrational basis of science, and Popper's model, emphasizing the rational basis of science, can be used fruitfully in high school science courses.
THE NEXT GENERATION OF VMT REDUCTION PROGRAMS
This research is structured to provide a clear delineation of factors that influence trip chaining, identify levels of flexibility in commuter travel, present a market segmentation of commuters in terms of their flexibility levels, and estimate the reach of current programs. ...
The Impact of "ED" on Educational Research.
ERIC Educational Resources Information Center
Florio, David H.
1980-01-01
The purposes, structure, and component parts of the newly formed Department of Education (ED) organizations from which educational research programs will be administered are discussed. As the climate surrounding ED changes, opportunities to take advantage of the elevated status of research will be presented. (Author/RL)
Tu-144LL SST Flying Laboratory Lifts off Runway on a High-Speed Research Flight
NASA Technical Reports Server (NTRS)
1998-01-01
The Tupolev Tu-144LL lifts off from the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
NASA Astrophysics Data System (ADS)
Lederman, Norman G.; Gess-Newsome, Julie; Latz, Mark S.
The purpose of this study was to assess the development and changes in preservice science teachers' subject matter and pedagogy knowledge structures as they proceeded through a professional teacher education program. Twelve secondary preservice science teachers were asked to create representations of their subject matter and pedagogy knowledge structures periodically (four times spanning the entirety of their subject-specific teacher education program) and participate in a videotaped interview concerning the eight knowledge structure representations immediately following student teaching. Qualitative analyses of knowledge structure representations and transcribed interviews within and between subjects were performed by one of the researchers and blindly corroborated by the other two researchers. Initial knowledge structure representations were typically linear and lacked coherence. Both types of knowledge structure representations were highly susceptible to change as a consequence of the act of teaching. Although there was some overlap between subject matter and pedagogy knowledge structures, they were reported to exert separate influences on classroom practice, with the pedagogy knowledge structure having primary influence on instructional decisions. Furthermore, the complexity of one's subject matter structure appeared to be a critical factor in determining whether the structure directly influences classroom practice.Received: 5 February 1993; Revised: 28 July 1993;
Russian Tu-144LL SST Roll-Out for Joint NASA Research Program
NASA Technical Reports Server (NTRS)
1996-01-01
The modified Tu-144LL supersonic flying laboratory is rolled out of its hangar at the Zhukovsky Air Development Center near Moscow, Russia in March 1996 at the beginning of a joint U.S. - Russian high-speed flight research program. The 'LL' stands for Letayuschaya Laboratoriya, which means Flying Laboratory. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
NASA Technical Reports Server (NTRS)
Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.
1998-01-01
In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.
Loading tests of a wing structure for a hypersonic aircraft
NASA Technical Reports Server (NTRS)
Fields, R. A.; Reardon, L. F.; Siegel, W. H.
1980-01-01
Room-temperature loading tests were conducted on a wing structure designed with a beaded panel concept for a Mach 8 hypersonic research airplane. Strain, stress, and deflection data were compared with the results of three finite-element structural analysis computer programs and with design data. The test program data were used to evaluate the structural concept and the methods of analysis used in the design. A force stiffness technique was utilized in conjunction with load conditions which produced various combinations of panel shear and compression loading to determine the failure envelope of the buckling critical beaded panels The force-stiffness data did not result in any predictions of buckling failure. It was, therefore, concluded that the panels were conservatively designed as a result of design constraints and assumptions of panel eccentricities. The analysis programs calculated strains and stresses competently. Comparisons between calculated and measured structural deflections showed good agreement. The test program offered a positive demonstration of the beaded panel concept subjected to room-temperature load conditions.
Textile technology development
NASA Technical Reports Server (NTRS)
Shah, Bharat M.
1995-01-01
The objectives of this report were to evaluate and select resin systems for Resin Transfer Molding (RTM) and Powder Towpreg Material, to develop and evaluate advanced textile processes by comparing 2-D and 3-D braiding for fuselage frame applications and develop window belt and side panel structural design concepts, to evaluate textile material properties, and to develop low cost manufacturing and tooling processes for the automated manufacturing of fuselage primary structures. This research was in support of the NASA and Langley Research Center (LaRc) Advanced Composite Structural Concepts and Materials Technologies for Primary Aircraft Structures program.
ERIC Educational Resources Information Center
Molm, Linda D.
2010-01-01
Reciprocity is one of the defining features of social exchange and social life, yet exchange theorists have tended to take it for granted. Drawing on work from a decade-long theoretical research program, I argue that reciprocity is structured and variable across different forms of exchange, that these variations in the structure of reciprocity…
Techniques for hot structures testing
NASA Technical Reports Server (NTRS)
Deangelis, V. Michael; Fields, Roger A.
1990-01-01
Hot structures testing have been going on since the early 1960's beginning with the Mach 6, X-15 airplane. Early hot structures test programs at NASA-Ames-Dryden focused on operational testing required to support the X-15 flight test program, and early hot structures research projects focused on developing lab test techniques to simulate flight thermal profiles. More recent efforts involved numerous large and small hot structures test programs that served to develop test methods and measurement techniques to provide data that promoted the correlation of test data with results from analytical codes. In Nov. 1988 a workshop was sponsored that focused on the correlation of hot structures test data with analysis. Limited material is drawn from the workshop and a more formal documentation is provided of topics that focus on hot structures test techniques used at NASA-Ames-Dryden. Topics covered include the data acquisition and control of testing, the quartz lamp heater systems, current strain and temperature sensors, and hot structures test techniques used to simulate the flight thermal environment in the lab.
NASA Astrophysics Data System (ADS)
Samantha, Mosier; Jonathan, Fisk
2013-05-01
Previous research on voluntary environmental programs (VEPs) frequently assesses the effectiveness of federal, state, and third party programs and why organizations seek to join such programs. Yet, research has yet to evaluate the effectiveness or firm motivation relative to local VEPs. Recognizing this gap, our paper examines the structure and organization of Fort Collins' Climate Wise program, a local VEP. Using a variety of sources, we find that the program has successfully met both short- and long-term goals by persistently self-evaluating and seeking outside financial support. Findings from this analysis can aid in understanding and developing local VEPs elsewhere. Specifically, this initial research suggests that local VEPs need to consider local context and available resources when implementing such programs. Furthermore, it is possible for local VEPs to attract a diverse variety of participating firms by avoiding one-size-fits-all participation levels and by establishing a sense of ownership among partners.
Mosier, Samantha; Samantha, Mosier; Fisk, Jonathan; Jonathan, Fisk
2013-05-01
Previous research on voluntary environmental programs (VEPs) frequently assesses the effectiveness of federal, state, and third party programs and why organizations seek to join such programs. Yet, research has yet to evaluate the effectiveness or firm motivation relative to local VEPs. Recognizing this gap, our paper examines the structure and organization of Fort Collins' Climate Wise program, a local VEP. Using a variety of sources, we find that the program has successfully met both short- and long-term goals by persistently self-evaluating and seeking outside financial support. Findings from this analysis can aid in understanding and developing local VEPs elsewhere. Specifically, this initial research suggests that local VEPs need to consider local context and available resources when implementing such programs. Furthermore, it is possible for local VEPs to attract a diverse variety of participating firms by avoiding one-size-fits-all participation levels and by establishing a sense of ownership among partners.
ERIC Educational Resources Information Center
Center, Yola; Freeman, Louella
This research review examined the use of a whole class early literacy program in classes which included disadvantaged and at-risk children in Australia. The program, Schoolwide Early Language and Literacy (SWELL), is based on an interactive compensatory theory of literacy acquisition adapted from Success for All, a U.S. early literacy program. The…
A Review of the NASA Textile Composites Research
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Dexter, H. B.; Raju, I. S.
1997-01-01
During the past 15 years NASA has taken the lead role in exploiting the benefits of textile reinforced composite materials for application to aircraft structures. The NASA Advanced Composites Technology (ACT) program was started in 1989 to develop composite primary structures for commercial transport airplanes with costs that are competitive with metal structures. As part of this program, several contractors investigated the cost, weight, and performance attributes of textile reinforced composites. Textile composites made using resin transfer molding type processes were evaluated for numerous applications. Methods were also developed to predict resin infiltration and flow in textile preforms and to predict and measure mechanical properties of the textile composites. This paper describes the salient results of that program.
NASA Technical Reports Server (NTRS)
Smith-Taylor, Rudeen; Tanner, Sharon E.
1993-01-01
The NASA Controls-Structures Interaction (CSI) Guest Investigator program is described in terms of its support of the development of CSI technologies. The program is based on the introduction of CSI researchers from industry and academia to available test facilities for experimental validation of technologies and methods. Phase 1 experimental results are reviewed with attention given to their use of the Mini-MAST test facility and the facility for the Advance Control Evaluation of Structures. Experiments were conducted regarding the following topics: collocated/noncollocated controllers, nonlinear math modeling, controller design, passive/active suspension systems design, and system identification and fault isolation. The results demonstrate that significantly enhanced performance from the control techniques can be achieved by integrating knowledge of the structural dynamics under consideration into the approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less
Human Research Program: Long Duration, Exploration-Class Mission Training Design
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Dempsey, Donna L.
2016-01-01
This is a presentation to the International Training Control Board that oversees astronaut training for ISS. The presentation explains the structure of HRP, the training-related work happening under the different program elements, and discusses in detail the research plan for the Training Risk under SHFHSHFE. The group includes the crew training leads for all the space agencies involved in ISS: Japan, Europe, Russia, Canada, and the US.
Hydrodynamic Modeling for Channel and Shoreline Stabilization at Rhodes Point, Smith Island, MD
2016-11-01
shorelines. Both Alternatives included the same revetment structure for protecting the south shoreline. The Coastal Modeling System (CMS, including CMS...ER D C/ CH L TR -1 6- 17 Coastal Inlets Research Program Hydrodynamic Modeling for Channel and Shoreline Stabilization at Rhodes Point...acwc.sdp.sirsi.net/client/default. Coastal Inlets Research Program ERDC/CHL TR-16-17 November 2016 Hydrodynamic Modeling for Channel and Shoreline
Collaborative Research Program on Seafood Toxins
1988-08-14
Crystallographic Structures of Saxitoxins Cl and C2 Appendix C: Collaborative Research Program an Seafcod Toxins Progress Report on Ciguatera and Related...radioimmunoassay for PSP were also evalumted. The Hokama stick test for ciguatera toxin was also evaluated. 4. initiate Studies on the Accumulation...tco•d which caie a form of b-mnn poisoning referred to as ciguatera . The respcnsible toxins originate from ll1ular rine algae of the division
Revised U.S. Climate Science Plan Still Lacking in Key Areas
NASA Astrophysics Data System (ADS)
Showstack, Randy
2004-03-01
A U.S. National Research Council committee has found that a revised strategic plan for the U.S. Climate Change Science Program (CCSP) includes elements ``that could permit it to effectively guide research on climate and associated global changes over the next decades.'' However, the committee noted that the revision, issued by the CCSP, faces major hurdles related to funding, program priorities, management structure, and maintaining political independence.
ERIC Educational Resources Information Center
Barron, Kenneth E.; Apple, Kevin J.
2014-01-01
Coursework in statistics and research methods is a core requirement in most undergraduate psychology programs. However, is there an optimal way to structure and sequence methodology courses to facilitate student learning? For example, should statistics be required before research methods, should research methods be required before statistics, or…
IVI governance structure : enabling research and development
DOT National Transportation Integrated Search
1999-11-01
This Intelligent Vehicle Initiative (IVI) Governance Model is comprised of four programs. The first is "Enabling Research and Development", designed to provide a forum for industry and government to establish, prioritize, and evaluate IVI goals and r...
Research reports: 1990 NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Six, Frank (Editor); Karr, Gerald R. (Editor)
1990-01-01
Reports on the research projects performed under the NASA/ASEE Summer Faculty Fellowship Program are presented. The program was conducted by The University of Alabama and MSFC during the period from June 4, 1990 through August 10, 1990. Some of the topics covered include: (1) Space Shuttles; (2) Space Station Freedom; (3) information systems; (4) materials and processes; (4) Space Shuttle main engine; (5) aerospace sciences; (6) mathematical models; (7) mission operations; (8) systems analysis and integration; (9) systems control; (10) structures and dynamics; (11) aerospace safety; and (12) remote sensing
Materials processing in space program tasks
NASA Technical Reports Server (NTRS)
Naumann, R. J. (Editor)
1980-01-01
The history, strategy, and overall goal of NASA's Office of Space and Terrestrial Applications program for materials processing in space are described as well as the organizational structures and personnel involved. An overview of each research task is presented and recent publications are listed.
Performance of lap splices in large-scale column specimens affected by ASR and/or DEF.
DOT National Transportation Integrated Search
2012-06-01
This research program conducted a large experimental program, which consisted of the design, construction, : curing, deterioration, and structural load testing of 16 large-scale column specimens with a critical lap splice : region, and then compared ...
ERIC Educational Resources Information Center
Linebarger, Deborah L.; Piotrowski, Jessica Taylor
2010-01-01
Educational TV has been consistently linked to children's learning. In this research, educational TV characteristics were identified, coded, and tested for their influence on children's program-specific comprehension and vocabulary outcomes. Study 1 details a content analysis of TV features including a program's macrostructure (i.e., narrative or…
ERIC Educational Resources Information Center
Beyer, Bonnie
2009-01-01
This paper addresses the structure, philosophy, and curriculum of educational leadership preparation programs and the importance of preparing schools leaders to address the unique needs of students and communities. In particular, it will address how programs can be enhanced by integrating organizational research and philosophies from educational,…
Alabama NASA EPSCoR Preparation Grant Program: Grant No. NCC5-391
NASA Technical Reports Server (NTRS)
Gregory, John C.
2003-01-01
The funded research projects under the Experimental Program to Stimulate Cooperative Research (EPSCoR) grant program and the student fellowship awards are summarized in this report. The projects include: 1) Crystallization of Dehydratase/DcoH: A Target in Lung Disease; 2) Measuring Velocity Profiles in Liquid Metals using an Ultrasonic Doppler Velocimeter; 3) Synthesis, Structure, and Properties of New Thermoelectric Materials; 4) Computational Determination of Structures and Reactivity of Phenol-Formaldehyde Resins; 5) Synthesis of Microbial Polyesters in the NASA Bioreactor; 6) Visualization of Flow-Fields in Magnetocombustion; 7) Synthesis of Fluorescent Saccharide Derivatives. The student fellowship awards include: 1) Distributed Fusion of Satellite Images; 2) Study of the Relationship between Urban Development, Local Climate, and Water Quality for the Atlanta, Georgia Metrop; 3) Computer Simulation of the Effectiveness of a Spring-Loaded Exercise Device.
Research Pilot C. Gordon Fullerton in Cockpit of TU-144LL SST Flying Laboratory
NASA Technical Reports Server (NTRS)
1998-01-01
NASA Research pilot C. Gordon Fullerton sits in cockpit of TU-144LL SST Flying Laboratory. Fullerton was one of two NASA pilots who flew the aircraft as part of a joint high speed research program. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
ERIC Educational Resources Information Center
Ling, Guangming; Rijmen, Frank
2011-01-01
The factorial structure of the Time Management (TM) scale of the Student 360: Insight Program (S360) was evaluated based on a national sample. A general procedure with a variety of methods was introduced and implemented, including the computation of descriptive statistics, exploratory factor analysis (EFA), and confirmatory factor analysis (CFA).…
Advanced High-Temperature Engine Materials Technology Progresses
NASA Technical Reports Server (NTRS)
1995-01-01
The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis-developed matrix, VCAP. The compressor case, which will reduce weight by 30 percent and costs by 50 percent, is scheduled to be engine tested in the near future.
Probabilistic structural analysis methods of hot engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Hopkins, D. A.
1989-01-01
Development of probabilistic structural analysis methods for hot engine structures at Lewis Research Center is presented. Three elements of the research program are: (1) composite load spectra methodology; (2) probabilistic structural analysis methodology; and (3) probabilistic structural analysis application. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) turbine blade temperature, pressure, and torque of the space shuttle main engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; and (3) evaluation of the failure probability. Collectively, the results demonstrate that the structural durability of hot engine structural components can be effectively evaluated in a formal probabilistic/reliability framework.
Space Technology Research Vehicle (STRV)-2 program
NASA Astrophysics Data System (ADS)
Shoemaker, James; Brooks, Paul; Korevaar, Eric J.; Arnold, Graham S.; Das, Alok; Stubstad, John; Hay, R. G.
2000-11-01
The STRV-2 program is the second in a series of three collaborative flight test programs between the U.S. Ballistic Missile Defense Organization (BMDO) and the United Kingdom (UK) Minstry of Defence (MoD). The STRV-2 Experiment Module contains five major experiments to provide proof-of-concept data on system design, data on the mid-earth orbit (MEO) space environment, and data on durability of materials and components operating in the MEO environment. The UK Defence Evaluation and Research Agency (DERA) has provided a mid- wavelength infrared (MWIF) imager to evaluate passive detection of aircraft from space. BMDO, in conjunction with the US Air Force Research Laboratory (AFRL) and the National Aeronautics and Space Administration (NASA), have provided experiments to evaluate use of adaptive structures for vibration suppression, to investigate the use of high bandwidth laser communications to transmit data from space to ground or airborne receivers, to study the durability of materials and components in the MEO space environment, and to measure radiation and micrometeoroid/debris fluence. These experiments are mounted on all- composite structure. This structure provides a significant reduction in weight and cost over comparable aluminum designs while maintaining the high stiffness required by optical payloads. In 1994, STRV-2 was manifested for launch by the DOD Space Test Program. STRV-2, the primary payload on the Tri-Service eXperiment (TSX)-5 spacecraft, was successfully launched on 7 June 2000 on a Pegasus XL from Vandenbery AFB, CA. The STRV-2 program, like the companion STRV-1 program, validates the viability of multi-national, multi-agency collaborations to provide cost effective acquisition of space test data. The experimental data to be obtained will reduce future satellite risk and provide guidelines for further system development.
[JSPS-NRCT Core university program on natural medicine in pharmaceutical sciences].
Saiki, Ikuo; Yamazaki, Mikako; Matsumoto, Kinzo
2009-04-01
The Core University Program provides a framework for international cooperative research in specifically designated fields and topics, centering around a core university in Japan and its counterpart university in other countries. In this program, individual scientists in the affiliated countries carry out cooperative research projects with sharply focused topics and explicitly delineated goals under leadership of the core universities. The Core University Program which we introduce here has been renewed since 2001 under the support of both the Japan Society for the Promotion of Science (JSPS) and the National Research Council of Thailand (NRCT). Our program aims to conduct cooperative researches particularly focusing on Natural Medicine in the field of Pharmaceutical Sciences. Institute of Natural Medicine at University of Toyama (Japan), Faculty of Pharmaceutical Sciences at Chulalongkorn University (Thailand), and Chulabhorn Research Institute (Thailand) have been taking part in this JSPS-NRCT Core University Program as core universities. The Program is also supported by the 20 institution members in both countries. This program is running the five research subject under a key word of natural medicine which are related to i) age-related diseases, ii) allergy and cancer, iii) hepatitis and infectious diseases, iv) structure, synthesis, and bioactivity of natural medicines, and v) molecular biology of Thai medicinal plant components and database assembling of Thai medicinal plants. The program also encourages university members to strengthen related research activities, to share advanced academic and scientific knowledge on natural medicines.
Baldwin, Julie A; Williamson, Heather J; Eaves, Emery R; Levin, Bruce L; Burton, Donna L; Massey, Oliver T
2017-07-24
While some research training programs have considered the importance of mentoring in inspiring professionals to engage in translational research, most evaluations emphasize outcomes specific to academic productivity as primary measures of training program success. The impact of such training or mentoring programs on stakeholders and local community organizations engaged in translational research efforts has received little attention. The purpose of this evaluation is to explore outcomes other than traditional academic productivity in a translational research graduate certificate program designed to pair graduate students and behavioral health professionals in collaborative service-learning projects. Semi-structured qualitative interviews with scholars, community mentors, and academic mentors were conducted regarding a translational research program to identify programmatic impacts. Interviews were transcribed and coded by the research team to identify salient themes related to programmatic outcomes. Results are framed using the Translational Research Impact Scale which is organized into three overarching domains of potential impact: (1) research-related impacts, (2) translational impacts, and (3) societal impacts. This evaluation demonstrates the program's impact in all three domains of the TRIS evaluation framework. Graduate certificate participants (scholars) reported that gaining experience in applied behavioral health settings added useful skills and expertise to their present careers and increased their interest in pursuing translational research. Scholars also described benefits resulting from networks gained through participation in the program, including valuable ties between the university and community behavioral health organizations. This evaluation of the outcomes of a graduate certificate program providing training in translational research highlights the need for more community-oriented and practice-based measures of success. Encouraging practitioner involvement in translational research is vital to translate knowledge into practice and to enable practice-based needs to inform research and policy. A more flexible approach to measuring programmatic success in research training programs can help bridge the knowledge translation gap.
Tu-144LL SST Flying Laboratory on Taxiway at Zhukovsky Air Development Center near Moscow, Russia
NASA Technical Reports Server (NTRS)
1998-01-01
The sleek lines of the Tupolev Tu-144LL are evident as it sits on the taxiway at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
NASA Technical Reports Server (NTRS)
2002-01-01
The purpose of this document is to present the strategic plan and associated organizational structure that the National Space Biomedical Research Institute (NSBRI) will utilize to achieve the defined mission and objectives provided by NASA. Much of the information regarding the background and establishment of the NSBRI by NASA has been provided in other documentation and will not be repeated in this Strategic Plan. This Strategic Plan is presented in two volumes. Volume I (this volume) begins with an Introduction (Section 2) that provides the Institute's NASA-defined mission and objectives, and the organizational structure adopted to implement these through three Strategic Programs: Countermeasure Research; Education, Training and Outreach; and Cooperative Research and Development. These programs are described in Sections 3 to 5. Each program is presented in a similar way, using four subsections: Goals and Objectives; Current Strategies; Gaps and Modifications; and Resource Requirements. Section 6 provides the administrative infrastructure and total budget required to implement the Strategic Programs and assures that they form a single cohesive plan. This plan will ensure continued success of the Institute for the next five years. Volume II of the Strategic Plan provides an in-depth analysis of the current and future strategic programs of the 12 current NSBRI teams, including their goals, objectives, mutual interactions and schedules.
Study on the mechanism of perpendicular magnetic anisotropy in Ta/CoFeB/MgO system
NASA Astrophysics Data System (ADS)
Lou, Yongle; Zhang, Yuming; Guo, Hui; Xu, Daqing; Yimen, Zhang
2017-06-01
The mechanism of perpendicular magnetic anisotropy (PMA) in a MgO-based magnetic tunnel junction (MTJ) has been studied in this article. By comparing the magnetic properties and elementary composition analysis for different CoFeB-based structures, such as Ta/CoFeB/MgO, Ta/CoFeB/Ta and Ru/CoFeB/MgO structures, it is found that a certain amount of Fe-oxide existing at the interface of CoFeB/MgO is helpful to enhance the PMA and the PMA is originated from the interface of CoFeB/MgO. In addition, Ta film plays an important role to enhance the PMA in Ta/CoFeB/MgO structure. Project supported by the National Defense Advance Research Foundation (No. 9140A08XXXXXX0DZ106), the Basic Research Program of Ministry of Education, China (No. JY10000925005), the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.11JK0912), the Scientific Research Foundation of Xi’an University of Science and Technology (No. 2010011), the Doctoral Research Startup Fund of Xi’an University of Science and Technology (No. 2010QDJ029).
Financial factors and the implementation of medications for treating opioid use disorders.
Knudsen, Hannah K; Roman, Paul M
2012-12-01
Despite the established effectiveness of pharmacotherapies for treating opioid use disorders, implementation of medications for addiction treatment (MAT) by specialty treatment programs is limited. This research examined relationships between organizational factors and the program-level implementation of MAT, with attention paid to specific sources of funding, organizational structure, and workforce resources. Face-to-face structured interviews were conducted in 2008 to 2009 with administrators of 154 community-based treatment programs affiliated with the National Institute on Drug Abuse's Clinical Trials Network; none of these programs exclusively dispensed methadone without offering other levels of care. Implementation of MAT was measured by summing the percentages of opioid patients receiving buprenorphine maintenance, methadone maintenance, and tablet naltrexone. Financial factors included the percentages of revenues received from Medicaid, private insurance, criminal justice, the Federal block grant, state government, and county government. Organizational structure and workforce characteristics were also measured. Implementation of MAT for opioid use disorders was low. Greater reliance on Medicaid was positively associated with implementation after controlling for organizational structure and workforce measures, whereas the association for reliance on criminal justice revenues was negative. The implementation of MAT for opioid use disorders by specialty addiction treatment programs may be facilitated by Medicaid but may be impeded by reliance on funding from the criminal justice system. These findings point to the need for additional research that considers the impact of organizational dependence on different types of funding on patterns of addiction treatment practice.
Study on Web-Based Tool for Regional Agriculture Industry Structure Optimization Using Ajax
NASA Astrophysics Data System (ADS)
Huang, Xiaodong; Zhu, Yeping
According to the research status of regional agriculture industry structure adjustment information system and the current development of information technology, this paper takes web-based regional agriculture industry structure optimization tool as research target. This paper introduces Ajax technology and related application frameworks to build an auxiliary toolkit of decision support system for agricultural policy maker and economy researcher. The toolkit includes a “one page” style component of regional agriculture industry structure optimization which provides agile arguments setting method that enables applying sensitivity analysis and usage of data and comparative advantage analysis result, and a component that can solve the linear programming model and its dual problem by simplex method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
The Fusion Energy Science Advisory Committee was asked to conduct a review of Fusion Materials Research Program (the Structural Materials portion of the Fusion Program) by Dr. Martha Krebs, Director of Energy Research for the Department of Energy. This request was motivated by the fact that significant changes have been made in the overall direction of the Fusion Program from one primarily focused on the milestones necessary to the construction of successively larger machines to one where the necessary scientific basis for an attractive fusion energy system is. better understood. It was in this context that the review of currentmore » scientific excellence and recommendations for future goals and balance within the Program was requested.« less
Torres, Daniel; Gugala, Zbigniew; Lindsey, Ronald W
2015-04-01
Programs seek to expose trainees to research during residency. However, little is known in any formal sense regarding how to do this effectively, or whether these efforts result in more or better-quality research output. The objective of our study was to evaluate a dedicated resident research program in terms of the quantity and quality of resident research peer-reviewed publications. Specifically we asked: (1) Did residents mentored through a dedicated resident research program have more peer-reviewed publications in higher-impact journals with higher citation rates compared with residents who pursued research projects under a less structured approach? (2) Did this effect continue after graduation? In 2006, our department of orthopaedic surgery established a dedicated resident research program, which consisted of a new research policy and a research committee to monitor quality and compliance with this policy. Peer-reviewed publications (determined from PubMed) of residents who graduated 6 years before establishing the dedicated resident research program were compared with publications from an equal period of the research-program-directed residents. The data were assessed using descriptive statistics and regression analysis. Twenty-four residents graduated from 2001 to 2006 (before implementation of the dedicated resident research program); 27 graduated from 2007 to 2012 (after implementation of the dedicated resident research program). There were 74 eligible publications as defined by the study inclusion and exclusion criteria. Residents who trained after implementation of the dedicated resident research program published more papers during residency than did residents who trained before the program was implemented (1.15 versus 0.79 publications per resident; 95% CI [0.05,0.93]; p = 0.047) and the journal impact factor was greater in the group that had the research program (1.25 versus 0.55 per resident; 95% CI [0.2,1.18]; p = 0.005). There were no differences between postresidency publications by trainees who graduated with versus without the research program in the number of publications, citations, and average journal impact factor per resident. A regression analysis showed no difference in citation rates of the residents' published papers before and since implementation of the research program. Currently in the United States, there are no standard policies or requirements that dictate how research should be incorporated in orthopaedic surgery residency training programs. The results of our study suggest that implementation of a dedicated resident research program improves the quantity and to some extent quality of orthopaedic resident research publications, but this effect did not persist after graduation.
NASA Technical Reports Server (NTRS)
Strauss, Alvin M.; Peterson, Steven W.; Main, John A.; Dickenson, Rueben D.; Shields, Bobby L.; Lorenz, Christine H.
1992-01-01
The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area.
NASA Technical Reports Server (NTRS)
Wynne, Eleanor C.
1994-01-01
The purpose is to present the Structural Dynamics Division's research accomplishments for F.Y. 1993 and research plans for F.Y. 1994. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5-year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Smith, Jacqueline G.; Gardner, James E.
1990-01-01
The purpose is to present the Structural Dynamics Division's research accomplishments for FY 1989 and research plans for FY 1990. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.
1000 days on orbit: lessons learned from the ACTEX-I flight experiment
NASA Astrophysics Data System (ADS)
Erwin, R. Scott; Denoyer, Keith K.
2000-06-01
This paper presents a review of the Air Force Research Laboratory advanced controls technology experiment program. Representing the first space-demonstration of smart structures technology, the ACTEX-I program has met or exceeded all program goals at each stage, beginning with the program initiation in 1991 through launch in 1996 to the conclusion of the Guest Investigator program and program conclusion in 1999. This paper will provide a summary of the ACTEX-I program from the AFRL perspective, focusing on lessons learned from the program both positive and negative.
The dynamic properties of sandwich structures based on metal-ceramic foams.
DOT National Transportation Integrated Search
2014-01-01
The present research program has studied the fracture properties of closed pore metal-ceramic foams for their potential applications as core systems in sandwich structures. The composite foams were created at Fireline, Inc. (Youngstown, OH) using the...
My career as an immunoglycobiologist.
Marcus, Donald M
2013-01-01
The research program of my laboratory included three major topics: the structures and immunology of human carbohydrate blood group and glycosphingolipid antigens; the tissue distribution, subcellular localization and biosynthesis of glycosphingolipids; and the structural basis of the binding of carbohydrates by antibodies and lectins.
Using planned adaptation to implement evidence-based programs with new populations.
Lee, Shawna J; Altschul, Inna; Mowbray, Carol T
2008-06-01
The Interactive Systems Framework (ISF) for Dissemination and Implementation (Wandersman et al. 2008) elaborates the functions and structures that move evidence-based programs (EBPs) from research to practice. Inherent in that process is the tension between implementing programs with fidelity and the need to tailor programs to fit the target population. We propose Planned Adaptation as one approach to resolve this tension, with the goal of guiding practitioners in adapting EBPs so that they maintain core components of program theory while taking into account the needs of particular populations. Planned Adaptation is a form of capacity building within the Prevention Support System that provides a framework to guide practitioners in adapting programs while encouraging researchers to provide information relevant to adaptation as a critical aspect of dissemination research, with the goal of promoting wider dissemination and better implementation of EBPs. We illustrate Planned Adaptation using the JOBS Program (Caplan et al. 1989), which was developed for recently laid-off, working- and middle-class workers and subsequently implemented with welfare recipients.
Advanced interdisciplinary undergraduate program: light engineering
NASA Astrophysics Data System (ADS)
Bakholdin, Alexey; Bougrov, Vladislav; Voznesenskaya, Anna; Ezhova, Kseniia
2016-09-01
The undergraduate educational program "Light Engineering" of an advanced level of studies is focused on development of scientific learning outcomes and training of professionals, whose activities are in the interdisciplinary fields of Optical engineering and Technical physics. The program gives practical experience in transmission, reception, storage, processing and displaying information using opto-electronic devices, automation of optical systems design, computer image modeling, automated quality control and characterization of optical devices. The program is implemented in accordance with Educational standards of the ITMO University. The specific features of the Program is practice- and problem-based learning implemented by engaging students to perform research and projects, internships at the enterprises and in leading Russian and international research educational centers. The modular structure of the Program and a significant proportion of variable disciplines provide the concept of individual learning for each student. Learning outcomes of the program's graduates include theoretical knowledge and skills in natural science and core professional disciplines, deep knowledge of modern computer technologies, research expertise, design skills, optical and optoelectronic systems and devices.
Advancing Adult Education Research. Meeting Summary (Washington, DC, April 26, 2012)
ERIC Educational Resources Information Center
Institute of Education Sciences, 2012
2012-01-01
The goal of this meeting was to discuss the challenges of adult education and mechanisms to better understand and address those challenges through research. The meeting was structured around three panel discussions representing the perspectives of State directors of adult education programs, adult education researchers, and education research…
2000-04-20
Cindy Barnes of University Space Research Association (USRA) at NASA's Marshall Space Flight Center pipettes a protein solution in preparation to grow crystals as part of NASA's structural biology program. Research on Earth helps scientists define conditions and specimens they will use in space experiments.
EAWAG: An Environmental Science and Engineering Resource.
ERIC Educational Resources Information Center
Miller, Stanton
1980-01-01
Interviewed is the director of a Swiss research and teaching institute in the field of water resources, water pollution control, and waste management. Topics include lake studies, research programs and priorities, advisory services, and the organizational structure of EAWAG. (BT)
Evaluation of the engineering characteristics of RAP/Aggregate blends.
DOT National Transportation Integrated Search
2005-07-01
"This report describes results from a research program that was structured to evaluate the : suitability of using reclaimed and recycled asphalt pavement (RAP) as an additive to crushed : angular aggregate or pit run granular soils. Research and test...
On-line high-speed rail defect detection, phase III : research results.
DOT National Transportation Integrated Search
2005-10-01
The Federal Railroad Administration (FRA) Office of Research and Developments Track and Structures Program sponsored a study for developing and testing a rail defect detection system based on ultrasonic guided waves and non-contact probing. Curren...
Development of a Bridge Construction Live Load Analysis Guide
DOT National Transportation Integrated Search
2012-12-01
This project was sponsored through the Wisconsin Highway Research Program and its Structure Technical Oversight : Committee. The objective of this research was to develop a guide for the analysis of construction loads with and without : traffic live ...
Famenka, Andrei
2016-12-01
This paper examines the ability of countries in Central and Eastern Europe (CEE) to ensure appropriate protection of research participants in the field of increasingly globalizing biomedical research. By applying an analytical framework for identifying gaps in policies and programs for human subjects protection to four countries of CEE-Belarus, Latvia, Lithuania, and Poland, substantial gaps in the scope and content of relevant policies and major impediments to program performance have been revealed. In these countries, public policies on the protection of research participants lack consistency and reliable mechanisms for their implementation. Impediments to program performance most often relate to inadequacies in the national research ethics systems with regard to organizational structure, budgetary support, supervision, and training. The level of research ethics capacity varies from country to country and depends on socio-economic and political factors of post-communist transition. The breadth and depth of the problems identified suggest that the current level of protection for research participants in CEE might be inadequate to the challenges posed by the globalization of biomedical research. In CEE countries, there is a need for strengthening research ethics capacity through modification of relevant policies and improvement of program management. The differences among the countries call for further research on identifying the best approaches for filling the gaps in the policies and programs aimed at ensuring effective protection of research participants.
Famenka, Andrei
2015-01-01
This paper examines the ability of countries in Central and Eastern Europe (CEE) to ensure appropriate protection of research participants in the field of increasingly globalizing biomedical research. By applying an analytical framework for identifying gaps in policies and programs for human subjects protection to four countries of CEE – Belarus, Latvia, Lithuania, and Poland, substantial gaps in the scope and content of relevant policies and major impediments to program performance have been revealed. In these countries, public policies on the protection of research participants lack consistency and reliable mechanisms for their implementation. Impediments to program performance most often relate to inadequacies in the national research ethics systems with regard to organizational structure, budgetary support, supervision, and training. The level of research ethics capacity varies from country to country and depends on socio-economic and political factors of post-communist transition. The breadth and depth of the problems identified suggest that the current level of protection for research participants in CEE might be inadequate to the challenges posed by the globalization of biomedical research. In CEE countries, there is a need for strengthening research ethics capacity through modification of relevant policies and improvement of program management. The differences among the countries call for further research on identifying the best approaches for filling the gaps in the policies and programs aimed at ensuring effective protection of research participants. PMID:26548313
Integration through Programming and a Model To Provide Structure.
ERIC Educational Resources Information Center
Jordan, Debra J.
1997-01-01
Summarizes research on the benefits of integrating campers with diverse characteristics, and describes the "benefits-based model" of programming, which addresses social problems through recreational activities. Implications for camp administration include recruiting participants and staff from various ethnic and social backgrounds and identifying…
Structure and Deviancy Training in After-School Programs
ERIC Educational Resources Information Center
Rorie, Melissa; Gottfredson, Denise C.; Cross, Amanda; Wilson, Denise; Connell, Nadine M.
2011-01-01
Evidence regarding the effectiveness of after-school programs (ASPs) for reducing problem behaviors is mixed. Unstructured ASPs may increase antisocial behavior by increasing "deviancy training" opportunities, when peers reinforce deviant attitudes and behaviors. This research analyses approximately 3000 five-minute intervals from 398 observations…
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2005-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2004-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.
BURECS: An Interdisciplinary Undergraduate Climate Science Program
NASA Astrophysics Data System (ADS)
Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.
2017-12-01
The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.
NASA's Morphing Project Research Summaries in Fiscal Year 2002
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Waszak, Martin R.
2005-01-01
The Morphing Project at the National Aeronautics and Space Agency s (NASA) Langley Research Center (LaRC) is part of the Breakthrough Vehicle Technologies Project, Vehicle Systems Program that conducts fundamental research on advanced technologies for future flight vehicles. The objectives of the Morphing Project are to develop and assess the advanced technologies and integrated component concepts to enable efficient, multi-point adaptability of flight vehicles; primarily through the application of adaptive structures and adaptive flow control to substantially alter vehicle performance characteristics. This document is a compilation of research summaries and other information on the project for fiscal year 2002. The focus is to provide a brief overview of the project content, technical results and lessons learned. At the time of publication, the Vehicle Systems Program (which includes the Morphing Project) is undergoing a program re-planning and reorganization. Accordingly, the programmatic descriptions of this document pertain only to the program as of fiscal year 2002.
Thompson, Debbe; Cullen, Karen Weber; Boushey, Carol; Konzelmann, Karen
2012-04-26
Teens do not meet guidelines for healthy eating and physical activity. The Internet may be an effective method for delivering programs that help them adopt healthy behaviors. To collect information to design content and structure for a teen-friendly website promoting healthy eating and physical activity behaviors. Qualitative research, encompassing both focus group and interview techniques, were used to design the website. Participants were 12-17 year olds in Houston, Texas, and West Lafayette, Indiana. A total of 133 participants took part in 26 focus groups while 15 participated in one-on-one interviews to provide guidance for the development of teen-friendly content and structure for an online behavior change program promoting healthy eating and physical activity to 12-17 year olds. The youth made suggestions to overcome common barriers to healthy eating and physical activity. Their feedback was used to develop "Teen Choice: Food & Fitness," a 12-week online behavior change program, populated by 4 cartoon character role models. It is critical that members of the target audience be included in formative research to develop behavior change programs that are relevant, appealing, and address their needs and interests.
DAST Mated to B-52 in Flight - Close-up from Below
NASA Technical Reports Server (NTRS)
1977-01-01
This photo shows a BQM-34 Firebee II drone being carried aloft under the wing of NASA's B-52 mothership during a 1977 research flight. The Firebee/DAST research program ran from 1977 to 1983 at the NASA Dryden Flight Research Center, Edwards, California. This is the original Firebee II wing. Firebee 72-1564 made three captive flights--on November 25, 1975; May 17, 1976; and June 22, 1977--in preparation for the DAST project with modified wings. These were for checkout of the Firebee's systems and the prelaunch procedures. The first two used a DC-130A aircraft as the launch vehicle, while the third used the B-52. A single free flight using this drone occurred on July 28, 1977. The remote (ground) pilot was NASA research pilot Bill Dana. The launch and flight were successful, and the drone was caught in midair by an HH-53 helicopter. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F-104 chase plane. When the DAST's mission ended, it deployed a parachute and then a specially equipped Air Force helicopter recovered the drone in mid-air. On the ground, a pilot controlled the DAST vehicle from a remote cockpit while researchers in another room monitored flight data transmitted via telemetry. They made decisions on the conduct of the flight while the DAST was in the air. In case of failure in any of the ground systems, the DAST vehicle could also be flown to a recovery site using a backup control system in the F-104. The DAST Program experienced numerous problems. Only eighteen flights were achieved, eight of them captive (in which the aircraft flew only while still attached to the launch aircraft). Four of the flights were aborted and two resulted in crashes--one on June 12, 1980, and the second on June 1, 1983. Meanwhile, flight experiments with higher profiles, better funded remotely piloted research vehicles took priority over DAST missions. After the 1983 crash, which was caused by a malfunction that disconnected the landing parachute from the drone, the program was disbanded. Because DAST drones were considered expendable, certain losses were anticipated. Managers and researchers involved in other high-risk flight projects gained insights from the DAST program that could be applied to their own flight research programs. The DAST aircraft had a wingspan of 14 feet, four inches and a nose-to-tail length of 28 feet, 4 inches. The fuselage had a radius of about 2.07 feet. The aircraft's maximum loaded weight was about 2,200 pounds. It derived its power from a Continental YJ69-T-406 engine.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.
1997-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.
Development of Structural Neurobiology and Genomics Programs in the Neurogenetic Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Brian E., M.D.
The purpose of the DOE equipment-only grant was to purchase instrumentation in support of structural biology and genomics core facilities in the Zilkha Neurogenetic Institute (ZNI). The ZNI, a new laboratory facility (125,000 GSF) and a center of excellence at the Keck School of Medicine of USC, was opened in 2003. The goal of the ZNI is to recruit upwards of 30 new faculty investigators engaged in interdisciplinary research programs that will add breadth and depth to existing school strengths in neuroscience, epidemiology and genetics. Many of these faculty, and other faculty researchers at the Keck School will access structuralmore » biology and genomics facilities developed in the ZNI.« less
Light aircraft crash safety program
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Hayduk, R. J.
1974-01-01
NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions. The analytical techniques being developed both in-house and under contract are described, and a comparison of some analytical predictions with experimental results is shown.
2008-03-01
programs regularly use mean differences between pretest and posttest measurements to represent program impact. However, research shows that participants...al. (2005) conducted a one-way comparison of models, using a single group’s pretest and posttest scores. The 2x2 structure of this research requires...for self-reports.........................................43 6. Within group across occasion ( pretest , posttest ) means, mean differences
Active Control of Supersonic Impinging Jets Using Supersonic Microjets
2005-01-01
Impinging Jets using Supersonic Microjets 5b. GRANT NUMBER F49620-03-1-0017 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Farrukh Alvi 5e. TASK...investigation on the use of microjets for the control of supersonic impinging jets was conducted under this research program. Supersonic impinging...aircraft structures and the landing surfaces. Prior research has shown that microjets , placed around the main jet periphery, are very effective in
Graduate engineering research participation in aeronautics
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1984-01-01
Graduate student engineering research in aeronautics at Old Dominion University is surveyed. Student participation was facilitated through a NASA sponsored university program which enabled the students to complete degrees. Research summaries are provided and plans for the termination of the grant program are outlined. Project topics include: Failure modes for mechanically fastened joints in composite materials; The dynamic stability of an earth orbiting satellite deploying hinged appendages; The analysis of the Losipescu shear test for composite materials; and the effect of boundary layer structure on wing tip vortex formation and decay.
HgCdTe Surface and Defect Study Program.
1986-03-01
different potential for Hg and Cd and hence be reflected in the electronic structure. The techniques of PES and ARPES available to our research group ...D-A166 795 HOME SURFCE ND DEFECT STUDY PROQRN(U) SATA / BARBRA RESEARCH CENTER GOLETA CALXF J A WILSON ET AL. USI FE MAR 86 SBRC-60411 ND93-63-C...0168 FO2/2 N L6 ILO 1.5 1. 11111 .6 .ICnrnp CHR HgCdTo SURFACE AND DEFECT STUDY PROGRAM J. A. Wilson and V. A. Cotton Santa Barbara Research Center
NASA Astrophysics Data System (ADS)
Ford, K. E. Saavik; Paglione, Timothy; Robbins, Dennis; Mac Low, Mordecai-Mark; Agueros, Marcel A.
2015-01-01
AstroCom NYC is an NSF-funded partnership between astronomers at The City University of New York (CUNY), The American Museum of Natural History (AMNH) and Columbia University, designed to increase recruitment and retention of underrepresented minorities in astronomy and astrophysics. I will discuss the major program elements, including: recruitment, student selection, a 'Methods of Scientific Research' (MSR) course, summer research experience and ongoing structured mentoring. I will also discuss how the programs are integrated into each institution and present progress updates from our first two years.
NASA Technical Reports Server (NTRS)
1997-01-01
This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.
Contributions to Educational Structures that Promote Undergraduate Research
NASA Technical Reports Server (NTRS)
Sepikas, John; Mijic, Milan; Young, Don; Gillam, Steve
1997-01-01
The opportunities for community college and traditionally underrepresented minority students to participate in research experiences are typically rare. Further, what research experiences that are available often underutilizes the students' potential and do not have follow-up programs. The Physics Outreach Program (POP) working in conjunction with the Jet Propulsion Laboratory is designed to reach out to this segment of the student population and encourage them to consider careers in physics and astronomy. The program is special in that it creates a "vertical" consortium or pipeline of schools whereby students graduating from one participating institution will then transfer to another. This helps to insure that participating students will experience continuity and, with the assistance of JPL equipment and staff, a quality of instruction that they would otherwise not be able to afford. Key words. educational outreach, undergraduate research, community college research, underrepresented minority student research
ERIC Educational Resources Information Center
Choi, Hyungsub; Shields, Brit
2015-01-01
The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…
ERIC Educational Resources Information Center
Smock, Charles D., Ed.; And Others
This set of four research reports is a product of the Mathemagenic Activities Program (MAP) for early childhood education of the University of Georgia Follow Through Program. Based on Piagetian theory, the MAP provides sequentially structured sets of curriculum materials and processes that are designed to continually challenge children in…
The Application of Finite Element Solution Techniques in Structural Analysis on a Microcomputer.
1981-12-01
my wife for her support of this research project and the amount of time she spent helping me in preparation. Thanks go to the personnel at Computer...questions which had to be answered concerning the microcomputer in relation to a sequentially programmed finite element program. The first was how big...central site, then usefullness of the microcomputer is limited. The first series of problems consisted of a simple truss structure, which was expanded
High Current Density, Long Life Cathodes for High Power RF Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ives, Robert Lawrence; Collins, George; Falce, Lou
2014-01-22
This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for themore » technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.« less
NASA Technical Reports Server (NTRS)
Zamula, G. N.; Ierusalimsky, K. M.; Kalmykova, G. S.; Fomin, V. P.
1998-01-01
The present paper is a final technical report within the NCCW-1-233 research program (dated June 1, 1997) accomplished as a part of co-operation between United States' NASA and Russia's Goskomoboronprom in aeronautics, and continues similar NCCW-73 and NCC-1-233 programs accomplished in 1996 and 1997, respectively. The report concludes studies in two domains, "Analyzing the effect of skin postbuckling on general stresses and strains in a composite structure" and "Evaluating the effect of skin postbuckling behavior on general stability of a composite structure"; the work was fulfilled in compliance with NCC-1-233 requirements (as of June 1, 1997). Also, the present studies may be regarded as a partial generalization of efforts in [1, 2] conducted within the above programs in what concerns postbuckling behavior of composite structures.
The Structure of Oceanography in China.
ERIC Educational Resources Information Center
Churgin, James
1984-01-01
Describes the structure of marine science in China. Includes organization and activities of China's National Bureau of Oceanography and programs administered through various ministries, Academia Sinica (China's Academy of Sciences), universities, and provincial institutes. Comments on research vessionals and other development initiatives are also…
A forty-year history of fiber optic smart structures
NASA Astrophysics Data System (ADS)
Udd, Eric; Scheel, Ingrid U.
2017-04-01
In 1977 McDonnell Douglas Astronautics Company began a project on using fiber optic sensors to support the Delta Rocket program. This resulted in a series of fiber sensors to support the measurement of rotation, acoustics, vibration, strain, and temperature for a variety of applications and early work on fiber optic smart structures. The work on fiber optic smart structures transitioned in part to Blue Road Research in 1993 and continued in 2006 to the present at Columbia Gorge Research. This paper summarizes some of the efforts made by these companies to implement fiber optic smart structures over this forty year period.
Achieving biodiversity benefits with offsets: Research gaps, challenges, and needs.
Gelcich, Stefan; Vargas, Camila; Carreras, Maria Jose; Castilla, Juan Carlos; Donlan, C Josh
2017-03-01
Biodiversity offsets are becoming increasingly common across a portfolio of settings: national policy, voluntary programs, international lending, and corporate business structures. Given the diversity of ecological, political, and socio-economic systems where offsets may be applied, place-based information is likely to be most useful in designing and implementing offset programs, along with guiding principles that assure best practice. We reviewed the research on biodiversity offsets to explore gaps and needs. While the peer-reviewed literature on offsets is growing rapidly, it is heavily dominated by ecological theory, wetland ecosystems, and U.S.-based research. Given that majority of offset policies and programs are occurring in middle- and low-income countries, the research gaps we identified present a number of risks. They also present an opportunity to create regionally based learning platforms focused on pilot projects and institutional capacity building. Scientific research should diversify, both topically and geographically, in order to support the successful design, implementation, and monitoring of biodiversity offset programs.
78 FR 3431 - Proposed Information Collection Activity; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-16
... protocols to collect further qualitative information through interviews and/or focus groups with program... Readiness Goals and Head Start Program Functioning'' research project. The purpose of this study is to... functioning. ACF is proposing to use a semi-structured telephone interview protocol to collect information...
Metalevel programming in robotics: Some issues
NASA Technical Reports Server (NTRS)
Kumarn, A.; Parameswaran, N.
1987-01-01
Computing in robotics has two important requirements: efficiency and flexibility. Algorithms for robot actions are implemented usually in procedural languages such as VAL and AL. But, since their excessive bindings create inflexible structures of computation, it is proposed that Logic Programming is a more suitable language for robot programming due to its non-determinism, declarative nature, and provision for metalevel programming. Logic Programming, however, results in inefficient computations. As a solution to this problem, researchers discuss a framework in which controls can be described to improve efficiency. They have divided controls into: (1) in-code and (2) metalevel and discussed them with reference to selection of rules and dataflow. Researchers illustrated the merit of Logic Programming by modelling the motion of a robot from one point to another avoiding obstacles.
August, Gerald J; Winters, Ken C; Realmuto, George M; Tarter, Ralph; Perry, Cheryl; Hektner, Joel M
2004-01-01
This article examines the challenges faced by developers of youth drug abuse prevention programs in transporting scientifically proven or evidence-based programs into natural community practice systems. Models for research on the transfer of prevention technology are described with specific emphasis given to the relationship between efficacy and effectiveness studies. Barriers that impede the successful integration of efficacy methods within effectiveness studies (e.g., client factors, practitioner factors, intervention structure characteristics, and environmental and organizational factors) are discussed. We present a modified model for program development and evaluation that includes a new type of research design, the hybrid efficacy-effectiveness study that addresses program transportability. The utility of the hybrid study is illustrated in the evaluation of the Early Risers "Skills for Success" prevention program.
NASA Astrophysics Data System (ADS)
Eyles, C.; Symons, S. L.; Harvey, C. T.
2016-12-01
Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.
Sustaining health education research programs in Aboriginal communities.
Wisener, Katherine; Shapka, Jennifer; Jarvis-Selinger, Sandra
2017-09-01
Despite evidence supporting the ongoing provision of health education interventions in First Nations communities, there is a paucity of research that specifically addresses how these programs should be designed to ensure sustainability and long-term effects. Using a Community-Based Research approach, a collective case study was completed with three Canadian First Nations communities to address the following research question: What factors are related to sustainable health education programs, and how do they contribute to and/or inhibit program success in an Aboriginal context? Semi-structured interviews and a sharing circle were completed with 19 participants, including members of community leadership, external partners, and program staff and users. Seven factors were identified to either promote or inhibit program sustainability, including: 1) community uptake; 2) environmental factors; 3) stakeholder awareness and support; 4) presence of a champion; 5) availability of funding; 6) fit and flexibility; and 7) capacity and capacity building. Each factor is provided with a working definition, influential moderators, and key evaluation questions. This study is grounded in, and builds on existing research, and can be used by First Nations communities and universities to support effective sustainability planning for community-based health education interventions.
CORSS: Cylinder Optimization of Rings, Skin, and Stringers
NASA Technical Reports Server (NTRS)
Finckenor, J.; Rogers, P.; Otte, N.
1994-01-01
Launch vehicle designs typically make extensive use of cylindrical skin stringer construction. Structural analysis methods are well developed for preliminary design of this type of construction. This report describes an automated, iterative method to obtain a minimum weight preliminary design. Structural optimization has been researched extensively, and various programs have been written for this purpose. Their complexity and ease of use depends on their generality, the failure modes considered, the methodology used, and the rigor of the analysis performed. This computer program employs closed-form solutions from a variety of well-known structural analysis references and joins them with a commercially available numerical optimizer called the 'Design Optimization Tool' (DOT). Any ring and stringer stiffened shell structure of isotropic materials that has beam type loading can be analyzed. Plasticity effects are not included. It performs a more limited analysis than programs such as PANDA, but it provides an easy and useful preliminary design tool for a large class of structures. This report briefly describes the optimization theory, outlines the development and use of the program, and describes the analysis techniques that are used. Examples of program input and output, as well as the listing of the analysis routines, are included.
IEC planning: eight state-of-the-art principles.
Middleton, J
1983-12-01
Considerable experience and research has been accumulated in the last 20 years on the ways in which information/education/communication (IEC) programs can be effectively designed, implemented, and evaluated. Possibly more effort has focused on population and family planning IEC than on any other sectoral program of development communication. Several principles have emerged which, taken together, define the state of the art in the field. These principles provide a framework of experience which can guide the development of comprehensive IEC programs. They include: policy and resource assessment; audience analysis; strategy design; message research and pretesting; participation and feedback; management; evaluation; and collaboration. The nature of the national policy base for population and family planning programs will determine the goals and approaches of the IEC program. Strong policies of limitation on popultion growth lead to equally strong and pervasive IEC efforts designed to directly affect contraceptive behavior. Assessment of existing policy is an essential aspect of the design of an effective IEC program. Policies establish the rationale and boundaries for action. Population and family planning programs are concerned with some of the most intimate human behavior. Consequently, structured and sensitive audience analysis has become an integral part of the design of IEC programs. The design of communication strategy requires clearly stated objectives. Principles of human learning are used to structure information appropriately. Message research and pretesting have become integral components of the strategy design process. Small scale research on specific objectives is necessary to establish the basis for message design. Audience participation and feedback in remaining phases of program development and implementation are important. The management of an IEC program requires a specific combination of planning, flexibility, and creativity. Evaluation of program effects--identification of the degree of change toward stated objectives -- is critical to long term assessment of the underlying strategy and the identification both of needed corrections and new directions for the future. Collaboration with and involvement of stakeholders in the design and implementation of a national IEC program significantly raises the probability that support will be forthcoming. Taken together these 8 principles can become the basic building blocks of an effective population/family planning IEC program.
Saetermoe, Carrie L; Chavira, Gabriela; Khachikian, Crist S; Boyns, David; Cabello, Beverly
2017-01-01
Unconscious bias and explicit forms of discrimination continue to pervade academic institutions. Multicultural and diversity training activities have not been sufficient in making structural and social changes leading to equity, therefore, a new form of critical consciousness is needed to train diverse scientists with new research questions, methods, and perspectives. The purpose of this paper is to describe Building Infrastructure Leading to Diversity (BUILD); Promoting Opportunities for Diversity in Education and Research (PODER), which is an undergraduate biomedical research training program based on transformative framework rooted in Critical Race Theory (CRT). By employing a CRT-informed curriculum and training in BUILD PODER, students are empowered not only to gain access but also to thrive in graduate programs and beyond. Poder means "power" or "to be able to" in Spanish. Essentially, we are "building power" using students' strengths and empowering them as learners. The new curriculum helps students understand institutional policies and practices that may prevent them from persisting in higher education, learn to become their own advocates, and successfully confront social barriers and instances of inequities and discrimination. To challenge these barriers and sustain campus changes in support of students, BUILD PODER works toward changing campus culture and research mentoring relationships. By joining with ongoing university structures such as the state university Graduation Initiative, we include CRT tenets into the campus dialogue and stimulate campus-wide discussions around institutional change. Strong ties with five community college partners also enrich BUILD PODER's student body and strengthen mentor diversity. Preliminary evaluation data suggest that BUILD PODER's program has enhanced the racial/ethnic consciousness of the campus community, is effective in encouraging more egalitarian and respectful faculty-student relationships, and is a rigorous program of biomedical research training that supports students as they achieve their goals. Biomedical research programs may benefit from a reanalysis of the fit between current training programs and student strengths. By incorporating the voices of talented youth, drawing upon their native strengths, we will generate a new science that links biomedical research to community health and social justice, generating progress toward health equity through a promising new generation of scholars.
Participatory action research in corrections: The HITEC 2 program.
Cherniack, Martin; Dussetschleger, Jeffrey; Dugan, Alicia; Farr, Dana; Namazi, Sara; El Ghaziri, Mazen; Henning, Robert
2016-03-01
HITEC 2 (Health Improvement through Employee Control 2) is the follow-up to HITEC, a participatory action research (PAR) program that integrates health and work conditions interventions designed by the workforce. HITEC 2 compares intervention programs between two correctional sites, one using a pure workforce level design team and the other using a more structured and time delineated labor-management kaizen effectiveness team. HITEC 2 utilizes a seven step participatory Intervention Design and Analysis Scorecard (IDEAS) for planning interventions. Consistent with PAR, process and intervention efficacy measures are developed and administered through workforce representation. Participation levels, robustness of participatory structures and sophistication of interventions have increased at each measured interval. Health comparisons between 2008 and 2013 showed increased hypertension, static weight maintenance, and increased 'readiness to change'. The PAR approaches are robust and sustained. Their long-term effectiveness in this population is not yet clear. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
1983-01-01
Daily. Proposal Evaluation Procedure Organizations interested in doing the work adverstised submit proposals and cost estimates. The USCG contracting...types of offshore structures. These structures have largely been fixed platforms for petroleum drilling and production, and mobile offshore drilling...structures and of those mobile drilling units that are bottom supported, such as jack-ups and submersibles. Structures which are held in place by anchors
The Rehabilitation Medicine Scientist Training Program
Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn
2016-01-01
Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126
The NASA Materials Science Research Program - It's New Strategic Goals and Plans
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.
2003-01-01
In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.
Russian Tu-144LL SST Roll-out for Joint NASA Research Program
NASA Technical Reports Server (NTRS)
1996-01-01
U.S. Ambassador Pickering addresses Russian and American dignitaries, industry representatives and members of the press during a roll-out ceremony for the modified Tu-144LL supersonic flying laboratory. The ceremony was held at the Zhukovsky Air Development Center near Moscow, Russia, on March 17, 1996. The 'LL' designation for the aircraft stands for Letayuschaya Laboratoriya, which means Flying Laboratory in Russian. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
Jewett-Tennant, Jeri; Collins, Cyleste; Matloub, Jacqueline; Patrick, Alison; Chupp, Mark; Werner, James J.; Borawski, Elaine A.
2017-01-01
Background Community engagement and rigorous science are necessary to address health issues. Increasingly, community health organizations are asked to partner in research. To strengthen such community organization–academic partnerships, increase research capacity in community organizations, and facilitate equitable partnered research, the Partners in Education Evaluation and Research (PEER) program was developed. The program implements an 18-month structured research curriculum for one mid-level employee of a health-focused community-based organization with an organizational mentor and a Case Western Reserve University faculty member as partners. Methods The PEER program was developed and guided by a community–academic advisory committee and was designed to impact the research capacity of organizations through didactic modules and partnered research in the experiential phase. Active participation of community organizations and faculty during all phases of the program provided for bidirectional learning and understanding of the challenges of community-engaged health research. The pilot program evaluation used qualitative and quantitative data collection techniques, including experiences of the participants assessed through surveys, formal group and individual interviews, phone calls, and discussions. Statistical analysis of the change in fellows’ pre-test and post-test survey scores were conducted using paired sample t tests. The small sample size is recognized by the authors as a limitation of the evaluation methods and would potentially be resolved by including more cohort data as the program progresses. Qualitative data were reviewed by two program staff using content and narrative analysis to identify themes, describe and assess group phenomena and determine program improvements. Objectives The objective of PEER is to create equitable partnerships between community organizations and academic partners to further research capacity in said organizations and develop mutually beneficial research partnerships between academia and community organizations. Conclusion PEER demonstrates a commitment to successfully developing sustainable research capacity growth in community organizations, and improved partnered research with academic institutions. PMID:28230553
Jewett-Tennant, Jeri; Collins, Cyleste; Matloub, Jacqueline; Patrick, Alison; Chupp, Mark; Werner, James J; Borawski, Elaine A
2016-01-01
Community engagement and rigorous science are necessary to address health issues. Increasingly, community health organizations are asked to partner in research. To strengthen such community organization-academic partnerships, increase research capacity in community organizations, and facilitate equitable partnered research, the Partners in Education Evaluation and Research (PEER) program was developed. The program implements an 18-month structured research curriculum for one mid-level employee of a health-focused community-based organization with an organizational mentor and a Case Western Reserve University faculty member as partners. The PEER program was developed and guided by a community-academic advisory committee and was designed to impact the research capacity of organizations through didactic modules and partnered research in the experiential phase. Active participation of community organizations and faculty during all phases of the program provided for bidirectional learning and understanding of the challenges of community-engaged health research. The pilot program evaluation used qualitative and quantitative data collection techniques, including experiences of the participants assessed through surveys, formal group and individual interviews, phone calls, and discussions. Statistical analysis of the change in fellows' pre-test and post-test survey scores were conducted using paired sample t tests. The small sample size is recognized by the authors as a limitation of the evaluation methods and would potentially be resolved by including more cohort data as the program progresses. Qualitative data were reviewed by two program staff using content and narrative analysis to identify themes, describe and assess group phenomena and determine program improvements. The objective of PEER is to create equitable partnerships between community organizations and academic partners to further research capacity in said organizations and develop mutually beneficial research partnerships between academia and community organizations. PEER demonstrates a commitment to successfully developing sustainable research capacity growth in community organizations, and improved partnered research with academic institutions.
Flowers, Susan K.; Beyer, Katherine M.; Pérez, Maria; Jeffe, Donna B.
2016-01-01
Research apprenticeships offer opportunities for deep understanding of scientific practice, transparency about research careers, and possible transformational effects on precollege youth. We examined two consecutive field-based environmental biology apprenticeship programs designed to deliver realistic career exploration and connections to research scientists. The Shaw Institute for Field Training (SIFT) program combines introductory field-skills training with research assistance opportunities, and the subsequent Tyson Environmental Research Fellowships (TERF) program provides immersive internships on university field station–based research teams. In a longitudinal mixed-methods study grounded in social cognitive career theory, changes in youth perspectives were measured during program progression from 10th grade through college, evaluating the efficacy of encouraging career path entry. Results indicate SIFT provided self-knowledge and career perspectives more aligned with reality. During SIFT, differences were found between SIFT-only participants compared with those who progressed to TERF. Transition from educational activities to fieldwork with scientists was a pivotal moment at which data showed decreased or increased interest and confidence. Continuation to TERF provided deeper relationships with role models who gave essential early-career support. Our study indicates the two-stage apprenticeship structure influenced persistence in pursuit of an environmental research career pathway. Recommendations for other precollege environmental career–exploration programs are presented. PMID:27909017
A Review of Research on Impulsive Loading of Marine Composites
NASA Astrophysics Data System (ADS)
Porfiri, Maurizio; Gupta, Nikhil
Impulsive loading conditions, such as those produced by blast waves, are being increasingly recognized as relevant in marine applications. Significant research efforts are directed towards understanding the impulsive loading response of traditional naval materials, such as aluminum and steel, and advanced composites, such as laminates and sandwich structures. Several analytical studies are directed towards establishing predictive models for structural response and failure of marine structures under blast loading. In addition, experimental research efforts are focused on characterizing structural response to blast loading. The aim of this review is to provide a general overview of the state of the art on analytical and experimental studies in this field that can serve as a guideline for future research directions. Reported studies cover the Office of Naval Research-Solid Mechanics Program sponsored research along with other worldwide research efforts of relevance to marine applications. These studies have contributed to developing a fundamental knowledge of the mechanics of advanced materials subjected to impulsive loading, which is of interest to all Department of Defense branches.
NASA Langley Research Center's Contributions to International Active Buffeting Alleviation Programs
NASA Technical Reports Server (NTRS)
Moses, Robert W.
2000-01-01
Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.
Contributions to Active Buffeting Alleviation Programs by the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Moses, Robert W.
1999-01-01
Buffeting is an aeroelastic phenomenon which plagues high performance aircraft, especially those with twin vertical tails like the F/A-18, at high angles of attack. This buffeting is a concern from fatigue and inspection points of view. By means of wind-tunnel and flight tests, this phenomenon is well studied to the point that buffet loads can be estimated and fatigue life can be increased by structural enhancements to the airframe. In more recent years, buffeting alleviation through active control of smart materials has been highly researched in wind-tunnel proof-of-concept demonstrations and full-scale ground tests using the F/A-18 as a test bed. Because the F/A-18 resides in fleets outside as well as inside the United States, these tests have evolved into international collaborative research activities with Australia and Canada, coordinated by the Air Force Research Laboratory (AFRL) and conducted under the auspices of The Technical Cooperation Program (TTCP). With the recent successes and advances in smart materials, the main focus of these buffeting alleviation tests has also evolved to a new level: utilize the F/A-18 as a prototype to mature smart materials for suppressing vibrations of aerospace structures. The role of the NASA Langley Research Center (LaRC) in these programs is presented.
NASA Astrophysics Data System (ADS)
Riggs, Eric M.
2005-03-01
The purpose of this study is to propose a framework drawing on theoretical and empirical science education research that explains the common prominent field-based components of the handful of persistent and successful Earth science education programs designed for indigenous communities in North America. These programs are primarily designed for adult learners, either in a postsecondary or in a technical education setting and all include active collaboration between local indigenous communities and geoscientists from nearby universities. Successful Earth science curricula for indigenous learners share in common an explicit emphasis on outdoor education, a place and problem-based structure, and the explicit inclusion of traditional indigenous knowledge in the instruction. Programs sharing this basic design have proven successful and popular for a wide range of indigenous cultures across North America. We present an analysis of common field-based elements to yield insight into indigenous Earth science education. We provide an explanation for the success of this design based in research on field-based learning, Native American learning styles research, and theoretical and empirical research into the nature and structure of indigenous knowledge. We also provide future research directions that can test and further refine our understanding of best practices in indigenous Earth science education.
Guidelines for postdoctoral training in rehabilitation psychology.
Stiers, William; Hanson, Stephanie; Turner, Aaron P; Stucky, Kirk; Barisa, Mark; Brownsberger, Mary; Van Tubbergen, Marie; Ashman, Teresa; Kuemmel, Angela
2012-11-01
This article describes the methods and results of a national conference that was held to (1) develop consensus guidelines about the structure and process of rehabilitation psychology postdoctoral training programs and (2) create a Council of Rehabilitation Psychology Postdoctoral Training Programs to promote training programs' abilities to implement the guidelines and to formally recognize programs in compliance with the guidelines. Forty-six conference participants were chosen to include important stakeholders in rehabilitation psychology, representatives of rehabilitation psychology training and practice communities, representatives of psychology accreditation and certification bodies, and persons involved in medical education practice and research. Consensus guidelines were developed for rehabilitation psychology postdoctoral training program structure and process and for establishing the Council of Rehabilitation Psychology Postdoctoral Training Programs. The Conference developed aspirational guidelines for postdoctoral education and training programs in applied rehabilitation psychology and established a Council of Rehabilitation Psychology Postdoctoral Training Programs as a means of promoting their adoption by training programs. These efforts are designed to promote quality, consistency, and excellence in the education and training of rehabilitation psychology practitioners and to promote competence in their practice. It is hoped that these efforts will stimulate discussion, assist in the development of improved teaching and evaluation methods, lead to interesting research questions, and generally facilitate the continued systematic development of the profession of rehabilitation psychology. PsycINFO Database Record (c) 2012 APA, all rights reserved
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Rogers, J. L., Jr.
1986-01-01
A finite element based programming system for minimum weight design of a truss-type structure subjected to displacement, stress, and lower and upper bounds on design variables is presented. The programming system consists of a number of independent processors, each performing a specific task. These processors, however, are interfaced through a well-organized data base, thus making the tasks of modifying, updating, or expanding the programming system much easier in a friendly environment provided by many inexpensive personal computers. The proposed software can be viewed as an important step in achieving a 'dummy' finite element for optimization. The programming system has been implemented on both large and small computers (such as VAX, CYBER, IBM-PC, and APPLE) although the focus is on the latter. Examples are presented to demonstrate the capabilities of the code. The present programming system can be used stand-alone or as part of the multilevel decomposition procedure to obtain optimum design for very large scale structural systems. Furthermore, other related research areas such as developing optimization algorithms (or in the larger level: a structural synthesis program) for future trends in using parallel computers may also benefit from this study.
Atchison, Michael L
2009-01-01
There is a nationwide shortage of veterinarian-scientists in the United States. Barriers to recruiting veterinary students into research careers need to be identified, and mechanisms devised to reduce these barriers. Barriers to attracting veterinary students into research careers include ignorance of available research careers and of the training opportunities. Once admitted, students in research training programs often feel isolated, fitting into neither the veterinary environment nor the research environment. To address the above issues, it is necessary to advertise and educate the public about opportunities for veterinarian-scientists. Schools need to develop high-quality training programs that are well structured but retain appropriate flexibility. Sufficient resources are needed to operate these programs so that students do not graduate with significant debt. A community of veterinarian-scientists needs to be developed so that students do not feel isolated but, rather, are part of a large community of like-minded individuals. Because of the complexities of programs that train veterinarian-scientists, it is necessary to provide extensive advising and for faculty to develop a proactive, servant-leadership attitude. Finally, students must be made aware of career options after graduation.
Research on polycrystalline thin film submodules based on CuInSe sub 2 materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalano, A.; Arya, R.; Carr, L.
1992-05-01
This report describes progress during the first year of a three-year research program to develop 12%-efficient CuInSe{sub 2} (CIS) submodules with area greater than 900 cm{sup 2}. To meet this objective, the program was divided into five tasks: (1) windows, contacts, substrates; (2) absorber material; (3) device structure; (4) submodule design and encapsulation; and (5) process optimization. In the first year of the program, work was concentrated on the first three tasks with an objective to demonstrate a 9%-efficient CIS solar cell. 7 refs.
1989-09-01
here in Omaha. First, I’d like to mention a change we’ve made in the process for reviewing proposed programs for approval in HQUSACE. As most of you... changing markets, we must be more structured in the way we determine what, when, and where to provide our products and how much they are worth. We need to...the O&M area because the projects are on the ground, demands on these projects are changing , and new projects that require additional dollars are
Frontiers of Crystallography: A Project-Based Research-Led Learning Exercise
ERIC Educational Resources Information Center
Wilson, Chick C.; Parkin, Andrew; Thomas, Lynne H.
2012-01-01
A highly interactive research-led learning session for chemistry undergraduates is described, which aims to lead students to an awareness of the applications of crystallography technique through a mentored hands-on crystal structure solution and refinement session. The research-based environment is inherent throughout the 4.5 h program and is…
ERIC Educational Resources Information Center
Gerstein, Lawrence H.; Bayer, Gregory A.
1991-01-01
Discusses contribution of Bystander-Equity Model of Supervisory Helping Behavior to pursuit of employee assistance program (EAP) research based on traditions of field of counseling. Offers structure for pursuing empirical and applied activities in EAP settings. Encourages counseling researchers and practitioners to respond to challenge of working…
ERIC Educational Resources Information Center
Morrell, Elizabeth; Sorensen, Janni; Howarth, Joe
2015-01-01
This article describes the evolution of the Charlotte Action Research Project (CHARP), a community-university partnership founded in 2008 at the University of North Carolina at Charlotte, and focuses particularly on the program's unique organizational structure. Research findings of a project evaluation suggest that the CHARP model's unique…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... shark research fishery to maintain time series data for stock assessments and to meet NMFS' [[Page 67150... tagging programs for identification of migration corridors and stock structure; Maintain time-series of.... DATES: Shark Research Fishery Applications must be received no later than 5 p.m., local time, on...
Improvement of sensitivity of graphene photodetector by creating bandgap structure
NASA Astrophysics Data System (ADS)
Zhang, Ni-Zhen; He, Meng-Ke; Yu, Peng; Zhou, Da-Hua
2017-10-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 51271210), the Chongqing Municipal Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2015jcyjBX0039), and the Foundation for the Creative Research Groups of Higher Education of Chongqing Municipality, China (Grant No. CXTDX201601016).
Constraint Logic Programming approach to protein structure prediction.
Dal Palù, Alessandro; Dovier, Agostino; Fogolari, Federico
2004-11-30
The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.
Humanistic psychology and rehabilitation programs in mental hospitals.
Steele, R L
1976-07-01
A humanistic growth-oriented theory, specifically Maslow's need-satisfaction theory, was used as a basis for examining the contributions work and employment make toward rehabilitation of the state mental hospital patient. Research literature reviewed indicated that if the rehabilitation program is to be viable and optimally effective, satisfying the belongingness and esteem needs of the patient is important. Research that stresses the therapeutic benefit of work, as well as research that raises the issue of workshops inhibiting independence and fostering dependence are presented. Modifications of rehabilitation programs that resulted in reports of increased program effectiveness are discussed. Fundamental features of these alternative or ancillary programs were: 1. a definite structure that allows various levels of advancement; 2. group participation; 3. patient initiative; 4. an orientation that reflects the competitive nature of employment; and 5. early community involvement. The importance of evaluating each client's needs and planning for growth before his/her job placement is considered vital to the program and to the individual.
Structural, magnetic properties, and electronic structure of hexagonal FeCoSn compound
NASA Astrophysics Data System (ADS)
Li, Yong; Dai, Xue-Fang; Liu, Guo-Dong; Wei, Zhi-Yang; Liu, En-Ke; Han, Xiao-Lei; Du, Zhi-Wei; Xi, Xue-Kui; Wang, Wen-Hong; Wu, Guang-Heng
2018-02-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51431009 and 51271038), the Joint NSFC-ISF Research Program, Jointly Funded by the National Natural Science Foundation of China and the Israel Science Foundation (Grant No. 51561145003).
Recent progress in NASA Langley Research Center textile reinforced composites program
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.
1992-01-01
Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.
Student Success Skills: A Structured Group Intervention for School Counselors
ERIC Educational Resources Information Center
Webb, Linda; Brigman, Greg A.
2007-01-01
This article describes the Student Success Skills (SSS) small group intervention developed for school counselors targeting academic outcomes. The SSS program is based on extensive reviews of research about the skills students need to be successful. Studies supporting program effectiveness are briefly reviewed and show consistent patterns of…
Structuring Program Analysis for Educational Research.
ERIC Educational Resources Information Center
Levine, Donald M.
Education is too complex, multidimensional, and poorly understood to lend itself to a single cost/effectiveness criterion. Rather, analysts in the educational field seek to rank alternatives by their effectiveness, report separately on the cost implications, and leave the tradeoffs to the decisionmaker's judgment. In this context, a program is any…
Infection prevention and control practices in children's hospitals.
Bender, Jeffrey M; Virgallito, Mary; Newland, Jason G; Sammons, Julia S; Thorell, Emily A; Coffin, Susan E; Pavia, Andrew T; Sandora, Thomas J; Hersh, Adam L
2015-05-01
We surveyed hospital epidemiologists at 28 Children's Hospital Association member hospitals regarding their infection prevention and control programs. We found substantial variability between children's hospitals in both the structure and the practice of these programs. Research and the development of evidence-based guidelines addressing infection prevention in pediatrics are needed.
ERIC Educational Resources Information Center
Frauman, Eric
2017-01-01
Sustainability has gained increasing importance amongst both academic research and organizational practice over the past two decades (Davis & Challenger, 2014). The primary purpose of this study was to examine environmentally sustainable practices among college outdoor programs, while also examining how college level policy and infrastructural…
Family Support in Children's Mental Health: A Review and Synthesis
ERIC Educational Resources Information Center
Hoagwood, Kimberly E.; Cavaleri, Mary A.; Olin, S. Serene; Burns, Barbara J.; Slaton, Elaine; Gruttadaro, Darcy; Hughes, Ruth
2010-01-01
A comprehensive review of structured family support programs in children's mental health was conducted in collaboration with leadership from key national family organizations. The goals were to identify typologies of family support services for which evaluation data existed and identify research gaps. Over 200 programs were examined; 50 met…
The Amphibian Research and Monitoring Initiative (ARMI): 5-year report
Muths, Erin; Gallant, Alisa L.; Campbell Grant, Evan H.; Battaglin, William A.; Green, David E.; Staiger, Jennifer S.; Walls, Susan C.; Gunzburger, Margaret S.; Kearney, Rick F.
2006-01-01
This report is a 5-year retrospective of the structure, methodology, progress, and contributions to the broader scientific community that have resulted from this national USGS program. We evaluate ARMI’s success to date, with regard to the challenges faced by the program and the strengths that have emerged. We chart objectives for the next 5 years that build on current accomplishments, highlight areas meriting further research, and direct efforts to overcome existing weaknesses.
ERIC Educational Resources Information Center
Giraldo, Frank
2014-01-01
This article reports the findings of an action research study on a professional development program and its impact on the classroom performance of in-service English teachers who worked at a language institute of a Colombian state university. Questionnaires, semi-structured interviews, class observations, and a researcher's journal were used as…
Bibliography of Supersonic Cruise Aircraft Research (SCAR) Program from 1972 to Mid-1977
NASA Technical Reports Server (NTRS)
Hoffman, S.
1977-01-01
This bibliography documents publications of the supersonic cruise aircraft research (SCAR) program that were generated during the first 5 years of effort. The reports are arranged according to systems studies and five SCAR disciplines: propulsion, stratospheric emissions impact, structures and materials, aerodynamic performance, and stability and control. The specific objectives of each discipline are summarized. Annotation is included for all NASA inhouse and low-number contractor reports. There are 444 papers and articles included.
The 1981 NASA/ASEE Summer Faculty Fellowship Program: Research reports
NASA Technical Reports Server (NTRS)
Karr, G. R.; Dozier, J. B.; Kent, M. I.; Barfield, B. F.
1982-01-01
Research reports related to spacecraft industry technological advances, requirements, and applications were considered. Some of the topic areas addressed were: (1) Fabrication, evaluation, and use of high performance composites and ceramics, (2) antenna designs, (3) electronics and microcomputer applications and mathematical modeling and programming techniques, (4) design, fabrication, and failure detection methods for structural materials, components, and total systems, and (5) chemical studies of bindary organic mixtures and polymer synthesis. Space environment parameters were also discussed.
Condition Assessment Technologies for Water Transmission and Distribution Systems
As part of the U.S. Environmental Protection Agency’s (EPA’s) Aging Water Infrastructure Research Program, this research was conducted to identify and characterize the state of the technology for structural condition assessment of drinking water transmission and distribution syst...
Advanced aerodynamics and active controls. Selected NASA research
NASA Technical Reports Server (NTRS)
1981-01-01
Aerodynamic and active control concepts for application to commercial transport aircraft are discussed. Selected topics include in flight direct strike lightning research, triply redundant digital fly by wire control systems, tail configurations, winglets, and the drones for aerodynamic and structural testing (DAST) program.
Automated generation of weld path trajectories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sizemore, John M.; Hinman-Sweeney, Elaine Marie; Ames, Arlo Leroy
2003-06-01
AUTOmated GENeration of Control Programs for Robotic Welding of Ship Structure (AUTOGEN) is software that automates the planning and compiling of control programs for robotic welding of ship structure. The software works by evaluating computer representations of the ship design and the manufacturing plan. Based on this evaluation, AUTOGEN internally identifies and appropriately characterizes each weld. Then it constructs the robot motions necessary to accomplish the welds and determines for each the correct assignment of process control values. AUTOGEN generates these robot control programs completely without manual intervention or edits except to correct wrong or missing input data. Most shipmore » structure assemblies are unique or at best manufactured only a few times. Accordingly, the high cost inherent in all previous methods of preparing complex control programs has made robot welding of ship structures economically unattractive to the U.S. shipbuilding industry. AUTOGEN eliminates the cost of creating robot control programs. With programming costs eliminated, capitalization of robots to weld ship structures becomes economically viable. Robot welding of ship structures will result in reduced ship costs, uniform product quality, and enhanced worker safety. Sandia National Laboratories and Northrop Grumman Ship Systems worked with the National Shipbuilding Research Program to develop a means of automated path and process generation for robotic welding. This effort resulted in the AUTOGEN program, which has successfully demonstrated automated path generation and robot control. Although the current implementation of AUTOGEN is optimized for welding applications, the path and process planning capability has applicability to a number of industrial applications, including painting, riveting, and adhesive delivery.« less
Diabetes Prevention Program Community Outreach Perspectives on Lifestyle Training and Translation
Venditti, Elizabeth M.; Kramer, M. Kaye
2013-01-01
The gap between what is known from clinical efficacy research and the systematic community translation of diabetes prevention programs is narrowing. During the past 5 years, numerous randomized and nonrandomized dissemination studies have evaluated the modified delivery of structured Diabetes Prevention Program (DPP) interventions in diverse real-world settings. Programs of sufficient dose and duration, implemented with fidelity, have reported weight losses in the range of 4%–7% with associated improvements in cardiometabolic risk factors at 6 and 12 months from baseline. The current article describes some of the experiences and perspectives of a team of University of Pittsburgh researchers as they have engaged in these efforts. PMID:23498296
Overview of the DOE/SERI Biochemical Conversion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, J D
1986-09-01
The Solar Energy Research Institute manages a program of research and development on the biochemical conversion of renewable lignocellulosic materials to liquid fuels for the Department of Energy's Biofuels and Municipal Waste Technology Division. The Biochemical Conversion Program is mission oriented so effort is concentrated on technologies which appear to have the greatest potential for being adopted by the private sector to economically convert lignocellulosic materials into high value liquid transportation fuels such as ethanol. The program is structured to supply the technology for such fuels to compete economically first as an octane booster or fuel additive, and, with additionalmore » improvements, as a neat fuel. 18 refs., 3 figs., 1 tab.« less
Materials processing in space program tasks
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1982-01-01
Active research areas as of the end of the fiscal year 1982 of the Materials Processing in Space Program, NASA-Office of Space and Terrestrial Applications, involving several NASA centers and other organizations are highlighted to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program is described as well as its history, strategy and overall goal; the organizational structures and people involved are identified and each research task is described together with a list of recent publications. The tasks are grouped into four categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies.
Parallel aeroelastic computations for wing and wing-body configurations
NASA Technical Reports Server (NTRS)
Byun, Chansup
1994-01-01
The objective of this research is to develop computationally efficient methods for solving fluid-structural interaction problems by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures on parallel computers. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.
Research requirements to reduce empty weight of helicopters by use of advanced materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffstedt, D.J.
1976-12-01
Utilization of the new, lightweight, high-strength, aerospace structural-composite (filament/matrix) materials, when specifically designed into a new aircraft, promises reductions in structural empty weight of 12% at recurring costs competetive with metals. A program of basic and applied research and demonstration is identified with the objective of advancing the state of the art to the point where civil helicopters are confidently designed, produced, certified, and marketed by 1985. A structural empty-weight reduction of 12% was shown to significantly reduce energy consumption in modern high-performance helicopters.
Synthesis of aircraft structures using integrated design and analysis methods
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Goetz, R. C.
1978-01-01
A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.
NASA Astrophysics Data System (ADS)
Carter, Frances D.
2011-12-01
Low participation and performance in science, technology, engineering, and mathematics (STEM) fields by U.S. citizens are widely recognized as major problems with substantial economic, political, and social ramifications. Studies of collegiate interventions designed to broaden participation in STEM fields suggest that participation in undergraduate research is a key program component that enhances such student outcomes as undergraduate GPA, graduation, persistence in a STEM major, and graduate school enrollment. However, little is known about the mechanisms that are responsible for these positive effects. The current study hypothesizes that undergraduate research participation increases scientific self-efficacy and scientific research proficiency. This hypothesis was tested using data obtained from a survey of minority students from several STEM intervention programs that offer undergraduate research opportunities. Students were surveyed both prior to and following the summer of 2010. Factor analysis was used to examine the factor structure of participants' responses on scientific self-efficacy and scientific research proficiency scales. Difference-in-difference analysis was then applied to the resulting factor score differences to estimate the relationship of summer research participation with scientific self-efficacy and scientific research proficiency. Factor analytic results replicate and further validate previous findings of a general scientific self-efficacy construct (Schultz, 2008). While the factor analytic results for the exploratory scientific research proficiency scale suggest that it was also a measureable construct, the factor structure was not generalizable over time. Potential reasons for the lack of generalizability validity for the scientific research proficiency scale are explored and recommendations for emerging scales are provided. Recent restructuring attempts within federal science agencies threaten the future of STEM intervention programs. Causal estimates of the effect of undergraduate research participation on specific and measurable benefits can play an important role in ensuring the sustainability of STEM intervention programs. Obtaining such estimates requires additional studies that, inter alia, incorporate adequate sample sizes, valid measurement scales, and the ability to account for unobserved variables. Political strategies, such as compromise, can also play an important role in ensuring the sustainability of STEM intervention programs.
Kim, Esther S; Omura, Paige M C; Lo, Andrew W
2017-07-01
Translating academic medical research into new therapies is an important challenge for the biopharmaceutical industry and investment communities, which have historically favored later-stage assets with lower risk and clearer commercial value. The Stanford SPARK program is an innovative model for addressing this challenge. The program was created in 2006 to educate students and faculty about bringing academic research from bench to bedside. Every year, the program provides mentorship and funding for approximately a dozen SPARK 'scholars,' with a focus on impacting patient lives, regardless of economic factors. By reviewing the detailed structure, function and operation of SPARK we hope to provide a template for other universities and institutions interested in de-risking and facilitating the translation of biomedical research. Copyright © 2017 Elsevier Ltd. All rights reserved.
The research infrastructure of Chinese foundations, a database for Chinese civil society studies
Ma, Ji; Wang, Qun; Dong, Chao; Li, Huafang
2017-01-01
This paper provides technical details and user guidance on the Research Infrastructure of Chinese Foundations (RICF), a database of Chinese foundations, civil society, and social development in general. The structure of the RICF is deliberately designed and normalized according to the Three Normal Forms. The database schema consists of three major themes: foundations’ basic organizational profile (i.e., basic profile, board member, supervisor, staff, and related party tables), program information (i.e., program information, major program, program relationship, and major recipient tables), and financial information (i.e., financial position, financial activities, cash flow, activity overview, and large donation tables). The RICF’s data quality can be measured by four criteria: data source reputation and credibility, completeness, accuracy, and timeliness. Data records are properly versioned, allowing verification and replication for research purposes. PMID:28742065
NASA Astrophysics Data System (ADS)
Hanfland, Claudia; Sprengel, Claudia
2015-04-01
Structured postgraduate programs are a relatively new feature at German Higher Educational Institutions, mainly fostered in the 90ies by the funding programs of the German Science Foundation (Research Training Groups) and the Max-Planck-Association (International Max Planck Research Schools). Since then, funding opportunities for postgraduate programs have equally been set up by the Helmholtz and Leibniz Associations as well as the Excellence Initiative. Today, doctoral candidates can chose from a wide range of training programs to earn a doctoral degree within a structured framework under excellent research conditions. In consequence, the percentage of PhD students in natural sciences that follow a PhD within a structured program has been continuously increasing. Graduate Schools provide a roof under which different curricula can be accommodated. They offer a comprehensive training program, foster interdisciplinary thinking and are a key instrument for quality assurance by providing rules relevant and equal to all doctoral candidates regardless of funding or affiliation. With more and more Graduate Schools becoming a permanent feature in the training of doctoral candidates, universities and research institutions are provided with a tool to create added value for the whole range of early career scientists and beyond. The Alfred Wegener Institute for Polar and Marine Research (AWI) is currently developing a comprehensive strategy for early and pre-career support with the aim to provide a continuous support chain from high school students to Postdocs. Included are also the apprentices that get a vocational training at AWI as laboratory assistants, office clerks or qualified IT specialists. AWI aims at establishing a solid training network between these groups (apprentices, high school students, Bc and Ms students, internships, doctoral candidates, and Postdocs) across biographic borders. This network serves more than the classical transition phases from high school to university student, from Master to PhD students or from PhD student to Postdoc. Apprentices are integrated in research projects and supervised by PhD students. The former get a hands-on training in sample processing under realistic conditions, while the latter get support in mastering large sample sets. AWI's high school cooperation HIGHSEA offers a playground to gain teaching and supervising experience for PhD students and Postdocs (see talk by S. Gatti, same session). Within this career development network, AWI's Graduate School POLMAR acts as a nodal point to serve the interconnections, be it alongside the biographical chain or cross-sectoral in nature. POLMAR facilitates the networking and provides a structure in which partnerships with doctoral candidates can be carried out. To conclude, Graduate Schools can do more than improving the situation of doctoral candidates. In the best case, they become an integral part of an institute's career strategy and represent a point where new connections between biographical status groups get established for the benefit of all.
Kuo, Li-Jen; Uchikoshi, Yuuko; Kim, Tae-Jin; Yang, Xinyuan
2016-01-01
The purpose of this study was to examine the relationship between bilingualism and phonological awareness by re-evaluating structural sensitivity theory and expanding cross-language transfer theory. The study was conducted with three groups of 1st and 2nd graders matched in age, SES and non-verbal IQ: a) monolingual English-speaking children from a general education program, b) native Japanese-speaking children from a Japanese-English two-way immersion bilingual program and c) native English-speaking children from the same bilingual program. An odd-man-out task that took into account the phonological and orthographical contrasts between English and Japanese was developed to assess onset awareness. The results showed that the bilingual children outperformed their monolingual peers in processing onsets that are shared between the two languages, which provided empirical support for the first hypothesis derived from structural sensitivity theory and highlighted the importance of contextual variability in bilingual metalinguistic processing. The second hypothesis derived from structural sensitivity theory, which predicated that bilingual advantage would be more evident in processing novel stimuli, was not confirmed in the present study. The absence of the predicted group difference may be attributed to the disparity in the extent of novelty of the stimuli and the difference in the comparability of participants’ degrees of bilingualism between the present study and previous research. Finally, expanding existing research, results from this study showed that cross-language transfer can occur at a phonetic featural level. Future research and theoretical implications were discussed. PMID:28025589
Research and applications: Artificial intelligence
NASA Technical Reports Server (NTRS)
Raphael, B.; Fikes, R. E.; Chaitin, L. J.; Hart, P. E.; Duda, R. O.; Nilsson, N. J.
1971-01-01
A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving research, techniques for general scene analysis based upon television data, and the problems of assembling an integrated robot system. Major accomplishments include the development of a new problem-solving system that uses both formal logical inference and informal heuristic methods, the development of a method of automatic learning by generalization, and the design of the overall structure of a new complete robot system. Eight appendices to the report contain extensive technical details of the work described.
Computer aided design environment for the analysis and design of multi-body flexible structures
NASA Technical Reports Server (NTRS)
Ramakrishnan, Jayant V.; Singh, Ramen P.
1989-01-01
A computer aided design environment consisting of the programs NASTRAN, TREETOPS and MATLAB is presented in this paper. With links for data transfer between these programs, the integrated design of multi-body flexible structures is significantly enhanced. The CAD environment is used to model the Space Shuttle/Pinhole Occulater Facility. Then a controller is designed and evaluated in the nonlinear time history sense. Recent enhancements and ongoing research to add more capabilities are also described.
Boyington, Josephine E.A.; Maihle, Nita J.; Rice, Treva K.; Gonzalez, Juan E.; Hess, Caryl A.; Makala, Levi H.; Jeffe, Donna B.; Ogedegbe, Gbenga; Rao, Dabeeru C.; Dávila-Román, Victor G.; Pace, Betty S.; Jean-Louis, Girardin; Boutjdir, Mohamed
2016-01-01
Aspiring junior investigators from groups underrepresented in the biomedical sciences face various challenges as they pursue research independence. However, the biomedical research enterprise needs their participation to effectively address critical research issues such as health disparities and health inequities. In this article, we share a research education and mentoring initiative that seeks to address this challenge: Programs to Increase Diversity among Individuals Engaged in Health Related Research (PRIDE), funded by the National Heart, Lung, and Blood Institute (NHLBI). This longitudinal research-education and mentoring program occurs through summer institute programs located at US-based academic institutions. Recruited participants are exposed to didactic and lab-based research-skill enhancement experiences, with year-round mentoring over the course of two years. Mentor-mentee matching is based on shared research interests to promote congruence and to enhance skill acquisition. Program descriptions and sample narratives of participants’ perceptions of PRIDE’s impact on their career progress are showcased. Additionally, we highlight the overall program design and structure of four of seven funded summer institutes that focus on cardiovascular disease, related conditions, and health disparities. Mentees’ testimonials about the value of the PRIDE mentoring approach in facilitating career development are also noted. Meeting the clinical and research needs of an increasingly diverse US population is an issue of national concern. The PRIDE initiative, which focuses on increasing research preparedness and professional development of groups underrepresented in the biomedical research workforce, with an emphasis on mentoring as the critical approach, provides a robust model that is impacting the careers of future investigators. PMID:27440978
Boyington, Josephine E A; Maihle, Nita J; Rice, Treva K; Gonzalez, Juan E; Hess, Caryl A; Makala, Levi H; Jeffe, Donna B; Ogedegbe, Gbenga; Rao, Dabeeru C; Dávila-Román, Victor G; Pace, Betty S; Jean-Louis, Girardin; Boutjdir, Mohamed
2016-07-21
Aspiring junior investigators from groups underrepresented in the biomedical sciences face various challenges as they pursue research independence. However, the biomedical research enterprise needs their participation to effectively address critical research issues such as health disparities and health inequities. In this article, we share a research education and mentoring initiative that seeks to address this challenge: Programs to Increase Diversity among Individuals Engaged in Health Related Research (PRIDE), funded by the National Heart, Lung, and Blood Institute (NHLBI). This longitudinal research-education and mentoring program occurs through summer institute programs located at US-based academic institutions. Recruited participants are exposed to didactic and lab-based research-skill enhancement experiences, with year-round mentoring over the course of two years. Mentor-mentee matching is based on shared research interests to promote congruence and to enhance skill acquisition. Program descriptions and sample narratives of participants' perceptions of PRIDE's impact on their career progress are showcased. Additionally, we highlight the overall program design and structure of four of seven funded summer institutes that focus on cardiovascular disease, related conditions, and health disparities. Mentees' testimonials about the value of the PRIDE mentoring approach in facilitating career development are also noted. Meeting the clinical and research needs of an increasingly diverse US population is an issue of national concern. The PRIDE initiative, which focuses on increasing research preparedness and professional development of groups underrepresented in the biomedical research workforce, with an emphasis on mentoring as the critical approach, provides a robust model that is impacting the careers of future investigators.
ERIC Educational Resources Information Center
McDill, Edward L.; And Others
A basic overview of Research and Development (R and D) Centers programs, and the various larger institutions of which they are a part, is given. The administrative and program structure of the Johns Hopkins R and D Center follows, with an organizational chart, staff list, and a program and project register included. A descriptive overview of the…
ERIC Educational Resources Information Center
LaPointe, Michelle; Meyerson, Debra; Darling-Hammond, Linda
2006-01-01
The School Leadership Study was designed to contribute important data on how high quality pre- and in-service programs are structured, how they implement the effective strategies noted in the research literature, and the impact of program graduates in the schools they lead. The study examines whether program components triangulate with graduate…
NASA Technical Reports Server (NTRS)
Baker, C. E.
1977-01-01
The program structure is presented. The activities of the thermochemical cycles program are grouped according to the following categories: (1) specific cycle development, (2) support research and technology, (3) cycle evaluation. Specific objectives and status of on-going activities are discussed. Chemical reaction series for the production of hydrogen are presented. Efficiency and economic evaluations are also discussed.
NASA Astrophysics Data System (ADS)
Chen, Yizhen; Wang, Xiangxian; Wang, Ru; Yang, Hua; Qi, Yunping
2017-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61505074), the National Basic Research Program of China (Grant No. 2013CBA01703), the HongLiu Young Teachers Training Program Funded Projects of Lanzhou University of Technology, China (Grant No. Q201509), and the National Undergraduate Innovation Training Program of China (Grant No. 201610731030).
NASA Space Biology Program. Eighth annual symposium's program and abstracts
NASA Technical Reports Server (NTRS)
Halstead, T. W. (Editor)
1984-01-01
The activities included five half days of presentations by space biology principal investigators, an evening of poster session presentations by research associates, and an afternoon session devoted to the Flight Experiments Program. Areas of discussion included the following: gravity receptor mechanisms; physiological effects of gravity, structural mass; fluid dynamics and metabolism; mechanisms of plant response; and the role of gravity in development.
1982-12-01
parts of the weapon development and ef fects studies each had particular features that led to the possibility of radiation exposure. RADIOLOGICAL...exposures of DOD personnel for interested former partici- pants and for use In public health research and Federal policy studies . Information from...StriActu( ard Equipment 128 Program 4 Bif(,4#crical Studies 133 Program 5 -- Aircrdft Structures 133 Program 6 Test of Service fqipmont and Materials 137
Faupel-Badger, Jessica M.; Raue, Kimberley; Nelson, David E.; Tsakraklides, Sophia
2015-01-01
Published evaluations of career preparation of alumni from long-standing postdoctoral fellowship programs in the biomedical sciences are limited and often focus on quantitative analysis of data from extant publicly available sources. Qualitative methods provide the opportunity to gather robust information about specific program elements from structured postdoctoral training programs and the influence of this training on subsequent career paths of alumni. In-depth interviews with a subset of the National Cancer Institute’s Cancer Prevention Fellowship Program (CPFP) alumni (n = 27), representing more than 25 years of the program’s history and multiple career sectors, were conducted to assess alumni reflections on the training environment and career preparation during their time in the CPFP. NVivo software was used to analyze data and identify major themes. Four main themes emerged from these interviews, including: the value of structured training curriculum, mentorship, transdisciplinary environment, and professional identity. Even when reflecting on training that occurred one to two decades earlier, alumni were able to highlight specific components of a structured postdoctoral training program as influencing their research and career trajectories. These results may have relevance for those interested in assessing how postdoctoral training can influence fellows throughout their careers and understanding salient features of structured programs. PMID:25673353
NASA Microgravity Combustion Science Research Plans for the ISS
NASA Technical Reports Server (NTRS)
Sutliff, Thomas J.
2003-01-01
A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.
2017-02-01
ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe...ARL-TR-7945 ● FEB 2017 US Army Research Laboratory Development of an Anatomically Accurate Finite Element Human Ocular Globe Model... Finite Element Human Ocular Globe Model for Blast-Related Fluid-Structure Interaction Studies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM
Integrated multidisciplinary analysis tool IMAT users' guide
NASA Technical Reports Server (NTRS)
Meissner, Frances T. (Editor)
1988-01-01
The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system developed at Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite controls systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.
Physics division annual report 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thayer, K., ed.
2001-10-04
This report summarizes the research performed in 2000 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory and medium energy physics research, and accelerator research and development. As the Nuclear Science Advisory Committee and the nuclear science community create a new long range plan for the field in 2001, it is clear that the research of the Division is closely aligned with and continues to help define the national goals of our field. The NSAC 2001 Long Range Plan recommends as themore » highest priority for major new construction the Rare Isotope Accelerator (RIA), a bold step forward for nuclear structure and nuclear astrophysics. The accelerator R&D in the Physics Division has made major contributions to almost all aspects of the RIA design concept and the community was convinced that this project is ready to move forward. 2000 saw the end of the first Gammasphere epoch at ATLAS, One hundred Gammasphere experiments were completed between January 1998 and March 2000, 60% of which used the Fragment Mass Analyzer to provide mass identification in the reaction. The experimental program at ATLAS then shifted to other important research avenues including proton radioactivity, mass measurements with the Canadian Penning Trap and measurements of high energy gamma-rays in nuclear reactions with the MSU/ORNL/Texas A&M BaF{sub 2} array. ATLAS provided 5460 beam-research hours for user experiments and maintained an operational reliability of 95%. Radioactive beams accounted for 7% of the beam time. ATLAS also provided a crucial test of a key RIA concept, the ability to accelerate multiple charge states in a superconducting heavy-ion linac. This new capability was immediately used to increase the performance for a scheduled experiment. The medium energy program continued to make strides in examining how the quark-gluon structure of matter impacts the structure of nuclei and extended the exquisite sensitivity of the Atom-Trap-Trace-Analysis technique to new species and applications. All of this progress was built on advances in nuclear theory, which the Division pursues at the quark, hadron, and nuclear collective degrees of freedom levels. These are just a few of the highlights in the Division's research program. The results reflect the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.« less
Research, development and application of noncombustible Beta fiber structures. [for Apollo
NASA Technical Reports Server (NTRS)
Dillon, J. J.; Cobb, E. S.
1975-01-01
Beta fiber was selected as the primary material for flexible fibrous structures used in spacecraft and crew systems applications in the Apollo program because it was noncombustible in a 100 percent oxygen atmosphere up to 16.5 psia. It met NASA criteria for outgassing, toxicity, odor, and crew comfort, and possessed sufficient durability to last through the mission. Topics discussed include: study of spacecraft applications; design of Beta fiber textile structures to meet the requirements; selection of surface treatments (finishes, coatings, and printing systems) to impart the required durability and special functional use to the textile structures; development of sewing and fabrication techniques; and testing and evaluation programs, and development of production sources.