Sample records for structures sessile ciliates

  1. Systematic analysis of microfauna indicator values for treatment performance in a full-scale municipal wastewater treatment plant.

    PubMed

    Hu, Bo; Qi, Rong; Yang, Min

    2013-07-01

    The indicator values of microfauna functional groups and species for treatment performance were systematically evaluated based on the continuous monitoring of the entire microfauna communities including both protozoa and metazoa over a period of 14 months, in two parallel full-scale municipal wastewater treatment systems in a plant in Beijing, China. A total of 57 species of ciliates, 14 species (units) of amoebae, 14 species (units) of flagellates and 4 classes of small metazoa were identified, with Arcella hemisphaerica, Vorticella striata, Vorticella convallaria, Epistylis plicatilis and small flagellates (e.g. Bodo spp.) as the dominant protozoa, and rotifers as the dominant metazoa. The abundance of the sessile ciliates was correlated with the removals of BOD5 (Pearson's r = 0.410, p < 0.05) and CODcr (r = 0.397, p < 0.05) while the testate amoebae was significantly positively related to nitrification (r = 0.523, p < 0.01). At the same time, some other associations were also identified: the abundances of the large flagellates (r = 0.447, p < 0.01), the metazoa (r = 0.718, p < 0.01) and species Aspidisca sulcata (r = 0.337, p < 0.05) were positively related to nitrification; the abundance of Aspidisca costata was correlated to the TN (total nitrogen) removal (r = -0.374, p < 0.05 ); the abundances of the sessile species Carchesium polypinum (r = 0.458, p < 0.01) and E. plicatilis (r = 0.377, p < 0.05) were correlated with the removal of suspended solids.

  2. Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies

    NASA Astrophysics Data System (ADS)

    Stach, Thomas

    2013-12-01

    Pterobranchs have been interpreted as "missing links" combining primitive invertebrate features with advanced vertebrate-like characteristics. The first detailed morphological description of an ontogenetic stage of a pterobranch, based on digital 3D-reconstruction at electron microscopic resolution, reveals a triploblastic animal with monociliated epithelia, an extensive coelomic cavity, a through gut with an asymmetrically developed gill slit but no signs of planktonic specializations, such as ciliated bands. Therefore, this crawling larva supports the hypothesis proposed in previous molecular phylogenetic studies that pterobranchs could be derived within enteropneusts rather than being "missing links".

  3. Origin of animal multicellularity: precursors, causes, consequences—the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion

    PubMed Central

    Cavalier-Smith, Thomas

    2017-01-01

    Evolving multicellularity is easy, especially in phototrophs and osmotrophs whose multicells feed like unicells. Evolving animals was much harder and unique; probably only one pathway via benthic ‘zoophytes’ with pelagic ciliated larvae allowed trophic continuity from phagocytic protozoa to gut-endowed animals. Choanoflagellate protozoa produced sponges. Converting sponge flask cells mediating larval settling to synaptically controlled nematocysts arguably made Cnidaria. I replace Haeckel's gastraea theory by a sponge/coelenterate/bilaterian pathway: Placozoa, hydrozoan diploblasty and ctenophores were secondary; stem anthozoan developmental mutations arguably independently generated coelomate bilateria and ctenophores. I emphasize animal origin's conceptual aspects (selective, developmental) related to feeding modes, cell structure, phylogeny of related protozoa, sequence evidence, ecology and palaeontology. Epithelia and connective tissue could evolve only by compensating for dramatically lower feeding efficiency that differentiation into non-choanocytes entails. Consequentially, larger bodies enabled filtering more water for bacterial food and harbouring photosynthetic bacteria, together adding more food than cell differentiation sacrificed. A hypothetical presponge of sessile triploblastic sheets (connective tissue sandwiched between two choanocyte epithelia) evolved oogamy through selection for larger dispersive ciliated larvae to accelerate benthic trophic competence and overgrowing protozoan competitors. Extinct Vendozoa might be elaborations of this organismal grade with choanocyte-bearing epithelia, before poriferan water channels and cnidarian gut/nematocysts/synapses evolved. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994119

  4. Development of the nervous system in Phoronopsis harmeri (Lophotrochozoa, Phoronida) reveals both deuterostome- and trochozoan-like features

    PubMed Central

    2012-01-01

    Background Inferences concerning the evolution of invertebrate nervous systems are often hampered by the lack of a solid data base for little known but phylogenetically crucial taxa. In order to contribute to the discussion concerning the ancestral neural pattern of the Lophotrochozoa (a major clade that includes a number of phyla that exhibit a ciliated larva in their life cycle), we investigated neurogenesis in Phoronopsis harmeri, a member of the poorly studied Phoronida, by using antibody staining against serotonin and FMRFamide in combination with confocal microscopy and 3D reconstruction software. Results The larva of Phoronopsis harmeri exhibits a highly complex nervous system, including an apical organ that consists of four different neural cell types, such as numerous serotonin-like immunoreactive flask-shaped cells. In addition, serotonin- and FMRFamide-like immunoreactive bi- or multipolar perikarya that give rise to a tentacular neurite bundle which innervates the postoral ciliated band are found. The preoral ciliated band is innervated by marginal serotonin-like as well as FMRFamide-like immunoreactive neurite bundles. The telotroch is innervated by two neurite bundles. The oral field is the most densely innervated area and contains ventral and ventro-lateral neurite bundles as well as several groups of perikarya. The digestive system is innervated by both serotonin- and FMRFamide-like immunoreactive neurites and perikarya. Importantly, older larvae of P. harmeri show a paired ventral neurite bundle with serial commissures and perikarya. Conclusions Serotonin-like flask-shaped cells such as the ones described herein for Phoronopsis harmeri are found in the majority of lophotrochozoan larvae and therefore most likely belong to the ground pattern of the last common lophotrochozoan ancestor. The finding of a transitory paired ventral neurite bundle with serially repeated commissures that disappears during metamorphosis suggests that such a structure was part of the “ur-phoronid” nervous system, but was lost in the adult stage, probably due to its acquired sessile benthic lifestyle. PMID:22827441

  5. Predation Response of Vibrio fischeri Biofilms to Bacterivorus Protists

    PubMed Central

    Chavez-Dozal, Alba; Gorman, Clayton; Erken, Martina; Steinberg, Peter D.; McDougald, Diane

    2013-01-01

    Vibrio fischeri proliferates in a sessile, stable community known as a biofilm, which is one alternative survival strategy of its life cycle. Although this survival strategy provides adequate protection from abiotic factors, marine biofilms are still susceptible to grazing by bacteria-consuming protozoa. Subsequently, grazing pressure can be controlled by certain defense mechanisms that confer higher biofilm antipredator fitness. In the present work, we hypothesized that V. fischeri exhibits an antipredator fitness behavior while forming biofilms. Different predators representing commonly found species in aquatic populations were examined, including the flagellates Rhynchomonas nasuta and Neobodo designis (early biofilm feeders) and the ciliate Tetrahymena pyriformis (late biofilm grazer). V. fischeri biofilms included isolates from both seawater and squid hosts (Euprymna and Sepiola species). Our results demonstrate inhibition of predation by biofilms, specifically, isolates from seawater. Additionally, antiprotozoan behavior was observed to be higher in late biofilms, particularly toward the ciliate T. pyriformis; however, inhibitory effects were found to be widespread among all isolates tested. These results provide an alternative explanation for the adaptive advantage and persistence of V. fischeri biofilms and provide an important contribution to the understanding of defensive mechanisms that exist in the out-of-host environment. PMID:23144127

  6. The microbial community of Ophrydium versatile colonies: endosymbionts, residents, and tenants

    NASA Technical Reports Server (NTRS)

    Duval, B.; Margulis, L.

    1995-01-01

    Ophrydium versatile is a sessile peritrichous ciliate (Kingdom Protoctista, class Oligohymenophora, order Peritrichida, suborder Sessilina) that forms green, gelatinous colonies. Chlorophyll a and b impart a green color to Ophrydium masses due to 400-500 Chlorella-like endosymbionts in each peritrich. Ophrydium colonies, collected from two bog wetlands (Hawley and Leverett, Massachusetts) were analyzed for their gel inhabitants. Other protists include ciliates, mastigotes, euglenids, chlorophytes, and heliozoa. Routine constituents include from 50-100,000 Nitzschia per ml of gel and at least four other diatom genera (Navicula, Pinnularia, Gyrosigma, Cymbella) that may participate in synthesis of the gel matrix. Among the prokaryotes are filamentous and coccoid cyanobacteria, large rod-shaped bacteria, at least three types of spirochetes and one unidentified Saprospira-like organism. Endosymbiotic methanogenic bacteria, observed using fluorescence microscopy, were present in unidentified hypotrichous ciliates. Animals found inside the gel include rotifers, nematodes, and occasional copepods. The latter were observed in the water reservoir of larger Ophrydium masses. From 30-46% of incident visible radiation could be attenuated by Ophrydium green jelly masses in laboratory observations. Protargol staining was used to visualize the elongate macronuclei and small micronucleus of O. versatile zooids and symbiotic algal nuclei. Electron microscopic analysis of the wall of the Chlorella-like symbiont suggests that although the Ophrydium zooids from British Columbia harbor Chlorella vulgaris, those from Hawley Bog contain Graesiella sp. The growth habit in the photic zone and loose level of individuation of macroscopic Ophrydium masses are interpretable as extant analogs of certain Ediacaran biota: colonial protists in the Vendian fossil record.

  7. Swimming Pattern of Vorticella convallaria Trophont in the Hele-Shaw Confinements

    NASA Astrophysics Data System (ADS)

    Park, Younggil; Ryu, Sangjin; Jung, Sunghwan

    In the trophont form Vorticella convallariais a sessile stalked ciliate, which consists of an inverted bell-shaped cell body (zooid) and a slender stalk attaching the zooid to a substrate. Under mechanical shearing, the zooid is separated from the stalk and can swim using circular cilia rows around the oral part. Here we present how the stalkless trophont zooid of V. convallariaswims in Hele-Shaw geometries, as a model system for microorganism swimming. After having harvested stalkless zooids, we observed their swimming in water between two glass surfaces with narrow gaps using video microscopy. Based on their swimming trajectories measured with image analysis, we investigated how the swimming pattern of the trophont zooid of V. convallaria was influenced by the constraints.

  8. Motile behaviour of the free-living planktonic ciliate Zoothamnium pelagicum (Ciliophora, Peritrichia).

    PubMed

    Gómez, Fernando

    2017-06-01

    Zoothamnium pelagicum is the only free-floating species among ∼1000 peritrich ciliates that develops its complete life cycle in the open ocean. In the NW Mediterranean Sea, Z. pelagicum was usually associated with ectobiotic bacteria, while in the South Atlantic Ocean was sometimes fouled by the diatom Licmophora. Each colony constituted a radial branch that joined at its base with other colonies to form a lens-shaped pseudocolony of up to 400 zooids. The cilia beat slowly, propelling the expanded pseudocolony in the direction of the concave face. Contraction was triggered by external stimuli (threat) or occurred spontaneously. Frame-by-frame analyses of high-speed camera sequences revealed that during contraction the pseudocolony reduced its diameter 70-75% in 3-3.2ms with peak velocity up to 350mms -1 . The contraction induced a forward jump of 1-2mm that attained a peak speed of 110mms -1 (∼250pseudocolony lengthss -1 ) in 5ms after onset. This medusa-like locomotion at low Reynolds numbers allowed the pseudocolony to exploit new patches of food resources, as well as to escape from predators. Zoothamnium pelagicum has been able to proliferate in the oligotrophic open ocean, while its sessile counterparts are restricted to eutrophic environments. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge.

    PubMed

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-09-29

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates-ciliates frequently found in anoxic ecosystems-on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885-3,190 and 2,387-2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function.

  10. Ciliate diversity and distribution patterns in the sediments of a seamount and adjacent abyssal plains in the tropical Western Pacific Ocean.

    PubMed

    Zhao, Feng; Filker, Sabine; Stoeck, Thorsten; Xu, Kuidong

    2017-09-12

    Benthic ciliates and the environmental factors shaping their distribution are far from being completely understood. Likewise, deep-sea systems are amongst the least understood ecosystems on Earth. In this study, using high-throughput DNA sequencing, we investigated the diversity and community composition of benthic ciliates in different sediment layers of a seamount and an adjacent abyssal plain in the tropical Western Pacific Ocean with water depths ranging between 813 m and 4566 m. Statistical analyses were used to assess shifts in ciliate communities across vertical sediment gradients and water depth. Nine out of 12 ciliate classes were detected in the different sediment samples, with Litostomatea accounting for the most diverse group, followed by Plagiopylea and Oligohymenophorea. The novelty of ciliate genetic diversity was extremely high, with a mean similarity of 93.25% to previously described sequences. On a sediment depth gradient, ciliate community structure was more similar within the upper sediment layers (0-1 and 9-10 cm) compared to the lower sediment layers (19-20 and 29-30 cm) at each site. Some unknown ciliate taxa which were absent from the surface sediments were found in deeper sediments layers. On a water depth gradient, the proportion of unique OTUs was between 42.2% and 54.3%, and that of OTUs shared by all sites around 14%. However, alpha diversity of the different ciliate communities was relatively stable in the surface layers along the water depth gradient, and about 78% of the ciliate OTUs retrieved from the surface layer of the shallowest site were shared with the surface layers of sites deeper than 3800 m. Correlation analyses did not reveal any significant effects of measured environmental factors on ciliate community composition and structure. We revealed an obvious variation in ciliate community along a sediment depth gradient in the seamount and the adjacent abyssal plain and showed that water depth is a less important factor shaping ciliate distribution in deep-sea sediments unlike observed for benthic ciliates in shallow seafloors. Additionally, an extremely high genetic novelty of ciliate diversity was found in these habitats, which points to a hot spot for the discovery of new ciliate species.

  11. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates

    PubMed Central

    Gimmler, Anna; Korn, Ralf; de Vargas, Colomban; Audic, Stéphane; Stoeck, Thorsten

    2016-01-01

    Illumina reads of the SSU-rDNA-V9 region obtained from the circumglobal Tara Oceans expedition allow the investigation of protistan plankton diversity patterns on a global scale. We analyzed 6,137,350 V9-amplicons from ocean surface waters and the deep chlorophyll maximum, which were taxonomically assigned to the phylum Ciliophora. For open ocean samples global planktonic ciliate diversity is relatively low (ca. 1,300 observed and predicted ciliate OTUs). We found that 17% of all detected ciliate OTUs occurred in all oceanic regions under study. On average, local ciliate OTU richness represented 27% of the global ciliate OTU richness, indicating that a large proportion of ciliates is widely distributed. Yet, more than half of these OTUs shared <90% sequence similarity with reference sequences of described ciliates. While alpha-diversity measures (richness and exp(Shannon H)) are hardly affected by contemporary environmental conditions, species (OTU) turnover and community similarity (β-diversity) across taxonomic groups showed strong correlation to environmental parameters. Logistic regression models predicted significant correlations between the occurrence of specific ciliate genera and individual nutrients, the oceanic carbonate system and temperature. Planktonic ciliates displayed distinct vertical distributions relative to chlorophyll a. In contrast, the Tara Oceans dataset did not reveal any evidence that latitude is structuring ciliate communities. PMID:27633177

  12. Ciliate diversity, community structure, and novel taxa in lakes of the McMurdo Dry Valleys, Antarctica.

    PubMed

    Xu, Yuan; Vick-Majors, Trista; Morgan-Kiss, Rachael; Priscu, John C; Amaral-Zettler, Linda

    2014-10-01

    We report an in-depth survey of next-generation DNA sequencing of ciliate diversity and community structure in two permanently ice-covered McMurdo Dry Valley lakes during the austral summer and autumn (November 2007 and March 2008). We tested hypotheses on the relationship between species richness and environmental conditions including environmental extremes, nutrient status, and day length. On the basis of the unique environment that exists in these high-latitude lakes, we expected that novel taxa would be present. Alpha diversity analyses showed that extreme conditions-that is, high salinity, low oxygen, and extreme changes in day length-did not impact ciliate richness; however, ciliate richness was 30% higher in samples with higher dissolved organic matter. Beta diversity analyses revealed that ciliate communities clustered by dissolved oxygen, depth, and salinity, but not by season (i.e., day length). The permutational analysis of variance test indicated that depth, dissolved oxygen, and salinity had significant influences on the ciliate community for the abundance matrices of resampled data, while lake and season were not significant. This result suggests that the vertical trends in dissolved oxygen concentration and salinity may play a critical role in structuring ciliate communities. A PCR-based strategy capitalizing on divergent eukaryotic V9 hypervariable region ribosomal RNA gene targets unveiled two new genera in these lakes. A novel taxon belonging to an unknown class most closely related to Cryptocaryon irritans was also inferred from separate gene phylogenies. © 2014 Marine Biological Laboratory.

  13. Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea?

    PubMed

    Nielsen, Claus

    2013-08-16

    Two theories for the origin of animal life cycles with planktotrophic larvae are now discussed seriously: The terminal addition theory proposes a holopelagic, planktotrophic gastraea as the ancestor of the eumetazoans with addition of benthic adult stages and retention of the planktotrophic stages as larvae, i.e. the ancestral life cycles were indirect. The intercalation theory now proposes a benthic, deposit-feeding gastraea as the bilaterian ancestor with a direct development, and with planktotrophic larvae evolving independently in numerous lineages through specializations of juveniles. Information from the fossil record, from mapping of developmental types onto known phylogenies, from occurrence of apical organs, and from genetics gives no direct information about the ancestral eumetazoan life cycle; however, there are plenty of examples of evolution from an indirect development to direct development, and no unequivocal example of evolution in the opposite direction. Analyses of scenarios for the two types of evolution are highly informative. The evolution of the indirect spiralian life cycle with a trochophora larva from a planktotrophic gastraea is explained by the trochophora theory as a continuous series of ancestors, where each evolutionary step had an adaptational advantage. The loss of ciliated larvae in the ecdysozoans is associated with the loss of outer ciliated epithelia. A scenario for the intercalation theory shows the origin of the planktotrophic larvae of the spiralians through a series of specializations of the general ciliation of the juvenile. The early steps associated with the enhancement of swimming seem probable, but the following steps which should lead to the complicated downstream-collecting ciliary system are without any advantage, or even seem disadvantageous, until the whole structure is functional. None of the theories account for the origin of the ancestral deuterostome (ambulacrarian) life cycle. All the available information is strongly in favor of multiple evolution of non-planktotrophic development, and only the terminal addition theory is in accordance with the Darwinian theory by explaining the evolution through continuous series of adaptational changes. This implies that the ancestor of the eumetazoans was a holopelagic, planktotrophic gastraea, and that the adult stages of cnidarians (sessile) and bilaterians (creeping) were later additions to the life cycle. It further implies that the various larval types are of considerable phylogenetic value.

  14. A mechanism of transmission and factors affecting coral susceptibility to Halofolliculina sp. infection

    NASA Astrophysics Data System (ADS)

    Rodríguez, S.; Cróquer, A.; Guzmán, H. M.; Bastidas, C.

    2009-03-01

    Anecdotal evidence collected since 2004 suggests that infections caused by ciliates in the genus Halofolliculina may be related to coral mortality in more than 25 scleractinian species in the Caribbean. However, the relationship between the presence of ciliates and coral mortality has not yet been firmly established. Field and laboratory manipulations were used to test if ciliate infections harm corals, if ciliates are able to infect healthy colonies, and if coral susceptibility to ciliate infection depends on temperature, depth, distance to an infected colony, and the presence of injuries. Ciliate infections were always characterized by a visually detectable front of ciliates located on recently exposed coral skeletons. These infections altered the normal structure of the colony by causing tissue mortality (0.8 ± 0.95 cm month-1, mean ± SD) and by delaying or preventing recovery from injuries. Under laboratory conditions, ciliates transmitted directly and horizontally from infected to healthy hosts, and coral susceptibility to ciliate infections increased with the presence of injuries. After invasion, the ciliate population grew, rapidly and after 8 d, produced tissue mortality on 32% of newly infected hosts. Thus, our results support the existence of a new Caribbean coral syndrome that is associated with tissue mortality, is infectious, and transmits directly and horizontally. Even though the role of ciliates in the development of lesions on coral tissues remains unclear, their presence is by far the most conspicuous sign of this syndrome; thus, we propose to name this condition Caribbean ciliate infection (CCI).

  15. Molecular Innovation in Ciliates with Complex Genome Rearrangements

    NASA Astrophysics Data System (ADS)

    Neme, R.; Landweber, L. F.

    2017-07-01

    We study molecular innovation in several ciliate species with unique massive genome rearrangements to understand how a radically distinct genome architecture can shape the process of acquiring new functions, genes and structures.

  16. Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity

    PubMed Central

    Calow, Jenny; Bockau, Ulrike; Struwe, Weston B.; Nowaczyk, Marc M.; Loser, Karin; Crispin, Max

    2016-01-01

    ABSTRACT Antibody glycosylation is a key parameter in the optimization of antibody therapeutics. Here, we describe the production of the anti-cancer monoclonal antibody rituximab in the unicellular ciliate, Tetrahymena thermophila. The resulting antibody demonstrated enhanced antibody-dependent cell-mediated cytotoxicity, which we attribute to unusual N-linked glycosylation. Detailed chromatographic and mass spectrometric analysis revealed afucosylated, oligomannose-type glycans, which, as a whole, displayed isomeric structures that deviate from the typical human counterparts, but whose branches were equivalent to fragments of metabolic intermediates observed in human glycoproteins. From the analysis of deposited crystal structures, we predict that the ciliate glycans adopt protein-carbohydrate interactions with the Fc domain that closely mimic those of native complex-type glycans. In addition, terminal glucose structures were identified that match biosynthetic precursors of human glycosylation. Our results suggest that ciliate-based expression systems offer a route to large-scale production of monoclonal antibodies exhibiting glycosylation that imparts enhanced cell killing activity. PMID:27594301

  17. Filter Feeding, Chaotic Filtration, and a Blinking Stokeslet

    NASA Astrophysics Data System (ADS)

    Blake, J. R.; Otto, S. R.; Blake, D. A.

    The filtering mechanisms in bivalve molluscs, such as the mussel Mytilus edulis, and in sessile organisms, such as Vorticella or Stentor, involve complex fluid mechanical phenomena. In the former example, three different sets of cilia serving different functions are involved in the process whereas in the sessile organisms the flexibility and contractile nature of the stalk may play an important role in increasing the filtering efficiency of the organisms. In both cases, beating microscopic cilia are the ``engines'' driving the fluid motion, so the fluid mechanics will be dominated entirely by viscous forces. A fluid mechanical model is developed for the filtering mechanism in mussels that enables estimates to be made of the pressure drop through the gill filaments due to (i) latero-frontal filtering cilia, (ii) the lateral (pumping) cilia, and (iii) through the non-ciliated zone of the ventral end of the filament. The velocity profile across the filaments indicates that a backflow can occur in the centre of the channel leading to the formation of two ``standing'' eddies which may drive particles towards the mucus-laden short cilia, the third set of cilia. Filter feeding in the sessile organisms is modelled by a point force above a rigid boundary. The point force periodically changes its point of application according to a given protocol (a blinking stokeslet). The resulting fluid field is illustrated via Poincaré sections and particle dispersion-showing the potential for a much improved filtering efficiency. Returning to filter feeding in bivalve molluscs, this concept is extended to a pair of blinking stokeslets above a rigid boundary to give insight into possible mechanisms for movement of food particles onto the short mucus-bearing cilia. The appendix contains a Latin and English version of an ``Ode of Achievement'' in celebration of Sir James Lighthill's contributions to mathematics and fluid mechanics.

  18. Identification of the Causal Agent of Shrimp Black Gill in the Coastal Southeast USA

    NASA Astrophysics Data System (ADS)

    Bassette, M. A.; Verdiyev, R.; Price, A. R.; Walters, T. L.; Landers, S. C.; Walker, A. N.; Geer, P. J.; Frischer, M. E.

    2016-02-01

    Penaeid shrimp including Litopenaeus setiferus (white shrimp), Farfantepenaeus aztecus (brown shrimp), and Farfantepenaeus duorarum (pink shrimp) support the most valuable commercial fisheries in the US Southeast Atlantic. However, since the mid 1990's the fishery has experienced a significant decline in reported harvest, due in part to declines in fishing effort (both fishing trips and licensed vessels). Another primary cause for this decline, particularly for the fall white shrimp, has been hypothesized to be due to severe outbreaks of a gill infection causing tissue melanization (Black Gill), but the agent of Black Gill has not been identified. Histological and molecular studies indicate the presence of a large ciliate with evidence of gill tissue necrosis and the formation of melanized nodules. Sequencing of nearly the complete 18S rRNA gene of the shrimp Black Gill (sBG) ciliate indicates that it is closely related to the apostomate ciliate Hyalophysa chattoni (99.6% nucleotide similarity). However, electron microscopy studies suggest that the sBG ciliate is not H. chattoni and may not even be an apostome ciliate because it lacks many of the definitive ultra-structural characteristics of this group of ciliates including well-stacked kinetodesmal fibers anchoring their basal bodies (kinetosomes), food plaquettes, trichocysts or an epiplasm. Investigations are continuing to identify definitively the sBG ciliate but these results point to the possible discovery of a new species of ciliate.

  19. Cancer emerging from the recurrence of sessile serrated adenoma/polyp resected endoscopically 5 years ago.

    PubMed

    Chino, A; Nagayama, S; Ishikawa, H; Morishige, K; Kishihara, T; Arai, M; Sugiura, Y; Motoi, N; Yamamoto, N; Tamegai, Y; Igarashi, M

    2016-01-01

    Since the serrated neoplastic pathway has been regarded as an important pathway of colorectal carcinogenesis, few reports have been published on clinical cases of cancer derived from sessile serrated adenoma/polyp, especially on recurrence after resected sessile serrated adenoma/polyp. An elderly woman underwent endoscopic mucosal resection of a flat elevated lesion, 30 mm in diameter, in the ascending colon; the histopathological diagnosis at that time was a hyperplastic polyp, now known as sessile serrated adenoma/polyp. Five years later, cancer due to the malignant transformation of the sessile serrated adenoma/polyp was detected at the same site. The endoscopic diagnosis was a deep invasive carcinoma with a remnant sessile serrated adenoma/polyp component. The carcinoma was surgically removed, and the pathological diagnosis was an adenocarcinoma with sessile serrated adenoma/polyp, which invaded the muscularis propria. The surgically removed lesion did not have a B-RAF mutation in either the sessile serrated adenoma/polyp or the carcinoma; moreover, the initial endoscopically resected lesion also did not have a B-RAF mutation. Immunohistochemistry confirmed negative MLH1 protein expression in only the cancer cells. Lynch syndrome was not detected on genomic examination. The lesion was considered to be a cancer derived from sessile serrated adenoma/polyp recurrence after endoscopic resection, because both the surgically and endoscopically resected lesions were detected at the same location and had similar pathological characteristics, with a serrated structure and low-grade atypia. Furthermore, both lesions had a rare diagnosis of a sessile serrated adenoma/polyp without B-RAF mutation. This report highlights the need for the follow-up colonoscopy after endoscopic resection and rethinking our resection procedures to improve treatment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure.

    PubMed

    Sandaa, Ruth-Anne; Pree, Bernadette; Larsen, Aud; Våge, Selina; Töpper, Birte; Töpper, Joachim P; Thyrhaug, Runar; Thingstad, Tron Frede

    2017-08-23

    Factors controlling the community composition of marine heterotrophic prokaryotes include organic-C, mineral nutrients, predation, and viral lysis. Two mesocosm experiments, performed at an Arctic location and bottom-up manipulated with organic-C, had very different results in community composition for both prokaryotes and viruses. Previously, we showed how a simple mathematical model could reproduce food web level dynamics observed in these mesocosms, demonstrating strong top-down control through the predator chain from copepods via ciliates and heterotrophic nanoflagellates. Here, we use a steady-state analysis to connect ciliate biomass to bacterial carbon demand. This gives a coupling of top-down and bottom-up factors whereby low initial densities of ciliates are associated with mineral nutrient-limited heterotrophic prokaryotes that do not respond to external supply of labile organic-C. In contrast, high initial densities of ciliates give carbon-limited growth and high responsiveness to organic-C. The differences observed in ciliate abundance, and in prokaryote abundance and community composition in the two experiments were in accordance with these predictions. Responsiveness in the viral community followed a pattern similar to that of prokaryotes. Our study provides a unique link between the structure of the predator chain in the microbial food web and viral abundance and diversity.

  1. Changes in the oviducal epithelium during the estrous cycle in the marsupial Monodelphis domestica

    PubMed Central

    Kress, Annetrudi; Morson, Gianni

    2007-01-01

    The Monodelphis oviduct can be divided into four anatomical segments: preampulla (comprising fimbriae and infundibulum), ampulla, isthmus with crypts and uterotubal junction. Ovaries are enclosed in a periovarial sac, the bursa, and in some specimens tubules of an epoophoron could be identified. In both structures non-ciliated cells develop small translucent vesicles, which accumulate in the cell apices and presumably produce fluid as often seen in the bursa and in the tubules of the epooophoron. These vesicles do not stain with Alcian blue or PAS. The same applies also to the non-ciliated cells of the fimbriae. The oviducal epithelium of ampulla and the surface epithelium of the isthmus consisting of ciliated and non-ciliated, secretory cells undergo considerable changes during the estrous cycle. Proestrus shows low numbers of ciliated cells, some are in the process of neo-ciliogenesis, non-ciliated cells carry solitary cilia and few remnant secretory granules from the previous cycle may be found. At estrus the amount of ciliated cells in ampulla and isthmus has increased, most non-cililated cells lost the solitary cilia, developed longer microvilli and formed numerous secretory granules in their cell apices. At postestrus secretory products, often surrounded by membranes, are extruded into the oviducal lumen and contribute towards egg coat formation. First signs of deciliation processes are apparent. Solitary cilia reappear. At metestrus only few secretory cells are left with some secretory material. The lumen is often filled with shed cilia and cell apices. Proliferation of basal bodies within non-secretory cells indicate the formation of new ciliated cells. The non-ciliated epithelial cells of the isthmic crypts form no secretory granules but accumulate a great number of translucent vesicles, which in contrast to the secretory granules do not stain with Alcian blue or PAS. PMID:17883438

  2. Redescription of Strombidium oculatum Gruber 1884 (Ciliophora, Oligotrichia).

    PubMed

    Montagnes, David J S; Lowe, Chris D; Poultonb, Alex; Jonsson, Per R

    2002-01-01

    The marine, tide pool-dwelling ciliate Stombidium oculatum was redescribed using live, stained, SEM, and TEM material prepared from samples collected from pools on the Isle of Man (Irish Sea) and Brittany (France). Also, we reviewed the older German and French works that reported on ciliates collected in the Mediterranean and Brittany, respectively. The Brittany and Isle of Man populations of the ciliate were considered identical. Some morphological and behavioural differences exist between the Brittany-Isle of Man populations and the Mediterranean populations, but they were insufficient to distinguish different taxa. Thus, taxa from all three locations were considered to be conspecific. Key features used to describe the ciliate were: morphology and ultrastructure of the free-swimming ciliate; cyst morphology; presence of mixotrophic-chloroplasts; presence of an eye spot composed of stigma obtained from chlorophyte prey; division, morphogenesis, and nuclear structure; live observations and behaviour, including the encystment-excystment cycle. Based on morphological and behavioural characteristics the taxon was distinguished from other similar species, and a neotype has been designated as no type material exists.

  3. Functional diversity of benthic ciliate communities in response to environmental gradients in a wetland of Yangtze Estuary, China.

    PubMed

    Xu, Yuan; Fan, Xinpeng; Warren, Alan; Zhang, Liquan; Xu, Henglong

    2018-02-01

    Researches on the functional diversity of benthic ecosystems have mainly focused on macrofauna, and studies on functional structure of ciliate communities have been based only on trophic- or size-groups. Current research was carried out on the changing patterns of classical and functional diversity of benthic ciliates in response to environmental gradients at three sites in a wetland in Yangtze Estuary. The results showed that changes of environmental factors (e.g. salinity, sediment grain size and hydrodynamic conditions) in the Yangtze Estuary induce variability in species composition and functional trait distribution. Furthermore, increased species richness and diversity did not lead to significant changes in functional diversity due to functional redundancy. However, salt water intrusion of Yangtze Estuary during the dry season could cause reduced functional diversity of ciliate communities. Current study provides the first insight into the functional diversity of ciliate communities in response to environmental gradients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Impact of Soil Texture on Soil Ciliate Communities

    NASA Astrophysics Data System (ADS)

    Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.

    2014-12-01

    Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.

  5. Ciliated protozoa in the impact zone of the Uzhgorod treatment plant

    NASA Astrophysics Data System (ADS)

    Pliashechnyk, Volodimir; Danko, Yaroslav; Łagód, Grzegorz; Drewnowski, Jakub; Kuzmina, Tatiana; Babko, Roman

    2018-02-01

    This paper presents the results of studies on the Uzh River (Ukraine, Zakarpattia Oblast) near the effluent point of a sewage treatment plant in Uzhgorod. The samples were taken at various sites of the treatment plant along the stages of purification process, as well as in the river, at a number of different points above and below the wastewater discharge. At each of these objects, the temperature and O2 were measured. The structure of ciliate assemblage was analyzed along the stages of the treatment process in the WWTP and in the river before and after the sewage discharge. A total of 26 ciliate taxa were observed and included in the analysis. All the studied stations were considered as a continuum in which populations of protozoa spread freely according to their ecological preferences. The majority of ciliate species were encountered in each of the examined stations, but their quantitative development differed significantly, reflecting their response to the environmental conditions at the stations. The analysis of the qualitative and quantitative distribution of ciliate populations by the stations enabled to group them in respect to the peculiarities of the local conditions. The study showed that the majority of the ciliate species, typical of bioreactors, are equally common at the stations of the Uzh River below wastewater discharges. The ciliate assemblage in the oxygen gradient demonstrated a wide spectrum of ecological tolerance at the species level. These findings confirm that ciliates are very good indicators of the environmental quality, provided that detailed information about their environmental priorities is available.

  6. A multistate dynamic site occupancy model for spatially aggregated sessile communities

    USGS Publications Warehouse

    Fukaya, Keiichi; Royle, J. Andrew; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2017-01-01

    Estimation of transition probabilities of sessile communities seems easy in principle but may still be difficult in practice because resampling error (i.e. a failure to resample exactly the same location at fixed points) may cause significant estimation bias. Previous studies have developed novel analytical methods to correct for this estimation bias. However, they did not consider the local structure of community composition induced by the aggregated distribution of organisms that is typically observed in sessile assemblages and is very likely to affect observations.We developed a multistate dynamic site occupancy model to estimate transition probabilities that accounts for resampling errors associated with local community structure. The model applies a nonparametric multivariate kernel smoothing methodology to the latent occupancy component to estimate the local state composition near each observation point, which is assumed to determine the probability distribution of data conditional on the occurrence of resampling error.By using computer simulations, we confirmed that an observation process that depends on local community structure may bias inferences about transition probabilities. By applying the proposed model to a real data set of intertidal sessile communities, we also showed that estimates of transition probabilities and of the properties of community dynamics may differ considerably when spatial dependence is taken into account.Results suggest the importance of accounting for resampling error and local community structure for developing management plans that are based on Markovian models. Our approach provides a solution to this problem that is applicable to broad sessile communities. It can even accommodate an anisotropic spatial correlation of species composition, and may also serve as a basis for inferring complex nonlinear ecological dynamics.

  7. Centrin-like filaments in the cytopharyngeal apparatus of the ciliates Nassula and Furgasonia: evidence for a relationship with microtubular structures.

    PubMed

    Vigues, B; Blanchard, M P; Bouchard, P

    1999-01-01

    The cytopharyngeal apparatus in the Nassulinid ciliates Nassula and Furgasonia is a highly specialized microtubular/filamentous organelle designed for ingestion of organisms such as filamentous bacteria. From studies on living cells, it was previously shown that this organelle, also called "feeding basket," guides the filamentous bacteria and manipulates them to some extent during the early steps of ingestion. This results in a complex sequence of movements where the basket is successively dilated and constricted in its upper part. Whereas some of these movements (dilation) seem to be intrinsic to the microtubular components of the basket, others (constriction) are believed to be mediated by contractile filamentous structures [Tucker, 1968: J. Cell Sci. 3:493-514]. In this study, we have used antibodies raised against ciliate centrins to demonstrate these proteins by Western blot and immunocytochemical methods in Nassula and Furgasonia. In both ciliates, a 20-kDa centrin immunoanalog was localized in the upper (contractile) part of the cytopharyngeal apparatus. Immunoelectron microscopy revealed that cytopharyngeal centrin is engaged in filamentous material, forming a sphincter-like structure possibly involved in the movements of contraction. Interestingly, physical links were noted between filaments labeled for centrin and cytopharyngeal microtubules. The mechanistic implications of these findings are discussed.

  8. Extrusomes in ciliates: diversification, distribution, and phylogenetic implications.

    PubMed

    Rosati, Giovanna; Modeo, Letizia

    2003-01-01

    Exocytosis is, in all likelihood, an important communication method among microbes. Ciliates are highly differentiated and specialized micro-organisms for which versatile and/or sophisticated exocytotic organelles may represent important adaptive tools. Thus, in ciliates, we find a broad range of different extrusomes, i.e ejectable membrane-bound organelles. Structurally simple extrusomes, like mucocysts and cortical granules, are widespread in different taxa within the phylum. They play the roles in each case required for the ecological needs of the organisms. Then, we find a number of more elaborate extrusomes, whose distribution within the phylum is more limited, and in some way related to phylogenetic affinities. Herein we provide a survey of literature and our data on selected extrusomes in ciliates. Their morphology, distribution, and possible function are discussed. The possible phylogenetic implications of their diversity are considered.

  9. Disentangling the impacts of heat wave magnitude, duration and timing on the structure and diversity of sessile marine assemblages

    PubMed Central

    Yunnie, Anna L.E.; Vance, Thomas; Widdicombe, Stephen

    2015-01-01

    Extreme climatic events, including heat waves (HWs) and severe storms, influence the structure of marine and terrestrial ecosystems. Despite growing consensus that anthropogenic climate change will increase the frequency, duration and magnitude of extreme events, current understanding of their impact on communities and ecosystems is limited. Here, we used sessile invertebrates on settlement panels as model assemblages to examine the influence of HW magnitude, duration and timing on marine biodiversity patterns. Settlement panels were deployed in a marina in southwest UK for ≥5 weeks, to allow sufficient time for colonisation and development of sessile fauna, before being subjected to simulated HWs in a mesocosm facility. Replicate panel assemblages were held at ambient sea temperature (∼17 °C), or +3 °C or +5 °C for a period of 1 or 2 weeks, before being returned to the marina for a recovery phase of 2–3 weeks. The 10-week experiment was repeated 3 times, staggered throughout summer, to examine the influence of HW timing on community impacts. Contrary to our expectations, the warming events had no clear, consistent impacts on the abundance of species or the structure of sessile assemblages. With the exception of 1 high-magnitude long-duration HW event, warming did not alter not assemblage structure, favour non-native species, nor lead to changes in richness, abundance or biomass of sessile faunal assemblages. The observed lack of effect may have been caused by a combination of (1) the use of relatively low magnitude, realistic heat wave treatments compared to previous studies (2), the greater resilience of mature adult sessile fauna compared to recruits and juveniles, and (3) the high thermal tolerance of the model organisms (i.e., temperate fouling species, principally bryozoans and ascidians). Our study demonstrates the importance of using realistic treatments when manipulating climate change variables, and also suggests that biogeographical context may influence community-level responses to short-term warming events, which are predicted to increase in severity in the future. PMID:25834773

  10. Secondary structural analyses of ITS1 in Paramecium.

    PubMed

    Hoshina, Ryo

    2010-01-01

    The nuclear ribosomal RNA gene operon is interrupted by internal transcribed spacer (ITS) 1 and ITS2. Although the secondary structure of ITS2 has been widely investigated, less is known about ITS1 and its structure. In this study, the secondary structure of ITS1 sequences for Paramecium and other ciliates was predicted. Each Paramecium ITS1 forms an open loop with three helices, A through C. Helix B was highly conserved among Paramecium, and similar helices were found in other ciliates. A phylogenetic analysis using the ITS1 sequences showed high-resolution, implying that ITS1 is a good tool for species-level analyses.

  11. Trichocyst ribbons of a cryptomonads are constituted of homologs of R-body proteins produced by the intracellular parasitic bacterium of Paramecium.

    PubMed

    Yamagishi, Takahiro; Kai, Atsushi; Kawai, Hiroshi

    2012-04-01

    Trichocysts are ejectile organelles found in cryptomonads, dinoflagellates, and peniculine ciliates. The fine structure of trichocysts differs considerably among lineages, and their evolutionary relationships are unclear. The biochemical makeup of the trichocyst constituents has been studied in the ciliate Paramecium, but there have been no investigations of cryptomonads and dinoflagellates. Furthermore, morphological similarity between the contents of cryptomonad trichocysts and the R-bodies of the endosymbiotic bacteria of Paramecium has been reported. In this study, we identified the proteins of the trichocyst constituents in a red cryptomonad, Pyrenomonas helgolandii, and found their closest relationships to be with rebB that comprises the R-bodies of Caedibacter taeniospiralis (gammaproteobacteria), which is an endosymbiont of Paramecium. In addition, the biochemical makeups of the trichocysts are entirely different between cryptomonads and peniculine ciliates, and therefore, cryptomonad trichocysts have an evolutionary origin independent from the peniculine ciliate trichocysts.

  12. Regeneration of tracheal epithelium using mouse induced pluripotent stem cells.

    PubMed

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Otsuki, Koshi; Miyake, Masao; Hazama, Akihiro; Wada, Ikuo; Omori, Koichi

    2016-01-01

    Conclusion The findings demonstrated the potential use of induced pluripotent stem cells for regeneration of tracheal epithelium. Objective Autologous tissue implantation techniques using skin or cartilage are often applied in cases of tracheal defects with laryngeal inflammatory lesions and malignant tumor invasion. However, these techniques are invasive with an unstable clinical outcome. The purpose of this study was to investigate regeneration in a tracheal defect site of nude rats after implantation of ciliated epithelium that was differentiated from induced pluripotent stem cells. Method Embryoid bodies were formed from mouse induced pluripotent stem cells. They were cultured with growth factors for 5 days, and then cultured at the air-liquid interface. The degree of differentiation achieved prior to implantation was determined by histological findings and the results of real-time polymerase chain reaction. Embryoid bodies including ciliated epithelium were embedded into collagen gel that served as an artificial scaffold, and then implanted into nude rats, creating an 'air-liquid interface model'. Histological evaluation was performed 7 days after implantation. Results The ciliated epithelial structure survived on the lumen side of regenerated tissue. It was demonstrated histologically that the structure was composed of ciliated epithelial cells.

  13. Genome structure drives patterns of gene family evolution in ciliates, a case study using Chilodonella uncinata (Protista, Ciliophora, Phyllopharyngea)

    PubMed Central

    Gao, Feng; Song, Weibo; Katz, Laura A.

    2014-01-01

    In most lineages, diversity among gene family members results from gene duplication followed by sequence divergence. Because of the genome rearrangements during the development of somatic nuclei, gene family evolution in ciliates involves more complex processes. Previous work on the ciliate Chilodonella uncinata revealed that macronuclear β-tubulin gene family members are generated by alternative processing, in which germline regions are alternatively used in multiple macronuclear chromosomes. To further study genome evolution in this ciliate, we analyzed its transcriptome and found that: 1) alternative processing is extensive among gene families; and 2) such gene families are likely to be C. uncinata-specific. We characterized additional macronuclear and micronuclear copies of one candidate alternatively processed gene family -- a protein kinase domain containing protein (PKc) -- from two C. uncinata strains. Analysis of the PKc sequences reveals: 1) multiple PKc gene family members in the macronucleus share some identical regions flanked by divergent regions; and 2) the shared identical regions are processed from a single micronuclear chromosome. We discuss analogous processes in lineages across the eukaryotic tree of life to provide further insights on the impact of genome structure on gene family evolution in eukaryotes. PMID:24749903

  14. Amplifying and attenuating the coffee-ring effect in drying sessile nanofluid droplets

    NASA Astrophysics Data System (ADS)

    Crivoi, A.; Duan, Fei

    2013-04-01

    Experiments and simulations to promote or attenuate the “coffee-ring effect” for pinned sessile nanofluid droplets are presented. The addition of surfactant inside a water suspension of aluminum oxide nanoparticles results in coffee-ring formation after the pinned sessile droplets are fully dried on a substrate, while droplets of the same suspension without the surfactant produce a fine uniform coverage. A mathematical model based on diffusion-limited cluster-cluster aggregation has been developed to explain the observed difference in the experiments. The simulations show that the particle sticking probability is a crucial factor on the morphology of finally dried structures.

  15. Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries.

    PubMed

    Kittelmann, Sandra; Janssen, Peter H

    2011-03-01

    The structure and variability of ciliate protozoal communities in the rumens of domestic New Zealand ruminants feeding on different diets was investigated. The relative abundance of ciliates compared with bacteria was similar across all samples. However, molecular fingerprinting of communities showed ruminant-specific differences in species composition. Community compositions of cattle were significantly influenced by diet. In contrast, diet effects in deer and sheep were weaker than the animal-to-animal variation. Cloning and sequencing of almost-full-length 18S rRNA genes from representative samples revealed that New Zealand ruminants were colonized by at least nine genera of ciliates and allowed the assignment of samples to two distinct community types. Cattle contained A-type communities, with most sequences closely related to those of the genera Polyplastron and Ostracodinium. Deer and sheep (with one exception) harboured B-type communities, with the majority of sequences belonging to the genera Epidinium and Eudiplodinium. It has been suggested that species composition of ciliate communities may impact methane formation in ruminants, with the B-type producing more methane. Therefore, manipulation of ciliate communities may be a means of mitigating methane emissions from grazing sheep and deer in New Zealand. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection.

    PubMed

    Stock, Alexandra; Edgcomb, Virginia; Orsi, William; Filker, Sabine; Breiner, Hans-Werner; Yakimov, Michail M; Stoeck, Thorsten

    2013-07-08

    Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines, that resulted from geological events and contemporary environmental conditions, create selective pressures driving evolutionary processes, and with time, lead to speciation and shape protistan community composition. We conclude that community assembly in DHABs is a mixture of isolated evolution (as evidenced by small changes in V4 primary structure in some taxa) and species sorting (as indicated by the regional absence/presence of individual taxon groups on high levels in taxonomic hierarchy).

  17. Genome structure drives patterns of gene family evolution in ciliates, a case study using Chilodonella uncinata (Protista, Ciliophora, Phyllopharyngea).

    PubMed

    Gao, Feng; Song, Weibo; Katz, Laura A

    2014-08-01

    In most lineages, diversity among gene family members results from gene duplication followed by sequence divergence. Because of the genome rearrangements during the development of somatic nuclei, gene family evolution in ciliates involves more complex processes. Previous work on the ciliate Chilodonella uncinata revealed that macronuclear β-tubulin gene family members are generated by alternative processing, in which germline regions are alternatively used in multiple macronuclear chromosomes. To further study genome evolution in this ciliate, we analyzed its transcriptome and found that (1) alternative processing is extensive among gene families; and (2) such gene families are likely to be C. uncinata specific. We characterized additional macronuclear and micronuclear copies of one candidate alternatively processed gene family-a protein kinase domain containing protein (PKc)-from two C. uncinata strains. Analysis of the PKc sequences reveals that (1) multiple PKc gene family members in the macronucleus share some identical regions flanked by divergent regions; and (2) the shared identical regions are processed from a single micronuclear chromosome. We discuss analogous processes in lineages across the eukaryotic tree of life to provide further insights on the impact of genome structure on gene family evolution in eukaryotes. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  18. Short-term Influence of Drilling Fluid on Ciliates from Activated Sludge in Sequencing Batch Reactors.

    PubMed

    Babko, Roman; Kuzmina, Tatiana; Łagód, Grzegorz; Jaromin-Gleń, Katarzyna; Danko, Yaroslav; Pawłowska, Małgorzata; Pawłowski, Artur

    2017-01-01

    Spent drilling muds are the liquid residues of rock drilling operations. Due to a high concentration of suspended solids and potentially detrimental chemical properties, they can negatively affect microorganisms participating in wastewater treatment processes. We evaluated the addition of a potassium-polymer drilling fluid (DF) to activated sludge in laboratory sequencing batch reactors (SBRs) for municipal wastewater treatment. Ciliate assemblage, the most dynamic component of eukaryotes in activated sludge, and which is highly sensitive to changes in the system, was evaluated. The average ciliate abundance dropped by about 51% (SBR 2; 1% DF added) and 33% (SBR 3; 3% DF added) in comparison to the control (SBR 1; wastewater only). A decrease in the total number of ciliate species during the experiment was observed, from 25 to 24 in SBR 2 and from 17 to 13 in SBR 3. Moreover, a drop in the number of dominant (>100 individuals mL) ciliate species was observed during the experiment-from eight in the control to five in SBR 2 and four in SBR 3-signaling noticeable changes in the quantitative structure of ciliate species. The species analyzed showed different responses to DF addition. The most sensitive was , which is bacteriovorus. In contrast, two predators, and , showed no reaction to DF addition. Our results indicate that addition of potassium-polymer DF, in doses of 1 to 3% of the treated wastewater volume, had no toxic effects on ciliates, but qualitative and quantitative changes in their community were observed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Use of a heterologous monoclonal antibody for cloning and detection of glial fibrillary acidic protein in the bovine ventricular ependyma.

    PubMed

    Bouchard, P; Ravet, V; Meiniel, R; Creveaux, I; Meiniel, A; Vellet, A; Vigues, B

    1999-11-01

    From protozoans to vertebrates, ciliated cells are characterized by well-developed cytoskeletal structures. An outstanding example is the epiplasm, a thick, submembranous skeleton that serves to anchor basal bodies and other cell surface-related organelles in ciliated protozoans. An epiplasm-like cytoskeleton has not yet been observed in metazoan ciliated cells. In a previous study, we reported on MAb E501, a monoclonal antibody raised against epiplasmin-C, the major membrane skeletal protein in the ciliate Tetrahymena pyriformis. It was shown that MAb E501 cross-reacts with glial fibrillary acidic protein (GFAP), the class III intermediate filament protein found in astrocytes and other related glial elements. Here we used a post-embedding immunogold-staining method to localize MAb E501 cross-reactive antigens in ciliated cells from the ventricular ependyma in bovine embryos. When ependymocytes were treated with MAb E501, the ciliated region of the cell cortex was devoid of significant labeling. Instead, a gold particle deposit was evident around the nucleus, with only conventional ependymocytes being immunostained. Similar results were obtained by utilizing a rabbit antiserum against GFAP, revealing glial filaments and indicating an astroglial lineage of conventional bovine ependymocytes. In contrast, secretory ependymocytes of the subcommissural organ (SCO) were not stained by either of the two antibodies. Using MAb E501 as a heterologous probe, we cloned bovine GFAP cDNA. In situ hybridization experiments failed to detect GFAP transcripts in SCO ependymocytes, confirming the abscence of immunoreactivity in these cells.

  20. Coastal urban lighting has ecological consequences for multiple trophic levels under the sea.

    PubMed

    Bolton, D; Mayer-Pinto, M; Clark, G F; Dafforn, K A; Brassil, W A; Becker, A; Johnston, E L

    2017-01-15

    Urban land and seascapes are increasingly exposed to artificial lighting at night (ALAN), which is a significant source of light pollution. A broad range of ecological effects are associated with ALAN, but the changes to ecological processes remain largely unstudied. Predation is a key ecological process that structures assemblages and responds to natural cycles of light and dark. We investigated the effect of ALAN on fish predatory behaviour, and sessile invertebrate prey assemblages. Over 21days fish and sessile assemblages were exposed to 3 light treatments (Day, Night and ALAN). An array of LED spotlights was installed under a wharf to create the ALAN treatments. We used GoPro cameras to film during the day and ALAN treatments, and a Dual frequency IDentification SONar (DIDSON) to film during the night treatments. Fish were most abundant during unlit nights, but were also relatively sedentary. Predatory behaviour was greatest during the day and under ALAN than at night, suggesting that fish are using structures for non-feeding purposes (e.g. shelter) at night, but artificial light dramatically increases their predatory behaviour. Altered predator behaviour corresponded with structural changes to sessile prey assemblages among the experimental lighting treatments. We demonstrate the direct effects of artificial lighting on fish behaviour and the concomitant indirect effects on sessile assemblage structure. Current and future projected use of artificial lights has the potential to significantly affect predator-prey interactions in marine systems by altering habitat use for both predators and prey. However, developments in lighting technology are a promising avenue for mitigation. This is among the first empirical evidence from the marine system on how ALAN can directly alter predation, a fundamental ecosystem process, and have indirect trophic consequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Chemical Defense by Erythrolactones in the Euryhaline Ciliated Protist, Pseudokeronopsis erythrina.

    PubMed

    Buonanno, Federico; Anesi, Andrea; Giuseppe, Graziano Di; Guella, Graziano; Ortenzi, Claudio

    2017-02-01

    Pseudokeronopsis erythrina produces three new secondary metabolites, erythrolactones A2, B2 and C2, and their respective sulfate esters (A1, B1, C1), the structures of which have been recently elucidated on the basis of NMR spectroscopic data coupled to high resolution mass measurements (HR-MALDI-TOF). An analysis of the discharge of the protozoan pigment granules revealed that the non-sulfonated erythrolactones are exclusively stored in these cortical organelles, which are commonly used by a number of ciliates as chemical weapons in offense/defense interactions with prey and predators. We evaluated the toxic activity of pigment granule discharge on a panel of free-living ciliates and micro-invertebrates, and the activity of each single purified erythrolactone on three ciliate species. We also observed predator-prey interactions of P. erythrina with unicellular and multicellular predators. Experimental results confirm that only P. erythrina cells with discharged pigment granules were preferentially or exclusively hunted and eaten by at least some of its predators, whereas almost all intact (fully pigmented) cells remained alive. Our results indicate that erythrolactones are very effective as a chemical defense in P. erythrina.

  2. Morphological studies on the infraciliature of a planktonic ciliate, Tintinnopsis brasiliensis (Ciliophora: Tintinina)

    NASA Astrophysics Data System (ADS)

    Cai, Shengfang; Song, Weibo; Xu, Dapeng; Chiang, Kuoping

    2006-01-01

    A poorly-described marine planktonic ciliate, Tintinnopsis brasiliensis Kofoid & Campbell, 1929, collected from the Taiping Cape of Qingdao, China, was morphologically investigated based on permanent preparation after protargol impregnation and was compared with other related congeners. According to the infraciliature, three ciliary groups can be recognized, which reveals a very stable structure among specimens and denotes that the pattern of infraciliature is, apart from the features of the lorica, a highly reliable criterion for species identification.

  3. Restricted access Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering

    USGS Publications Warehouse

    Miller, Robert J.; Lafferty, Kevin D.; Lamy, Thomas; Kui, Li; Rassweiler, Andrew; Reed, Daniel C.

    2018-01-01

    Foundation species define the ecosystems they live in, but ecologists have often characterized dominant plants as foundational without supporting evidence. Giant kelp has long been considered a marine foundation species due to its complex structure and high productivity; however, there is little quantitative evidence to evaluate this. Here, we apply structural equation modelling to a 15-year time series of reef community data to evaluate how giant kelp affects the reef community. Although species richness was positively associated with giant kelp biomass, most direct paths did not involve giant kelp. Instead, the foundational qualities of giant kelp were driven mostly by indirect effects attributed to its dominant physical structure and associated engineering influence on the ecosystem, rather than by its use as food by invertebrates and fishes. Giant kelp structure has indirect effects because it shades out understorey algae that compete with sessile invertebrates. When released from competition, sessile species in turn increase the diversity of mobile predators. Sea urchin grazing effects could have been misinterpreted as kelp effects, because sea urchins can overgraze giant kelp, understorey algae and sessile invertebrates alike. Our results confirm the high diversity and biomass associated with kelp forests, but highlight how species interactions and habitat attributes can be misconstrued as direct consequences of a foundation species like giant kelp.

  4. Living together in biofilms: the microbial cell factory and its biotechnological implications.

    PubMed

    Berlanga, Mercedes; Guerrero, Ricardo

    2016-10-01

    In nature, bacteria alternate between two modes of growth: a unicellular life phase, in which the cells are free-swimming (planktonic), and a multicellular life phase, in which the cells are sessile and live in a biofilm, that can be defined as surface-associated microbial heterogeneous structures comprising different populations of microorganisms surrounded by a self-produced matrix that allows their attachment to inert or organic surfaces. While a unicellular life phase allows for bacterial dispersion and the colonization of new environments, biofilms allow sessile cells to live in a coordinated, more permanent manner that favors their proliferation. In this alternating cycle, bacteria accomplish two physiological transitions via differential gene expression: (i) from planktonic cells to sessile cells within a biofilm, and (ii) from sessile to detached, newly planktonic cells. Many of the innate characteristics of biofilm bacteria are of biotechnological interest, such as the synthesis of valuable compounds (e.g., surfactants, ethanol) and the enhancement/processing of certain foods (e.g., table olives). Understanding the ecology of biofilm formation will allow the design of systems that will facilitate making products of interest and improve their yields.

  5. Origin and early evolution of neural circuits for the control of ciliary locomotion.

    PubMed

    Jékely, Gáspár

    2011-03-22

    Behaviour evolved before nervous systems. Various single-celled eukaryotes (protists) and the ciliated larvae of sponges devoid of neurons can display sophisticated behaviours, including phototaxis, gravitaxis or chemotaxis. In single-celled eukaryotes, sensory inputs directly influence the motor behaviour of the cell. In swimming sponge larvae, sensory cells influence the activity of cilia on the same cell, thereby steering the multicellular larva. In these organisms, the efficiency of sensory-to-motor transformation (defined as the ratio of sensory cells to total cell number) is low. With the advent of neurons, signal amplification and fast, long-range communication between sensory and motor cells became possible. This may have first occurred in a ciliated swimming stage of the first eumetazoans. The first axons may have had en passant synaptic contacts to several ciliated cells to improve the efficiency of sensory-to-motor transformation, thereby allowing a reduction in the number of sensory cells tuned for the same input. This could have allowed the diversification of sensory modalities and of the behavioural repertoire. I propose that the first nervous systems consisted of combined sensory-motor neurons, directly translating sensory input into motor output on locomotor ciliated cells and steering muscle cells. Neuronal circuitry with low levels of integration has been retained in cnidarians and in the ciliated larvae of some marine invertebrates. This parallel processing stage could have been the starting point for the evolution of more integrated circuits performing the first complex computations such as persistence or coincidence detection. The sensory-motor nervous systems of cnidarians and ciliated larvae of diverse phyla show that brains, like all biological structures, are not irreducibly complex.

  6. Ciliates in chalk-stream habitats congregate in biodiversity hot spots.

    PubMed

    Bradley, Mark W; Esteban, Genoveva F; Finlay, Bland J

    2010-09-01

    Free-living ciliates are a diverse group of microbial eukaryotes that inhabit aquatic environments. They have a vital role within the 'microbial loop', being consumers of microscopic prey such as bacteria, micro-algae, and flagellates, and representing a link between the microscopic and macroscopic components of aquatic food webs. This investigation describes the ciliate communities of four habitats located in the catchment of the River Frome, the major chalk-stream in southern Britain. The ciliate communities were characterised in terms of community assemblage, species abundance and size classes. The ciliate communities investigated proved to be highly diverse, yielding a total of 114 active species. An additional 15 'cryptic' ciliate species were also uncovered. Heterogeneity in the ciliate communities was evident at multiple spatial scales, revealing hot spots of species richness, both within and between habitats. The ciliate communities of habitats with flowing water were composed of smaller ciliates compared to the still-water habitats examined. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  7. Fecal Ciliate Composition of Domestic Horses (Equus caballus Linnaeus, 1758) Living in Kyrgyzstan.

    PubMed

    Gürelli, Gözde; Canbulat, Savaş; Aldayarov, Nurbek

    2015-11-03

    Species composition and distribution of intestinal ciliates were investigated in the feces from 15 domestic horses living in Bishkek, Kyrgyzstan. Twenty-three species belonging to 14 genera were identified. This is the first study on intestinal ciliates in domestic horses living in Kyrgyzstan. The mean number of ciliates was 14.1 ± 6.8 x10(4) cells ml(-1) of feces and the mean number of ciliate species per host was 6.0 ± 3.2. No endemic or new species were detected. Blepharocorys was the major genus as these ciliates were detected in high proportions. In contrast Holophryoides, Allantosoma were only observed at low frequencies. Recorded ciliate species in this investigation had almost the same characteristics as those described in previous studies. There was no important geographic variation in the intestinal ciliate fauna of equids.

  8. Continuous Culture of Ruminal Microorganisms in Chemically Defined Medium1

    PubMed Central

    Quinn, Loyd Y.; Burroughs, Wise; Christiansen, William C.

    1962-01-01

    Ruminal ciliates have been grown in continuous culture in chemically defined media and in the absence of viable bacteria. Oligotrichic ruminal ciliates seem to require insoluble carbohydrates for growth; the holotrichic ciliates require soluble carbohydrates, but at low concentrations. Both groups of ciliates utilize amino acids as their principal nitrogen source when these are supplied in micromolar concentrations; at millimolar concentrations, amino acids are toxic, possibly from excessive ammonia formation arising from ciliate deaminase activity. Holotrichic ruminal ciliates are destroyed by overdeposition of amylopectin when glucose is present above 0.1% concentration in the medium. Ecological requirements of ruminal ciliates are also described. Images FIG. 1 FIG. 2 PMID:13972780

  9. Elucidating Mechanisms by which Invertebrate Larval Settlement is Affected by Biofilm Ciliates

    NASA Astrophysics Data System (ADS)

    Shimeta, J.; Watson, M. G.; Zalizniak, L.; Scardino, A. J.

    2016-02-01

    Despite extensive studies of benthic invertebrate larvae responding to settlement cues from bacteria and microalgae in biofilms, the roles of protozoa have been largely ignored. We recently showed that an assemblage of biofilm ciliates affected larval settlement and survival rates among two polychaetes, a mussel, and a bryozoan, being inhibitory to some and facilitative to others. Here we investigated settlement inhibition further for the serpulid worm, Galeolaria caespitosa, and the mussel, Mytilus galloprovincialis. Single species of ciliates were capable of inhibiting settlement by up to 68%. The effects were density dependent, with the strength of inhibition being directly related to ciliate abundance. The strength of inhibition also differed significantly among ciliate species, suggesting that both the abundance and makeup of ciliate assemblages could be an important variable determining settlement rates in the field. We studied the mechanisms of inhibition further with G. caespitosa and the ciliate, Euplotes minuta. Filtrate from ciliate cultures failed to inhibit settlement, indicating that dissolved chemicals were not the inhibiting factor. Physical presence of ciliates was inhibitory, as demonstrated by video analysis of larval search behavior. Following contact with a ciliate, larval swimming was disrupted, including retreat from the substratum and significant changes in swimming angles. Ciliates may also have influenced settlement indirectly by altering cues from biofilm bacteria. Although bacterial densities were unaffected by ciliate grazing during the assays, bacterial distributions were significantly more clumped in the presence of ciliates, which could perhaps affect the suitability of the biofilm for larvae. These organism-scale interactions at the biofilm boundary could produce significant constraints on larval recruitment patterns and suggest that further studies are needed on the roles of protozoans in boundary layer processes.

  10. Salient features of the ciliated organ of asymmetry

    PubMed Central

    Amack, Jeffrey D.

    2014-01-01

    Many internal organs develop distinct left and right sides that are essential for their functions. In several vertebrate embryos, motile cilia generate an asymmetric fluid flow that plays an important role in establishing left-right (LR) signaling cascades. These ‘LR cilia’ are found in the ventral node and posterior notochordal plate in mammals, the gastrocoel roof plate in amphibians and Kupffer’s vesicle in teleost fish. I consider these transient ciliated structures as the ‘organ of asymmetry’ that directs LR patterning of the developing embryo. Variations in size and morphology of the organ of asymmetry in different vertebrate species have raised questions regarding the fundamental features that are required for LR determination. Here, I review current models for how LR asymmetry is established in vertebrates, discuss the cellular architecture of the ciliated organ of asymmetry and then propose key features of this organ that are critical for orienting the LR body axis. PMID:24481178

  11. Unusually abundant and large ciliate xenomas in oysters, Crassostrea virginica, from Great Bay, New Hampshire, USA.

    PubMed

    McGurk, Emily Scarpa; Ford, Susan; Bushek, David

    2016-06-01

    During routine histological examination of oysters (Crassostrea virginica) from Great Bay, New Hampshire, USA, a high prevalence and intensity of ciliate xenomas has been noted since sampling began in 1997. Xenomas are hypertrophic lesions on the gills of bivalve molluscs caused by intracellular ciliates, likely Sphenophrya sp. Although not known to cause mortality in oysters, xenomas have not previously been reported at this high abundance. The objectives of this study were to characterize the xenomas, describe the ciliates, and gather baseline epizootiological data with correlations to environmental and biological parameters. Upon gross examination, xenomas appeared as white nodules, up to 3mm in diameter, located in the gill tissue and occasionally fusing into large masses along the gill filaments. Light microscopy of histological sections revealed xenomas located in the gill water tubes, which they often completely blocked. Higher magnification revealed dual nuclei, eight kineties, and conjugation of the ciliates. Transmission electron microscopy revealed dual nuclei that varied in density, a maximum of twenty cilia in each kinety radiating from the oral apparatus to the posterior, and a 9+2 axoneme structure within the cilia. These traits place the ciliates into the Order Rhynchodida, but insufficient molecular data exist to confirm classification of this ciliate to the Genus Sphenophrya. Since 1997, xenoma prevalence has fluctuated with peaks in 2000, 2004, and 2011. Infected oysters generally contained <30 xenomas, but 2.1% contained >100, sharply contrasting the rare prevalence and low intensity reported elsewhere. Prevalence increased with oyster size, leveling off near 50% in oysters >60mm. Infection intensity peaked in 70-90mm oysters and declined in larger oysters. Individual oyster condition was not associated with xenoma intensity, but sites with oysters in higher condition generally had a greater prevalence and intensity of xenoma infections. Seasonal data indicated an infection cycle increasing from summer to fall, peaking at 55-65% in November and dropping to <10% by spring. The oyster population in Great Bay, NH warrants further examination to understand the mechanisms and conditions controlling xenoma formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A survey of entodiniomorphid ciliates in chimpanzees and bonobos.

    PubMed

    Pomajbíková, Katerina; Petrzelková, Klára J; Profousová, Ilona; Petrásová, Jana; Kisidayová, Svetlana; Varádyová, Zora; Modrý, David

    2010-05-01

    Intestinal entodiniomorphid ciliates are commonly diagnosed in the feces of wild apes of the genera Pan and Gorilla. Although some authors previously considered entodiniomorphid ciliates as possible pathogens, a symbiotic function within the intestinal ecosystem and their participation in fiber fermentation has been proposed. Previous studies have suggested that these ciliates gradually disappear under captive conditions. We studied entodiniomorphid ciliates in 23 captive groups of chimpanzees, three groups of captive bonobos and six populations of wild chimpanzees. Fecal samples were examined using Sheather's flotation and Merthiolate-Iodine-Formaldehyde Concentration (MIFC) methods. We quantified the number of ciliates per gram of feces. The MIFC method was more sensitive for ciliate detection than the flotation method. Ciliates of genus Troglodytella were detected in 13 groups of captive chimpanzees, two groups of bonobos and in all wild chimpanzee populations studied. The absence of entodiniomorphids in some captive groups might be because of the extensive administration of chemotherapeutics in the past or a side-effect of the causative or prophylactic administration of antiparasitic or antibiotic drugs. The infection intensities of ciliates in captive chimpanzees were higher than in wild ones. We suppose that the over-supply of starch, typical in captive primate diets, might induce an increase in the number of ciliates. In vitro studies on metabolism and biochemical activities of entodiniomorphids are needed to clarify their role in ape digestion.

  13. Effects of resource supplements on mature ciliate biofilms: an empirical test using a new type of flow cell.

    PubMed

    Norf, Helge; Arndt, Hartmut; Weitere, Markus

    2009-11-01

    Biofilm-dwelling consumer communities play an important role in the matter flux of many aquatic ecosystems. Due to their poor accessibility, little is as yet known about the regulation of natural biofilms. Here, a new type of flow cell is presented which facilitates both experimental manipulation and live observation of natural, pre-grown biofilms. These flow cells were used to study the dynamics of mature ciliate biofilms in response to supplementation of planktonic bacteria. The results suggest that enhanced ciliate productivity could be quickly transferred to micrometazoans (ciliate grazers), making the effects on the standing stock of the ciliates detectable only for a short time. Likewise, no effect on ciliates appeared when micrometazoan consumers were ab initio abundant. This indicates the importance of 'top-down' control of natural ciliate biofilms. The flow cells used here offer great potential for experimentally testing such control mechanisms within naturally cultivated biofilms.

  14. Functional diversity of aquatic ciliates.

    PubMed

    Weisse, Thomas

    2017-10-01

    This paper first reviews the concept of functional diversity in general terms and then applies it to free-living aquatic ciliates. Ciliates are extremely versatile organisms and display an enormous functional diversity as key elements of pelagic food webs, acting as predators of bacteria, algae, other protists and even some metazoans. Planktonic ciliates are important food for zooplankton, and mixotrophic and functionally autotrophic species may significantly contribute to primary production in the ocean and in lakes. The co-occurrence of many ciliate species in seemingly homogenous environments indicates a wide range of their ecological niches. Variation in space and time may foster co-occurrence and prevent violating the competitive exclusion principle among ciliates using the same resources. Considering that many ciliates may be dormant and/or rare in many habitats, ciliate species diversity must be higher than can be deduced from simple sampling techniques; molecular methods of identification clearly point to this hidden diversity. From a functional point of view, the question is how much of this diversity represents redundancy. A key challenge for future research is to link the ecophysiological performance of naturally co-occurring ciliates to their functional genes. To this end, more experimental research is needed with with functionally different species. Copyright © 2017 The Author. Published by Elsevier GmbH.. All rights reserved.

  15. Scanning and transmission electron microscopic analysis of ampullary segment of oviduct during estrous cycle in caprines.

    PubMed

    Sharma, R K; Singh, R; Bhardwaj, J K

    2015-01-01

    The ampullary segment of the mammalian oviduct provides suitable milieu for fertilization and development of zygote before implantation into uterus. It is, therefore, in the present study, the cyclic changes in the morphology of ampullary segment of goat oviduct were studied during follicular and luteal phases using scanning and transmission electron microscopy techniques. Topographical analysis revealed the presence of uniformly ciliated ampullary epithelia, concealing apical processes of non-ciliated cells along with bulbous secretory cells during follicular phase. The luteal phase was marked with decline in number of ciliated cells with increased occurrence of secretory cells. The ultrastructure analysis has demonstrated the presence of indented nuclear membrane, supranuclear cytoplasm, secretory granules, rough endoplasmic reticulum, large lipid droplets, apically located glycogen masses, oval shaped mitochondria in the secretory cells. The ciliated cells were characterized by the presence of elongated nuclei, abundant smooth endoplasmic reticulum, oval or spherical shaped mitochondria with crecentric cristae during follicular phase. However, in the luteal phase, secretory cells were possessing highly indented nucleus with diffused electron dense chromatin, hyaline nucleosol, increased number of lipid droplets. The ciliated cells had numerous fibrous granules and basal bodies. The parallel use of scanning and transmission electron microscopy techniques has enabled us to examine the cyclic and hormone dependent changes occurring in the topography and fine structure of epithelium of ampullary segment and its cells during different reproductive phases that will be great help in understanding major bottle neck that limits success rate in vitro fertilization and embryo transfer technology. © Wiley Periodicals, Inc.

  16. Phosphorus, nitrogen and chlorophyll-a are significant factors controlling ciliate communities in summer in the northern Beibu Gulf, South China Sea.

    PubMed

    Wang, Yibo; Zhang, Wenjing; Lin, Yuanshao; Cao, Wenqing; Zheng, Lianming; Yang, Jun

    2014-01-01

    Ciliates (protozoa) are ubiquitous components of plankton community and play important roles in aquatic ecosystems in regards of their abundance, biomass, diversity and energy turnover. Based on the stratified samples collected from the northern Beibu Gulf in August 2011, species composition, abundance, biomass, diversity and spatial pattern of planktonic ciliates were studied. Furthermore the main environmental factors controlling ciliate communities were determined. A total of 101 species belonging to 44 genera and 7 orders (i.e., Oligotrichida, Haptorida, Euplotida, Sessilida, Pleurostomatida, Scuticociliatida and Tintinnida) were identified. The variation of ciliate communities was significant at horizontal level, but that was not at vertical level. Based on cluster analysis, ciliate communities were divided into three main groups. Redundancy analysis (RDA) revealed that Group A, existing in the waters with higher concentration of phosphorus and nitrogen, was dominated by Tintinnidium primitivum. Group B in the waters with lower temperature and chlorophyll-a concentration, was dominated by Leegaardiella ovalis. Group C, existing in the waters with higher temperature and chlorophyll-a concentration, was dominated by large Strombidium spp. and Mesodinium rubrum. Combining multiple analytic methods, our results strongly supported that phosphorus, nitrogen and chlorophyll-a were the most significant factors affecting the ciliate communities in the northern Beibu Gulf in summer. Concentration of phosphorus and nitrogen primarily influenced ciliate biomass, implying a potential impact of eutrophication on ciliate growth. The correlation with chlorophyll-a concentration, on one hand indicate the response of ciliates to the food availability, and on the other hand, the ciliates containing chloroplasts or endosymbionts may contribute greatly to the chlorophyll-a.

  17. Organization of tubules in the human caput epididymidis and the ultrastructure of their epithelia.

    PubMed

    Yeung, C H; Cooper, T G; Bergmann, M; Schulze, H

    1991-07-01

    The structure of the human caput epididymidis was examined by gross morphological and light and electron microscopic techniques. There were at least seven types of tubules, each characterized by a different epithelium. These tubules were connected with one another by at least eight types of junctions to form a network. Most of the caput epididymidis was composed of efferent ducts. Within these, five types of tubules, each with a different ciliated epithelium, were found in different regions; and four types of junctions between the efferent ducts and the epididymal tubule were observed. The efferent ducts left the testis, initially as parallel straight tubules containing both ciliated and non-ciliated cells in an epithelium of irregular height. Each efferent duct then coiled tortuously into lobules that folded over one another. These efferent ducts then branched out as thin tubules to join a network of dark tubules which were lined by a regular epithelium containing prominently vacuolated, non-ciliated cells. These tubules anastomosed via common cavities characterized by a ciliated cuboidal epithelium and sometimes joined tubules exhibiting a non-vacuolated ciliated epithelium. The latter, as well as typical efferent ducts, made connection with the epididymis proper in both end-to-end and end-to-side junctions. In the more distal junctions with the epididymis, the efferent ducts joined to a transitional epididymal ductule before joining to the side of the epididymis proper. Post-junctional epithelia in the beginning of the epididymis occasionally contained patches of cells characteristic of efferent ducts. Tall cells with long stereocilia constituted a discontinuous "initial segment"-like region of the epididymis. This is the most detailed study so far of the epithelia and the tubule organization in the caput epididymidis of any species, and most of the results are reported for the first time for the human. Although the pattern of the tubule network resembles that of some domestic species, the rich variety of epithelia has not been appreciated before.

  18. Detecting in situ copepod diet diversity using molecular technique: development of a copepod/symbiotic ciliate-excluding eukaryote-inclusive PCR protocol.

    PubMed

    Hu, Simin; Guo, Zhiling; Li, Tao; Carpenter, Edward J; Liu, Sheng; Lin, Senjie

    2014-01-01

    Knowledge of in situ copepod diet diversity is crucial for accurately describing pelagic food web structure but is challenging to achieve due to lack of an easily applicable methodology. To enable analysis with whole copepod-derived DNAs, we developed a copepod-excluding 18S rDNA-based PCR protocol. Although it is effective in depressing amplification of copepod 18S rDNA, its applicability to detect diverse eukaryotes in both mono- and mixed-species has not been demonstrated. Besides, the protocol suffers from the problem that sequences from symbiotic ciliates are overrepresented in the retrieved 18S rDNA libraries. In this study, we designed a blocking primer to make a combined primer set (copepod/symbiotic ciliate-excluding eukaryote-common: CEEC) to depress PCR amplification of symbiotic ciliate sequences while maximizing the range of eukaryotes amplified. We firstly examined the specificity and efficacy of CEEC by PCR-amplifying DNAs from 16 copepod species, 37 representative organisms that are potential prey of copepods and a natural microplankton sample, and then evaluated the efficiency in reconstructing diet composition by detecting the food of both lab-reared and field-collected copepods. Our results showed that the CEEC primer set can successfully amplify 18S rDNA from a wide range of isolated species and mixed-species samples while depressing amplification of that from copepod and targeted symbiotic ciliate, indicating the universality of CEEC in specifically detecting prey of copepods. All the predetermined food offered to copepods in the laboratory were successfully retrieved, suggesting that the CEEC-based protocol can accurately reconstruct the diets of copepods without interference of copepods and their associated ciliates present in the DNA samples. Our initial application to analyzing the food composition of field-collected copepods uncovered diverse prey species, including those currently known, and those that are unsuspected, as copepod prey. While testing is required, this protocol provides a useful strategy for depicting in situ dietary composition of copepods.

  19. Diversification dynamics of rhynchostomatian ciliates: the impact of seven intrinsic traits on speciation and extinction in a microbial group.

    PubMed

    Vďačný, Peter; Rajter, Ľubomír; Shazib, Shahed Uddin Ahmed; Jang, Seok Won; Shin, Mann Kyoon

    2017-08-30

    Ciliates are a suitable microbial model to investigate trait-dependent diversification because of their comparatively complex morphology and high diversity. We examined the impact of seven intrinsic traits on speciation, extinction, and net-diversification of rhynchostomatians, a group of comparatively large, predatory ciliates with proboscis carrying a dorsal brush (sensoric structure) and toxicysts (organelles used to kill the prey). Bayesian estimates under the binary-state speciation and extinction model indicate that two types of extrusomes and two-rowed dorsal brush raise diversification through decreasing extinction. On the other hand, the higher number of contractile vacuoles and their dorsal location likely increase diversification via elevating speciation rate. Particular nuclear characteristics, however, do not significantly differ in their diversification rates and hence lineages with various macronuclear patterns and number of micronuclei have similar probabilities to generate new species. Likelihood-based quantitative state diversification analyses suggest that rhynchostomatians conform to Cope's rule in that their diversity linearly grows with increasing body length and relative length of the proboscis. Comparison with other litostomatean ciliates indicates that rhynchostomatians are not among the cladogenically most successful lineages and their survival over several hundred million years could be associated with their comparatively large and complex bodies that reduce the risk of extinction.

  20. Cilia distribution and polarity in the epithelial lining of the mouse middle ear cavity

    PubMed Central

    Luo, Wenwei; Yi, Hong; Taylor, Jeannette; Li, Jian-dong; Chi, Fanglu; Todd, N. Wendell; Lin, Xi; Ren, Dongdong; Chen, Ping

    2017-01-01

    The middle ear conducts sound to the cochlea for hearing. Otitis media (OM) is the most common illness in childhood. Moreover, chronic OM with effusion (COME) is the leading cause of conductive hearing loss. Clinically, COME is highly associated with Primary Ciliary Dyskinesia, implicating significant contributions of cilia dysfunction to COME. The understanding of middle ear cilia properties that are critical to OM susceptibility, however, is limited. Here, we confirmed the presence of a ciliated region near the Eustachian tube orifice at the ventral region of the middle ear cavity, consisting mostly of a lumen layer of multi-ciliated and a layer of Keratin-5-positive basal cells. We also found that the motile cilia are polarized coordinately and display a planar cell polarity. Surprisingly, we also found a region of multi-ciliated cells that line the posterior dorsal pole of the middle ear cavity which was previously thought to contain only non-ciliated cells. Our study provided a more complete understanding of cilia distribution and revealed for the first time coordinated polarity of cilia in the epithelium of the mammalian middle ear, thus illustrating novel structural features that are likely critical for middle ear functions and related to OM susceptibility. PMID:28358397

  1. Seasonal sediment dynamics shape temperate bedrock reef communities

    USGS Publications Warehouse

    Figurski, Jared D.; Freiwald, Jan; Lonhart, Steve I.; Storlazzi, Curt

    2016-01-01

    Mobilized seafloor sediment can impact benthic reef communities through burial, scour, and turbidity. These processes are ubiquitous in coastal oceans and, through their influence on the survival, fitness, and interactions of species, can alter the structure and function of benthic communities. In northern Monterey Bay, California, USA, as much as 30% of the seafloor is buried or exposed seasonally, making this an ideal location to test how subtidal temperate rocky reef communities vary in the presence and absence of chronic sediment-based disturbances. Designated dynamic plots were naturally inundated by sediment in summer (50 to 100% cover) and swept clean in winter, whereas designated stable plots remained free of sediment during our study. Multivariate analyses indicated significant differences in the structure of sessile and mobile communities between dynamic and stable reef habitats. For sessile species, community structure in disturbed plots was less variable in space and time than in stable plots due to the maintenance of an early successional state. In contrast, community structure of mobile species varied more in disturbed plots than in stable plots, reflecting how mobile species distribute in response to sediment dynamics. Some species were found only in these disturbed areas, suggesting that the spatial mosaic of disturbance could increase regional diversity. We discuss how the relative ability of species to tolerate disturbance at different life history stages and their ability to colonize habitat translate into community-level differences among habitats, and how this response varies between mobile and sessile communities.

  2. Fine structure of Mytella falcata (Bivalvia) gill filaments.

    PubMed

    de Oliveira David, José Augusto; Salaroli, Renato B; Fontanetti, Carmem S

    2008-01-01

    Bivalve filter feeders are sessile animals that live in constant contact with water and its pollutants. Their gill is an organ highly exposed to these conditions due to its large surface and its involvement in gas exchanges and feeding. The bivalve Mytella falcata is found in estuaries of Latin America, on the Atlantic as well as the Pacific Coast. It is commonly consumed, and sometimes is the only source of protein of low-income communities. In this study, gill filaments of M. falcata were characterized using histology, histochemistry and transmission electron microscopy for future comparative studies among animals exposed to environmental pollutants. Gill filaments may be divided into abfrontal, intermediate and frontal zones. Filaments are interconnected by ciliary discs. In the center of filaments, haemocytes circulate through a haemolymph vessel internally lined by an endothelium and supported by an acellular connective tissue rich in polysaccharides and collagen. The abfrontal zone contains cuboidal cells, while the intermediate zone consists of a simple squamous epithelium. The frontal zone is composed of five columnar cell types: one absorptive, mainly characterized by the presence of pinocytic vesicles in the apical region of the cell; one secretory, rarely observed; and three ciliated with abundant mitochondria. All cells lining the filament exhibit numerous microvilli and seem to absorb substances from the environment. PAS staining was observed in mucous cells in the frontal and abfrontal zones. Bromophenol blue allowed the distinction of haemocytes and detection of a glycoprotein secretion in the secretory cells of the frontal region. The characteristics of M. falcata gill filaments observed in this study were very similar to those of other bivalves, especially other Mytilidae, and are suitable for histopathological studies on the effect of water-soluble pollutants.

  3. Zooxanthellae harvested by ciliates associated with brown band syndrome of corals remain photosynthetically competent.

    PubMed

    Ulstrup, Karin E; Kühl, Michael; Bourne, David G

    2007-03-01

    Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae.

  4. Zooxanthellae Harvested by Ciliates Associated with Brown Band Syndrome of Corals Remain Photosynthetically Competent▿

    PubMed Central

    Ulstrup, Karin E.; Kühl, Michael; Bourne, David G.

    2007-01-01

    Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae. PMID:17259357

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herfort, Lydie; Peterson, Tawnya D.; Prahl, Fredrick G.

    The localized impact of blooms of the mixotrophic ciliate Myrionecta rubra in the Columbia River estuary during 2007-2010 was evaluated with biogeochemical, light microscopy, physiological and molecular data. M. rubra affected surrounding estuarine nutrient cycles, as indicated by high and low concentrations of organic nutrients and inorganic nitrogen, respectively, associated with red waters. M. rubra blooms also altered the energy transfer pattern in patches of the estuarine water that contain the ciliate by creating areas characterized by high primary production and elevated levels of fresh autochthonous particulate organic matter, therefore shifting the trophic status in emergent red water areas ofmore » the estuary from net heterotrophy towards autotrophy. The pelagic estuarine bacterial community structure was unaffected by M. rubra abundance, but red waters of the ciliate do offer a possible link between autotrophic and heterotrophic processes since they were associated with elevated dissolved organic matter and enhanced microbial secondary production. Taken together these findings suggest that M. rubra red waters are biogeochemical hotspots of the Columbia River estuary.« less

  6. Cyc17, a meiosis-specific cyclin, is essential for anaphase initiation and chromosome segregation in Tetrahymena thermophila.

    PubMed

    Yan, Guan-Xiong; Dang, Huai; Tian, Miao; Zhang, Jing; Shodhan, Anura; Ning, Ying-Zhi; Xiong, Jie; Miao, Wei

    2016-07-17

    Although the role of cyclins in controlling nuclear division is well established, their function in ciliate meiosis remains unknown. In ciliates, the cyclin family has undergone massive expansion which suggests that diverse cell cycle systems exist, and this warrants further investigation. A screen for cyclins in the model ciliate Tetrahymena thermophila showed that there are 34 cyclins in this organism. Only 1 cyclin, Cyc17, contains the complete cyclin core and is specifically expressed during meiosis. Deletion of CYC17 led to meiotic arrest at the diakinesis-like metaphase I stage. Expression of genes involved in DNA metabolism and chromosome organization (chromatin remodeling and basic chromosomal structure) was repressed in cyc17 knockout matings. Further investigation suggested that Cyc17 is involved in regulating spindle pole attachment, and is thus essential for chromosome segregation at meiosis. These findings suggest a simple model in which chromosome segregation is influenced by Cyc17.

  7. Eukaryotic Community Shift in Response to Organic Loading Rate of an Aerobic Trickling Filter (Down-Flow Hanging Sponge Reactor) Treating Domestic Sewage.

    PubMed

    Miyaoka, Yuma; Hatamoto, Masashi; Yamaguchi, Takashi; Syutsubo, Kazuaki

    2017-05-01

    In this study, changes in eukaryotic community structure and water quality were investigated in an aerobic trickling filter (down-flow hanging sponge, DHS) treating domestic sewage under different organic loading rates (OLRs). The OLR clearly influenced both sponge pore water quality and relative flagellates and ciliates (free-swimming, carnivorous, crawling, and stalked protozoa) abundances in the retained sludge. Immediately after the OLR was increased from 1.05 to 1.97 kg chemical oxygen demand (COD) m -3  day -1 , COD and NH 4 + -N treatment efficiencies both deteriorated, and relative flagellates and ciliates abundances then increased from 2-8 % to 51-65 % total cells in the middle-bottom part of the DHS reactor. In a continuous operation at a stable OLR (2.01 kg COD m -3  day -1 ), effluent water quality improved, and relative flagellates and ciliates abundances decreased to 15-46 % total cells in the middle-bottom part of the DHS reactor. This result may indicate that flagellates and ciliates preferentially graze on dispersed bacteria, thus, stabilizing effluent water quality. Additionally, to investigate eukaryotic community structure, clone libraries based on the 18S ribosomal ribonucleic acid (rRNA) gene of the retained sludge were constructed. The predominant group was Nucletmycea phylotypes, representing approximately 29-56 % total clones. Furthermore, a large proportion of the clones had <97 % sequence identity in the NCBI database. This result indicates that phylogenetically unknown eukaryotes were present in the DHS reactor. These results provide insights into eukaryotic community shift in the DHS reactor treating domestic sewage.

  8. Unsteady motion, finite Reynolds numbers, and wall effect on Vorticella convallaria contribute contraction force greater than the stokes drag.

    PubMed

    Ryu, Sangjin; Matsudaira, Paul

    2010-06-02

    Contraction of Vorticella convallaria, a sessile ciliated protozoan, is completed within a few milliseconds and results in a retraction of its cell body toward the substratum by coiling its stalk. Previous studies have modeled the cell body as a sphere and assumed a drag force that satisfies Stokes' law. However, the contraction-induced flow of the medium is transient and bounded by the substrate, and the maximum Reynolds number is larger than unity. Thus, calculations of contractile force from the drag force are incomplete. In this study, we analyzed fluid flow during contraction by the particle tracking velocimetry and computational fluid dynamics simulations to estimate the contractile force. Particle paths show that the induced flow is limited by the substrate. Simulation-based force estimates suggest that the combined effect of the flow unsteadiness, the finite Reynolds number, and the substrate comprises 35% of the total force. The work done in the early stage of contraction and the maximum power output are similar regardless of the medium viscosity. These results suggest that, during the initial development of force, V. convallaria uses a common mechanism for performing mechanical work irrespective of viscous loading conditions. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. The Rab GTPase Rab8 as a shared regulator of ciliogenesis and immune synapse assembly: From a conserved pathway to diverse cellular structures.

    PubMed

    Patrussi, Laura; Baldari, Cosima T

    2016-01-01

    Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Among them, Rab8 is an essential participant in primary cilium formation. In a report recently published in the Journal of Cell Science, Finetti and colleagues identify Rab8 as a novel player in vesicular traffic in the non-ciliated T lymphocytes, which contributes to the assembly of the specialized signaling platform known as the immune synapse. By interacting with the v-SNARE VAMP-3, Rab8 is indeed responsible for the final docking/fusion step in T cell receptor (TCR) recycling to the immune synapse. A second important take-home message which comes to light from this work is that VAMP-3 also interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of Smoothened at the plasma membrane. Hence the data presented in this report, in addition to identifying Rab8 as a novel player in vesicular traffic to the immune synapse, reveal how both ciliated and non-ciliated cells take advantage of a conserved pathway to build highly specific cellular structures.

  10. Uncultivated Microbial Eukaryotic Diversity: A Method to Link ssu rRNA Gene Sequences with Morphology

    PubMed Central

    Hirst, Marissa B.; Kita, Kelley N.; Dawson, Scott C.

    2011-01-01

    Protists have traditionally been identified by cultivation and classified taxonomically based on their cellular morphologies and behavior. In the past decade, however, many novel protist taxa have been identified using cultivation independent ssu rRNA sequence surveys. New rRNA “phylotypes” from uncultivated eukaryotes have no connection to the wealth of prior morphological descriptions of protists. To link phylogenetically informative sequences with taxonomically informative morphological descriptions, we demonstrate several methods for combining whole cell rRNA-targeted fluorescent in situ hybridization (FISH) with cytoskeletal or organellar immunostaining. Either eukaryote or ciliate-specific ssu rRNA probes were combined with an anti-α-tubulin antibody or phalloidin, a common actin stain, to define cytoskeletal features of uncultivated protists in several environmental samples. The eukaryote ssu rRNA probe was also combined with Mitotracker® or a hydrogenosomal-specific anti-Hsp70 antibody to localize mitochondria and hydrogenosomes, respectively, in uncultivated protists from different environments. Using rRNA probes in combination with immunostaining, we linked ssu rRNA phylotypes with microtubule structure to describe flagellate and ciliate morphology in three diverse environments, and linked Naegleria spp. to their amoeboid morphology using actin staining in hay infusion samples. We also linked uncultivated ciliates to morphologically similar Colpoda-like ciliates using tubulin immunostaining with a ciliate-specific rRNA probe. Combining rRNA-targeted FISH with cytoskeletal immunostaining or stains targeting specific organelles provides a fast, efficient, high throughput method for linking genetic sequences with morphological features in uncultivated protists. When linked to phylotype, morphological descriptions of protists can both complement and vet the increasing number of sequences from uncultivated protists, including those of novel lineages, identified in diverse environments. PMID:22174774

  11. Laparoscopic Excision of a Ciliated Hepatic Foregut Cyst

    PubMed Central

    Mak, Grace Z.; Reynolds, Jordan P.; Tevar, Amit D.; Pritts, Timothy A.

    2009-01-01

    Ciliated hepatic foregut cysts are uncommon solitary cysts of the liver that originate from the embryologic foregut. Clinically and radiographically, these lesions can be difficult to distinguish from neoplasms. Recent reports have demonstrated that ciliated hepatic foregut cysts may undergo dysplastic progression, supporting the argument to excise these cysts when discovered. Fewer than 100 cases have been described in the literature since the first description of a ciliated hepatic foregut cyst in 1857. We present a patient who recently underwent laparoscopic excision of a ciliated hepatic foregut cyst, review the literature, and propose the rationale for attempting removal of these cysts via a laparoscopic approach. PMID:19366552

  12. Do Protozoa Control the Elimination of Vibrio choleraein Brackish Water?

    NASA Astrophysics Data System (ADS)

    Martínez Pérez, María Elena; Macek, Miroslav; Castro Galván, María Teresa

    2004-05-01

    Elimination of inoculated Vibrio cholerae (107 cells ml-1) within a brackish water bacteria assemblage (Mecoacán Lagoon, State of Tabasco, Mexico) was studied in laboratory microcosms with filtration-fractionated water. Feeding of a ciliate, Cyclidium glaucoma was evaluated using fluorescently labelled V. cholerae o1. Even though V. cholerae was not exploited as the major food source, ciliates were able to eliminate it efficiently. An addition of chitin directly supported the growth of bacteria, although not so much of V. cholerae, and indirectly the growth of the protistan assemblage. Generally, the changes in a bacterial assemblage structure were the most important in V. cholerae elimination.

  13. Ciliated protozoa of two antarctic lakes: analysis by quantitative protargol staining and examination of artificial substrates

    NASA Technical Reports Server (NTRS)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Coats, D. W.; Wharton RA, J. r. (Principal Investigator)

    1999-01-01

    Planktonic and artificial substrate-associated ciliates have been identified in two perennially ice-covered antarctic lakes of the McMurdo Dry Valleys. Abundances estimated by quantitative protargol staining ranged from < 5 to 31690 cells l-1, levels that are comparable to those previously obtained using other methods. Nineteen ciliate taxa were identified from these lakes, with the most frequently encountered genera being Plagiocampa, Askenasia, Monodinium, Sphaerophrya and Vorticella. The taxonomic findings compare favorably with those of previous investigators; however four previously unreported genera were observed in both Lakes Fryxell and Hoare. The variability in the depth distributions of ciliates in Lake Fryxell is explained in terms of lake physicochemical properties and ciliate prey distributions, while factors related to temporal succession in the Lake Hoare assemblage remain unexplained. Local marine or temperate zone freshwater habitats are a more likely source than the surrounding dry valleys soils for present ciliate colonists in these lakes. Although the taxonomic uncertainties require further examination, our results suggest that ciliate populations in these antarctic lakes undergo significant fluctuations and are more diverse than was previously recognized.

  14. Beyond the "Code": A Guide to the Description and Documentation of Biodiversity in Ciliated Protists (Alveolata, Ciliophora).

    PubMed

    Warren, Alan; Patterson, David J; Dunthorn, Micah; Clamp, John C; Achilles-Day, Undine E M; Aescht, Erna; Al-Farraj, Saleh A; Al-Quraishy, Saleh; Al-Rasheid, Khaled; Carr, Martin; Day, John G; Dellinger, Marc; El-Serehy, Hamed A; Fan, Yangbo; Gao, Feng; Gao, Shan; Gong, Jun; Gupta, Renu; Hu, Xiaozhong; Kamra, Komal; Langlois, Gaytha; Lin, Xiaofeng; Lipscomb, Diana; Lobban, Christopher S; Luporini, Pierangelo; Lynn, Denis H; Ma, Honggang; Macek, Miroslav; Mackenzie-Dodds, Jacqueline; Makhija, Seema; Mansergh, Robert I; Martín-Cereceda, Mercedes; McMiller, Nettie; Montagnes, David J S; Nikolaeva, Svetlana; Ong'ondo, Geoffrey Odhiambo; Pérez-Uz, Blanca; Purushothaman, Jasmine; Quintela-Alonso, Pablo; Rotterová, Johana; Santoferrara, Luciana; Shao, Chen; Shen, Zhuo; Shi, Xinlu; Song, Weibo; Stoeck, Thorsten; La Terza, Antonietta; Vallesi, Adriana; Wang, Mei; Weisse, Thomas; Wiackowski, Krzysztof; Wu, Lei; Xu, Kuidong; Yi, Zhenzhen; Zufall, Rebecca; Agatha, Sabine

    2017-07-01

    Recent advances in molecular technology have revolutionized research on all aspects of the biology of organisms, including ciliates, and created unprecedented opportunities for pursuing a more integrative approach to investigations of biodiversity. However, this goal is complicated by large gaps and inconsistencies that still exist in the foundation of basic information about biodiversity of ciliates. The present paper reviews issues relating to the taxonomy of ciliates and presents specific recommendations for best practice in the observation and documentation of their biodiversity. This effort stems from a workshop that explored ways to implement six Grand Challenges proposed by the International Research Coordination Network for Biodiversity of Ciliates (IRCN-BC). As part of its commitment to strengthening the knowledge base that supports research on biodiversity of ciliates, the IRCN-BC proposes to populate The Ciliate Guide, an online database, with biodiversity-related data and metadata to create a resource that will facilitate accurate taxonomic identifications and promote sharing of data. © 2017 The Authors Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  15. Sources of mycosporine-like amino acids in planktonic Chlorella-bearing ciliates (Ciliophora)

    PubMed Central

    SONNTAG, BETTINA; SUMMERER, MONIKA; SOMMARUGA, RUBEN

    2007-01-01

    Mycosporine-like amino acids (MAAs) are a family of secondary metabolites known to protect organisms exposed to solar UV radiation. We tested their distribution among several planktonic ciliates bearing Chlorella isolated from an oligo-mesotrophic lake in Tyrol, Austria. In order to test the origin of these compounds, the MAAs were assessed by high performance liquid chromatography in both the ciliates and their symbiotic algae. Considering all Chlorella-bearing ciliates, we found: (i) seven different MAAs (mycosporine-glycine, palythine, asterina-330, shinorine, porphyra-334, usujirene, palythene); (ii) one to several MAAs per species and (iii) qualitative and quantitative seasonal changes in the MAAs (e.g. in Pelagodileptus trachelioides). In all species tested, concentrations of MAAs were always <1% of ciliate dry weight. Several MAAs were also identified in the Chlorella isolated from the ciliates, thus providing initial evidence for their symbiotic origin. In Uroleptus sp., however, we found evidence for a dietary source of MAAs. Our results suggest that accumulation of MAAs in Chlorella-bearing ciliates represents an additional benefit of this symbiosis and an adaptation for survival in sunlit, UV-exposed waters.

  16. Rumen ciliate protozoal fauna of native sheep, friesian cattle and dromedary camel in Libya.

    PubMed

    Selim, H M; Imai, S; el Sheik, A K; Attia, H; Okamoto, E; Miyagawa, E; Maede, Y

    1999-03-01

    Rumen ciliate species and composition were surveyed on the native sheep, Friesian-cattle and dromedary (one-humped) camels kept in Libya. As a result of survey, 5 genera including 14 species with 5 formae in native sheep, 9 genera including 27 species with 6 formae in Friesian-cattle and 6 genera including 13 species and 7 formae in dromedary camels were identified. All of the ciliate species and their percentage composition detected from the Libyan sheep and cattle in this examination were similar to those found from corresponding animals in the other countries. Libyan camels lacked some peculiar ciliate species found from camels in the other countries, but had many cosmopolitan species common with those in the domestic ruminants, suggesting that ciliate faunae of camel are easily affected by the other domestic ruminants kept together. The ciliate density was estimated as 105/ml in every host species.

  17. Odorous House Ants (Tapinoma sessile) as Back-Seat Drivers of Localized Ant Decline in Urban Habitats

    PubMed Central

    Salyer, Adam; Bennett, Gary W.; Buczkowski, Grzegorz A.

    2014-01-01

    Invasive species and habitat disturbance threaten biodiversity worldwide by modifying ecosystem performance and displacing native organisms. Similar homogenization impacts manifest locally when urbanization forces native species to relocate or reinvade perpetually altered habitat. This study investigated correlations between ant richness and abundance in response to urbanization and the nearby presence of invasive ant species, odorous house ants (Tapinoma sessile), within its native region. Surveying localized ant composition within natural, semi-natural, and urban habitat supported efforts to determine whether T. sessile appear to be primary (drivers) threats as instigators or secondary (passengers) threats as inheritors of indigenous ant decline. Sampling 180 sites, evenly split between all habitats with and without T. sessile present, yielded 45 total species. Although urbanization and T. sessile presence factors were significantly linked to ant decline, their interaction correlated to the greatest reduction of total ant richness (74%) and abundance (81%). Total richness appeared to decrease from 27 species to 18 when natural habitat is urbanized and from 18 species to 7 with T. sessile present in urban plots. Odorous house ant presence minimally influenced ant communities within natural and semi-natural habitat, highlighting the importance of habitat alteration and T. sessile presence interactions. Results suggest urbanization releases T. sessile from unknown constraints by decreasing ant richness and competition. Within urban environment, T. sessile are pre-adapted to quickly exploit new resources and grow to supercolony strength wherein T. sessile drive adjacent biodiversity loss. Odorous house ants act as passengers and drivers of ecological change throughout different phases of urban ‘invasion’. This progression through surviving habitat alteration, exploiting new resources, thriving, and further reducing interspecific competition supports a “back-seat driver” role and affects pest management strategies. As demonstrated by T. sessile, this article concludes native species can become back-seat drivers of biodiversity loss and potentially thrive as “metro-invasive” species. PMID:25551819

  18. Differential Biofilm Formation and Chemical Disinfection Resistance of Sessile Cells of Listeria monocytogenes Strains under Monospecies and Dual-Species (with Salmonella enterica) Conditions

    PubMed Central

    Kostaki, Maria; Chorianopoulos, Nikos; Braxou, Elli; Nychas, George-John

    2012-01-01

    This study aimed to investigate the possible influence of bacterial intra- and interspecies interactions on the ability of Listeria monocytogenes and Salmonella enterica to develop mixed-culture biofilms on an abiotic substratum, as well as on the subsequent resistance of sessile cells to chemical disinfection. Initially, three strains from each species were selected and left to attach and form biofilms on stainless steel (SS) coupons incubated at 15°C for 144 h, in periodically renewable tryptone soy broth (TSB), under either monoculture or mixed-culture (mono-/dual-species) conditions. Following biofilm formation, mixed-culture sessile communities were subjected to 6-min disinfection treatments with (i) benzalkonium chloride (50 ppm), (ii) sodium hypochlorite (10 ppm), (iii) peracetic acid (10 ppm), and (iv) a mixture of hydrogen peroxide (5 ppm) and peracetic acid (5 ppm). Results revealed that both species reached similar biofilm counts (ca. 105 CFU cm−2) and that, in general, interspecies interactions did not have any significant effect either on the biofilm-forming ability (as this was assessed by agar plating enumeration of the mechanically detached biofilm bacteria) or on the antimicrobial resistance of each individual species. Interestingly, pulsed-field gel electrophoresis (PFGE) analysis clearly showed that the three L. monocytogenes strains did not contribute at the same level either to the formation of mixed-culture sessile communities (mono-/dual species) or to their antimicrobial recalcitrance. Additionally, the simultaneous existence inside the biofilm structure of S. enterica cells seemed to influence the occurrence and resistance pattern of L. monocytogenes strains. In sum, this study highlights the impact of microbial interactions taking place inside a mixed-culture sessile community on both its population dynamics and disinfection resistance. PMID:22307304

  19. Sperm motility parameters and spermatozoa morphometric characterization in marine species: a study of swimmer and sessile species.

    PubMed

    Gallego, V; Pérez, L; Asturiano, J F; Yoshida, M

    2014-09-15

    The biodiversity of marine ecosystems is diverse and a high number of species coexist side by side. However, despite the fact that most of these species share a common fertilization strategy, a high variability in terms of the size, shape, and motion of spermatozoa can be found. In this study, we have analyzed both the sperm motion parameters and the spermatozoa morphometric features of two swimmer (pufferfish and European eel) and two sessile (sea urchin and ascidian) marine species. The most important differences in the sperm motion parameters were registered in the swimming period. Sessile species sperm displayed notably higher values than swimmer species sperm. In addition, the sperm motilities and velocities of the swimmer species decreased sharply once the sperm was activated, whereas the sessile species were able to maintain their initial values for a long time. These results are linked directly to the species-specific lifestyles. Although sessile organisms, which show limited or no movement, need sperm with a capacity to swim for long distances to find the oocytes, swimmer organisms can move toward the female and release gametes near it, and therefore the spermatozoa does not need to swim for such a long time. At the same time, sperm morphology is related to sperm motion parameters, and in this study an in-depth morphometric analysis of ascidian, sea urchin, and pufferfish spermatozoa, using computer-assisted sperm analysis software, has been carried out for the first time. A huge variability in shapes, sizes, and structures of the studied species was found using electron microscopy. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Histophagous ciliate Pseudocollinia brintoni and bacterial assemblage interaction with krill Nyctiphanes simplex. II. Host responses.

    PubMed

    Gómez-Gutiérrez, Jaime; Angel-Rodríguez, Jorge A; Tremblay, Nelly; Zenteno-Savín, Tania; Aguilar-Méndez, Mario J; López-Cortés, Alejandro; Robinson, Carlos J

    2015-10-27

    Unlike decapod crustaceans of commercial interest, the krill defense system and its response to parasites and pathogens is virtually unknown. Histophagous ciliates of the genus Pseudocollinia interact with at least 7 krill species in the northeastern Pacific. Although they can cause epizootic events, the physiology of the histophagous ciliate-host interaction and krill (host) defenses remain unknown. From 1 oceanographic survey along the southwestern coast of the Baja California Peninsula near Bahía Magdalena and 2 in the Gulf of California, we investigated parasitoid-host physiological responses (fatty acid and oxidative stress indicators) of the subtropical krill Nyctiphanes simplex infected with the ciliate P. brintoni. All life stages of P. brintoni were associated with opportunistic bacterial assemblages that have not been explicitly investigated in other Pseudocollinia species (P. beringensis, P. oregonensis, and P. similis). Parasitoid ciliates exclusively infected adult females, which showed increased lipid content during gonad development. As the infection progressed, omega-3 eicosapentaenoic and docosahexaenoic fatty acids, which may act as energy sources to produce high numbers of ciliate transmission stages, were quickly depleted. Antioxidant enzymes, components of the crustacean defense system, varied throughout infection, but without inhibiting Pseudocollinia infection, i.e. higher levels of lipid oxidative damage were detected in late stages of infection. The ineffective response of the krill antioxidant defense system against histophagous ciliates and the bacteria associated with the ciliates suggests that Pseudocollinia ciliates are functionally analogous to krill predators and may have a strong influence on the population dynamics of krill.

  1. Ciliates by the Slice.

    ERIC Educational Resources Information Center

    Boynton, John E.; Small, Eugene B.

    1984-01-01

    Describes new methods of collecting and examining ciliates, particularly those found in the sediments of lakes, rivers, and estuaries. Discusses extraction methods in preparation for observations in the classroom. Suggests investigations of ciliate ecology as an area of increasing research interest. (JM)

  2. Colonization dynamics of biofilm-associated ciliate morphotypes at different flow velocities.

    PubMed

    Risse-Buhl, Ute; Küsel, Kirsten

    2009-01-01

    The impact of flow velocity on initial ciliate colonization dynamics on surfaces were studied in the third order Ilm stream (Thuringia, Germany) at a slow flowing site (0.09ms(-1)) and two faster flowing sites (0.31ms(-1)) and in flow channels at 0.05, 0.4, and 0.8ms(-1). At the slow flowing stream site, surfaces were rapidly colonized by ciliates with up to 60 cells cm(-2) after 24h. In flow channels, the majority of suspended ciliates and inorganic matter accumulated at the surface within 4.5h at 0.05ms(-1). At 0.4ms(-1) the increase in ciliate abundance in the biofilm was highest between 72 and 168h at about 3 cells cm(-2)h(-1). Faster flow velocities were tolerated by vagile flattened ciliates that live in close contact to the surface. Vagile flattened and round filter feeders preferred biofilms at slow flow velocities. Addition of inorganic particles (0, 0.6, and 7.3mgcm(-2)) did not affect ciliate abundance in flow channel biofilms, but small ciliate species dominated and number of species was lowest (16 species cm(-2)) in biofilms at high sediment content. Although different morphotypes dominated the communities at contrasting flow velocities, all functional groups contributed to initial biofilm communities implementing all trophic links within the microbial loop.

  3. First report of ciliate (Protozoa) epibionts on deep-sea harpacticoid copepods

    NASA Astrophysics Data System (ADS)

    Sedlacek, Linda; Thistle, David; Fernandez-Leborans, Gregorio; Carman, Kevin R.; Barry, James P.

    2013-08-01

    We report the first observations of ciliate epibionts on deep-sea, benthic harpacticoid copepods. One ciliate epibiont species belonged to class Karyorelictea, one to subclass Suctoria, and one to subclass Peritrichia. Our samples came from the continental rise off central California (36.709°N, 123.523°W, 3607 m depth). We found that adult harpacticoids carried ciliate epibionts significantly more frequently than did subadult copepodids. The reason for the pattern is unknown, but it may involve differences between adults and subadult copepodids in size or in time spent swimming. We also found that the ciliate epibiont species occurred unusually frequently on the adults of two species of harpacticoid copepod; a third harpacticoid species just failed the significance test. When we ranked the 57 harpacticoid species in our samples in order of abundance, three species identified were, as a group, significantly more abundant than expected by chance if one assumes that the abundance of the group and the presence of ciliate epibionts on them were uncorrelated. High abundance may be among the reasons a harpacticoid species carries a ciliate epibiont species disproportionately frequently. For the combinations of harpacticoid species and ciliate epibiont species identified, we found one in which males and females differed significantly in the proportion that carried epibionts. Such a sex bias has also been reported for shallow-water, calanoid copepods.

  4. The effect of ozonated cooling water on the corrosion behavior of stainless steel, titanium and copper alloys. Ozone biocidal action on sessile and planktonic bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Videla, H.A.; Guiamet, P.S.; Mele, M.F.L. de

    1999-11-01

    Two aspects of ozone utilization as sole chemical treatment for cooling water demand a better understanding: (a) the effect of dissolved ozone on the corrosion behavior of heat exchanger structural materials and (b) the biocidal action of ozone on bacterial biofilms. To assess the effect of ozone dissolved in synthetic cooling water on the corrosion behavior of different structural materials (stainless steel; 70:30 copper-nickel; aluminum brass and titanium), voltamperometric experiments and corrosion potential vs. time measurements were made at ozone concentrations between 0.1 and 1.2 ppm. Present results show that the passive behavior of stainless steel and titanium is notmore » affected by dissolved ozone whereas copper alloys are susceptible to corrosion in the presence of ozone. To study the biocidal action of various concentrations of dissolved ozone against planktonic and sessile bacteria, liquid cultures and biofilms of Pseudomonas fluorescense, formed on different structural materials, were used at different contact times. The results show that dissolved ozone is an effective biocide for controlling planktonic cells but its effectiveness decreases in the presence of sessile bacteria and the extracellular polymeric matrix of the biofilm. It is suggested that the penetration of ozone through the biofilm depends on the simultaneous diffusion and reaction of the biocide with the biofilm matrix which may exhibit local differences in biomass distribution and hydrodynamic conditions.« less

  5. Evaluation of double formalin--Lugol's fixation in assessing number and biomass of ciliates: an example of estimations at mesoscale in NE Atlantic.

    PubMed

    Karayanni, Hera; Christaki, Urania; Van Wambeke, France; Dalby, Andrew P

    2004-03-01

    Ciliated protozoa are potential grazers of primary and bacterial production and act as intermediaries between picoplankton and copepods and other large suspension feeders. Accurate determination of ciliate abundance and feeding mode is crucial in oceanic carbon budget estimations. However, the impact of different fixatives on the abundance and cell volume of ciliates has been investigated in only a few studies using either laboratory cultures or natural populations. Lugol's solution and formalin are the most commonly used fixatives for the preservation of ciliates samples. In the present study, the aim was to compare 0.4% Lugol's solution and 2% borated-formalin fixation and evaluate the need of counting duplicate samples each using a different fixative. For this, a large number of samples (n = 110) from the NE Atlantic was analyzed in the frame of POMME program (Multidisciplinary Mesoscale Ocean Program). We established a statistically significant relationship (p < 0.0001) between Lugol's and formalin fixed samples for both abundance (r2 = 0.50) and biomass (r2 = 0.76) of aloricate ciliates which showed that counts were higher in Lugol's solution by a factor of 2 and a non-taxon specific cell-loss in formalin. However, loricate ciliate abundance in our samples which were represented primarily by Tintinnus spp. did not show any difference between the two treatments. Abundance and biomass of mixotrophic ciliates (chloroplast-bearing cells) were for various reasons underestimated in both treatments. Our results show that unique fixation by formalin may severely underestimate ciliates abundance and biomass although their population may not alter. For this reason, Lugol's solution is best for the estimation of their abundance and biomass. However, for counts of mixotrophs and the evaluation of the ecological role of ciliates in carbon flux, double fixation is essential. Compromises regarding the fixatives have lead to severe underestimations of mixotrophs in studies conducted by now.

  6. Spatiotemporal distribution of protozooplankton and copepod nauplii in relation to the occurrence of giant jellyfish in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Xu, Kuidong

    2013-11-01

    The occurrence of the giant jellyfish, Nemopilema nomurai, has been a frequent phenomenon in the Yellow Sea. However, the relationship between the giant jellyfish and protozoa, in particular ciliates, remains largely unknown. We investigated the distribution of nanoflagellates, ciliates, Noctiluca scintillans, and copepod nauplii along the transect 33°N in the Yellow Sea in June and August, 2012, during an occurrence of the giant jellyfish, and in October of that year when the jellyfish was absent. The organisms studied were mainly concentrated in the surface waters in summer, while in autumn they were evenly distributed in the water column. Nanoflagellate, ciliate, and copepod nauplii biomasses increased from early June to August along with jellyfish growth, the first two decreased in October, while N. scintillans biomass peaked in early June to 3 571 μg C/L and decreased in August and October. In summer, ciliate biomass greatly exceeded that of copepod nauplii (4.61-15.04 μg C/L vs. 0.34-0.89 μg C/L). Ciliate production was even more important than biomass, ranging from 6.59 to 34.19 μg C/(L·d) in summer. Our data suggest a tight and positive association among the nano-, micro-, and meso-zooplankton in the study area. Statistical analysis revealed that the abundance and total production of ciliate as well as loricate ciliate biomass were positively correlated with giant jellyfish biomass, indicating a possible predator-prey relationship between ciliates and giant jellyfish. This is in contrast to a previous study, which reported a significant reduction in ciliate standing crops due to the mass occurrence of N. nomurai in summer. Our study indicates that, with its high biomass and, in particular, high production ciliates might support the mass occurrence of giant jellyfish.

  7. Feeding selectivity of Calanus finmarchicus in the Trondheimsfjord

    NASA Astrophysics Data System (ADS)

    Leiknes, Øystein; Striberny, Anja; Tokle, Nils Egil; Olsen, Yngvar; Vadstein, Olav; Sommer, Ulrich

    2014-01-01

    The feeding selectivity of Calanus finmarchicus was studied by carrying out three incubation experiments; two experiments with natural seawater sampled during spring bloom (Exp. 1) and post-bloom conditions (Exp. 2) and a third experiment with cultured dinoflagellates and ciliates (Exp. 3). In the first two experiments a gradient in ciliate concentration was created to investigate the potential for prey density dependent selective feeding of C. finmarchicus. Results of microplankton counts indicated C. finmarchicus to be omnivorous. Diatoms contributed chiefly to the diet during spring bloom conditions. Despite the high microphytoplankton biomass during the spring bloom (Exp. 1), ciliates were selected positively by C. finmarchicus when the ciliate biomass exceeded 6.5 μg C L- 1. A selection in favor of large conic ciliates such as Laboea sp. and Strombidium conicum was indicated by positive selectivity indices. Ciliates were throughout positively selected by C. finmarchicus during Exp. 2, and selectivity indices indicated a negative selection of diatoms. The results from Exp. 3 showed that C. finmarchicus has the ability to switch from dinoflagellates to ciliates as sole food source, even if the dinoflagellate was offered in surplus. This suggests that other factors, such as nutrition may be of significance for the feeding selectivity of C. finmarchicus.

  8. Protistan Bacterivory in an Oligomesotrophic Lake: Importance of Attached Ciliates and Flagellates

    PubMed

    Carrias; Amblard; Bourdier

    1996-05-01

    Seasonal and depth variations of the abundance, biomass, and bacterivory of protozoa (heterotrophic and mixotrophic flagellates and ciliates) were determined during thermal stratification in an oligomesotrophic lake (Lake Pavin, France). Maximal densities of heterotrophic flagellates (1.9x10(3) cells ml-1) and ciliates (6.1 cells ml-1) were found in the metalimnion. Pigmented flagellates dominated the flagellate biomass in the euphotic zone. Community composition of ciliated protists varied greatly with depth, and both the abundance and biomass of ciliates was dominated by oligotrichs. Heterotrophic flagellates dominated grazing, accounting for 84% of total protistan bacterivory. Maximal grazing impact of heterotrophic flagellates was 18.9x10(6) bacteria 1(-1)h-1. On average, 62% of nonpigmented flagellates were found to ingest particles. Ciliates and mixotrophic flagellates averaged 13% and 3% of protistan bacterivory, respectively. Attached protozoa (ciliates and flagellates) were found to colonize the diatom Asterionella formosa. Attached bacterivores had higher ingestion rates than free bacterivorous protozoa and may account for 66% of total protozoa bacterivory. Our results indicated that even in low numbers, epibiotic protozoa may have a major grazing impact on free bacteria.

  9. Missouri River Environmental Inventory. Measurements of the Species Diversity of Planktonic and Microbenthic Organisms.

    DTIC Science & Technology

    1973-01-01

    protozoan species in the benthos of the unchannelized river were found to be the ciliate Paramecium aurelia and the flagelleted species of the genus...the ciliate Vorticella and the ciliate Paramecium aurelia were found to be the most dominant. Or. the basis of total numbers, the plankton was...the benthos at Synder Bend or DeSoto Bend Oxbows during the spring months. The dominant ciliates in the plankton at Synder Bend Oxbow were Paramecium

  10. Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome

    PubMed Central

    Hamilton, Eileen P; Kapusta, Aurélie; Huvos, Piroska E; Bidwell, Shelby L; Zafar, Nikhat; Tang, Haibao; Hadjithomas, Michalis; Krishnakumar, Vivek; Badger, Jonathan H; Caler, Elisabet V; Russ, Carsten; Zeng, Qiandong; Fan, Lin; Levin, Joshua Z; Shea, Terrance; Young, Sarah K; Hegarty, Ryan; Daza, Riza; Gujja, Sharvari; Wortman, Jennifer R; Birren, Bruce W; Nusbaum, Chad; Thomas, Jainy; Carey, Clayton M; Pritham, Ellen J; Feschotte, Cédric; Noto, Tomoko; Mochizuki, Kazufumi; Papazyan, Romeo; Taverna, Sean D; Dear, Paul H; Cassidy-Hanley, Donna M; Xiong, Jie; Miao, Wei; Orias, Eduardo; Coyne, Robert S

    2016-01-01

    The germline genome of the binucleated ciliate Tetrahymena thermophila undergoes programmed chromosome breakage and massive DNA elimination to generate the somatic genome. Here, we present a complete sequence assembly of the germline genome and analyze multiple features of its structure and its relationship to the somatic genome, shedding light on the mechanisms of genome rearrangement as well as the evolutionary history of this remarkable germline/soma differentiation. Our results strengthen the notion that a complex, dynamic, and ongoing interplay between mobile DNA elements and the host genome have shaped Tetrahymena chromosome structure, locally and globally. Non-standard outcomes of rearrangement events, including the generation of short-lived somatic chromosomes and excision of DNA interrupting protein-coding regions, may represent novel forms of developmental gene regulation. We also compare Tetrahymena’s germline/soma differentiation to that of other characterized ciliates, illustrating the wide diversity of adaptations that have occurred within this phylum. DOI: http://dx.doi.org/10.7554/eLife.19090.001 PMID:27892853

  11. Patterns and Drivers of Vertical Distribution of the Ciliate Community from the Surface to the Abyssopelagic Zone in the Western Pacific Ocean.

    PubMed

    Zhao, Feng; Filker, Sabine; Xu, Kuidong; Huang, Pingping; Zheng, Shan

    2017-01-01

    The deep sea is one of the largest but least understood ecosystems on earth. Knowledge about the diversity and distribution patterns as well as drivers of microbial eukaryote (including ciliates) along the water column, particularly below the photic zone, is scarce. In this study, we investigated the diversity of pelagic ciliates, the main group of marine microeukaryotes, their vertical distribution from the surface to the abyssopelagic zone, as well as their horizontal distribution over a distance of 1,300 km in the Western Pacific Ocean, using high-throughput DNA and cDNA (complementary DNA) sequencing. No distance-decay relationship could be detected along the horizontal scale; instead, a distinct vertical distribution within the ciliate communities was revealed. The alpha diversity of the ciliate communities in the deep chlorophyll maximum (DCM) and the 200 m layer turned out to be significantly higher compared with the other water layers. The ciliate communities in the 200 m water layer appeared to be more similar to those in deeper layers from 1,000 m to about 5,000 m than to the surface and DCM ciliate communities. Dominant species in the bathypelagic and abyssopelagic zone, particularly some parasites, were also detected in the 200 m layer, but were almost absent in the surface layer. The 200 m layer, therefore, seems to be an important "species bank" for deep ocean layers. Statistical analyses further revealed significant effects of temperature and chlorophyll a on the partitioning of ciliate diversity, indicating that environmental factors are a stronger force in shaping marine pelagic ciliate communities than the geographic distance.

  12. Molecular characterization of the major membrane skeletal protein in the ciliate Tetrahymena pyriformis suggests n-plication of an early evolutionary intermediate filament protein subdomain.

    PubMed

    Bouchard, P; Chomilier, J; Ravet, V; Mornon, J P; Viguès, B

    2001-01-01

    Epiplasmin C is the major protein component of the membrane skeleton in the ciliate Tetrahymena pyriformis. Cloning and analysis of the gene encoding epiplasmin C showed this protein to be a previously unrecognized protein. In particular, epiplasmin C was shown to lack the canonical features of already known epiplasmic proteins in ciliates and flagellates. By means of hydrophobic cluster analysis (HCA), it has been shown that epiplasmin C is constituted of a repeat of 25 domains of 40 residues each. These domains are related and can be grouped in two families called types I and types II. Connections between types I and types II present rules that can be evidenced in the sequence itself, thus enforcing the validity of the splitting of the domains. Using these repeated domains as queries, significant structural similarities were demonstrated with an extra six heptads shared by nuclear lamins and invertebrate cytoplasmic intermediate filament proteins and deleted in the cytoplasmic intermediate filament protein lineage at the protostome-deuterostome branching in the eukaryotic phylogenetic tree.

  13. Spatial variations in annual cycles of body-size spectra of planktonic ciliates and their environmental drivers in marine ecosystems.

    PubMed

    Xu, Henglong; Jiang, Yong; Xu, Guangjian

    2016-11-15

    Body-size spectra has proved to be a useful taxon-free resolution to summarize a community structure for bioassessment. The spatial variations in annual cycles of body-size spectra of planktonic ciliates and their environmental drivers were studied based on an annual dataset. Samples were biweekly collected at five stations in a bay of the Yellow Sea, northern China during a 1-year cycle. Based on a multivariate approach, the second-stage analysis, it was shown that the annual cycles of the body-size spectra were significantly different among five sampling stations. Correlation analysis demonstrated that the spatial variations in the body-size spectra were significantly related to changes of environmental conditions, especially dissolved nitrogen, alone or in combination with salinity and dissolve oxygen. Based on results, it is suggested that the nutrients may be the environmental drivers to shape the spatial variations in annual cycles of planktonic ciliates in terms of body-size spectra in marine ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Basal body assembly in ciliates: the power of numbers

    PubMed Central

    Pearson, Chad G.; Winey, Mark

    2009-01-01

    Centrioles perform the dual functions of organizing both centrosomes and cilia. The biogenesis of nascent centrioles is an essential cellular event that is tightly coupled to the cell cycle so that each cell contains only two or four centrioles at any given point in the cell cycle. The assembly of centrioles and their analogs, basal bodies, is well characterized at the ultrastructural level whereby structural modules are built into a functional organelle. Genetic studies in model organisms combined with proteomic, bioinformatic, and identifying ciliary disease gene orthologs have revealed a wealth of molecules requiring further analysis to determine their roles in centriole duplication, assembly, and function. Nonetheless, at this stage our understanding of how molecular components interact to build new centrioles and basal bodies is limited. The ciliates, Tetrahymena and Paramecium, historically have been the subject of cytological and genetic study of basal bodies. Recent advances in the ciliate genetic and molecular toolkit have placed these model organisms in a favorable position to study the molecular mechanisms of centriole and basal body assembly. PMID:19192246

  15. ["Light" epithelial cells of swine and bovine oviducts].

    PubMed

    Suuroia, T; Aunapuu, M; Arend, A; Sépp, E

    2002-01-01

    The ultrastructure of oviduct epithelium of clinically healthy cows and 15 sows was investigated using scanning and transmission electron microscopy. In all parts of the oviduct, ciliated and non-ciliated epithelial cells are present, but their number varies in both the investigated animals in different regions of the oviduct, depending on the phase of the estrous cycle. In addition to ciliated cells with numerous cilia on their luminal surface, so-called pale ciliary cells were found in all parts of the oviduct of cows and sows. The cytoplasm of these cells is electron-lucent, their luminal surface carries few cilia and short microvilli. The apical cytoplasm contains species specific secretory granules, which means that these cells have features characteristic of both secretory and ciliated cells. It is suggested that the pale ciliated and non-ciliated secretory cells are functional stages of the same tubar epithelium cell, and that the transformation between these two cell types is regulated by functional requirements of the organ in different phases of the estrous cycle.

  16. Morphological studies of the developing human esophageal epithelium.

    PubMed

    Ménard, D

    1995-06-15

    This article focusses on the structural development of human esophageal ciliated epithelium. A combination of transmission electron microscopic (TEM), scanning electron microscopic (SEM), radioautographic, and light microscopic (LM) analyses were carried out using intact fetal tissues between 8 and 20 weeks of gestation as well as cultured esophageal explants. Up to the age of 10 weeks, the stratified esophageal epithelium consisted of two longitudinal primary folds. The surface cells were undifferentiated and contained large glycogen aggregates. Between 11 and 16 weeks, the primary folds (now up to four) had developed secondary folds. The thickness of the epithelium drastically increased (123%) in concomittance with a differentiation of surface columnar ciliated cells. These highly specialized surface cells exhibited junctional complexes and well-developed organelles with numerous microvilli interspersed among the cilia. Transverse sections revealed the internal structure of the cilia with a consistent pattern of nine doublet microtubules surrounding a central pair of single microtubules. Freeze-fracture studies illustrated the presence of a ciliary necklace composed of 6 ring-like rows of intramembranous particles. They also revealed the structure of ciliary cell tight junctions consisting of up to nine anastomosing strands (P-face) or complementary grooves (E-face). Ultrastructural studies (LM, TEM, SEM) of the esophageal squamous epithelium obtained after 15 days of culture showed that the newly formed epithelium was similar to adult human epithelium. Finally LM and SEM observations established that the esophagogastric junction was not yet well delineated, consisting of a transitional area composed of a mixture of esophageal ciliated cells and gastric columnar mucous cells.

  17. Investigating the biodiversity of ciliates in the 'Age of Integration'.

    PubMed

    Clamp, John C; Lynn, Denis H

    2017-10-01

    Biology is now turning toward a more integrative approach to research, distinguished by projects that depend on collaboration across hierarchical levels of organization or across disciplines. This trend is prompted by the need to solve complex, large-scale problems and includes disciplines that could be defined as integrative biodiversity. Integrative biodiversity of protists, including that of ciliates, is still partially in its infancy. This is the result of a shortage of historical data resources such as curated museum collections. Major areas of integrative biodiversity of ciliates that have begun to emerge can be categorized as integrative systematics, phenotypic plasticity, and integrative ecology. Integrative systematics of ciliates is characterized by inclusion of diverse sources of data in treatment of taxonomy of species and phylogenetic investigations. Integrative research in phenotypic plasticity combines investigation of functional roles of individual species of ciliates with genetic and genomic data. Finally, integrative ecology focuses on genetic identity of species in communities of ciliates and their collective functional roles in ecosystems. A review of current efforts toward integrative research into biodiversity of ciliates reveals a single, overarching concern-rapid progress will be achieved only by implementing a comprehensive strategy supported by one or more groups of active researchers. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  18. Bioaccumulation of ultraviolet sunscreen compounds (mycosporine-like amino acids) by the heterotrophic freshwater ciliate Bursaridium living in alpine lakes

    PubMed Central

    Sonntag, Bettina; Kammerlander, Barbara; Summerer, Monika

    2017-01-01

    Abstract Ciliates in shallow alpine lakes are exposed to high levels of incident solar ultraviolet radiation (UVR). We observed the presence of specific sunscreen compounds, the mycosporine-like amino acids (MAAs), in several populations of Bursaridium, a relatively large ciliate species found in such lakes. The populations from 3 highly UV transparent lakes revealed the presence of 7 MAAs (MG, SH, PR, PI, AS, US, and PE) in total concentrations of 3.6–52.4 10−5 μg μg−1 dry weight (DW) per individual, whereas in one glacially turbid and less UV transparent lake, no MAAs were detected in the Bursaridium population. The MAAs in the ciliates generally reflected the composition and relative amounts of the lakes’ seston MAAs, assuming that the ciliates fed on MAA-rich plankton. We experimentally found that naturally acquired MAAs prevented ciliate mortality under simulated UVR and photosynthetically active radiation (PAR) conditions. We further tested the dietary regulation of the MAAs-content in the ciliates under artificial UVR and PAR exposure and found an increase in MAAs concentrations in all treatments. Our assumption was that several stress factors other than irradiation were involved in the synthesis or up-regulation of MAAs. PMID:28690781

  19. Free-living ciliates from epiphytic tank bromeliads in Mexico.

    PubMed

    Durán-Ramírez, Carlos Alberto; García-Franco, José Guadalupe; Foissner, Wilhelm; Mayén-Estrada, Rosaura

    2015-02-01

    The ciliate diversity of Mexican bromeliads is poorly known. We studied the ciliate community of two species of epiphytic tank bromeliads from 48 individuals of Tillandsia heterophylla and four of T. prodigiosa. The bromeliads occurred on over 22 tree host species. Samples were collected during 2009 and 2010 in a mountain cloud forest and in two coffee plantations and in a pine-oak forest. The ciliates were identified in live and protargol preparations. We recorded 61 ciliate species distributed in 39 genera grouped in eight classes. Ten species were frequent in the 52 samples (20 ± 3.2) and Leptopharynx bromeliophilus was the most frequent recorded in 25 samples. Thirty-three species are new for the fauna of Mexico, 24 species have been recorded for the first time in tank bromeliads. The classes Spirotrichea, Oligohymenophorea and Colpodea presented the highest number of species, 16, 14, and 12, respectively. Colpoda was the most species-rich genus being present with six species. A low similarity between areas and seasons was obtained with Jaccard's index. We conclude that the two bromeliads species host a rich ciliate diversity whose knowledge contributes to the question of ciliate distribution and specifically, in tank bromeliads. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Symbiotic ciliates receive protection against UV damage from their algae: a test with Paramecium bursaria and Chlorella.

    PubMed

    Summerer, Monika; Sonntag, Bettina; Hörtnagl, Paul; Sommaruga, Ruben

    2009-05-01

    We assessed the photoprotective role of symbiotic Chlorella in the ciliate Paramecium bursaria by comparing their sensitivity to UV radiation (UVR) with Chlorella-reduced and Chlorella-free (aposymbiotic) cell lines of the same species. Aposymbiotic P. bursaria had significantly higher mortality than the symbiotic cell lines when exposed to UVR. To elucidate the protection mechanism, we assessed the algal distribution within the ciliate using thin-sections and transmission electron microscopy and estimated the screening factor by Chlorella based on an optical model. These analyses evidenced a substantial screening factor ranging, from 59.2% to 93.2% (320nm) for regular algal distribution. This screening efficiency reached up to approximately 100% when Chlorella algae were dislocated to the posterior region of the ciliate. The dislocation was observed in symbiotic ciliates only under exposure to UV plus photosynthetically active radiation (PAR) or to high PAR levels. Moreover, under exposure to UVB radiation and high PAR, symbiotic P. bursaria aggregated into dense spots. This behavior could represent an efficient avoidance strategy not yet described for ciliates. Analyses of the intact symbiosis and their algal symbionts for UV-screening compounds (mycosporine-like amino acids and sporopollenin) proved negative. Overall, our results show that photoprotection in this ciliate symbiosis represents an additional advantage to the hitherto postulated nutritional benefits.

  1. Comparing the responses of rumen ciliate protozoa and bacteria to excess carbohydrate.

    PubMed

    Teixeira, César R V; Lana, Rogério de Paula; Tao, Junyi; Hackmann, Timothy J

    2017-06-01

    When given excess carbohydrate, certain microbial species respond by storing energy (synthesizing reserve carbohydrate), but other species respond by dissipating the energy as heat (spilling energy). To determine the importance of these responses in the rumen microbial community, this study quantified the responses of mixed ciliate protozoa vs bacteria to glucose. We hypothesized that ciliates would direct more glucose to synthesis of reserve carbohydrate (and less to energy spilling) than would bacteria. Ciliates and bacteria were isolated from rumen fluid using filtration and centrifugation, resuspended in nitrogen-free buffer to limit growth, and dosed with 5 mM glucose. Compared with bacteria, ciliates consumed glucose >3-fold faster and synthesized reserve carbohydrate 4-fold faster. They incorporated 53% of glucose carbon into reserve carbohydrate-nearly double the value (27%) for bacteria. Energy spilling was not detected for ciliates, as all heat production (104%) was accounted by synthesis of reserve carbohydrate and endogenous metabolism. For bacteria, reserve carbohydrate and endogenous metabolism accounted for only 68% of heat production, and spilling was detected within 11 min of dosing glucose. These results suggest that ciliates alter the course of ruminal carbohydrate metabolism by outcompeting bacteria for excess carbohydrate, maximizing reserve carbohydrate synthesis, and minimizing energy spilling. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Ciliate communities consistently associated with coral diseases

    NASA Astrophysics Data System (ADS)

    Sweet, M. J.; Séré, M. G.

    2016-07-01

    Incidences of coral disease are increasing. Most studies which focus on diseases in these organisms routinely assess variations in bacterial associates. However, other microorganism groups such as viruses, fungi and protozoa are only recently starting to receive attention. This study aimed at assessing the diversity of ciliates associated with coral diseases over a wide geographical range. Here we show that a wide variety of ciliates are associated with all nine coral diseases assessed. Many of these ciliates such as Trochilia petrani and Glauconema trihymene feed on the bacteria which are likely colonizing the bare skeleton exposed by the advancing disease lesion or the necrotic tissue itself. Others such as Pseudokeronopsis and Licnophora macfarlandi are common predators of other protozoans and will be attracted by the increase in other ciliate species to the lesion interface. However, a few ciliate species (namely Varistrombidium kielum, Philaster lucinda, Philaster guamense, a Euplotes sp., a Trachelotractus sp. and a Condylostoma sp.) appear to harbor symbiotic algae, potentially from the coral themselves, a result which may indicate that they play some role in the disease pathology at the very least. Although, from this study alone we are not able to discern what roles any of these ciliates play in disease causation, the consistent presence of such communities with disease lesion interfaces warrants further investigation.

  3. The symbiotic intestinal ciliates and the evolution of their hosts.

    PubMed

    Moon-van der Staay, Seung Yeo; van der Staay, Georg W M; Michalowski, Tadeusz; Jouany, Jean-Pierre; Pristas, Peter; Javorský, Peter; Kišidayová, Svetlana; Varadyova, Zora; McEwan, Neil R; Newbold, C Jamie; van Alen, Theo; de Graaf, Rob; Schmid, Markus; Huynen, Martijn A; Hackstein, Johannes H P

    2014-04-01

    The evolution of sophisticated differentiations of the gastro-intestinal tract enabled herbivorous mammals to digest dietary cellulose and hemicellulose with the aid of a complex anaerobic microbiota. Distinctive symbiotic ciliates, which are unique to this habitat, are the largest representatives of this microbial community. Analyses of a total of 484 different 18S rRNA genes show that extremely complex, but related ciliate communities can occur in the rumen of cattle, sheep, goats and red deer (301 sequences). The communities in the hindgut of equids (Equus caballus, Equus quagga), and elephants (Elephas maximus, Loxodonta africanus; 162 sequences), which are clearly distinct from the ruminant ciliate biota, exhibit a much higher diversity than anticipated on the basis of their morphology. All these ciliates from the gastro-intestinal tract constitute a monophyletic group, which consists of two major taxa, i.e. Vestibuliferida and Entodiniomorphida. The ciliates from the evolutionarily older hindgut fermenters exhibit a clustering that is specific for higher taxa of their hosts, as extant species of horse and zebra on the one hand, and Africa and Indian elephant on the other hand, share related ciliates. The evolutionary younger ruminants altogether share the various entodiniomorphs and the vestibuliferids from ruminants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population.

    PubMed

    Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi

    2017-01-01

    In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.

  5. Physiological Responses of Beech and Sessile Oak in a Natural Mixed Stand During a Dry Summer

    PubMed Central

    RAFTOYANNIS, YANNIS; RADOGLOU, KALLIOPI

    2002-01-01

    Responses of CO2 assimilation and stomatal conductance to decreasing leaf water potential, and to environmental factors, were analysed in a mixed natural stand of sessile oak (Quercus petraea ssp. medwediewii) and beech (Fagus sylvatica L.) in Greece during the exceptionally dry summer of 1998. Seasonal courses of leaf water potential were similar for both species, whereas mean net photosynthesis and stomatal conductance were always higher in sessile oak than in beech. The relationship between net photosynthesis and stomatal conductance was strong for both species. Sessile oak had high rates of photosynthesis even under very low leaf water potentials and high air temperatures, whereas the photosynthetic rate of beech decreased at low water potentials. Diurnal patterns were similar in both species but sessile oak had higher rates of CO2 assimilation than beech. Our results indicate that sessile oak is more tolerant of drought than beech, due, in part, to its maintenance of photosynthesis at low water potential. PMID:12102528

  6. MAML2 Rearrangements in Variant Forms of Mucoepidermoid Carcinoma: Ancillary Diagnostic Testing for the Ciliated and Warthin-like Variants.

    PubMed

    Bishop, Justin A; Cowan, Morgan L; Shum, Chung H; Westra, William H

    2018-01-01

    Mucoepidermoid carcinoma (MEC) is the most common salivary gland malignancy. Recent studies have shown that most MECs harbor gene fusions involving MAML2-an alteration that appears to be specific for MEC, a finding that could be diagnostically useful. While most cases of MEC are histologically straightforward, uncommon variants can cause considerable diagnostic difficulty. We present 2 variants of MEC for which MAML2 studies were crucial in establishing a diagnosis: a previously undescribed ciliated variant, and the recently described Warthin-like variant. All cases of ciliated and Warthin-like MEC were retrieved from the archives of The Johns Hopkins Hospital. Break-apart fluorescence in situ hybridization for MAML2 was performed on all cases. One ciliated MEC and 6 Warthin-like MECs were identified. The ciliated MEC presented as a 4.6 cm cystic lymph node metastasis originating from the tongue base in a 47-year-old woman. The Warthin-like MECs presented as parotid masses ranging in size from 1.2 to 3.3 (mean, 2.7 cm) in 4 women and 2 men. The ciliated MEC consisted of macrocystic spaces punctuated by tubulopapillary proliferations of squamoid cells and ciliated columnar cells. The Warthin-like MECs were comprised of cystic spaces lined by multilayered oncocytic to squamoid cells surrounded by a circumscribed cuff of lymphoid tissue with germinal centers. In these cases, the Warthin-like areas dominated the histologic picture. Conventional MEC, when present, represented a minor tumor component. MAML2 rearrangements were identified in all cases. Warthin-like MEC, and now a ciliated form of MEC, are newly described variants of a common salivary gland carcinoma. Unfamiliarity with these novel forms, unanticipated cellular features (eg, cilia), and morphologic overlap with mundane benign processes (eg, developmental ciliated cysts, Warthin tumor) or other carcinomas (eg, ciliated human papillomavirus-related carcinoma) may render these variants susceptible to misdiagnosis. These unusual variants appear to consistently harbor MAML2 fusions-a finding that establishes a clear link to conventional MEC and provides a valuable adjunct in establishing the diagnosis.

  7. The oxidative stress response of oxytetracycline in the ciliate Pseudocohnilembus persalinus.

    PubMed

    Wang, Chongnv; Pan, Xuming; Fan, Yawen; Chen, Ying; Mu, Weijie

    2017-12-01

    Oxytetracycline (OTC) is commonly employed in fish farms to prevent bacterial infections in China, and because of their widely and intensive use, the potential harmful effects on organisms in aquatic environment are of great concern. Ciliates play an important role in aquatic food webs as secondary producers, and Pseudocohnilembus persalinus, is one kind of them which are easily found in fish farms, surviving in polluted water. Therefore, using P. persalinus as experimental models, this study investigated the effects of oxytetracycline (OTC) on the growth, antioxidant system and morphological damage in pollution-resistant ciliates species. Our results showed that the 96-h EC 50 values for OTC of P. persalinus was 21.38mgL -1 . The increased level of SOD and GSH during 96h OTC stress was related to an adaptive response under oxidative stress induced in ciliates. Additionally, sod1, sod2 and sod3 exhibited a significant increased expression level compared to control group at 24h treatment, indicating a promoting of dense system in ciliates at this exposure time. However, only sod1 and sod2 showed raised expression level at 48h stress, showing the different sensitive of gene isoforms to some extent. With OTC treatment, damage of regular wrinkles, shrunk, twisted on the cell surface, even forming cyst of scuticociliatid ciliate cells were firstly observed by SEM (scanning electron microscope) in this study. Overall, physiological, molecular and morphological information on the toxicological studies of ciliates and more information on possibility of ciliates as indicators of contamination were provided in this study. Copyright © 2017. Published by Elsevier B.V.

  8. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish.

    PubMed

    Gokey, Jason J; Dasgupta, Agnik; Amack, Jeffrey D

    2015-11-01

    Asymmetric fluid flows generated by motile cilia in a transient 'organ of asymmetry' are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H(+)-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer's vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures-neuromasts and olfactory placodes-suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. First report of predation of Giardia sp. cysts by ciliated protozoa and confirmation of predation of Cryptosporidium spp. oocysts by ciliate species.

    PubMed

    Siqueira-Castro, Isabel Cristina Vidal; Greinert-Goulart, Juliane Araújo; Bonatti, Tais Rondello; Yamashiro, Sandra; Franco, Regina Maura Bueno

    2016-06-01

    Ciliated protozoa are important components of the microbial food web in various habitats, especially aquatic environments. These organisms are useful bioindicators for both environmental quality assessment and the wastewater purification process. The pathogenic parasitic protozoan species Giardia and Cryptosporidium represent a significant concern for human health, being responsible for numerous disease outbreaks worldwide. The predation of cysts and oocysts in 15 ciliate species from water and sewage samples collected in Campinas, São Paulo, Brazil were verified under laboratory conditions. The ciliated protozoan species were selected based on their mode of nutrition, and only bacterivorous and suspension-feeders were considered for the experiments. The species Blepharisma sinuosum, Euplotes aediculatus, Sterkiella cavicola, Oxytricha granulifera, Vorticella infusionum, Spirostomum minus, and Stentor coeruleus ingested cysts and oocysts, the resistance forms of Giardia spp. and Cryptosporidium spp., respectively. This is the first time that the ingestion of Giardia cysts by ciliated protozoa has been reported. These findings may contribute to a better understanding of the biological removal of these pathogens from aquatic environments.

  10. Understanding the spatial distribution of subtidal reef assemblages in the southern Baltic Sea using towed camera platform imagery

    NASA Astrophysics Data System (ADS)

    Beisiegel, Kolja; Darr, Alexander; Zettler, Michael L.; Friedland, René; Gräwe, Ulf; Gogina, Mayya

    2018-07-01

    Quantitative sampling of sessile assemblages on temperate subtidal rocky reefs is expensive and severely time-limited by logistics. However, knowledge about distribution patterns of critical and endangered species and habitats at different spatial scales is needed for effective marine management strategies. To gain information of sessile community distribution on broader spatial scales (>1 km), visual imaging was employed for the first time on a reef complex in the south-western Baltic Sea. Analysis of 3000 images along 6 transects (in total 18 km long) from 10 to 40 m depth revealed high natural variation in reef physical structure, with well-defined changes in sessile species richness, cover and composition. Overall 14 morphological groups could be distinguished by imaging and 4 distinct community groups associated with specific habitat requirements were identified. Depth remained the best descriptor. However, data indicate that light intensity, concentration of organic carbon and suspended particulate matter have an effect on reef community distribution. Compared to fully marine conditions, the study revealed a unique zonation pattern in the circalittoral zone of the Fehmarnbelt brackish transition area, with an unexpected reef habitat in the trench. We conclude that towed camera platform imagery might help to close the information gap regarding rocky reefs in the temperate subtidal. It provides a valuable tool to assess the main distribution patterns of sessile assemblages on rough terrain, potentially applicable for management and conservation planning.

  11. The novel oral glucan synthase inhibitor SCY-078 shows in vitro activity against sessile and planktonic Candida spp.

    PubMed

    Marcos-Zambrano, Laura Judith; Gómez-Perosanz, Marta; Escribano, Pilar; Bouza, Emilio; Guinea, Jesús

    2017-07-01

    We studied the antifungal activity of SCY-078 (an orally bioavailable 1,3-β -d- glucan synthesis inhibitor), micafungin and fluconazole against the planktonic and sessile forms of 178 Candida and non- Candida isolates causing fungaemia in patients recently admitted to a large European hospital. The in vitro activity of SCY-078, micafungin and fluconazole against the planktonic form of the isolates was assessed using EUCAST EDef 7.3 and CLSI M27-A3. Antibiofilm activity was assessed using the XTT reduction assay. SCY-078 and micafungin showed potent in vitro activity against Candida and non- Candida isolates. The in vitro activity of both drugs was similar, but SYC-078 displayed significantly lower MIC values than micafungin against Candida parapsilosis and non- Candida isolates, whereas micafungin displayed significantly lower MIC values for the remaining species ( P  <0.001). In contrast, SCY-078 and micafungin showed essentially the same activity against the biofilms with the exception of Candida glabrata , in which the micafungin sessile MIC values were significantly lower ( P  <0.001). These observations were confirmed by assessing biofilm structure by scanning electron microscopy after antifungal treatment. Our study showed that the high in vitro activity of SCY-078 against invasive Candida isolates in both sessile and planktonic forms is comparable to that of micafungin. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Photomovements in Ciliated Protozoa

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Hans-Werner

    Ciliates are unicellular, nonphotosynthetic organisms which show a number of light-induced responses. Orientation with respect to the direction of light, phototaxis, has been demonstrated in some species of ciliates. Most of these species bear conspicuous cell organelles such as subpellicular pigment granules, a colored stigma, a watchglass organelle, or a compound crystalline organelle. Several lines of evidence suggest that these kinds of organelles are prerequisites for phototactic orientation of the cells. Photoreceptor molecules presumedly mediating the photobehavior of two species have been identified. The ecological advantage of light-induced responses in ciliated protozoa is still debated. In some cases the organisms may utilize this behavior either to approach their potential prey, to escape their predators, to escape damaging light, or to meet a mating partner. Several species of ciliates display inverse phototactic behavior at different stages of their life cycle.

  13. [Ciliate diversity and spatiotemporal variation in surface sediments of Yangtze River estuary hypoxic zone].

    PubMed

    Feng, Zhao; Kui-Dong, Xu; Zhao-Cui, Meng

    2012-12-01

    By using denaturing gradient gel electrophoresis (DGGE) and sequencing as well as Ludox-QPS method, an investigation was made on the ciliate diversity and its spatiotemporal variation in the surface sediments at three sites of Yangtze River estuary hypoxic zone in April and August 2011. The ANOSIM analysis indicated that the ciliate diversity had significant difference among the sites (R = 0.896, P = 0.0001), but less difference among seasons (R = 0.043, P = 0.207). The sequencing of 18S rDNA DGGE bands revealed that the most predominant groups were planktonic Choreotrichia and Oligotrichia. The detection by Ludox-QPS method showed that the species number and abundance of active ciliates were maintained at a higher level, and increased by 2-5 times in summer, as compared with those in spring. Both the Ludox-QPS method and the DGGE technique detected that the ciliate diversity at the three sites had the similar variation trend, and the Ludox-QPS method detected that there was a significant variation in the ciliate species number and abundance between different seasons. The species number detected by Ludox-QPS method was higher than that detected by DGGE bands. Our study indicated that the ciliates in Yangtze River estuary hypoxic zone had higher diversity and abundance, with the potential to supply food for the polyps of jellyfish.

  14. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment

    PubMed Central

    Ricard, Guénola; McEwan, Neil R; Dutilh, Bas E; Jouany, Jean-Pierre; Macheboeuf, Didier; Mitsumori, Makoto; McIntosh, Freda M; Michalowski, Tadeusz; Nagamine, Takafumi; Nelson, Nancy; Newbold, Charles J; Nsabimana, Eli; Takenaka, Akio; Thomas, Nadine A; Ushida, Kazunari; Hackstein, Johannes HP; Huynen, Martijn A

    2006-01-01

    Background The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium). Results A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT) after the colonization of the gut by the rumen Ciliates. Conclusion Among the HGT candidates, we found an over-representation (>75%) of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches. PMID:16472398

  15. Evidence against the mucosal traction theory in cholesteatoma.

    PubMed

    Pauna, Henrique F; Monsanto, Rafael C; Schachern, Patricia; Paparella, Michael M; Chole, Richard A; Cureoglu, Sebahattin

    2017-10-08

    To investigate the distribution of ciliated epithelium in the human middle ear and its potential role in the formation of cholesteatoma. Comparative human temporal bone study. We selected temporal bones from 14 donors with a diagnosis of cholesteatoma, 15 with chronic otitis media without retraction pockets, 14 with chronic otitis media with retraction pockets, 14 with cystic fibrosis (CF), and 16 controls. We mapped the distribution of the ciliated cells in the mucosal lining of the middle ear and tympanic membrane using three-dimensional reconstruction analysis, and counted the number of ciliated cells in the middle ear mucosa. Ciliated cells are extremely sparse in the epithelial lining of the lateral surface of the ossicles in the epitympanum and the medial surface of the tympanic membrane. Furthermore, there is a significant decrease in the number of ciliated cells in these areas in temporal bones with cholesteatoma, chronic otitis media, chronic otitis media with retraction pockets, and CF compared to controls. Ciliated cells most commonly are located at the hypotympanum and the Eustachian tube opening but not the tympanic membrane or epitympanum. The paucity of ciliated epithelial cells on the medial side of the tympanic membrane and the lateral surface of the ossicles in the epitympanum in cases with cholesteatoma and/or chronic otitis media do not support the mucosal migration theory of cholesteatoma formation. NA. Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment.

    PubMed

    Ricard, Guénola; McEwan, Neil R; Dutilh, Bas E; Jouany, Jean-Pierre; Macheboeuf, Didier; Mitsumori, Makoto; McIntosh, Freda M; Michalowski, Tadeusz; Nagamine, Takafumi; Nelson, Nancy; Newbold, Charles J; Nsabimana, Eli; Takenaka, Akio; Thomas, Nadine A; Ushida, Kazunari; Hackstein, Johannes H P; Huynen, Martijn A

    2006-02-10

    The horizontal transfer of expressed genes from Bacteria into Ciliates which live in close contact with each other in the rumen (the foregut of ruminants) was studied using ciliate Expressed Sequence Tags (ESTs). More than 4000 ESTs were sequenced from representatives of the two major groups of rumen Cilates: the order Entodiniomorphida (Entodinium simplex, Entodinium caudatum, Eudiplodinium maggii, Metadinium medium, Diploplastron affine, Polyplastron multivesiculatum and Epidinium ecaudatum) and the order Vestibuliferida, previously called Holotricha (Isotricha prostoma, Isotricha intestinalis and Dasytricha ruminantium). A comparison of the sequences with the completely sequenced genomes of Eukaryotes and Prokaryotes, followed by large-scale construction and analysis of phylogenies, identified 148 ciliate genes that specifically cluster with genes from the Bacteria and Archaea. The phylogenetic clustering with bacterial genes, coupled with the absence of close relatives of these genes in the Ciliate Tetrahymena thermophila, indicates that they have been acquired via Horizontal Gene Transfer (HGT) after the colonization of the gut by the rumen Ciliates. Among the HGT candidates, we found an over-representation (>75%) of genes involved in metabolism, specifically in the catabolism of complex carbohydrates, a rich food source in the rumen. We propose that the acquisition of these genes has greatly facilitated the Ciliates' colonization of the rumen providing evidence for the role of HGT in the adaptation to new niches.

  17. Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge.

    PubMed

    Pardo-Saganta, Ana; Law, Brandon M; Gonzalez-Celeiro, Meryem; Vinarsky, Vladimir; Rajagopal, Jayaraj

    2013-03-01

    Mucous cell metaplasia is a hallmark of airway diseases, such as asthma and chronic obstructive pulmonary disease. The majority of human airway epithelium is pseudostratified, but the cell of origin of mucous cells has not been definitively established in this type of airway epithelium. There is evidence that ciliated, club cell (Clara), and basal cells can all give rise to mucus-producing cells in different contexts. Because pseudostratified airway epithelium contains distinct progenitor cells from simple columnar airway epithelium, the lineage relationships of progenitor cells to mucous cells may be different in these two epithelial types. We therefore performed lineage tracing of the ciliated cells of the murine basal cell-containing airway epithelium in conjunction with the ovalbumin (OVA)-induced murine model of allergic lung disease. We genetically labeled ciliated cells with enhanced Yellow Fluorescent Protein (eYFP) before the allergen challenge, and followed the fate of these cells to determine whether they gave rise to newly formed mucous cells. Although ciliated cells increased in number after the OVA challenge, the newly formed mucous cells were not labeled with the eYFP lineage tag. Even small numbers of labeled mucous cells could not be detected, implying that ciliated cells make virtually no contribution to the new goblet cell pool. This demonstrates that, after OVA challenge, new mucous cells do not originate from ciliated cells in a pseudostratified basal cell-containing airway epithelium.

  18. The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in Drosophila melanogaster

    PubMed Central

    Bretscher, Andrew J.; Honti, Viktor; Binggeli, Olivier; Burri, Olivier; Poidevin, Mickael; Kurucz, Éva; Zsámboki, János; Andó, István; Lemaitre, Bruno

    2015-01-01

    ABSTRACT Eater is an EGF-like repeat transmembrane receptor of the Nimrod family and is expressed in Drosophila hemocytes. Eater was initially identified for its role in phagocytosis of both Gram-positive and Gram-negative bacteria. We have deleted eater and show that it appears to be required for efficient phagocytosis of Gram-positive but not Gram-negative bacteria. However, the most striking phenotype of eater deficient larvae is the near absence of sessile hemocytes, both plasmatocyte and crystal cell types. The eater deletion is the first loss of function mutation identified that causes absence of the sessile hemocyte state. Our study shows that Eater is required cell-autonomously in plasmatocytes for sessility. However, the presence of crystal cells in the sessile compartment requires Eater in plasmatocytes. We also show that eater deficient hemocytes exhibit a cell adhesion defect. Collectively, our data uncovers a new requirement of Eater in enabling hemocyte attachment at the sessile compartment and points to a possible role of Nimrod family members in hemocyte adhesion. PMID:25681394

  19. The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in Drosophila melanogaster.

    PubMed

    Bretscher, Andrew J; Honti, Viktor; Binggeli, Olivier; Burri, Olivier; Poidevin, Mickael; Kurucz, Éva; Zsámboki, János; Andó, István; Lemaitre, Bruno

    2015-02-13

    Eater is an EGF-like repeat transmembrane receptor of the Nimrod family and is expressed in Drosophila hemocytes. Eater was initially identified for its role in phagocytosis of both Gram-positive and Gram-negative bacteria. We have deleted eater and show that it appears to be required for efficient phagocytosis of Gram-positive but not Gram-negative bacteria. However, the most striking phenotype of eater deficient larvae is the near absence of sessile hemocytes, both plasmatocyte and crystal cell types. The eater deletion is the first loss of function mutation identified that causes absence of the sessile hemocyte state. Our study shows that Eater is required cell-autonomously in plasmatocytes for sessility. However, the presence of crystal cells in the sessile compartment requires Eater in plasmatocytes. We also show that eater deficient hemocytes exhibit a cell adhesion defect. Collectively, our data uncovers a new requirement of Eater in enabling hemocyte attachment at the sessile compartment and points to a possible role of Nimrod family members in hemocyte adhesion. © 2015. Published by The Company of Biologists Ltd.

  20. Photosensory transduction in unicellular eukaryotes: a comparison between related ciliates Blepharisma japonicum and Stentor coeruleus and photoreceptor cells of higher organisms.

    PubMed

    Sobierajska, Katarzyna; Fabczak, Hanna; Fabczak, Stanisław

    2006-06-01

    Blepharisma japonicum and Stentor coeruleus are related ciliates, conspicuous by their photosensitivity. They are capable of avoiding illuminated areas in the surrounding medium, gathering exclusively in most shaded places (photodispersal). Such behaviour results mainly from motile photophobic response occurring in ciliates. This light-avoiding response is observed during a relatively rapid increase in illumination intensity (light stimulus) and consists of cessation of cell movement, a period of backward movement (ciliary reversal), followed by a forward swimming, usually in a new direction. The photosensitivity of ciliates is ascribed to their photoreceptor system, composed of pigment granules, containing the endogenous photoreceptor -- blepharismin in Blepharisma japonicum, and stentorin in Stentor coeruleus. A light stimulus, applied to both ciliates activates specific stimulus transduction processes leading to the electrical changes at the plasma membrane, correlated with a ciliary reversal during photophobic response. These data indicate that both ciliates Blepharisma japonicum and Stentor coeruleus, the lower eukaryotes, are capable of transducing the perceived light stimuli in a manner taking place in some photoreceptor cells of higher eukaryotes. Similarities and differences concerning particular stages of light transduction in eukaryotes at different evolutional levels are discussed in this article.

  1. Epithelial Cell Culture from Human Adenoids: A Functional Study Model for Ciliated and Secretory Cells

    PubMed Central

    González, Claudia; Espinosa, Marisol; Sánchez, María Trinidad; Droguett, Karla; Ríos, Mariana; Fonseca, Ximena; Villalón, Manuel

    2013-01-01

    Background. Mucociliary transport (MCT) is a defense mechanism of the airway. To study the underlying mechanisms of MCT, we have both developed an experimental model of cultures, from human adenoid tissue of ciliated and secretory cells, and characterized the response to local chemical signals that control ciliary activity and the secretion of respiratory mucins in vitro. Materials and Methods. In ciliated cell cultures, ciliary beat frequency (CBF) and intracellular Ca2+ levels were measured in response to ATP, UTP, and adenosine. In secretory cultures, mucin synthesis and secretion were identified by using immunodetection. Mucin content was taken from conditioned medium and analyzed in the presence or absence of UTP. Results. Enriched ciliated cell monolayers and secretory cells were obtained. Ciliated cells showed a basal CBF of 10.7 Hz that increased significantly after exposure to ATP, UTP, or adenosine. Mature secretory cells showed active secretion of granules containing different glycoproteins, including MUC5AC. Conclusion. Culture of ciliated and secretory cells grown from adenoid epithelium is a reproducible and feasible experimental model, in which it is possible to observe ciliary and secretory activities, with a potential use as a model to understand mucociliary transport control mechanisms. PMID:23484122

  2. [Comparison of ciliate diversity in biodisc reactors which purify industrial wastewater].

    PubMed

    Luna-Pabello, V M; Durán De Bazúa, C; Aladro-Lubel, M A

    1995-01-01

    The comparative study of the ciliate populations present in rotating biological reactors (biodiscs reactors) of 20 l working volume, treating three different wastewaters is the aim of this project. Wastewaters chosen were those of a maize mill, of a sugarcane/ethyl alcohol plant, and of a recycled paper mill. Its dissolved organic contents, measured as soluble chemical oxygen demand (COD) and five-day biochemical oxygen demand (BOD5), were 2040 mg COD/l and 585 mg BOD5/l for maize mill effluents (nejayote), 2000 mg COD/l and 640 mg BOD5/l for sugarcane/ethanol effluents (vinasses), and 960 mg COD/l and 120 mg BOD5/l for whitewaters of the paper industry. Results obtained indicate that ciliate proliferate in all chambers of reactors treating these wastewaters. The ciliates were more abundant in vinasses, followed by nejayote, and then whitewaters. Among protozoa, ciliates were present as follows: 19 species in total. Three of them were common for the three systems. Free swimming ciliates were in higher proportion than pedunculated ones. Its diversity was higher for the whitewaters system, next for nejayote, and the lesser, for vinasses, corroborating the fact that less polluted waters have higher organisms' diversity.

  3. Toxicity of Chlorpyrifos and Dimethoate to the Ciliate Urostyla grandis, with Notes on Their Effects on Cell Ultrastructure

    NASA Astrophysics Data System (ADS)

    Mu, Weijie; Warren, Alan; Pan, Xuming; Ying, Chen

    2018-06-01

    Chlorpyrifos and dimethoate are overused agricultural pesticides that can trigger trophic cascades, resulting in toxicity to both terrestrial and aquatic organisms as well as altered ecosystems. In previous studies, substantial attention has been given to the effects of pesticides on vertebrate species and, to a lesser extent, species of zooplankton. The present study was designed to show that the fission time effective concentration in ciliates is a potential aquatic detection index for environmental monitoring. The ciliate Urostyla grandis was treated with doses of chlorpyrifos and dimethoate. After exposed to the pesticides, the LC 50 ( i.e., concentration that killed 50% of the ciliate cells within 24 h) values were 0.029 mg L-1 for chlorpyrifos and 0.0685 mg L-1 for dimethoate. The fission time effective concentrations after 168 h of exposure were 0.0075-0.0093 mg L-1 for chlorpyrifos and 0.2640-0.2750 mg L-1 for dimethoate. These results show that the fission time effective concentration is lower than the LC 50 value in ciliates, indicating that fission time effective concentration is more suitable than the LC 50 value for environmental monitoring using ciliates. The effects of chlorpyrifos and dimethoate on ciliate cell ultrastructures included agglutination of chromatin in the macronucleus, protruded and discontinuous macronuclear and micronuclear membranes, loss of integrity of mitochondrial membranes and contents, and abscission and deformation of the adoral zone of membranelles.

  4. Biodiversity in canopy-forming algae: Structure and spatial variability of the Mediterranean Cystoseira assemblages

    NASA Astrophysics Data System (ADS)

    Piazzi, L.; Bonaviri, C.; Castelli, A.; Ceccherelli, G.; Costa, G.; Curini-Galletti, M.; Langeneck, J.; Manconi, R.; Montefalcone, M.; Pipitone, C.; Rosso, A.; Pinna, S.

    2018-07-01

    In the Mediterranean Sea, Cystoseira species are the most important canopy-forming algae in shallow rocky bottoms, hosting high biodiverse sessile and mobile communities. A large-scale study has been carried out to investigate the structure of the Cystoseira-dominated assemblages at different spatial scales and to test the hypotheses that alpha and beta diversity of the assemblages, the abundance and the structure of epiphytic macroalgae, epilithic macroalgae, sessile macroinvertebrates and mobile macroinvertebrates associated to Cystoseira beds changed among scales. A hierarchical sampling design in a total of five sites across the Mediterranean Sea (Croatia, Montenegro, Sardinia, Tuscany and Balearic Islands) was used. A total of 597 taxa associated to Cystoseira beds were identified with a mean number per sample ranging between 141.1 ± 6.6 (Tuscany) and 173.9 ± 8.5(Sardinia). A high variability at small (among samples) and large (among sites) scale was generally highlighted, but the studied assemblages showed different patterns of spatial variability. The relative importance of the different scales of spatial variability should be considered to optimize sampling designs and propose monitoring plans of this habitat.

  5. [Fungal infectivities of implanted catheters due to Candida sp. Biofilms formation and resistance].

    PubMed

    Seddiki, S M L; Boucherit-Otmani, Z; Boucherit, K; Kunkel, D

    2015-06-01

    Candidemia are the most common fungal infections in hospitals. However, the catheters are subject to be altered by Candida biofilms which increase the risk of invasive nosocomial infections due to the high resistance to antifungal agents. Therefore, the minimum inhibitory concentrations of planktonic (MIC) and sessile cells (CIMS) were evaluated. To review the in vivo biofilms structures of Candida sp. formed on the inner and/or external surfaces of collected catheters, we used scanning electron microscopy (SEM). The level of biofilm resistance was assessed against two conventional antifungal agents: amphotericin B (AmB), which belongs to the class of polyenes, and fluconazole (FLZ) which is an azole. The SEM observation of biofilms of Candida sp. reveals complex structures. Compared to MICs, the calculation of CIMS showed an increase of 32 times with AmB and of 128 times with FLZ. Catheters offer an ideal surface to Candida sp. to form biofilms. This complex structure induces the increase of the resistance of sessile cells against two antifungal agents, AmB and FLZ. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. First report on chitinous holdfast in sponges (Porifera).

    PubMed

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Tsurkan, Mikhail V; Ereskovsky, Alexander; Tabachnick, Konstantin R; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V; Nekipelov, Serguei V; Sivkov, Victor N; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V; Wörheide, Gert

    2013-07-07

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.

  7. Redefining Molecular Amphipathicity in Reversing the "Coffee-Ring Effect": Implications for Single Base Mutation Detection.

    PubMed

    Huang, Chi; Wang, Jie; Lv, Xiaobo; Liu, Liu; Liang, Ling; Hu, Wei; Luo, Changliang; Wang, Fubing; Yuan, Quan

    2018-05-21

    The "coffee ring effect" is a natural phenomenon where sessile drops leave ring-shaped structures on solid surfaces upon drying. It drives non-uniform deposition of suspended compounds on substrates, which adversely affects many processes, including surface-assisted biosensing and molecular self-assembly. In this study, we describe how the coffee ring effect can be eliminated by controlling the amphipathicity of the suspended compounds, for example DNA modified with hydrophobic dye. Specifically, nuclease digestion of the hydrophilic DNA end converts the dye-labeled molecule into an amphipathic molecule (one with comparably weighted hydrophobic and hydrophilic ends) and reverses the coffee ring effect and results in uniform disc-shaped feature deposition of the dye. The amphipathic product decreases the surface tension of the sessile drops and induces Marangoni flow, which drives the uniform distribution of the amphipathic dye-labeled product in the drops. As proof-of-concept, this strategy was used in a novel enzymatic amplification method for biosensing to eliminate the coffee ring effect on a nitrocellulose membrane and increase assay reliability and sensitivity. Importantly, the reported strategy for eliminating the coffee ring effect can be extended to other sessile drop systems for potentially improving assay reliability, and sensitivity.

  8. Ciliated median raphe cyst of perineum presenting as perianal polyp: a case report with immunohistochemical study, review of literature, and pathogenesis.

    PubMed

    Sagar, Jayesh; Sagar, Bethani; Patel, Adam F; Shak, D K

    2006-03-05

    Median raphe cyst is a very rare, benign congenital lesion occurring mainly on the ventral aspect of the penis, but can develop anywhere in the midline between the external urethral meatus and anus. We report a case of median raphe cyst in the perineum presenting as a perianal polyp in a 65-year-old, English white male with exceptionally rare ciliated epithelium. According to our knowledge, this is the third such case of ciliated median raphe cyst in the English literature. This case, also the first case of ciliated median raphe cyst in the perineum location, focuses on pathogenesis of median raphe cyst.

  9. Structural disorder in plant proteins: where plasticity meets sessility.

    PubMed

    Covarrubias, Alejandra A; Cuevas-Velazquez, Cesar L; Romero-Pérez, Paulette S; Rendón-Luna, David F; Chater, Caspar C C

    2017-09-01

    Plants are sessile organisms. This intriguing nature provokes the question of how they survive despite the continual perturbations caused by their constantly changing environment. The large amount of knowledge accumulated to date demonstrates the fascinating dynamic and plastic mechanisms, which underpin the diverse strategies selected in plants in response to the fluctuating environment. This phenotypic plasticity requires an efficient integration of external cues to their growth and developmental programs that can only be achieved through the dynamic and interactive coordination of various signaling networks. Given the versatility of intrinsic structural disorder within proteins, this feature appears as one of the leading characters of such complex functional circuits, critical for plant adaptation and survival in their wild habitats. In this review, we present information of those intrinsically disordered proteins (IDPs) from plants for which their high level of predicted structural disorder has been correlated with a particular function, or where there is experimental evidence linking this structural feature with its protein function. Using examples of plant IDPs involved in the control of cell cycle, metabolism, hormonal signaling and regulation of gene expression, development and responses to stress, we demonstrate the critical importance of IDPs throughout the life of the plant.

  10. Primers to block the amplification of symbiotic apostome ciliate 18S rRNA gene in a PCR-based copepod diet study

    NASA Astrophysics Data System (ADS)

    Yi, Xiaoyan; Zhang, Huan; Liu, Guangxing

    2014-05-01

    Pelagic copepods play an important role in the marine food web. However, a full understanding of the ecological status of this zooplankton group depends on the careful study of their natural diets. In previous PCR-based copepod diet studies, we found many apostome ciliates that live symbiotically under the exoskeleton of the copepods, and their sequences were often over-represented in the 18S rRNA gene (18S rDNA) libraries. As a first step to address this issue, we designed three apostome ciliate 18S rDNA blocking primers, and tested their blocking efficiency against apostome ciliate 18s rDNA under various PCR conditions. Using a semi-quantitative PCR method, we optimized the conditions to efficiently amplify the 18S rDNA of the prey while simultaneously excluding the symbiotic apostome ciliates. This technique will facilitate PCR-based diet studies of copepods and other zooplankton in their natural environments.

  11. Swimming under the Influence: Effect of Algal Toxins on the Behavior of the Marine Ciliate Favella sp.

    NASA Astrophysics Data System (ADS)

    Sterling, A.; Echevarria, M. L.; Borrett, S. R.; Taylor, A. R.

    2016-02-01

    Although it is known that microzooplankton can regulate harmful algal bloom (HAB) dynamics through grazing of algae, the effects of HAB-related toxins on these micrograzers are unknown. Therefore I examined the effects of the algal toxins domoic acid (DA), brevetoxin (PbTx-2), and 2,4-trans,trans-decadienal (DDA) on the swimming behavior of the marine ciliate Favella sp. Neither DA nor PbTx-2 had a significant effect at the highest concentrations tested (800 nM and 400 nM respectively). However, about 50% of ciliates ceased swimming after 1 h exposure to 30 µM and 50 µM DDA and displayed significant behavioral changes within 5 min. Preliminary recovery experiments showed that up to 80% of the non-swimming ciliates were viable after 24 h, suggesting in these ciliates DDA did not induce programmed cell death. This work demonstrates that some, but not all, algal toxins may compromise the ability of microzooplankton to evade predators, capture prey, and regulate HABs.

  12. Novel population genetics in ciliates due to life cycle and nuclear dimorphism.

    PubMed

    Morgens, David W; Stutz, Timothy C; Cavalcanti, Andre R O

    2014-08-01

    Our understanding of population genetics comes primarily from studies of organisms with canonical life cycles and nuclear organization, either haploid or diploid, sexual, or asexual. Although this template yields satisfactory results for the study of animals and plants, the wide variety of genomic organizations and life cycles of unicellular eukaryotes can make these organisms behave differently in response to mutation, selection, and drift than predicted by traditional population genetic models. In this study, we show how each of these unique features of ciliates affects their evolutionary parameters in mutation-selection, selection-drift, and mutation-selection-drift situations. In general, ciliates are less efficient in eliminating deleterious mutations-these mutations linger longer and at higher frequencies in ciliate populations than in sexual populations--and more efficient in selecting beneficial mutations. Approaching this problem via analytical techniques and simulation allows us to make specific predictions about the nature of ciliate evolution, and we discuss the implications of these results with respect to the high levels of polymorphism and high rate of protein evolution reported for ciliates. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Ciliates from ancient permafrost: Assessment of cold resistance of the resting cysts.

    PubMed

    Shatilovich, Anastasia; Stoupin, Daniel; Rivkina, Elizaveta

    2015-06-01

    There is evidence that resting cysts of soil ciliates and numerous taxa of other protists can survive in permafrost for thousands of years at subzero temperatures; however, our knowledge about mechanisms of long term cryobiosis remains incomplete. In order to better understand the means by which ancient cysts survive, we investigated resistance to cyclical supercooling stress of resting cysts of the soil ciliate Colpoda steinii (Colpodida, Ciliophora). Three clonal strains were used for comparison, isolated from Siberian tundra soil, ancient Holocene (5-7,000 y) and late Pleistocene (32-35,000 y) permafrost sediments. To determine the viability of the ancient and contemporary ciliate cysts we improved and validated a cultivation-independent method of vital fluorescent staining with a combination of two nucleic acid binding dyes, acridine orange and propidium iodide. The viability of Colpoda steinii cysts during low-temperature experiments was measured using both the proposed vital fluorescent staining method and standard germination test. Our results indicate that the dual-fluorescence technique is a more accurate, rapid, and efficient method for estimating cyst viability. We found that cysts of ancient ciliates display lower tolerance to the impact of cyclical cold compared to cysts of contemporary ciliates from Siberian permafrost affected soils. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Human Stressors Are Driving Coastal Benthic Long-Lived Sessile Fan Mussel Pinna nobilis Population Structure More than Environmental Stressors.

    PubMed

    Deudero, Salud; Vázquez-Luis, Maite; Álvarez, Elvira

    2015-01-01

    Coastal degradation and habitat disruption are severely compromising sessile marine species. The fan shell Pinna nobilis is an endemic, vulnerable species and the largest bivalve in the Mediterranean basin. In spite of species legal protection, fan shell populations are declining. Models analyzed the contributions of environmental (mean depth, wave height, maximum wave height, period of waves with high energy and mean direction of wave source) versus human-derived stressors (anchoring, protection status, sewage effluents, fishing activity and diving) as explanatory variables depicting Pinna nobilis populations at a mesoscale level. Human stressors were explaining most of the variability in density spatial distribution of fan shell, significantly disturbing benthic communities. Habitat protection affected P. nobilis structure and physical aggression by anchoring reveals a high impact on densities. Environmental variables instead played a secondary role, indicating that global change processes are not so relevant in coastal benthic communities as human-derived impacts.

  15. Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation

    PubMed Central

    Leitão, Alexandre B; Sucena, Élio

    2015-01-01

    Virtually all species of coelomate animals contain blood cells that display a division of labor necessary for homeostasis. This functional partition depends upon the balance between proliferation and differentiation mostly accomplished in the hematopoietic organs. In Drosophila melanogaster, the lymph gland produces plasmatocytes and crystal cells that are not released until pupariation. Yet, throughout larval development, both hemocyte types increase in numbers. Mature plasmatocytes can proliferate but it is not known if crystal cell numbers increase by self-renewal or by de novo differentiation. We show that new crystal cells in third instar larvae originate through a Notch-dependent process of plasmatocyte transdifferentiation. This process occurs in the sessile clusters and is contingent upon the integrity of these structures. The existence of this hematopoietic tissue, relying on structure-dependent signaling events to promote blood homeostasis, creates a new paradigm for addressing outstanding questions in Drosophila hematopoiesis and establishing further parallels with vertebrate systems. DOI: http://dx.doi.org/10.7554/eLife.06166.001 PMID:25650737

  16. Rare Freshwater Ciliate Paramecium chlorelligerum Kahl, 1935 and Its Macronuclear Symbiotic Bacterium "Candidatus Holospora parva".

    PubMed

    Lanzoni, Olivia; Fokin, Sergei I; Lebedeva, Natalia; Migunova, Alexandra; Petroni, Giulio; Potekhin, Alexey

    2016-01-01

    Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of "green" ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name "Candidatus Holospora parva" for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis.

  17. Rare Freshwater Ciliate Paramecium chlorelligerum Kahl, 1935 and Its Macronuclear Symbiotic Bacterium “Candidatus Holospora parva”

    PubMed Central

    Lebedeva, Natalia; Migunova, Alexandra; Petroni, Giulio

    2016-01-01

    Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of “green” ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name “Candidatus Holospora parva” for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis. PMID:27992463

  18. Evaporation and Degradation of a Sessile Droplet of VX on an Impermeable Surface

    DTIC Science & Technology

    2017-09-01

    NOTES 14. ABSTRACT: This report highlights experimental studies into the combined physical and chemical processes that occur when a sessile droplet...resulting chemical change causes a corresponding change in the contact angle and evaporation rate of the sessile droplet on an impermeable surface...for phase separation. 15. SUBJECT TERMS Chemical degradation Phase separation Contact angle 2-(diisopropylamino)ethyl-O-ethyl

  19. Comparison of Ecological Impacts of Postulated Oil Spills at Selected Alaskan Locations. Volume 2, Results

    DTIC Science & Technology

    1975-06-01

    intertidal seaweeds (180), herring (806), sessile marine invertebrates (137), miscellaneous crustaceans (219), other inverte- brates (273...accounted for by the following species: Sessile Marine Invertebrates increased to 242 from 137 Miscellaneous Crustaceans increased to 387 from 219 Other...46 Sessile Marine Invertebrates reduced to 137 from 242 Miscellaneous Crustaceans reduced to 219 from 387 Other Invertebrates reduced to 164 from

  20. Spirostomum spp. (Ciliophora, Protista), a suitable system for endocytobiosis research.

    PubMed

    Fokin, S I; Schweikert, M; Brümmer, F; Görtz, H-D

    2005-04-01

    Among ciliate genera, only Paramecium and Euplotes species have been studied extensively as host organisms of bacterial endocytobionts. In this article, we show that members of the genus Spirostomum may also serve as a suitable system for endocytobiosis research. Two strains of Spirostomum minus (Heterotrichea, Ciliophora) collected in Germany and Italy, respectively, were found to harbor different types of bacterial infections. Bacteria of various sizes and shapes were observed in the cytoplasm or in the nuclei of the ciliates. The bacteria in the cytoplasm were either surrounded by a peribacterial membrane or lay naked. One of the bacterial species was found in the vicinity of the contractile fibrillar system (myonemes) of the ciliates. In rare cases, another type of bacteria was observed associated with mitochondria. The macronuclei of both the Italian and the German strains were crowded with endocytobionts. The endonuclear bacteria in the two S. minus strains differed with respect to their cytoplasmic structures but they were of similar size and both were rod shaped. According to the results of in situ hybridization, the endonuclear bacteria of the Italian strain belong to the subgroup of alphaproteobacteria, whereas the bacteria associated with the fibrillar system appeared to be gram-positive bacteria with high G+C content. While both the German and the Italian strains were found to permanently maintain their endocytobionts, they were at least partly colonized by different bacteria. This is taken as an indication that geographically separated populations of ciliates may be stably infected by different endocytobionts, possibly due to different ecological conditions. For S. minus and S. ambiguum a total of 7 different bacterial endocytobionts have now been recorded. We recommend the members of the genus Spirostomum as a suitable system for endocytobiosis research.

  1. Redescription of Mehdiella microstoma and description of Mehdiella petterae sp. n., with a new definition of the genus Mehdiella Seurat, 1918 (Nematoda: Pharyngodonidae).

    PubMed

    Bouamer, S; Morand, S; Bourgat, R

    2001-01-01

    The generic diagnosis of Mehdiella Seurat, 1918 is emended based on study and redescription of Mehdiella microstoma (Drasche, 1884) from the caecum of Testudo graeca Linnaeus, 1758 collected in Settat, Morocco and on study and description of a new species, Mehdiella petterae sp. n., from the large intestine of Testudo hermanni (Gmelin, 1789) collected in Catalonia, Spain. Scanning electron microscopy (SEM) studies revealed substantial differences in the structure of the mouth and the caudal end, and made possible to differentiate the new species from the others. SEM studies showed the real and sound characteristics of the genus Mehdiella, namely number of anal papillae 2 instead of 3, post-anal papillae pedunculate or sessile instead sessile.

  2. Mycosporine-like amino acids in the zooxanthella-ciliate symbiosis Maristentor dinoferus.

    PubMed

    Sommaruga, Ruben; Whitehead, Kenia; Shick, J Malcolm; Lobban, Christopher S

    2006-06-01

    Coral reef organisms living in mutualistic symbioses with phototrophic dinoflagellates are widespread in shallow UV-transparent waters. Maristentor dinoferus is a recently discovered species of marine benthic ciliate that hosts symbiotic dinoflagellates of the genus Symbiodinium. In this study, we tested this ciliate for the occurrence of mycosporine-like amino acids, a family of secondary metabolites that minimize damage from exposure to solar UV radiation by direct screening. Using high-performance liquid chromatography and liquid chromatography coupled to mass spectrometry, five mycosporine-like amino acids (shinorine, palythenic acid, palythine, mycosporine-2-glycine, and porphyra-334) were identified in aqueous methanolic extracts of the symbiosis. This is the first report of mycosporine-like amino acids in a marine ciliate.

  3. Ultrastructure of the surface structures and haptor of Empleurosoma pyriforme (Ancyrocephalinae; Monopisthocotylea: Monogenea) from the gills of the teleost fish Therapon jarbua.

    PubMed

    Ramasamy, P; Brennan, G P

    2000-02-01

    Infections with Empleurosoma pyriforme occur between successive secondary gill lamellae on both sides of the primary lamella of Therapon jarbua. The haptoral disc bears two pairs of anchors and a pair of connecting transverse bars. The attachment of the parasite to the host gill causes inflammation, erosion and degeneration of the gill epithelia. The ventral anchors consist of an inner core of irregularly arranged, electron-dense fibrils and a smooth outer core of electron-lucent fibrils, whereas the surface of the dorsal anchors is ridged. Both the dorsal and the ventral anchors may be extended or withdrawn. The connecting transverse bars consist of longitudinally arranged fibrils in an electron-dense matrix, whereas the tendons consist of fibrils, supported in a less electron-dense matrix, which interconnect the anchor erector-protractor muscles and the haptor muscles. Two types of perikarya are present. The less common type contain large multivesicular bodies and small electron-dense granules and are located only in the haptor region. The second and more common perikarya are present throughout the body surface. The cytoplasmic syncytium contains numerous electron-dense granules and electron-lucent vesicles. Beneath the syncytium, unicellular epidermal gland cells contain electron-dense granules. Neurones containing numerous electron-dense vesicles are present in the haptor region. Uniciliate presumed sensory receptors are distributed over the body surface. Groups of ciliated sensory structures are present in the forebody. Ciliated and non-ciliated presumed sensory receptors are present in the sleeve cavity of the anchors, on the haptor and in the vicinity of the oral apertures.

  4. The Role of Drag Force in Shedding of Multiple Sessile Drops

    NASA Astrophysics Data System (ADS)

    Razzaghi, Aysan; Banitabaei, Sayyed Hossein; Amirfazli, Alidad; -Team

    2017-11-01

    A sessile drop placed on a solid surface can shed, if the drag force due to a shearing airflow overcomes the drop adhesion to the surface. Sessile drop shedding is of importance due to its applications in condensation, fuel cells, icing, etc. Majority of the studies so far have considered the shedding of a single sessile droplet; however, in the applications above, multiple sessile droplets appear on a surface. Shedding of sessile drops in different arrangements, i.e. tandem, side by side, triangle, and rectangle have been investigated both experimentally and through VOF simulations. The minimum air velocity (Ucr) at which the drop(s) at the upstream dislodge from the surface was measured. Drops were placed in a wind tunnel with increasing air velocity at a rate of 1m/s2. It has been found that Ucr, deviates from its value for a single drop due to presence of the neighboring drops. The amount of the deviation is closely related to the flow pattern and interaction of drop wakes which are elucidated numerically. The interacting wakes change the drag force on the drops. Generally, the adhesion force is not affected by presence of other drops. As such, when the drops' wakes are interacting strongly, Ucr can increase by 45%.

  5. Calmyonemin: a 23 kDa analogue of algal centrin occurring in contractile myonemes of Eudiplodinium maggii (ciliate).

    PubMed

    David, C; Viguès, B

    1994-01-01

    Myonemes are bundles of thin filaments (3-6 nm in diameter) which mediate calcium-induced contraction of the whole or only parts of the cell body in a number of protists. In Eudiplodinium maggii, a rumen ciliate which lacks a uniform ciliation of the cell body, myonemes converge toward the bases of apical ciliary zones that can be retracted under stress conditions, entailing immobilization of the cell. An mAB (A69) has been produced that identifies a calcium-binding protein by immunoblot, immunoprecipitation experiments and specifically labels the myonemes in immunoelectron microscopy. Solubility properties, apparent molecular weight (23 kDa) and isoelectric point (4.9) of the myonemal protein, are similar to the values reported for the calcium-modulated contractile protein centrin. Western-blot analysis indicates that the 23 kDa protein cross-reacts antigenically with anti-centrin antibodies. In addition, the 23 kDa protein displays calcium-induced changes in both electrophoretic and chromatographic behaviour, and contains calcium-binding domains that conform to the EF-hand structure, as known for centrin. Based on these observations, we conclude that a calcium-binding protein with major similarities to centrin occurs in the myonemes of E. maggii. We postulate that this protein plays an essential role in myoneme-mediated retraction of the ciliature.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumat, Muhammad Raihan; Yan, Yan; Ravi, Laxmi Iyer

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in themore » cilia and reduced cilia function. At 5 dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss. - Highlights: • Respiratory syncytial virus (RSV) infects nasal ciliated epithelial cells. • Virus morphogenesis occurs within filamentous projections distinct from cilia. • The RSV N protein was not detected in the cilia at any time during infection. • Trafficking of the F protein into the cilia occurred early in infection. • Presence of the F protein in cilia correlated with impaired cilia function.« less

  7. Deep-sea ciliates: Recorded diversity and experimental studies on pressure tolerance

    NASA Astrophysics Data System (ADS)

    Schoenle, Alexandra; Nitsche, Frank; Werner, Jennifer; Arndt, Hartmut

    2017-10-01

    Microbial eukaryotes play an important role in biogeochemical cycles not only in productive surface waters but also in the deep sea. Recent studies based on metagenomics report deep-sea protistan assemblages totally different from continental slopes and shelf waters. To give an overview about the ciliate fauna recorded from the deep sea we summarized the available information on ciliate occurrence in the deep sea. Our literature review revealed that representatives of the major phylogenetic groups of ciliates were recorded from the deep sea (> 1000 m depth): Karyorelictea, Heterotrichea, Spirotrichea (Protohypotrichia, Euplotia, Oligotrichia, Choreotrichia, Hypotrichia), Armophorea (Armophorida), Litostomatea (Haptoria), Conthreep (Phyllopharyngea incl. Cyrtophoria, Chonotrichia, Suctoria; Nassophorea incl. Microthoracida, Synhymeniida, Nassulida; Colpodea incl. Bursariomorphida, Cyrtolophosidida; Prostomatea; Plagiopylea incl. Plagiopylida, Odontostomatida; Oligohymenophorea incl. Peniculia, Scuticociliatia, Hymenostomatia, Apostomatia, Peritrichia, Astomatia). Species occurring in both habitats, deep sea and shallow water, are rarely found to our knowledge to date. This indicates a high deep-sea specific ciliate fauna. Our own studies of similar genotypes (SSU rDNA and cox1 gene) revealed that two small scuticociliate species (Pseudocohnilembus persalinus and Uronema sp.) could be isolated from surface as well as deep waters (2687 m, 5276 m, 5719 m) of the Pacific. The adaptation to deep-sea conditions was investigated by exposing the ciliate isolates directly or stepwise to different hydrostatic pressures ranging from 1 to 550 atm at temperatures of 2 °C and 13 °C. Although the results indicated no general barophilic behavior, all four isolated strains survived the highest established pressure. A better survival at 550 atm could be observed for the lower temperature. Among microbial eukaryotes, ciliates should be considered as a diverse and potentially important component of deep-sea microeukaryote communities.

  8. Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals

    NASA Astrophysics Data System (ADS)

    Katz, Sefano M.; Pollock, F. Joseph; Bourne, David G.; Willis, Bette L.

    2014-09-01

    Brown band (BrB) disease manifests on corals as a ciliate-dominated lesion that typically progresses rapidly causing extensive mortality, but it is unclear whether the dominant ciliate Porpostoma guamense is a primary or an opportunistic pathogen, the latter taking advantage of compromised coral tissue or depressed host resistance. In this study, manipulative aquarium-based experiments were used to investigate the role of P. guamense as a pathogen when inoculated onto fragments of the coral Acropora hyacinthus that were either healthy, preyed on by Acanthaster planci (crown-of-thorns starfish; COTS), or experimentally injured. Following ciliate inoculation, BrB lesions developed on all of COTS-predated fragments ( n = 9 fragments) and progressed up to 4.6 ± 0.3 cm d-1, resulting in ~70 % of coral tissue loss after 4 d. Similarly, BrB lesions developed rapidly on experimentally injured corals and ~38 % of coral tissue area was lost 60 h after inoculation. In contrast, no BrB lesions were observed on healthy corals following experimental inoculations. A choice experiment demonstrated that ciliates are strongly attracted to physically injured corals, with over 55 % of inoculated ciliates migrating to injured corals and forming distinct lesions, whereas ciliates did not migrate to healthy corals. Our results indicate that ciliates characteristic of BrB disease are opportunistic pathogens that rapidly migrate to and colonise compromised coral tissue, leading to rapid coral mortality, particularly following predation or injury. Predicted increases in tropical storms, cyclones, and COTS outbreaks are likely to increase the incidence of coral injury in the near future, promoting BrB disease and further contributing to declines in coral cover.

  9. Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil.

    PubMed

    Jousset, Alexandre; Lara, Enrique; Nikolausz, Marcell; Harms, Hauke; Chatzinotas, Antonis

    2010-02-01

    Ciliates (or Ciliophora) are ubiquitous organisms which can be widely used as bioindicators in ecosystems exposed to anthropogenic and industrial influences. The evaluation of the environmental impact on soil ciliate communities with methods relying on morphology-based identification may be hampered by the large number of samples usually required for a statistically supported, reliable conclusion. Cultivation-independent molecular-biological diagnostic tools are a promising alternative to greatly simplify and accelerate such studies. In this present work a ciliate-specific fingerprint method based on the amplification of a phylogenetic marker gene (i.e. the 18S ribosomal RNA gene) with subsequent analysis by denaturing gradient gel electrophoresis (DGGE) was developed and used to monitor community shifts in a polycyclic aromatic hydrocarbon (PAH) polluted soil. The semi-nested approach generated ciliate-specific amplification products from all soil samples and allowed to distinguish community profiles from a PAH-polluted and a non-polluted control soil. Subsequent sequence analysis of excised bands provided evidence that polluted soil samples are dominated by organisms belonging to the class Colpodea. The general DGGE approach presented in this study might thus in principle serve as a fast and reproducible diagnostic tool, complementing and facilitating future ecological and ecotoxicological monitoring of ciliates in polluted habitats. Copyright 2009 Elsevier B.V. All rights reserved.

  10. The filter-feeding ciliates Colpidium striatum and Tetrahymena pyriformis display selective feeding behaviours in the presence of mixed, equally-sized, bacterial prey.

    PubMed

    Thurman, Jill; Parry, Jacqueline D; Hill, Philip J; Laybourn-Parry, Johanna

    2010-10-01

    This study examined whether two ciliates could discriminate between equally-sized bacterial prey in mixture and if so, how selectivity might benefit the ciliate population. Live Klebsiella aerogenes, K. ozaenae and Escherichia coli, expressing different coloured fluorescent proteins, were cultured in such a way as to provide populations containing equally-sized cells (to prevent size-selective grazing taking place) and these prey were fed to each ciliate in 50:50 mixtures. Colpidium striatum selected K. aerogenes over K. ozaenae which itself was selected over E. coli. Tetrahymena pyriformis showed no selectivity between K. aerogenes and E. coli but K. aerogenes was selected over K. ozaenae while E. coli was not. This apparent selection of K. aerogenes over K. ozaenae was sustained in ciliate populations with different feeding histories and when K. aerogenes comprised only 20% of the prey mixture, suggesting possible optimal foraging behaviour. The metabolic benefits for selecting K. aerogenes were identified as possibly being an increase in cell biovolume and yield for C. striatum and T. pyriformis, respectively. The mechanism by which these ciliates selected specific bacterial cells in mixture is currently unknown but the use of live fluorescent bacteria, in prey mixtures, offers an exciting avenue for further investigation of selective feeding by protozoa. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. The Role of Ciliate Protozoa in the Rumen

    PubMed Central

    Newbold, Charles J.; de la Fuente, Gabriel; Belanche, Alejandro; Ramos-Morales, Eva; McEwan, Neil R.

    2015-01-01

    First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described. PMID:26635774

  12. The Role of Ciliate Protozoa in the Rumen.

    PubMed

    Newbold, Charles J; de la Fuente, Gabriel; Belanche, Alejandro; Ramos-Morales, Eva; McEwan, Neil R

    2015-01-01

    First described in 1843, Rumen protozoa with their striking appearance were assumed to be important for the welfare of their host. However, despite contributing up to 50% of the bio-mass in the rumen, the role of protozoa in rumen microbial ecosystem remains unclear. Phylogenetic analysis of 18S rDNA libraries generated from the rumen of cattle, sheep, and goats has revealed an unexpected diversity of ciliated protozoa although variation in gene copy number between species makes it difficult to obtain absolute quantification. Despite repeated attempts it has proven impossible to maintain rumen protozoa in axenic culture. Thus it has been difficult to establish conclusively a role of ciliate protozoa in rumen fiber degradation. The development of techniques to clone and express ciliate genes in λ phage, together with bioinformatic indices to confirm the ciliate origin of the genes has allowed the isolation and characterization of fibrolytic genes from rumen protozoa. Elimination of the ciliate protozoa increases microbial protein supply by up to 30% and reduces methane production by up to 11%. Our recent findings suggest that holotrich protozoa play a disproportionate role in supporting methanogenesis whilst the small Entodinium are responsible for much of the bacterial protein turnover. As yet no method to control protozoa in the rumen that is safe and practically applicable has been developed, however a range of plant extract capable of controlling if not completely eliminating rumen protozoa have been described.

  13. Preformed cell structure and cell heredity

    PubMed Central

    2008-01-01

    This review will first recall the phenomena of “cortical inheritance” observed and genetically demonstrated in Paramecium 40 years ago, and later in other ciliates (Tetrahymena, Oxytricha, Paraurostyla), and will analyze the deduced concept of “cytotaxis” or “structural memory.” The significance of these phenomena, all related (but not strictly restricted) to the properties of ciliary basal bodies and their mode of duplication, will be interpreted in the light of present knowledge on the mechanism and control of basal body/centriole duplication. Then other phenomena described in a variety of organisms will be analyzed or mentioned which show the relevance of the concept of cytotaxis to other cellular processes, mainly (1) cytoskeleton assembly and organization with examples on ciliates, trypanosome, mammalian cells and plants, and (2) transmission of polarities with examples on yeast, trypanosome and metazoa. Finally, I will discuss some aspects of this particular type of non-DNA inheritance: (1) why so few documented examples if structural memory is a basic parameter in cell heredity, and (2) how are these phenomena (which all rely on protein/protein interactions, and imply a formatting role of preexisting proteinic complexes on neo-formed proteins and their assembly) related to prions? PMID:19164887

  14. Impacts of an uncontrolled phosphogypsum dumpsite on summer distribution of phytoplankton, copepods and ciliates in relation to abiotic variables along the near-shore of the southwestern Mediterranean coast.

    PubMed

    Rekik, Amira; Drira, Zaher; Guermazi, Wassim; Elloumi, Jannet; Maalej, Sami; Aleya, Lotfi; Ayadi, Habib

    2012-02-01

    In connection with the Taparura Project, studies of spatial distribution of the crustacean zooplankton community, nutrients, phytoplankton and ciliates were conducted in July 2007 at 45 stations spread over fifteen transects along the coast north of Sfax. The results showed that the N/P ratio was lower than the Redfield ratio, suggesting potential N limitation. Phytoplankton was characterised by the proliferation of several diatoms, while ciliates were largely dominated by spirotrichs. Copepods were the most abundant zooplankton present during the entire study period, comprising 61% of the total zooplankton community. Twelve copepod families were identified at every station, with a high percentage of Oithonidae (77% of copepods) dominated by Oithona nana. The abundance of this species was correlated with that of diatoms, Cocoolithophorideae and ciliated Colpodea, suggesting that O. nana may feed on a wide range of prey. Despite human pressure and industrial activities, the coastal waters north of Sfax showed a wide diversity of phytoplankton, ciliates and zooplankton. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Taxonomic descriptions of three marine colepid ciliates, Nolandia sinica spec. nov., Apocoleps caoi spec. nov. and Tiarina fusa (Claparede & Lachmann, 1858) Bergh, 1881 (Ciliophora, Prorodontida).

    PubMed

    Chen, Xiangrui; Gao, Shan; Liu, Weiwei; Song, Weibo; Al-Rasheid, Khaled A S; Warren, Alan

    2012-03-01

    The morphology of three marine colepid ciliates, Nolandia sinica spec. nov., Apocoleps caoi spec. nov. and Tiarina fusa (Claparède & Lachmann, 1858) Bergh, 1881, isolated from Chinese coastal waters, was investigated. N. sinica spec. nov. may be separated from its congeners by the structure of its armour plates, each of which may have up to five reniform windows. A. caoi spec. nov. is characterized by its large body with broad anterior end and by having 10-12 long, sharp posterior spines. New data and an improved diagnosis are supplied for Tiarina fusa (Claparède & Lachmann, 1858) Bergh, 1881, which has a spindle-shaped body, about 16 ciliary rows and a single adoral organelle. Sequence similarities with other available colepid species were determined.

  16. First record of entodiniomorph ciliates in a carnivore, the maned wolf (Chrysocyon brachyurus), from Brazil.

    PubMed

    Vynne, Carly; Kinsella, John M

    2009-06-01

    The entodiniomorph ciliates (Ciliophora: Entodiniomorphida) are endosymbiotes widely found in the intestines of herbivorous mammals. These commensals commonly occur in the Artiodactyla and Perissodactyla and have also been described in the Proboscidea, Primates, Rodentia, and Diprotodontia. This study reports the first finding of a ciliate in a member of order Carnivora, the maned wolf (Chrysocyon brachyurus). Fecal samples from wild and captive maned wolves were screened using ethyl acetate sedimentation. Prevalence in fecal samples collected from free-ranging maned wolves in Brazil was 40% (6 of 15). Fecal samples from two of four captive individuals from the St. Louis Zoo also had the same species of ciliate. The largely frugivorous diet of the maned wolf likely explains the occurrence of these normally herbivore-associated endosymbiotes in a carnivore.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulauskas, Tadas; Buurma, Christopher; Colegrove, Eric

    Dislocation cores have long dominated the electronic and optical behaviors of semiconductor devices and detailed atomic characterization is required to further explore their effects. Miniaturization of semiconductor devices to nanometre scale also puts emphasis on a material's mechanical properties to withstand failure due to processing or operational stresses. Sessile junctions of dislocations provide barriers to propagation of mobile dislocations and may lead to work-hardening. The sessile Lomer–Cottrell and Hirth lock dislocations, two stable lowest elastic energy stair-rods, are studied in this paper. More specifically, using atomic resolution high-angle annular dark-field imaging and atomic-column-resolved X-ray spectrum imaging in an aberration-corrected scanningmore » transmission electron microscope, dislocation core structures are examined in zinc-blende CdTe. A procedure is outlined for atomic scale analysis of dislocation junctions which allows determination of their identity with specially tailored Burgers circuits and also formation mechanisms of the polar core structures based on Thompson's tetrahedron adapted to reactions of polar dislocations as they appear in CdTe and other zinc-blende solids. Strain fields associated with the dislocations calculatedviageometric phase analysis are found to be diffuse and free of `hot spots' that reflect compact structures and low elastic energy of the pure-edge stair-rods.« less

  18. Effect of essential oils prepared from Thai culinary herbs on sessile Candida albicans cultures.

    PubMed

    Hovijitra, Ray S; Choonharuangdej, Suwan; Srithavaj, Theerathavaj

    2016-01-01

    Although medicinal herbs with fungicidal effects have been ubiquitously employed in traditional medicine, such effects of culinary herbs and spices still have to be elucidated. Therefore, it is noteworthy to determine the antifungal efficacy of some edible herbs used in Thai cuisine against sessile Candida albicans cultures, and to inquire if they can be further utilized as naturally-derived antifungals. Fourteen essential oils extracted from Thai culinary herbs and spices were tested for their antifungal activity against C. albicans using the agar disk diffusion method followed by broth micro-dilution method for the determination of minimum inhibitory concentration (MIC) and minimum fungicidal concentration. The oils with potent antifungal effects against planktonic fungi were then assessed for their effect against sessile fungus (adherent organisms and established biofilm culture). MIC of the oils against sessile C. albicans was evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction assay. All selected culinary herbs and spices, except galangal, garlic, and turmeric, exhibited inhibitory effects on planktonic yeast cells. Cinnamon bark and sweet basil leaf essential oils exhibited potent fungicidal effect on planktonic and sessile fungus. Sessile MICs were 8-16 times higher than planktonic MICs. Consequently, both cinnamon bark and sweet basil leaf herbal oils seem to be highly effective anti-Candida choices. (J Oral Sci 58, 365-371, 2016).

  19. RELATIONSHIPS OF QUANTITATIVE STRUCTURE-ACTIVITY TO COMPARATIVE TOXICITY OF SELECTED PHENOLS IN THE 'PIMEPHALES PROMELAS' AND 'TETRAHYMENA PYRIFORMIS' TEST SYSTEMS

    EPA Science Inventory

    The relative toxic response of 27 selected phenols in the 96-hr acute flowthrough Pimephales promelas (fathead minnow) and the 48- to 60-hr chronic static Tetrahymena pyriformis (ciliate protozoan) test systems was evaluated. Log Kow-dependent linear regression analyses revealed ...

  20. Ciliated muconodular papillary tumour of the lung: a newly defined low-grade malignant tumour.

    PubMed

    Sato, Shuichi; Koike, Teruaki; Homma, Keiichi; Yokoyama, Akira

    2010-11-01

    We present two cases of ciliated muconodular papillary tumour (CMPT) in this report. CMPT is a newly defined low-grade malignant tumour with ciliated columnar epithelial cells, occurring in the peripheral lung. Both patients underwent pulmonary resection due to an enlarged solitary pulmonary nodule. Pathological findings in both cases confirmed a papillary tumour with a mixture of ciliated columnar and goblet cells. The tumours were rich in mucous and had spread along the alveolar walls, as observed in bronchioloalveolar carcinoma. Nuclear atypia was mild, and no mitotic activity was observed. Immunohistochemically, tumour cells stained positive for carcinoembryonic antigen, thyroid transcription factor-1 and cytokeratin 7 but not for cytokeratin 20. The immunohistochemical staining patterns were almost identical to those of pulmonary adenocarcinoma. We definitively diagnosed as CMPT. Both patients remained relapse-free.

  1. Rumen ciliate protozoa of domestic sheep (Ovis aries) and goat (Capra aegagrus hircus) in Kyrgyzstan.

    PubMed

    Gürelli, Gözde; Canbulat, Savaş; Aldayarov, Nurbek; Dehority, Burk A

    2016-03-01

    Species composition and concentration of rumen ciliate protozoa were investigated in the rumen contents of 14 domestic sheep and 1 goat living in Bishkek, Kyrgyzstan. This is the first report on rumen ciliates from ruminants living in Kyrgyzstan. In sheep 12 genera, 28 species and 12 morphotypes were detected, whereas in goat 8 genera, 12 species and 4 morphotypes were detected. The density of ciliates in sheep was (28.1 ± 20.0) × 10(4) cells mL(-1) and in goat was 37.0 × 10(4) cells mL(-1). Dasytricha ruminantium, Isotricha prostoma, Entodinium simulans and Ophryoscolex caudatus were major species (100%) in sheep, and for the first time, Diplodinium rangiferi was detected in a domestic goat. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Activation of an Aquareovirus, Chum Salmon Reovirus (CSV), by the Ciliates Tetrahymena thermophila and T. canadensis.

    PubMed

    Pinheiro, Marcel D O; Bols, Niels C

    2018-03-05

    For the first time, ciliates have been found to activate rather than inactivate a virus, chum salmon reovirus (CSV). Activation was seen as an increase in viral titre upon incubation of CSV at 22 °C with Tetrahymena canadenesis and two strains of T. thermophila: wild type (B1975) and a temperature conditional mutant for phagocytosis (NP1). The titre increase was not likely due to replication because CSV had no visible effects on the ciliates and no vertebrate virus has ever been shown unequivocally to replicate in ciliates. When incubated with B1975 and NP1 at 30 °C, CSV was activated only by B1975. Therefore, activation required CSV internalization because at 30 °C only B1975 exhibited phagocytosis. CSV replicated in fish cells at 18 to 26 °C but not at 30 °C. Collectively, these observations point to CSV activation being distinct from replication. Activation is attributed to the CSV capsid being modified in the ciliate phagosomal-lysosomal system and released in a more infectious form. When allowed to swim in CSV-infected fish cell cultures, collected, washed, and transferred to uninfected cultures, T. canadensis caused a CSV infection. Overall the results suggest that ciliates could have roles in the environmental dissemination of some fish viral diseases. © 2018 The Author(s) Journal of Eukaryotic Microbiology © 2018 International Society of Protistologists.

  3. Meiosis gene inventory of four ciliates reveals the prevalence of a synaptonemal complex-independent crossover pathway.

    PubMed

    Chi, Jingyun; Mahé, Frédéric; Loidl, Josef; Logsdon, John; Dunthorn, Micah

    2014-03-01

    To establish which meiosis genes are present in ciliates, and to look for clues as to which recombination pathways may be treaded by them, four genomes were inventoried for 11 meiosis-specific and 40 meiosis-related genes. We found that the set of meiosis genes shared by Tetrahymena thermophila, Paramecium tetraurelia, Ichthyophthirius multifiliis, and Oxytricha trifallax is consistent with the prevalence of a Mus81-dependent class II crossover pathway that is considered secondary in most model eukaryotes. There is little evidence for a canonical class I crossover pathway that requires the formation of a synaptonemal complex (SC). This gene inventory suggests that meiotic processes in ciliates largely depend on mitotic repair proteins for executing meiotic recombination. We propose that class I crossovers and SCs were reduced sometime during the evolution of ciliates. Consistent with this reduction, we provide microscopic evidence for the presence only of degenerate SCs in Stylonychia mytilus. In addition, lower nonsynonymous to synonymous mutation rates of some of the meiosis genes suggest that, in contrast to most other nuclear genes analyzed so far, meiosis genes in ciliates are largely evolving at a slower rate than those genes in fungi and animals.

  4. Application of an indicator based on taxonomic relatedness of ciliated protozoan assemblages for marine environmental assessment.

    PubMed

    Xu, Henglong; Jiang, Yong; Al-Rasheid, Khaled A S; Al-Farraj, Saleh A; Song, Weibo

    2011-08-01

    Ciliated protozoa play important roles in aquatic ecosystems especially regarding their functions in micro-food web and have many advantages in environmental assessment compared with most other eukaryotic organisms. The aims of this study were focused on analyzing the application of an indicator based on taxonomic relatedness of ciliated protozoan assemblages for marine environmental assessment. The spatial taxonomic patterns and diversity measures in response to physical-chemical variables were studied based on data from samples collected during 1-year cycle in the semi-enclosed Jiaozhou Bay, northern China. The spatial patterns of ciliate communities were significantly correlated with the changes of environmental status. The taxonomic distinctness (Δ*) and the average taxonomic distinctness (Δ+) were significantly negatively correlated with the changes of nutrients (e.g., nitrate nitrogen and soluble active phosphate; P<0.05). Pairwise indices of Δ+ and the variation in taxonomic distinctness (Λ+) showed a decreasing trend of departure from the expected taxonomic breadth in response to the eutrophication stress and anthropogenic impact. The taxonomic relatedness (especially the pairwise Δ+ and Λ+) indices of ciliate communities are robust as an indicator with scientifically operational value in marine environmental assessment.

  5. A New Approach to Measure Contact Angle and Evaporation Rate with Flow Visualization in a Sessile Drop

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.

    1999-01-01

    The contact angle and the spreading process of sessile droplet are very crucial in many technological processes, such as painting and coating, material processing, film-cooling applications, lubrication, and boiling. Additionally, as it is well known that the surface free energy of polymers cannot be directly, measured for their elastic and viscous restraints. The measurements of liquid contact angle on the polymer surfaces become extremely important to evaluate the surface free energy of polymers through indirect methods linked with the contact angle data. Due to the occurrence of liquid evaporation is inevitable, the effects of evaporation on the contact angle and the spreading become very important for more complete understanding of these processes. It is of interest to note that evaporation can induce Marangoni-Benard convection in sessile drops. However, the impacts of the inside convection on the wetting and spreading processes are not clear. The experimental methods used by previous investigators cannot simultaneously measure the spreading process and visualize the convection inside. Based on the laser shadowgraphic system used by the present author, a very simple optical procedure has been developed to measure the contact angle, the spreading speed, the evaporation rate, and to visualize inside convection of a sessile drop simultaneously. Two CCD cameras were used to synchronously record the real-time diameter of the sessile drop, which is essential for determination of both spreading speed and evaporation rate, and the shadowgraphic image magnified by the sessile drop acting as a thin plano-convex lens. From the shadowgraph, the inside convection of the drop can be observed if any and the image outer diameter, which linked to the drop profile, can be measured. Simple equations have been derived to calculate the drop profile, including the instantaneous contact angle, height, and volume of the sessile drop, as well as the evaporation rate. The influence of the inside convection on the wetting and spreading processes can be figured out through comparison of the drop profiles with and without inside convection when the sessile drop is placed at different evaporation conditions.

  6. ATP7B detoxifies silver in ciliated airway epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibricevic, Aida, E-mail: aidaibricevic@hotmail.co; Brody, Steven L., E-mail: sbrody@dom.wustl.ed; Youngs, Wiley J., E-mail: youngs@uakron.ed

    2010-03-15

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compoundsmore » but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B{sup -/-} mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag{sup +}/Cu{sup +} transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.« less

  7. A Cover of Glass: First Report of Biomineralized Silicon in a Ciliate, Maryna umbrellata (Ciliophora: Colpodea)

    PubMed Central

    FOISSNER, WILHELM; WEISSENBACHER, BIRGIT; KRAUTGARTNER, WOLF-DIETRICH; LÜTZ-MEINDL, URSULA

    2010-01-01

    Using hydrofluoric acid, scanning electron microscope-assisted X-ray microanalysis, and energy-filtered transmission electron microscopy, we present the first definite proof of biomineralized silicon [(SiO2)]n in a ciliophoran protist, Maryna umbrellata, a common inhabitant of ephemeral pools. In the trophic specimen, the amorphic silicon (glass) granules are accumulated in the anterior half of the body. When entering the dormant stage, most glass granules are excreted to form the surface cover of the globular resting cyst. Most likely, the silicon granules are synthesized in vesicles of the Golgi apparatus. First, nanospheres with a size of 20–40 nm are formed in a fibrous matrix; they grow to be spongious complexes, eventually becoming amorphous glass granules with an average size of 819 nm × 630 nm. In the transmission electron microscope, the silicon granules show the characteristic fracture pattern of glass known from many other silicon-bearing organisms. A literature survey suggests that silicon is very rare in ciliates. The fine structure and genesis of silicon granules in M. umbrellata are very similar to those of other organisms, including vascular plants and animals, indicating a common mechanism. Light perception and protection against mechanical stress and predators might be functions of the silicon granules in M. umbrellata. The palaeontological significance of glass cysts in ciliates is also discussed. PMID:19883440

  8. Gastrointestinal protists and helminths of habituated agile mangabeys (Cercocebus agilis) at Bai Hokou, Central African Republic.

    PubMed

    Pafčo, Barbora; Tehlárová, Zuzana; Jirků Pomajbíková, Kateřina; Todd, Angelique; Hasegawa, Hideo; Petrželková, Klára J; Modrý, David

    2018-02-01

    Infectious diseases including those caused by parasites can be a major threat to the conservation of endangered species. There is thus a great need for studies describing parasite infections of these species in the wild. Here we present data on parasite diversity in an agile mangabey (Cercocebus agilis) group in Bai Hokou, Dzanga-Sangha Protected Areas (DSPA), Central African Republic. We coproscopically analyzed 140 mangabey fecal samples by concentration techniques (flotation and sedimentation). Agile mangabeys hosted a broad diversity of protistan parasites/commensals, namely amoebas (Entamoeba spp., Iodamoeba buetschlli), a Buxtonella-like ciliate and several parasitic helminths: strongylid and spirurid nematodes, Primasubulura sp., Enterobius sp., and Trichuris sp. Importantly, some of the detected parasite taxa might be of potential zoonotic importance, such as Entamoeba spp. and the helminths Enterobius sp., Trichuris sp., and strongylid nematodes. Detailed morphological examination of ciliate cysts found in mangabeys and comparison with cysts of Balantioides coli from domestic pigs showed no distinguishing structures, although significant differences in cyst size were recorded. Scanning or transmission electron microscopy combined with molecular taxonomy methods are needed to properly identify these ciliates. Further studies using molecular epidemiology are warranted to better understand cross-species transmission and the zoonotic potential of parasites in sympatric non-human primates and humans cohabiting DSPA. © 2018 Wiley Periodicals, Inc.

  9. Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banse, K.

    1982-01-01

    A review of growth rates of diatoms and dinoflagellates in light-saturated, nutrient-replete cultures at 20/sup 0/C confirms weak dependence on cell volume or mass. These maximal (intrinsic) rates are not linearly related to surface area or surface-to-volume ratio of the cells. The growth of most diatoms is materially faster than that of dinoflagellates; other algae fall in between or below the dinoflagellates. Small ciliates have appreciably higher intrinsic growth rates than algae of the same cell volume. The average food consumption per ciliate in the marine pelagic realm is inferred to be very low, so that the realized specific growthmore » rates are much smaller than the intrinsic potentials. Also, a previously postulated refuge from predation, afforded by small size, is extended down to about 10-..mu..m/sup 3/ cell volume.« less

  10. Experimental and mathematical model of the interactions in the mixed culture of links in the “producer-consumer” cycle

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.

    2009-07-01

    The paper presents a experimental and mathematical model of interactions between invertebrates (the ciliates Paramecium caudatum and the rotifers Brachionus plicatilis) in the "producer-consumer" aquatic biotic cycle with spatially separated components. The model describes the dynamics of the mixed culture of ciliates and rotifers in the "consumer" component, feeding on the mixed algal culture of the "producer" component. It has been found that metabolites of the algae Scenedesmus produce an adverse effect on the reproduction of the ciliates P. caudatum. Taking into account this effect, the results of investigation of the mathematical model were in qualitative agreement with the experimental results. In the "producer-consumer" biotic cycle it was shown that coexistence is impossible in the mixed culture of invertebrates of the "consumer" component. The ciliates P. caudatum are driven out by the rotifers B. plicatilis.

  11. Measurement of surface tension by sessile drop tensiometer with superoleophobic surface

    NASA Astrophysics Data System (ADS)

    Kwak, Wonshik; Park, Jun Kwon; Yoon, Jinsung; Lee, Sanghyun; Hwang, Woonbong

    2018-03-01

    A sessile drop tensiometer provides a simple and efficient method of determining the surface tension of various liquids. The technique involves obtaining the shape of an axisymmetric liquid droplet and iterative fitting of the Young-Laplace equation, which balances the gravitational deformation of the drop. Since the advent of high quality digital cameras and desktop computers, this process has been automated with precision. However, despite its appealing simplicity, there are complications and limitations in a sessile drop tensiometer, i.e., it must dispense spherical droplets with low surface tension. We propose a method of measuring surface tension using a sessile drop tensiometer with a superoleophobic surface fabricated by acidic etching and anodization for liquids with low surface tension and investigate the accuracy of the measurement by changing the wettability of the measuring plate surface.

  12. Quantification and visualization of injury and regeneration in the developing ciliated epithelium using quantitative flow imaging and speckle variance optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gamm, Ute A.; Huang, Brendan K.; Mis, Emily K.; Khokha, Mustafa K.; Choma, Michael A.

    2017-02-01

    Premature infants are at a high risk for respiratory diseases owing to an underdeveloped respiratory system that is very susceptible to infection and inflammation. One aspect of respiratory health is the state of the ciliated respiratory epithelium which lines the trachea and bronchi. The ciliated epithelium is responsible for trapping and removing pathogens and pollutants from the lungs and an impairment of ciliary functionality can lead to recurring respiratory infections and subsequent lung damage. Mechanisms of cilia-driven fluid flow itself but also factors influenced by development like ciliary density and flow generation are incompletely understood. Furthermore, medical interventions like intubation and accidental aspiration can lead to focal or diffuse loss of cilia and disruption of flow. In this study we use two animal models, Xenopus embryo and ex vivo mouse trachea, to analyze flow defects in the injured ciliated epithelium. Injury is generated either mechanically with a scalpel or chemically by calcium chloride (CaCl2) shock, which efficiently but reversibly deciliates the embryo skin. In this study we used optical coherence tomography (OCT) and particle tracking velocimetry (PTV) to quantify cilia driven fluid flow over the surface of the Xenopus embryo. We additionally visualized damage to the ciliated epithelium by capturing 3D speckle variance images that highlight beating cilia. Mechanical injury disrupted cilia-driven fluid flow over the injured site, which led to a reduction in cilia-driven fluid flow over the whole surface of the embryo (n=7). The calcium chloride shock protocol proved to be highly effective in deciliating embryos (n=6). 3D speckle variance images visualized a loss of cilia and cilia-driven flow was halted immediately after application. We also applied CaCl2-shock to cultured ex vivo mouse trachea (n=8) and found, similarly to effects in Xenopus embryo, an extensive loss of cilia with resulting cessation of flow. We investigated the regeneration of the ciliated epithelium after an 8 day incubation period, and found that cilia had regrown and flow was completely restored. In conclusion, OCT is a valuable tool to visualize injury of the ciliated epithelium and to quantify reduction of generated flow. This method allows for systematic investigation of focal and diffuse injury of the ciliated epithelium and the assessment of mechanisms to compensate for loss of flow.

  13. Choosing sides--asymmetric centriole and basal body assembly.

    PubMed

    Pearson, Chad G

    2014-07-01

    Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly. © 2014. Published by The Company of Biologists Ltd.

  14. Choosing sides – asymmetric centriole and basal body assembly

    PubMed Central

    Pearson, Chad G.

    2014-01-01

    ABSTRACT Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly. PMID:24895399

  15. Hydrodynamics of Sessile Choanoflagellates

    NASA Astrophysics Data System (ADS)

    Bustamante, Greg; Nguyen, Hoa

    2014-11-01

    Choanoflagellates are unicellular organisms whose intriguing morphology includes a set of collars/microvilli emanating from the cell body, surrounding the beating flagellum. Certain types of choanoflagellates are sessile, i.e., they can attach themselves to a substrate via a pedicel which extends from the cell body. We investigate the interactions of the flagellum - microvilli - pedicel system in the feeding behavior of sessile choanoflagellates using the method of images for regularized Stokeslets. The results of the fluid-particle motions and streamlines explain their effective capture of bacteria in the fluid. Murchison Undergraduate Research Grant.

  16. Recruitment Variability of Coral Reef Sessile Communities of the Far North Great Barrier Reef

    PubMed Central

    Luter, Heidi M.; Duckworth, Alan R.; Wolff, Carsten W.; Evans-Illidge, Elizabeth; Whalan, Steve

    2016-01-01

    One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15–30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m—among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs. PMID:27049650

  17. Using the sessile drop geometry to measure fluid and elastic block copolymer interfaces.

    PubMed

    Rozairo, Damith P; Croll, Andrew B

    2015-02-03

    There is considerable interest in the fabrication and mechanics of soft spheres and capsules because of their use in a large number of applications ranging from targeted drug delivery to cosmetically active agents. Many systems, such as lipid and block copolymer vesicles, are already finding considerable industrial use where the performance of soft spheres depends intimately on their mechanics. New advanced features such as fast cargo delivery can be realized only if they fit into the existing mechanical niche of the system in question. Here we present a model system to demonstrate how a capsule structure can be fundamentally changed while maintaining its overall mechanical response as well as a simple, universal method to measure the resulting capsule material properties. Specifically, we use confocal microscopy to adapt the sessile drop geometry to a measurement of the static properties of an ensemble of polystyrene-b-poly(ethylene oxide) (PS-PEO)-stabilized oil droplets. We then synthesize a polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS) elastic-shell-coated emulsion drop that shows an identical deformation to the fluidlike PS-PEO droplets. Both systems, in sessile geometry, can be related to their basic material properties through appropriate modeling. We find that the elastic shell is dominated by its surface tension, easily enabling it to match the static response of a purely fluid drop.

  18. The DNA of ciliated protozoa.

    PubMed Central

    Prescott, D M

    1994-01-01

    Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons. Images PMID:8078435

  19. Characterization of ciliate diversity in bromeliad tank waters from the Brazilian Atlantic Forest.

    PubMed

    Simão, Taiz L L; Borges, Adriana Giongo; Gano, Kelsey A; Davis-Richardson, Austin G; Brown, Christopher T; Fagen, Jennie R; Triplett, Eric W; Dias, Raquel; Mondin, Claudio A; da Silva, Renata M; Eizirik, Eduardo; Utz, Laura R P

    2017-10-01

    Bromeliads are a diverse group of plants that includes many species whose individuals are capable of retaining water, forming habitats called phytotelmata. These habitats harbor a diversity of organisms including prokaryotes, unicellular eukaryotes, metazoans, and fungi. Among single-celled eukaryotic organisms, ciliates are generally the most abundant. In the present study, we used Illumina DNA sequencing to survey the eukaryotic communities, especially ciliates, inhabiting the tanks of the bromeliads Aechmea gamosepala and Vriesea platynema in the Atlantic Forest of southern Brazil. Filtered sequences were clustered into distinct OTUs using a 99% identity threshold, and then assigned to phylum and genus using a BLAST-based approach (implemented in QIIME) and the SILVA reference database. Both bromeliad species harbored very diverse eukaryotic communities, with Arthropoda and Ciliophora showing the highest abundance (as estimated by the number of sequence reads). The ciliate genus Tetrahymena was the most abundant among single-celled organisms, followed by apicomplexan gregarines and the ciliate genus Glaucoma. Another interesting finding was the presence and high abundance of Trypanosoma in these bromeliad tanks, demonstrating their occurrence in this type of environment. The results presented here demonstrate a hidden diversity of eukaryotes in bromeliad tank waters, opening up new avenues for their in-depth characterization. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  20. Mixed input to olfactory glomeruli from two subsets of ciliated sensory neurons does not impede relay neuron specificity in the crucian carp.

    PubMed

    Hansson, Kenth-Arne; Døving, Kjell B; Skjeldal, Frode M

    2015-10-01

    The consensus view of olfactory processing is that the axons of receptor-specific primary olfactory sensory neurons (OSNs) converge to a small subset of glomeruli, thus preserving the odour identity before the olfactory information is processed in higher brain centres. In the present study, we show that two different subsets of ciliated OSNs with different odorant specificities converge to the same glomeruli. In order to stain different ciliated OSNs in the crucian carp Carassius carassius we used two different chemical odorants, a bile salt and a purported alarm substance, together with fluorescent dextrans. The dye is transported within the axons and stains glomeruli in the olfactory bulb. Interestingly, the axons from the ciliated OSNs co-converge to the same glomeruli. Despite intermingled innervation of glomeruli, axons and terminal fields from the two different subsets of ciliated OSNs remained mono-coloured. By 4-6 days after staining, the dye was transported trans-synaptically to separately stained axons of relay neurons. These findings demonstrate that specificity of the primary neurons is retained in the olfactory pathways despite mixed innervation of the olfactory glomeruli. The results are discussed in relation to the emerging concepts about non-mammalian glomeruli. © 2015. Published by The Company of Biologists Ltd.

  1. Transcriptional program of ciliated epithelial cells reveals new cilium and centrosome components and links to human disease.

    PubMed

    Hoh, Ramona A; Stowe, Timothy R; Turk, Erin; Stearns, Tim

    2012-01-01

    Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP). The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease.

  2. Transcriptional Program of Ciliated Epithelial Cells Reveals New Cilium and Centrosome Components and Links to Human Disease

    PubMed Central

    Hoh, Ramona A.; Stowe, Timothy R.; Turk, Erin; Stearns, Tim

    2012-01-01

    Defects in the centrosome and cilium are associated with a set of human diseases having diverse phenotypes. To further characterize the components that define the function of these organelles we determined the transcriptional profile of multiciliated tracheal epithelial cells. Cultures of mouse tracheal epithelial cells undergoing differentiation in vitro were derived from mice expressing GFP from the ciliated-cell specific FOXJ1 promoter (FOXJ1:GFP). The transcriptional profile of ciliating GFP+ cells from these cultures was defined at an early and a late time point during differentiation and was refined by subtraction of the profile of the non-ciliated GFP- cells. We identified 649 genes upregulated early, when most cells were forming basal bodies, and 73 genes genes upregulated late, when most cells were fully ciliated. Most, but not all, of known centrosome proteins are transcriptionally upregulated early, particularly Plk4, a master regulator of centriole formation. We found that three genes associated with human disease states, Mdm1, Mlf1, and Dyx1c1, are upregulated during ciliogenesis and localize to centrioles and cilia. This transcriptome for mammalian multiciliated epithelial cells identifies new candidate centrosome and cilia proteins, highlights similarities between components of motile and primary cilia, and identifies new links between cilia proteins and human disease. PMID:23300604

  3. 77 FR 75601 - Boundary Expansion of Cordell Bank and Gulf of the Farallones National Marine Sanctuaries; Intent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... Farallon Islands. Living reefs of corals, sponges and a myriad of other invertebrates cover hard bottom areas and these sessile invertebrate communities are washed with food rich water from the north. These invertebrate reefs also provide structure and habitat for many species of juvenile and adult rockfish that...

  4. Structure and function of echinoderm telomerase RNA

    PubMed Central

    Podlevsky, Joshua D.; Li, Yang; Chen, Julian J.-L.

    2016-01-01

    Telomerase is a ribonucleoprotein (RNP) enzyme that requires an integral telomerase RNA (TR) subunit, in addition to the catalytic telomerase reverse transcriptase (TERT), for enzymatic function. The secondary structures of TRs from the three major groups of species, ciliates, fungi, and vertebrates, have been studied extensively and demonstrate dramatic diversity. Herein, we report the first comprehensive secondary structure of TR from echinoderms—marine invertebrates closely related to vertebrates—determined by phylogenetic comparative analysis of 16 TR sequences from three separate echinoderm classes. Similar to vertebrate TR, echinoderm TR contains the highly conserved template/pseudoknot and H/ACA domains. However, echinoderm TR lacks the ancestral CR4/5 structural domain found throughout vertebrate and fungal TRs. Instead, echinoderm TR contains a distinct simple helical region, termed eCR4/5, that is functionally equivalent to the CR4/5 domain. The urchin and brittle star eCR4/5 domains bind specifically to their respective TERT proteins and stimulate telomerase activity. Distinct from vertebrate telomerase, the echinoderm TR template/pseudoknot domain with the TERT protein is sufficient to reconstitute significant telomerase activity. This gain-of-function of the echinoderm template/pseudoknot domain for conferring telomerase activity presumably facilitated the rapid structural evolution of the eCR4/5 domain throughout the echinoderm lineage. Additionally, echinoderm TR utilizes the template-adjacent P1.1 helix as a physical template boundary element to prevent nontelomeric DNA synthesis, a mechanism used by ciliate and fungal TRs. Thus, the chimeric and eccentric structural features of echinoderm TR provide unparalleled insights into the rapid evolution of telomerase RNP structure and function. PMID:26598712

  5. Engineering Interfacial Processes at Mini-Micro-Nano Scales Using Sessile Droplet Architecture.

    PubMed

    Bansal, Lalit; Sanyal, Apratim; Kabi, Prasenjit; Pathak, Binita; Basu, Saptarshi

    2018-03-01

    Evaporating sessile functional droplets act as the fundamental building block that controls the cumulative outcome of many industrial and biological applications such as surface patterning, 3D printing, photonic crystals, and DNA sequencing, to name a few. Additionally, a drying single sessile droplet forms a high-throughput processing technique using low material volume which is especially suitable for medical diagnosis. A sessile droplet also provides an elementary platform to study and analyze fundamental interfacial processes at various length scales ranging from macroscopically observable wetting and evaporation to microfluidic transport to interparticle forces operating at a nanometric length scale. As an example, to ascertain the quality of 3D printing we must understand the fundamental interfacial processes at the droplet scale. In this article, we review the coupled physics of evaporation flow-contact-line-driven particle transport in sessile colloidal droplets and provide methodologies to control the same. Through natural alterations in droplet vaporization, one can change the evaporative pattern and contact line dynamics leading to internal flow which will modulate the final particle assembly in a nontrivial fashion. We further show that control over particle transport can also be exerted by external stimuli which can be thermal, mechanical oscillations, vapor confinement (walled or a fellow droplet), or chemical (surfactant-induced) in nature. For example, significant augmentation of an otherwise evaporation-driven particle transport in sessile droplets can be brought about simply through controlled interfacial oscillations. The ability to control the final morphologies by manipulating the governing interfacial mechanisms in the precursor stages of droplet drying makes it perfectly suitable for fabrication-, mixing-, and diagnostic-based applications.

  6. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates.

    PubMed

    Stoeck, T; Przybos, E; Dunthorn, M

    2014-05-01

    Ciliates are a major evolutionary lineage within the alveolates, which are distributed in nearly all habitats on our planet and are an essential component for ecosystem function, processes and stability. Accurate identification of these unicellular eukaryotes through, for example, microscopy or mating type reactions is reserved to few specialists. To satisfy the demand for a DNA barcode for ciliates, which meets the standard criteria for DNA barcodes defined by the Consortium for the Barcode of Life (CBOL), we here evaluated the D1-D2 region of the ribosomal DNA large subunit (LSU-rDNA). Primer universality for the phylum Ciliophora was tested in silico with available database sequences as well as in the laboratory with 73 ciliate species, which represented nine of 12 ciliate classes. Primers tested in this study were successful for all tested classes. To test the ability of the D1-D2 region to resolve conspecific and congeneric sequence divergence, 63 Paramecium strains were sampled from 24 mating species. The average conspecific D1-D2 variation was 0.18%, whereas congeneric sequence divergence averaged 4.83%. In pairwise genetic distance analyses, we identified a D1-D2 sequence divergence of <0.6% as an ideal threshold to discriminate Paramecium species. Using this definition, only 3.8% of all conspecific and 3.9% of all congeneric sequence comparisons had the potential of false assignments. Neighbour-joining analyses inferred monophyly for all taxa but for two Paramecium octaurelia strains. Here, we present a protocol for easy DNA amplification of single cells and voucher deposition. In conclusion, the presented data pinpoint the D1-D2 region as an excellent candidate for an official CBOL barcode for ciliated protists. © 2013 John Wiley & Sons Ltd.

  7. A simplified experimental model for clearance of some pathogenic bacteria using common bacterivorous ciliated spp. in Tigris river

    NASA Astrophysics Data System (ADS)

    Ali, Talib Hassan; Saleh, Dhuha Saad

    2014-03-01

    Bacteria-specific uptake rates of three different protozoan taxa on a pure and mixed bacterial community was studied by means of a simplified and functionally reproducible experimental model. The bacterial species Shigella flexneri, Escherichia coli and Salmonella typhi were isolated and classified from stool samples of patients suffering from diarrhea. Paramecium caudatum, Tetrahymena pyriformis and Halteria grandinella, free living ciliate Protozoans, were isolated and identified from Tigris river water. Pure and mixed ( E. coli + S. typhi), ( E. coli + Sh. flexneri) bacterial cultures were used with each ciliate genera to evaluate the following: predator duplication rate, prey reduction rate, clearance rate and net grazing rate. We used selective lactose fermentation phenomena of enteric bacteria on MacConkey medium for the quantification of bacteria cultural characteristics. The final bacteria concentration was reduced by growing protozoa of 98-99.9 % compared to protozoa-free controls. It showed that Tetrahymena pyriformis had the highest duplication rate (4.13 time/day) in both types of cultures (pure and mixed), followed by Paramecium caudatum and Halteria grandinella, respectively. Paramecium caudatum had the highest rate of ingestion in both types of cultures (26 × 103 bacteria/organism/hr) and yielded the longest time required for 90 % bacterial reduction in a pure suspension of S. typhi (166 h). Clearance rates of pathogenic bacteria by ciliates ranged between 106 nanoliter/organism/h by P. caudatum to S. typhi and 1.92 nanoliter/organism/h seen in T. pyriformis in ( E. coli + S. typhi) mixed culture. We used aquatic experimental microcosms under controlled conditions to explore bacteria-dependent ciliate growth and examined whether these ciliates could discriminate between equally sized bacterial preys in a mixture.

  8. De Novo Transcriptomes of a Mixotrophic and a Heterotrophic Ciliate from Marine Plankton

    PubMed Central

    Santoferrara, Luciana F.; Guida, Stephanie; Zhang, Huan; McManus, George B.

    2014-01-01

    Studying non-model organisms is crucial in the context of the current development of genomics and transcriptomics for both physiological experimentation and environmental characterization. We investigated the transcriptomes of two marine planktonic ciliates, the mixotrophic oligotrich Strombidium rassoulzadegani and the heterotrophic choreotrich Strombidinopsis sp., and their respective algal food using Illumina RNAseq. Our aim was to characterize the transcriptomes of these contrasting ciliates and to identify genes potentially involved in mixotrophy. We detected approximately 10,000 and 7,600 amino acid sequences for S. rassoulzadegani and Strombidinopsis sp., respectively. About half of these transcripts had significant BLASTP hits (E-value <10−6) against previously-characterized sequences, mostly from the model ciliate Oxytricha trifallax. Transcriptomes from both the mixotroph and the heterotroph species provided similar annotations for GO terms and KEGG pathways. Most of the identified genes were related to housekeeping activity and pathways such as the metabolism of carbohydrates, lipids, amino acids, nucleotides, and vitamins. Although S. rassoulzadegani can keep and use chloroplasts from its prey, we did not find genes clearly linked to chloroplast maintenance and functioning in the transcriptome of this ciliate. While chloroplasts are known sources of reactive oxygen species (ROS), we found the same complement of antioxidant pathways in both ciliates, except for one enzyme possibly linked to ascorbic acid recycling found exclusively in the mixotroph. Contrary to our expectations, we did not find qualitative differences in genes potentially related to mixotrophy. However, these transcriptomes will help to establish a basis for the evaluation of differential gene expression in oligotrichs and choreotrichs and experimental investigation of the costs and benefits of mixotrophy. PMID:24983246

  9. A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the haptophyta in analyses of multiple slowly evolving genes.

    PubMed

    Nozaki, Hisayoshi; Yang, Yi; Maruyama, Shinichiro; Suzaki, Toshinobu

    2012-01-01

    Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs), intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates]) was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA), disruption of the monophyly between haptophytes and SAR (or SA) in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA) clade in the absence of intracellular endoparasite/ciliate OTUs.

  10. Surface Properties and Permeability to Calcium Chloride of Fagus sylvatica and Quercus petraea Leaves of Different Canopy Heights

    PubMed Central

    Bahamonde, Héctor A.; Gil, Luis; Fernández, Victoria

    2018-01-01

    Plant surfaces have a considerable degree of chemical and physical variability also in relation to different environmental conditions, organs and state of development. The potential changes on plant surface properties in association with environmental variations have been little explored so far. Using two model tree species (i.e., Quercus petraea, sessile oak and Fagus sylvatica, beech) growing in ‘Montejo de la Sierra Forest,’ we examined various traits of the abaxial and adaxial surface of leaves of both species collected at a height of approximately 15 m (top canopy), versus 3.5–5.5 m for beech and sessile oak, lower canopy leaves. Leaf surface ultra-structure was analyzed by scanning and transmission electron microscopy, and the surface free energy and related parameter were estimated after measuring drops of 3 liquids with different degrees of polarity and apolarity. The permeability of the adaxial and abaxial surface of top and bottom canopy leaves to CaCl2 was estimated by depositing 2 drops of 3–4 μl per cm2 and comparing the concentration of Ca in leaf tissues 24 h after treatment, and also Ca and Cl concentrations in the washing liquid. Higher Ca concentrations were recorded after the application of CaCl2 drops onto the veins and adaxial blade of top canopy beech leaves, while no significant evidence for foliar Ca absorption was gained with sessile oak leaves. Surprisingly, high amounts of Cl were recovered after washing untreated, top canopy beach and sessile oak leaves with deionised water, a phenomenon which was not traced to occur on lower canopy leaves of both species. It is concluded that the surface of the two species analyzed is heterogeneous in nature and may have areas favoring the absorption of water and solutes as observed for the veins of beech leaves. PMID:29720987

  11. Ciliate protozoa in the forestomach of the dromedary camel, (Camelus dromedarius), in Egypt, with description of a new species.

    PubMed

    Selim, H M; Imai, S; Yamato, O; Miyagawa, E; Maede, Y

    1996-09-01

    The composition of ciliates obtained from the forestomachs of eleven dromedary (one-humped) camels in Egypt was examined. As a result, eight genera containing 24 species with 11 forms were identified. Of them, one species was concluded to be new, then described as Dasytricha kabanii n. sp. This new species was clearly distinguished from D. ruminantium, the other species of the genus, by its lack of somatic cilia on the posterior one-fifth of the body surface. Entodinium nanellum and Epidinium ecaudatum f. caudatum were found in all camels examined. Although the percentage composition of respective species varied with the individual camel, the rate of Entodinium spp. was high in general. Total ciliate density in forestomach fluid was 1.9 x 10(5)/ml on average. Ciliate composition in Egyptian camels was similar to that in Bactrian camels, Camelus bactrianus, in China reported previously. However, more Entodinium species were detected from Egyptian camels than from Bactrian camels.

  12. Experimental and mathematical model of the interactions in the mixed culture of links in the "producer-consumer" cycle

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Galayda, Ya. V.

    The paper presents experimental and mathematical model of interactions between invertebrates the ciliates Paramecium caudatum and the rotifers Brachionus plicatilis and algae Chlorella vulgaris and Scenedesmus quadricauda in the producer -- consumer aquatic biotic cycle with spatially separated components The model describes the dynamics of the mixed culture of ciliates and rotifers in the consumer component feeding on the mixed algal culture of the producer component It has been found that metabolites of the algae Scenedesmus produce an adverse effect on the reproduction of the ciliates P caudatum Taking into account this effect the results of investigation of the mathematical model were in qualitative agreement with the experimental results In the producer -- consumer biotic cycle it was shown that coexistence is impossible in the mixed algal culture of the producer component and in the mixed culture of invertebrates of the consumer component The ciliates P caudatum are driven out by the rotifers Brachionus plicatilis

  13. Molecular phylogeny and comparative morphology indicate that odontostomatids (Alveolata, Ciliophora) form a distinct class-level taxon related to Armophorea.

    PubMed

    Fernandes, Noemi M; Vizzoni, Vinicius F; Borges, Bárbara do N; A G Soares, Carlos; Silva-Neto, Inácio D da; S Paiva, Thiago da

    2018-04-18

    The odontostomatids are among the least studied ciliates, possibly due to their small sizes, restriction to anaerobic environments and difficulty in culturing. Consequently, their phylogenetic affinities to other ciliate taxa are still poorly understood. In the present study, we analyzed newly obtained ribosomal gene sequences of the odontostomatids Discomorphella pedroeneasi and Saprodinium dentatum, together with sequences from the literature, including Epalxella antiquorum and a large assemblage of ciliate sequences representing the major recognized classes. The results show that D. pedroeneasi and S. dentatum form a deep-diverging branch related to metopid and clevelandellid armophoreans, corroborating the old literature. However E. antiquorum clustered with the morphologically discrepant plagiopylids, indicating that either the complex odontostomatid body architecture evolved convergently, or the positioning of E. antiquorum as a plagiopylid is artifactual. A new ciliate class, Odontostomatea n. cl., is proposed based on molecular analyses and comparative morphology of odontostomatids with related taxa. Copyright © 2018. Published by Elsevier Inc.

  14. A checklist of ciliate parasites (Ciliophora) of fishes from Mexico.

    PubMed

    Aguilar-Aguilar, Rogelio; Islas-Ortega, Alma Gabriela

    2015-10-02

    A database with all available published accounts of the ciliate parasite species of Mexican fishes was assembled. This information, along with records derived from own recent research, allow generating a checklist containing all the records, which is a necessary first step to address future questions in the areas of ecology, evolutionary biology and biogeography of these host-parasite associations. The checklist is presented as a parasite-host list, and a host-parasite list. The checklist contains 30 nominal species, from 9 genera and 8 families of ciliate parasites. Most of the primary records were done for exotic fish species, artificially introduced to Mexico for aquaculture purposes; however, recent works have been conducted in diverse species of native fishes. Excepting one, all the ciliate species listed here have been previously recorded for diverse fish species from different localities around the world. Based on the amount of information contained in this checklist, much more effort is necessary to accurately know the diversity of species of this type of parasites in fish fauna of Mexico.

  15. Morphology and Phylogeny of a New Species of Anaerobic Ciliate, Trimyema finlayi n. sp., with Endosymbiotic Methanogens.

    PubMed

    Lewis, William H; Sendra, Kacper M; Embley, T Martin; Esteban, Genoveva F

    2018-01-01

    Many anaerobic ciliated protozoa contain organelles of mitochondrial ancestry called hydrogenosomes. These organelles generate molecular hydrogen that is consumed by methanogenic Archaea, living in endosymbiosis within many of these ciliates. Here we describe a new species of anaerobic ciliate, Trimyema finlayi n. sp., by using silver impregnation and microscopy to conduct a detailed morphometric analysis. Comparisons with previously published morphological data for this species, as well as the closely related species, Trimyema compressum , demonstrated that despite them being similar, both the mean cell size and the mean number of somatic kineties are lower for T. finlayi than for T. compressum , which suggests that they are distinct species. This was also supported by analysis of the 18S rRNA genes from these ciliates, the sequences of which are 97.5% identical (6 substitutions, 1479 compared bases), and in phylogenetic analyses these sequences grouped with other 18S rRNA genes sequenced from previous isolates of the same respective species. Together these data provide strong evidence that T. finlayi is a novel species of Trimyema , within the class Plagiopylea. Various microscopic techniques demonstrated that T. finlayi n. sp. contains polymorphic endosymbiotic methanogens, and analysis of the endosymbionts' 16S rRNA gene showed that they belong to the genus Methanocorpusculum , which was confirmed using fluorescence in situ hybridization with specific probes. Despite the degree of similarity and close relationship between these ciliates, T. compressum contains endosymbiotic methanogens from a different genus, Methanobrevibacter . In phylogenetic analyses of 16S rRNA genes, the Methanocorpusculum endosymbiont of T. finlayi n. sp. grouped with sequences from Methanomicrobia, including the endosymbiont of an earlier isolate of the same species, ' Trimyema sp.,' which was sampled approximately 22 years earlier, at a distant (∼400 km) geographical location. Identification of the same endosymbiont species in the two separate isolates of T. finlayi n. sp. provides evidence for spatial and temporal stability of the Methanocorpusculum-T. finlayi n. sp. endosymbiosis. T. finlayi n. sp. and T. compressum provide an example of two closely related anaerobic ciliates that have endosymbionts from different methanogen genera, suggesting that the endosymbionts have not co-speciated with their hosts.

  16. International Hydrogenase Conference (7th) Held at the University of Reading on August 24th to 29th 2004.

    DTIC Science & Technology

    2004-08-19

    Johannes Hackstein [ PB GIO rNovel Fe-hydrogenases from the rumen ciliate metagenome . :12.50 :114.00 -1 Lunch [ 114.00 1 7.00 1 Poster Session 2...d.r.o’ g’.e n-.a-.s.e..s from the rumnen ciliate metagenome . p36 Severing, E., Boxma, B., van Alen, T.A., Ricard, G., van Hoek, A.H.A.M., Moon-van...hydrogenases from the rumen ciliate metagenome . Severing, E.’, Boxma, B.1, van Alen, T.A.’, Ricard, G.z, van Hoek, A.H.A.M.’, Moon-van der Staay, S.Y

  17. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma).

    PubMed

    Plattner, H; Sehring, I M; Mohamed, I K; Miranda, K; De Souza, W; Billington, R; Genazzani, A; Ladenburger, E-M

    2012-05-01

    The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia.

    PubMed

    Walentek, Peter; Quigley, Ian K

    2017-01-01

    Over the past years, the Xenopus embryo has emerged as an incredibly useful model organism for studying the formation and function of cilia and ciliated epithelia in vivo. This has led to a variety of findings elucidating the molecular mechanisms of ciliated cell specification, basal body biogenesis, cilia assembly, and ciliary motility. These findings also revealed the deep functional conservation of signaling, transcriptional, post-transcriptional, and protein networks employed in the formation and function of vertebrate ciliated cells. Therefore, Xenopus research can contribute crucial insights not only into developmental and cell biology, but also into the molecular mechanisms underlying cilia related diseases (ciliopathies) as well as diseases affecting the ciliated epithelium of the respiratory tract in humans (e.g., chronic lung diseases). Additionally, systems biology approaches including transcriptomics, genomics, and proteomics have been rapidly adapted for use in Xenopus, and broaden the applications for current and future translational biomedical research. This review aims to present the advantages of using Xenopus for cilia research, highlight some of the evolutionarily conserved key concepts and mechanisms of ciliated cell biology that were elucidated using the Xenopus model, and describe the potential for Xenopus research to address unresolved questions regarding the molecular mechanisms of ciliopathies and airway diseases. © 2017 Wiley Periodicals, Inc.

  19. Comparative proteomic analysis of Listeria monocytogenes exposed to enterocin AS-48 in planktonic and sessile states.

    PubMed

    Caballero Gómez, Natacha; Abriouel, Hikmate; Ennahar, Said; Gálvez, Antonio

    2013-10-15

    Enterocin AS-48 is a cyclic peptide of great interest for application in food preservation and sanitation. In the present study, the proteome response of Listeria monocytogenes to purified enterocin AS-48 was studied under two different conditions: planktonic cells and sessile cells grown on polystyrene plates. Ten different proteins were differentially expressed in planktonic L. monocytogenes cells treated with 0.1 μg/ml enterocin AS-48 compared to the untreated controls. Overexpressed proteins were related to stress response (DnaK) or carbohydrate transport and metabolism, while underexpressed and unexpressed proteins were related to metabolism (such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate oxidase, glutamate dehydrogenase or glutamate decarboxylase) or stress (GroEL). In the sessile state, L. monocytogenes cells tolerated up to 10 μg/ml bacteriocin, and the treated biofilm cells overexpressed a set of 11 proteins, some of which could be related to stress response (DnaK, GroEL), protein synthesis and carbohydrate metabolism, while glyceraldehyde-3-phosphate dehydrogenase was the only unexpressed protein. Some of the overexpressed proteins (such as elongation factor Tu and GroEL) could also be implicated in cell adhesion. These results suggest different cell responses of L. monocytogenes to enterocin AS-48 in the planktonic and in the sessile state, including stress response and cell metabolism proteins. While in the planktonic state the bacterium may tend to compensate for the cytoplasmic cell permeability changes induced by AS-48 by reinforcing carbohydrate transport and metabolism, sessile cells seem to respond by shifting carbohydrate metabolism and reinforcing protein synthesis. Stress response proteins also seem to be important in the response to AS-48, but the stress response seems to be different in planktonic and in sessile cells. © 2013.

  20. Ciliate ingestion and digestion: flow cytometric measurements and regrowth of a digestion-resistant campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    We developed a method to measure ingestion and digestion rates of bacterivorous protists feeding on pathogenic bacteria. We tested this method using the enteric bacteria Campylobacter jejuni and a freshwater colpodid ciliate. Campylobacter and a non-pathogenic bacteria isolated from the environment ...

  1. A new angle on microscopic suspension feeders near boundaries.

    PubMed

    Pepper, Rachel E; Roper, Marcus; Ryu, Sangjin; Matsumoto, Nobuyoshi; Nagai, Moeto; Stone, Howard A

    2013-10-15

    Microscopic sessile suspension feeders are a critical component in aquatic ecosystems, acting as an intermediate trophic stage between bacteria and higher eukaryotic taxa. Because they live attached to boundaries, it has long been thought that recirculation of the feeding currents produced by sessile suspension feeders inhibits their ability to access fresh fluid. However, previous models for the feeding flows of these organisms assume that they feed by pushing fluid perpendicular to surfaces they live upon, whereas we observe that sessile suspension feeders often feed at an angle to these boundaries. Using experiments and calculations, we show that living suspension feeders (Vorticella) likely actively regulate the angle that they feed relative to a substratum. We then use theory and simulations to show that angled feeding increases nutrient and particle uptake by reducing the reprocessing of depleted water. This work resolves an open question of how a key class of suspension-feeding organisms escapes physical limitations associated with their sessile lifestyle. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. New Class of Cargo Protein in Tetrahymena thermophila Dense Core Secretory Granules

    PubMed Central

    Haddad, Alex; Bowman, Grant R.; Turkewitz, Aaron P.

    2002-01-01

    Regulated exocytosis of dense core secretory granules releases biologically active proteins in a stimulus-dependent fashion. The packaging of the cargo within newly forming granules involves a transition: soluble polypeptides condense to form water-insoluble aggregates that constitute the granule cores. Following exocytosis, the cores generally disassemble to diffuse in the cell environment. The ciliates Tetrahymena thermophila and Paramecium tetraurelia have been advanced as genetically manipulatable systems for studying exocytosis via dense core granules. However, all of the known granule proteins in these organisms condense to form the architectural units of lattices that are insoluble both before and after exocytosis. Using an approach designed to detect new granule proteins, we have now identified Igr1p (induced during granule regeneration). By structural criteria, it is unrelated to the previously characterized lattice-forming proteins. It is distinct in that it is capable of dissociating from the insoluble lattice following secretion and therefore represents the first diffusible protein identified in ciliate granules. PMID:12456006

  3. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia.

    PubMed

    Petroni, G; Spring, S; Schleifer, K H; Verni, F; Rosati, G

    2000-02-15

    Epixenosomes, ectosymbionts on hypotrich ciliates (genus Euplotidium) defend their host against the ciliate predator Litonotus lamella. Although here only Euplotidium itoi and Euplotidium arenarium from tide pools along a rocky shore near Leghorn (Ligurian sea) were studied in detail, these epibionts are certainly present on specimens of E. itoi and on other Euplotidium species in similar north coastal habitats. The complex life history of epixenosomes has two main stages. In stage I, cells with typical prokaryotic structure divide by binary fission. Stage II cells show complex organization with different cytoplasmic compartments where an extrusive apparatus within a proteinaceous matrix, although not membrane-bounded, differs from the remaining cytoplasm. The ejection process is involved in defense; extrusive apparatus is surrounded by a basket consisting of bundles of tubules. These tubules, 22 +/- 3 nm in diameter, delimited by a wall made up of globular structures, are sensitive to inhibitor of tubulin polymerization (nocodazole/4 degrees C temperature) and react positively with different antitubulin antibodies, two of which are monoclonal. The prokaryotic vs. eukaryotic nature of epixenosomes was resolved by comparative sequence analysis of amplified small subunit rRNA genes and in situ hybridization with fluorescently labeled rRNA-targeted polynucleotide probes. These unique ectosymbionts are phylogenetically related to Verrucomicrobia. Epixenosomes represent marine symbionts in this recently discovered division of the Bacteria.

  4. Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia

    PubMed Central

    Petroni, Giulio; Spring, Stefan; Schleifer, Karl-Heinz; Verni, Franco; Rosati, Giovanna

    2000-01-01

    Epixenosomes, ectosymbionts on hypotrich ciliates (genus Euplotidium) defend their host against the ciliate predator Litonotus lamella. Although here only Euplotidium itoi and Euplotidium arenarium from tide pools along a rocky shore near Leghorn (Ligurian sea) were studied in detail, these epibionts are certainly present on specimens of E. itoi and on other Euplotidium species in similar north coastal habitats. The complex life history of epixenosomes has two main stages. In stage I, cells with typical prokaryotic structure divide by binary fission. Stage II cells show complex organization with different cytoplasmic compartments where an extrusive apparatus within a proteinaceous matrix, although not membrane-bounded, differs from the remaining cytoplasm. The ejection process is involved in defense; extrusive apparatus is surrounded by a basket consisting of bundles of tubules. These tubules, 22 ± 3 nm in diameter, delimited by a wall made up of globular structures, are sensitive to inhibitor of tubulin polymerization (nocodazole/4°C temperature) and react positively with different antitubulin antibodies, two of which are monoclonal. The prokaryotic vs. eukaryotic nature of epixenosomes was resolved by comparative sequence analysis of amplified small subunit rRNA genes and in situ hybridization with fluorescently labeled rRNA-targeted polynucleotide probes. These unique ectosymbionts are phylogenetically related to Verrucomicrobia. Epixenosomes represent marine symbionts in this recently discovered division of the Bacteria. PMID:10660683

  5. Cell chirality: its origin and roles in left–right asymmetric development

    PubMed Central

    Inaki, Mikiko; Liu, Jingyang

    2016-01-01

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by ‘cortical inheritance’. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left–right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821533

  6. Cell chirality: its origin and roles in left-right asymmetric development.

    PubMed

    Inaki, Mikiko; Liu, Jingyang; Matsuno, Kenji

    2016-12-19

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by 'cortical inheritance'. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left-right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Authors.

  7. Community Structure of Tintinnid Ciliates of the Microzooplankton in the South West Pacific Ocean: Comparison of a High Primary Productivity with a Typical Oligotrophic Site.

    PubMed

    Dolan, John R; Gimenez, Audrey; Cornet-Barthaux, Veronique; de Verneil, Alain

    2016-11-01

    Transient 'hot spots' of phytoplankton productivity occur in the generally oligotrophic Southern Pacific Ocean and we hypothesized that the population structure of tintinnid ciliates, planktonic grazers, would differ from that of a typical oligotrophic sites. Samples were collected over a 1-wk period at each of two sites between Fiji and Tahiti: one of elevated chlorophyll a concentrations and primary productivity with an abundance of N-fixing cyanobacteria Trichodesmium, and a distant oligotrophic site. Tintinnid abundance differed between the sites by a factor of 2. A single species (Favella sp.), absent from the oligotrophic site, highly dominated the 'hot spot' site. However, total species richness was identical (71 spp.) as well as short-term temporal variability (2-4 d). At both sites, species abundance distributions most closely fit a log-series or log-normal distribution and the abundance distributions of ecological types, forms of distinct lorica oral diameter, were the typical geometric. Morphological diversity was only slightly lower at the high productivity site. We found that communities of these plankton grazers in 'hot spots' of phytoplankton productivity in oligotrophic systems, although harboring different species, differ little from surrounding oligotrophic areas in community structure. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  8. The First Record for the Americas of Loxodes rex, a Flagship Ciliate with an Alleged Restricted Biogeography.

    PubMed

    Hines, Hunter N; McCarthy, Peter J; Esteban, Genoveva F

    2016-01-01

    As the foundations of food webs, protozoa are essential to the success of an ecological system. These organisms are often overlooked, and research in the Americas is sparse. Recent samplings conducted in freshwater canals and ponds in Florida, USA, have revealed Loxodes rex, an alleged endemic ciliate species. Originally described as endemic to tropical Africa, L. rex has been considered a prime candidate for proof of microbial endemism. Our studies have shown this giant, non-encysting ciliate to be thriving in subtropical Florida. Our observations are novel and include both the first record of occurrence for the Americas and the first high-quality in vivo images for this charismatic species.

  9. An ultrastructural study of the tracheal epithelium of the guinea-pig with special reference to the ciliary structure.

    PubMed Central

    Dalen, H

    1983-01-01

    The ultrastructure of the normal guinea-pig tracheal mucosa has been characterised by transmission and scanning electron microscopy. The pseudostratified epithelium was composed of basal cells, goblet cells, ciliated cells and intermediate cells. Interepithelial granulocytes and lymphocytes were occasionally seen. Regional variations in the distribution of goblet cells and ciliated cells were noted, and the continual turnover of the epithelial cells was manifested in the findings of proliferating, differentiating and exfoliating cells. The function of the numerous microvilli extending into the lumen remains unknown, although the bundles of actin filaments in their core and the anionic properties of their surface suggest a dual function, as motile processes and as sites of re-absorption of excess fluid. Numerous microtubules criss-cross the apex of the ciliated cell. It is suggested that they are an integrated part of the cytoskeleton and/or are involved in some kind of intracytoplasmic transport. Other microtubules are attached to the basal feet and penetrate deep into the cytoplasm; their function has yet to be elucidated. A possible role may be that they, alone or in conjunction with the microfilaments (actin) of the cell cytoplasm, constitute a contractile mechanism responsible for the synchronous beating of the cilia in a given cell. Only in rare cases have the basal bodies developed striated rootlets. Morphological evidence from the current study, that the ciliary crown is in physical contact with the superficial mucus layer, supports the hypothesis that this structure serves as a special device for pushing the mucus forward. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Figs. 5-6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Figs. 14-15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20 Fig. 21 Fig. 22 Fig. 23 Fig. 24 Figs. 25-26 Fig. 27 Figs. 28-29 Fig. 30 Fig. 31 Figs. 32-33 Fig. 34 Fig. 35 PMID:6833121

  10. Host-Parasite list updating of Ciliates and fermentation in the digestive tract of wild miscellaneous herbivores in South Africa (RSA).

    PubMed

    Booyse, D G; Dehority, B A

    2017-05-03

    This article is dedicated to the Author, Burk Dehority, who became very ill with cancer. Fortunately he confirmed or corrected all identifications on ciliates in this article. This paper was 80% finished when he became ill. He unfortunately passed away in February 2016.

  11. Survival of Legionella pneumophila in the cold-water ciliate Tetrahymena vorax

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith-Somerville, H.E.; Huryn, V.B.; Walker, C.

    1991-09-01

    The processing of phagosomes containing Legionella pneumophila and Escerichia coli were compared in Tetrahymena vorax, a hymenostome ciliated protozoan that prefers lower temperatures. L. pneumophila did not multiply in the ciliate when incubated at 20 to 22C, but vacuoles containing L. pneumophila were retained in the cells for a substantially longer time than vacuoles with E. coli. Electron micrographs showed no evidence of degradation of L. pneumophila cells through 12 h, while E. coli cells in the process of being digested were observed in vacuoles 75 min after the addition of the bacterium T. vorax ingested L. pneumophila normally, butmore » by 10 to 15 min, the vacuolar membrane appeared denser than that surrounding nascent or newly formed phagosomes. In older vacuoles, electron-dense particles lined portions of the membrane. Acidification of the phagosomes indicated by the accumulation of neutral red was similar in T. vorax containing L. pneumophila or E. coli. This ciliate could provide a model for the analysis of virulence-associated intracellular events independent of the replication of L. pneumophila.« less

  12. Insights into bioassessment of marine pollution using body-size distinctness of planktonic ciliates based on a modified trait hierarchy.

    PubMed

    Xu, Henglong; Jiang, Yong; Xu, Guangjian

    2016-06-15

    Based on a modified trait hierarchy of body-size units, the feasibility for bioassessment of water pollution using body-size distinctness of planktonic ciliates was studied in a semi-enclosed bay, northern China. An annual dataset was collected at five sampling stations within a gradient of heavy metal contaminants. Results showed that: (1) in terms of probability density, the body-size spectra of the ciliates represented significant differences among the five stations; (2) bootstrap average analysis demonstrated a spatial variation in body-size rank patterns in response to pollution stress due to heavy metals; and (3) the average body-size distinctness (Δz(+)) and variation in body-size distinctness (Λz(+)), based on the modified trait hierarchy, revealed a clear departure pattern from the expected body-size spectra in areas with pollutants. These results suggest that the body-size diversity measures based on the modified trait hierarchy of the ciliates may be used as a potential indicator of marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mechanically induced tube damage in the artificial hydrosalpinx.

    PubMed

    Kleinstein, J; Neubüser, D; Mussmann, J

    1982-01-01

    One-sided artificial hydrosalpinx was caused in mature New Zealand rabbits by proximal and distal ligature. After 2 weeks the average secretion accumulation was 2.1 ml, after 8 weeks 6.3 ml. A fold relief could no longer be detected after 8 weeks. The light-microscopical study of the epithelium showed signs of cell degeneration with cell dedifferentiation, pyknosis of the nucleus, and perinuclear aerolae. The ciliation of 66% ciliated cells for the normal oviduct (pars ampullaris) was reduced to 15% after 8 weeks of artificial hydrosalpinx. Based on the hypertrophy of the muscularis the percentage loss of E2 receptors within 4 weeks was smaller in comparison with the percentage reduction of the ciliation during the same time. Finally, after 8 weeks an amount of 15% for the estrogen receptors as well as for the ciliation was achieved--both compared to the untreated oviduct. It is possible that the oviduct damage, caused only by the mechanical influence of the secretion congestion, is the reason for the unfavorable pregnancy rate after salpingoneostomy of a chronic atrophied hydrosalpinx.

  14. Methods for the cultivation of ciliated protozoa from the large intestine of horses.

    PubMed

    Bełżecki, Grzegorz; Miltko, Renata; Michałowski, Tadeusz; McEwan, Neil R

    2016-01-01

    This paper describes cultivation methods for ciliates from the digestive tract of horses. Members of three different genera were successfully grown in vitro for short periods of time. However, only cells belonging to the genus Blepharocorys, which resides in the horse's large intestine, were maintained for longer periods. This Blepharocorys culture was successfully grown in vitro after inoculation of freshly excreted horse faeces in culture medium containing a population of bacteria. The ciliates survived for over six months, and the density of their population varied between 1.7 × 10(3) and 2.4 × 10(3) cells mL(-1). Favourable conditions for the prolonged cultivation of this ciliate were observed when the medium was prepared by mixing horse faeces and 'caudatum' salt solution in a 1:1 V/V ratio together with food (60% powdered meadow hay, 16% wheat gluten, 12% barley flour and 12% microcrystalline cellulose) supplied as 0.20 mg mL(-1) culture per day. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Coupling molecules and morphology to discover new clades of ciliates.

    NASA Astrophysics Data System (ADS)

    Grattepanche, J. D.; Maurer-Alcalá, X. X.; Tucker, S. J.; McManus, G. B.; Katz, L. A.

    2016-02-01

    In a previous study using high-throughput sequencing (Grattepanche et al submitted, oral presentation?), we observe the presence of two clades of spirotrich ciliates mainly present in marine deep-water along the New England coast. These clades, clusters X1 and X2, are characterized by several deletions in their SSU-rDNA and have been observed elsewhere as both identical and similar sequences have been deposited on GenBank from other environmental studies, but lack morphological description. In order to link molecules (SSU-rDNA sequence) to their morphology, we sample below the photic zone (between 60 to 400m of depth) in the New England coast (Northeast Atlantic) in a transect crossing the continental shelf. We designed an oligonucleotide probe specific for choreotrich and oligotrich ciliates and another specific to clusters X1 and X2 to describe these clades through a combination of Fluorescence In Situ Hybridization (FISH) and light microscopy. Our aim is to increase our knowledge on the morphology of these `unknown' clades of ciliates, which will allow for future ecological studies.

  16. Characterization of biofilm formation in natural water subjected to low-frequency electromagnetic fields.

    PubMed

    Mercier, Anne; Bertaux, Joanne; Lesobre, Jérôme; Gravouil, Kevin; Verdon, Julien; Imbert, Christine; Valette, Eric; Héchard, Yann

    2016-01-01

    Electromagnetic field (EMF) treatment has proven to be effective against mineral scaling in water systems. Therefore, it should be assessed for the treatment of other deposits such as biofilms. In this study, a commercial device producing low-frequency EMF (1-10 kHz) was applied to a reactor fed with natural water for 45 days. The treatment promoted the concentration of microorganisms in suspension and limited the amount of sessile microorganisms in the biofilm, as determined by the measurement of total DNA, qPCR and microscopy. The structure of the bacterial community was assessed by t-RFLP and pyrosequencing analysis. The results showed that EMF treatment affected both planktonic and sessile community composition. EMFs were responsible for a shift in classes of Proteobacteria during development of the biofilm. It may be speculated that the EMF treatment affected particle solubility and/or microorganism hydration. This study indicated that EMFs modulated biofilm formation in natural water.

  17. Insights into discriminating environmental quality status using taxonomic distinctness based on a small species pool of ciliated protozoa in marine ecosystems.

    PubMed

    Jiang, Yong; Xu, Henglong; Warren, Alan

    2014-01-15

    The objective of this study was to determine the feasibility of developing a protocol for assessing marine water quality based on taxonomic relatedness within a small pool of planktonic ciliates. An annual dataset was compiled based on samples collected biweekly at five sites, with a gradient of environmental stress, during a 1-year cycle in Jiaozhou Bay, northern China. A total of 60 species, belonging to 17 genera 10 families, 5 orders and 2 classes of the phylum Ciliophora, were identified. Among five orders, Tintinnida showed a low variability mainly at species level whereas the other orders (especially Strombidiida and Choreotrichida, although with the exception of the genus Strombidium) represented a high variability at higher taxonomic ranks (e.g. family or order). Mantel analyses showed that spatial patterns of the ciliate assemblages, with tinitinnids and Strombidium spp. excluded, were significantly correlated with those of the total planktonic ciliate communities in terms of their response to environmental status. The average taxonomic distinctness (Δ(+)) based on the small species pool was significantly negatively correlated with the changes in concentrations of nutrients (P<0.05). Furthermore, the paired indices of Δ(+) and the variation in taxonomic distinctness (Λ(+)) showed a clear departure from the expected taxonomic pattern. These findings suggest that it is possible to assess the status of marine water quality using the taxonomic relatedness within a small pool of planktonic ciliates. © 2013.

  18. Prevalence of ciliated epithelium in apical periodontitis lesions.

    PubMed

    Ricucci, Domenico; Loghin, Simona; Siqueira, José F; Abdelsayed, Rafik A

    2014-04-01

    This article reports on the morphologic features and the frequency of ciliated epithelium in apical cysts and discusses its origin. The study material consisted of 167 human apical periodontitis lesions obtained consecutively from patients presenting for treatment during a period of 12 years in a dental practice operated by one of the authors. All of the lesions were obtained still attached to the root apices of teeth with untreated (93 lesions) or treated canals (74 lesions). The former were obtained by extraction and the latter by extraction or apical surgery. Specimens were processed for histopathologic and histobacteriologic analyses. Lesions were classified, and the type of epithelium, if present, was recorded. Of the lesions analyzed, 49 (29%) were diagnosed as cysts. Of these, 26 (53%) were found in untreated teeth, and 23 (47%) related to root canal-treated teeth. Ciliated columnar epithelium was observed partially or completely lining the cyst wall in 4 cysts, and all of them occurred in untreated maxillary molars. Three of these lesions were categorized as pocket cysts, and the other was a true cyst. Ciliated columnar epithelium-lined cysts corresponded to approximately 2% of the apical periodontitis lesions and 8% of the cysts of endodontic origin in the population studied. This epithelium is highly likely to have a sinus origin in the majority of cases. However, the possibility of prosoplasia or upgraded differentiation into ciliated epithelium from the typical cystic lining squamous epithelium may also be considered. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Survival characteristics of diarrheagenic Escherichia coli pathotypes and Helicobacter pylori during passage through the free-living ciliate, Tetrahymena sp.

    PubMed

    Smith, Charlotte D; Berk, Sharon G; Brandl, Maria T; Riley, Lee W

    2012-12-01

    Free-living protozoa have been implicated in the survival and transport of pathogens in the environment, but the relationship between non-Shiga toxin-producing Escherichia coli or Helicobacter pylori and ciliates has not been characterized. Six diarrheagenic pathotypes of E. coli and an isolate of H. pylori were evaluated for their susceptibility to digestion by Tetrahymena, an aquatic ciliate. Tetrahymena strain MB125 was fed E. coli or H. pylori, and the ciliate's egested products examined for viable bacterial pathogens by the BacLight(™) LIVE/DEAD (™) assay, a cell elongation method, and by colony counts. All six diarrheagenic E. coli pathotypes survived digestion, whereas H. pylori was digested. Growth of E. coli on agar plates indicated that the bacteria were able to replicate after passage through the ciliate. Transmission electron micrographs of E. coli cells as intact rods vs. degraded H. pylori cells corroborated these results. Scanning electron microscopy revealed a net-like matrix around intact E. coli cells in fecal pellets. These results suggest a possible role for Tetrahymena and its egested fecal pellets in the dissemination of diarrheagenic E. coli in the environment. This bacterial-protozoan interaction may increase opportunities for transmission of diarrheagenic E. coli to mammalian hosts including humans. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Deposit Structure for Particle-laden Droplets Targeted by Electrospray

    NASA Astrophysics Data System (ADS)

    Ghafouri, Aref; Singler, Timothy; Yong, Xin; Chiarot, Paul

    2017-11-01

    A hybrid printing technique that combines electrospray atomization with inkjet printing provides unique capabilities for exploring transport creating nanoparticle deposits with controlled structures. In this research, we use electrospray to deliver dry nanoparticles to the interface of particle-laden sessile droplets. Upon evaporation of the target sessile droplet, the particles at the interface are mapped to the underlying substrate. Particle locations in the final deposit were observed separately by tagging the particles dispersed inside the droplet and at its interface with different fluorophores. As expected, surfactant-free particles inside the target droplet were transported to its (pinned) contact line, creating a ``coffee ring'' morphology in the final deposit. The transport and final location of the interfacial particles was highly dependent on the presence of surfactant in the electrosprayed solution. If surfactant was present, the interfacial particles were transported to the apex of the target droplet, forming a dense region at the center of the final deposit. If the electrosprayed solution was surfactant-free, the transport of the interfacial particles was arrested and they were distributed uniformly across the final deposit. Similar deposit morphologies were found when experimenting with various surfactants, including Tween and sodium dodecyl sulfate. These results highlight the important of Marangoni flow in governing the final deposit structure for hybrid printing. This research supported by the National Science Foundation (Award 1538090).

  1. Bose-Einstein condensates form in heuristics learned by ciliates deciding to signal 'social' commitments.

    PubMed

    Clark, Kevin B

    2010-03-01

    Fringe quantum biology theories often adopt the concept of Bose-Einstein condensation when explaining how consciousness, emotion, perception, learning, and reasoning emerge from operations of intact animal nervous systems and other computational media. However, controversial empirical evidence and mathematical formalism concerning decoherence rates of bioprocesses keep these frameworks from satisfactorily accounting for the physical nature of cognitive-like events. This study, inspired by the discovery that preferential attachment rules computed by complex technological networks obey Bose-Einstein statistics, is the first rigorous attempt to examine whether analogues of Bose-Einstein condensation precipitate learned decision making in live biological systems as bioenergetics optimization predicts. By exploiting the ciliate Spirostomum ambiguum's capacity to learn and store behavioral strategies advertising mating availability into heuristics of topologically invariant computational networks, three distinct phases of strategy use were found to map onto statistical distributions described by Bose-Einstein, Fermi-Dirac, and classical Maxwell-Boltzmann behavior. Ciliates that sensitized or habituated signaling patterns to emit brief periods of either deceptive 'harder-to-get' or altruistic 'easier-to-get' serial escape reactions began testing condensed on initially perceived fittest 'courting' solutions. When these ciliates switched from their first strategy choices, Bose-Einstein condensation of strategy use abruptly dissipated into a Maxwell-Boltzmann computational phase no longer dominated by a single fittest strategy. Recursive trial-and-error strategy searches annealed strategy use back into a condensed phase consistent with performance optimization. 'Social' decisions performed by ciliates showing no nonassociative learning were largely governed by Fermi-Dirac statistics, resulting in degenerate distributions of strategy choices. These findings corroborate previous work demonstrating ciliates with improving expertise search grouped 'courting' assurances at quantum efficiencies and verify efficient processing by primitive 'social' intelligences involves network forms of Bose-Einstein condensation coupled to preceding thermodynamic-sensitive computational phases. 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Mortality and Morbidity Associated with a New Ciliate Infection of Shrimp that Causes Shrimp Black Gill in the Coastal Southeast USA

    NASA Astrophysics Data System (ADS)

    Price, A. R.; Fowler, A. E.; Frede, R. L.; Walker, A. N.; Lee, R. F.; Frischer, M. E.

    2016-02-01

    Penaeid shrimp including Litopenaeus setiferus (white shrimp), Farfantepenaeus aztecus (brown shrimp), and Farfantepenaeus duorarum (pink shrimp) support the most valuable commercial marine fishery in the US Southeast Atlantic. However, since the mid 1990's the fishery has experienced a significant decline in reported harvest. Although decreased fishing effort has contributed to this decline, the decline has been coincident with the emergence of a new ciliate infection causing gill tissue melanization with evidence of tissue necrosis (Black Gill). The identity of the shrimp Black Gill (sBG) ciliate is still uncertain but is uniquely identified molecularly and microscopically. sBG is widely believed by the shrimping industry to have contributed to the decline of shrimp populations in Georgia and South Carolina, USA where prevalence can reach near 100% in the fall white shrimp season and is associated with large catches of dead and deteriorating shrimp along with soft and recently molted shrimp. In this study we report the first observations of mortality and morbidity associated with sBG ciliate infections in L. setiferus. The sBG ciliate is present from approximately May through January with peak infection rates and visibly melanized gills occurring in the late summer through the fall. Molecular and histological studies indicate that the sBG ciliate is absent from shrimp populations during the winter and spring. In laboratory studies, significant direct mortality of shrimp associated with sBG is observed only for a short period of time during the late summer. However, later in the fall symptomatic shrimp exhibit decreased performance response (endurance and respiratory capacity) that likely leads to increased mortality associated with secondary infections and increased predation rates. These studies support the hypothesis that shrimp Black Gill is negatively impacting wild shrimp populations and the fishery.

  3. Quantification and visualization of injury and regeneration to the ciliated epithelium using quantitative flow imaging and speckle variance optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gamm, Ute A.; Huang, Brendan K.; Mis, Emily K.; Khokha, Mustafa K.; Choma, Michael A.

    2017-04-01

    Mucociliary flow is an important defense mechanism in the lung to remove inhaled pathogens and pollutants. A disruption of ciliary flow can lead to respiratory infections. Even though patients in the intensive care unit (ICU) either have or are very susceptible to respiratory infections, mucociliary flow is not well understood in the ICU setting. We recently demonstrated that hyperoxia, a consequence of administering supplemental oxygen to a patient in respiratory failure, can lead to a significant reduction of cilia-driven fluid flow in mouse trachea. There are other factors that are relevant to ICU medicine that can damage the ciliated tracheal epithelium, including inhalation injury and endotracheal tube placement. In this study we use two animal models, Xenopus embryo and ex vivo mouse trachea, to analyze flow defects in the injured ciliated epithelium. Injury is generated either mechanically with a scalpel or chemically by calcium chloride (CaCl2) shock, which efficiently but reversibly deciliates the embryo skin. In this study we used optical coherence tomography (OCT) and particle tracking velocimetry (PTV) to quantify cilia driven fluid flow over the surface of the Xenopus embryo. We additionally visualized damage to the ciliated epithelium by capturing 3D speckle variance images that highlight beating cilia. Mechanical injury disrupted cilia-driven fluid flow over the injured site, which led to a reduction in cilia-driven fluid flow over the whole surface of the embryo (n=7). The calcium chloride shock protocol proved to be highly effective in deciliating embryos (n=6). 3D speckle variance images visualized a loss of cilia and cilia-driven flow was halted immediately after application. We also applied CaCl2-shock to cultured ex vivo mouse trachea (n=8) and found, similarly to effects in Xenopus embryo, an extensive loss of cilia with resulting cessation of flow. We investigated the regeneration of the ciliated epithelium after an 8 day incubation period, and found that cilia had regrown and flow was completely restored. In conclusion, OCT is a valuable tool to visualize injury of the ciliated epithelium and to quantify reduction of generated flow. This method allows for systematic investigation of focal and diffuse injury of the ciliated epithelium and the assessment of mechanisms to compensate for loss of flow.

  4. Oscillations of a sessile droplet in open air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korenchenko, A. E., E-mail: korenchenko@physics.susu.ac.ru; Beskachko, V. P.

    2013-11-15

    The open system consisting of a sessile drop, a neutral gas, and a substrate is analyzed by numerical methods. The mode with constant contact angle is considered. The model takes into account evaporation from drop surface, free and forced convection in gas, buoyancy, and Marangoni effect in the liquid phase. It was established that every considered mechanical and thermodynamical disturbance of the system leads to the drop surface oscillations, and thus a drop in an open air oscillates almost inevitably. The displacement of the liquid-gas interface due to oscillations is analyzed in terms of its impact on the accuracy ofmore » measurement of the surface tension by sessile drop method.« less

  5. Protozoan Bacterivory and Escherichia coli Survival in Drinking Water Distribution Systems

    PubMed Central

    Sibille, I.; Sime-Ngando, T.; Mathieu, L.; Block, J. C.

    1998-01-01

    The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 × 107 bacterial cells liter−1) or in the biofilm (on average, 7 × 106 bacterial cells cm−2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 × 108 cells liter−1 in water and 4 × 107 cells cm−2 in biofilm) and protozoa (on average, 105 cells liter−1 in water and 103 cells cm−2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and structured microbial communities, while the nanofiltered water-supplied system did not. The presence of protozoa in drinking water distribution systems must not be neglected because these populations may regulate the autochthonous and allochthonous bacterial populations. PMID:9435076

  6. Protozoan bacterivory and Escherichia coli survival in drinking water distribution systems.

    PubMed

    Sibille, I; Sime-Ngando, T; Mathieu, L; Block, J C

    1998-01-01

    The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 x 10(7) bacterial cells liter-1) or in the biofilm (on average, 7 x 10(6) bacterial cells cm-2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 x 10(8) cells liter-1 in water and 4 x 10(7) cells cm-2 in biofilm) and protozoa (on average, 10(5) cells liter-1 in water and 10(3) cells cm-2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and structured microbial communities, while the nanofiltered water-supplied system did not. The presence of protozoa in drinking water distribution systems must not be neglected because these populations may regulate the autochthonous and allochthonous bacterial populations.

  7. Hydrodynamic interactions of cilia on a spherical body

    NASA Astrophysics Data System (ADS)

    Nasouri, Babak; Elfring, Gwynn J.

    2015-11-01

    The emergence of metachronal waves in ciliated microorganisms can arise solely from the hydrodynamic interactions between the cilia. For a chain of cilia attached to a flat ciliate, it was observed that fluid forces can lead the system to form a metachronal wave. However, several microorganisms such as paramecium and volvox possess a curved shaped ciliate body. To understand the effect of this geometry on the formation of metachronal waves, we evaluate the hydrodynamic interactions of cilia near a large spherical body. Using a minimal model, we show that for a chain of cilia around the sphere, the embedded periodicity in the geometry leads the system to synchronize. We also report an emergent wave-like behavior when an asymmetry is introduced to the system.

  8. Ultrastructure of extrusomes in hypotrichous ciliate Pseudourostyla nova

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Wang, Zhengjun; Zhang, Jun; Gu, Fukang

    2011-01-01

    The ultrastructure of extrusomes of the hypotrichous ciliate Pseudourostyla nova was observed in scanning and transmission electron microscopy and enzyme-cytochemistry. The results show that the distribution, morphological characteristics, morphogenesis process, and extrusive process of the extrusomes in P. nova are different from the trichocysts in Paramecium, suggesting that the extrusomes of P. nova can respond to environmental stimuli, play an important role in the defense of this species, and cannot be regarded as "trichocysts". The results also suggest that the extrusomes might be originated from the Golgi apparatus and mature in the cytoplasm; after the extrusion of mature extrusomes, the residual substance might be reabsorbed and reused by the ciliate cell via food vacuoles, and take part in material recycling of the cell.

  9. How Far do Ciliate Flagships Sail? A Proposed Gondawanaland Endemic Species at Anchor in Idaho Soils.

    PubMed

    Bourland, William

    2017-07-01

    In terms of protist biogeography, "flagship species" (Foissner 2005) have been defined as those so remarkable or "showy" that they are unlikely to be overlooked when present in a given habitat. On this basis, flagship species have been suggested as an ideal or ultimate test for the existence of protist endemism. One example of a flagship ciliate is the terrestrial lepidosome-bearing trachelophyllid, Luporinophrys micelae, previously thought to be a Gondwanan endemic. This report comprises a morphologic description of two populations of L. micelae from Laurentian soils (Idaho, Northwest USA). The flagship concept is briefly reviewed and ciliate biogeography is discussed in light of these findings. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Use of the ciliated protozoan Tetrahymena pyriformis for the assessment of toxicity and quantitative structure--activity relationships of xenobiotics: comparison with the Microtox test.

    PubMed

    Bogaerts, P; Bohatier, J; Bonnemoy, F

    2001-07-01

    Cytotoxicity and quantitative structure-activity relationships of 13 inorganic and 21 organic substances were determined using three bioassays performed on the ciliated protozoan Tetrahymena pyriformis and the luminescent bacterium Vibrio fischeri. The best concordance of toxicity results was observed between the T. pyriformis FDA--esterase activity and population growth inhibition tests for the organic compounds. The sensitivity of these two assays is compared with that of the Microtox test. The T. pyriformis FDA test showed a high sensitivity is most cases. The aim of the current research was to determine whether the relative toxicity of metal ions and organic molecules, with these three bioassays, was predictable using three ion characteristics and hydrophobicity, respectively. For metal ions, the variable that best modeled the toxicity data obtained with the two T. pyriformis tests was the softness index [sigma(p), i.e., (coordinate bond energy of the metal fluoride--coordinate bond energy of the metal iodide)/(coordinate bond energy of the metal fluoride)]. No correlation was found with the Microtox test. For organic compounds, a significant correlation was observed between the hydrophobicity coefficient and the toxicity data. This correlation is closer with the two tests using Tetrahymena. Copyright 2001 Academic Press.

  11. The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.).

    PubMed

    Mordret, Solenn; Romac, Sarah; Henry, Nicolas; Colin, Sébastien; Carmichael, Margaux; Berney, Cédric; Audic, Stéphane; Richter, Daniel J; Pochon, Xavier; de Vargas, Colomban; Decelle, Johan

    2016-06-01

    Symbiotic partnerships between heterotrophic hosts and intracellular microalgae are common in tropical and subtropical oligotrophic waters of benthic and pelagic marine habitats. The iconic example is the photosynthetic dinoflagellate genus Symbiodinium that establishes mutualistic symbioses with a wide diversity of benthic hosts, sustaining highly biodiverse reef ecosystems worldwide. Paradoxically, although various species of photosynthetic dinoflagellates are prevalent eukaryotic symbionts in pelagic waters, Symbiodinium has not yet been reported in symbiosis within oceanic plankton, despite its high propensity for the symbiotic lifestyle. Here we report a new pelagic photosymbiosis between a calcifying ciliate host and the microalga Symbiodinium in surface ocean waters. Confocal and scanning electron microscopy, together with an 18S rDNA-based phylogeny, showed that the host is a new ciliate species closely related to Tiarina fusus (Colepidae). Phylogenetic analyses of the endosymbionts based on the 28S rDNA gene revealed multiple novel closely related Symbiodinium clade A genotypes. A haplotype network using the high-resolution internal transcribed spacer-2 marker showed that these genotypes form eight divergent, biogeographically structured, subclade types that do not seem to associate with any benthic hosts. Ecological analyses using the Tara Oceans metabarcoding data set (V9 region of the 18S rDNA) and contextual oceanographic parameters showed a global distribution of the symbiotic partnership in nutrient-poor surface waters. The discovery of the symbiotic life of Symbiodinium in the open ocean provides new insights into the ecology and evolution of this pivotal microalga and raises new hypotheses about coastal pelagic connectivity.

  12. The symbiotic life of Symbiodinium in the open ocean within a new species of calcifying ciliate (Tiarina sp.)

    PubMed Central

    Mordret, Solenn; Romac, Sarah; Henry, Nicolas; Colin, Sébastien; Carmichael, Margaux; Berney, Cédric; Audic, Stéphane; Richter, Daniel J; Pochon, Xavier; de Vargas, Colomban; Decelle, Johan

    2016-01-01

    Symbiotic partnerships between heterotrophic hosts and intracellular microalgae are common in tropical and subtropical oligotrophic waters of benthic and pelagic marine habitats. The iconic example is the photosynthetic dinoflagellate genus Symbiodinium that establishes mutualistic symbioses with a wide diversity of benthic hosts, sustaining highly biodiverse reef ecosystems worldwide. Paradoxically, although various species of photosynthetic dinoflagellates are prevalent eukaryotic symbionts in pelagic waters, Symbiodinium has not yet been reported in symbiosis within oceanic plankton, despite its high propensity for the symbiotic lifestyle. Here we report a new pelagic photosymbiosis between a calcifying ciliate host and the microalga Symbiodinium in surface ocean waters. Confocal and scanning electron microscopy, together with an 18S rDNA-based phylogeny, showed that the host is a new ciliate species closely related to Tiarina fusus (Colepidae). Phylogenetic analyses of the endosymbionts based on the 28S rDNA gene revealed multiple novel closely related Symbiodinium clade A genotypes. A haplotype network using the high-resolution internal transcribed spacer-2 marker showed that these genotypes form eight divergent, biogeographically structured, subclade types that do not seem to associate with any benthic hosts. Ecological analyses using the Tara Oceans metabarcoding data set (V9 region of the 18S rDNA) and contextual oceanographic parameters showed a global distribution of the symbiotic partnership in nutrient-poor surface waters. The discovery of the symbiotic life of Symbiodinium in the open ocean provides new insights into the ecology and evolution of this pivotal microalga and raises new hypotheses about coastal pelagic connectivity. PMID:26684730

  13. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates.

    PubMed

    Barreiro-Iglesias, Antón; Villar-Cerviño, Verona; Villar-Cheda, Begoña; Anadón, Ramón; Rodicio, María Celina

    2008-12-01

    Neuroactive substances such as serotonin and other monoamines have been suggested to be involved in the transmission of gustatory signals from taste bud cells to afferent fibers. Lampreys are the earliest vertebrates that possess taste buds, although these differ in structure from taste buds in jawed vertebrates, and their neurochemistry remains unknown. We used immunofluorescence methods with antibodies raised against serotonin, tyrosine hydroxylase (TH), gamma-aminobutyric acid (GABA), glutamate, calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), calretinin, and acetylated alpha-tubulin to characterize the neurochemistry and innervation of taste buds in the sea lamprey, Petromyzon marinus L. For localization of proliferative cells in taste buds we used bromodeoxyuridine labeling and proliferating cell nuclear antigen immunohistochemistry. Results with both markers indicate that proliferating cells are restricted to a few basal cells and that almost all cells in taste buds are nonproliferating. A large number of serotonin-, calretinin-, and CGRP-immunoreactive bi-ciliated cells were revealed in lamprey taste buds. This suggests that serotonin participates in the transmission of gustatory signals and indicates that this substance appeared early on in vertebrate evolution. The basal surface of the bi-ciliated taste bud cells was contacted by tubulin-immunoreactive fibers. Some of the fibers surrounding the taste bud were calretinin immunoreactive. Lamprey taste bud cells or afferent fibers did not exhibit TH, GABA, glutamate, or NPY immunoreactivity, which suggests that expression of these substances evolved in taste buds of some gnathostomes lines after the separation of gnathostomes and lampreys. (c) 2008 Wiley-Liss, Inc.

  14. Does microorganism stoichiometry predict microbial food web interactions after a phosphorus pulse?

    PubMed

    Carrillo, Presentación; Villar-Argaiz, Manuel; Medina-Sánchez, Juan M

    2008-08-01

    Knowledge of variations in microbial food web interactions resulting from atmospheric nutrient loads is crucial to improve our understanding of aquatic food web structure in pristine ecosystems. Three experiments mimicking atmospheric inputs at different nitrogen/phosphorus (N/P) ratios were performed in situ covering the seasonal biological succession of the pelagic zone in a high-mountain Spanish lake. In all experiments, abundance, biomass, algal cell biovolume, P-incorporation rates, P-cell quota, and N/P ratio of algae strongly responded to P-enrichment, whereas heterotrophic bacteria remained relatively unchanged. Ciliates were severely restricted when a strong algal exploitation of the available P (bloom growth or storage strategies) led to transient (mid-ice-free experiment) or chronic (late ice-free experiment) P-deficiencies in bacteria. In contrast, maximum development of ciliates was reached when bacteria remained P-rich (N/P < 20) and algae approached Redfield proportions (N/P approximately 16). Evidence of a higher P-incorporation rate supports the proposition that algae and bacteria shifted from a mainly commensalistic-mutualistic to a competitive relationship for the available P when bacterial P-deficiency increased, as reflected by their unbalanced N/P ratio (N/P > 20-24). Hence, the bacterial N/P ratio proved be a key factor to understand the algae-bacteria relationship and microbial food web development. This study not only demonstrates the interdependence of life history strategies, stoichiometric nutrient content, and growth but also supports the use of bacterial N/P thresholds for diagnosing ciliate development, a little-studied aspect worthy of further attention.

  15. Active motility in bimodular bacterial aggregates

    NASA Astrophysics Data System (ADS)

    Zeng, Yu; Liu, Bin

    2017-11-01

    Dispersal capability is essential for microorganisms to achieve long-distance translocation, thus crucial for their abundance in various environments. In general, active dispersals are attributed to the movements of self-powered planktonic cells, while sessile cells that live a colonial life often disperse passively through flow entrainments. Here, we report another means of active dispersal employed by aggregates of sessile cells. The spherical rosette colonies of the bacterium Caulobacter crescentus are aggregates of sessile stalked cells, of which a small proportion undergo cell division, grow active flagella and effect whole-rosette motility. We show that these rosettes actively disperse both in bulk water and near the solid-liquid interface. In particular, the proximity of a self-powered rosette to the solid surface promotes a rolling movement, leading to its persistent transportation along the solid boundary. The active dispersal of these rosettes demonstrated a novel mode of colonial transportation that is based on the division of labor between sessile and motile cells. The authors thank the support of National Science Foundation CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848).

  16. Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets

    PubMed Central

    Park, Jimin; Han, Hyung-Seop; Kim, Yu-Chan; Ahn, Jae-Pyeong; Ok, Myoung-Ryul; Lee, Kyung Eun; Lee, Jee-Wook; Cha, Pil-Ryung; Seok, Hyun-Kwang; Jeon, Hojeong

    2015-01-01

    The size-dependent wettability of sessile water droplets is an important matter in wetting science. Although extensive studies have explored this problem, it has been difficult to obtain empirical data for microscale sessile droplets at a wide range of diameters because of the flaws resulting from evaporation and insufficient imaging resolution. Herein, we present the size-dependent quantitative change of wettability by directly visualizing the three phase interfaces of droplets using a cryogenic-focused ion beam milling and SEM-imaging technique. With the fundamental understanding of the formation pathway, evaporation, freezing, and contact angle hysteresis for sessile droplets, microdroplets with diameters spanning more than three orders of magnitude on various metal substrates were examined. Wetting nature can gradually change from hydrophobic at the hundreds-of-microns scale to super-hydrophobic at the sub-μm scale, and a nonlinear relationship between the cosine of the contact angle and contact line curvature in microscale water droplets was demonstrated. We also showed that the wettability could be further tuned in a size-dependent manner by introducing regular heterogeneities to the substrate. PMID:26657208

  17. Elasticity modulated Electrowetting of a sessile liquid droplet

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Subramanian, Sri Ganesh; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    The sessile liquid droplets on the elastic and soft deformable surface produce strong deformation near the three-phase contact line (TPCL). The capillary and elastic forces play an important role during this deformation, and deteriorate the wetting behaviour of a sessile drop. The present work combines the effects of liquid viscosity and substrate elasticity on the dynamics of EWOD. The influence of decreasing film elasticity and viscosity on the electrowetting response of a sessile drop is experimentally investigated by delineating the changes in equilibrium apparent contact angles on substrates with varying Young's modulus of elasticity. The increase in viscosity of the liquid leads to greater electrowetting for non-deformable substrates whereas; the dynamics are not greatly affected in case of soft substrates. Although the viscosity appears to be an influential factor, the dynamics are more skewed towards the substrate rigidity. The vertical component of Young's force creates a wetting ridge at the three-phase contact line, the height of which is a direct function of the substrate rigidity. The produced ridges reduce the overall wettability of the droplet.

  18. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    NASA Astrophysics Data System (ADS)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  19. Evaporation of pure liquid sessile and spherical suspended drops: a review.

    PubMed

    Erbil, H Yildirim

    2012-01-15

    A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by a contact line and characterized by contact angle, contact radius and drop height. Diffusion-controlled evaporation of a sessile drop in an ambient gas is an important topic of interest because it plays a crucial role in many scientific applications such as controlling the deposition of particles on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, drop wise cooling, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials in the last decades. This paper presents a review of the published articles for a period of approximately 120 years related to the evaporation of both sessile drops and nearly spherical droplets suspended from thin fibers. After presenting a brief history of the subject, we discuss the basic theory comprising evaporation of micrometer and millimeter sized spherical drops, self cooling on the drop surface and evaporation rate of sessile drops on solids. The effects of drop cooling, resultant lateral evaporative flux and Marangoni flows on evaporation rate are also discussed. This review also has some special topics such as drop evaporation on superhydrophobic surfaces, determination of the receding contact angle from drop evaporation, substrate thermal conductivity effect on drop evaporation and the rate evaporation of water in liquid marbles. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Larval Settlement: The Role of Surface Topography for Sessile Coral Reef Invertebrates

    PubMed Central

    Whalan, Steve; Abdul Wahab, Muhammad A.; Sprungala, Susanne; Poole, Andrew J.; de Nys, Rocky

    2015-01-01

    For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates. PMID:25671562

  1. Larval settlement: the role of surface topography for sessile coral reef invertebrates.

    PubMed

    Whalan, Steve; Wahab, Muhammad A Abdul; Sprungala, Susanne; Poole, Andrew J; de Nys, Rocky

    2015-01-01

    For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.

  2. Sessile serrated adenomas with dysplasia: morphological patterns and correlations with MLH1 immunohistochemistry.

    PubMed

    Liu, Cheng; Walker, Neal I; Leggett, Barbara A; Whitehall, Vicki Lj; Bettington, Mark L; Rosty, Christophe

    2017-12-01

    Sessile serrated adenomas are the precursor polyp of approximately 20% of colorectal carcinomas. Sessile serrated adenomas with dysplasia are rarely encountered and represent an intermediate step to malignant progression, frequently associated with loss of MLH1 expression. Accurate diagnosis of these lesions is important to facilitate appropriate surveillance, particularly because progression from dysplasia to carcinoma can be rapid. The current World Health Organization classification describes two main patterns of dysplasia occurring in sessile serrated adenomas, namely, serrated and conventional. However, this may not adequately reflect the spectrum of changes seen by pathologists in routine practice. Furthermore, subtle patterns of dysplasia that are nevertheless associated with loss of MLH1 expression are not encompassed in this classification. We performed a morphological analysis of 266 sessile serrated adenomas with dysplasia with concurrent MLH1 immunohistochemistry with the aims of better defining the spectrum of dysplasia occurring in these lesions and correlating dysplasia patterns with MLH1 expression. We found that dysplasia can be divided morphologically into four major patterns, comprising minimal deviation (19%), serrated (12%), adenomatous (8%) and not otherwise specified (79%) groups. Minimal deviation dysplasia is defined by minor architectural and cytological changes that typically requires loss of MLH1 immunohistochemical expression to support the diagnosis. Serrated dysplasia and adenomatous dysplasia have distinctive histological features and are less frequently associated with loss of MLH1 expression (13 and 5%, respectively). Finally, dysplasia not otherwise specified encompasses most cases and shows a diverse range of morphological changes that do not fall into the other subgroups and are frequently associated with loss of MLH1 expression (83%). This morphological classification of sessile serrated adenomas with dysplasia may represent an improvement on the current description as it correlates with the underlying mismatch repair protein status of the polyps and better highlights the range of morphologies seen by pathologists.

  3. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    NASA Astrophysics Data System (ADS)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  4. A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method.

    PubMed

    Rivas, Lucia; Dykes, Gary A; Fegan, Narelle

    2007-04-01

    Attachment of Shiga toxigenic Escherichia coli (STEC) to surfaces and the formation of biofilms may enhance persistence in a food processing environment and present a risk of contaminating products. Seven strains of STEC and three non-STEC strains were selected to compare two biofilm quantification methods; epifluorescence microscopy on stainless steel (SS) and a microtitre plate assay. The influence of prior growth in planktonic (nutrient broth) and sessile (nutrient agar) culture on biofilm production, as well as expression of surface structures and the possession of antigen 43 (encoded by agn43) on biofilm formation were also investigated. Biofilms were produced in diluted nutrient broth at 25 degrees C for 24 and 48 h. Curli expression was determined using congo red indicator agar, while the presence of agn43 was determined using polymerase chain reaction. No correlation was found between counts for epifluorescence microscopy on SS and the absorbance values obtained with the microtitre plate method for planktonic and sessile grown cultures. Different abilities of individual STEC strains to attach to SS and microtitre plates were found with some strains attaching better to each surface following growth in either planktonic or sessile culture. All O157 STEC strains had low biofilm counts on SS for planktonic and sessile grown cultures; however, one STEC O157:H- strain (EC516) had significantly greater (p<0.05) biofilm production on microtitre plates compared to the other O157 STEC strains. EC516 and other STEC (O174:H21 and O91:H21) strains expressing curli fimbriae were found to produce significantly greater (p<0.05) biofilms on microtitre plates compared to the non-curli expressing strains. No relationship was found between the production of type-I fimbriae, motility, agn43 and bacterial physicochemical properties (previously determined) and biofilm formation on SS or microtitre plates. Variations between the two biofilm determination methods may suggest that the biofilm production on microtitre plates may not be appropriate to represent other surfaces such as SS and that caution should be taken when selecting a method to quantify biofilm production on a surface.

  5. Can the halophilic ciliate Fabrea salina be used as a bio-control of microalgae blooms in solar salterns?

    NASA Astrophysics Data System (ADS)

    Hong, Hyun Pyo; Choi, Joong Ki

    2015-09-01

    The microlage Dunaliella salina, a major producer in salterns, is a serious problem for salt production. In this study we tried to assess if Fabrea salina can control D. salina. By parameterising numerical and functional response (growth and grazing vs prey abundance, respectively) at 90 psu and 30°C, where the ciliate is abundant and grows well, we developed a predator-prey model. The model is used to explore how change in microalga growth rate affect the dynamics, and the functional response is used in combination with field data to assess the potential impact of F. salina on D. salina. Over the 20 d simulation the ciliate controlled the prey population under all prey growth rates; although once D. salina were exhausted below the threshold level, F. salina died due to starvation, allowing the alga to increase in abundance, resulting in one or two predatorprey cycle, depending on prey growth rate. In general, the model predicted trends observed by others in the field, suggesting that it provided a good prediction of what may occur under the conditions we examined. Likewise we show that the ciliate can have a high impact on microalgal populations in the field. Finally, a literature review indicated that F. salina could be a good competitor with other protozoa and metazoan in salterns, depending on salinity and temperature, which requires further study and attention. In summary, we encourage continued studies on this unique ciliate on solar salterns and suggest that it may be useful in the bio-control of micoalgae.

  6. Role of rotifers in microzooplankton community in a large monsoonal estuary (Cochin backwaters) along the west coast of India.

    PubMed

    Anjusha, A; Jyothibabu, R; Jagadeesan, L; Arunpandi, N

    2018-04-19

    The distribution ecology of microzooplankton in the Kochi (Cochin) backwaters has been presented. Emphasis has been given to the micro-rotifers present in the environment, considering they were a hitherto ignored component of the microzooplankton in the past studies. Three seasonal samplings were carried out at six locations along the salinity gradients in the Kochi backwaters during the Pre-Monsoon (March), Southwest Monsoon (August), and Northeast Monsoon (December). A total of 48 species of microzooplankton were recorded, of which 35 were ciliates, 10 were rotifers, and 3 were heterotrophic dinoflagellates. The study also reports the swarm of a microzooplankton species from the Kochi backwaters, which was formed by a tintinnid ciliate, Tintinnopsis uruguayensis, during the Northeast Monsoon. Very high microzooplankton density (11,990 No. L -1 ), as swarm in the downstream location was associated with the mesohaline condition and high availability of food. Rotifers were the major component of microzooplankton in the limnohaline/oligohaline region, whereas ciliates dominated in the polyhaline/mesohaline region. Hence, in the present study, salinity appeared to be a major factor affecting the composition of the microzooplankton community in the Kochi backwaters. As rotifers have a wide food spectrum, they can feed on almost all components of the microbial food web, including small ciliates. They also share the same food spectrum with larger ciliates and crustacean nauplii. The present study, for the first time, recorded the importance of rotifers in the microzooplankton community in the plankton food web in the Kochi backwaters.

  7. Remodeling of bovine oviductal epithelium by mitosis of secretory cells.

    PubMed

    Ito, Sayaka; Kobayashi, Yoshihiko; Yamamoto, Yuki; Kimura, Koji; Okuda, Kiyoshi

    2016-11-01

    Two types of oviductal epithelial cells, secretory and ciliated, play crucial roles in the first days after fertilization in mammals. Secretory cells produce various molecules promoting embryo development, while ciliated cells facilitate transport of oocytes and zygotes by ciliary beating. The proportions of the two cell types change during the estrous cycle. The proportion of ciliated cells on the oviductal luminal surface is abundant at the follicular phase, whereas the proportion of secretory cells gradually increases with the formation of the corpus luteum. In the present study, we hypothesize that the proportions of ciliated and secretory epithelial cells are regulated by mitosis. The proportion of the cells being positive for FOXJ1 (a ciliated cell marker) or Ki67 (a mitosis marker) in epithelial cells during the estrous cycle were immunohistochemically examined. Ki67 and FOXJ1 or PAX8 (a secretory cell marker), were double-stained to clarify which types of epithelial cells undergo mitosis. In the ampulla, the percentage of FOXJ1-positive cells was highest at the day of ovulation (Day 0) and decreased by about 50 % by Days 8-12, while in the isthmus it did not change during the estrous cycle. The proportion of Ki67-positive cells was highest at around the time of ovulation in both the ampulla and isthmus. All the Ki67-positive cells were PAX8-positive and FOXJ1-negative in both the ampulla and isthmus. These findings suggest that epithelial remodeling, which is regulated by differentiation and/or proliferation of secretory cells of the oviduct, provides the optimal environment for gamete transport, fertilization and embryonic development.

  8. alpha-Tubulin of Histriculus cavicola (Ciliophora; Hypotrichea).

    PubMed

    Pérez-Romero, P; Villalobo, E; Díaz-Ramos, C; Calvo, P; Santos-Rosa, F; Torres, A

    1997-03-01

    An alpha-tubulin gene fragment amplified by PCR from the hypotrichous ciliate Histriculus cavicola has been sequenced. This fragment, 1,182 bp long, contains an in-frame "stop" codon (UAA), which in other hypotrichous species codes for a glutamine residue. The comparison of the alpha-tubulin genes from several ciliates classes have revealed amino acid positions which could serve to distinguish these taxonomic groups.

  9. Survival characteristics of diarrheagenic Escherichia coli pathotypes and Helicobacter pylori during passage through the free-living ciliate, Tetrahymena sp.

    USDA-ARS?s Scientific Manuscript database

    Ciliates prey on bacteria in water and waste water systems. Compartmentalization of ingested material (including bacteria) in the food vacuoles of Tetrahymena and its egestion in the fecal pellet has been described and the survival of Salmonella enterica and E. coli O157:H7 in such fecal pellets ha...

  10. On the nature of species: insights from Paramecium and other ciliates

    PubMed Central

    Hall, Meaghan S.; Katz, Laura A.

    2011-01-01

    The multiple species concepts currently in use by the scientific community (e.g. Morphological, Biological, Phylogenetic) are united in that they all aim to capture the process of divergence between populations. For example, the Biological Species Concept (BSC) defines a species as a natural group of organisms that is reproductively isolated from other such groups. Here we synthesize nearly a century of research on the ciliate genus Paramecium that highlights the shortcomings of our prevailing notions on the nature of species. In this lineage, there is discordance between morphology, mating behavior, and genetics, features assumed to be correlated, at least after sufficient time has passed, under all species concepts. Intriguingly, epigenetic phenomena are well documented in ciliates where they influence features such as germline/soma differentiation and mating type determination. Consequently, we hypothesize that divergence within ciliate populations is due to a dynamic interaction between genetic and epigenetic factors. The growing list of examples of epigenetic phenomena that potentially impact speciation (i.e. by influencing the dynamics of sex chromosomes, fate of hybrids, zygotic drive and genomic conflicts) suggests that interactions between genetics and epigenetics may also drive divergence in other eukaryotic lineages. PMID:21505762

  11. Assessing phagotrophy in the mixotrophic ciliate Paramecium bursaria using GFP-expressing yeast cells.

    PubMed

    Miura, Takashi; Moriya, Hisao; Iwai, Sosuke

    2017-07-03

    We used cells of the yeast Saccharomyces cerevisiae expressing green fluorescent protein (GFP) as fluorescently labelled prey to assess the phagocytic activities of the mixotrophic ciliate Paramecium bursaria, which harbours symbiotic Chlorella-like algae. Because of different fluorescence spectra of GFP and algal chlorophyll, ingested GFP-expressing yeast cells can be distinguished from endosymbiotic algal cells and directly counted in individual P. bursaria cells using fluorescence microscopy. By using GFP-expressing yeast cells, we found that P. bursaria altered ingestion activities under different physiological conditions, such as different growth phases or the presence/absence of endosymbionts. Use of GFP-expressing yeast cells allowed us to estimate the digestion rates of live prey of the ciliate. In contrast to the ingestion activities, the digestion rate within food vacuoles was not affected by the presence of endosymbionts, consistent with previous findings that food and perialgal vacuoles are spatially and functionally separated in P. bursaria. Thus, GFP-expressing yeast may provide a valuable tool to assess both ingestion and digestion activities of ciliates that feed on eukaryotic organisms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Deformation of a micro-torque swimmer

    PubMed Central

    Ishikawa, Takuji; Tanaka, Tomoyuki; Imai, Yohsuke; Omori, Toshihiro; Matsunaga, Daiki

    2016-01-01

    The membrane tension of some kinds of ciliates has been suggested to regulate upward and downward swimming velocities under gravity. Despite its biological importance, deformation and membrane tension of a ciliate have not been clarified fully. In this study, we numerically investigated the deformation of a ciliate swimming freely in a fluid otherwise at rest. The cell body was modelled as a capsule with a hyperelastic membrane enclosing a Newtonian fluid. Thrust forces due to the ciliary beat were modelled as torques distributed above the cell body. The effects of membrane elasticity, the aspect ratio of the cell's reference shape, and the density difference between the cell and the surrounding fluid were investigated. The results showed that the cell deformed like a heart shape, when the capillary number was sufficiently large. Under the influence of gravity, the membrane tension at the anterior end decreased in the upward swimming while it increased in the downward swimming. Moreover, gravity-induced deformation caused the cells to move gravitationally downwards or upwards, which resulted in a positive or negative geotaxis-like behaviour with a physical origin. These results are important in understanding the physiology of a ciliate's biological responses to mechanical stimuli. PMID:26997893

  13. Horticultural technique for rearing and redistribution of the sessile biological control agent, Rhizaspidiotus donacis on its host plant, Arundo donax

    USDA-ARS?s Scientific Manuscript database

    Arundo donax, giant reed, is an invasive weed in the riparian habitats of the Rio Grande Basin. A biological control program using specialist insects from the native range in Mediterranean Europe, including the arundo scale, Rhizaspidiotus donacis, has been implemented. The arundo scale is a sessile...

  14. Fluid flow inside and outside an evaporating sessile drop

    NASA Astrophysics Data System (ADS)

    Bouchenna, C.; Aitsaada, M.; Chikh, S.; Tadrist, L.

    2017-11-01

    The sessile drop evaporation is a phenomena which is extensively studied in the literature, but the governing effects are far from being well understood especially those involving movements taking place in both liquid and gas phases. The present work numerically studies the flow within and around an evaporating sessile drop. The flow is induced by the strong mass loss at contact line, the thermo-capillary effect and the buoyancy effect in the surrounding air. The results showed that buoyancy-induced flow in gas phase weakly influences thermo-capillarity-induced flow in the liquid phase. Buoyancy effect can strongly modify the temperature distribution at liquid-gas interface and thus the overall evaporation rate of the drop when the substrate is heated.

  15. Predator identity more than predator richness structures aquatic microbial assemblages in Sarracenia purpurea leaves.

    PubMed

    Canter, Erin J; Cuellar-Gempeler, Catalina; Pastore, Abigail I; Miller, Thomas E; Mason, Olivia U

    2018-03-01

    The importance of predators in influencing community structure is a well-studied area of ecology. However, few studies test ecological hypotheses of predation in multi-predator microbial communities. The phytotelmic community found within the water-filled leaves of the pitcher plant, Sarracenia purpurea, exhibits a simple trophic structure that includes multiple protozoan predators and microbial prey. Using this system, we sought to determine whether different predators target distinct microorganisms, how interactions among protozoans affect resource (microorganism) use, and how predator diversity affects prey community diversity. In particular, we endeavored to determine if protozoa followed known ecological patterns such as keystone predation or generalist predation. For these experiments, replicate inquiline microbial communities were maintained for seven days with five protozoan species. Microbial community structure was determined by 16S rRNA gene amplicon sequencing (iTag) and analysis. Compared to the control (no protozoa), two ciliates followed patterns of keystone predation by increasing microbial evenness. In pairwise competition treatments with a generalist flagellate, prey communities resembled the microbial communities of the respective keystone predator in monoculture. The relative abundance of the most common bacterial Operational Taxonomic Unit (OTU) in our system decreased compared to the control in the presence of these ciliates. This OTU was 98% similar to a known chitin degrader and nitrate reducer, important functions for the microbial community and the plant host. Collectively, the data demonstrated that predator identity had a greater effect on prey diversity and composition than overall predator diversity. © 2018 by the Ecological Society of America.

  16. Multigene-based analyses on evolutionary phylogeny of two controversial ciliate orders: Pleuronematida and Loxocephalida (Protista, Ciliophora, Oligohymenophorea).

    PubMed

    Gao, Feng; Katz, Laura A; Song, Weibo

    2013-07-01

    Relationships among members of the ciliate subclass Scuticociliatia (Ciliophora, Oligohymenophorea) are largely unresolved. Phylogenetic studies of its orders Pleuronematida and Loxocephalida were initially based on small subunit ribosomal RNA gene (SSU-rDNA) analyses of a limited number of taxa. Here we characterized 37 sequences (SSU-rDNA, ITS-5.8S and LSU-rDNA) from 21 taxonomically controversial members of these orders. Phylogenetic trees constructed to assess the inter- and intra-generic relationships of pleuronematids and loxocephalids reveal the following: (1) the order Loxocephalida and its two families Loxocephalidae and Cinetochilidae are not monophyletic when more taxa are added; (2) the core pleuronematids are divided into two fully supported clades, however, the order Pleuronematida is not monophyletic because Cyclidium glaucoma is closer to Thigmotrichida; (3) the family Pleuronematidae and the genus Schizocalyptra are monophyletic, though rDNA sequences of Pleuronema species are highly variable; (4) Pseudoplatynematum and Sathrophilus are closely related to the subclass Astomatia, while Cinetochilum forms a monophyletic group with the subclass Apostomatia; and (5) Hippocomos falls in the order Pleuronematida and is closely related to Eurystomatellidae and Cyclidium plouneouri. Further, in an effort to provide a better resolution of evolutionary relationships, the secondary structures of ITS2 transcripts and the variable region 4 (V4) of the small subunit ribosomal RNA (SSU-rRNA) are predicted, revealing that ITS2 structures are conserved at the order level while V4 region structures are more variable than ITS2 structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Scanning electron microscopy observations of the hedgehog stomach worm, Physaloptera clausa (Spirurida: Physalopteridae)

    PubMed Central

    2013-01-01

    Background Physaloptera clausa (Spirurida: Physalopteridae) nematodes parasitize the stomach of the European hedgehog (Erinaceus europaeus) and cause weight loss, anorexia and gastric lesions. The present study provides the first morphological description of adult P. clausa from the stomachs of infected hedgehogs, using scanning electron microscopy (SEM). Methods From June to October 2011, 10 P. clausa from European hedgehogs were fixed, dried, coated and subjected to SEM examination. Results Males and females (22–30 mm and 28–47 mm, respectively) were stout, with the cuticle reflecting over the lips to form a large cephalic collarette and showing fine transverse striations in both sexes. The mouth was characterized by two large, simple triangular lateral pseudolabia, each armed with external and internal teeth. Inside the buccal cavity, a circle of internal small teeth can be observed. Around the mouth, four sub-median cephalic papillae and two large amphids were also observed. The anterior end of both male and female bore an excretory pore on the ventral side and a pair of lateral ciliated cervical papillae. In the female worm, the vulva was located in the middle and the eggs were characterized by smooth surfaces. The posterior end of the female worm was stumpy with two large phasmids in proximity to its extremity. The posterior end of the male had large lateral alae, joined together anteriorly across the ventral surface, with subequal and dissimilar spicules, as well as four pairs of stalked pre-cloacal papillae, three pairs of post-cloacal papillae, and two phasmids. Three sessile papillae occured anteriorly and four posteriorly to the cloaca. Conclusions The present SEM study provides the first in-depth morphological characterization of adult P. clausa, and highlights similarities and differences with P. bispiculata P. herthameyerae, Heliconema longissimum and Turgida turgida. PMID:23566611

  18. Scanning electron microscopy observations of the hedgehog stomach worm, Physaloptera clausa (Spirurida: Physalopteridae).

    PubMed

    Gorgani, Tahmine; Naem, Soraya; Farshid, Amir Abbass; Otranto, Domenico

    2013-04-08

    Physaloptera clausa (Spirurida: Physalopteridae) nematodes parasitize the stomach of the European hedgehog (Erinaceus europaeus) and cause weight loss, anorexia and gastric lesions. The present study provides the first morphological description of adult P. clausa from the stomachs of infected hedgehogs, using scanning electron microscopy (SEM). From June to October 2011, 10 P. clausa from European hedgehogs were fixed, dried, coated and subjected to SEM examination. Males and females (22-30 mm and 28-47 mm, respectively) were stout, with the cuticle reflecting over the lips to form a large cephalic collarette and showing fine transverse striations in both sexes. The mouth was characterized by two large, simple triangular lateral pseudolabia, each armed with external and internal teeth. Inside the buccal cavity, a circle of internal small teeth can be observed. Around the mouth, four sub-median cephalic papillae and two large amphids were also observed. The anterior end of both male and female bore an excretory pore on the ventral side and a pair of lateral ciliated cervical papillae. In the female worm, the vulva was located in the middle and the eggs were characterized by smooth surfaces. The posterior end of the female worm was stumpy with two large phasmids in proximity to its extremity. The posterior end of the male had large lateral alae, joined together anteriorly across the ventral surface, with subequal and dissimilar spicules, as well as four pairs of stalked pre-cloacal papillae, three pairs of post-cloacal papillae, and two phasmids. Three sessile papillae occured anteriorly and four posteriorly to the cloaca. The present SEM study provides the first in-depth morphological characterization of adult P. clausa, and highlights similarities and differences with P. bispiculata P. herthameyerae, Heliconema longissimum and Turgida turgida.

  19. Molecular diversity and distribution pattern of ciliates in sediments from deep-sea hydrothermal vents in the Okinawa Trough and adjacent sea areas

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Xu, Kuidong

    2016-10-01

    In comparison with the macrobenthos and prokaryotes, patterns of diversity and distribution of microbial eukaryotes in deep-sea hydrothermal vents are poorly known. The widely used high-throughput sequencing of 18S rDNA has revealed a high diversity of microeukaryotes yielded from both living organisms and buried DNA in marine sediments. More recently, cDNA surveys have been utilized to uncover the diversity of active organisms. However, both methods have never been used to evaluate the diversity of ciliates in hydrothermal vents. By using high-throughput DNA and cDNA sequencing of 18S rDNA, we evaluated the molecular diversity of ciliates, a representative group of microbial eukaryotes, from the sediments of deep-sea hydrothermal vents in the Okinawa Trough and compared it with that of an adjacent deep-sea area about 15 km away and that of an offshore area of the Yellow Sea about 500 km away. The results of DNA sequencing showed that Spirotrichea and Oligohymenophorea were the most diverse and abundant groups in all the three habitats. The proportion of sequences of Oligohymenophorea was the highest in the hydrothermal vents whereas Spirotrichea was the most diverse group at all three habitats. Plagiopyleans were found only in the hydrothermal vents but with low diversity and abundance. By contrast, the cDNA sequencing showed that Plagiopylea was the most diverse and most abundant group in the hydrothermal vents, followed by Spirotrichea in terms of diversity and Oligohymenophorea in terms of relative abundance. A novel group of ciliates, distinctly separate from the 12 known classes, was detected in the hydrothermal vents, indicating undescribed, possibly highly divergent ciliates may inhabit this environment. Statistical analyses showed that: (i) the three habitats differed significantly from one another in terms of diversity of both the rare and the total ciliate taxa, and; (ii) the adjacent deep sea was more similar to the offshore area than to the hydrothermal vents. In terms of the diversity of abundant taxa, however, there was no significant difference between the hydrothermal vents and the adjacent deep sea, both of which differed significantly from the offshore area. As abundant ciliate taxa can be found in several sampling sites, they are likely adapted to large environmental variations, while rare taxa are found in specific habitat and thus are potentially more sensitive to varying environmental conditions.

  20. Microzooplankton biomass distribution in Terra Nova Bay, Ross Sea (Antarctica)

    NASA Astrophysics Data System (ADS)

    Fonda Umani, S.; Monti, M.; Nuccio, C.

    1998-11-01

    This work describes the spatial and vertical distribution of microzooplankton (20-200 μm) abundance and biomass of the upper layers (0-100 m), collected during the first oceanographic Italian expedition in Antarctica (1987/1988) in Terra Nova Bay (Ross Sea). Biomass was estimated by using biovolume calculations and literature conversion factors. Sampling was carried out at three depths, surface, 50 and 100 m. The dominant taxa were made up of tintinnid ciliates, ciliates other than tintinnids, larvae of micrometazoa and heterotrophic dinoflagellates. The abundance of the total microplankton fraction had its absolute maximum in the center of Terra Nova Bay at the surface with 31 042 ind. dm -3. The areal and vertical distribution of heterotrophic microplankton biomass differs from that of abundance. On the basis of hydrological conditions, phytoplankton composition and biomass and microzooplankton biomass and structure it is possible to identify three groups of stations: 1—northern coastal stations (intermediate chlorophyll maxima, microphytoplankton prevalence, low microzooplankton biomass); 2—central stations (high surface chlorophyll, nanoplankton prevalence, high abundance of microzooplankton); 3—northern stations (deeper pycnocline, nanoplankton prevalence, high microzooplankton biomass at intermediate depths).

  1. Ultrastructure of red-sore lesions on largemouth bass (micropterus salmoides): association of the ciliate epistylis sp. and the bacterium aeromonas hydrophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, T.C.; Raker, M.L.; Esch, G.W.

    1978-01-01

    Epizootic outbreaks of red-sore disease in several reservoirs in the southeastern United States have been reported to cause heavy mortality among several species of fish having sport and commercial value. The etiologic agent is said to be the peritrich ciliate Epistylis sp.; secondary infection by the gram-negative bacterium Aeromonas hydrophila produces hemorrhagic septicemia which results in death. However, in recent studies on the largemouth bass Micropterus salmoides, Epistylis sp. could be isolated from only 35% of 114 lesions from 114 fish, while A. hydrophila was found in 96% of the same lesions. Transmission and scanning electron microscopy of lesions associatedmore » with red-sore disease indicate that neither the stalk nor the attachment structure of Epistylis sp. have organelles capable of producing lytic enzymes. Since other investigators have shown that A. hydrophila produces strong lytic toxins, and in absence of evidence to the contrary, it is concluded that Epistylis sp. is a benign ectocommensal and that A. hydrophila is the primary etiologic agent of red-sore disease.« less

  2. Hidden genetic variation in the germline genome of Tetrahymena thermophila.

    PubMed

    Dimond, K L; Zufall, R A

    2016-06-01

    Genome architecture varies greatly among eukaryotes. This diversity may profoundly affect the origin and maintenance of genetic variation within a population. Ciliates are microbial eukaryotes with unusual genome features, such as the separation of germline and somatic genomes within a single cell and amitotic division. These features have previously been proposed to increase the rate of molecular evolution in these species. Here, we assessed the fitness effects of genetic variation in the two genomes of natural isolates of the ciliate Tetrahymena thermophila. We find more extensive genetic variation in fitness in the transcriptionally silent germline genome than in the expressed somatic genome. Surprisingly, this variation is not primarily deleterious, but has both beneficial and deleterious effects. We conclude that Tetrahymena genome architecture allows for the maintenance of genetic variation that would otherwise be eliminated by selection. We consider the effect of selection on the two genomes and the impacts of reproductive strategies and the mechanism of sex determination on the structure of this variation. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  3. Effects of substrata and environmental conditions on ecological succession on historic shipwrecks

    NASA Astrophysics Data System (ADS)

    González-Duarte, Manuel M.; Fernández-Montblanc, Tomás; Bethencourt, Manuel; Izquierdo, Alfredo

    2018-01-01

    An understanding of the interactions between biological, chemical and physical dynamics is especially important for the adequate conservation of the Underwater Cultural Heritage. However, while physical and chemical processes are relatively well-investigated, the biological communities associated with these habitats are poorly studied. We compared the sessile community developed on panels of different materials placed on two historical shipwrecks, the Fougueux and the Bucentaure, from the Battle of Trafalgar (October 1805). Six materials used at the construction of vessels at the 18th and 19th centuries were selected: copper, brass, cast iron, carbon steel, pine and oak. The sessile community developed on the panels was studied two and 15 months after their immersion at the water to determine the effects of materials and environmental conditions (sediments, waves, hydrodynamic conditions, temperature and salinity) on ecological succession and the possible implications at the conservation of historical shipwrecks. On the Fougueux, the environmental conditions more strongly influenced the biological succession than the material type, with pioneer colonisers dominating the communities in both sampling periods. On the Bucentaure, exposed to more stable environmental conditions, the sessile community showed differences between sampling periods and among materials at the end of the experiment. Under these more stable environmental conditions, the material type showed a higher influence on the sessile community. Species that produce calcareous concretions developed on metallic panels, but were absent on wood panels, where the shipworm Teredo navalis was more abundant. The relationship between environmental conditions, sessile organisms and material type can influence the conservation status of the archaeological sites.

  4. [Clinical and endoscopic features of a selected population with serrated colorectal adenomas in a private clinic in Lima - Peru].

    PubMed

    Castillo, Ofelia; Barreda, Carlos; Recavarren, Sixto; Barriga, José A; Salazar M, Fernando; Yriberry, Simón; Barriga, Eduardo; Salazar C, Fernando

    2013-01-01

    To describe the clinical and endoscopic caracteristics of a population that has only serrated polyps of colon (mainly sessile serrated adenomas) in a private clinic in Lima, Perú, from 2009-2011. Retrospective study conducted at the endoscopy center of Clinic Ricardo Palma, Lima, Peru. Olympus colonoscope was used with high definition, including NBI (narrow band imaging) and electronic magnification. Patients had pathologic diagnosis of “polyps and / or colorectal serrated adenomas” and excluded those with synchronous tubular or villous adenomas. Images were evaluated by two endoscopists and then by a third gastroenterologist. We found 201 serrated polyps in 108 patients. Women were 60.2% and overweight predominated. Eighty (74.1%) had only one serrated adenoma and 23 (21.3%) with at least one synchronous hyperplastic polyp. The average size of sessile serrated adenomas was 5.12 mm (± 3.87 DS) and the flat type was 91 (58.7%). There were significant differences in the diameter of sessile serrated adenomas between the distal and proximal colon (4.47 mm ± 2.23 vs. 6.90 mm ± 6.25; p<0.000). The common features of sessile serrated adenomas were: White (31/36, 86.1%), smooth (28/36, 77.8%) and regular margins (26/36, 72.2%). There was a relationship between vascular pattern according NBI and serrated polyp histology (p=0.024). The endoscopic features of sessile serrated adenomas can evade detection to white light. NBI is a useful tool to define some features of these lesions.

  5. The Candida albicans Biofilm Matrix: Composition, Structure and Function.

    PubMed

    Pierce, Christopher G; Vila, Taissa; Romo, Jesus A; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L

    2017-03-01

    A majority of infections caused by Candida albicans -the most frequent fungal pathogen-are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections.

  6. The Candida albicans Biofilm Matrix: Composition, Structure and Function

    PubMed Central

    Pierce, Christopher G.; Vila, Taissa; Romo, Jesus A.; Montelongo-Jauregui, Daniel; Wall, Gina; Ramasubramanian, Anand; Lopez-Ribot, Jose L.

    2017-01-01

    A majority of infections caused by Candida albicans—the most frequent fungal pathogen—are associated with biofilm formation. A salient feature of C. albicans biofilms is the presence of the biofilm matrix. This matrix is composed of exopolymeric materials secreted by sessile cells within the biofilm, in which all classes of macromolecules are represented, and provides protection against environmental challenges. In this review, we summarize the knowledge accumulated during the last two decades on the composition, structure, and function of the C. albicans biofilm matrix. Knowledge of the matrix components, its structure, and function will help pave the way to novel strategies to combat C. albicans biofilm infections. PMID:28516088

  7. Sessile multidroplets and salt droplets under high tangential electric fields

    PubMed Central

    Xie, Guoxin; He, Feng; Liu, Xiang; Si, Lina; Guo, Dan

    2016-01-01

    Understanding the interaction behaviors between sessile droplets under imposed high voltages is very important in many practical situations, e.g., microfluidic devices and the degradation/aging problems of outdoor high-power applications. In the present work, the droplet coalescence, the discharge activity and the surface thermal distribution response between sessile multidroplets and chloride salt droplets under high tangential electric fields have been investigated with infrared thermography, high-speed photography and pulse current measurement. Obvious polarity effects on the discharge path direction and the temperature change in the droplets in the initial stage after discharge initiation were observed due to the anodic dissolution of metal ions from the electrode. In the case of sessile aligned multidroplets, the discharge path direction could affect the location of initial droplet coalescence. The smaller unmerged droplet would be drained into the merged large droplet as a result from the pressure difference inside the droplets rather than the asymmetric temperature change due to discharge. The discharge inception voltages and the temperature variations for two salt droplets closely correlated with the ionization degree of the salt, as well as the interfacial electrochemical reactions near the electrodes. Mechanisms of these observed phenomena were discussed. PMID:27121926

  8. Effects of varying oxygen partial pressure on molten silicon-ceramic substrate interactions

    NASA Technical Reports Server (NTRS)

    Ownby, D. P.; Barsoum, M. W.

    1980-01-01

    The silicon sessile drop contact angle was measured on hot pressed silicon nitride, silicon nitride coated on hot pressed silicon nitride, silicon carbon coated on graphite, and on Sialon to determine the degree to which silicon wets these substances. The post-sessile drop experiment samples were sectioned and photomicrographs were taken of the silicon-substrate interface to observe the degree of surface dissolution and degradation. Of these materials, silicon did not form a true sessile drop on the SiC on graphite due to infiltration of the silicon through the SiC coating, nor on the Sialon due to the formation of a more-or-less rigid coating on the liquid silicon. The most wetting was obtained on the coated Si3N4 with a value of 42 deg. The oxygen concentrations in a silicon ribbon furnace and in a sessile drop furnace were measured using the protable thoria-yttria solid solution electrolyte oxygen sensor. Oxygen partial pressures of 10 to the minus 7 power atm and 10 to the minus 8 power atm were obtained at the two facilities. These measurements are believed to represent nonequilibrium conditions.

  9. Visualization of ex vivo human ciliated epithelium and induced flow using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ling, Yuye; Gamm, Uta A.; Yao, Xinwen; Arteaga-Solis, Emilio; Emala, Charles W.; Choma, Michael A.; Hendon, Christine P.

    2017-04-01

    The ciliated epithelium is important to the human respiratory system because it clears mucus that contains harmful microorganisms and particulate matter. We report the ex vivo visualization of human trachea/bronchi ciliated epithelium and induced flow characterized by using spectral-domain optical coherence tomography (SD-OCT). A total number of 17 samples from 7 patients were imaged. Samples were obtained from Columbia University Department of Anesthesiology's tissue bank. After excision, the samples were placed in Gibco Medium 199 solution with oxygen at 4°C until imaging. The samples were maintained at 36.7°C throughout the experiment. The imaging protocol included obtaining 3D volumes and 200 consecutive B-scans parallel to the head-to-feet direction (superior-inferior axis) of the airway, using Thorlabs Telesto system at 1300 nm at 28 kHz A-line rate and a custom built high resolution SDOCT system at 800nm at 32 kHz A-line rate. After imaging, samples were processed with H and E histology. Speckle variance of the time resolved datasets demonstrate significant contrast at the ciliated epithelium sites. Flow images were also obtained after injecting 10μm polyester beads into the solution, which shows beads traveling trajectories near the ciliated epithelium areas. In contrary, flow images taken in the orthogonal plane show no beads traveling trajectories. This observation is in line with our expectation that cilia drive flow predominantly along the superior-inferior axis. We also observed the protective function of the mucus, shielding the epithelium from the invasion of foreign objects such as microspheres. Further studies will be focused on the cilia's physiological response to environmental changes such as drug administration and physical injury.

  10. The Conjugation-Specific Die5 Protein Is Required for Development of the Somatic Nucleus in both Paramecium and Tetrahymena▿

    PubMed Central

    Matsuda, Atsushi; Shieh, Annie Wan-Yi; Chalker, Douglas L.; Forney, James D.

    2010-01-01

    Development in ciliated protozoa involves extensive genome reorganization within differentiating macronuclei, which shapes the somatic genome of the next vegetative generation. Major events of macronuclear differentiation include excision of internal eliminated sequences (IESs), chromosome fragmentation, and genome amplification. Proteins required for these events include those with homology throughout eukaryotes as well as proteins apparently unique to ciliates. In this study, we identified the ciliate-specific Defective in IES Excision 5 (DIE5) genes of Paramecium tetraurelia (PtDIE5) and Tetrahymena thermophila (TtDIE5) as orthologs that encode nuclear proteins expressed exclusively during development. Abrogation of PtDie5 protein (PtDie5p) function by RNA interference (RNAi)-mediated silencing or TtDie5p by gene disruption resulted in the failure of developing macronuclei to differentiate into new somatic nuclei. Tetrahymena ΔDIE5 cells arrested late in development and failed to complete genome amplification, whereas RNAi-treated Paramecium cells highly amplified new macronuclear DNA before the failure in differentiation, findings that highlight clear differences in the biology of these distantly related species. Nevertheless, IES excision and chromosome fragmentation failed to occur in either ciliate, which strongly supports that Die5p is a critical player in these processes. In Tetrahymena, loss of zygotic expression during development was sufficient to block nuclear differentiation. This observation, together with the finding that knockdown of Die5p in Paramecium still allows genome amplification, indicates that this protein acts late in macronuclear development. Even though DNA rearrangements in these two ciliates look to be quite distinct, analysis of DIE5 establishes the action of a conserved mechanism within the genome reorganization pathway. PMID:20495055

  11. The conjugation-specific Die5 protein is required for development of the somatic nucleus in both Paramecium and Tetrahymena.

    PubMed

    Matsuda, Atsushi; Shieh, Annie Wan-Yi; Chalker, Douglas L; Forney, James D

    2010-07-01

    Development in ciliated protozoa involves extensive genome reorganization within differentiating macronuclei, which shapes the somatic genome of the next vegetative generation. Major events of macronuclear differentiation include excision of internal eliminated sequences (IESs), chromosome fragmentation, and genome amplification. Proteins required for these events include those with homology throughout eukaryotes as well as proteins apparently unique to ciliates. In this study, we identified the ciliate-specific Defective in IES Excision 5 (DIE5) genes of Paramecium tetraurelia (PtDIE5) and Tetrahymena thermophila (TtDIE5) as orthologs that encode nuclear proteins expressed exclusively during development. Abrogation of PtDie5 protein (PtDie5p) function by RNA interference (RNAi)-mediated silencing or TtDie5p by gene disruption resulted in the failure of developing macronuclei to differentiate into new somatic nuclei. Tetrahymena DeltaDIE5 cells arrested late in development and failed to complete genome amplification, whereas RNAi-treated Paramecium cells highly amplified new macronuclear DNA before the failure in differentiation, findings that highlight clear differences in the biology of these distantly related species. Nevertheless, IES excision and chromosome fragmentation failed to occur in either ciliate, which strongly supports that Die5p is a critical player in these processes. In Tetrahymena, loss of zygotic expression during development was sufficient to block nuclear differentiation. This observation, together with the finding that knockdown of Die5p in Paramecium still allows genome amplification, indicates that this protein acts late in macronuclear development. Even though DNA rearrangements in these two ciliates look to be quite distinct, analysis of DIE5 establishes the action of a conserved mechanism within the genome reorganization pathway.

  12. Ciliates learn to diagnose and correct classical error syndromes in mating strategies

    PubMed Central

    Clark, Kevin B.

    2013-01-01

    Preconjugal ciliates learn classical repetition error-correction codes to safeguard mating messages and replies from corruption by “rivals” and local ambient noise. Because individual cells behave as memory channels with Szilárd engine attributes, these coding schemes also might be used to limit, diagnose, and correct mating-signal errors due to noisy intracellular information processing. The present study, therefore, assessed whether heterotrich ciliates effect fault-tolerant signal planning and execution by modifying engine performance, and consequently entropy content of codes, during mock cell–cell communication. Socially meaningful serial vibrations emitted from an ambiguous artificial source initiated ciliate behavioral signaling performances known to advertise mating fitness with varying courtship strategies. Microbes, employing calcium-dependent Hebbian-like decision making, learned to diagnose then correct error syndromes by recursively matching Boltzmann entropies between signal planning and execution stages via “power” or “refrigeration” cycles. All eight serial contraction and reversal strategies incurred errors in entropy magnitude by the execution stage of processing. Absolute errors, however, subtended expected threshold values for single bit-flip errors in three-bit replies, indicating coding schemes protected information content throughout signal production. Ciliate preparedness for vibrations selectively and significantly affected the magnitude and valence of Szilárd engine performance during modal and non-modal strategy corrective cycles. But entropy fidelity for all replies mainly improved across learning trials as refinements in engine efficiency. Fidelity neared maximum levels for only modal signals coded in resilient three-bit repetition error-correction sequences. Together, these findings demonstrate microbes can elevate survival/reproductive success by learning to implement classical fault-tolerant information processing in social contexts. PMID:23966987

  13. Experimental Measurements of Spreading of Volatile Liquid Droplets

    NASA Technical Reports Server (NTRS)

    Zhang, Neng-Li; Chao, David F.

    2001-01-01

    Based on the laser shadowgraphic system used by the first author of the present paper, a simple optical system, which combined the laser shadowgraphy and the direct magnified-photography, has been developed to measure the contact angle, the spreading speed, and the evaporation rate. Additionally, the system can also visualize thermocapillary convection inside of a sessile drop simultaneously. The experimental results show that evaporation/condensation and thermocapillary convection in the sessile drop induced by the evaporation strongly affects the wetting and spreading of the drop. Condensation always promotes the wetting and spreading of the drop. Evaporation may increase or decrease the contact angle of the evaporating sessile drops, depending on the evaporation rate. The thermocapillary convection in the drop induced by the evaporation enhances the effects of evaporation to suppress the spreading.

  14. Anti-parasitic effects of Leptomycin B isolated from Streptomyces sp. CJK17 on marine fish ciliate Cryptocaryon irritans.

    PubMed

    Yin, Fei; Sun, Peng; Tang, Baojun; Gong, Hui; Ke, Qiaozhen; Li, Anxing

    2016-02-15

    The present study was conducted aiming to evaluate the in vitro and in vivo anti-parasitic efficacy of an isolated compound against the ciliate Cryptocaryon irritans. The compound was previously isolated from fermentation products of Streptomyces sp. CJK17 and designated as SFrD. Toxicity of the compound SFrD against the fish hosts (Larimichthys crocea) was also tested and its chemical structure was elucidated. The obtained results showed that the compound has potent anti-parasitic efficacy with the 10 min-, 1 h-, 2 h-, 3 h- and 4 h-LC50 (95% Confidence Intervals) of 6.8 (6.5-7.1), 3.9 (2.8-5.0), 3.3 (2.6-4.0), 2.7 (2.3-3.1) and 2.5 (2.2-2.8) mg L(-1) against theronts of C. irritans and the 6h-LC50 (95% CI) of 3.0 (2.8-3.2) mg L(-1) against the tomonts, respectively. Exposure of the compound SFrD remarkably reduced the mortality of fish infected with C. Irritans, from 100% in the control group to 61.7% and 38.3% in groups of 3.1 mg L(-1) and 6.3 mg L(-1), respectively. In the test of exposing fish to 40 mg L(-1) compound SFrD for 24h, no visible effects were observed affecting the normal behavior or any macroscopic changes. By spectrum analysis (EI-MS, (1)H NMR and (13)C NMR), the compound SFrD was identified as Leptomycin B. This study firstly demonstrated that Leptomycin B has potent anti-parasitic efficacy against ciliates in cultured marine fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Tropism and Infectivity of Influenza Virus, Including Highly Pathogenic Avian H5N1 Virus, in Ferret Tracheal Differentiated Primary Epithelial Cell Cultures

    PubMed Central

    Zeng, Hui; Goldsmith, Cynthia S.; Maines, Taronna R.; Belser, Jessica A.; Gustin, Kortney M.; Pekosz, Andrew; Zaki, Sherif R.; Katz, Jacqueline M.

    2013-01-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses. PMID:23255802

  16. CCAAT/Enhancer Binding Protein–α Regulates the Protease/Antiprotease Balance Required for Bronchiolar Epithelium Regeneration

    PubMed Central

    Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A.

    2012-01-01

    Many transcription factors that regulate lung morphogenesis during development are reactivated to mediate repairs of the injured adult lung. We hypothesized that CCAAT/enhancer binding protein–α (C/EBPα), a transcription factor critical for perinatal lung maturation, regulates genes required for the normal repair of the bronchiolar epithelium after injury. Transgenic CebpαΔ/Δ mice, in which Cebpa was conditionally deleted from Clara cells and Type II cells after birth, were used in this study. Airway injury was induced in mice by the intraperitoneal administration of naphthalene to ablate bronchiolar epithelial cells. Although the deletion of C/EBPα did not influence lung structure and function under unstressed conditions, C/EBPα was required for the normal repair of terminal bronchiolar epithelium after naphthalene injury. To identify cellular processes that are influenced by C/EBPα during repair, mRNA microarray was performed on terminal bronchiolar epithelial cells isolated by laser-capture microdissection. Normal repair of the terminal bronchiolar epithelium was highly associated with the mRNAs regulating antiprotease activities, and their induction required C/EBPα. The defective deposition of fibronectin in CebpαΔ/Δ mice was associated with increased protease activity and delayed differentiation of FoxJ1-expressing ciliated cells. The fibronectin and ciliated cells were restored by the intratracheal treatment of CebpαΔ/Δ mice with the serine protease inhibitor. In conclusion, C/EBPα regulates the expression of serine protease inhibitors that are required for the normal increase of fibronectin and the restoration of ciliated cells after injury. Treatment with serine protease inhibitor may aid in the recovery of injured bronchiolar epithelial cells, and prevent common chronic lung diseases. PMID:22652201

  17. Tropism and infectivity of influenza virus, including highly pathogenic avian H5N1 virus, in ferret tracheal differentiated primary epithelial cell cultures.

    PubMed

    Zeng, Hui; Goldsmith, Cynthia S; Maines, Taronna R; Belser, Jessica A; Gustin, Kortney M; Pekosz, Andrew; Zaki, Sherif R; Katz, Jacqueline M; Tumpey, Terrence M

    2013-03-01

    Tropism and adaptation of influenza viruses to new hosts is partly dependent on the distribution of the sialic acid (SA) receptors to which the viral hemagglutinin (HA) binds. Ferrets have been established as a valuable in vivo model of influenza virus pathogenesis and transmission because of similarities to humans in the distribution of HA receptors and in clinical signs of infection. In this study, we developed a ferret tracheal differentiated primary epithelial cell culture model that consisted of a layered epithelium structure with ciliated and nonciliated cells on its apical surface. We found that human-like (α2,6-linked) receptors predominated on ciliated cells, whereas avian-like (α2,3-linked) receptors, which were less abundant, were presented on nonciliated cells. When we compared the tropism and infectivity of three human (H1 and H3) and two avian (H1 and H5) influenza viruses, we observed that the human influenza viruses primarily infected ciliated cells and replicated efficiently, whereas a highly pathogenic avian H5N1 virus (A/Vietnam/1203/2004) replicated efficiently within nonciliated cells despite a low initial infection rate. Furthermore, compared to other influenza viruses tested, VN/1203 virus replicated more efficiently in cells isolated from the lower trachea and at a higher temperature (37°C) compared to a lower temperature (33°C). VN/1203 virus infection also induced higher levels of immune mediator genes and cell death, and virus was recovered from the basolateral side of the cell monolayer. This ferret tracheal differentiated primary epithelial cell culture system provides a valuable in vitro model for studying cellular tropism, infectivity, and the pathogenesis of influenza viruses.

  18. Characterisation of hard-substrate habitats in the German Bight (SE North Sea) from video observation

    NASA Astrophysics Data System (ADS)

    Michaelis, Rune; Mielck, Finn; Papenmeier, Svenja; Sander, Lasse; Hass, H. Christian

    2017-04-01

    Accumulations of cobble- to boulder-sized material provide important habitat functions for many plant and animal species in the marine environment. These include nursery for fish, anchor point for sessile marine species and feeding ground for many different organisms. Detailed knowledge of such reef habitats and their properties is thus crucial for the determination of marine protected areas and consequently also for the management of the North Sea. As stones and boulders usually cannot be recovered from the seafloor to be investigated in the lab most analyses have to rely on non-invasive methods like e.g. underwater video- and diver-observation data. Due to these limitations these habitats are not well understood with regard to their spatial distribution, temporal development and ecology. Furthermore, there is no standardized way to assess the structure and cover of biological communities on such hard-substrates, which discourages comparison of data between different regions. We here present a standardized workflow to analyse underwater videos of hard-substrate habitats recorded in different areas of the North Sea. The idea is to combine these detailed information with an area-wide habitat classification based on sidescan sonar data. For image-based evaluation, the videos are transformed into single frames, extracted every five seconds of video running time and imported into a self-developed image analysis script. This script allows the user to select and count different descriptors in numerical categories. These include amongst others the different size classes of stones, the areal coverage of sessile marine organisms, the surrounding sediment properties or the presence of grazers. These semi-quantitative data are subsequently statistically analysed to produce a set of standardized characteristics of the hard-substrate habitats and the controlling factors of their current state and development. Preliminary results show that boulders in sandy environments are predominantly covered by sessile invertebrate organisms (e.g. the soft coral Alcyonium digitatum and the sea-anemone Metridium senile), while cobbles are largely uncovered. In muddy areas, however, even cobbles show a higher amount of sessile coverage though at an earlier or reduced state of development. The proposed method allows to obtain detailed data on the distribution, kind and composition of marine sessile organisms populating hard-substrate habitats in the North Sea. Already at this stage, the practical assumption of many investigations that stones are all and always inhabited by the typical organisms, which is utilized in many investigations can hardly be supported. Our research further shows the need to develop methodologies to upscale these observations to be able to assess spatial patterns between and within larger reef complexes. The video analysis presents a valuable first step towards a full-scale characterization of hard-substrate habitats under difficult survey conditions.

  19. Food Web Structure at South Su, Solwara 1 and Solwara 8 Hydrothermal Vent Sites (Manus Basin)

    NASA Astrophysics Data System (ADS)

    Honig, D. L.; Hsing, P.; Jones, R.; Schultz, T.; Sobel, A.; Thaler, A.; van Dover, C. L.

    2008-12-01

    A robust understanding of food webs in chemoautotrophically based hydrothermal vent ecosystems requires quantifying the input of local bacterial chemoautoptrophic production vs. photosynthetically derived debris from surface waters. As an initial step towards this goal for vent communities in Papua New Guinea's Manus Basin, we use isotopic ratios of carbon, nitrogen and sulfur to describe trophic relations among 17 invertebrate genera collected in July 2008 at the Solwara 1, Solwara 8 and South Su hydrothermal vent beds. Prior stable isotope work by Erickson, Macko and Van Dover (unpublished) at Manus Basin vent sites suggests that we will see relatively depleted ä13C and ä15N values for the primary consumers Ifremeria, Alviniconcha and Olgasolaris compared to secondary consumers like the mobile, scavenging genera Munidopsis, Austinograea, Alvinocaris and Chorocaris, sessile suspension feeders of the genera Eochinolasmus and Vulcanolepas, and the predatory sponge Abyssocladia. We further hypothesize that mobile fauna will exhibit greater within-genus variance of ä13C, ä15N and ä34S values than sessile genera due to mobile organisms' ability to forage for photosynthetically derived detritus.

  20. Crossover from the coffee-ring effect to the uniform deposit caused by irreversible cluster-cluster aggregation

    NASA Astrophysics Data System (ADS)

    Crivoi, A.; Zhong, X.; Duan, Fei

    2015-09-01

    The coffee-ring effect for particle deposition near the three-phase line after drying a pinned sessile colloidal droplet has been suppressed or attenuated in many recent studies. However, there have been few attempts to simulate the mitigation of the effect in the presence of strong particle-particle attraction forces. We develop a three-dimensional stochastic model to investigate the drying process of a pinned colloidal sessile droplet by considering the sticking between particles, which was observed in the experiments. The Monte Carlo simulation results show that by solely promoting the particle-particle attraction in the model, the final deposit shape is transformed from the coffee ring to the uniform film deposition. This phenomenon is modeled using the colloidal aggregation technique and explained by the "Tetris principle," meaning that unevenly shaped or branched particle clusters rapidly build up a sparse structure spanning throughout the entire domain in the drying process. The influence of the controlled parameters is analyzed as well. The simulation is reflected by the drying patterns of the nanofluid droplets through the surfactant control in the experiments.

  1. Ciliates and the rare biosphere-community ecology and population dynamics.

    PubMed

    Weisse, Thomas

    2014-01-01

    Application of deep sequencing technologies to environmental samples and some detailed morphological studies suggest that there is a vast, yet unexplored rare ciliate biosphere, tentatively defined in terms of operational taxonomic units. However, very few studies complemented molecular and phylogenetic data with morphological and ecological descriptions of the species inventory. This is mainly because the sampling effort increases strongly with decreasing species abundance. In spite of this limited knowledge, it is clear that species that are rare under certain environmental conditions (temporal rare biosphere) may become abundant when the physical, chemical, and biological variables of their habitat change. Furthermore, some species may always be present in low numbers if their dispersal rates are exceedingly high (accidental rare biosphere). An intriguing question is whether there are some species that are always rare, i.e., in every suitable environment. This permanent rare biosphere is conceptually different from the temporal rare biosphere. This review characterizes typical aquatic habitats of the rare ciliate biosphere, portrays different scenarios under which some or even many species may be permanently rare (background fauna), and identifies some fundamental questions that need to be addressed to achieve a better understanding of the population dynamics of the rare ciliate biosphere. © 2014 The Authors The Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  2. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.

    PubMed

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-28

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.

  3. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ravipati, Srikanth; Aymard, Benjamin; Kalliadasis, Serafim; Galindo, Amparo

    2018-04-01

    We present a new methodology to estimate the contact angles of sessile drops from molecular simulations by using the Gaussian convolution method of Willard and Chandler [J. Phys. Chem. B 114, 1954-1958 (2010)] to calculate the coarse-grained density from atomic coordinates. The iso-density contour with average coarse-grained density value equal to half of the bulk liquid density is identified as the average liquid-vapor (LV) interface. Angles between the unit normal vectors to the average LV interface and unit normal vector to the solid surface, as a function of the distance normal to the solid surface, are calculated. The cosines of these angles are extrapolated to the three-phase contact line to estimate the sessile drop contact angle. The proposed methodology, which is relatively easy to implement, is systematically applied to three systems: (i) a Lennard-Jones (LJ) drop on a featureless LJ 9-3 surface; (ii) an SPC/E water drop on a featureless LJ 9-3 surface; and (iii) an SPC/E water drop on a graphite surface. The sessile drop contact angles estimated with our methodology for the first two systems are shown to be in good agreement with the angles predicted from Young's equation. The interfacial tensions required for this equation are computed by employing the test-area perturbation method for the corresponding planar interfaces. Our findings suggest that the widely adopted spherical-cap approximation should be used with caution, as it could take a long time for a sessile drop to relax to a spherical shape, of the order of 100 ns, especially for water molecules initiated in a lattice configuration on a solid surface. But even though a water drop can take a long time to reach the spherical shape, we find that the contact angle is well established much faster and the drop evolves toward the spherical shape following a constant-contact-angle relaxation dynamics. Making use of this observation, our methodology allows a good estimation of the sessile drop contact angle values even for moderate system sizes (with, e.g., 4000 molecules), without the need for long simulation times to reach the spherical shape.

  4. Effect of growth temperature, surface type and incubation time on the resistance of Staphylococcus aureus biofilms to disinfectants.

    PubMed

    Abdallah, Marwan; Chataigne, Gabrielle; Ferreira-Theret, Pauline; Benoliel, Corinne; Drider, Djamel; Dhulster, Pascal; Chihib, Nour-Eddine

    2014-03-01

    The goal of this study was to investigate the effect of the environmental conditions such as the temperature change, incubation time and surface type on the resistance of Staphylococcus aureus biofilms to disinfectants. The antibiofilm assays were performed against biofilms grown at 20 °C, 30 °C and 37 °C, on the stainless steel and polycarbonate, during 24 and 48 h. The involvement of the biofilm matrix and the bacterial membrane fluidity in the resistance of sessile cells were investigated. Our results show that the efficiency of disinfectants was dependent on the growth temperature, the surface type and the disinfectant product. The increase of growth temperature from 20 °C to 37 °C, with an incubation time of 24 h, increased the resistance of biofilms to cationic antimicrobials. This change of growth temperature did not affect the major content of the biofilm matrix, but it decreased the membrane fluidity of sessile cells through the increase of the anteiso-C19 relative amount. The increase of the biofilm resistance to disinfectants, with the rise of the incubation time, was dependent on both growth temperature and disinfectant product. The increase of the biofilm age also promoted increases in the matrix production and the membrane fluidity of sessile cells. The resistance of S. aureus biofilm seems to depend on the environment of the biofilm formation and involves both extracellular matrix and membrane fluidity of sessile cells. Our study represents the first report describing the impact of environmental conditions on the matrix production, sessile cells membrane fluidity and resistance of S. aureus biofilms to disinfectants.

  5. Combined treatments of enterocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus planktonic and sessile cells.

    PubMed

    Caballero Gómez, Natacha; Abriouel, Hikmate; Grande, M José; Pérez Pulido, Rubén; Gálvez, Antonio

    2013-05-15

    Control of staphylococci during cleaning and disinfection is important to the food industry. Broad-spectrum bacteriocins with proved anti-staphylococcal activity, such as enterocin AS-48, could open new possibilities for disinfection in combination with biocides. In the present study, enterocin AS-48 was tested singly or in combination with biocides against a cocktail of six Staphylococcus aureus strains (including three methicillin-resistant strains) in planktonic state as well as in biofilms formed on polystyrene microtiter plates. Cells were challenged with enterocin, biocides or enterocin/biocide combinations. Inactivation of planktonic cells increased significantly (p<0.05) when enterocin AS-48 (25mg/l) was tested in combination with benzalkonium chloride (BC), cetrimide (CT) and hexadecylpyridinium chloride (HDP), and non-significantly in combination with didecyldimethylammonium bromide (AB), triclosan (TC), hexachlorophene (CF), polyhexamethylen guanidinium chloride (PHMG), chlorhexidine (CH) or P3-oxonia (OX). In the sessile state (24h biofilms), staphylococci required higher biocide concentrations in most cases, except for OX. Inactivation of sessile staphylococci increased remarkably when biocides were applied in combination with enterocin AS-48, especially when the bacteriocin was added at 50mg/l. During storage, the concentrations of sessile as well as planktonic cells in the treated samples decreased remarkably for BC, TC and PHMG, but OX failed to inhibit proliferation of the treated biofilms as well as growth of planktonic cells. The observed inhibitory effects during storage were potentiated when the biocides were combined with 50 mg/l enterocin AS-48. Results from this study suggest that selected combinations of enterocin AS-48 and biocides offer potential use against planktonic and sessile, methicillin-sensitive and methicillin-resistant S. aureus. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Resolving an ostensible inconsistency in calculating the evaporation rate of sessile drops.

    PubMed

    Chini, S F; Amirfazli, A

    2017-05-01

    This paper resolves an ostensible inconsistency in the literature in calculating the evaporation rate for sessile drops in a quiescent environment. The earlier models in the literature have shown that adapting the evaporation flux model for a suspended spherical drop to calculate the evaporation rate of a sessile drop needs a correction factor; the correction factor was shown to be a function of the drop contact angle, i.e. f(θ). However, there seemed to be a problem as none of the earlier models explicitly or implicitly mentioned the evaporation flux variations along the surface of a sessile drop. The more recent evaporation models include this variation using an electrostatic analogy, i.e. the Laplace equation (steady-state continuity) in a domain with a known boundary condition value, or known as the Dirichlet problem for Laplace's equation. The challenge is that the calculated evaporation rates using the earlier models seemed to differ from that of the recent models (note both types of models were validated in the literature by experiments). We have reinvestigated the recent models and found that the mathematical simplifications in solving the Dirichlet problem in toroidal coordinates have created the inconsistency. We also proposed a closed form approximation for f(θ) which is valid in a wide range, i.e. 8°≤θ≤131°. Using the proposed model in this study, theoretically, it was shown that the evaporation rate in the CWA (constant wetted area) mode is faster than the evaporation rate in the CCA (constant contact angle) mode for a sessile drop. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Randomized, controlled trial of standard, large-capacity versus jumbo biopsy forceps for polypectomy of small, sessile, colorectal polyps.

    PubMed

    Draganov, Peter V; Chang, Myron N; Alkhasawneh, Ahmad; Dixon, Lisa R; Lieb, John; Moshiree, Baharak; Polyak, Steven; Sultan, Shahnaz; Collins, Dennis; Suman, Amitabh; Valentine, John F; Wagh, Mihir S; Habashi, Samir L; Forsmark, Chris E

    2012-01-01

    Polypectomy with cold biopsy forceps is a frequently used technique for removal of small, sessile, colorectal polyps. Jumbo forceps may lead to more effective polypectomy because of the larger size of the forceps cup. To evaluate the efficiency of cold jumbo biopsy forceps compared with standard forceps for polypectomy of small, sessile, colorectal polyps. Randomized, controlled trial. Outpatient endoscopy center. This study involved 140 patients found to have at least one eligible polyp defined as a sessile polyp measuring ≤6 mm. Polypectomy with cold biopsy forceps. Complete visual polyp eradication with one forceps bite. In 140 patients, a total of 305 eligible polyps were detected (151 removed with jumbo forceps and 154 with standard forceps). Complete visual eradication of the polyp with one forceps bite was achieved in 78.8% of the jumbo forceps group and 50.7% of the standard forceps group (P < .0001). Biopsies from the polypectomy sites of adenomatous polyps thought to be visually completely eradicated with one bite showed a trend toward a higher complete histologic eradication rate with the jumbo forceps (82.4%) compared with the standard forceps (77.4%), but the difference did not reach statistical significance (P = .62). The withdrawal time for visual inspection of the colon and time to perform polypectomies were significantly shorter in the jumbo forceps group (mean 21.43 vs 18.23 minutes; P = .02). Lack of blinding to the type of forceps used. The jumbo biopsy forceps is superior to the standard forceps in removing small, sessile polyps. ( NCT00855790.). Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  8. Repair of tracheal epithelium by basal cells after chlorine-induced injury

    PubMed Central

    2012-01-01

    Background Chlorine is a widely used toxic compound that is considered a chemical threat agent. Chlorine inhalation injures airway epithelial cells, leading to pulmonary abnormalities. Efficient repair of injured epithelium is necessary to restore normal lung structure and function. The objective of the current study was to characterize repair of the tracheal epithelium after acute chlorine injury. Methods C57BL/6 mice were exposed to chlorine and injected with 5-ethynyl-2′-deoxyuridine (EdU) to label proliferating cells prior to sacrifice and collection of tracheas on days 2, 4, 7, and 10 after exposure. Airway repair and restoration of a differentiated epithelium were examined by co-localization of EdU labeling with markers for the three major tracheal epithelial cell types [keratin 5 (K5) and keratin 14 (K14) for basal cells, Clara cell secretory protein (CCSP) for Clara cells, and acetylated tubulin (AcTub) for ciliated cells]. Morphometric analysis was used to measure proliferation and restoration of a pseudostratified epithelium. Results Epithelial repair was fastest and most extensive in proximal trachea compared with middle and distal trachea. In unexposed mice, cell proliferation was minimal, all basal cells expressed K5, and K14-expressing basal cells were absent from most sections. Chlorine exposure resulted in the sloughing of Clara and ciliated cells from the tracheal epithelium. Two to four days after chlorine exposure, cell proliferation occurred in K5- and K14-expressing basal cells, and the number of K14 cells was dramatically increased. In the period of peak cell proliferation, few if any ciliated or Clara cells were detected in repairing trachea. Expression of ciliated and Clara cell markers was detected at later times (days 7–10), but cell proliferation was not detected in areas in which these differentiated markers were re-expressed. Fibrotic lesions were observed at days 7–10 primarily in distal trachea. Conclusion The data are consistent with a model where surviving basal cells function as progenitor cells to repopulate the tracheal epithelium after chlorine injury. In areas with few remaining basal cells, repair is inefficient, leading to airway fibrosis. These studies establish a model for understanding regenerative processes in the respiratory epithelium useful for testing therapies for airway injury. PMID:23170909

  9. Attachment of the ciliate Epidinium Crawley to plant fragments in the sheep rumen.

    PubMed Central

    Bauchop, T; Clarke, R T

    1976-01-01

    High concentrations of the ciliate Epidinium Crawley are associated with damaged regions of fresh plant material undergoing digestion in the sheep rumen. This finding supports that postulate that sequestration in the rumen explains the low rate of passage of protozoa despite the high flow rate of liquid from the rumen. The maintenance of Epidinium in the rumen, despite their slow growth rate, is also explained. Images PMID:825041

  10. The human uterotubal junction: a scanning electron microscope study during different phases of the menstrual cycle.

    PubMed

    Fadel, H E; Berns, D; Zaneveld, L J; Wilbanks, G D; Brueschke, E E

    1976-10-01

    Uterotubal junctions from surgically extirpated human uteri were examined. The specimens were obtained during different phases of the menstrual cycle. The interstitial portions of the tubes together with the cornual areas were dissected, excised, and their luminal surfaces exposed. The specimens were then processed for scanning electron microscopy. The surface epithelium of both the cornual endometrium and interstitial endosalpins. Ciliated cells were more numerous in the endosalpinx. Cyclic changes in ciliated cells were minimal, while cyclic secretory activity was demonstrated, especially in the endometrium. The transitional area between the endometrium and the endosalpinx was characterized by a marked increase in the number of ciliated cells, and a tendency of the secretory cells to assume a flattened, polygonal shape. These morphologic features suggest a possible role in the transport and/or maintenance of spermatozoa and/or ova.

  11. Ciliate protists from Cabiúnas Lagoon (Restinga de Jurubatiba, Macaé, Rio de Janeiro) with emphasis on water quality indicator Species and description of Oxytricha marcili sp. n.

    PubMed

    Paiva, T S; Silva-Neto, I D

    2004-08-01

    We found 34 species of ciliate protists in the samples collected by the margins of Cabiúnas Lagoon during 2001. The ciliates were cultivated in the laboratory, where they were examined in vivo and identified through silver impregnation techniques. A new species, Oxytricha marcili (Ciliophora, Oxytrichidae), was found and characterized as follows: in vivo length about 60-80 microm x 30-40 microm wide; on average 22 adoral membranelles; 18 left marginal cirri; 18 right marginal cirri; and 3 small caudal cirri. All specimens analyzed presented 7 frontal cirri (3 anterior + 4 posterior), 1 buccal cirrus, 4 ventral cirri (3 postoral + 1 pre-transverse), and 5 transverse cirri. Among the species found, some are considered as water quality indicators ranging from alpha-mesosaprobity to polysaprobity and isosaprobity.

  12. Metacystis borrori n. sp. (Ciliophora: Metacystidae) on the seagrass Thalassia testudinum.

    PubMed

    Aladro-Lubel, M A Antonieta; Martinez-Murillo, M A Esther

    2003-01-01

    A new epibiontic ciliate of the genus Metacystis is described on the seagrass Thalassia testudinum of the coral reef lagoons of Veracruz, Mexico. The ciliate was studied in living and stained specimens and under the scanning electron microscope. The cell body (10-35 x 10-18 microm in vivo) is transversely annulated (4-6 rings). The somatic ciliature consists of 22-30 longitudinal kineties, and patterned as 5-7 transverse kineties. The circumoral kinety is composed of kinetosomes closely spaced. The macronucleus diameter measures about 3-7 microm. The lorica (18-61 x 11-26 microm) has the posterior end round to conical or irregular with mucoid filaments. This prostomatid colonizes both natural and artificial substrates placed in an aquarium. Metacystis borrori n. sp. is a species that forms part of the ciliate community on Thalassia testudinum with a temperature range of 21-26 degrees C and a salinity of 32-40 per thousand.

  13. Living upside down: patterns of red coral settlement in a cave

    PubMed Central

    Rugiu, Luca; Cerrano, Carlo; Abbiati, Marco

    2018-01-01

    Background Larval settlement and intra-specific interactions during the recruitment phase are crucial in determining the distribution and density of sessile marine populations. Marine caves are confined and stable habitats. As such, they provide a natural laboratory to study the settlement and recruitment processes in sessile invertebrates, including the valuable Mediterranean red coral Corallium rubrum. In the present study, the spatial and temporal variability of red coral settlers in an underwater cave was investigated by demographic and genetic approaches. Methods Sixteen PVC tiles were positioned on the walls and ceiling of the Colombara Cave, Ligurian Sea, and recovered after twenty months. A total of 372 individuals of red coral belonging to two different reproductive events were recorded. Basal diameter, height, and number of polyps were measured, and seven microsatellites loci were used to evaluate the genetic relationships among individuals and the genetic structure. Results Significant differences in the colonization rate were observed both between the two temporal cohorts and between ceiling and walls. No genetic structuring was observed between cohorts. Overall, high levels of relatedness among individuals were found. Conclusion The results show that C. rubrumindividuals on tiles are highly related at very small spatial scales, suggesting that nearby recruits are likely to be sibs. Self-recruitment and the synchronous settlement of clouds of larvae could be possible explanations for the observed pattern. PMID:29844950

  14. Comparison of the lateral retention forces on sessile and pendant water drops on a solid surface

    NASA Astrophysics Data System (ADS)

    de la Madrid, Rafael; Whitehead, Taylor; Irwin, George M.

    2015-06-01

    We present a simple experiment that demonstrates how a water drop hanging from a Plexiglas surface (pendant drop) experiences a lateral retention force that is comparable to, and in some cases larger than, the lateral retention force on a drop resting on top of the surface (sessile drop). The experiment also affords a simple demonstration of the Coriolis effect in two dimensions.

  15. The influence of gravity on the distribution of the deposit formed onto a substrate by sessile, hanging, and sandwiched hanging drop evaporation.

    PubMed

    Sandu, Ion; Fleaca, Claudiu Teodor

    2011-06-15

    The focus of the present article is the study of the influence of gravity on the particle deposition profiles on a solid substrate during the evaporation of sessile, hanging and sandwiched hanging drops of colloidal particle suspensions. For concentrations of nanoparticles in the colloidal solutions in the range 0.0001-1 wt.%, highly diluted suspensions will preferentially form rings while concentrated suspensions will preferentially form spots in both sessile and hanging drop evaporation. For intermediary concentrations, the particle deposition profiles will depend on the nanoparticle aggregation dynamics in the suspension during the evaporation process, gravity and on the detailed evaporation geometry. The evaporation of a drop of toluene/carbon nanoparticle suspension hanging from a pendant water drop will leave on the substrate a circular spot with no visible external ring. By contrast, a clear external ring is formed on the substrate by the sessile evaporation of a similar drop of suspension sandwiched between a water drop and the substrate. From the application viewpoint, these processes can be used to create preferential electrical conductive carbon networks and contacts for arrays of self-assembled nanostructures fabricated on solid substrates as well as on flexible polymeric substrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Disturbance influences oyster community richness and evenness, but not diversity.

    PubMed

    Kimbro, David L; Grosholz, Edwin D

    2006-09-01

    Foundation species in space-limited systems can increase diversity by creating habitat, but they may also reduce diversity by excluding primary space competitors. These contrasting forces of increasing associate diversity and suppressing competitor diversity have rarely been examined experimentally with respect to disturbance. In a benthic marine community in central California, where native oysters are a foundation species, we tested how disturbance influenced overall species richness, evenness, and diversity. Surprisingly, overall diversity did not peak across a disturbance gradient because, as disturbance decreased, decreases in overall species evenness opposed increases in overall species richness. Decreasing disturbance intensity (high oyster abundance) led to increasing species richness of sessile and mobile species combined. This increase was due to the facilitation of secondary sessile and mobile species in the presence of oysters. In contrast, decreasing disturbance intensity and high oyster abundance decreased the evenness of sessile and mobile species. Three factors likely contributed to this decreased evenness: oysters reduced abundances of primary sessile species due to space competition; oysters supported more rare mobile species; and oysters disproportionately increased the relative abundance of a few common mobile species. Our results highlight the need for further studies on how disturbance can differentially affect the evenness and richness of different functional groups, and ultimately how these differences affect the relationship between overall diversity and ecosystem function.

  17. Structural Development, Cellular Differentiation and Proliferation of the Respiratory Epithelium in the Bovine Fetal Lung.

    PubMed

    Drozdowska, J; Cousens, C; Finlayson, J; Collie, D; Dagleish, M P

    2016-01-01

    Fetal bovine lung samples of 11 different gestational ages were assigned to a classical developmental stage based on histological morphology. Immunohistochemistry was used to characterize the morphology of forming airways, proliferation rate of airway epithelium and the presence of epithelial cell types (i.e. ciliated cells, club cells, neuroepithelial cells (NECs) and type II pneumocytes). Typical structural organization of pseudoglandular (84-98 days gestational age [DGA]), canalicular (154-168 DGA) and alveolar (224-266 DGA) stages was recognized. In addition, transitional pseudoglandular-canalicular (112-126 DGA) and canalicular-saccular (182 DGA) morphologies were present. The embryonic stage was not observed. A significantly (P <0.05) higher proliferation rate of pulmonary epithelium, on average 5.5% and 4.4% in bronchi and bronchioles, respectively, was present in the transitional pseudoglandular-canalicular phase (112-126 DGA) compared with all other phases, while from 8 weeks before term (224-266 DGA) proliferation had almost ceased. The first epithelial cells identified by specific marker proteins in the earliest samples available for study (84 DGA) were ciliated cells and NECs. Club cells were present initially at 112 DGA and type II pneumocytes at 224 DGA. At the latest time points (224-226 DGA) these latter cell types were still present at a much lower percentage compared with adult cattle. This study characterized bovine fetal lung development by histological morphology and cellular composition of the respiratory epithelium and suggests that the apparent structural anatomical maturity of the bovine lung at term is not matched by functional maturity of the respiratory epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The marine mixotroph, Mesodinium rubrum is far more than a greenhouse ciliate

    NASA Astrophysics Data System (ADS)

    Yih, W.; Myung, G.; Kim, H. S.; Yoo, Y. D.; Rho, J. R.

    2016-02-01

    Permanent symbiosis between the mixotrophic ciliate Mesodinium rubrum and the cryptomonad symbionts has long been assumed since 1908, when Hans Lohmann firstly described the reddish-brown globules inside M. rubrum ("Halteria rubra") cells as symbiotic algae ("Erythromonas haltericola"). Thus, M. rubrum was envisioned as a host greenhouse where numerous cryptomonad symbionts could be farmed. During last two decades, however, information on the species interaction among marine protists including M. rubrum was so impressively accumulated that the more real picture of the `symbiotic relationship' could be revealed. In addition to the obligate replacement of the selected organelles from a `symbiont', multiple donor strains for the klepto-organelles of M. rubrum was also explored. Hence, experimentally designed organelle trades for M. rubrum is not impossible today. This unique mixotrophic ciliate must be a pivotal member of marine plankton ecosystem with its superior klepto-organelles, motility, growth rate, and linkablilty to higher trophic levels. M. rubrum can link marine heterotrophic bacteria and cyanobacteria to its own predators which in turn could be consumed by other carnivores. Supported by the klepto-organelles and vitamins from prey cryptomonads as well as N(from cyanobacteria) and P(from heterotrophic bacteria) nutrients, M. rubrum thrives at diverse marine environments. Bacterivory by the protistan members of `Mesodinium food chain' may need to be further studied before we can better understand the superiority of the unique ciliate species in the sea.

  19. Protozoa and metazoa relations to technological conditions of non-woven textile filters for wastewater treatment.

    PubMed

    Spychała, Marcin; Sowińska, Aleksandra; Starzyk, Justyna; Masłowski, Adam

    2015-01-01

    The objective of this study was a preliminary identification of basic groups of micro-organisms in the cross-sectional profile of geotextile filters for septic tank effluent (STE) treatment and their relations to technological conditions. Reactors with textile filters treating wastewater were investigated on a semi-technical scale. Filters were vertically situated and STE was filtered through them under hydrostatic pressure at a wastewater surface height of 7-20 cm. Filters were made of four layers of non-woven TS 20 geotextile of 0.9 mm thickness. Various groups of organisms were observed; the most abundant group comprised free-swimming and crawling ciliates, less abundant were stalked ciliates and the least numerous were nematodes. The individual counts of all groups of micro-organisms investigated during the study were variable according to time and space. The high abundance of Opercularia, a commonly observed genus of stalked ciliates, was related to the high efficiency of wastewater treatment and dissolved oxygen concentration of about 1.0 g/m3. Numbers of free-swimming and crawling ciliates had a tendency to decrease in relation to the depth of filter cross-sectional profile. The variability in counts of particular groups of organisms could be related to the local stress conditions. No correlation between identified organism count and total mass concentration in the cross-sectional filter profile was found.

  20. Studies on ciliated epithelia of the human genital tract. I. Swelling of the cilia of Fallopian tube epithelium in organ cultures infected with Mycoplasma hominis.

    PubMed Central

    Mårdh, P A; Weström, L; von Mecklenburg, C; Hammar, E

    1976-01-01

    Organ cultures of human Fallopian tubes were infected with Mycoplasma hominis. Scanning and transmission electron microscopy revealed swelling of the cilia of the tubal epithelial cells in infected cultures. In some, the entire cilia were swollen; in others, only the tips. Uninfected cultures kept for up to 7 days showed no structural changes in the cilia or other surface structures. M. hominis multiplied in organ cultures, but not in culture medium without tissue. A practical organ culture technique for the preparation of specimens for electron microscopy is described. Images PMID:1260408

  1. Visual measurement of the evaporation process of a sessile droplet by dual-channel simultaneous phase-shifting interferometry.

    PubMed

    Sun, Peng; Zhong, Liyun; Luo, Chunshu; Niu, Wenhu; Lu, Xiaoxu

    2015-07-16

    To perform the visual measurement of the evaporation process of a sessile droplet, a dual-channel simultaneous phase-shifting interferometry (DCSPSI) method is proposed. Based on polarization components to simultaneously generate a pair of orthogonal interferograms with the phase shifts of π/2, the real-time phase of a dynamic process can be retrieved with two-step phase-shifting algorithm. Using this proposed DCSPSI system, the transient mass (TM) of the evaporation process of a sessile droplet with different initial mass were presented through measuring the real-time 3D shape of a droplet. Moreover, the mass flux density (MFD) of the evaporating droplet and its regional distribution were also calculated and analyzed. The experimental results show that the proposed DCSPSI will supply a visual, accurate, noncontact, nondestructive, global tool for the real-time multi-parameter measurement of the droplet evaporation.

  2. Effects of microplastics on sessile invertebrates in the eastern coast of Thailand: An approach to coastal zone conservation.

    PubMed

    Thushari, Gajahin Gamage Nadeeka; Senevirathna, Jayan Duminda Mahesh; Yakupitiyage, Amararatne; Chavanich, Suchana

    2017-11-15

    This study assessed the microplastic contamination of 3 most abundant sessile and intertidal invertebrates (Rock Oyster: Saccostrea forskalii, Striped Barnacle: Balanus amphitrite, Periwinkle: Littoraria sp.) in 3 beaches of the eastern coasts of Thailand. The results showed a significant accumulation of microplastics in the invertebrates at rates of 0.2-0.6 counts/g indicating higher pollution levels along the coastline. Filter feeding organisms showed comparatively higher accumulation rates of microplastics. Thus, contaminated bivalves pose potential health risks for seafood consumers. The plastic pollutant prevalence in sessile and intertidal communities was corresponded with pollution characteristics of contaminated beach habitats where they live. Thus, bivalves, gastropods and barnacles can be used as indicators for contamination of microplastics in the areas. This study also demonstrated the need for controlling plastic pollution in Thai coastal areas. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Effects of urbanisation on macroalgae and sessile invertebrates in southeast Australian estuaries

    NASA Astrophysics Data System (ADS)

    Fowles, Amelia E.; Stuart-Smith, Rick D.; Stuart-Smith, Jemina F.; Hill, Nicole A.; Kirkpatrick, Jamie B.; Edgar, Graham J.

    2018-05-01

    The influence of anthropogenic and environmental factors on the composition, cover and dominance of macroalgae and sessile invertebrates was assessed in three capital city estuaries in south-eastern Australia. Heavy metals and proximity to ports showed the strongest relationships to the distribution of sessile reef biota after accounting for natural environmental gradients. The densities of laminarian, fucoid, brown and red foliose algae were negatively correlated with heavy metals, both in Port Phillip Bay (Melbourne) and the Derwent (Hobart), while turf, filamentous algae and some invertebrates were favoured. Sydney Harbour possessed a different pattern, with the laminarian kelp Ecklonia radiata most abundant near the main shipping port, probably because of biotic interactions involving urchin grazing in the lower estuary. Identifying drivers of benthic community pattern represents a key challenge for effective conservation management, particularly for estuaries affected by multiple anthropogenic impacts.

  4. hemingway is required for sperm flagella assembly and ciliary motility in Drosophila.

    PubMed

    Soulavie, Fabien; Piepenbrock, David; Thomas, Joëlle; Vieillard, Jennifer; Duteyrat, Jean-Luc; Cortier, Elisabeth; Laurençon, Anne; Göpfert, Martin C; Durand, Bénédicte

    2014-04-01

    Cilia play major functions in physiology and development, and ciliary dysfunctions are responsible for several diseases in humans called ciliopathies. Cilia motility is required for cell and fluid propulsion in organisms. In humans, cilia motility deficiencies lead to primary ciliary dyskinesia, with upper-airways recurrent infections, left-right asymmetry perturbations, and fertility defects. In Drosophila, we identified hemingway (hmw) as a novel component required for motile cilia function. hmw encodes a 604-amino acid protein characterized by a highly conserved coiled-coil domain also found in the human orthologue, KIAA1430. We show that HMW is conserved in species with motile cilia and that, in Drosophila, hmw is expressed in ciliated sensory neurons and spermatozoa. We created hmw-knockout flies and found that they are hearing impaired and male sterile. hmw is implicated in the motility of ciliated auditory sensory neurons and, in the testis, is required for elongation and maintenance of sperm flagella. Because HMW is absent from mature flagella, we propose that HMW is not a structural component of the motile axoneme but is required for proper acquisition of motile properties. This identifies HMW as a novel, evolutionarily conserved component necessary for motile cilium function and flagella assembly.

  5. Lithium-induced developmental anomalies in the spirotrich ciliate Stylonychia lemnae (Ciliophora, Hypotrichida).

    PubMed

    Makhija, Seema; Gupta, Renu; Toteja, Ravi

    2015-08-01

    Lithium is known to have profound biological effects of varying intensity in different life forms. In the present investigation, the effect of lithium was studied on the spirotrich ciliate Stylonychia lemnae. Lithium treatment brings about quantitative changes in the patterning of ciliary structures in S. lemnae. The dorsal surface of the affected cells develops supernumerary ciliary kineties due to excessive proliferation of the kinetosomes. The ventral surface on the other hand develops fewer than normal cirri formed from reduced numbers of ciliary primordia. The adoral zone of membranelles (AZM) fails to remodel properly as, in certain segments, membranelles become disarranged and misaligned. Lithium-induced changes are transitory as the normal pattern is restored during recovery after the cells are shifted to normal medium, suggesting non-genic regulation of cortical pattern. Lithium also affects the process of cell proliferation as the number of cells undergoing division is negligible as compared to reorganizing cells. The results point to the extremely complex and heterogeneous organization of the cellular cortex (plasma membrane and cytoskeleton) which is capable of exerting autonomous control over the phenotype and cortical pattern. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Antarctic and Arctic populations of the ciliate Euplotes nobilii show common pheromone-mediated cell-cell signaling and cross-mating

    PubMed Central

    Di Giuseppe, Graziano; Erra, Fabrizio; Dini, Fernando; Alimenti, Claudio; Vallesi, Adriana; Pedrini, Bill; Wüthrich, Kurt; Luporini, Pierangelo

    2011-01-01

    Wild-type strains of the protozoan ciliate Euplotes collected from different locations on the coasts of Antarctica, Tierra del Fuego and the Arctic were taxonomically identified as the morpho-species Euplotes nobilii, based on morphometric and phylogenetic analyses. Subsequent studies of their sexual interactions revealed that mating combinations of Antarctic and Arctic strains form stable pairs of conjugant cells. These conjugant pairs were isolated and shown to complete mutual gene exchange and cross-fertilization. The biological significance of this finding was further substantiated by demonstrating that close homology exists among the three-dimensional structures determined by NMR of the water-borne signaling pheromones that are constitutively secreted into the extracellular space by these interbreeding strains, in which these molecules trigger the switch between the growth stage and the sexual stage of the life cycle. The fact that Antarctic and Arctic E. nobilii populations share the same gene pool and belong to the same biological species provides new support to the biogeographic model of global distribution of eukaryotic microorganisms, which had so far been based exclusively on studies of morphological and phylogenetic taxonomy. PMID:21300903

  7. Genealogical analyses of multiple loci of litostomatean ciliates (Protista, Ciliophora, Litostomatea)

    PubMed Central

    Vd’ačný, Peter; Bourland, William A.; Orsi, William; Epstein, Slava S.; Foissner, Wilhelm

    2012-01-01

    The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of free-living and endocommensal species. However, their traditional morphology-based classification conflicts with 18S rRNA gene phylogenies indicating (1) a deep bifurcation of the Litostomatea into Rhynchostomatia and Haptoria + Trichostomatia, and (2) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea. To test whether 18S rRNA molecules provide a suitable proxy for litostomatean evolutionary history, we used eighteen new ITS1-5.8S rRNA-ITS2 region sequences from various free-living litostomatean orders. These single- and multiple-locus analyses are in agreement with previous 18S rRNA gene phylogenies, supporting that both 18S rRNA gene and ITS region sequences are effective tools for resolving phylogenetic relationships among the litostomateans. Despite insertions, deletions and mutational saturations in the ITS region, the present study shows that ITS1 and ITS2 molecules can be used to infer phylogenetic relationships not only at species level but also at higher taxonomic ranks when their secondary structure information is utilized to aid alignment. PMID:22789763

  8. Genealogical analyses of multiple loci of litostomatean ciliates (Protista, Ciliophora, Litostomatea).

    PubMed

    Vd'ačný, Peter; Bourland, William A; Orsi, William; Epstein, Slava S; Foissner, Wilhelm

    2012-11-01

    The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of free-living and endocommensal species. However, their traditional morphology-based classification conflicts with 18S rRNA gene phylogenies indicating (1) a deep bifurcation of the Litostomatea into Rhynchostomatia and Haptoria+Trichostomatia, and (2) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea. To test whether 18S rRNA molecules provide a suitable proxy for litostomatean evolutionary history, we used eighteen new ITS1-5.8S rRNA-ITS2 region sequences from various free-living litostomatean orders. These single- and multiple-locus analyses are in agreement with previous 18S rRNA gene phylogenies, supporting that both 18S rRNA gene and ITS region sequences are effective tools for resolving phylogenetic relationships among the litostomateans. Despite insertions, deletions and mutational saturations in the ITS region, the present study shows that ITS1 and ITS2 molecules can be used to infer phylogenetic relationships not only at species level but also at higher taxonomic ranks when their secondary structure information is utilized to aid alignment. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The V-ATPase accessory protein Atp6ap1b mediates dorsal forerunner cell proliferation and left-right asymmetry in zebrafish

    PubMed Central

    Gokey, Jason J.; Dasgupta, Agnik; Amack, Jeffrey D.

    2015-01-01

    Asymmetric fluid flows generated by motile cilia in a transient ‘organ of asymmetry’ are involved in establishing the left-right (LR) body axis during embryonic development. The vacuolar-type H+-ATPase (V-ATPase) proton pump has been identified as an early factor in the LR pathway that functions prior to cilia, but the role(s) for V-ATPase activity are not fully understood. In the zebrafish embryo, the V-ATPase accessory protein Atp6ap1b is maternally supplied and expressed in dorsal forerunner cells (DFCs) that give rise to the ciliated organ of asymmetry called Kupffer’s vesicle (KV). V-ATPase accessory proteins modulate V-ATPase activity, but little is known about their functions in development. We investigated Atp6ap1b and V-ATPase in KV development using morpholinos, mutants and pharmacological inhibitors. Depletion of both maternal and zygotic atp6ap1b expression reduced KV organ size, altered cilia length and disrupted LR patterning of the embryo. Defects in other ciliated structures—neuromasts and olfactory placodes—suggested a broad role for Atp6ap1b during development of ciliated organs. V-ATPase inhibitor treatments reduced KV size and identified a window of development in which V-ATPase activity is required for proper LR asymmetry. Interfering with Atp6ap1b or V-ATPase function reduced the rate of DFC proliferation, which resulted in fewer ciliated cells incorporating into the KV organ. Analyses of pH and subcellular V-ATPase localizations suggested Atp6ap1b functions to localize the V-ATPase to the plasma membrane where it regulates proton flux and cytoplasmic pH. These results uncover a new role for the V-ATPase accessory protein Atp6ap1b in early development to maintain the proliferation rate of precursor cells needed to construct a ciliated KV organ capable of generating LR asymmetry. PMID:26254189

  10. Morphological and glycan features of the camel oviduct epithelium.

    PubMed

    Accogli, Gianluca; Monaco, Davide; El Bahrawy, Khalid Ahmed; El-Sayed, Ashraf Abd El-Halim; Ciannarella, Francesca; Beneult, Benedicte; Lacalandra, Giovanni Michele; Desantis, Salvatore

    2014-07-01

    This study describes regional differences in the oviduct of the one-humped camel (Camelus dromedarius) during the growth phase (GP) and the mature phase (MP) of the follicular wave by means of morphometry, scanning electron microscopy (SEM) and glycohistochemistry investigations. Epithelium height significantly increased in the ampulla and decreased in the isthmus passing from the GP to the MP. Under SEM, non-ciliated cells displayed apical blebs (secretory) or short microvilli. Cilia glycocalyx expressed glycans terminating with sialic acid linked α2,6 to Gal/GalNAc (SNA affinity) throughout the oviducts of GP and MP and sialic acid linked α2,3 to Galβ1,3GalNAc (MAL II and KOH-sialidase (K-s)-PNA staining) throughout the MP oviducts. Non-ciliated cells displayed lectin-binding sites from the supra-nuclear cytoplasm to the luminal surface. Ampulla non-ciliated cells showed O-linked (mucin-type) sialoglycans (MAL II and K-s-PNA) during GP and MP and N-linked sialoglycans (SNA) during the MP. Isthmus non-ciliated cells expressed SNA reactivity in GP and MP, also K-s-PNA binders in MP, and MAL II and PNA affinity (Galβ1,3GalNAc) during GP. Galβ1,3GalNAc was sialilated in the non-ciliated cells of GP UTJ. Luminal surface lacked of Galβ1,3GalNAc in GP and MP, whereas it expressed α2,6- and α2,3-linked sialic acids. In GP intraluminal substance reacted with SNA, MAL II, K-s-PNA in ampulla and only with MAL II in the isthmus and UTJ. These results demonstrate that the morphology and the glycan pattern of the camel oviductal epithelium vary during the follicular wave and that could relate to the region-specific functions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Clear cell and endometrioid carcinomas: are their differences attributable to distinct cells of origin?

    PubMed

    Cochrane, Dawn R; Tessier-Cloutier, Basile; Lawrence, Katherine M; Nazeran, Tayyebeh; Karnezis, Anthony N; Salamanca, Clara; Cheng, Angela S; McAlpine, Jessica N; Hoang, Lien N; Gilks, C Blake; Huntsman, David G

    2017-09-01

    Endometrial epithelium is the presumed tissue of origin for both eutopic and endometriosis-derived clear cell and endometrioid carcinomas. We had previously hypothesized that the morphological, biological and clinical differences between these carcinomas are due to histotype-specific mutations. Although some mutations and genomic landscape features are more likely to be found in one of these histotypes, we were not able to identify a single class of mutations that was exclusively present in one histotype and not the other. This lack of genomic differences led us to an alternative hypothesis that these cancers could arise from distinct cells of origin within endometrial tissue, and that it is the cellular context that accounts for their differences. In a proteomic screen, we identified cystathionine γ-lyase (CTH) as a marker for clear cell carcinoma, as it is expressed at high levels in clear cell carcinomas of the ovary and endometrium. In the current study, we analysed normal Müllerian tissues, and found that CTH is expressed in ciliated cells of endometrium (both eutopic endometrium and endometriosis) and fallopian tubes. We then demonstrated that other ciliated cell markers are expressed in clear cell carcinomas, whereas endometrial secretory cell markers are expressed in endometrioid carcinomas. The same differential staining of secretory and ciliated cells was demonstrable in a three-dimensional organoid culture system, in which stem cells were stimulated to differentiate into an admixture of secretory and ciliated cells. These data suggest that endometrioid carcinomas are derived from cells of the secretory cell lineage, whereas clear cell carcinomas are derived from, or have similarities to, cells of the ciliated cell lineage. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  12. The effects of high dose of two manganese supplements (organic and inorganic) on the rumen microbial ecosystem.

    PubMed

    Kišidayová, Svetlana; Pristaš, Peter; Zimovčáková, Michaela; Blanár Wencelová, Monika; Homol'ová, Lucia; Mihaliková, Katarína; Čobanová, Klaudia; Grešáková, Ľubomíra; Váradyová, Zora

    2018-01-01

    Little is known about the effects of the high dose and types of manganese supplements on rumen environment at manganese intake level close above the limit of 150 mg/kg of dry feed matter. The effects of high dose of two manganese supplements (organic and inorganic) on rumen microbial ecosystem after four months of treatment of 18 lambs divided into three treatment groups were studied. We examined the enzyme activities (α-amylase, xylanase, and carboxymethyl cellulase), total and differential microscopic counts of rumen ciliates, total microscopic counts of bacteria, and fingerprinting pattern of the eubacterial and ciliates population analyzed by PCR-DGGE. Lambs were fed a basal diet with a basal Mn content (34.3 mg/kg dry matter; control) and supplemented either with inorganic manganous sulfate or organic Mn-chelate hydrate (daily 182.7, 184 mg/kg dry matter of feed, respectively). Basal diet, offered twice daily, consisted of ground barley and hay (268 and 732 g/kg dry matter per animal and day). The rumens of the lambs harbored ciliates of the genera of Entodinium, Epidinium, Diplodinium, Eudiplodinium, Dasytricha, and Isotricha. No significant differences between treatment groups were observed in the total ciliate number, the number of ciliates at the genus level, as well as the total number of bacteria. Organic Mn did decrease the species richness and diversity of the eubacterial population examined by PCR-DGGE. No effects of type of Mn supplement on the enzyme activities were observed. In comparison to the control, α-amylase specific activities were decreased and carboxymethyl-cellulase specific activities were increased by the Mn supplements. Xylanase activities were not influenced. In conclusion, our results suggested that the intake of tested inorganic and organic manganese supplements in excess may affect the specific groups of eubacteria. More studies on intake of Mn supplements at a level close to the limit can reveal if the changes in microbial population impact remarkably the other rumen enzymatic activities.

  13. The effects of high dose of two manganese supplements (organic and inorganic) on the rumen microbial ecosystem

    PubMed Central

    Pristaš, Peter; Zimovčáková, Michaela; Blanár Wencelová, Monika; Homol'ová, Lucia; Mihaliková, Katarína; Čobanová, Klaudia; Grešáková, Ľubomíra; Váradyová, Zora

    2018-01-01

    Little is known about the effects of the high dose and types of manganese supplements on rumen environment at manganese intake level close above the limit of 150 mg/kg of dry feed matter. The effects of high dose of two manganese supplements (organic and inorganic) on rumen microbial ecosystem after four months of treatment of 18 lambs divided into three treatment groups were studied. We examined the enzyme activities (α-amylase, xylanase, and carboxymethyl cellulase), total and differential microscopic counts of rumen ciliates, total microscopic counts of bacteria, and fingerprinting pattern of the eubacterial and ciliates population analyzed by PCR-DGGE. Lambs were fed a basal diet with a basal Mn content (34.3 mg/kg dry matter; control) and supplemented either with inorganic manganous sulfate or organic Mn-chelate hydrate (daily 182.7, 184 mg/kg dry matter of feed, respectively). Basal diet, offered twice daily, consisted of ground barley and hay (268 and 732 g/kg dry matter per animal and day). The rumens of the lambs harbored ciliates of the genera of Entodinium, Epidinium, Diplodinium, Eudiplodinium, Dasytricha, and Isotricha. No significant differences between treatment groups were observed in the total ciliate number, the number of ciliates at the genus level, as well as the total number of bacteria. Organic Mn did decrease the species richness and diversity of the eubacterial population examined by PCR-DGGE. No effects of type of Mn supplement on the enzyme activities were observed. In comparison to the control, α-amylase specific activities were decreased and carboxymethyl-cellulase specific activities were increased by the Mn supplements. Xylanase activities were not influenced. In conclusion, our results suggested that the intake of tested inorganic and organic manganese supplements in excess may affect the specific groups of eubacteria. More studies on intake of Mn supplements at a level close to the limit can reveal if the changes in microbial population impact remarkably the other rumen enzymatic activities. PMID:29324899

  14. Pseudocollinia brintoni gen. nov., sp. nov. (Apostomatida: Colliniidae), a parasitoid ciliate infecting the euphausiid Nyctiphanes simplex.

    PubMed

    Gómez-Gutiérrez, J; Strüder-Kypke, M C; Lynn, D H; Shaw, T C; Aguilar-Méndez, M J; López-Cortés, A; Martínez-Gómez, S; Robinson, C J

    2012-05-15

    A novel parasitoid ciliate, Pseudocollinia brintoni gen. nov., sp. nov. was discovered infecting the subtropical sac-spawning euphausiid Nyctiphanes simplex off both coasts of the Baja California peninsula, Mexico. We used microscopic, and genetic information to describe this species throughout most of its life cycle. Pseudocollinia is distinguished from other Colliniidae genera because it exclusively infects euphausiids, has a polymorphic life cycle, and has a small cone-shaped oral cavity whose left wall has a field of ciliated kinetosomes and whose opening is surrounded on the left and right by 2 'oral' kineties (or ciliary rows) that terminate at its anterior border. Two related species that infect different euphausiid species from higher latitudes in the northeastern Pacific Ocean, Collinia beringensis Capriulo and Small, 1986, briefly redescribed herein, and Collinia oregonensis Gómez-Gutiérrez, Peterson, and Morado, 2006, are transferred to the genus Pseudocollinia. P. brintoni has between 12 and 18 somatic kineties, and its oral cavity has only 2 oral kineties, while P. beringensis comb. nov. has more somatic kineties, including 3 oral kineties. P. oregonensis comb. nov. has an intermediate number of somatic kineties. P. beringensis comb. nov. also infects Thysanoessa raschi (a new host species). SSU rRNA and cox1 gene sequences demonstrated that Pseudocollinia ciliates are apostome ciliates and that P. brintoni is different from P. beringensis comb. nov. High densities of rod-shaped bacteria (1.7 µm length, 0.2 to 0.5 µm diameter) were associated with P. brintoni. After euphausiid rupture, high concentrations of P. brintoni and bacteria cluster to form 3 to 6 cm long filaments where tomites encyst and transform to the phoront stage; this is a novel place for encystation. P. brintoni may complete its life cycle when the euphausiids feed on these filaments.

  15. [The morphology of ciliated cells in nasal mucosa during a viral infection].

    PubMed

    Grabowska-Joachimiak, A

    1998-01-01

    Presentation of the morphological changes in virus-infected nasal ciliated cells was the aim of this report. The most typical abnormalities observed in nasal smears were: intracytoplasmic inclusions, multinucleated cells, absence of cilia, ciliocytophthoria, cytoplasm vacuolization, "naked nuclei" and changes in the cellular shape. Cytological pictures of the alterations connected with viral infection were demonstrated. Presented results were consistent with the observations of other authors. Morphological analysis of the epithelial cells is a very important element of cytological examination of the nasal mucosa.

  16. Differentiation of nonneoplastic and neoplastic gallbladder polyps 1 cm or bigger with multi-detector row computed tomography.

    PubMed

    Park, Ko Woon; Kim, Seong Hyun; Choi, Seong Ho; Lee, Won Jae

    2010-01-01

    To evaluate useful computed tomographic features to differentiate nonneoplastic and neoplastic gallbladder polyps 1 cm or bigger. Thirty-one patients with 32 nonneoplastic polyps and 67 patients with 73 neoplastic polyps 1 cm or bigger underwent unenhanced and dual-phase (arterial and portal venous phases) multi-detector row computed tomography. Gallbladder polyps were diagnosed by cholecystectomy. Computed tomographic features including size (1.5 cm), surface (smooth or irregular), shape (pedunculated or sessile), accompanying wall thickening, basal indentation, perception on unenhanced images, and enhancement pattern between 2 groups were compared using univariate and multivariate analyses. On univariate analysis, age 55 years or older (P = 0.0019), size bigger than 1.5 cm (P < 0.0001), irregular surface (P = 0.0033), sessile shape (P = 0.0016), accompanying wall thickening (P = 0.0056), basal indentation (P = 0.0236), and perception on unenhanced images (P < 0.0001) were significantly more frequent in neoplastic polyps as compared with nonneoplastic polyps. On multivariate analysis, size bigger than 1.5 cm (P = 0.0260), sessile shape (P = 0.0397), and perception on unenhanced images (P < 0.0001) were statistically significant. Size bigger than 1.5 cm, sessile shape, and perception on unenhanced images are the main factors that differentiate neoplastic from nonneoplastic gallbladder polyps 1 cm or bigger.

  17. Diversification of HP1-like Chromo Domain Proteins in Tetrahymena thermophila.

    PubMed

    Wiley, Emily A; Horrell, Scott; Yoshino, Alyssa; Schornak, Cara C; Bagnani, Claire; Chalker, Douglas L

    2018-01-01

    Proteins that possess a chromo domain are well-known for their roles in heterochromatin assembly and maintenance. The Heterochromatin Protein 1 (HP1) family, with a chromo domain and carboxy-terminal chromo shadow domain, targets heterochromatin through interaction with histone H3 methylated on lysine 9 (H3K9me2/3). The structural and functional diversity of these proteins observed in both fission yeast and metazoans correlate with chromatin specialization. To expand these studies, we examined chromo domain proteins in the ciliate Tetrahymena thermophila, which has functionally diverse and developmentally regulated heterochromatin domains. We identified thirteen proteins similar to HP1. Together they possess only a fraction of the possible chromo domain subtypes and most lack a recognizable chromo shadow domain. Using fluorescence microscopy to track chromatin localization of tagged proteins through the life cycle, we show evidence that in T. thermophila this family has diversified with biological roles in RNAi-directed DNA elimination, germline genome structure, and somatic heterochromatin. Those proteins with H3K27me3 binding sequence characteristics localize to chromatin in mature nuclei, whereas those with H3K9me2/3 binding characteristics localize to developing nuclei undergoing DNA elimination. Findings point to an expanded and diversified family of chromo domain proteins that parallels heterochromatin diversity in ciliates. © 2017 The Authors. Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  18. Effect of organic phosphorus and nitrogen enrichment of mesotrophic lake water on dynamics and diversity of planktonic microbial communities--DNA and protein case studies (mesocosm experiments).

    PubMed

    Chróst, Ryszard J; Adamczewski, Tomasz; Kalinowska, Krystyna; Skowrońska, Agnieszka

    2009-01-01

    Effects of mesotrophic lake water enrichment with organic phosphorus and nitrogen substrates (DNA and model protein, bovine serum albumin--BSA) on dynamics and diversity of natural microbial communities (bacteria, heterotrophic nanoflagellates, ciliates) were studied in mesocosm experiments. Simultaneous enrichment with DNA and BSA strongly increased the abundance and biomass of all studied groups of microorganisms and induced changes in their morphological and taxonomic structure. The increased participation of large heterotrophic nanoflagellates cells (larger than 10 microm) in their total numbers and shifts in taxonomic and trophic structure of the ciliates, from algivorous to small bacterivorous, species were observed. Grazing caused changes in bacterial size distribution in all enriched mesocosms. Large (10-50 microm) filamentous bacteria significantly contributed to the total bacterial numbers and biomass. Pronounced increase in populations of beta- and gamma-Proteobacteria was found in lake water enriched with organic P and N sources, whereas alpha-Proteobacteria did not change markedly in the studied mesocosms. DNA additions stimulated the rates of bacterial secondary production. BSA shortened the rates of bacterial biomass turnover in lake water. Relatively high and constant (approximately 30%) percentage contribution of active bacteria (MEM+) in two mesocosms enriched with DNA and DNA+BSA suggested the important role of nucleic acids as a source of phosphorus for bacterial growth, activity and production. Numerous and statistically significant correlations between bacteria and protists indicated the direct and selective predator-prey relationship.

  19. Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters.

    PubMed

    Böhme, Alexander; Thaens, Diana; Schramm, Franziska; Paschke, Albrecht; Schüürmann, Gerrit

    2010-12-20

    A recently introduced chemoassay has been used to determine second-order rate constants of the electrophile-nucleophile reaction of 15 α,β-unsaturated aldehydes with glutathione. The respective kGSH values vary for more than 3 orders of magnitude, and are within the range determined previously for 31 α,β-unsaturated ketones and esters. Structure-reactivity analyses yield distinct relationships between kGSH and structural features of the compounds. Moreover, increasing kGSH increases the aldehyde toxicity toward ciliates in terms of 48 h-EC50 values (effective concentration yielding 50% growth inhibition of Tetrahymena pyriformis within 48 h). A respective log-log regression equation including both kGSH and the octanol/water partition coefficient, Kow, yields a squared correlation coefficient of 0.96. Comparative analysis with corresponding data for 15 ketones and 16 esters reveals systematic differences between the three compound classes with regard to the individual contributions of hydrophobicity and electrophilic reactivity to aquatic toxicity. The former is particularly pronounced for aldehydes, while the ester toxicity is largely governed by reactivity, with ketones showing an intermediate pattern that is more similar to the one of esters than of aldehydes. It follows that within the Michael acceptor domain of α,β-unsaturated carbonyls, a distinction between aldehydes and nonaldehydic derivatives appears necessary when employing electrophilic reactivity as a component for the quantitative prediction of their reactive toxicity toward aquatic organisms.

  20. DNA rearrangements directed by non-coding RNAs in ciliates

    PubMed Central

    Mochizuki, Kazufumi

    2013-01-01

    Extensive programmed rearrangement of DNA, including DNA elimination, chromosome fragmentation, and DNA descrambling, takes place in the newly developed macronucleus during the sexual reproduction of ciliated protozoa. Recent studies have revealed that two distant classes of ciliates use distinct types of non-coding RNAs to regulate such DNA rearrangement events. DNA elimination in Tetrahymena is regulated by small non-coding RNAs that are produced and utilized in an RNAi-related process. It has been proposed that the small RNAs produced from the micronuclear genome are used to identify eliminated DNA sequences by whole-genome comparison between the parental macronucleus and the micronucleus. In contrast, DNA descrambling in Oxytricha is guided by long non-coding RNAs that are produced from the parental macronuclear genome. These long RNAs are proposed to act as templates for the direct descrambling events that occur in the developing macronucleus. Both cases provide useful examples to study epigenetic chromatin regulation by non-coding RNAs. PMID:21956937

  1. Particle sorting by Paramecium cilia arrays.

    PubMed

    Mayne, Richard; Whiting, James G H; Wheway, Gabrielle; Melhuish, Chris; Adamatzky, Andrew

    Motile cilia are cell-surface organelles whose purposes, in ciliated protists and certain ciliated metazoan epithelia, include generating fluid flow, sensing and substance uptake. Certain properties of cilia arrays, such as beating synchronisation and manipulation of external proximate particulate matter, are considered emergent, but remain incompletely characterised despite these phenomena having being the subject of extensive modelling. This study constitutes a laboratory experimental characterisation of one of the emergent properties of motile cilia: manipulation of adjacent particulates. The work demonstrates through automated videomicrographic particle tracking that interactions between microparticles and somatic cilia arrays of the ciliated model organism Paramecium caudatum constitute a form of rudimentary 'sorting'. Small particles are drawn into the organism's proximity by cilia-induced fluid currents at all times, whereas larger particles may be held immobile at a distance from the cell margin when the cell generates characteristic feeding currents in the surrounding media. These findings can contribute to the design and fabrication of biomimetic cilia, with potential applications to the study of ciliopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Early detection of protozoan grazers in algal biofuel cultures.

    PubMed

    Day, John G; Thomas, Naomi J; Achilles-Day, Undine E M; Leakey, Raymond J G

    2012-06-01

    Future micro-algal biofuels will most likely be derived from open-pond production systems. These are by definition open to "invasion" by grazers, which could devastate micro-algal mass-cultures. There is an urgent requirement for methodologies capable of early detection and control of grazers in dense algal cultures. In this study a model system employing the marine alga Nannochloropsis oculata was challenged by grazers including ciliates, amoebae and a heterotrophic dinoflagellate. A FlowCAM flow-cytometer was used to detect all grazers investigated (size range <20->80 μm in length) in the presence of algae. Detection limits were <10 cells ml(-1) for both "large" and "small" model grazers, Euplotes vannus (80 × 45 μm) and an unidentified holotrichous ciliate (~18 × 8 μm) respectively. Furthermore, the system can distinguish the presence of ciliates in N. oculata cultures with biotechnologically relevant cell densities; i.e. >1.4 × 10(8) cells ml(-1) (>0.5 g l(-1) dry wt.). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Developing and Integrating Advanced Movement Features Improves Automated Classification of Ciliate Species

    PubMed Central

    Soleymani, Ali; Pennekamp, Frank; Petchey, Owen L.; Weibel, Robert

    2015-01-01

    Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems. PMID:26680591

  4. Genus-specific PCR Primers Targeting Intracellular Parasite Euduboscquella (Dinoflagellata: Syndinea)

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Ho; Choi, Jung Min; Kim, Young-Ok

    2018-03-01

    We designed a genus-specific primer pair targeting the intracellular parasite Euduboscquella. To increase target specificity and inhibit untargeted PCR, two nucleotides were added at the 3' end of the reverse primer, one being a complementary nucleotide to the Euduboscquella-specific SNP (single-nucleotide polymorphism) and the other a deliberately mismatched nucleotide. Target specificity of the primer set was verified experimentally using PCR of two Euduboscquella species (positive controls) and 15 related species (negative controls composed of ciliates, diatoms and dinoflagellates), and analytical comparison with SILVA SSU rRNA gene database (release 119) in silico. In addition, we applied the Euduboscquella-specific primer set to four environmental samples previously determined by cytological staining to be either positive or negative for Euduboscquella. As expected, only positive controls and environmental samples known to contain Euduboscquella were successfully amplified by the primer set. An inferred SSU rRNA gene phylogeny placed environmental samples containing aloricate ciliates infected by Euduboscquella in a cluster discrete from Euduboscquella groups a-d previously reported from loricate, tintinnid ciliates.

  5. Sampling frequency of ciliated protozoan microfauna for seasonal distribution research in marine ecosystems.

    PubMed

    Xu, Henglong; Yong, Jiang; Xu, Guangjian

    2015-12-30

    Sampling frequency is important to obtain sufficient information for temporal research of microfauna. To determine an optimal strategy for exploring the seasonal variation in ciliated protozoa, a dataset from the Yellow Sea, northern China was studied. Samples were collected with 24 (biweekly), 12 (monthly), 8 (bimonthly per season) and 4 (seasonally) sampling events. Compared to the 24 samplings (100%), the 12-, 8- and 4-samplings recovered 94%, 94%, and 78% of the total species, respectively. To reveal the seasonal distribution, the 8-sampling regime may result in >75% information of the seasonal variance, while the traditional 4-sampling may only explain <65% of the total variance. With the increase of the sampling frequency, the biotic data showed stronger correlations with seasonal variables (e.g., temperature, salinity) in combination with nutrients. It is suggested that the 8-sampling events per year may be an optimal sampling strategy for ciliated protozoan seasonal research in marine ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Dynamic Chemically Driven Dewetting, Spreading, and Self-Running of Sessile Droplets on Crystalline Silicon.

    PubMed

    Arscott, Steve

    2016-12-06

    A chemically driven dewetting effect is demonstrated using sessile droplets of dilute hydrofluoric acid on chemically oxidized silicon wafers. The dewetting occurs as the thin oxide is slowly etched by the droplet and replaced by a hydrogen-terminated surface; the result of this is a gradual increase in the contact angle of the droplet with time. The time-varying work of adhesion is calculated from the time-varying contact angle; this corresponds to the changing chemical nature of the surface during dewetting and can be modeled by the well-known logistic (sigmoid) function often used for the modeling of restricted growth, in this case, the transition from an oxidized surface to a hydrogen-terminated silicon surface. The observation of the time-varying contact angle allows one to both measure the etch rate of the silicon oxide and estimate the hydrogenation rate as a function of HF concentration and wafer type. In addition to this, at a certain HF concentration, a self-running droplet effect is observed. In contrast, on hydrogen-terminated silicon wafers, a chemically induced spreading effect is observed using sessile droplets of nitric acid. The droplet spreading can also be modeled using a logistical function, where the restricted growth is the transition from hydrogen-terminated to a chemically induced oxidized silicon surface. The chemically driven dewetting and spreading observed here add to the methods available to study dynamic wetting (e.g., the moving three-phase contact line) of sessile droplets on surfaces. By slowing down chemical kinetics of the wetting, one is able to record the changing profile of the sessile droplet with time and gather information concerning the time-varying surface chemistry. The data also indicates a chemical interface hysteresis (CIH) that is compared to contact angle hysteresis (CAH). The approach can also be used to study the chemical etching and deposition behavior of thin films using liquids by monitoring the macroscopic droplet profile and relating this to the time-varying physical and chemical interface phenomena.

  7. Contrasting Hydraulic Architectures of Scots Pine and Sessile Oak at Their Southernmost Distribution Limits

    PubMed Central

    Martínez-Sancho, Elisabet; Dorado-Liñán, Isabel; Hacke, Uwe G.; Seidel, Hannes; Menzel, Annette

    2017-01-01

    Many temperate European tree species have their southernmost distribution limits in the Mediterranean Basin. The projected climatic conditions, particularly an increase in dryness, might induce an altitudinal and latitudinal retreat at their southernmost distribution limit. Therefore, characterizing the morphological and physiological variability of temperate tree species under dry conditions is essential to understand species’ responses to expected climate change. In this study, we compared branch-level hydraulic traits of four Scots pine and four sessile oak natural stands located at the western and central Mediterranean Basin to assess their adjustment to water limiting conditions. Hydraulic traits such as xylem- and leaf-specific maximum hydraulic conductivity (KS-MAX and KL-MAX), leaf-to-xylem area ratio (AL:AX) and functional xylem fraction (FX) were measured in July 2015 during a long and exceptionally dry summer. Additionally, xylem-specific native hydraulic conductivity (KS-N) and native percentage of loss of hydraulic conductivity (PLC) were measured for Scots pine. Interspecific differences in these hydraulic traits as well as intraspecific variability between sites were assessed. The influence of annual, summer and growing season site climatic aridity (P/PET) on intraspecific variability was investigated. Sessile oak displayed higher values of KS-MAX, KL-MAX, AL:AX but a smaller percentage of FX than Scots pines. Scots pine did not vary in any of the measured hydraulic traits across the sites, and PLC values were low for all sites, even during one of the warmest summers in the region. In contrast, sessile oak showed significant differences in KS-MAX, KL-MAX, and FX across sites, which were significantly related to site aridity. The striking similarity in the hydraulic traits across Scots pine sites suggests that no adjustment in hydraulic architecture was needed, likely as a consequence of a drought-avoidance strategy. In contrast, sessile oak displayed adjustments in the hydraulic architecture along an aridity gradient, pointing to a drought-tolerance strategy. PMID:28473841

  8. Severe scuticociliate (Philasterides dicentrarchi) infection in a population of sea dragons (Phycodurus eques and Phyllopteryx taeniolatus).

    PubMed

    Rossteuscher, S; Wenker, C; Jermann, T; Wahli, T; Oldenberg, E; Schmidt-Posthaus, H

    2008-07-01

    Scuticociliatosis is a disease of fish induced by ciliated parasites of the genus Scuticociliatida. It has been described in sea horses (Hippocampus sp.), flounders (Paralichthys olivaceus), and turbots (Scophthalmus maximus). Here we present a case study of a population of sea dragons chronically infected with scuticociliates identified as Philasterides dicentrarchi by histopathology and PCR. Beginning in 2004, over a period of 19 months, 10 sea dragons (Phycodurus eques and Phyllopteryx taeniolatus) were found dead in an aquarium of the Zoological Garden Basle, Switzerland. Clinically, the animals showed only faint symptoms of disease over a short period of time. At necropsy, macroscopic lesions were confined to the skin with multiple, often hemorrhagic, ulcerations. Histologically, epidermal ulcers were associated with necrosis and inflammation of the underlying dermis and musculature. Numerous ciliates, with a morphology consistent with scuticociliates, were present in these lesions. In several animals these ciliates had invaded blood vessels and were detected in gills and internal organs including kidney, thyroid gland, and central nervous system (CNS). In these organs, mild degenerative lesions and inflammatory reactions were evident. The ciliates were identified as Philasterides dicentrarchi based on small-subunit ribosomal RNA (SSUrRNA) gene sequences obtained by polymerase chain reaction (PCR) on DNA extracted from paraffin-embedded tissue sections. Our report shows that scuticociliate infections of sea dragons can develop into a systemic infection and that both species of sea dragons can be affected.

  9. Effect of Entodinium caudatum on starch intake and glycogen formation by Eudiplodinium maggii in the rumen and reticulum.

    PubMed

    Bełżecki, Grzegorz; McEwan, Neil R; Kowalik, Barbara; Michałowski, Tadeusz; Miltko, Renata

    2017-02-01

    This study aimed to quantify the engulfed starch and reserve α-glucans (glycogen) in the cells of the ciliates Eudiplodinium maggii, as well the α-glucans in defaunated and selectively faunated sheep. The content of starch inside the cell of ciliates varied from 21 to 183mg/g protozoal DM relative to the rumen fauna composition whereas, the glycogen fluctuated between 17 and 126mg/g dry matter (DM) of this ciliate species. Establishment of the population Entodinium caudatum in the rumen of sheep already faunated with E. maggii caused a drop in both types of quantified carbohydrates. The content of α-glucans in the rumen of defaunated sheep varied from 4.4 to 19.9mg/g DM and increased to 7.4-29.9 or 11.8-33.9mg/g DM of rumen contents in the presence of only E. maggii or E. maggii and E. caudatum, respectively. The lowest content of the carbohydrates was always found just before feeding and the highest at 4h thereafter. The α-glucans in the reticulum varied 7.5-40.1, 14.3-76.8 or 21.9-106.1mg/g DM of reticulum content for defaunated, monofaunated or bifaunated sheep, respectively. The results indicated that both ciliate species engulf starch granules and convert the digestion products to the glycogen, diminishing the pool of starch available for amylolytic bacteria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. A new index for characterizing micro-bead motion in a flow induced by ciliary beating: Part II, modeling

    PubMed Central

    Bottier, Mathieu; Peña Fernández, Marta; Pelle, Gabriel; Grotberg, James B.

    2017-01-01

    Mucociliary clearance is one of the major lines of defense of the human respiratory system. The mucus layer coating the airways is constantly moved along and out of the lung by the activity of motile cilia, expelling at the same time particles trapped in it. The efficiency of the cilia motion can experimentally be assessed by measuring the velocity of micro-beads traveling through the fluid surrounding the cilia. Here we present a mathematical model of the fluid flow and of the micro-beads motion. The coordinated movement of the ciliated edge is represented as a continuous envelope imposing a periodic moving velocity boundary condition on the surrounding fluid. Vanishing velocity and vanishing shear stress boundary conditions are applied to the fluid at a finite distance above the ciliated edge. The flow field is expanded in powers of the amplitude of the individual cilium movement. It is found that the continuous component of the horizontal velocity at the ciliated edge generates a 2D fluid velocity field with a parabolic profile in the vertical direction, in agreement with the experimental measurements. Conversely, we show than this model can be used to extract microscopic properties of the cilia motion by extrapolating the micro-bead velocity measurement at the ciliated edge. Finally, we derive from these measurements a scalar index providing a direct assessment of the cilia beating efficiency. This index can easily be measured in patients without any modification of the current clinical procedures. PMID:28708866

  11. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  12. Can a fermentation gas mainly produced by rumen Isotrichidae ciliates be a potential source of biohydrogen and a fuel for a chemical fuel cell?

    PubMed

    Piela, Piotr; Michałowski, Tadeusz; Miltko, Renata; Szewczyk, Krzysztof; Sikora, Radosław; Grzesiuk, Elzbieta; Sikora, Anna

    2010-07-01

    Bacteria, fungi and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi, and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol H2 per mol of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of 1.66 kW/m2 (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was 128 W/m3 but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 hours.

  13. Morphogenesis of polycrystalline dendritic patterns from evaporation of a reactive nanofluid sessile drop

    NASA Astrophysics Data System (ADS)

    Wu, Hua; Briscoe, Wuge H.

    2018-04-01

    We report polycrystalline residual patterns with dendritic micromorphologies upon fast evaporation of a mixed-solvent sessile drop containing reactive ZnO nanoparticles. The molecular and particulate species generated in situ upon evaporative drying collude with and modify the Marangoni solvent flows and Bénard-Marangoni instabilities, as they undergo self-assembly and self-organization under conditions far from equilibrium, leading to the ultimate hierarchical central cellular patterns surrounded by a peripheral coffee ring upon drying.

  14. Evaluation of Biofilms and the Effects of Biocides Thereon

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L. (Inventor); Koenig, David W. (Inventor); Mishra, Saroj K. (Inventor)

    2002-01-01

    Biofilm formation is monitored by real-time continuous measurement. Images are formed of sessile cells on a surface and planktonic cells adjacent the surface. The attachment of cells to the surface is measured and quantitated, and sessile and planktonic cells are distinguished using image processing techniques. Single cells as well as colonies are monitored on or adjacent a variety of substrates. Flowing streams may be monitored. The effects of biocides on biofilms commonly isolated from recyclable water systems are measured.

  15. Terrestrial Biological Inventory Degognia and Fountain Bluff Levee and Drainage District and Grand Tower Drainage and Levee District, Jackson County, Illinois.

    DTIC Science & Technology

    1978-08-01

    others. Unusual flowering herbs in the mesic woods community are sessile trillium (Trillium sessile), wild leek (Allium tricoccum), and the deli- cate...provided by herbs , vines, and woody plant seedlings is 40%. Although the South Woods is fairly uniform throughout most of its area, one extensive colony...encountered herbs and they provide the greatest per cent of ground cover. Each species occurred in every one of the sample plots. Rough bedstraw averaged 31.5

  16. Natural products from aquatic eukaryotic microorganisms for cancer therapy: Perspectives on anti-tumour properties of ciliate bioactive molecules.

    PubMed

    Catalani, Elisabetta; Proietti Serafini, Francesca; Zecchini, Silvia; Picchietti, Simona; Fausto, Anna Maria; Marcantoni, Enrico; Buonanno, Federico; Ortenzi, Claudio; Perrotta, Cristiana; Cervia, Davide

    2016-11-01

    Several modern drugs, including those for cancer therapy, have been isolated from natural sources, are based on natural products and its derivatives, or mime natural products. Some of them are in clinical use, others in clinical trials. The success of natural products in drug discovery is related to their biochemical characteristics and to the technologic methods used to study their feature. Natural compounds may acts as chemo-preventive agents and as factors that increase therapeutic efficacy of existing drugs, thus overcoming cancer cell drug resistance that is the main factor determining the failure in conventional chemotherapy. Water environment, because of its physical and chemical conditions, shows an extraordinary collection of natural biological substances with an extensive structural and functional diversity. The isolation of bioactive molecules has been reported from a great variety of aquatic organisms; however, the therapeutic application of molecules from eukaryotic microorganisms remains inadequately investigated and underexploited on a systematic basis. Herein we describe the biological activities in mammalian cells of selected substances isolated from ciliates, free-living protozoa common almost everywhere there is water, focusing on their anti-tumour actions and their possible therapeutic activity. In particular, we unveil the cellular and molecular machine mediating the effects of cell type-specific signalling protein pheromone Er-1 and secondary metabolites, i.e. euplotin C and climacostol, in cancer cells. To support the feasibility of climacostol-based approaches, we also present novel findings and report additional mechanisms of action using both in vitro and in vivo models of mouse melanomas, with the scope of highlighting new frontiers that can be explored also in a therapeutic perspective. The high skeletal chemical difference of ciliate compounds, their sustainability and availability, also through the use of new organic synthesis/modifications processes, and the results obtained so far in biological studies provide a rationale to consider some of them a potential resource for the design of new anti-cancer drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ciliatoxicity in human primary bronchiolar epithelial cells after repeated exposure at the air-liquid interface with native mainstream smoke of K3R4F cigarettes with and without charcoal filter.

    PubMed

    Aufderheide, Michaela; Scheffler, Stefanie; Ito, Shigeaki; Ishikawa, Shinkichi; Emura, Makito

    2015-01-01

    Mucociliary clearance is the primary physical mechanism to protect the human airways against harmful effects of inhaled particles. Environmental factors play a significant role in the impairment of this defense mechanism, whereas cigarette smoke is discussed to be one of the clinically most important causes. Impaired mucociliary clearance in smokers has been connected to changes in ciliated cells such as decreased numbers, altered structure and beat frequency. Clinical studies have shown that cilia length is reduced in healthy smokers and that long-term exposure to cigarette smoke leads to reduced numbers of ciliated cells in mice. We present an in vitro model of primary normal human bronchiolar epithelial (NHBE) cells with in vivo like morphology to study the influence of cigarette mainstream smoke on ciliated cells. We exposed mucociliary differentiated cultures repeatedly to non-toxic concentrations of mainstream cigarette smoke (4 cigarettes, 5 days/week, 8 repetitions in total) at the air-liquid interface. Charcoal filter tipped cigarettes were compared to those being equipped with standard cellulose acetate filters. Histopathological analyses of the exposed cultures showed a reduction of cilia bearing cells, shortening of existing cilia and finally disappearance of all cilia in cigarette smoke exposed cells. In cultures exposed to charcoal filtered cigarette smoke, little changes in cilia length were seen after four exposure repetitions, but those effects were reversed after a two day recovery period. Those differences indicate that volatile organic compounds, being removed by the charcoal filter tip, affect primary bronchiolar epithelial cells concerning their cilia formation and function comparable with the in vivo situation. In conclusion, our in vitro model presents a valuable tool to study air-borne ciliatoxic compounds. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  18. Expression and functional characterization of a C-7 cholesterol desaturase from Tetrahymena thermophila in an insect cell line.

    PubMed

    Poklepovich, Tomas J; Urtasun, Nicolás; Miranda, María V; Nusblat, Alejandro D; Nudel, Clara B

    2015-04-01

    Tetrahymena thermophila transforms exogenous cholesterol into pro-vitamin D3 (7-dehydrocholesterol) with remarkable efficiency in a one-step reaction carried out by a C-7 cholesterol desaturase. The enzyme DES7 is encoded by the gene TTHERM_00310640, identified with RNAi and gene knock-out experiments, but has not yet been heterologously expressed actively in any organism. A model derived from its amino acid sequence classified DES7p as a Rieske-type oxygenase with transmembrane localization. The protein has catalytic activity, sequence and topological similarity to DAF-36/Neverland proteins involved in the synthesis of steroid hormones in insects and nematodes. Due to their structural and functional similarity, we analyzed the expression of a codon optimized DES7 gene from Tetrahymena in the insect Sf9 cell line, identified and measured the steroid metabolites formed, and extended the actual knowledge on its localization. We found that the accumulation of 7-dehydrocholesterol could be increased 16-40-fold in Spodopterafrugiperda, depending on physiological conditions, by overexpression of T. thermophila DES7. The protein was detected in the microsomal fraction, in accordance with previous reports. Although the electron transfer chain for Des7p/DAF-36/Neverland Rieske-type oxygenases is presently unknown, we identified possible donors in the ciliate and insect genomes by bioinformatic analysis. In spite of the large evolutionary distance between S. frugiperda and T. thermophila, the results indicate that there is significant functional conservation of the electron donors, since the ciliate's sterol desaturase can function in the context of the insect electron transport system. The results achieved demonstrate that DES7 is the first gene from a ciliate, coding for a microsomal enzyme, expressed in active form in an insect cell line. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Sessile Serrated Polyps: Detection, Eradication, and Prevention of the Evil Twin

    PubMed Central

    Obuch, Joshua C.; Pigott, Courtney M.; Ahnen, Dennis J.

    2015-01-01

    Opinion Statement The sessile serrated polyp (SSP), also known as sessile serrated adenoma, is the evil twin among the colorectal cancer precursors. As will be described, these lesions have multiple aliases (serrated adenoma, serrated polyp or serrated lesion among others), they hang out in a bad neighborhood (the poorly prepped right colon), they hide behind a mask of mucus, they are difficult for witnesses (pathologists) to identify, they are difficult for police (endoscopists) to find, they are difficult to permanently remove from society (high incomplete resection rate), they can be impulsive (progress rapidly to CRC) and enforcers (gastroenterologists) don’t know how best to control them (uncertain surveillance recommendations). There is no wonder that there is a need to understand these lesions well, learn how best to prevent the colonic mucosa from going down this errant path or, if that fails, to detect these deviants and eradicate them from colonic society. These lesions should be on the endoscopists’ most wanted list. PMID:25623474

  20. Study program to develop and evaluate die and container materials for the growth of silicon ribbons

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Initial sessile drop experiments on SiC, Si3N4 and A1N were conducted. Very promising results were achieved on both SiC and Si3N4 where minimal penetration of these CNTD coatings by molten silicon was observed. More detailed characterization of the CNTD microstructures was accomplished as well as X-ray characterization of the third and fourth candidate materials system sets (i.e. A1N and altered Si3N4). Polished sections of post sessile drop specimens were also prepared and evaluated. The techniques of full scale crucible hot pressing were developed and die grinding development was initiated. The apparatus for measurement of oxygen partial pressure was reconstructed and calibrated. The sessile drop temperature measurement procedure was calibrated for absorption by the pyrex view-port and additional Auger electron analysis was performed at the interface of molten silicon with CNTD Si3N4 and A1N.

  1. Development of graphite/copper composites utilizing engineered interfaces. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.

    1991-01-01

    In situ measurements of graphite/copper alloy contact angles were made using the sessile drop method. The interfacial energy values obtained from these measurements were then applied to a model for the fiber matrix interfacial debonding phenomenon found in graphite/copper composites. The formation obtained from the sessile drop tests led to the development of a copper alloy that suitably wets graphite. Characterization of graphite/copper alloy interfaces subjected to elevated temperatures was conducted using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Auger Electron Spectroscopy, and X Ray Diffraction analyses. These analyses indicated that during sessile drop tests conducted at 1130 C for 1 hour, copper alloys containing greater than 0.98 at pct chromium form continuous reaction layers of approx. 10 microns in thickness. The reaction layers are adherent to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 deg or less. X ray diffraction results indicate that the reaction layer is Cr3C2.

  2. Evaluation of sessile microorganisms in pipelines and cooling towers of some Iranian industries

    NASA Astrophysics Data System (ADS)

    Setareh, M.; Javaherdashti, R.

    2006-02-01

    Microbiologically influenced corrosion (MIC) is a kind of electrochemical corrosion that is enhanced by the effect of certain microorganisms including sessile bacteria. In this investigation, more than 200 samples collected from different systems of Iranian refineries have been examined (by culturing methods and observations) for corrosion-enhancing, biofilm-producing microorganisms such as sulfate-reducing bacteria (SRB), iron-oxidizing bacteria (IOB), heterotrophic biofilm-forming bacteria (HBB), and some eukaryotes such as fungi. This study showed the presence of microorganisms, such as SRB, HBB, thermophillic HBB, and yeasts, except for IOB. It was also revealed that biocides are used to reduce the number of planktonic (floating) bacteria, instead of the number of sessile bacteria, that form biofilms. Using surfactants, or washing with chemicals like chlorine or organic acids in overhauls, may destroy the biofilm and free the residential bacteria into the bulk solution, thus exposing them to the biocide. For thick biofilms, a chlorine or acid wash may also yield the same results.

  3. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    DOE PAGES

    Geist, D.; Gammer, C.; Rentenberger, C.; ...

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocationmore » reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.« less

  4. Effects of pulse versus steady recruitment on sessile marine communities.

    PubMed

    Sams, Michael A; Keough, Michael J

    2012-09-01

    Variation in patterns of propagule establishment (recruitment) has important effects on population dynamics and the structure of some communities. Most experimental studies have varied recruitment by changing the nature of a single event early in community development, but recruitment can also vary from steady rates of arrival to highly episodic 'pulse' events, causing differences in the temporal spacing of individuals recruiting into patches. We examined whether two different temporal patterns of recruitment of sessile invertebrates affected temperate marine communities in southeastern Australia in two experiments that were run at different times at the same site and that manipulated several different species. Target species entered communities as either a single pulse of recruits within a 2-week period or steady input of the same total number of recruits over a longer time period (5-6 weeks). The pattern of recruitment had variable effects on community structure. The colonial ascidian Botryllus schlosseri did not have a strong influence on community structure whether it recruited in a single pulse or steadily. The cover of B. schlosseri was higher when recruitment occurred as a single pulse. In a second experiment, botryllid ascidians caused changes in the composition of communities when they recruited steadily compared to when they did not recruit or didemnids recruited, but caused no differences in communities when they recruited in a shorter pulse. In contrast, recruitment frequency of didemnid ascidians had little effect, though their presence/absence caused community differences. Though we found that different temporal recruitment patterns can alter community composition, the life history and ecology of particular taxa as well as differences in environmental background processes are likely to influence the strength of these effects.

  5. Epinigericin toxicity towards Tetrahymena pyriformis GL; changes in cell volume and intracellular pH.

    PubMed

    Bamdad, M; David, L; Grolière, C A

    1995-12-01

    A study of the toxicity of epinigericin, an antibiotic ionophor, towards the ciliate Tetrahymena pyriformis showed that this molecule stopped cell division, increased cell volume and led to a more basic intracellular pH. The action of epinigericin was probably linked to its function as an ionophor. The ionic selectivity of this molecule is still not known. The raising of the intracellular pH of ciliates by this antibiotic may be linked to its toxic action and its iontransport mechanism in Tetrahymena.

  6. Ciliates and the rare biosphere: a review.

    PubMed

    Dunthorn, Micah; Stoeck, Thorsten; Clamp, John; Warren, Alan; Mahé, Frédéric

    2014-01-01

    Here we provide a brief review of the rare biosphere from the perspective of ciliates and other microbial eukaryotes. We trace research on rarity from its lack of much in-depth focus in morphological and Sanger sequencing projects, to its central importance in analyses using high throughput sequencing strategies. The problem that the rare biosphere is potentially comprised of mostly errors is then discussed in the light of asking community-comparative, novel-diversity, and ecosystem-functioning questions. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  7. Uterine epithelial changes during placentation in the viviparous skink Eulamprus tympanum.

    PubMed

    Adams, Susan M; Lui, Sylvia; Jones, Susan M; Thompson, Michael B; Murphy, Christopher R

    2007-05-01

    We used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to describe the complete ontogeny of simple placentation and the development of both the yolk sac placentae and chorioallantoic placentae from nonreproductive through postparturition phases in the maternal uterine epithelium of the Australian skink, Eulamprus tympanum. We chose E. tympanum, a species with a simple, noninvasive placenta, and which we know, has little net nutrient uptake during gestation to develop hypotheses about placental function and to identify any difference between the oviparous and viviparous conditions. Placental differentiation into the chorioallantoic placenta and yolk sac placenta occurs from embryonic Stage 29; both placentae are simple structures without specialized features for materno/fetal connection. The uterine epithelial cells are not squamous as previously described by Claire Weekes, but are columnar, becoming increasingly attenuated because of the pressure of the impinging underlying capillaries as gestation progresses. When the females are nonreproductive, the luminal uterine surface is flat and the microvillous cells that contain electron-dense vesicles partly obscure the ciliated cells. As vitellogenesis progresses, the microvillous cells are less hypertrophied than in nonreproductive females. After ovulation and fertilization, there is no regional differentiation of the uterine epithelium around the circumference of the egg. The first differentiation, associated with the chorioallantoic placentae and yolk sac placentae, occurs at embryonic Stage 29 and continues through to Stage 39. As gestation proceeds, the uterine chorioallantoic placenta forms ridges, the microvillous cells become less hypertrophied, ciliated cells are less abundant, the underlying blood vessels increase in size, and the gland openings at the uterine surface are more apparent. In contrast, the yolk sac placenta has no particular folding with cells having a random orientation and where the microvillous cells remain hypertrophied throughout gestation. However, the ciliated cells become less abundant as gestation proceeds, as also seen in the chorioallantoic placenta. Secretory vesicles are visible in the uterine lumen. All placental differentiation and cell detail is lost at Stage 40, and the uterine structure has returned to the nonreproductive condition within 2 weeks. Circulating progesterone concentrations begin to rise during late vitellogenesis, peak at embryonic Stages 28-30, and decline after Stage 35 in the later stages of gestation. The coincidence between the time of oviposition and placental differentiation demonstrates a similarity during gestation in the uterus between oviparous and simple placental viviparous squamates. (c) 2007 Wiley-Liss, Inc.

  8. Influence of Culture Media on Biofilm Formation by Candida Species and Response of Sessile Cells to Antifungals and Oxidative Stress

    PubMed Central

    Serrano-Fujarte, Isela; Reyna-López, Georgina Elena; Martínez-Gámez, Ma. Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient. PMID:25705688

  9. Comparison of bioreactors with different kinds of submerged packed beds for domestic wastewater treatment.

    PubMed

    Nacheva, P Mijaylova; Moeller Chávez, G; Bustos, C; Garzón Zúñiga, M A; Hornelas Orozco, Y

    2008-01-01

    The performance of aerobic submerged packed bed reactors was studied for the treatment of domestic wastewater using different kinds of packing materials with high specific areas (760-1,200 m(2)/m(3)). The tested materials were ceramic spheres, crushed tezontle, grains of high density polyethylene (HDPE), of low density polyethylene (LDPE) and of polypropylene (PP), cubes of polyurethane (PU) and polyethylene tape (SESSIL). The bioreactors were operated in continuous regime, applying organic loads in the range of 0.8-6.0 g COD.m(-2).d(-1). The obtained specific COD removal rates were very similar in all the reactors when they were operated at organic loads up to 2.0 g COD.m(-2).d(-1), after which differences in effectiveness appeared and the best results were determined in the reactors with SESSIL, LDPE and PU. Very low TSS, O&G and turbidity were obtained in all the effluents. The NH(3)-N and TN removals were dependent on the dissolved oxygen (DO) concentration and the removals at DO of 5 mg/l were 84-99% and 61-74% respectively. The best removals were determined in the reactors with PU, SESSIL and LDPE. The reactor with tezontle had also a good performance when operated with loads up to 1.0 g TN.m(-2).d(-1). The best phosphate removals (38-49%) were obtained in the reactors with PU, tezontle, ceramic sheres and SESSIL. (c) IWA Publishing 2008.

  10. Lotka-Volterra competition models for sessile organisms.

    PubMed

    Spencer, Matthew; Tanner, Jason E

    2008-04-01

    Markov models are widely used to describe the dynamics of communities of sessile organisms, because they are easily fitted to field data and provide a rich set of analytical tools. In typical ecological applications, at any point in time, each point in space is in one of a finite set of states (e.g., species, empty space). The models aim to describe the probabilities of transitions between states. In most Markov models for communities, these transition probabilities are assumed to be independent of state abundances. This assumption is often suspected to be false and is rarely justified explicitly. Here, we start with simple assumptions about the interactions among sessile organisms and derive a model in which transition probabilities depend on the abundance of destination states. This model is formulated in continuous time and is equivalent to a Lotka-Volterra competition model. We fit this model and a variety of alternatives in which transition probabilities do not depend on state abundances to a long-term coral reef data set. The Lotka-Volterra model describes the data much better than all models we consider other than a saturated model (a model with a separate parameter for each transition at each time interval, which by definition fits the data perfectly). Our approach provides a basis for further development of stochastic models of sessile communities, and many of the methods we use are relevant to other types of community. We discuss possible extensions to spatially explicit models.

  11. Influence of culture media on biofilm formation by Candida species and response of sessile cells to antifungals and oxidative stress.

    PubMed

    Serrano-Fujarte, Isela; López-Romero, Everardo; Reyna-López, Georgina Elena; Martínez-Gámez, Ma Alejandrina; Vega-González, Arturo; Cuéllar-Cruz, Mayra

    2015-01-01

    The aims of the study were to evaluate the influence of culture media on biofilm formation by C. albicans, C. glabrata, C. krusei, and C. parapsilosis and to investigate the responses of sessile cells to antifungals and reactive oxygen species (ROS) as compared to planktonic cells. For biofilm formation, the Candida species were grown at different periods of time in YP or YNB media supplemented or not with 0.2 or 2% glucose. Sessile and planktonic cells were exposed to increasing concentrations of antifungals, H2O2, menadione or silver nanoparticles (AgNPs). Biofilms were observed by scanning electron microscopy (SEM) and quantified by the XTT assay. C. albicans formed biofilms preferentially in YPD containing 2% glucose (YPD/2%), C. glabrata in glucose-free YNB or supplemented with 0.2% glucose (YNB/0.2%), while C. krusei and C. parapsilosis preferred YP, YPD/0.2%, and YPD/2%. Interestingly, only C. albicans produced an exopolymeric matrix. This is the first report dealing with the in vitro effect of the culture medium and glucose on the formation of biofilms in four Candida species as well as the resistance of sessile cells to antifungals, AgNPs, and ROS. Our results suggest that candidiasis in vivo is a multifactorial and complex process where the nutritional conditions, the human immune system, and the adaptability of the pathogen should be considered altogether to provide an effective treatment of the patient.

  12. Marangoni Effect on the Shape of Freely Receding Evaporating Sessile Droplets of Perfectly Wetting Liquids

    NASA Astrophysics Data System (ADS)

    Tsoumpas, Yannis; Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-11-01

    Freely receding evaporating sessile droplets of perfectly wetting liquids (HFE-7100, 7200 and 7500), with small finite contact angles induced by evaporation, are studied with a Mach-Zehnder interferometer. Surprisingly, the experimentally obtained profiles turn out to deviate from the classical macroscopic static shape of a sessile droplet (as determined by gravity and capillarity), often used when modeling evaporating droplets. These deviations can be seen in two ways. Namely, either the droplet appears to be inflated as compared to the classical static shape assuming the same contact angle and contact radius, or the apparent contact angle appears lower than the classical static one assuming the same volume and contact radius. In reality, the experimental profiles exhibit a local decrease of the slope near the contact line, which we attribute to the Marangoni effect in an evaporating sessile droplet. In this case, the radially inward (along the liquid-air interface) direction of the flow delivers more liquid to the center of the droplet making it appear inflated. When the Marangoni effect is weak, as in the case of the poorly volatile HFE-7500, no significant influence is noticed on the drop shape. The experimental results are compared with the predictions of a lubrication-type theoretical model that incorporates the evaporation-induced Marangoni flow. Financial support of FP7 Marie Curie MULTIFLOW Network (PITN-GA-2008-214919), ESA/BELSPO-PRODEX, BELSPO- μMAST (IAP 7/38) & FRS-FNRS is gratefully acknowledged.

  13. Multispecies lottery competition: a diffusion analysis

    USGS Publications Warehouse

    Hatfield, J.S.; Chesson, P.L.; Tuljapurkar, S.; Caswell, H.

    1997-01-01

    The lottery model is a stochastic competition model designed for space-limited communities of sedentary organisms. Examples of such communities include coral reef fishes, aquatic sessile organisms, and many plant communities. Explicit conditions for the coexistence of two species and the stationary distribution of the two-species model were determined previously using an approximation with a diffusion process. In this chapter, a diffusion approximation is presented for the multispecies model for communities of two or more species, and a stage-structured model is investigated. The stage-structured model would be more reasonable for communities of long-lived species such as trees in a forest in which recruitment and death rates depend on the age or stage of the individuals.

  14. The effect of temperature, matrix alloying and substrate coatings on wettability and shear strength of Al/Al2O3 couples

    NASA Astrophysics Data System (ADS)

    Sobczak, N.; Ksiazek, M.; Radziwill, W.; Asthana, R.; Mikulowski, B.

    2004-03-01

    A fresh approach has been advanced to examine in the Al/Al2O3 system the effects of temperature, alloying of Al with Ti or Sn, and Ti and Sn coatings on the substrate, on contact angles measured using a sessile-drop test, and on interface strength measured using a modified push-off test that allows shearing of solidified droplets with less than 90 deg contact angle. In the modified test, the solidified sessile-drop samples are bisected perpendicular to the drop/Al2O3 interface at the midplane of the contact circle to obtain samples that permit bond strength measurement by stress application to the flat surface of the bisected couple. The test results show that interface strength is strongly influenced by the wetting properties; low contact angles correspond to high interface strength, which also exhibits a strong temperature dependence. An increase in the wettability test temperature led to an increase in the interface strength in the low-temperature range where contact angles were large and wettability was poor. The room-temperature shear tests conducted on thermally cycled sessile-drop test specimens revealed the effect of chemically formed interfacial oxides; a weakening of the thermally cycled Al/Al2O3 interface was caused under the following conditions: (1) slow contact heating and short contact times in the wettability test, and (2) fast contact heating and longer contact times. The addition of 6 wt pct Ti or 7 wt pct Sn to Al only marginally influenced the contact angle and interfacial shear strength. However, Al2O3 substrates having thin (<1 µm) Ti coatings yielded relatively low contact angles and high bond strength, which appears to be related to the dissolution of the coating in Al and formation of a favorable interface structure.

  15. Evaporation of sessile drops containing colloidal rods: coffee-ring and order-disorder transition.

    PubMed

    Dugyala, Venkateshwar Rao; Basavaraj, Madivala G

    2015-03-05

    Liquid drops containing insoluble solutes when dried on solid substrates leave distinct ring-like deposits at the periphery or along the three-phase contact line-a phenomena popularly known as the coffee-ring or the coffee stain effect. The formation of such rings as well as their suppression is shown to have applications in particle separation and disease diagnostics. We present an experimental study of the evaporation of sessile drops containing silica rods to elucidate the structural arrangement of particles in the ring, an effect of the addition of surfactant and salt. To this end, the evaporation of aqueous sessile drops containing model rod-like silica particles of aspect ratio ranging from ∼4 to 15 on a glass slide is studied. We first show that when the conditions such as (1) solvent evaporation, (2) nonzero contact angle, (3) contact line pinning, (4) no surface tension gradient driven flow, and (5) repulsive particle-particle/particle-substrate interactions, that are necessary for the formation of the coffee-ring are met, the suspension drops containing silica rods upon evaporation leave a ring-like deposit. A closer examination of the ring deposits reveals that several layers of silica rods close to the edge of the drop are ordered such that the major axis of the rods are oriented parallel to the contact line. After the first few layers of ordered arrangement of particles, a random arrangement of particles in the drop interior is observed indicating an order-disorder transition in the ring. We monitor the evolution of the ring width and particle velocity during evaporation to elucidate the mechanism of the order-disorder transition. Moreover, when the evaporation rate is lowered, the ordering of silica rods is observed to extend over large areas. We demonstrate that the nature of the deposit can be tuned by the addition of a small quantity of surfactant or salt.

  16. Biodiversity of Spongosorites coralliophaga (Stephens, 1915) on coral rubble at two contrasting cold-water coral reef settings

    NASA Astrophysics Data System (ADS)

    Kazanidis, Georgios; Henry, Lea-Anne; Roberts, J. Murray; Witte, Ursula F. M.

    2016-03-01

    Cold-water coral reefs (CWRs) in the northeast Atlantic harbor diverse sponge communities. Knowledge of deep-sea sponge ecology is limited and this leaves us with a fragmented understanding of the ecological roles that sponges play in CWR ecosystems. We present the first study of faunal biodiversity associated with the massive demosponge Spongosorites coralliophaga (Stephens, 1915) that typically colonizes coral debris fields of CWRs. Our study focused on the sessile fauna inhabiting sponges mixed with coral rubble at two contrasting settings in the northeast Atlantic: the shallow inshore (120-190 m water depth) Mingulay Reef Complex (MRC) and the deep offshore (500-1200 m) Logachev Mound (LM) coral province. MRC is dominated by the scleractinian Lophelia pertusa, while LM is dominated by L. pertusa and Madrepora oculata. Nine sponge-coral rubble associations were collected from MRC and four from LM. Measurements of abundance, species richness, diversity, evenness, dry biomass, and composition of sessile fauna on sponge and coral rubble microhabitats were undertaken. Differences in community composition between the two regions were mainly a response to changes in fauna with depth. Fauna composition was also different between sponge and coral rubble within each region. Infauna constituted a minor component of the sponge-associated fauna in MRC but had a higher contribution in LM. Sponge and coral rubble sessile fauna in both regions was mainly composed of cnidarians and molluscs, similarly to some previous studies. Sponges' outer surfaces at MRC were colonized by a species-rich community with high abundance and biomass suggesting that S. coralliophaga at MRC acts as a settlement surface for various organisms but such a role is not the case at LM. This difference in the role of S. coralliophaga as a biological structure is probably related to differences in fauna composition with depth, bottom current speed, and the quantity/quality of food supplied to the benthos.

  17. [The staphylococcal enterotoxin burden determines the ultrastructure of ciliated epithelia and inflammatory changes in maxillary sinus mucosa of rabbits].

    PubMed

    Wei, Hongqi; Zhu, Zhengwen; Cao, Zhongsheng; Liu, Zhiyong; Wu, Xiaofan; Yuan, Hui

    2014-12-01

    To investigate the ultrastructure of ciliated epithelia and inflammatory changes upon repeated exposure to staphylococcal enterotoxin A (SEA) of different concentrations in the maxillary sinus mucosa of rabbits. The rabbits were randomly divided into 2 groups (24 rabbits per group): low-dose SEA group and high-dose SEA group. The low-dose SEA group and high-dose SEA group received daily injections of 0.6 ng of SEA (2 ml) and 60 ng of SEA (2 ml) into the left maxillary sinus of rabbits for 28 days, respectively. Concurrent treatment of the right maxillary sinus with normal saline was used as control. Six rabbits chosen randomly in two groups were examined by computed tomography (CT) scans and then sacrificed to obtain the sinus mucosa from the two-side of maxillary sinuses for histological assessment on days 3, 7, 14 and 28. To characterize the inflammatory changes of the sinus mucosa examined using light microscope, hematoxylin and eosin (HE) and toluidine blue staining was performed. Scanning and transmission electron microscopy were performed to observe ultrastructure of ciliated epithelia in the maxillary sinus mucosa. SPSS 13.0 software was used to analyze the data. On days 14 and 28, CT images showed opacification of the left maxillary sinus in the high-dose SEA group. The percentage of epithelial disruption was (22.73 ± 5.72) % and (30.79 ± 4.30)% in the high-dose SEA group respectively, and were significantly greater than those in the low-dose SEA group (5.12% ± 1.98% and 5.38% ± 1.64%, q value was 10.079 and 19.132) and control group (4.08% ± 1.29% and 4.81% ± 1.62%, q value was 11.016 and 19.592, respectively, all P < 0.01). The subepithelial thickness in the high-dose SEA group was (113.34 ± 14.81)µm and (120.86 ± 12.35) µm respectively, and were significantly different from those of the low-dose SEA group [(71.08 ± 10.39)µm and (81.63 ± 9.32)µm, q value was 8.090 and 8.782] and control group [(37.45 ± 7.67)µm and (38.79 ± 7.68)µm, q value was 15.759 and 19.541, all P < 0.01]. Viewed under the electron microscope, loss of cilia was observed, a few compound cilia and cytoplasmic protrusion were found, an obvious stretching of the endoplasmic reticulum and an obvious turgescence of the mitochondria was also observed. However, in the low-dose SEA group on days 14 and 28, CT scan of the left maxillary sinus showed transparency; light microscopy observations of the maxillary sinus mucosa showed the number of eosinophils was markedly increased as compared with the high-dose SEA and control groups, the differences were significant (q value was 5.871 and 6.766 on day 14, and q value was 7.572 and 8.970 on day 28, respectively, all P < 0.05). But no significant differences were observed in epithelial disruption between the low-dose SEA and the control groups on days 14 and 28 (q value was 1.512 and 0.859 respectively, all P > 0.05); inordinate array and adhesion of cilia was observed, but cilia loss, compound cilia, cytoplasmic protrusions, mitochondrial swelling and endoplasmic reticulum stretching were not found. SEA may induce allergic inflammation of the sinus mucosa without damaging the structure of ciliated epithelia at low concentration. Whereas SEA impairs the structure of mitochondria and endoplasmic reticulum in ciliated epithelial cells at high concentration, and results in cilia loss and epithelial disruption, which may be one of the main reasons to induce acute sinusitis.

  18. A model of tephra dispersal from an early Palaeogene shallow submarine Surtseyan-style eruption(s), the Red Bluff Tuff Formation, Chatham Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Sorrentino, Leonor; Stilwell, Jeffrey D.; Mays, Chris

    2014-03-01

    The Red Bluff Tuff Formation, an early Palaeogene volcano-sedimentary shallow marine succession from the Chatham Islands (New Zealand), provides a unique framework, in eastern 'Zealandia', to explore tephra dispersal processes associated with ancient small phreatomagmatic explosions (i.e. Surtseyan-style eruptions). Detailed sedimentological mapping, logging and sampling integrated with the results of extensive laboratory analyses (i.e. grain-size, componentry and applied palaeontological methods) elucidated the complex mechanisms of transport and deposition of nine identified resedimented fossiliferous volcaniclastic facies. These facies record the subaqueous reworking and deposition of tephra from the erosion and degradation of a proximal, entirely submerged ancient Surtseyan volcanic edifice (Cone II). South of this volcanic cone, the lowermost distal facies provides significant evidence of deposition as water-supported volcanic- or storm-driven mass flows (e.g. turbidity currents and mud/debris flows) of volcaniclastic and bioclastic debris, whereas the uppermost distal facies exhibit features of tractional sedimentary processes caused by shallow subaqueous currents. Further north, within the proximity of the volcanic edifice, the uppermost facies are represented by an abundant, diverse, large, and well preserved in situ fauna of shallow marine sessile invertebrates (e.g. corals and sponges) that reflect the protracted biotic stabiliszation and rebound following pulsed volcanic events. Over a period of time, these stable and wave-eroded volcanic platforms were inhabited by a flourishing and diversifying marine community of benthic and sessile pioneers (corals, bryozoans, molluscs, brachiopods, barnacles, sponges, foraminifera, etc.). This succession exhibits a vertical progression of sedimentary structures (i.e. density, cohesive and mass flows, and cross-bedding) and our interpretations indicate a shallowing upwards succession. This study reports for the first time mechanisms of degradation of a Surtseyan volcano on Chatham Islands and contributes to a better understanding of complex ancient volcano-sedimentary subaqueous terrains. This model of deposition (i.e. onlapping/overlapping features onto the remains of volcanic edifice(s), a vertical transition of structures from deeper- to shallower-marine environments, disaster faunas and subsequent preferential colonisation of diverse biota, including large in situ sessile invertebrates, on the summit), characterises an extraordinary example to be applied to other ancient subaqueous volcanic environments.

  19. A novel mitochondrial nuclease-associated protein: a major executor of the programmed nuclear death in Tetrahymena thermophila.

    PubMed

    Osada, Eriko; Akematsu, Takahiko; Asano, Tomoya; Endoh, Hiroshi

    2014-03-01

    Programmed nuclear death (PND) in the ciliate Tetrahymena is an apoptosis-like phenomenon that occurs in a restricted space of cytoplasm during conjugation. In the process, only the parental macronucleus is selectively eliminated from the progeny cytoplasm, in conjunction with differentiation of new macronuclei for the next generation. For the last decade, mitochondria have been elucidated to be a crucial executioner like apoptosis: apoptosis-inducing factor and yet-unidentified nucleases localised in mitochondria are major factors for PND. To identify such nucleases, we performed a DNase assay in a PAGE (SDS-DNA-PAGE) using total mitochondrial proteins. Some proteins showed DNase activity, but particularly a 17 kDa protein exhibited the highest and predominant activity. Mass spectrometric analysis revealed a novel mitochondrial nuclease, named TMN1, whose homologue has been discovered only in the ciliate Paramecium tetraurelia, but not in other eukaryotes. Gene disruption of TMN1 led to a drastic reduction of mitochondrial nuclease activity and blocked nuclear degradation during conjugation, but did not affect accumulation of autophagic and lysosomal machinery around the parental macronucleus. These observations strongly suggest that the mitochondrial nuclease-associated protein plays a key role in PND as a major executor. Taking the novel protein specific to ciliates in consideration, Tetrahymena would have diverted a different protein from common apoptotic factors shared in eukaryotes to PND in the course of ciliate evolution. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  20. Planktonic microbial community responses to added copper.

    PubMed

    Le Jeune, Anne-Hélène; Charpin, Marie; Sargos, Denis; Lenain, Jean-François; Deluchat, Véronique; Ngayila, Nadine; Baudu, Michel; Amblard, Christian

    2007-07-20

    It is generally agreed that autotrophic organisms and especially phytoplanktonic species can be harmed by copper through its effect on photosystem. However, the impact of copper on other components of the pelagic food web, such as the microbial loop (autotrophic and heterotrophic picoplankton, pigmented and non-pigmented flagellates and ciliates) has received little attention. Indoor experiments were conducted to evaluate the direct and indirect effects of copper, supplied in the range of concentrations used to control cyanobacteria growth in ponds, on non-targeted organisms of natural microbial loop communities sampled in spring and summer. Two copper concentrations were tested (80microgL(-1) and 160microgL(-1) final concentrations), set, respectively, below and above the ligand binding capacity of the water samples. Both caused a significant decrease in the biomass and diversity of pigmented organisms (picophytoplankton and pigmented flagellates). Conversely, the heterotrophic bacterioplankton and the heterotrophic flagellates did not seem to be directly affected by either copper treatment in terms of biomass or diversity, according to the descriptor chosen. The ciliate biomass was significantly reduced with increasing copper concentrations, but differences in sensitivity appeared between spring and summer communities. Potential mixotrophic and nanoplanktorivorous ciliates appeared to be more sensitive to copper treatments than bacterivorous ciliates, suggesting a stronger direct and (or) indirect effect of copper on the former. Copper sulphate treatments had a significant restructuring effect on the microbial loop communities, resulting in a dominance of heterotrophic bacterioplankton among microbial microorganisms 27 days after the beginning of the treatment. The spring microbial communities exhibited a greater sensitivity than the summer communities with respect to their initial compositions.

  1. Histophagous ciliate Pseudocollinia brintoni and bacterial assemblage interaction with krill Nyctiphanes simplex. I. Transmission process.

    PubMed

    Gómez-Gutiérrez, Jaime; López-Cortés, Alejandro; Aguilar-Méndez, Mario J; Del Angel-Rodríguez, Jorge A; Tremblay, Nelly; Zenteno-Savín, Tania; Robinson, Carlos J

    2015-10-27

    Histophagous ciliates of the genus Pseudocollinia cause epizootic events that kill adult female krill (Euphausiacea), but their mode of transmission is unknown. We compared 16S rRNA sequences of bacterial strains isolated from stomachs of healthy krill Nyctiphanes simplex specimens with sequences of bacterial isolates and sequences of natural bacterial communities from the hemocoel of N. simplex specimens infected with P. brintoni to determine possible transmission pathways. All P. brintoni endoparasitic life stages and the transmission tomite stage (outside the host) were associated with bacterial assemblages. 16S rRNA sequences from isolated bacterial strains showed that Photobacterium spp. and Pseudoalteromonas spp. were dominant members of the bacterial assemblages during all life phases of P. brintoni and potential pathobionts. They were apparently unaffected by the krill's immune system or the histophagous activity of P. brintoni. However, other bacterial strains were found only in certain P. brintoni life phases, indicating that as the infection progressed, microhabitat conditions and microbial interactions may have become unfavorable for some strains of bacteria. Trophic infection is the most parsimonious explanation for how P. brintoni infects krill. We estimated N. simplex vulnerability to P. brintoni infection during more than three-fourths of their life span, infecting mostly adult females. The ciliates have relatively high prevalence levels (albeit at <10% of sampled stations) and a short life cycle (estimated <7 d). Histophagous ciliate-krill interactions may occur in other krill species, particularly those that form dense swarms and attain high population densities that potentially enhance trophic transmission and allow completion of the Pseudocollinia spp. life cycle.

  2. Larval spicules, cilia, and symmetry as remnants of indirect development in the direct developing sea urchin Heliocidaris erythrogramma.

    PubMed

    Emlet, R B

    1995-02-01

    Nonfeeding larvae of the echinoid Heliocidaris erythrogramma were raised in culture and examined for expression of a larval skeleton and for the arrangement of the ciliated band. Opaque larvae were fixed, cleared, and examined under polarized light for evidence of calcification. By 35 hr after fertilization (at 22 degrees C), a pair of triradiate spicules was present at the posterior end of the larvae. Each member of this pair formed a fenestrated spicule as it grew laterally. This pair and another pair which formed subsequently, were arranged across a plane of bilateral symmetry orthagonal to the juvenile oral aboral axis. These paired larval spicules can be identified as reduced expressions of postoral and posterodorsal rods found in plutei, and their expression indicates that the juvenile rudiment of H. erythrogramma forms on the left side and that larval body axes are conserved in this modified larva. By 44 hr the ciliated band formed as an incomplete transverse loop of three segments at the posterior end and on the dorsal surface of the ovoid larva. Cilia in these segments grew to lengths of 45-50 microns, longer than other swimming and feeding cilia reported for echinoderm larvae. Band segments are interpreted as expressions of epaulettes (specialized swimming bands) rather than the feeding ciliated band of the pluteus. The ciliated band segments and the larval spicules are both bilaterally symmetrical with respect to the same plane and indicate conserved larval bilateral symmetry despite the major asymmetry of the fates of cells on either side of this plane in their contribution to juvenile development.

  3. Rootletin interacts with C-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells.

    PubMed

    Yang, Jun; Adamian, Michael; Li, Tiansen

    2006-02-01

    Rootletin, a major structural component of the ciliary rootlet, is located at the basal bodies and centrosomes in ciliated and nonciliated cells, respectively. Here we investigated its potential role in the linkage of basal bodies/centrioles and the mechanism involved in such linkages. We show that rootletin interacts with C-Nap1, a protein restricted at the ends of centrioles and functioning in centrosome cohesion in interphase cells. Their interaction in vivo is supported by their colocalization at the basal bodies/centrioles and coordinated association with the centrioles during the cell cycle. Ultrastructural examinations demonstrate that rootletin fibers connect the basal bodies in ciliated cells and are present both at the ends of and in between the pair of centrioles in nonciliated cells. The latter finding stands in contrast with C-Nap1, which is present only at the ends of the centrioles. Transient expression of C-Nap1 fragments dissociated rootletin fibers from the centrioles, resulting in centrosome separation in interphase. Overexpression of rootletin in cells caused multinucleation, micronucleation, and irregularity of nuclear shape and size, indicative of defects in chromosome separation. These data suggest that rootletin may function as a physical linker between the pair of basal bodies/centrioles by binding to C-Nap1.

  4. Stress and Protists: No life without stress.

    PubMed

    Slaveykova, Vera; Sonntag, Bettina; Gutiérrez, Juan Carlos

    2016-08-01

    We report a summary of the symposium "Stress and Protists: No life without stress", which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation - induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Stress and Protists: No life without stress

    PubMed Central

    Slaveykova, Vera; Sonntag, Bettina; Gutiérrez, Juan Carlos

    2017-01-01

    We report a summary of the symposium “Stress and Protists: No life without stress”, which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation – induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics. PMID:27365178

  6. Density and diversity of protozoa in some arid Australian soils.

    PubMed

    Robinson, Bret S; Bamforth, Stuart S; Dobson, Philip J

    2002-01-01

    This is the first extensive study of soil protozoa of arid lands. Twenty-six samples from litters, soils, termitaria, and a cyanobacterial crust, collected from central and south Australian arid lands, were analyzed for numbers and species of gymnamoebae, ciliates, and testacea. Amoebae ranged from 1,000-5,000/g of material, and were two orders of magnitude more abundant than ciliates. Both groups increased in abundance and species richness from bare soils through spinifex to mulga to chenopod vegetations. Testacea ranged 900-5,000/g with similar species richness throughout vegetations, but reached 11,900/g with a doubling of species in a refugium in Kings Canyon. The most prevalent species of amoebae, ciliates, and testacea were taxa associated with ephemeral and disturbed habitats (r-selection). The cyanobacterial crust might be considered a micro-refugium because it contained a number of non-encysting protozoa, including Thecamoeba sp. and Nassula picta, feeding on cyanobacterial filaments. The numbers and species richness of protozoa under shrubs were greater than in bare soils, supporting the resource island hypothesis that desert plants create soil heterogeneity by localizing soil fertility under their canopies.

  7. Insights into assessing water quality using taxonomic distinctness based on a small species pool of biofilm-dwelling ciliate fauna in coastal waters of the Yellow Sea, northern China.

    PubMed

    Zhang, Wei; Liu, Yuanyuan; Warren, Alan; Xu, Henglong

    2014-12-15

    The aim of this study is to determine the feasibility of using a small species pool from a raw dataset of biofilm-dwelling ciliates for bioassessment based on taxonomic diversity. Samples were collected monthly at four stations within a gradient of environmental stress in coastal waters of the Yellow Sea, northern China from August 2011 to July 2012. A 33-species subset was identified from the raw 137-species dataset using a multivariate method. The spatial patterns of this subset were significantly correlated with the changes in the nutrients and chemical oxygen demand. The taxonomic diversity indices were significantly correlated with nutrients. The pair-wise indices of average taxonomic distinctness (Δ(+)) and the taxonomic distinctness (Λ(+)) showed a clear departure from the expected taxonomic pattern. These findings suggest that this small ciliate assemblage might be used as an adequate species pool for discriminating water quality status based on taxonomic distinctness in marine ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. An annotated and revised checklist of pleurostome ciliates (Protista: Ciliophora: Litostomatea) from Slovakia, Central Europe.

    PubMed

    Vďačný, Peter; Rajter, L'ubomír

    2014-02-04

    Pleurostomatids are predatory ciliates, living especially in the periphyton and benthos of various freshwater and marine habitats. In the present work, we provide an annotated and revised checklist of this ciliate group from the territory of Slovakia. Altogether 29 pleurostome species belonging to five genera have been reported there: Acineria incurvata, Ac. punctata, Ac. uncinata, Amphileptus claparedii, Am. falcatus, Am. fusiformis, Am. parafusidens, Am. pleurosigma, Am. procerus, Am. punctatus, A. rotundus, Litonotus alpestris, Li. anguilla, Li. carinatus, Li. crystallinus, Li. cygnus, Li. fasciola, Li. fusidens, Li. hirundo, Li. lamella, Li. minisculus, Li. muscorum, Li. obtusus, Li. triqueter, Li. varsaviensis, Loxophyllum helus, Lo. meleagris, Lo. rostratum, and Siroloxophyllum utriculariae. We have catalogued these records providing the following data for each species: (1) author(s) and date of publication; (2) name(s) of the species as appeared in the publication(s) followed by chronologically listed references including relevant page(s) in literature; (3) nomenclatural and taxonomic notes if needed; (4) main morphological characters; (5) morphological data on Slovak populations if available; and (6) all faunistic records.

  9. [Structure of maxillary sinus mucous membrane under normal conditions and in odontogenic perforative sinusitis].

    PubMed

    Baĭdik, O D; Logvinov, S V; Zubarev, S G; Sysoliatin, P G; Gurin, A A

    2011-01-01

    Methods of light, electron microscopy and immunohistochemistry were used to study the samples of maxillary sinus (MS) mucous membrane (MM) under normal conditions and in odontogenic sinusitis. To study the normal structure, the samples were obtained at autopsy from 26 human corpses 12-24 hours after death. Electron microscopic and immunohistochemical study was performed on biopsies of grossly morphologically unchanged MS MM, obtained during the operations for retention cysts in 6 patients. MS MM in perforative sinusitis was studied using the biopsies obtained from 43 patients. The material is broken into 4 groups depending on perforative sinusitis duration. Under normal conditions, MS MM is lined with a pseudostratified columnar ciliated epithelium. Degenerative changes of ciliated epithelial cells were already detected at short time intervals after MS perforations and become apparent due to reduction of specific volume of mitochondria and, rough endoplasmic reticulum, and increase of nuclear-cytoplasmic ratio. In the globlet cells, the reduction of nuclear-cytoplasmic ratio was associated with the disturbance of the secretory product release. At time intervals exceeding 3 months, epithelium underwent metaplasia into simple cuboidal and stratified squamous keratinized, while in MS MM lamina propria, cellular infiltration was increased. CD4+ cell content in sinus MM gradually increased, while at late periods after perforation occurrence it decreased. Low CD4+ cell count within the epithelium and the absence of muromidase on the surface of MS MM was detected. With the increase of the time interval since MS perforation, the number of CD8+ and CD20+ cells in MS MM was found to increase.

  10. Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa.

    PubMed

    Geisen, S; Laros, I; Vizcaíno, A; Bonkowski, M; de Groot, G A

    2015-09-01

    Protists, the most diverse eukaryotes, are largely considered to be free-living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High-throughput sequencing (HTS) approaches now commonly replace cultivation-based approaches in studying soil protists, but insights into common biases associated with this method are limited to aquatic taxa and samples. We created a mock community of common free-living soil protists (amoebae, flagellates, ciliates), extracted DNA and amplified it in the presence of metazoan DNA using 454 HTS. We aimed at evaluating whether HTS quantitatively reveals true relative abundances of soil protists and at investigating whether the expected protist community structure is altered by the co-amplification of metazoan-associated protist taxa. Indeed, HTS revealed fundamentally different protist communities from those expected. Ciliate sequences were highly over-represented, while those of most amoebae and flagellates were under-represented or totally absent. These results underpin the biases introduced by HTS that prevent reliable quantitative estimations of free-living protist communities. Furthermore, we detected a wide range of nonadded protist taxa probably introduced along with metazoan DNA, which altered the protist community structure. Among those, 20 taxa most closely resembled parasitic, often pathogenic taxa. Therewith, we provide the first HTS data in support of classical observational studies that showed that potential protist parasites are hosted by soil metazoa. Taken together, profound differences in amplification success between protist taxa and an inevitable co-extraction of protist taxa parasitizing soil metazoa obscure the true diversity of free-living soil protist communities. © 2015 John Wiley & Sons Ltd.

  11. Reality-and-Desire in Ciliates

    NASA Astrophysics Data System (ADS)

    Brijder, Robert; Hoogeboom, Hendrik Jan

    The theory of gene assembly in ciliates has a number of similarities with the theory of sorting by reversal. Both theories model processes that are based on splicing, and have a fixed begin and end product. The main difference is the type of splicing operations used to obtain the end product from the begin product. In this overview paper, we show how the concept of breakpoint graph, known from the theory of sorting by reversal, can be used in the theory of gene assembly. Our aim is to present the material in an intuitive and informal manner to allow for an efficient introduction into the subject.

  12. Deep COI sequencing of standardized benthic samples unveils overlooked diversity of Jordanian coral reefs in the northern Red Sea.

    PubMed

    Al-Rshaidat, Mamoon M D; Snider, Allison; Rosebraugh, Sydney; Devine, Amanda M; Devine, Thomas D; Plaisance, Laetitia; Knowlton, Nancy; Leray, Matthieu

    2016-09-01

    High-throughput sequencing (HTS) of DNA barcodes (metabarcoding), particularly when combined with standardized sampling protocols, is one of the most promising approaches for censusing overlooked cryptic invertebrate communities. We present biodiversity estimates based on sequencing of the cytochrome c oxidase subunit 1 (COI) gene for coral reefs of the Gulf of Aqaba, a semi-enclosed system in the northern Red Sea. Samples were obtained from standardized sampling devices (Autonomous Reef Monitoring Structures (ARMS)) deployed for 18 months. DNA barcoding of non-sessile specimens >2 mm revealed 83 OTUs in six phyla, of which only 25% matched a reference sequence in public databases. Metabarcoding of the 2 mm - 500 μm and sessile bulk fractions revealed 1197 OTUs in 15 animal phyla, of which only 4.9% matched reference barcodes. These results highlight the scarcity of COI data for cryptobenthic organisms of the Red Sea. Compared with data obtained using similar methods, our results suggest that Gulf of Aqaba reefs are less diverse than two Pacific coral reefs but much more diverse than an Atlantic oyster reef at a similar latitude. The standardized approaches used here show promise for establishing baseline data on biodiversity, monitoring the impacts of environmental change, and quantifying patterns of diversity at regional and global scales.

  13. Spatial and temporal in vivo analysis of circulating and sessile immune cells in mosquitoes: hemocyte mitosis following infection

    PubMed Central

    2013-01-01

    Background Mosquitoes respond to infection by mounting immune responses. The primary regulators of these immune responses are cells called hemocytes, which kill pathogens via phagocytosis and via the production of soluble antimicrobial factors. Mosquito hemocytes are circulated throughout the hemocoel (body cavity) by the swift flow of hemolymph (blood), and data show that some hemocytes also exist as sessile cells that are attached to tissues. The purpose of this study was to create a quantitative physical map of hemocyte distribution in the mosquito, Anopheles gambiae, and to describe the cellular immune response in an organismal context. Results Using correlative imaging methods we found that the number of hemocytes in a mosquito decreases with age, but that regardless of age, approximately 75% of the hemocytes occur in circulation and 25% occur as sessile cells. Infection induces an increase in the number of hemocytes, and tubulin and nuclear staining showed that this increase is primarily due to mitosis and, more specifically, autonomous cell division, by circulating granulocytes. The majority of sessile hemocytes are present on the abdominal wall, although significant numbers of hemocytes are also present in the thorax, head, and several of the appendages. Within the abdominal wall, the areas of highest hemocyte density are the periostial regions (regions surrounding the valves of the heart, or ostia), which are ideal locations for pathogen capture as these are areas of high hemolymph flow. Conclusions These data describe the spatial and temporal distribution of mosquito hemocytes, and map the cellular response to infection throughout the hemocoel. PMID:23631603

  14. Retrospective qualitative analysis of ecological networks under environmental perturbation: a copper-polluted intertidal community as a case study.

    PubMed

    Ramos-Jiliberto, Rodrigo; Garay-Narváez, Leslie; Medina, Matías H

    2012-01-01

    The coast of Chañaral Bay in northern Chile has been affected by copper mine wastes for decades. This sustained perturbation has disrupted the intertidal community in several ways, but the mechanisms behind the observed shifts in local biodiversity remain poorly understood. Our main goal was to identify the species (lumped into trophic groups) belonging to the Chañaral intertidal community that, being directly affected by copper pollution, contributed primarily to the generation of the observed changes in community structure. These groups of species were called initiators. We applied a qualitative modelling approach based only on the sign and direction of effects among species, and present a formula for predicting changes in equilibrium abundances considering stress on multiple variables simultaneously. We then applied this technique retrospectively to identify the most likely set of initiators. Our analyses allowed identification of a unique set of four initiators in the studied intertidal system (a group of algae, sessile invertebrates, a group of herbivores and starfish), which were hypothesized to be the primary drivers of the observed changes in community structure. In addition, a hypothesis was derived about how the perturbation affected these initiators. The hypothesis is that pollution affected negatively the population growth rate of both algae and sessile invertebrates and suppressed the interaction between herbivores and starfish. Our analytic approach, focused on identifying initiators, constitutes an advance towards understanding the mechanisms underlying human-driven ecosystem disruption and permits identifying species that may serve as a focal point for community management and restoration.

  15. Assessment and characterization of biofilm formation among human isolates of Streptococcus dysgalactiae subsp. equisimilis.

    PubMed

    Genteluci, Gabrielle Limeira; Silva, Ligia Guedes; Souza, Maria Clara; Glatthardt, Thaís; de Mattos, Marcos Corrêa; Ejzemberg, Regina; Alviano, Celuta Sales; Figueiredo, Agnes Marie Sá; Ferreira-Carvalho, Bernadete Teixeira

    2015-12-01

    The capacity to form biofilm is considered a protective mechanism that allows the bacteria to survive and proliferate in hostile environments, facilitating the maintenance of the infectious process. Recently, biofilm has become a topic of interest in the study of the human pathogen group A Streptococcus (GAS). Although GAS has not been associated with infection on medical implants, the presence of microcolonies embedded in an extracellular matrix on infected tissues has been reported. Despite the similarity between GAS and Streptococcus dysgalactiae subspecies equisimilis (SDSE), there are no studies in the literature describing the production of biofilm by SDSE. In this work, we assessed and characterized biofilm development among SDSE human isolates of group C. The in vitro data showed that 59.3% of the 118 isolates tested were able to form acid-induced biofilm on glass, and 28% formed it on polystyrene surfaces. More importantly, biofilm was also formed in a foreign body model in mice. The biofilm structure was analyzed by confocal laser scanning microscopy, transmission electron microscopy, and scanning electron microscopy. Long fibrillar-like structures were observed by scanning electron microscopy. Additionally, the expression of a pilus associated gene of SDSE was increased for in vitro sessile cells compared with planktonics, and when sessile cells were collected from biofilms formed in the animal model compared with that of in vitro model. Results obtained from the immunofluorescence microscopy indicated the biofilm was immunogenic. Our data also suggested a role for proteins, exopolysaccharide and extracellular DNA in the formation and accumulation of biofilm by SDSE. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. The Measurement of the Surface Energy of Solids by Sessile Drop Accelerometry

    NASA Astrophysics Data System (ADS)

    Calvimontes, Alfredo

    2018-05-01

    A new physical method, the sessile drop accelerometry (SDACC) for the study and measurement of the interfacial energies of solid-liquid-gas systems, is tested and discussed in this study. The laboratory instrument and technique—a combination of a drop shape analyzer with high-speed camera and a laboratory drop tower- and the evaluation algorithms, were designed to calculate the interfacial energies as a function of the geometrical changes of a sessile droplet shape due to the effect of "switching off" gravity during the experiment. The method bases on Thermodynamics of Interfaces and differs from the conventional approach of the two hundred-years-old Young's equation in that it assumes a thermodynamic equilibrium between interfaces, rather than a balance of tensions on a point of the solid-liquid-gas contour line. A comparison of the mathematical model that supports the method with the widely accepted Young`s equation is discussed in detail in this study. The method opens new possibilities to develop surface characterization procedures by submitting the solid-liquid-system to artificial generated and uniform force fields.

  17. Microbial Nanoculture as an Artificial Microniche

    NASA Astrophysics Data System (ADS)

    Niepa, Tagbo H. R.; Hou, Likai; Jiang, Hongyuan; Goulian, Mark; Koo, Hyun; Stebe, Kathleen J.; Lee, Daeyeon

    2016-08-01

    Microbes self-organize in microcolonies while transitioning to a sessile form within a protective biofilm matrix. To enable the detailed study of microbial dynamics within these microcolonies, new sessile culture systems are needed that sequester cells and mimic their complex growth conditions and interactions. We present a new nanoliter-scale sessile culture system that is easily implemented via microfluidics-enabled fabrication. Hundreds of thousands of these nanocultures can be easily generated and imaged using conventional or confocal microscopy. Each nanoculture begins as a several nanoliter droplet of suspended cells, encapsulated by a polydimethylsiloxane (PDMS) membrane. The PDMS shell provides long-lasting mechanical support, enabling long term study, and is selectively permeable to small molecules including antibiotics, signaling molecules and functional fluorescent probes. Thus, as microcolonies mature within the nanocultures, they can be stressed or interrogated using selected probes to characterize cell physiological properties, antibiotic susceptibilities, and antagonistic interactions. We demonstrate this platform by investigating broad ranges of microcolony dynamics, including direct and indirect bacterial-fungal interactions. This versatile new tool has broad potential for addressing biological questions associated with drug resistance, chronic infections, microbiome dynamics, and antibiotic discovery.

  18. Microbial Nanoculture as an Artificial Microniche

    PubMed Central

    Niepa, Tagbo H. R.; Hou, Likai; Jiang, Hongyuan; Goulian, Mark; Koo, Hyun; Stebe, Kathleen J.; Lee, Daeyeon

    2016-01-01

    Microbes self-organize in microcolonies while transitioning to a sessile form within a protective biofilm matrix. To enable the detailed study of microbial dynamics within these microcolonies, new sessile culture systems are needed that sequester cells and mimic their complex growth conditions and interactions. We present a new nanoliter-scale sessile culture system that is easily implemented via microfluidics-enabled fabrication. Hundreds of thousands of these nanocultures can be easily generated and imaged using conventional or confocal microscopy. Each nanoculture begins as a several nanoliter droplet of suspended cells, encapsulated by a polydimethylsiloxane (PDMS) membrane. The PDMS shell provides long-lasting mechanical support, enabling long term study, and is selectively permeable to small molecules including antibiotics, signaling molecules and functional fluorescent probes. Thus, as microcolonies mature within the nanocultures, they can be stressed or interrogated using selected probes to characterize cell physiological properties, antibiotic susceptibilities, and antagonistic interactions. We demonstrate this platform by investigating broad ranges of microcolony dynamics, including direct and indirect bacterial-fungal interactions. This versatile new tool has broad potential for addressing biological questions associated with drug resistance, chronic infections, microbiome dynamics, and antibiotic discovery. PMID:27476816

  19. Density dependence, spatial scale and patterning in sessile biota.

    PubMed

    Gascoigne, Joanna C; Beadman, Helen A; Saurel, Camille; Kaiser, Michel J

    2005-09-01

    Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.

  20. Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet.

    PubMed

    Nguyen, Nam-Trung; Zhu, Guiping; Chua, Yong-Chin; Phan, Vinh-Nguyen; Tan, Say-Hwa

    2010-08-03

    Motion of a droplet on a planar surface has applications in droplet-based lab on a chip technology. This paper reports the experimental results of the shape, contact angles, and motion of ferrofluid droplets driven by a permanent magnet on a planar homogeneous surface. The water-based ferrofluid in use is a colloidal suspension of single-domain magnetic nanoparticles. The effect of the magnetic field on the apparent contact angle of the ferrofluid droplet was first investigated. The results show that an increasing magnetic flux decreases the apparent contact angle of a sessile ferrofluid droplet. Next, the dynamic contact angle was investigated by observing the shape and the motion of a sessile ferrofluid droplet. The advancing and receding contact angles of the moving ferrofluid were measured at different moving speeds and magnetic field strengths. The measured contact angles were used to estimate the magnitude of the forces involved in the sliding motion. Scaling analysis was carried out to derive the critical velocity, beyond which the droplet is not able to catch up with the moving magnet.

  1. Microbial Nanoculture as an Artificial Microniche.

    PubMed

    Niepa, Tagbo H R; Hou, Likai; Jiang, Hongyuan; Goulian, Mark; Koo, Hyun; Stebe, Kathleen J; Lee, Daeyeon

    2016-08-01

    Microbes self-organize in microcolonies while transitioning to a sessile form within a protective biofilm matrix. To enable the detailed study of microbial dynamics within these microcolonies, new sessile culture systems are needed that sequester cells and mimic their complex growth conditions and interactions. We present a new nanoliter-scale sessile culture system that is easily implemented via microfluidics-enabled fabrication. Hundreds of thousands of these nanocultures can be easily generated and imaged using conventional or confocal microscopy. Each nanoculture begins as a several nanoliter droplet of suspended cells, encapsulated by a polydimethylsiloxane (PDMS) membrane. The PDMS shell provides long-lasting mechanical support, enabling long term study, and is selectively permeable to small molecules including antibiotics, signaling molecules and functional fluorescent probes. Thus, as microcolonies mature within the nanocultures, they can be stressed or interrogated using selected probes to characterize cell physiological properties, antibiotic susceptibilities, and antagonistic interactions. We demonstrate this platform by investigating broad ranges of microcolony dynamics, including direct and indirect bacterial-fungal interactions. This versatile new tool has broad potential for addressing biological questions associated with drug resistance, chronic infections, microbiome dynamics, and antibiotic discovery.

  2. Social biases determine spatiotemporal sparseness of ciliate mating heuristics.

    PubMed

    Clark, Kevin B

    2012-01-01

    Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate's initial subjective bias, responsiveness, or preparedness, as defined by Stevens' Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The present findings indicate sparseness performs a similar function in single aneural cells by tuning the size and density of encoded computational architectures useful for decision making in social contexts.

  3. Ciliated protists from the nepheloid layer and water column of sites affected by the Deepwater Horizon oil spill in the Northeastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Moss, Joseph A.; McCurry, Chelsea; Tominack, Sarah; Romero, Isabel C.; Hollander, David; Jeffrey, Wade H.; Snyder, Richard A.

    2015-12-01

    Benthic marine protists have been well documented from shallow marine benthic habitats but remain understudied in deeper habitats on continental shelves and slopes, particularly in the Northeastern Gulf of Mexico (NEGOM). This region was affected by a deep water oil well failure (BP-Deepwater Horizon, 2010). The combination of a lack of information on deep sea microbenthic communities and the potential for benthic microbial petroleum mineralization prompted this investigation. Water column and nepheloid layer samples were obtained via Niskin bottles and a multicorer respectively at stations across the NEGOM to: (1) determine whether nepheloid and water column communities are distinct and (2) assess benthic species richness relative to sediment PAH contamination. Phylum specific 18S rRNA gene amplification was used to construct clone libraries of ciliate assemblages. BLAST searches in the NCBI database indicated that a majority (~75%) of the clone sequences corresponded (94-100% similarity) with listed, yet unclassified sequences. Several putative species were common at most site locations and depths. Many known benthic ciliates, such as Uronychia transfuga, Uronychia setigera, and Spirotrachelostyla tani, were common in the nepheloid layer samples and not recovered in water column samples. Ciliated protist species richness increased with PAH levels found in surface sediments, suggesting a positive microbial response to petroleum enrichment of the benthos. The presence of previously unknown microbenthic communites in the nephaloid layer over oceanic clay-silt muds alters our view of microbial processes in the deep sea and merits investigation of the microbial processes and rates of microbial mineralization and biomass production important to global biogeochemistry.

  4. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut.

    PubMed

    Essner, Jeffrey J; Amack, Jeffrey D; Nyholm, Molly K; Harris, Erin B; Yost, H Joseph

    2005-03-01

    Monocilia have been proposed to establish the left-right (LR) body axis in vertebrate embryos by creating a directional fluid flow that triggers asymmetric gene expression. In zebrafish, dorsal forerunner cells (DFCs) express a conserved ciliary dynein gene (left-right dynein-related1, lrdr1) and form a ciliated epithelium inside a fluid-filled organ called Kupffer's vesicle (KV). Here, videomicroscopy demonstrates that cilia inside KV are motile and create a directional fluid flow just prior to the onset of asymmetric gene expression in lateral cells. Laser ablation of DFCs and surgical disruption of KV provide direct evidence that ciliated KV cells are required during early somitogenesis for subsequent LR patterning in the brain, heart and gut. Antisense morpholinos against lrdr1 disrupt KV fluid flow and perturb LR development. Furthermore, lrdr1 morpholinos targeted to DFC/KV cells demonstrate that Lrdr1 functions in these ciliated cells to control LR patterning. This provides the first direct evidence, in any vertebrate, that impairing cilia function in derivatives of the dorsal organizer, and not in other cells that express ciliogenic genes, alters LR development. Finally, genetic analysis reveals novel roles for the T-box transcription factor no tail and the Nodal signaling pathway as upstream regulators of lrdr1 expression and KV morphogenesis. We propose that KV is a transient embryonic 'organ of asymmetry' that directs LR development by establishing a directional fluid flow. These results suggest that cilia are an essential component of a conserved mechanism that controls the transition from bilateral symmetry to LR asymmetry in vertebrates.

  5. Expression and function of Anoctamin 1/TMEM16A calcium-activated chloride channels in airways of in vivo mouse models for cystic fibrosis research.

    PubMed

    Hahn, Anne; Salomon, Johanna J; Leitz, Dominik; Feigenbutz, Dennis; Korsch, Lisa; Lisewski, Ina; Schrimpf, Katrin; Millar-Büchner, Pamela; Mall, Marcus A; Frings, Stephan; Möhrlen, Frank

    2018-06-02

    Physiological processes of vital importance are often safeguarded by compensatory systems that substitute for primary processes in case these are damaged by gene mutation. Ca 2+ -dependent Cl - secretion in airway epithelial cells may provide such a compensatory mechanism for impaired Cl - secretion via cystic fibrosis transmembrane conductance regulator (CFTR) channels in cystic fibrosis (CF). Anoctamin 1 (ANO1) Ca 2+ -gated Cl - channels are known to contribute to calcium-dependent Cl - secretion in tracheal and bronchial epithelia. In the present study, two mouse models of CF were examined to assess a potential protective function of Ca 2+ -dependent Cl - secretion, a CFTR deletion model (cftr -/- ), and a CF pathology model that overexpresses the epithelial Na + channel β-subunit (βENaC), which is encoded by the Scnn1b gene, specifically in airway epithelia (Scnn1b-Tg). The expression levels of ANO1 were examined by mRNA and protein content, and the channel protein distribution between ciliated and non-ciliated epithelial cells was analyzed. Moreover, Ussing chamber experiments were conducted to compare Ca 2+ -dependent Cl - secretion between wild-type animals and the two mouse models. Our results demonstrate that CFTR and ANO1 channels were co-expressed with ENaC in non-ciliated cells of mouse tracheal and bronchial epithelia. Ciliated cells did not express these proteins. Despite co-localization of CFTR and ANO1 in the same cell type, cells in cftr -/- mice displayed no altered expression of ANO1. Similarly, ANO1 expression was unaffected by βENaC overexpression in the Scnn1b-Tg line. These results suggest that the CF-related environment in the two mouse models did not induce ANO1 overexpression as a compensatory system.

  6. Arrhenius-kinetics evidence for quantum tunneling in microbial "social" decision rates.

    PubMed

    Clark, Kevin B

    2010-11-01

    Social-like bacteria, fungi and protozoa communicate chemical and behavioral signals to coordinate their specializations into an ordered group of individuals capable of fitter ecological performance. Examples of microbial "social" behaviors include sporulation and dispersion, kin recognition and nonclonal or paired reproduction. Paired reproduction by ciliates is believed to involve intra- and intermate selection through pheromone-stimulated "courting" rituals. Such social maneuvering minimizes survival-reproduction tradeoffs while sorting superior mates from inferior ones, lowering the vertical spread of deleterious genes in geographically constricted populations and possibly promoting advantageous genetic innovations. In a previous article, I reported findings that the heterotrich Spirostomum ambiguum can out-complete mating rivals in simulated social trials by learning behavioral heuristics which it then employs to store and select sets of altruistic and deceptive signaling strategies. Frequencies of strategy use typically follow Maxwell-Boltzmann (MB), Fermi-Dirac (FD) or Bose-Einstein (BE) statistical distributions. For ciliates most adept at social decision making, a brief classical MB computational phase drives signaling behavior into a later quantum BE computational phase that condenses or favors the selection of a single fittest strategy. Appearance of the network analogue of BE condensation coincides with Hebbian-like trial-and-error learning and is consistent with the idea that cells behave as heat engines, where loss of energy associated with specific cellular machinery critical for mating decisions effectively reduces the temperature of intracellular enzymes cohering into weak Fröhlich superposition. I extend these findings by showing the rates at which ciliates switch serial behavioral strategies agree with principles of chemical reactions exhibiting linear and nonlinear Arrhenius kinetics during respective classical and quantum computations. Nonlinear Arrhenius kinetics in ciliate decision making suggest transitions from one signaling strategy to another result from a computational analogue of quantum tunneling in social information processing.

  7. Act together—implications of symbioses in aquatic ciliates

    PubMed Central

    Dziallas, Claudia; Allgaier, Martin; Monaghan, Michael T.; Grossart, Hans-Peter

    2012-01-01

    Mutual interactions in the form of symbioses can increase the fitness of organisms and provide them with the capacity to occupy new ecological niches. The formation of obligate symbioses allows for rapid evolution of new life forms including multitrophic consortia. Microbes are important components of many known endosymbioses and their short generation times and strong potential for genetic exchange may be important drivers of speciation. Hosts provide endo- and ectosymbionts with stable, nutrient-rich environments, and protection from grazers. This is of particular importance in aquatic ecosystems, which are often highly variable, harsh, and nutrient-deficient habitats. It is therefore not surprising that symbioses are widespread in both marine and freshwater environments. Symbioses in aquatic ciliates are good model systems for exploring symbiont-host interactions. Many ciliate species are globally distributed and have been intensively studied in the context of plastid evolution. Their relatively large cell size offers an ideal habitat for numerous microorganisms with different functional traits including commensalism and parasitism. Phagocytosis facilitates the formation of symbiotic relationships, particularly since some ingested microorganisms can escape the digestion. For example, photoautotrophic algae and methanogens represent endosymbionts that greatly extend the biogeochemical functions of their hosts. Consequently, symbiotic relationships between protists and prokaryotes are widespread and often result in new ecological functions of the symbiotic communities. This enables ciliates to thrive under a wide range of environmental conditions including ultraoligotrophic or anoxic habitats. We summarize the current understanding of this exciting research topic to identify the many areas in which knowledge is lacking and to stimulate future research by providing an overview on new methodologies and by formulating a number of emerging questions in this field. PMID:22891065

  8. Unexpected biodiversity of ciliates in marine samples from below the photic zone.

    PubMed

    Grattepanche, Jean-David; Santoferrara, Luciana F; McManus, George B; Katz, Laura A

    2016-08-01

    Marine microbial eukaryotes play critical roles in planktonic food webs and have been described as most diverse in the photic zone where productivity is high. We used high-throughput sequencing (HTS) to analyse the spatial distribution of planktonic ciliate diversity from shallow waters (<30 m depth) to beyond the continental shelf (>800 m depth) along a 163 km transect off the coast of New England, USA. We focus on ciliates in the subclasses Oligotrichia and Choreotrichia (class Spirotrichea), as these taxa are major components of marine food webs. We did not observe the decrease of diversity below the photic zone expected based on productivity and previous analyses. Instead, we saw an increase of diversity with depth. We also observed that the ciliate communities assessed by HTS cluster by depth layer and degree of water column stratification, suggesting that community assembly is driven by environmental factors. Across our samples, abundant OTUs tend to match previously characterized morphospecies while rare OTUs are more often undescribed, consistent with the idea that species in the rare biosphere remain to be characterized by microscopy. Finally, samples taken below the photic zone also reveal the prevalence of two uncharacterized (i.e. lacking sequenced morphospecies) clades - clusters X1 and X2 - that are enriched within the nano-sized fraction (2-10 μm) and are defined by deletions within the region of the SSU-rDNA analysed here. Together, these data reinforce that we still have much to learn about microbial diversity in marine ecosystems, especially in deep-waters that may be a reservoir for rare species and uncharacterized taxa. © 2016 John Wiley & Sons Ltd.

  9. Ovarian cysts in MRL/MpJ mice are derived from the extraovarian rete: a developmental study

    PubMed Central

    Lee, Shin-Hyo; Ichii, Osamu; Otsuka, Saori; Yaser Hosney, Elewa; Namiki, Yuka; Hashimoto, Yoshiharu; Kon, Yasuhiro

    2011-01-01

    MRL/MpJ (MRL) mice, commonly used as a model for autoimmune disease, have a high frequency of ovarian cysts originating from the rete ovarii. In the present study, to clarify how the rete ovarii, which are remnants of mesonephric tubules during embryogenesis, progress to cystic formation with aging, the morphology of MRL rete ovarii was analyzed and compared with that of normal C57BL/6N (B6) mice. In B6 mice, the rete ovarii consisted of a series of tubules, including the extraovarian rete (ER), the connecting rete (CR), and the intraovarian rete (IR), based on their location. Whereas the ER of B6 mice was composed of highly convoluted tubules lined by both ciliated and non-ciliated epithelia, the tubules in the CR and IR had only non-ciliated cells. In MRL mice, dilations of the rete ovarii initiated from the IR rather than the ER or CR. Although the histological types of cells lining the lumen of the rete ovarii were the same as those in B6 mice, the ER in MRL mice showed a variety in morphology. In particular, the connections between the ER and ovary tended to disappear with increasing age and the development of ovarian cysts. Furthermore, the epithelium lining the large ovarian cysts in MRL mice had ciliated cells forming the cluster. On the basis of these findings, it is suggested that cystic changes of the rete ovarii in MRL mice are caused by the dilations of the IR with invasion of the ER and CR into the ovarian medulla. These data provide new pathological mechanisms for ovarian cyst formation. PMID:21951275

  10. First record of two ectoparasitic ciliates of the genus Trichodina (Ciliophora: Trichodinidae) parasitizing gills of an invasive freshwater fish, Micropercops swinhonis, in Tibet.

    PubMed

    Wang, Zhe; Deng, Qiong; Zhou, Tong; Yang, Hao; Gu, Zemao

    2018-07-01

    Although high diversity of parasitic ciliates has been reported in China, little is known about the species from high altitude areas, especially in Tibet. To investigate the species of parasitic ciliates in Tibet, a project was initiated in the Chabalang wetland in 2013. Two Trichodina species, namely, Trichodina sp. and T. reticulata Hirschmann & Partsch, 1955, were isolated from gills of an invasive fish, Micropercops swinhonis for the first time. In the present study, we provided the morphological, morphometrical, and molecular characterizations of the two species and conducted the phylogenetic analyses of mobilids based on the small subunit ribosomal RNA gene (SSU rDNA) sequences. Both morphological characters and morphometric data of the T. reticulata agreed well with previous studies. Although two partial SSU rDNA sequences were obtained in the present study, only the sequence of T. reticulata population in the present study was thought to be reliable. The other sequence may not belong to the other species. Thus, we regarded the other species isolated in the present study as Trichodina sp. to avoid the wrong or confused species identification. Morphologically, Trichodina sp. is distinguished mainly by its large body shape with a broad adhesive disk, robust and obliquely quadrilateral blades, and well-developed rays. T. reticulata is mainly characterized with the 8-12 spherical or elliptical granules in the central zone of adhesive disk. Phylogenetic analyses consistently showed the two ectoparasites clustered with freshwater species of the genus Trichodina within the order Mobilida. Our study extended the host range of T. reticulata and supplemented the molecular data. Also, results reveal that invasion of exotic fish may cause a potential threat to native fish by introducing or dispersing parasitic ciliates.

  11. Persistence in a single species CSTR model with suspended flocs and wall attached biofilms.

    PubMed

    Mašić, Alma; Eberl, Hermann J

    2012-04-01

    We consider a mathematical model for a bacterial population in a continuously stirred tank reactor (CSTR) with wall attachment. This is a modification of the Freter model, in which we model the sessile bacteria as a microbial biofilm. Our analysis indicates that the results of the algebraically simpler original Freter model largely carry over. In a computational simulation study, we find that the vast majority of bacteria in the reactor will eventually be sessile. However, we also find that suspended biomass is relatively more efficient in removing substrate from the reactor than biofilm bacteria.

  12. Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Arscott, Steve

    2013-06-01

    Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation--the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90° whereas using a superhydrophobic surface one observes 134°. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.

  13. Using Sorting by Reversal: Breakpoint Graph for Gene Assembly in Ciliates

    NASA Astrophysics Data System (ADS)

    Brijder, Robert; Jan Hoogeboom, Hendrik

    2007-09-01

    The theory of gene assembly in ciliates has much in common with the theory of sorting by reversal. Both model processes that are based on splicing, and have a fixed begin and end product. The main difference is the type of splicing operations used to obtain the end product from the begin product. In this overview paper we show that the concept of breakpoint graph, known from the theory of sorting by reversal, has many uses in the theory of gene assembly. Our aim is to present the material in an intuitive and informal manner to allow for an efficient introduction into the subject.

  14. Taxonomic description of a new marine ciliate, Euplotes qingdaoensis n. sp. (Ciliophora: Euplotida)

    NASA Astrophysics Data System (ADS)

    Chen, Xiangrui; Ma, Honggang; Al-Rasheid, Khaled A. S.

    2014-03-01

    The characteristics and infraciliature of a new euplotid ciliate, Euplotes qingdaoensis n. sp., discovered from the coastal waters of Jiaozhou Bay, northern China, were studied using live observation and silver impregnation. The new marine species is characterized by a slightly flattened body (90-110 μm×70-80 μm, in vivo), an adoral zone of 26-29 membranelles, 10 strong frontoventral and five transverse cirri, two caudal cirri, a single left marginal cirrus, seven dorsal kineties, a middle kinety with about 15 pairs of basal bodies, a silverline system of the double-eurystomus type, and a C-shaped macronucleus.

  15. Gravitaxis of Bursaria truncatella: electrophysiological and behavioural analyses of a large ciliate cell.

    PubMed

    Krause, Martin; Bräucker, Richard

    2009-05-01

    Bursaria truncatella is a giant ciliate. Its volume of 3 x 10(7)microm(3) and a sedimentation rate of 923microm s(-1) would induce the cell to rapidly sink to the bottom of a pond unless compensating mechanisms exist. The upward swimming behaviour of a cell population (negative gravitaxis) may be either a result of reorientations of the cells (graviorientation) and/or direction-dependent changes in propulsion rate (gravikinesis). The special statocyst hypothesis assumes a stimulation of mechanosensitive ion channels by forces of the cytoplasmic mass acting on the lower membrane. Here, we present basic electrophysiological data on B. truncatella. Investigation of the mechanosensitivity reveals a polar distribution of depolarising and hyperpolarising mechanosensitive channels at least on the dorsal membrane of the cell. Analysis of swimming behaviour demonstrates that Bursaria orients against the gravity vector (r(Oc)=0.34) and performs a negative gravikinesis (-633microm s(-1)) compensating the sedimentation rate by 70%. Under hypergravity conditions gravitaxis in Bursaria is enhanced. Microgravity experiments indicate an incomplete relaxation of graviresponses during 4s of weightlessness. Experimental data are in accordance with the special statocyst hypothesis of graviperception, as was demonstrated in other ciliates.

  16. Feeding by Actinophrys sol (Protista, Heliozoa): 1 light microscopy.

    PubMed

    Patterson, D J; Hausmann, K

    1981-01-01

    The feeding behavior of the heliozoon Actinophrys sol was investigated using the ciliate Colpidium colpoda as food. The ciliate is caught by adhesion to the arms of the heliozoon. Within 20 min the prey is enclosed by a funnel-shaped pseudopodium which progresses over the prey by the action of its differentiated leading edge. Independent Actinophrys cells may fuse together during prey capture and the early stages of prey digestion. After prey ingestion, the ciliate is lysed and the contents of the food vacuole coagulate. Much of the fluid is removed from the food vacuole and, within 4 h of feeding, the food vacuole has condensed around its coagulated contents. As food vacuole condensation occurs, the peripheral region of the heliozoon cell becomes vacuolated. The appearance of the cell and of the food vacuole remain the same for about 12 h, after which time the undigested residues in the food vacuoles are egested, fused masses of cells separate as uninucleate cells and nuclear division may occur. During feeding, the extrusomes are greatly depleted. These bodies are implicated in the processes of food capture and in the production of food vacuole membrane.

  17. The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium

    PubMed Central

    Ning, Gang; Bijron, Jonathan G.; Yamamoto, Yusuke; Wang, Xia; Howitt, Brooke E.; Herfs, Michael; Yang, Eric; Hong, Yue; Cornille, Maxence; Wu, Lingyan; Hanamornroongruang, Suchanan; McKeon, Frank D.; Crum, Christopher P.; Xian, Wa

    2014-01-01

    The oviducts contain high grade serous cancer (HGSC) precursors (serous tubal intraepithelial neoplasia or STINs), which are γ-H2AXp- and TP53 mutation-positive. Although they express wild type p53, secretory cell outgrowths (SCOUTs) are associated with older age and serous cancer; moreover both STINs and SCOUTs share a loss of PAX2 expression (PAX2n). We evaluated PAX2 expression in proliferating adult and embryonic oviductal cells, normal mucosa, SCOUTs, Walthard cell nests (WCNs), STINs and HGSCs, and the expression of genes chosen empirically or from SCOUT expression arrays. Clones generated in vitro from embryonic gynecologic tract and adult fallopian tube were Krt7p/PAX2n/EZH2p and underwent ciliated (PAX2n/EZH2n/FOXJ1p) and basal (Krt7n/EZH2n/Krt5p) differentiation. Similarly non-ciliated cells in normal mucosa were PAX2p but became PAX2n in multilayered epithelium undergoing ciliated or basal (Walthard cell nests or WCN) cell differentiation. PAX2n SCOUTs fell into two groups; Type I were secretory or secretory/ciliated with a “tubal” phenotype and were ALDH1n and β-cateninmem (membraneous only). Type II displayed a columnar to pseudostratified (endometrioid) phenotype, with an EZH2p, ALDH1p, β-cateninnc (nuclear and cytoplasmic), stathminp, LEF1p, RCN1p and RUNX2p expression signature. STINs and HGSCs shared the Type I immunophenotype of PAX2n, ALDH1n, β-cateninmem, but highly expressed EZH2p, LEF1p, RCN1p, and stathminp. This study, for the first time, links PAX2n with proliferating fetal and adult oviductal cells undergoing basal and ciliated differentiation and shows that this expression state is maintained in SCOUTs, STINs and HGSCs. All three entities can demonstrate a consistent perturbation of genes involved in potential tumor suppressor gene silencing (EZH2), transcriptional regulation (LEF1), regulation of differentiation (RUNX2), calcium binding (RCN1) and oncogenesis (stathmin). This shared expression signature between benign and neoplastic entities links normal progenitor cell expansion to abnormal and neoplastic outgrowth in the oviduct and exposes a common pathway that could be a target for early prevention. PMID:25130537

  18. Active BRAF-V600E is the key player in generation of a sessile serrated polyp-specific DNA methylation profile

    PubMed Central

    Dehghanizadeh, Somaye; Khoddami, Vahid; Mosbruger, Timothy L.; Hammoud, Sue S.; Edes, Kornelia; Berry, Therese S.; Done, Michelle; Samowitz, Wade S.; DiSario, James A.; Luba, Daniel G.; Burt, Randall W.

    2018-01-01

    Background Sessile serrated polyps (SSPs) have emerged as important precursors for a large number of sporadic colorectal cancers. They are difficult to detect during colonoscopy due to their flat shape and the excessive amounts of secreted mucin that cover the polyps. The underlying genetic and epigenetic basis for the emergence of SSPs is largely unknown with existing genetic studies confined to a limited number of oncogenes and tumor suppressors. A full characterization of the genetic and epigenetic landscape of SSPs would provide insight into their origin and potentially offer new biomarkers useful for detection of SSPs in stool samples. Methods We used a combination of genome-wide mutation detection, exome sequencing and DNA methylation profiling (via methyl-array and whole-genome bisulfite sequencing) to analyze multiple samples of sessile serrated polyps and compared these to familial adenomatous polyps. Results Our analysis revealed BRAF-V600E as the sole recurring somatic mutation in SSPs with no additional major genetic mutations detected. The occurrence of BRAF-V600E was coincident with a unique DNA methylation pattern revealing a set of DNA methylation markers showing significant (~3 to 30 fold) increase in their methylation levels, exclusively in SSP samples. These methylation patterns effectively distinguished sessile serrated polys from adenomatous polyps and did so more effectively than parallel gene expression profiles. Conclusions This study provides an important example of a single oncogenic mutation leading to reproducible global DNA methylation changes. These methylated markers are specific to SSPs and could be of important clinical relevance for the early diagnosis of SSPs using non-invasive approaches such as fecal DNA testing. PMID:29590112

  19. Axisymmetric oscillation modes of a double droplet system

    DOE PAGES

    Ramalingam, Santhosh K.; Basaran, Osman A.

    2010-11-15

    A double droplet system (DDS) consists of a sessile and a pendant drop that are coupled through a liquid filled cylindrical hole in a plate of thickness d. For a small hole radius R, equilibrium shapes of both drops are sections of spheres. While DDSs have a number of applications in microfluidics, a DDS oscillating about its equilibrium state can be used as a fast focusing liquid lens. Here, a DDS consisting of an isothermal, incompressible Newtonian fluid of constant density p and constant viscosity u that is surrounded by a gas is excited by oscillating in time (a) themore » pressure in the gas surrounding either drop (pressure excitation), (b) the plate perpendicular to its plane (axial excitation), and (c) the hole radius (radial excitation). In contrast to previous works that assumed transient drop shapes are spherical, they are determined here by simulation and used to identify the natural modes of axisymmetric oscillations from resonances observed during frequency sweeps with DDSs for which the combined volume V of the two drops is less than (4/3)πR 3. Pressure and axial excitations are found to have identical responses but axial and radial excitations are shown to excite different modes. These modes are compared to those exhibited by single pendant (sessile) drop systems. Specifically, while a single pendant (sessile) drop has one additional oscillation mode compared to a free drop, a DDS is found to exhibit roughly twice as many oscillation modes as a pendant (sessile) drop. The effects of dimensionless volume V/R 3, dimensionless plate thickness d/R, and Ohnesorge number Oh =μ/√ρRσ , where σ is the surface tension of the DDS-gas interface, on the resonance frequencies are also investigated.« less

  20. New Method Developed to Measure Contact Angles of a Sessile Drop

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Nengli

    2002-01-01

    The spreading of an evaporating liquid on a solid surface occurs in many practical processes and is of importance in a number of practical situations such as painting, textile dyeing, coating, gluing, and thermal engineering. Typical processes involving heat transfer where the contact angle plays an important role are film cooling, boiling, and the heat transfer through heat pipes. The biological phenomenon of cell spreading also is analogous to a drop spreading (ref. 1). In the study of spreading, the dynamic contact angle describes the interfacial properties on solid substrates and, therefore, has been studied by physicists and fluid mechanics investigators. The dynamic contact angle of a spreading nonvolatile liquid drop provides a simple tool in the study of the free-boundary problem, but the study of the spreading of a volatile liquid drop is of more practical interest because the evaporation of common liquids is inevitable in practical processes. The most common method to measure the contact angle, the contact radius, and the height of a sessile drop on a solid surface is to view the drop from its edge through an optical microscope. However, this method gives only local information in the view direction. Zhang and Yang (ref. 2) developed a laser shadowgraphy method to investigate the evaporation of sessile drop on a glass plate. As described here, Zhang and Chao (refs. 3 and 4) improved the method and suggested a new optical arrangement to measure the dynamic contact angle and the instant evaporation rate of a sessile drop with much higher accuracy (less than 1 percent). With this method, any fluid motion in the evaporating drop can be visualized through shadowgraphy without using a tracer, which often affects the field under investigation.

  1. Effect of Sodium Bisulfite Injection on the Microbial Community Composition in a Brackish-Water-Transporting Pipeline▿†

    PubMed Central

    Park, Hyung Soo; Chatterjee, Indranil; Dong, Xiaoli; Wang, Sheng-Hung; Sensen, Christoph W.; Caffrey, Sean M.; Jack, Thomas R.; Boivin, Joe; Voordouw, Gerrit

    2011-01-01

    Pipelines transporting brackish subsurface water, used in the production of bitumen by steam-assisted gravity drainage, are subject to frequent corrosion failures despite the addition of the oxygen scavenger sodium bisulfite (SBS). Pyrosequencing of 16S rRNA genes was used to determine the microbial community composition for planktonic samples of transported water and for sessile samples of pipe-associated solids (PAS) scraped from pipeline cutouts representing corrosion failures. These were obtained from upstream (PAS-616P) and downstream (PAS-821TP and PAS-821LP, collected under rapid-flow and stagnant conditions, respectively) of the SBS injection point. Most transported water samples had a large fraction (1.8% to 97% of pyrosequencing reads) of Pseudomonas not found in sessile pipe samples. The sessile population of PAS-616P had methanogens (Methanobacteriaceae) as the main (56%) community component, whereas Deltaproteobacteria of the genera Desulfomicrobium and Desulfocapsa were not detected. In contrast, PAS-821TP and PAS-821LP had lower fractions (41% and 0.6%) of Methanobacteriaceae archaea but increased fractions of sulfate-reducing Desulfomicrobium (18% and 48%) and of bisulfite-disproportionating Desulfocapsa (35% and 22%) bacteria. Hence, SBS injection strongly changed the sessile microbial community populations. X-ray diffraction analysis of pipeline scale indicated that iron carbonate was present both upstream and downstream, whereas iron sulfide and sulfur were found only downstream of the SBS injection point, suggesting a contribution of the bisulfite-disproportionating and sulfate-reducing bacteria in the scale to iron corrosion. Incubation of iron coupons with pipeline waters indicated iron corrosion coupled to the formation of methane. Hence, both methanogenic and sulfidogenic microbial communities contributed to corrosion of pipelines transporting these brackish waters. PMID:21856836

  2. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity

    PubMed Central

    Yang, Guang; Yao, Hua; Mozzicafreddo, Matteo; Ballarini, Patrizia; Pucciarelli, Sandra

    2017-01-01

    ABSTRACT The α-amylases are endo-acting enzymes that hydrolyze starch by randomly cleaving the 1,4-α-d-glucosidic linkages between the adjacent glucose units in a linear amylose chain. They have significant advantages in a wide range of applications, particularly in the food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii (EfAmy) is an alkaline enzyme, different from most of the α-amylases characterized so far. Furthermore, EfAmy has the characteristics of a psychrophilic α-amylase, such as the highest hydrolytic activity at a low temperature and high thermolability, which is the major drawback of cold-active enzymes in industrial applications. In this work, we applied site-directed mutagenesis combined with rational design to generate a cold-active EfAmy with improved thermostability and catalytic efficiency at low temperatures. We engineered two EfAmy mutants. In one mutant, we introduced Pro residues on the A and B domains in surface loops. In the second mutant, we changed Val residues to Thr close to the catalytic site. The aim of these substitutions was to rigidify the molecular structure of the enzyme. Furthermore, we also analyzed mutants containing these combined substitutions. Biochemical enzymatic assays of engineered versions of EfAmy revealed that the combination of mutations at the surface loops increased the thermostability and catalytic efficiency of the enzyme. The possible mechanisms responsible for the changes in the biochemical properties are discussed by analyzing the three-dimensional structural model. IMPORTANCE Cold-adapted enzymes have high specific activity at low and moderate temperatures, a property that can be extremely useful in various applications as it implies a reduction in energy consumption during the catalyzed reaction. However, the concurrent high thermolability of cold-adapted enzymes often limits their applications in industrial processes. The α-amylase from the psychrophilic Antarctic ciliate Euplotes focardii (named EfAmy) is a cold-adapted enzyme with optimal catalytic activity in an alkaline environment. These unique features distinguish it from most α-amylases characterized so far. In this work, we engineered a novel EfAmy with improved thermostability, substrate binding affinity, and catalytic efficiency to various extents, without impacting its pH preference. These characteristics can be considered important properties for use in the food, detergent, and textile industries and in other industrial applications. The enzyme engineering strategy developed in this study may also provide useful knowledge for future optimization of molecules to be used in particular industrial applications. PMID:28455329

  3. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity.

    PubMed

    Yang, Guang; Yao, Hua; Mozzicafreddo, Matteo; Ballarini, Patrizia; Pucciarelli, Sandra; Miceli, Cristina

    2017-07-01

    The α-amylases are endo-acting enzymes that hydrolyze starch by randomly cleaving the 1,4-α-d-glucosidic linkages between the adjacent glucose units in a linear amylose chain. They have significant advantages in a wide range of applications, particularly in the food industry. The eukaryotic α-amylase isolated from the Antarctic ciliated protozoon Euplotes focardii ( Ef Amy) is an alkaline enzyme, different from most of the α-amylases characterized so far. Furthermore, Ef Amy has the characteristics of a psychrophilic α-amylase, such as the highest hydrolytic activity at a low temperature and high thermolability, which is the major drawback of cold-active enzymes in industrial applications. In this work, we applied site-directed mutagenesis combined with rational design to generate a cold-active Ef Amy with improved thermostability and catalytic efficiency at low temperatures. We engineered two Ef Amy mutants. In one mutant, we introduced Pro residues on the A and B domains in surface loops. In the second mutant, we changed Val residues to Thr close to the catalytic site. The aim of these substitutions was to rigidify the molecular structure of the enzyme. Furthermore, we also analyzed mutants containing these combined substitutions. Biochemical enzymatic assays of engineered versions of Ef Amy revealed that the combination of mutations at the surface loops increased the thermostability and catalytic efficiency of the enzyme. The possible mechanisms responsible for the changes in the biochemical properties are discussed by analyzing the three-dimensional structural model. IMPORTANCE Cold-adapted enzymes have high specific activity at low and moderate temperatures, a property that can be extremely useful in various applications as it implies a reduction in energy consumption during the catalyzed reaction. However, the concurrent high thermolability of cold-adapted enzymes often limits their applications in industrial processes. The α-amylase from the psychrophilic Antarctic ciliate Euplotes focardii (named Ef Amy) is a cold-adapted enzyme with optimal catalytic activity in an alkaline environment. These unique features distinguish it from most α-amylases characterized so far. In this work, we engineered a novel Ef Amy with improved thermostability, substrate binding affinity, and catalytic efficiency to various extents, without impacting its pH preference. These characteristics can be considered important properties for use in the food, detergent, and textile industries and in other industrial applications. The enzyme engineering strategy developed in this study may also provide useful knowledge for future optimization of molecules to be used in particular industrial applications. Copyright © 2017 Yang et al.

  4. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis.

    PubMed

    Grau, Roberto R; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia; Gallegos-Monterrosa, Ramses; Mhatre, Eisha; Vileta, Darío; Donato, Verónica; Hölscher, Theresa; Boland, Wilhelm; Kuipers, Oscar P; Kovács, Ákos T

    2015-07-07

    Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization. However, how is the collective decision to move over or stay attached to a surface controlled? Here, we use the model plant-beneficial bacterium Bacillus subtilis to answer this question. Remarkably, we discover that sessile biofilm formation and social sliding motility share the same structural components and the Spo0A regulatory network via sensor kinases, KinB and KinC. Potassium, an inhibitor of KinC-dependent biofilm formation, triggers sliding via a potassium-perceiving cytosolic domain of KinB that resembles the selectivity filter of potassium channels. The spatiotemporal response of these kinases to variable potassium levels and the gradual increase in Spo0A~Pi levels that orchestrates the activation of sliding before biofilm formation shed light on how multicellular behaviors formerly believed to be antagonistic work together to benefit the population fitness. Copyright © 2015 Grau et al.

  5. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia.

    PubMed

    Li, Bin; Kim, Sok Ho; Zhang, Yang; Hanfrey, Colin C; Elliott, Katherine A; Ealick, Steven E; Michael, Anthony J

    2015-09-01

    The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase. © 2015 John Wiley & Sons Ltd.

  6. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-vibrio association

    PubMed Central

    Koropatnick, Tanya; Goodson, Michael S.; Heath-Heckman, Elizabeth A. C.; McFall-Ngai, Margaret

    2014-01-01

    The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function and biochemistry of the cells as part of the morphogenic program. PMID:24648207

  7. Embryonic Development of the Light Organ of the Sepiolid Squid Euprymna scolopes Berry.

    PubMed

    Montgomery, M K; McFall-Ngai, M

    1993-06-01

    The sepiolid squid Euprymna scolopes maintains luminous bacterial symbionts of the species Vibrio fischeri in a bilobed light organ partially embedded in the ventral surface of the ink sac. Anatomical and ultrastructural observations of the light organ during embryogenesis indicate that the organ begins development as a paired proliferation of the mesoderm of the hindgut-ink sac complex. Three-dimensional reconstruction of the incipient light organ of a newly hatched juvenile revealed the presence of three pairs of sacculate crypts, each crypt joined to a pore on the surface of the light organ by a ciliated duct. The crypts, which become populated with bacterial symbionts within hours after the juvenile hatches, appear to result from sequential paired invaginations of the surface epithelium of the hindgut-ink sac complex during embryogenesis. A pair of anterior and a pair of posterior ciliated epithelial appendages, which may facilitate infection of the incipient light organ with symbiotic bacteria, develop by extension and growth of the surface epithelium. The ink sac and reflector develop dorsal to the crypts and together function to direct luminescence ventrally. These two accessory tissues are present at the time of hatching, although changes in their overall structure accompany growth and maturation of the light organ. A third accessory tissue, the muscle-derived lens, appears during post-hatch maturation of the light organ.

  8. Molecular phylogeny and species separation of five morphologically similar Holosticha-complex ciliates (Protozoa, Ciliophora) using ARDRA riboprinting and multigene sequence data

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Yi, Zhenzhen; Gong, Jun; Al-Rasheid Khaled, A. S.; Song, Weibo

    2010-05-01

    To separate and redefine the ambiguous Holosticha-complex, a confusing group of hypotrichous ciliates, six strains belonging to five morphospecies of three genera, Holosticha heterofoissneri, Anteholosticha sp. pop1, Anteholosticha sp. pop2, A. manca, A. gracilis and Nothoholosticha fasciola, were analyzed using 12 restriction enzymes on the basis of amplified ribosomal DNA restriction analysis. Nine of the 12 enzymes could digest the DNA products, four ( Hinf I, Hind III, Msp I, Taq I) yielded species-specific restriction patterns, and Hind III and Taq I produced different patterns for two Anteholosticha sp. populations. Distinctly different restriction digestion haplotypes and similarity indices can be used to separate the species. The secondary structures of the five species were predicted based on the ITS2 transcripts and there were several minor differences among species, while two Anteholosticha sp. populations were identical. In addition, phylogenies based on the SSrRNA gene sequences were reconstructed using multiple algorithms, which grouped them generally into four clades, and exhibited that the genus Anteholosticha should be a convergent assemblage. The fact that Holosticha species clustered with the oligotrichs and choreotrichs, though with very low support values, indicated that the topology may be very divergent and unreliable when the number of sequence data used in the analyses is too low.

  9. Phylogenetic relationships of the ciliate class Heterotrichea (Protista, Ciliophora, Postciliodesmatophora) inferred from multiple molecular markers and multifaceted analysis strategy.

    PubMed

    Shazib, Shahed Uddin Ahmed; Vd'ačný, Peter; Kim, Ji Hye; Jang, Seok Won; Shin, Mann Kyoon

    2014-09-01

    The ciliate class Heterotrichea is defined by somatic dikinetids bearing postciliodesmata, by an oral apparatus consisting of a paroral membrane and an adoral zone of membranelles, as well as by features of nuclear division involving extramacronuclear microtubules. Although phylogenetic interrelationships among heterotrichs have been analyzed several times, deeper nodes of the heterotrichean tree of life remain poorly resolved. To cast more light on the evolutionary history of heterotricheans, we performed phylogenetic analyses of multiple loci (18S rRNA gene, ITS1-5.8S rRNA-ITS2 region, and 28S rRNA gene) using traditional tree-building phylogenetic methods and statistical tree topology tests as well as phylogenetic networks, split spectrum analysis and quartet likelihood mapping. This multifaceted approach has shown that (1) Peritromus is very likely an adelphotaxon of all other heterotrichs; (2) Spirostomum and Anigsteinia are sister taxa and their common monophyletic origin is strongly supported by a uniquely posteriorly-thickened paroral membrane; (3) the monotypic family Chattonidiidae should be suppressed because its type genus clusters within the family Condylostomatidae; and (4) new families are needed for Gruberia and Fabrea because their affiliation with Spirostomidae and Climacostomidae, respectively, is not supported by molecular phylogenies nor the fine structure of the paroral membrane. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-Vibrio association.

    PubMed

    Koropatnick, Tanya; Goodson, Michael S; Heath-Heckman, Elizabeth A C; McFall-Ngai, Margaret

    2014-02-01

    The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical, and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function, and biochemistry of the cells as part of the morphogenic program.

  11. Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote

    PubMed Central

    Eisen, Jonathan A; Coyne, Robert S; Wu, Martin; Wu, Dongying; Thiagarajan, Mathangi; Wortman, Jennifer R; Badger, Jonathan H; Ren, Qinghu; Amedeo, Paolo; Jones, Kristie M; Tallon, Luke J; Delcher, Arthur L; Salzberg, Steven L; Silva, Joana C; Haas, Brian J; Majoros, William H; Farzad, Maryam; Carlton, Jane M; Smith, Roger K; Garg, Jyoti; Pearlman, Ronald E; Karrer, Kathleen M; Sun, Lei; Manning, Gerard; Elde, Nels C; Turkewitz, Aaron P; Asai, David J; Wilkes, David E; Wang, Yufeng; Cai, Hong; Collins, Kathleen; Stewart, B. Andrew; Lee, Suzanne R; Wilamowska, Katarzyna; Weinberg, Zasha; Ruzzo, Walter L; Wloga, Dorota; Gaertig, Jacek; Frankel, Joseph; Tsao, Che-Chia; Gorovsky, Martin A; Keeling, Patrick J; Waller, Ross F; Patron, Nicola J; Cherry, J. Michael; Stover, Nicholas A; Krieger, Cynthia J; del Toro, Christina; Ryder, Hilary F; Williamson, Sondra C; Barbeau, Rebecca A; Hamilton, Eileen P; Orias, Eduardo

    2006-01-01

    The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance. PMID:16933976

  12. Ultrastructural nasal pathology in children chronically and sequentially exposed to air pollutants.

    PubMed

    Calderón-Garcidueñas, L; Valencia-Salazar, G; Rodríguez-Alcaraz, A; Gambling, T M; García, R; Osnaya, N; Villarreal-Calderón, A; Devlin, R B; Carson, J L

    2001-02-01

    Southwest Metropolitan Mexico City (SWMMC) children are repeatedly exposed to a complex mixture of air pollutants, including ozone, particulate matter, and aldehydes. Nasal biopsies taken from these children exhibit a wide range of histopathologic alterations: marked changes in ciliated and goblet cell populations, basal cell hyperplasia, squamous metaplasia, and mild dysplasias. We studied the ultrastructural features of 15 nasal biopsies obtained from clinically healthy children 4 to 15 yr of age, growing up in SWMMC. The results were compared with nasal biopsies from 11 children growing up in Veracruz and exposed to low pollutant levels. Ultrathin sections of nasal biopsies revealed an unremarkable mucociliary epithelium in control children, whereas SWMMC children showed an epithelium comprised of variable numbers of basal, ciliated, goblet, and squamous metaplastic as well as intermediate cells. Nascent ciliated cells, as evidenced by the presence of migratory kinetosomes, were common, as were ciliary abnormalities, including absent central microtubules, supernumerary central and peripheral tubules, ciliary microtubular discontinuities, and compound cilia. Dyskinesia associated with these abnormal cilia was suggested by the altered orientation of the central microtubules in closely adjacent cilia. A transudate was evident between epithelial cells, suggesting potential deficiencies in epithelial junction integrity. Particulate matter was present in heterolysosomal bodies in epithelial cells and it was also deposited in intercellular spaces. The severe structural alteration of the nasal epithelium together with the prominent acquired ciliary defects are likely the result of chronic airway injury in which ozone, particulate matter, and aldehydes are thought to play a crucial role. The nasal epithelium in SWMMC children is fundamentally disordered, and their mucociliary defense mechanisms are no longer intact. A compromised nasal epithelium has less ability to protect the lower respiratory tract and may potentially leave the distal acinar airways more vulnerable to reactive gases. Impairment of mucociliary clearance has the potential to increase the contact time between deposited mutagenic particulate matter and the epithelial surface, thus increasing the risk for nasal carcinogenesis. Chronic exposures to air pollutants affect the whole respiratory tract; the nasal epithelium is an accessible and valuable sentinel to monitor exposures to toxic or carcinogenic substances.

  13. Modeling the distribution of ciliate protozoa in the reticulo-rumen using linear programming.

    PubMed

    Hook, S E; Dijkstra, J; Wright, A-D G; McBride, B W; France, J

    2012-01-01

    The flow of ciliate protozoa from the reticulo-rumen is significantly less than expected given the total density of rumen protozoa present. To maintain their numbers in the reticulo-rumen, protozoa can be selectively retained through association with feed particles and the rumen wall. Few mathematical models have been designed to model rumen protozoa in both the free-living and attached phases, and the data used in the models were acquired using classical techniques. It has therefore become necessary to provide an updated model that more accurately represents these microorganisms and incorporates the recent literature on distribution, sequestration, and generation times. This paper represents a novel approach to synthesizing experimental data on rumen microorganisms in a quantitative and structured manner. The development of a linear programming model of rumen protozoa in an approximate steady state will be described and applied to data from healthy ruminants consuming commonly fed diets. In the model, protozoa associated with the liquid phase and protozoa attached to particulate matter or sequestered against the rumen wall are distinguished. Growth, passage, death, and transfer of protozoa between both pools are represented. The results from the model application using the contrasting diets of increased forage content versus increased starch content indicate that the majority of rumen protozoa, 63 to 90%, are found in the attached phase, either attached to feed particles or sequestered on the rumen wall. A slightly greater proportion of protozoa are found in the attached phase in animals fed a hay diet compared with a starch diet. This suggests that experimental protocols that only sample protozoa from the rumen fluid could be significantly underestimating the size of the protozoal population of the rumen. Further data are required on the distribution of ciliate protozoa in the rumen of healthy animals to improve model development, but the model described herein does indicate that the attached protozoal population is a significant component of the total rumen protozoal community. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Distinct functional roles of β-tubulin isotypes in microtubule arrays of Tetrahymena thermophila, a model single-celled organism.

    PubMed

    Pucciarelli, Sandra; Ballarini, Patrizia; Sparvoli, Daniela; Barchetta, Sabrina; Yu, Ting; Detrich, H William; Miceli, Cristina

    2012-01-01

    The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, Tetrahymena thermophila. Tetrahymena forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of Tetrahymena demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (BTU1 and BTU2) encode the canonical β-tubulin, BTU2, and six genes (BLT1-6) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2. With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins in vivo, we transformed Tetrahymena with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically. We conclude that Tetrahymena uses a family of distinct β-tubulin isotypes to construct subsets of functionally different microtubules, a result that provides strong support for the multi-tubulin hypothesis.

  15. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly.

    PubMed

    Wang, Won-Jing; Acehan, Devrim; Kao, Chien-Han; Jane, Wann-Neng; Uryu, Kunihiro; Tsou, Meng-Fu Bryan

    2015-11-26

    Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm.

  16. Novel Sessile Drop Software for Quantitative Estimation of Slag Foaming in Carbon/Slag Interactions

    NASA Astrophysics Data System (ADS)

    Khanna, Rita; Rahman, Mahfuzur; Leow, Richard; Sahajwalla, Veena

    2007-08-01

    Novel video-processing software has been developed for the sessile drop technique for a rapid and quantitative estimation of slag foaming. The data processing was carried out in two stages: the first stage involved the initial transformation of digital video/audio signals into a format compatible with computing software, and the second stage involved the computation of slag droplet volume and area of contact in a chosen video frame. Experimental results are presented on slag foaming from synthetic graphite/slag system at 1550 °C. This technique can be used for determining the extent and stability of foam as a function of time.

  17. Antimicrobial Activity of Penicillin G and N-acetylcystein on Planktonic and Sessile Cells of Streptococcus suis.

    PubMed

    Espinosa, Ivette; Báez, Michel; Lobo, Evelyn; Martínez, Siomara; Gottschalk, Marcelo

    2016-01-01

    The aim of this study was to investigate the capacity of Streptococcus suis strains to form biofilms and to evaluate the antimicrobial activity of Penicillin G and N-acetylcystein (NAC) on both S. suis sessile and planktonic forms. Only non-typeable isolates of S. suis were correlated with a greater biofilm formation capacity. The MCI of Penicillin G and NAC required for inhibiting biofilm growth were higher than the required concentration for inhibiting planktonic growth. The combinations of NAC and Penicillin G showed a strong synergistic activity that inhibited biofilm formation and disrupted the pre-formed biofilm of S. suis.

  18. Plant intentionality and the phenomenological framework of plant intelligence

    PubMed Central

    Marder, Michael

    2012-01-01

    This article aims to bridge phenomenology and the study of plant intelligence with the view to enriching both disciplines. Besides considering the world from the perspective of sessile organisms, it would be necessary, in keeping with the phenomenological framework, to rethink (1) the meaning of being-sessile and being-in-a-place; (2) the concepts of sentience and attention; (3) how aboveground and underground environments appear to plants; (4) the significance of modular development for our understanding of intelligence; and (5) the concept of communication within and between plants and plant tissues. What emerges from these discussions is the image of a mind embodied in plant life. PMID:22951403

  19. Aggregation-Induced Emission Luminogen-Based Direct Visualization of Concentration Gradient Inside an Evaporating Binary Sessile Droplet.

    PubMed

    Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe

    2017-08-30

    In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.

  20. Expressions for the evaporation of sessile liquid droplets incorporating the evaporative cooling effect.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2016-12-15

    The evaporation along the surface of pinned, sessile droplets is investigated numerically by using the combined field approach. In the present model, the evaporative cooling at the droplet surface which leads to a reduction in the evaporation is taken into account. Simple, yet accurate analytical expressions for the local evaporation flux and for the total evaporation rate of sessile droplets are obtained. The theoretical analyses indicate that the reduction in the evaporation becomes more pronounced as the evaporative cooling number Ec increases. The results also reveal that the variation of total evaporation rate with contact angle will change its trend as the intensity of the evaporative cooling changes. For small values of Ec, the total evaporation rate increases with the contact angle, the same as predicted by Deegan et al. and by Hu and Larson in their isothermal models in which the evaporative cooling is neglected. Contrarily, when the evaporative cooling effect is strong enough, the total evaporation rate will decrease as the contact angle increases. The present theory is corroborated experimentally, and found in good agreement with the expressions proposed by Hu and Larson in the limiting isothermal case. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Crystalline desiccation patterns and film break up from evaporating drops on hydrophobic oxide surfaces

    NASA Astrophysics Data System (ADS)

    McBride, Samantha; Dash, Susmita; Khan, Sami; Varanasi, Kripa

    2017-11-01

    Solute-laden sessile drops evaporating on a substrate will often force crystallization of the solute at the triple phase contact line between the drop, substrate, and air in an effect similar to the ``coffee-ring'' deposition of particles from a particle-laden drop. We report new observations of ring-shaped desiccation patterns of gypsum crystals on hydrophobic oxide substrates; ceria, erbia, and silica. These surfaces have similar contact angles ( 105 degrees), and evaporation of sessile drops proceeds at the same rate and without contact angle hysteresis on all three substrates. However, despite the apparent similarity, the patterns of crystal deposits exhibit large differences across the substrates. The supersaturation and elapsed time at the onset of crystallization also varied across substrates, despite overall evaporation rates being identical. The differences in patterns can be explained in light of the position and morphology of the crystals just prior to completion of evaporation when the sessile drop has transitioned to a thin film spread over the deposit area. Break-up of this film occurs very differently on the different surfaces, and is simultaneously influenced by existing crystals while also influencing final crystalline patterns. This work was supported by the NSF GRFP.

  2. Looking for long-term changes in hydroid assemblages (Cnidaria, Hydrozoa) in Alboran Sea (South-Western Mediterranean): a proposal of a monitoring point for the global warming

    NASA Astrophysics Data System (ADS)

    González-Duarte, Manuel María; Megina, Cesar; Piraino, Stefano

    2014-12-01

    In the last 20-30 years, the temperature of the Mediterranean Sea has increased and global warming is allowing the establishment of tropical-affinity species into more temperate zones. Sessile communities are particularly useful as a baseline for ecological monitoring; however, a lack of historical data series exists for sessile marine organisms without commercial interest. Hydroids are ubiquitous components of the benthic sessile fauna on rocky shores and have been used as bio-indicators of environmental conditions. In this study on the benthic hydroid assemblages of the Chafarinas Islands (Alboran Sea, South-Western Mediterranean), we characterized the hydroid assemblages, identified the bathymetric gradients, and compared them with a previous study carried out in 1991. Hydroid assemblages showed a significant difference both between year and among depths. Furthermore, eight species not present in 1991 were found, including two possible new species and the tropical and subtropical species Sertularia marginata. Due to its strategic position at the entrance of the Mediterranean and the existence of previous data on hydroid assemblages, the Chafarinas Islands are proposed as a possible monitoring point for entrance of Atlantic tropical species into the Mediterranean Sea.

  3. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots

    NASA Astrophysics Data System (ADS)

    Palagi, Stefano; Mark, Andrew G.; Reigh, Shang Yik; Melde, Kai; Qiu, Tian; Zeng, Hao; Parmeggiani, Camilla; Martella, Daniele; Sanchez-Castillo, Alberto; Kapernaum, Nadia; Giesselmann, Frank; Wiersma, Diederik S.; Lauga, Eric; Fischer, Peer

    2016-06-01

    Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.

  4. Development and short-term dynamics of macrofouling assemblages on fish-cage nettings in a tropical estuary

    NASA Astrophysics Data System (ADS)

    Madin, John; Chong, V. C.; Basri, Badrulnizam

    2009-06-01

    A study was conducted at a fish culture farm in the Jaha River estuary, Malaysia, to examine the structure and development of macrofouling assemblages on floating net-cages. The study was conducted during the dry (August-October 2001) and wet (December-February 2002) seasons. Biofouling on 1.6 cm mesh net panels (size 0.2 m × 2 m) suspended inside (P, T) and outside (O) experimental net-cages was monitored every week until net openings were completely occluded by macrofouling organisms (8 wk and 12 wk for dry and wet seasons respectively). Seven species (6 phyla) of sessile organisms and 23 species (3 phyla) of non-sessile associates were recorded. Macro-colonization of net panels began with the hydroid Plumularia sp. irrespective of season and treatment (P, T, and O), while other species only appeared after 1 or 2 weeks of immersion. Inside net-cages where water flow was slow (mean < 6 cm s -1 at 0.50-0.75 m depth); macroalgae ( Polysiphonia sp.), anthozoans (unidentified anemone), barnacles ( Balanus amphitrite), amphipods ( Gammaropsis sp. & Photis sp.), and tanaids ( Leptognathia sp.) were dominant on the net panels during the dry season. In the wet season, hydroid ( Plumularia sp.), mussel ( Xenostrobus mangle), and nematode abundance were however significant. With stronger water flow (mean ≈ 20 cm s -1) as occurring outside the net-cages, macrofouling assemblages for both seasons comprised mainly Plumularia sp. and Gammaropsis sp. The macrofouling assemblage showed a clear succession of species that occupied different layers of the net panels. The study shows that while organic enrichment and retarded water flow together enhance the development of macrofouling assemblages, salinity, depth, substrate (net) area and species competition specifically influence community structure, colonization, and depth distribution of the macrofouling organisms.

  5. Summer Epiphytic Diatoms from Terra Nova Bay and Cape Evans (Ross Sea, Antarctica) - A Synthesis and Final Conclusions

    PubMed Central

    Majewska, Roksana; Convey, Peter; De Stefano, Mario

    2016-01-01

    Despite recent advances in polar marine biology and related fields, many aspects of the ecological interactions that are crucial for the functioning of Antarctic shallow water habitats remain poorly understood. Although epiphytic diatoms play an essential role in the Antarctic marine food web, basic information regarding their ecology, biodiversity and biogeography is largely unavailable. Here, we synthesise studies on Ross Sea epiphytic diatoms collected during 11 summer Antarctic expeditions between the years 1989/90 and 2011/12, presenting a full list of diatom taxa associated with three macroalgal species (Iridaea cordata, Phyllophora antarctica, and Plocamium cartilagineum) and their epiphytic sessile fauna. Diatom communities found during the three summer months at various depths and sampling stations differed significantly in terms of species composition, growth form structure and abundances. Densities ranged from 21 to >8000 cells mm-2, and were significantly higher on the surface of epiphytic micro-fauna than on any of the macroalgal species examined. Generally, host organisms characterized by higher morphological heterogeneity (sessile microfauna, ramified Plocamium) supported richer diatom communities than those with more uniform surfaces (Iridaea). Differences between epiphytic communities associated with different macroalgae were reflected better in species composition than in growth form structure. The latter changed significantly with season, which was related strongly to the changing ice conditions. A general trend towards an increasing number of erect forms in deeper waters and tube-dwelling diatoms in the shallowest sites (2–5 m) was also observed. This study explores further important and largely previously unknown aspects of relationships and interactions between Antarctic epiphytic diatoms and their micro- and macro-environments. PMID:27078637

  6. JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium.

    PubMed

    Gomi, Kazunori; Staudt, Michelle R; Salit, Jacqueline; Kaner, Robert J; Heldrich, Jonna; Rogalski, Allison M; Arbelaez, Vanessa; Crystal, Ronald G; Walters, Matthew S

    2016-08-01

    Basal cells (BC) are the stem/progenitor cells of the human airway epithelium capable of differentiating into secretory and ciliated cells. Notch signaling activation increases BC differentiation into secretory cells, but the role of individual Notch ligands in regulating this process in the human airway epithelium is largely unknown. The objective of this study was to define the role of the Notch ligand JAG1 in regulating human BC differentiation. JAG1 over-expression in BC increased secretory cell differentiation, with no effect on ciliated cell differentiation. Conversely, knockdown of JAG1 decreased expression of secretory cell genes. These data demonstrate JAG1-mediated Notch signaling regulates differentiation of BC into secretory cells.

  7. Crypt cells are involved in kin recognition in larval zebrafish

    PubMed Central

    Biechl, Daniela; Tietje, Kristin; Gerlach, Gabriele; Wullimann, Mario F.

    2016-01-01

    Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal. PMID:27087508

  8. Crypt cells are involved in kin recognition in larval zebrafish.

    PubMed

    Biechl, Daniela; Tietje, Kristin; Gerlach, Gabriele; Wullimann, Mario F

    2016-04-18

    Zebrafish larvae imprint on visual and olfactory kin cues at day 5 and 6 postfertilization, respectively, resulting in kin recognition later in life. Exposure to non-kin cues prevents imprinting and kin recognition. Imprinting depends on MHC class II related signals and only larvae sharing MHC class II alleles can imprint on each other. Here, we analyzed which type of olfactory sensory neuron (OSN) detects kin odor. The single teleost olfactory epithelium harbors ciliated OSNs carrying OR and TAAR gene family receptors (mammals: main olfactory epithelium) and microvillous OSNs with V1R and V2R gene family receptors (mammals: vomeronasal organ). Additionally, teleosts exhibit crypt cells which possess microvilli and cilia. We used the activity marker pERK (phosphorylated extracellular signal regulated kinase) after stimulating 9 day old zebrafish larvae with either non-kin conspecific or food odor. While food odor activated both ciliated and microvillous OSNs, only the latter were activated by conspecific odor, crypt cells showed no activation to both stimuli. Then, we tested imprinted and non-imprinted larvae (full siblings) for kin odor detection. We provide the first direct evidence that crypt cells, and likely a subpopulation of microvillous OSNs, but not ciliated OSNs, play a role in detecting a kin odor related signal.

  9. Responses of protists with different feeding habits to the changes of activated sludge conditions: a study based on biomass data.

    PubMed

    Hu, Bo; Qi, Rong; An, Wei; Yang, Min

    2012-01-01

    Changes of protists, which were categorized into different functional groups primarily according to their feeding habits, in two full-scale municipal wastewater treatment systems experiencing sludge bulking were investigated over a period of 14 months. Protist biomass represented 3.7% to 5.2% of total biomass on average under normal sludge conditions, and the percentage increased significantly (p < 0.05) under sludge bulking conditions. The biomass of Chilodonella spp., capable of eating filamentous bacteria, tended to decrease in both systems when sludge bulking occurred, showing that the abnormal growth of filamentous bacteria did not lead to a biomass bloom of this group of protists. On the other hand, the bactivorous protists represented more than 96% of total protist biomass, and the biomass of this group, particularly the attached ciliates, increased significantly (p < 0.05) when sludge bulking occurred. The significant increase of the attached ciliates may have possibly facilitated the growth of filamentous bacteria through selectively preying on non-filamentous bacteria and further exacerbated sludge bulking. The redundancy analysis and correlation analysis results showed that the biomass changes of the attached ciliates were primarily related to the sludge volume index and to some extent related to five-day biochemical oxygen demand loading and hydraulic retention time.

  10. Aspects of cooling tower biocides and protozoa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berk, S.G.; Ashburn, R.J.; Ting, R.S.

    1998-12-31

    Previous work has shown that certain cooling tower amoebae and ciliated protozoa are resistant to several cooling tower biocides, even at the manufacturer`s recommended dosages. For the present study, an Acunthumoeba species was isolated from a cooling tower in Australia. Suspensions of the trophozoites (feeding stages) were exposed to isothiazolones. Cysts were tested separately. The minimum lethal concentration (MLC) for trophozoites was between 31-62 ppm of the biocide product, which is slightly less than the MLC for an amoebae species from the United States; and cyst forms were twofold more resistant than those of the US species, with a MLCmore » of 62,500 ppm. A ciliate and an amoeba species were also exposed to bromochlorodimethylhydantoin. The MLC for the ciliate species was 1 ppm of the biocide product, and the MLC was 30--40 ppm for the amoeba trophozoites. Since amoebae can expel vesicles containing live Legionella, experiments were conducted to determine whether exposure of Acunthamoebu polyphugu to biocides influenced release of such potentially infectious particles. Vesicle release was not inhibited by any of the three biocides: quaternary ammonium compounds (QACs), isothiazolones, and a thiocarbamate compound. These results suggest that amoebae from various sources are resistant to recommended levels of biocides, and the amoebae may continue to release potentially infectious vesicles in the presence of biocides.« less

  11. Histopathology of experimental scuticociliatosis in turbot Scophthalmus maximus.

    PubMed

    Puig, L; Traveset, R; Palenzuela, O; Padrós, F

    2007-06-29

    A scuticociliate strain (B-2), originally isolated from an outbreak in a turbot Scophthalmus maximus (= Psetta maxima) farm in Galicia (northwestern Spain) and maintained in axenic culture, was injected intracoelomically (lethal dose 80 equivalent, LD80) in healthy turbot (50 g). Ciliate-injected fish were kept under controlled conditions in a recirculating seawater system and sampled on Days 1 through 8, 10, 12 and 14 postinfection (PI). Necropsies were conducted and included blood collection from the caudal vein and samples of liver, spleen, heart, digestive tract, kidney, gills, abdominal wall and neurocranium taken for routine histology. Mortality occurred from Day 6 until Day 12 PI and reached 66.7% by the end of the experiment. Presence of ciliates in the coelomic fluid was scarce until Day 4 PI. Parasitaemia was only observed from Day 5 until Day 10 PI and its incidence was always low. Presence of scuticociliates in tissue sections followed a progressive pattern of diffusion, with ciliates showing preference for loose connective tissue and also a clear haematophagous activity. The most severely affected organs were the pancreas and digestive tract. No special tropism for nervous tissues was observed in this study. The inflammatory reaction was variable depending on the tissue. After 3 wk, survivors had apparently managed to extinguish the infection.

  12. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium.

    PubMed

    Catania, Francesco; Lynch, Michael

    2010-05-04

    In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  13. Transposon Invasion of the Paramecium Germline Genome Countered by a Domesticated PiggyBac Transposase and the NHEJ Pathway

    PubMed Central

    Dubois, Emeline; Bischerour, Julien; Marmignon, Antoine; Mathy, Nathalie; Régnier, Vinciane; Bétermier, Mireille

    2012-01-01

    Sequences related to transposons constitute a large fraction of extant genomes, but insertions within coding sequences have generally not been tolerated during evolution. Thanks to their unique nuclear dimorphism and to their original mechanism of programmed DNA elimination from their somatic nucleus (macronucleus), ciliates are emerging model organisms for the study of the impact of transposable elements on genomes. The germline genome of the ciliate Paramecium, located in its micronucleus, contains thousands of short intervening sequences, the IESs, which interrupt 47% of genes. Recent data provided support to the hypothesis that an evolutionary link exists between Paramecium IESs and Tc1/mariner transposons. During development of the macronucleus, IESs are excised precisely thanks to the coordinated action of PiggyMac, a domesticated piggyBac transposase, and of the NHEJ double-strand break repair pathway. A PiggyMac homolog is also required for developmentally programmed DNA elimination in another ciliate, Tetrahymena. Here, we present an overview of the life cycle of these unicellular eukaryotes and of the developmentally programmed genome rearrangements that take place at each sexual cycle. We discuss how ancient domestication of a piggyBac transposase might have allowed Tc1/mariner elements to spread throughout the germline genome of Paramecium, without strong counterselection against insertion within genes. PMID:22888464

  14. A 3-D well-differentiated model of pediatric bronchial epithelium demonstrates unstimulated morphological differences between asthmatic and nonasthmatic cells.

    PubMed

    Parker, Jeremy; Sarlang, Severine; Thavagnanam, Surendran; Williamson, Grace; O'donoghue, Dara; Villenave, Remi; Power, Ultan; Shields, Michael; Heaney, Liam; Skibinski, Grzegorz

    2010-01-01

    There is a need for reproducible and effective models of pediatric bronchial epithelium to study disease states such as asthma. We aimed to develop, characterize, and differentiate an effective, an efficient, and a reliable three-dimensional model of pediatric bronchial epithelium to test the hypothesis that children with asthma differ in their epithelial morphologic phenotype when compared with nonasthmatic children. Primary cell cultures from both asthmatic and nonasthmatic children were grown and differentiated at the air-liquid interface for 28 d. Tight junction formation, MUC5AC secretion, IL-8, IL-6, prostaglandin E2 production, and the percentage of goblet and ciliated cells in culture were assessed. Well-differentiated, multilayered, columnar epithelium containing both ciliated and goblet cells from asthmatic and nonasthmatic subjects were generated. All cultures demonstrated tight junction formation at the apical surface and exhibited mucus production and secretion. Asthmatic and nonasthmatic cultures secreted similar quantities of IL-8, IL-6, and prostaglandin E2. Cultures developed from asthmatic children contained considerably more goblet cells and fewer ciliated cells compared with those from nonasthmatic children. A well-differentiated model of pediatric epithelium has been developed that will be useful for more in vivo like study of the mechanisms at play during asthma.

  15. Morphology and Molecular Phylogeny of Peritrich Ciliate Epibionts on Pelagic Diatoms: Vorticella oceanica and Pseudovorticella coscinodisci sp. nov. (Ciliophora, Peritrichia).

    PubMed

    Gómez, Fernando; Wang, Lu; Lin, Senjie

    2018-04-01

    Consortia of the peritrich ciliate Vorticella oceanica and the planktonic diatom Chaetoceros coarctactus are reported from the South Atlantic Ocean. The morphologies of the constituent species were similar to their counterparts from other geographical regions, revealing a widespread distribution in tropical waters. Besides, we describe Pseudovorticella coscinodisci sp. nov. that lives on Coscinodiscus wailesii and other pelagic diatoms off Brazil. The zooids were 34-45μm long, and 19-30μm wide with a stalk too short to coil. The cell surface showed a reticulate pellicle with 18-19 and 11-12 rows above and below the aboral ciliary wreath, respectively. In the SSU rDNA phylogeny V. oceanica clustered between the clades of Vorticella and Pseudovorticella/Epicarchesium, and Pseudovorticella coscinodisci sp. nov. clustered as a sister group of Pseudovorticella paracratera and P. sinensis. The V. oceanica-C. coarctactus consortium likely represents an obligate species-specific mutualistic symbiosis as the constituents are not known as free-living forms. In contrast, the diatom hosts are known as free-living forms in the consortia of Pseudovorticella coscinodisci. The new molecular data and species description will be valuable dataset for future research on the diversity and ecological significance of ciliate-diatom epibiotic consortia. Copyright © 2018 Elsevier GmbH. All rights reserved.

  16. Specificity in diversity: single origin of a widespread ciliate-bacteria symbiosis

    PubMed Central

    Schwaha, Thomas; Volland, Jean-Marie; Huettel, Bruno; Dubilier, Nicole; Gruber-Vodicka, Harald R.

    2017-01-01

    Symbioses between eukaryotes and sulfur-oxidizing (thiotrophic) bacteria have convergently evolved multiple times. Although well described in at least eight classes of metazoan animals, almost nothing is known about the evolution of thiotrophic symbioses in microbial eukaryotes (protists). In this study, we characterized the symbioses between mouthless marine ciliates of the genus Kentrophoros, and their thiotrophic bacteria, using comparative sequence analysis and fluorescence in situ hybridization. Ciliate small-subunit rRNA sequences were obtained from 17 morphospecies collected in the Mediterranean and Caribbean, and symbiont sequences from 13 of these morphospecies. We discovered a new Kentrophoros morphotype where the symbiont-bearing surface is folded into pouch-like compartments, illustrating the variability of the basic body plan. Phylogenetic analyses revealed that all investigated Kentrophoros belonged to a single clade, despite the remarkable morphological diversity of these hosts. The symbionts were also monophyletic and belonged to a new clade within the Gammaproteobacteria, with no known cultured representatives. Each host morphospecies had a distinct symbiont phylotype, and statistical analyses revealed significant support for host–symbiont codiversification. Given that these symbioses were collected from two widely separated oceans, our results indicate that symbiotic associations in unicellular hosts can be highly specific and stable over long periods of evolutionary time. PMID:28701560

  17. Grazing experiments and model simulations of the role of zooplankton in Phaeocystis food webs

    NASA Astrophysics Data System (ADS)

    Verity, P. G.

    2000-08-01

    A combined empirical and modelling study was conducted to further examine the potential importance of grazing by zooplankton in pelagic food webs in which Phaeocystis is a significant or dominant component. Laboratory experiments were designed to measure ingestion of Phaeocystis and other potential prey items which co-occur with Phaeocystis. Grazers included copepods and ciliates, and prey included Phaeocystis colonies and solitary cells, diatoms, ciliates, bacteria, and detritus. These data were expressed in the model currency of nitrogen units, and fit to hyperbolic tangent equations which included minimum prey thresholds. These equations and literature data were used to constrain a food web model whose purpose was to investigate trophic interactions rather than to mimic actual events. Nevertheless, the model output was similar to the general pattern and magnitude of development of Phaeocystis-diatom communities in some environments where they occur, e.g. north Norwegian waters. The model included three forms of nitrogen, three phytoplankton groups, bacteria, two zooplankton groups, and detritus, with detailed flows between compartments. An important component of the model was inclusion of variable prey preferences for zooplankton. The experiments and model simulations suggest several salient conclusions. Phaeocystis globosa colonies were eaten by a medium-sized copepod species, but ingestion appeared to be strongly dependent upon a proper size match between grazer and prey. If not, colonies were eaten little if at all. Phaeocystis solitary cells were ingested rapidly by ciliate microzooplankton, in agreement with prior literature observations. In contrast, detritus was eaten comparatively slowly by both ciliates and copepods. Both types of zooplankton exhibited apparent minimum prey thresholds below which grazing did not occur or was inconsequential. Model simulations implied that transitions between life cycle stages of Phaeocystis may potentially be important to phytoplankton-zooplankton interactions, and that relative rates of ingestion of Phaeocystis by various zooplankton may have significant impacts upon material fluxes through and out of Phaeocystis-diatom ecosystems. Indirect effects of trophic interactions appear to be equally significant as direct effects.

  18. Tolerance of ciliated protozoan Paramecium bursaria (Protozoa, Ciliophora) to ammonia and nitrites

    NASA Astrophysics Data System (ADS)

    Xu, Henglong; Song, Weibo; Lu, Lu; Alan, Warren

    2005-09-01

    The tolerance to ammonia and nitrites in freshwater ciliate Paramecium bursaria was measured in a conventional open system. The ciliate was exposed to different concentrations of ammonia and nitrites for 2h and 12h in order to determine the lethal concentrations. Linear regression analysis revealed that the 2h-LC50 value for ammonia was 95.94 mg/L and for nitrite 27.35 mg/L using probit scale method (with 95% confidence intervals). There was a linear correlation between the mortality probit scale and logarithmic concentration of ammonia which fit by a regression equation y=7.32 x 9.51 ( R 2=0.98; y, mortality probit scale; x, logarithmic concentration of ammonia), by which 2 h-LC50 value for ammonia was found to be 95.50 mg/L. A linear correlation between mortality probit scales and logarithmic concentration of nitrite is also followed the regression equation y=2.86 x+0.89 ( R 2=0.95; y, mortality probit scale; x, logarithmic concentration of nitrite). The regression analysis of toxicity curves showed that the linear correlation between exposed time of ammonia-N LC50 value and ammonia-N LC50 value followed the regression equation y=2 862.85 e -0.08 x ( R 2=0.95; y, duration of exposure to LC50 value; x, LC50 value), and that between exposed time of nitrite-N LC50 value and nitrite-N LC50 value followed the regression equation y=127.15 e -0.13 x ( R 2=0.91; y, exposed time of LC50 value; x, LC50 value). The results demonstrate that the tolerance to ammonia in P. bursaria is considerably higher than that of the larvae or juveniles of some metozoa, e.g. cultured prawns and oysters. In addition, ciliates, as bacterial predators, are likely to play a positive role in maintaining and improving water quality in aquatic environments with high-level ammonium, such as sewage treatment systems.

  19. Arrhenius-kinetics evidence for quantum tunneling in microbial “social” decision rates

    PubMed Central

    2010-01-01

    Social-like bacteria, fungi and protozoa communicate chemical and behavioral signals to coordinate their specializations into an ordered group of individuals capable of fitter ecological performance. Examples of microbial “social” behaviors include sporulation and dispersion, kin recognition and nonclonal or paired reproduction. Paired reproduction by ciliates is believed to involve intra- and intermate selection through pheromone-stimulated “courting” rituals. Such social maneuvering minimizes survival-reproduction tradeoffs while sorting superior mates from inferior ones, lowering the vertical spread of deleterious genes in geographically constricted populations and possibly promoting advantageous genetic innovations. In a previous article, I reported findings that the heterotrich Spirostomum ambiguum can out-complete mating rivals in simulated social trials by learning behavioral heuristics which it then employs to store and select sets of altruistic and deceptive signaling strategies. Frequencies of strategy use typically follow Maxwell-Boltzmann (MB), Fermi-Dirac (FD) or Bose-Einstein (BE) statistical distributions. For ciliates most adept at social decision making, a brief classical MB computational phase drives signaling behavior into a later quantum BE computational phase that condenses or favors the selection of a single fittest strategy. Appearance of the network analogue of BE condensation coincides with Hebbian-like trial-and-error learning and is consistent with the idea that cells behave as heat engines, where loss of energy associated with specific cellular machinery critical for mating decisions effectively reduces the temperature of intracellular enzymes cohering into weak Fröhlich superposition. I extend these findings by showing the rates at which ciliates switch serial behavioral strategies agree with principles of chemical reactions exhibiting linear and nonlinear Arrhenius kinetics during respective classical and quantum computations. Nonlinear Arrhenius kinetics in ciliate decision making suggest transitions from one signaling strategy to another result from a computational analogue of quantum tunneling in social information processing. PMID:21331234

  20. Altered Protozoan and Bacterial Communities and Survival of Escherichia coli O157:H7 in Monensin-Treated Wastewater from a Dairy Lagoon

    PubMed Central

    Ravva, Subbarao V.; Sarreal, Chester Z.; Mandrell, Robert E.

    2013-01-01

    Surviving predation is a fitness trait of Escherichia coli O157:H7 (EcO157) that provides ample time for the pathogen to be transported from reservoirs (e.g. dairies and feedlots) to farm produce grown in proximity. Ionophore dietary supplements that inhibit rumen protozoa may provide such a selective advantage for EcO157 to proliferate in lagoons as the pathogen is released along with the undigested supplement as manure washings. This study evaluated the fate of an outbreak strain of EcO157, protozoan and bacterial communities in wastewater treated with monensin. Although total protozoa and native bacteria were unaffected by monensin, the time for 90% decrease in EcO157 increased from 0.8 to 5.1 days. 18S and 16S rRNA gene sequencing of wastewater samples revealed that monensin eliminated almost all colpodean and oligohymenophorean ciliates, probably facilitating the extended survival of EcO157. Total protozoan numbers remained high in treated wastewater as monensin enriched 94% of protozoan sequences undetected with untreated wastewater. Monensin stimulated 30-fold increases in Cyrtohymena citrina, a spirotrichean ciliate, and also biflagellate bicosoecids and cercozoans. Sequences of gram-negative Proteobacteria increased from 1% to 46% with monensin, but gram-positive Firmicutes decreased from 93% to 46%. It is noteworthy that EcO157 numbers increased significantly (P<0.01) in Sonneborn medium containing monensin, probably due to monensin-inhibited growth of Vorticella microstoma (P<0.05), a ciliate isolated from wastewater. We conclude that dietary monensin inhibits ciliate protozoa that feed on EcO157. Feed supplements or other methods that enrich these protozoa in cattle manure could be a novel strategy to control the environmental dissemination of EcO157 from dairies to produce production environments. PMID:23349969

  1. Phytoplankton and microzooplankton growth and grazing dynamics in Kaneohe Bay, Hawaii, a subtropical estuarine coastal embayment

    NASA Astrophysics Data System (ADS)

    Selph, K. E.; Jungbluth, M.; Goetze, E.; Chang, S.; Uchida, M.; Kolker, G.

    2016-02-01

    This presentation will describe growth and mortality rates of phytoplankton, and the response of their primary consumers, in Kaneohe Bay, Hawaii, a subtropical coastal embayment. This study includes data from both dry and wet conditions, the latter where local storms increase stream flow, which in turn introduces macronutrients to surface waters of the bay, resulting in phytoplankton blooms. Phytoplankton growth and mortality rates are estimated using the seawater dilution method in 9 experiments conducted over a range of initial fluorometric chlorophyll a (Chl) conditions (i.e., from 0.3 to >1 µg Chl/L). Samples were also collected for determining the population dynamics of ciliates, dinoflagellates, and metazoan nauplii. Net growth rates could always be described with a linear negative regression as a function of dilution factor. In 2 experiments, the assumption that adding nutrients only affected the growth, and not the mortality, rates of the phytoplankton was tested and confirmed. The dominant picophytoplankton, Synechococcus (SYN), had cell-specific growth rates of 0.4 - 1.7 d-1, and positive net growth in all but one experiment. With the exception of 2 experiments conducted during and just after a diatom bloom, other pico- and nano-eukaryotic phytoplankton had negative cell-based growth rates, and mortality varied widely, from -0.22 to 0.94 d-1. Most experiments (5/9) showed higher growth with added macronutrients (ammonium and phosphorus), suggesting nutrient limitation. Microzooplankton biomass was relatively evenly partitioned between ciliates and dinoflagellates, however abundance was dominated by 10-20 µm (length) aloricate oligotrich ciliates, except for during a diatom bloom, where large (>30 µm length) ciliate mixotrophs and gymnodinoid dinoflagellates contributed to a 7-fold increase in micrograzer biomass. Thus, during episodic storm events, microzooplankton have elevated biomass, suggesting that some fraction of the increased production is available for higher trophic levels.

  2. Information Integration and Communication in Plant Growth Regulation.

    PubMed

    Chaiwanon, Juthamas; Wang, Wenfei; Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Zhi-Yong

    2016-03-10

    Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Information Integration and Communication in Plant Growth Regulation

    PubMed Central

    Chaiwanon, Juthamas; Wang, Wenfei; Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Zhi-Yong

    2016-01-01

    Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth. PMID:26967291

  4. Propagule pressure determines recruitment from a commercial shipping pier.

    PubMed

    Hedge, Luke H; Johnston, Emma L

    2012-01-01

    Artificial structures associated with shipping and boating activities provide habitats for a diverse suite of non-indigenous marine species. Little is known about the proportion of invader success in nearby waters that is attributable to these structures. Areas close to piles, wharves and piers are likely to be exposed to increasing levels of propagule pressure, enhancing the recruitment of non-indigenous species. Recruitment of non-indigenous and native marine biofouling taxa were evaluated at different distances from a large commercial shipping pier. Since artificial structures also represent a desirable habitat for fish, how predation on marine invertebrates influences the establishment of non-indigenous and native species was also evaluated. The colonisation of several non-indigenous marine species declined rapidly with distance from the structure. Little evidence was found to suggest that predators have much influence on the colonisation success of marine sessile invertebrate species, non-indigenous or otherwise. It is suggested that propagule pressure, not predation, more strongly predicts establishment success in these biofouling assemblages.

  5. Nanocarpets for Trapping Microscopic Particles

    NASA Technical Reports Server (NTRS)

    Noca, Flavio; Chen, Fei; Hunt, Brian; Bronikowski, Michael; Hoenk, Michael; Kowalczyk, Robert; Choi, Daniel

    2004-01-01

    Nanocarpets that is, carpets of carbon nanotubes are undergoing development as means of trapping microscopic particles for scientific analysis. Examples of such particles include inorganic particles, pollen, bacteria, and spores. Nanocarpets can be characterized as scaled-down versions of ordinary macroscopic floor carpets, which trap dust and other particulate matter, albeit not purposefully. Nanocarpets can also be characterized as mimicking both the structure and the particle-trapping behavior of ciliated lung epithelia, the carbon nanotubes being analogous to cilia. Carbon nanotubes can easily be chemically functionalized for selective trapping of specific particles of interest. One could, alternatively, use such other three-dimensionally-structured materials as aerogels and activated carbon for the purposeful trapping of microscopic particles. However, nanocarpets offer important advantages over these alternative materials: (1) Nanocarpets are amenable to nonintrusive probing by optical means; and (2) Nanocarpets offer greater surface-to-volume ratios.

  6. Confinement-induced alterations in the evaporation dynamics of sessile droplets.

    PubMed

    Bansal, Lalit; Chakraborty, Suman; Basu, Saptarshi

    2017-02-07

    Evaporation of sessile droplets has been a topic of extensive research. However, the effect of confinement on the underlying dynamics has not been well explored. Here, we report the evaporation dynamics of a sessile droplet in a confined fluidic environment. Our findings reveal that an increase in the channel length delays the completion of the evaporation process and leads to unique spatio-temporal evaporation flux and internal flow. The evaporation modes (constant contact angle and constant contact radius) during the droplet lifetime however exhibit global similarity when normalized by appropriate length and timescales. These results are explained in light of an increase in vapor concentration inside the channel due to greater accumulation of water vapor on account of increased channel length. We have formulated a theoretical framework which introduces two key parameters namely an enhanced concentration of the vapor field in the vicinity of the confined droplet and a corresponding accumulation lengthscale over which the accumulated vapor relaxes to the ambient concentration. Using these two parameters and modified diffusion based evaporation we are able to show that confined droplets exhibit a universal behavior in terms of the temporal evolution of each evaporation mode irrespective of the channel length. These results may turn out to be of profound importance in a wide variety of applications, ranging from surface patterning to microfluidic technology.

  7. Effect of nanoparticle size on sessile droplet contact angle

    NASA Astrophysics Data System (ADS)

    Munshi, A. M.; Singh, V. N.; Kumar, Mukesh; Singh, J. P.

    2008-04-01

    We report a significant variation in the static contact angle measured on indium oxide (IO) nanoparticle coated Si substrates that have different nanoparticle sizes. These IO nanoparticles, which have well defined shape and sizes, were synthesized by chemical vapor deposition in a horizontal alumina tube furnace. The size of the IO nanoparticles was varied by changing the source material, substrate temperature, and the deposition time. A sessile droplet method was used to determine the macroscopic contact angle on these IO nanoparticle covered Si substrate using two different liquids: de-ionized water and diethylene glycol (DEG). It was observed that contact angle depends strongly on the nanoparticle size. The contact angle was found to vary from 24° to 67° for de-ionized water droplet and from 15° to 60° for DEG droplet, for the nanoparticle sizes varying from 14 to 620 nm. The contact angle decreases with a decrease in the particles size. We have performed a theoretical analysis to determine the dependence of contact angle on the nanoparticle size. This formulation qualitatively shows a similar trend of decrease in the contact angle with a decrease in nanoparticle size. Providing a rough estimate of nanoparticle size by sessile droplet contact angle measurement is the novelty in this work.

  8. Measuring the force of drag on air sheared sessile drops

    NASA Astrophysics Data System (ADS)

    Milne, Andrew J. B.; Fleck, Brian; Amirfazli, Alidad

    2012-11-01

    To blow a drop along or off of a surface (i.e. to shed the drop), the drag force on the drop (based on flow conditions, drop shape, and fluid properties) must overcome the adhesion force between the drop and the surface (based on surface tension, drop shape, and contact angle). While the shedding of sessile drops by shear flow has been studied [Milne, A. J. B. & Amirfazli, A. Langmuir 25, 14155 (2009).], no independent measurements of the drag or adhesion forces have been made. Likewise, analytic predictions are limited to hemispherical drops and low air velocities. We present, therefore, measurements of the drag force on sessile drops at air velocities up to the point of incipient motion. Measurements were made using a modified floating element shear sensor in a laminar low speed wind tunnel to record drag force over the surface with the drop absent, and over the combined system of the surface and drop partially immersed in the boundary layer. Surfaces of different wettabilities were used to study the effects of drop shape and contact angles, with drop volume ranged between approximately 10 and 100 microlitres. The drag force for incipient motion (which by definition equals the maximum of the adhesion force) is compared to simplified models for drop adhesion such as that of Furmidge

  9. Fungicidal PMMA-Undecylenic Acid Composites

    PubMed Central

    Petrović, Milica; Hofmann, Heinrich

    2018-01-01

    Undecylenic acid (UA), known as antifungal agent, still cannot be used to efficiently modify commercial dental materials in such a way that this affects Candida. Actually, issues with Candida infections and fungal resistance compromise the use of Poly(methyl-methacrylate) (PMMA) as dental material. The challenge remains to turn PMMA into an antifugal material, which can ideally affect both sessile (attached) and planktonic (free-floating) Candida cells. We aimed to tackle this challenge by designing PMMA-UA composites with different UA concentrations (3–12%). We studied their physico-chemical properties, the antifungal effect on Candida and the cytotoxicity toward human cells. We found that UA changes the PMMA surface into a more hydrophilic one. Mainly, as-preparation composites with ≥6% UA reduced sessile Candida for >90%. After six days, the composites were still efficiently reducing the sessile Candida cells (for ~70% for composites with ≥6% UA). Similar results were recorded for planktonic Candida. Moreover, the inhibition zone increased along with the UA concentration. The antifungal effect of UA was also examined at the surface of an UA-loaded agar and the minimal inhibitory concentration (MIC90) was below the lowest-studied 0.0125% UA. Furthermore, the embedded filamentation test after 24 h and 48 h showed complete inhibition of the Candida growth at 0.4% UA. PMID:29316713

  10. In vitro activity of Aloe vera inner gel against microorganisms grown in planktonic and sessile phases.

    PubMed

    Cataldi, V; Di Bartolomeo, S; Di Campli, E; Nostro, A; Cellini, L; Di Giulio, M

    2015-12-01

    The failure of traditional antimicrobial treatments is becoming a worldwide problem. The use of Aloe vera is of particular interest for its role as curative agent and its efficacy in complementary therapies for a variety of illnesses. This study evaluated the antimicrobial activity of A. vera inner gel against a panel of microorganisms, Gram-positive and -negative bacteria, and Candida albicans. In addition to A. vera inner gel being used in the treatment of peptic ulcers, in dermatological treatments, and wound healing, it was also tested on the sessile phase of clinical Helicobacter pylori strains (including multi-drug-resistant strains) and on planktonic and sessile phase of Staphylococcus aureus/Pseudomonas aeruginosa clinical isolates from venous leg ulcers.A. vera inner gel expresses its prevalent activity against Gram-negative bacteria and C. albicans in respect to Gram-positive bacteria. The results of the A. vera antibiofilm activity showed a decrease of the produced biomass in a concentration-dependent-way, in each analyzed microorganism. The data obtained show that A. vera inner gel has both an antimicrobial and antibiofilm activity suggesting its potential use for the treatment of microbial infections, in particular for H. pylori gastric infection, especially in case of multi-drug-resistance, as well as for an effective wound dressing. © The Author(s) 2015.

  11. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets.

    PubMed

    Amjad, Muhammad; Yang, Yang; Raza, Ghulam; Gao, Hui; Zhang, Jun; Zhou, Leping; Du, Xiaoze; Wen, Dongsheng

    2017-11-15

    The understanding of near-wall motion, evaporation behavior and dry pattern of sessile nanofluid droplets is fundamental to a wide range of applications such as painting, spray drying, thin film coating, fuel injection and inkjet printing. However, a deep insight into the heat transfer, fluid flow, near-wall particle velocity and their effects on the resulting dry patterns is still much needed to take the full advantage of these nano-sized particles in the droplet. This work investigates the effect of direct absorptive silicon/silver (Si/Ag) hybrid nanofluids via two experiments. The first experiment identifies the motion of tracer particles near the triple line of a sessile nanofluid droplet on a super-hydrophilic substrate under ambient conditions by the multilayer nanoparticle image velocimetry (MnPIV) technique. The second experiment reveals the effect of light-sensitive Si/Ag composite nanoparticles on the droplet evaporation rate and subsequent drying patterns under different radiation intensities. The results show that the presence of nanoparticle in a very small proportion significantly affects the motion of tracer particles, leading to different drying patterns and evaporation rates, which can be very important for the applications such as spray coating and inkjet printing. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of Cypermethrin on the Growth of Ciliate Protozoan Paramecium caudatum.

    PubMed

    Dutta, Joydeep

    2015-01-01

    The objective of this study is to assess the effect of cypermethrin on the growth of ciliate protozoan Paramecium caudatum. Monoxenic culture of P. caudatum, were exposed to different doses (0.01, 0.05, 0.1, 0.15, and 0.2 µg/L) of cypermethrin along with control for 24, 48, 72, and 96 h time interval. The total numbers of live and dead cells were counted after trypan blue staining in Neubauer hemocytometer. Marked decrease in the number of living cells with the increase in the concentration of cypermethrin and with increasing exposure time intervals was recorded. The results indicate that cypermethrin is toxic to P. caudatum even at low concentrations when it enters in the aquatic system through runoff.

  13. First record and redefinition of the Qingdao population of marine ciliate Cardiostomatella vermiformis (Kahl, 1928) Corliss, 1960 (Protozoa, Ciliophora)

    NASA Astrophysics Data System (ADS)

    Wang, Yangang; Hu, Xiaozhong; Long, Hongan; Song, Weibo

    2007-10-01

    The living morphology and infraciliature of a marine ciliate, Cardiostomatella vermiformis isolated from a sand beach of the Jiaozhou Bay near Qingdao, China, were investigated by live observation, protargol and silver carbonate impregnation methods. Both the morphological and morphometric data largely agree with former records. Based on the data obtained, an improved diagnosis for Cardiostomatella vermiformis is supplied: Large marine Cardiostomatella with cylindrical body shape and several prolonged caudal cilia; cells in vivo about (90 500)μm × (30 120)μm; macronucleus beaded; single contractile vacuole caudally positioned; buccal apparatus conspicuously small, genus typical; three to six postoral kineties; 96 130 somatic kineties. This species is recorded for the first time in China.

  14. Treatment of industrial effluents by a continuous system: electrocoagulation--activated sludge.

    PubMed

    Moisés, Tejocote-Pérez; Patricia, Balderas-Hernández; Barrera-Díaz, C E; Gabriela, Roa-Morales; Natividad-Rangel, Reyna

    2010-10-01

    A continuous system electrocoagulation--active sludge was designed and built for the treatment of industrial wastewater. The system included an electrochemical reactor with aluminum electrodes, a clarifier and a biological reactor. The electrochemical reactor was tested under different flowrates (50, 100 and 200 mL/min). In the biological reactor, the performance of different cultures of active sludge was assessed: coliform bacterial, ciliate and flagellate protozoa and aquatic fungus. Overall treatment efficiencies of color, turbidity and COD removal were 94%, 92% and 80%, respectively, under optimal conditions of 50 mL/min flowrate and using ciliate and flagellate protozoa. It was concluded that the system was efficient for the treatment of industrial wastewater. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. A description of Apocarchesium rosettum n. gen., n. sp. and a redescription of Ophrydium eichornii Ehrenberg, 1838, two freshwater peritrichous ciliates from Japan.

    PubMed

    Ji, Daode; Kusuoka, Yasushi

    2009-01-01

    This paper includes the proposal of a new genus for a new species of peritrichous ciliate, Apocarchesium rosettum n. gen., n. sp., as well as the first description by modern techniques of another peritrich, Ophrydium eichornii Ehrenberg, 1838. The genus Apocarchesium is separated from the related genus Carchesium by the appearance of the stalk and the arrangement of zooids, and diagnosed as follows: colonial vorticellid, with all zooids attached in rosette fashion to the tip of their common stalk, which is unbranched and contracts spirally; pellicle with parallel silverlines. The morphology, infraciliature, and silverline system of both species were investigated by observation in vivo and silver-staining methods.

  16. Entrapment of Ciliates at the Water-Air Interface

    PubMed Central

    Ferracci, Jonathan; Ueno, Hironori; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2013-01-01

    The importance of water-air interfaces (WAI) on microorganism activities has been recognized by many researchers. In this paper, we report a novel phenomenon: the entrapment of ciliates Tetrahymena at the WAI. We first characterized the behavior of cells at the interface and showed that the cells' swimming velocity was considerably reduced at the WAI. To verify the possible causes of the entrapment, we investigated the effects of positive chemotaxis for oxygen, negative geotaxis and surface properties. Even though the taxes were still effective, the entrapment phenomenon was not dependent on the physiological conditions, but was instead affected by the physical properties at the interface. This knowledge is useful for a better understanding of the physiology of microorganisms at interfaces in nature and in industry. PMID:24130692

  17. cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo.

    PubMed

    Barsi, Julius C; Davidson, Eric H

    2016-01-01

    Specification of the ciliated band (CB) of echinoid embryos executes three spatial functions essential for postgastrular organization. These are establishment of a band about 5 cells wide which delimits and bounds other embryonic territories; definition of a neurogenic domain within this band; and generation within it of arrays of ciliary cells that bear the special long cilia from which the structure derives its name. In Strongylocentrotus purpuratus the spatial coordinates of the future ciliated band are initially and exactly determined by the disposition of a ring of cells that transcriptionally activate the onecut homeodomain regulatory gene, beginning in blastula stage, long before the appearance of the CB per se. Thus the cis-regulatory apparatus that governs onecut expression in the blastula directly reveals the genomic sequence code by which these aspects of the spatial organization of the embryo are initially determined. We screened the entire onecut locus and its flanking region for transcriptionally active cis-regulatory elements, and by means of BAC recombineered deletions identified three separated and required cis-regulatory modules that execute different functions. The operating logic of the crucial spatial control module accounting for the spectacularly precise and beautiful early onecut expression domain depends on spatial repression. Previously predicted oral ectoderm and aboral ectoderm repressors were identified by cis-regulatory mutation as the products of goosecoid and irxa genes respectively, while the pan-ectodermal activator SoxB1 supplies a transcriptional driver function. Copyright © 2015. Published by Elsevier Inc.

  18. The epibiotic life of the cosmopolitan diatom Fragilariopsis doliolus on heterotrophic ciliates in the open ocean.

    PubMed

    Vincent, Flora J; Colin, Sébastien; Romac, Sarah; Scalco, Eleonora; Bittner, Lucie; Garcia, Yonara; Lopes, Rubens M; Dolan, John R; Zingone, Adriana; de Vargas, Colomban; Bowler, Chris

    2018-04-01

    Diatoms are a diverse and ecologically important group of phytoplankton. Although most species are considered free living, several are known to interact with other organisms within the plankton. Detailed imaging and molecular characterization of any such partnership is, however, limited, and an appraisal of the large-scale distribution and ecology of such consortia was never attempted. Here, observation of Tara Oceans samples from the Benguela Current led to the detection of an epibiotic association between a pennate diatom and a tintinnid ciliate. We identified the diatom as Fragilariopsis doliolus that possesses a unique feature to form barrel-shaped chains, associated with seven different genera of tintinnids including five previously undescribed associations. The organisms were commonly found together in the Atlantic and Pacific Ocean basins, and live observations of the interaction have been recorded for the first time. By combining confocal and scanning electron microscopy of individual consortia with the sequencing of high-resolution molecular markers, we analyzed their distribution in the global ocean, revealing morpho-genetically distinct tintinnid haplotypes and biogeographically structured diatom haplotypes. The diatom was among the most abundant in the global ocean. We show that the consortia were particularly prevalent in nutrient-replete conditions, rich in potential predators. These observations support the hypothesis of a mutualistic symbiosis, wherein diatoms acquire increased motility and tintinnids benefit from silicification through increased protection, and highlight that such associations may be more prevalent than currently appreciated.

  19. A standardized imaging protocol for the endoscopic prediction of dysplasia within sessile serrated polyps (with video).

    PubMed

    Tate, David J; Jayanna, Mahesh; Awadie, Halim; Desomer, Lobke; Lee, Ralph; Heitman, Steven J; Sidhu, Mayenaaz; Goodrick, Kathleen; Burgess, Nicholas G; Mahajan, Hema; McLeod, Duncan; Bourke, Michael J

    2018-01-01

    Dysplasia within sessile serrated polyps (SSPs) is difficult to detect and may be mistaken for an adenoma, risking incomplete resection of the background serrated tissue, and is strongly implicated in interval cancer after colonoscopy. The use of endoscopic imaging to detect dysplasia within SSPs has not been systematically studied. Consecutively detected SSPs ≥8 mm in size were evaluated by using a standardized imaging protocol at a tertiary-care endoscopy center over 3 years. Lesions suspected as SSPs were analyzed with high-definition white light then narrow-band imaging. A demarcated area with a neoplastic pit pattern (Kudo type III/IV, NICE type II) was sought among the serrated tissue. If this was detected, the lesion was labeled dysplastic (sessile serrated polyp with dysplasia); if not, it was labeled non-dysplastic (sessile serrated polyp without dysplasia). Histopathology was reviewed by 2 blinded specialist GI pathologists. A total of 141 SSPs were assessed in 83 patients. Median lesion size was 15.0 mm (interquartile range 10-20), and 54.6% were in the right side of the colon. Endoscopic evidence of dysplasia was detected in 36 of 141 (25.5%) SSPs; of these, 5 of 36 (13.9%) lacked dysplasia at histopathology. Two of 105 (1.9%) endoscopically designated non-dysplastic SSPs had dysplasia at histopathology. Endoscopic imaging, therefore, had an accuracy of 95.0% (95% confidence interval [CI], 90.1%-97.6%) and a negative predictive value of 98.1% (95% CI, 92.6%-99.7%) for detection of dysplasia within SSPs. Dysplasia within SSPs can be detected accurately by using a simple, broadly applicable endoscopic imaging protocol that allows complete resection. Independent validation of this protocol and its dissemination to the wider endoscopic community may have a significant impact on rates of interval cancer. (Clinical trial registration number: NCT03100552.). Copyright © 2018 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  20. Rain-induced ejection of pathogens from leaves: revisiting the hypothesis of splash-on-film using high-speed visualization.

    PubMed

    Gilet, Tristan; Bourouiba, Lydia

    2014-12-01

    Plant diseases are a major cause of losses of crops worldwide. Although rainfalls and foliar disease outbreaks are correlated, the detailed mechanism explaining their link remains poorly understood. The common assumption from phytopathology for such link is that a splash is generated upon impact of raindrops on contaminated liquid films coating sick leaves. We examine this assumption using direct high-speed visualizations of the interactions of raindrops and leaves over a range of plants. We show that films are seldom found on the surface of common leaves. We quantify the leaf-surface's wetting properties, showing that sessile droplets instead of films are predominant on the surfaces of leaves. We find that the presence of sessile drops rather than that of films has important implications when coupled with the compliance of a leaf: it leads to a new physical picture consisting of two dominant rain-induced mechanisms of ejection of pathogens. The first involves a direct interaction between the fluids of the raindrop and the sessile drops via an off-centered splash. The second involves the indirect action of the raindrop that leads to the inertial detachment of the sessile drop via the leaf's motion imparted by the impact of the raindrop. Both mechanisms are distinct from the commonly assumed scenario of splash-on-film in terms of outcome: they result in different fragmentation processes induced by surface tension, and, thus, different size-distributions of droplets ejected. This is the first time that modern direct high-speed visualizations of impacts on leaves are used to examine rain-induced ejection of pathogens at the level of a leaf and identify the inertial detachment and off-center splash ejections as alternatives to the classically assumed splash-on-film ejections of foliar pathogens. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Risk stratification of gallbladder polyps larger than 10 mm using high-resolution ultrasonography and texture analysis.

    PubMed

    Choi, Tae Won; Kim, Jung Hoon; Park, Sang Joon; Ahn, Su Joa; Joo, Ijin; Han, Joon Koo

    2018-01-01

    To assess important features for risk stratification of gallbladder (GB) polyps >10 mm using high-resolution ultrasonography (HRUS) and texture analysis. We included 136 patients with GB polyps (>10 mm) who underwent both HRUS and cholecystectomy (non-neoplastic, n = 58; adenomatous, n = 32; and carcinoma, n = 46). Two radiologists retrospectively assessed HRUS findings and texture analysis. Multivariate analysis was performed to identify significant predictors for neoplastic polyps and carcinomas. Single polyp (OR, 3.680-3.856) and larger size (OR, 1.450-1.477) were independently associated with neoplastic polyps (p < 0.05). In a single or polyp >14 mm, sensitivity for differentiating neoplastic from non-neoplastic polyps was 92.3%. To differentiate carcinoma from adenoma, sessile shape (OR, 9.485-41.257), larger size (OR, 1.267-1.303), higher skewness (OR, 6.382) and lower grey-level co-occurrence matrices (GLCM) contrast (OR, 0.963) were significant predictors (p < 0.05). In a polyp >22 mm or sessile, sensitivity for differentiating carcinomas from adenomas was 93.5-95.7%. If a polyp demonstrated at least one HRUS finding and at least one texture feature, the specificity for diagnosing carcinoma was increased to 90.6-93.8%. In a GB polyp >10 mm, single and diameter >14 mm were useful for predicting neoplastic polyps. In neoplastic polyps, sessile shape, diameter >22 mm, higher skewness and lower GLCM contrast were useful for predicting carcinoma. • Risk of neoplastic polyp is low in <14 mm and multiple polyps • A sessile polyp or >22 mm has increased risk for GB carcinomas • Higher skewness and lower GLCM contrast are predictors of GB carcinoma • HRUS is useful for risk stratification of GB polyps >1 cm.

  2. There Is More than One Way to Crack an Oyster: Identifying Variation in Burmese Long-Tailed Macaque (Macaca fascicularis aurea) Stone-Tool Use

    PubMed Central

    Tan, Amanda; Tan, Say Hoon; Vyas, Dhaval; Malaivijitnond, Suchinda; Gumert, Michael D.

    2015-01-01

    We explored variation in patterns of percussive stone-tool use on coastal foods by Burmese long-tailed macaques (Macaca fascicularis aurea) from two islands in Laem Son National Park, Ranong, Thailand. We catalogued variation into three hammering classes and 17 action patterns, after examining 638 tool-use bouts across 90 individuals. Hammering class was based on the stone surface used for striking food, being face, point, and edge hammering. Action patterns were discriminated by tool material, hand use, posture, and striking motion. Hammering class was analyzed for associations with material and behavioural elements of tool use. Action patterns were not, owing to insufficient instances of most patterns. We collected 3077 scan samples from 109 macaques on Piak Nam Yai Island’s coasts, to determine the proportion of individuals using each hammering class and action pattern. Point hammering was significantly more associated with sessile foods, smaller tools, faster striking rates, smoother recoil, unimanual use, and more varied striking direction, than were face and edge hammering, while both point and edge hammering were significantly more associated with precision gripping than face hammering. Edge hammering also showed distinct differences depending on whether such hammering was applied to sessile or unattached foods, resembling point hammering for sessile foods and face hammering for unattached foods. Point hammering and sessile edge hammering compared to prior descriptions of axe hammering, while face and unattached edge hammering compared to pound hammering. Analysis of scans showed that 80% of individuals used tools, each employing one to four different action patterns. The most common patterns were unimanual point hammering (58%), symmetrical-bimanual face hammering (47%) and unimanual face hammering (37%). Unimanual edge hammering was relatively frequent (13%), compared to the other thirteen rare action patterns (<5%). We compare our study to other stone-using primates, and discuss implications for further research. PMID:25970286

  3. [Virtual CT-pneumocystoscopy: indications, advantages and limitations. Our experience].

    PubMed

    Regine, Giovanni; Atzori, Maurizio; Buffa, Vitaliano; Miele, Vittorio; Ialongo, Pasquale; Adami, Loredana

    2003-09-01

    The use of CT volume-rendering techniques allows the evaluation of visceral organs without the need for endoscopy. Conventional endoscopic evaluation of the bladder is limited by the invasiveness of the technique and the difficulty exploring the entire bladder. Virtual evaluation of the bladder by three-dimensional CT reconstruction offers potential advantages and can be used in place of endoscopy. This study investigates the sensitivity of virtual CT in assessing lesion of the bladder wall to compare it with that of conventional endoscopy, and outlines the indications, advantages and disadvantages of virtual CT-pneumocystography. Between September 2001 and May 2002, 21 patients with haematuria and positive cystoscopic findings were studied. After an initial assessment by ultrasound, the patients underwent pelvic CT as a single volumetric scan after preliminary air distension of the bladder by means of 12 F Foley catheter. The images were processed on an independent workstation (Advantage 3.0 GE) running dedicated software for endoluminal navigation. The lesions detected by endoscopy were classified as sessile or pedunculated, and according to size (more or less than 5 mm). Finally, the results obtained at virtual cystoscopy were evaluated by two radiologists blinded to the conventional cystoscopy results. Thirty lesions (24 pedunculated, 6 sessile) were detected at conventional cystoscopy in 16 patients (multiple polyposis in 3 cases). Virtual cystoscopy identified 23 lesions (19 pedunculated and 4 sessile). The undetected lesions were pedunculated <5 mm (5 cases) and sessile (2 cases). One correctly identified pedunculated lesion was associated with a bladder stone. Good quality virtual images were obtained in all of the patients. In only one patient with multiple polyposis the quality of the virtual endoscopic evaluation was limited by the patient's intolerance to bladder distension, although identification of the lesions was not compromised. The overall sensitivity was 77%; this was higher for pedunculated lesions (79%) than for sessile lesions (50%). The virtual technique is less invasive and tends to be associated with fewer complications than is conventional cystoscopy. It also demonstrated a good sensitivity for evaluating pedunculated lesions, allowing evaluation of the bladder base and anterior wall, sites that are commonly poorly accessible at conventional cystoscopy. Further advantages of the virtual technique include the possibility of accurately measuring the extent of the lesion and obtaining virtual images even in patients with severe urethral obstruction and active bleeding. The limitations include the inability to obtain tissue for histologic examination or to perform endoscopic resection of pedunculated lesions. The technique is less sensitive than conventional cystoscopy in the detection of sessile lesions or very small polyps (<5 mm). Furthermore, diffuse wall thickening reduces bladder distension thereby preventing optimal evaluation. The most valuable indication appears to be the follow-up of treated wall lesions. Virtual CT-pneumocystoscopy can replace conventional cystoscopy in cases with pedunculated lesions when there is no need for biopsy, when the lesions are located at the bladder base or when cystoscopic instrumentation cannot be introduced into the bladder due to stenosis. Virtual pneumocystoscopy can also be used in the follow-up of treated polypoid lesions in association with pelvic CT-angiography.

  4. Lack of congruence in species diversity indices and community structures of planktonic groups based on local environmental factors.

    PubMed

    Doi, Hideyuki; Chang, Kwang-Hyeon; Nishibe, Yuichiro; Imai, Hiroyuki; Nakano, Shin-ichi

    2013-01-01

    The importance of analyzing the determinants of biodiversity and community composition by using multiple trophic levels is well recognized; however, relevant data are lacking. In the present study, we investigated variations in species diversity indices and community structures of the plankton taxonomic groups-zooplankton, rotifers, ciliates, and phytoplankton-under a range of local environmental factors in pond ecosystems. For each planktonic group, we estimated the species diversity index by using linear models and analyzed the community structure by using canonical correspondence analysis. We showed that the species diversity indices and community structures varied among the planktonic groups and according to local environmental factors. The observed lack of congruence among the planktonic groups may have been caused by niche competition between groups with similar trophic guilds or by weak trophic interactions. Our findings highlight the difficulty of predicting total biodiversity within a system, based upon a single taxonomic group. Thus, to conserve the biodiversity of an ecosystem, it is crucial to consider variations in species diversity indices and community structures of different taxonomic groups, under a range of local conditions.

  5. Dislocation-Twin Boundary Interactions Induced Nanocrystalline via SPD Processing in Bulk Metals

    NASA Astrophysics Data System (ADS)

    Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng

    2015-03-01

    This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB.

  6. Dislocation–Twin Boundary Interactions Induced Nanocrystalline via SPD Processing in Bulk Metals

    PubMed Central

    Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng

    2015-01-01

    This report investigated dislocation–twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB. PMID:25757550

  7. Dislocation-twin boundary interactions induced nanocrystalline via SPD processing in bulk metals.

    PubMed

    Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng

    2015-03-11

    This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB.

  8. The Influence of Prior Modes of Growth, Temperature, Medium, and Substrate Surface on Biofilm Formation by Antibiotic-Resistant Campylobacter jejuni.

    PubMed

    Teh, Amy Huei Teen; Lee, Sui Mae; Dykes, Gary A

    2016-12-01

    Campylobacter jejuni is one of the most common causes of bacterial gastrointestinal food-borne infection worldwide. It has been suggested that biofilm formation may play a role in survival of these bacteria in the environment. In this study, the influence of prior modes of growth (planktonic or sessile), temperatures (37 and 42 °C), and nutrient conditions (nutrient broth and Mueller-Hinton broth) on biofilm formation by eight C. jejuni strains with different antibiotic resistance profiles was examined. The ability of these strains to form biofilm on different abiotic surfaces (stainless steel, glass, and polystyrene) as well as factors potentially associated with biofilm formation (bacterial surface hydrophobicity, auto-aggregation, and initial attachment) was also determined. The results showed that cells grown as sessile culture generally have a greater ability to form biofilm (P < 0.05) compared to their planktonic counterparts. Biofilm was also greater (P < 0.05) in lower nutrient media, while growth at different temperatures affects biofilm formation in a strain-dependent manner. The strains were able to attach and form biofilms on different abiotic surfaces, but none of them demonstrated strong, complex, or structured biofilm formation. There were no clear trends between the bacterial surface hydrophobicity, auto-aggregation, attachment, and biofilm formation by the strains. This finding suggests that environmental factors did affect biofilm formation by C. jejuni, and they are more likely to persist in the environment in the form of mixed-species rather than monospecies biofilms.

  9. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective

    PubMed Central

    Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

    2013-01-01

    Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

  10. Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila

    PubMed Central

    Saveliev, Sergei V.; Cox, Michael M.

    2001-01-01

    DNA sequences (IES elements) eliminated from the developing macronucleus in the ciliate Tetrahymena thermophila are released as linear fragments, which have now been detected and isolated. A PCR-mediated examination of fragment end structures reveals three types of strand scission events, reflecting three steps in the deletion process. New evidence is provided for two steps proposed previously: an initiating double-stranded cleavage, and strand transfer to create a branched deletion intermediate. The fragment ends provide evidence for a previously uncharacterized third step: the branched DNA strand is cleaved at one of several defined sites located within 15–16 nucleotides of the IES boundary, liberating the deleted DNA in a linear form. PMID:11406601

  11. Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila.

    PubMed

    Saveliev, S V; Cox, M M

    2001-06-15

    DNA sequences (IES elements) eliminated from the developing macronucleus in the ciliate Tetrahymena thermophila are released as linear fragments, which have now been detected and isolated. A PCR-mediated examination of fragment end structures reveals three types of strand scission events, reflecting three steps in the deletion process. New evidence is provided for two steps proposed previously: an initiating double-stranded cleavage, and strand transfer to create a branched deletion intermediate. The fragment ends provide evidence for a previously uncharacterized third step: the branched DNA strand is cleaved at one of several defined sites located within 15-16 nucleotides of the IES boundary, liberating the deleted DNA in a linear form.

  12. Long-term Spatial Distribution Patterns of Protozoa in Connected Microhabitats

    NASA Astrophysics Data System (ADS)

    Taghon, G. L.; Tuorto, S. J.

    2016-02-01

    Studies of microbial ecosystems usually assume habitat homogeneity. Recent research, however, indicates that habitat structure varies at millimeter scales and that this patchiness affects abundance and behavior of microbes. In this study, two species of ciliated protozoa were maintained, together, for multiple generations in microfluidic devices consisting of arrays of interconnected microhabitats with differing resource availability. The species differed in their population dynamics and tendency to disperse among microhabitats. Both species coexisted for over 45 days, and their coexistence likely resulted from habitat selection at millimeter scales. We demonstrate that it is not only possible, but imperative, that detailed ecological phenomena of microbial systems be studied at the relevant spatial and temporal scales.

  13. Extrapolation of toxic indices among test objects

    PubMed Central

    Tichý, Miloň; Rucki, Marián; Roth, Zdeněk; Hanzlíková, Iveta; Vlková, Alena; Tumová, Jana; Uzlová, Rút

    2010-01-01

    Oligochaeta Tubifex tubifex, fish fathead minnow (Pimephales promelas), hepatocytes isolated from rat liver and ciliated protozoan are absolutely different organisms and yet their acute toxicity indices correlate. Correlation equations for special effects were developed for a large heterogeneous series of compounds (QSAR, quantitative structure-activity relationships). Knowing those correlation equations and their statistic evaluation, one can extrapolate the toxic indices. The reason is that a common physicochemical property governs the biological effect, namely the partition coefficient between two unmissible phases, simulated generally by n-octanol and water. This may mean that the transport of chemicals towards a target is responsible for the magnitude of the effect, rather than reactivity, as one would assume suppose. PMID:21331180

  14. The secondary metabolite euplotin C induces apoptosis-like death in the marine ciliated protist Euplotes vannus.

    PubMed

    Cervia, Davide; Di Giuseppe, Graziano; Ristori, Chiara; Martini, Davide; Gambellini, Gabriella; Bagnoli, Paola; Dini, Fernando

    2009-01-01

    The sesquiterpenoid euplotin C is a secondary metabolite produced by the ciliated protist Euplotes crassus and provides a mechanism for damping populations of potential competitors. Indeed, E. crassus is virtually resistant to its own product while different non-producer species representing an unbiased sample of the marine, interstitial, ciliate diversity are sensitive. For instance, euplotin C exerts a marked disruption of different homeostatic mechanisms in Euplotes vannus. We demonstrate by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay that euplotin C quickly decreases viability and mitochondrial function of E. vannus with a very high efficacy and at micromolar potency. In addition, euplotin C induces apoptosis in E. vannus as 4,6-diamino-2-phenylindole and terminal transferase dUTP nick end labeling staining show the rapid condensation and fragmentation of nuclear material in cells treated with euplotin C. These effects occur without detectable permeabilisation or rupture of cell membranes and with no major changes in the overall morphology, although some traits, such as vacuolisation and disorganized microtubules, can be observed by transmission electron microscopy. In particular, E. vannus show profound changes of the mitochondrial ultrastructure. Finally, we also show that caspase activity in E. vannus is increased by euplotin C. These data elucidate the pro-apoptotic role of euplotin C and suggest a mechanism for its impact on natural selection.

  15. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    PubMed Central

    2010-01-01

    Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes. PMID:20441586

  16. Sea-ice eukaryotes of the Gulf of Finland, Baltic Sea, and evidence for herbivory on weakly shade-adapted ice algae.

    PubMed

    Majaneva, Markus; Blomster, Jaanika; Müller, Susann; Autio, Riitta; Majaneva, Sanna; Hyytiäinen, Kirsi; Nagai, Satoshi; Rintala, Janne-Markus

    2017-02-01

    To determine community composition and physiological status of early spring sea-ice organisms, we collected sea-ice, slush and under-ice water samples from the Baltic Sea. We combined light microscopy, HPLC pigment analysis and pyrosequencing, and related the biomass and physiological status of sea-ice algae with the protistan community composition in a new way in the area. In terms of biomass, centric diatoms including a distinct Melosira arctica bloom in the upper intermediate section of the fast ice, dinoflagellates, euglenoids and the cyanobacterium Aphanizomenon sp. predominated in the sea-ice sections and unidentified flagellates in the slush. Based on pigment analyses, the ice-algal communities showed no adjusted photosynthetic pigment pools throughout the sea ice, and the bottom-ice communities were not shade-adapted. The sea ice included more characteristic phototrophic taxa (49%) than did slush (18%) and under-ice water (37%). Cercozoans and ciliates were the richest taxon groups, and the differences among the communities arose mainly from the various phagotrophic protistan taxa inhabiting the communities. The presence of pheophytin a coincided with an elevated ciliate biomass and read abundance in the drift ice and with a high Eurytemora affinis read abundance in the pack ice, indicating that ciliates and Eurytemora affinis were grazing on algae. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. β-Catenin Dosage Is a Critical Determinant of Tracheal Basal Cell Fate Determination

    PubMed Central

    Brechbuhl, Heather M.; Ghosh, Moumita; Smith, Mary Kathryn; Smith, Russell W.; Li, Bilan; Hicks, Douglas A.; Cole, Brook B.; Reynolds, Paul R.; Reynolds, Susan D.

    2011-01-01

    The purpose of this study was to determine whether β-catenin regulates basal cell fate determination in the mouse trachea. Analysis of TOPGal transgene reporter activity and Wnt/β-catenin pathway gene expression suggested a role for β-catenin in basal cell proliferation and differentiation after naphthalene-mediated Clara-like and ciliated cell depletion. However, these basal cell activities occurred simultaneously, limiting precise determination of the role(s) played by β-catenin. This issue was overcome by analysis of β-catenin signaling in tracheal air-liquid interface cultures. The cultures could be divided into two phases: basal cell proliferation and basal cell differentiation. A role for β-catenin in basal cell proliferation was indicated by activation of the TOPGal transgene on proliferation days 3 to 5 and by transient expression of Myc (alias c-myc). Another peak of TOPGal transgene activity was detected on differentiation days 2 to 10 and was associated with the expression of Axin 2. These results suggest a role for β-catenin in basal to ciliated and basal to Clara-like cell differentiation. Genetic stabilization of β-catenin in basal cells shortened the period of basal cell proliferation but had a minor effect on this process. Persistent β-catenin signaling regulated basal cell fate by driving the generation of ciliated cells and preventing the production of Clara-like cells. PMID:21703416

  18. Tissue loss (white syndrome) in the coral Montipora capitata is a dynamic disease with multiple host responses and potential causes

    USGS Publications Warehouse

    Work, Thierry M.; Russell, Robin; Aeby, Greta S.

    2012-01-01

    Tissue loss diseases or white syndromes (WS) are some of the most important coral diseases because they result in significant colony mortality and morbidity, threatening dominant Acroporidae in the Caribbean and Pacific. The causes of WS remain elusive in part because few have examined affected corals at the cellular level. We studied the cellular changes associated with WS over time in a dominant Hawaiian coral, Montipora capitata, and showed that: (i) WS has rapidly progressing (acute) phases mainly associated with ciliates or slowly progressing (chronic) phases mainly associated with helminths or chimeric parasites; (ii) these phases interchanged and waxed and waned; (iii) WS could be a systemic disease associated with chimeric parasitism or a localized disease associated with helminths or ciliates; (iv) corals responded to ciliates mainly with necrosis and to helminths or chimeric parasites with wound repair; (v) mixed infections were uncommon; and (vi) other than cyanobacteria, prokaryotes associated with cell death were not seen. Recognizing potential agents associated with disease at the cellular level and the host response to those agents offers a logical deductive rationale to further explore the role of such agents in the pathogenesis of WS in M. capitata and helps explain manifestation of gross lesions. This approach has broad applicability to the study of the pathogenesis of coral diseases in the field and under experimental settings.

  19. Two Gonostomatid Ciliates from the Soil of Lombardia, Italy; including Note on the Soil Mapping Project.

    PubMed

    Bharti, Daizy; Kumar, Santosh; La Terza, Antonietta

    2015-01-01

    Two gonostomatid ciliates, Gonostomum paronense n. sp. and G. strenuum, isolated from the soil sample of paddy field, Lombardia, Italy, were investigated using live observation and protargol impregnation. Gonostomum paronense n. sp. is mainly characterized by a tailed body, frontoventral cirri arranged in pairs, and presence of pretransverse and transverse cirri. Morphologically and morphometrically, the new species is similar to Gonostomum namibiense in having a tailed body and frontoventral cirral pairs; however, it differs mainly in the number of frontoventral cirral pairs (seven vs. three). Phylogenetic analyses based on the SSU rDNA sequences show that the new species is more closely related to G. namibiense than to G. strenuum, supporting the morphological classification based on the cirral pattern and the tailed body. However, due to the poor nodal support and absence of gene sequence of the type species Gonostomum, a more robust phylogeny of this group still remains unresolved. The biometric data of the Italian population of Gonostomum strenuum overlap with those from other known populations. Both species were collected from the industrial area of Parona, in the framework of the "Soil Mapping, Lombardia" project in which, for the first time in Italy, soil ciliates were used as bioindicators of soil quality. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  20. Nuclear localization signal targeting to macronucleus and micronucleus in binucleated ciliate Tetrahymena thermophila.

    PubMed

    Iwamoto, Masaaki; Mori, Chie; Osakada, Hiroko; Koujin, Takako; Hiraoka, Yasushi; Haraguchi, Tokuko

    2018-06-08

    Ciliated protozoa possess two morphologically and functionally distinct nuclei: a macronucleus (MAC) and a micronucleus (MIC). The MAC is transcriptionally active and functions in all cellular events. The MIC is transcriptionally inactive during cell growth, but functions in meiotic events to produce progeny nuclei. Thus, these two nuclei must be distinguished by the nuclear proteins required for their distinct functions during cellular events such as cell proliferation and meiosis. To understand the mechanism of the nuclear transport specific to either MAC or MIC, we identified specific nuclear localization signals (NLSs) in two MAC- and MIC-specific nuclear proteins, macronuclear histone H1 and micronuclear linker histone-like protein (Mlh1), respectively. By expressing GFP-fused fragments of these proteins in Tetrahymena thermophila cells, two distinct regions in macronuclear histone H1 protein were assigned as independent MAC-specific NLSs and two distinct regions in Mlh1 protein were assigned as independent MIC-specific NLSs. These NLSs contain several essential lysine residues responsible for the MAC- and MIC-specific nuclear transport, but neither contains any consensus sequence with known monopartite or bipartite NLSs in other model organisms. Our findings contribute to understanding how specific nuclear targeting is achieved to perform distinct nuclear functions in binucleated ciliates. © 2018 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  1. The pelvic kidney of male Ambystoma maculatum (Amphibia, urodela, ambystomatidae) with special reference to the sexual collecting ducts.

    PubMed

    Siegel, Dustin S; Sever, David M; Aldridge, Robert D

    2010-12-01

    This study details the gross and microscopic anatomy of the pelvic kidney in male Ambystoma maculatum. The nephron of male Ambystoma maculatum is divided into six distinct regions leading sequentially away from a renal corpuscle: (1) neck segment, which communicates with the coelomic cavity via a ventrally positioned pleuroperitoneal funnel, (2) proximal tubule, (3) intermediate segment, (4) distal tubule, (5) collecting tubule, and (6) collecting duct. The proximal tubule is divided into a vacuolated proximal region and a distal lysosomic region. The basal plasma membrane is modified into intertwining microvillus lamellae. The epithelium of the distal tubule varies little along its length and is demarcated by columns of mitochondria with their long axes oriented perpendicular to the basal lamina. The distal tubule possesses highly interdigitating microvillus lamellae from the lateral membranes and pronounced foot processes of the basal membrane that are not intertwined, but perpendicular to the basal lamina. The collecting tubule is lined by an epithelium with dark and light cells. Light cells are similar to those observed in the distal tuble except with less mitochondria and microvillus lamellae of the lateral and basal plasma membrane. Dark cells possess dark euchromatic nuclei and are filled with numerous small mitochondria. The epithelium of the neck segment, pleuroperitoneal funnel, and intermediate segment is composed entirely of ciliated cells with cilia protruding from only the central portion of the apical plasma membrane. The collecting duct is lined by a highly secretory epithelium that produces numerous membrane bound granules that stain positively for neutral carbohydrates and proteins. Apically positioned ciliated cells are intercalated between secretory cells. The collecting ducts anastomose caudally and unite with the Wolffian duct via a common collecting duct. The Wolffian duct is secretory, but not to the extent of the collecting duct, synthesizes neutral carbohydrates and proteins, and is also lined by apical ciliated cells intercalated between secretory cells. Although functional aspects associated with the morphological variation along the length of the proximal portions of the nephron have been investigated, the role of a highly secretory collecting duct has not. Historical data that implicated secretory activity concordant with mating activity, and similarity of structure and chemistry to sexual segments of the kidneys in other vertebrates, lead us to believe that the collecting duct functions as a secondary sexual organ in Ambystoma maculatum. © 2010 Wiley-Liss, Inc.

  2. Effect of Cypermethrin on the Growth of Ciliate Protozoan Paramecium caudatum

    PubMed Central

    Dutta, Joydeep

    2015-01-01

    Objective: The objective of this study is to assess the effect of cypermethrin on the growth of ciliate protozoan Paramecium caudatum. Materials and Methods: Monoxenic culture of P. caudatum, were exposed to different doses (0.01, 0.05, 0.1, 0.15, and 0.2 µg/L) of cypermethrin along with control for 24, 48, 72, and 96 h time interval. The total numbers of live and dead cells were counted after trypan blue staining in Neubauer hemocytometer. Results: Marked decrease in the number of living cells with the increase in the concentration of cypermethrin and with increasing exposure time intervals was recorded. Conclusion: The results indicate that cypermethrin is toxic to P. caudatum even at low concentrations when it enters in the aquatic system through runoff. PMID:26862268

  3. ParTIES: a toolbox for Paramecium interspersed DNA elimination studies.

    PubMed

    Denby Wilkes, Cyril; Arnaiz, Olivier; Sperling, Linda

    2016-02-15

    Developmental DNA elimination occurs in a wide variety of multicellular organisms, but ciliates are the only single-celled eukaryotes in which this phenomenon has been reported. Despite considerable interest in ciliates as models for DNA elimination, no standard methods for identification and characterization of the eliminated sequences are currently available. We present the Paramecium Toolbox for Interspersed DNA Elimination Studies (ParTIES), designed for Paramecium species, that (i) identifies eliminated sequences, (ii) measures their presence in a sequencing sample and (iii) detects rare elimination polymorphisms. ParTIES is multi-threaded Perl software available at https://github.com/oarnaiz/ParTIES. ParTIES is distributed under the GNU General Public Licence v3. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Graviperception in ciliates: Steps in the transduction chain

    NASA Astrophysics Data System (ADS)

    Hemmersbach, R.; Krause, M.; Bräucker, R.; Ivanova, K.

    Ciliates represent suitable model systems to study the mechanisms of graviperception and signal transduction as they show clear gravity-induced behavioural responses (gravitaxis and gravikinesis). The cytoplasm seems to act as a "statolith" stimulating mechanosensitive ion channels in the cell membrane. In order to test this hypothesis, electrophysiological studies with Stylonychia mytilus were performed, revealing the proposed changes (de- or hyperpolarization) depending on the cell's spatial orientation. The behaviour of Paramecium and Stylonychia was also analyzed during variable acceleration conditions of parabolic flights (5th German Parabolic Flight Campaign, 2003). The corresponding data confirm the relaxation of the graviresponses in microgravity as well as the existence of thresholds of graviresponses, which are found to be in the range of 0.4× g (gravikinesis) and 0.6× g (gravitaxis).

  5. Carnivorous planktonic Difflugia (Protista, Amoebina Testacea) and their predators.

    PubMed

    Han, Bo-Ping; Wang, Tian; Xu, Lei; Lin, Qiu Qi; Jinyu, Zhang; Dumont, Henri J

    2011-08-01

    Four planktonic species of Difflugia co-occurring in a south Chinese reservoir were found to be carnivorous, but the diet was widest in the largest species (D. tuberspinifera) and narrowest in the smallest (D. hydrostatica). It included rotifers, ciliates, dinoflagellates, floating eggs, and small particles associated with organic debris. Scavenging and cannibalism were also observed. Species with a collared test (D. biwae, D. mulanensis) showed a form of suction-feeding, while species with teeth on the pseudostome used these, together with their pseudopods, as "inverted crown corks", providing leverage for opening the lorica of their (rotifer) prey. Predators of Difflugia included cyclopoid copepods. In addition, the rotifers Asplanchna priodonta, Ploesoma hudsoni and, occasionally, big ciliates (Stentor sp.) all ingested their prey as a whole. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Redescriptions of three trachelocercid ciliates (Protista, Ciliophora, Karyorelictea), with notes on their phylogeny based on small subunit rRNA gene sequences.

    PubMed

    Yan, Ying; Xu, Yuan; Yi, Zhenzhen; Warren, Alan

    2013-09-01

    Three trachelocercid ciliates, Kovalevaia sulcata (Kovaleva, 1966) Foissner, 1997, Trachelocerca sagitta (Müller, 1786) Ehrenberg, 1840 and Trachelocerca ditis (Wright, 1982) Foissner, 1996, isolated from two coastal habitats at Qingdao, China, were investigated using live observation and silver impregnation methods. Data on their infraciliature and morphology are supplied. The small subunit rRNA (SSU rRNA) genes of K. sulcata and Trachelocerca sagitta were sequenced for the first time. Phylogenetic analyses based on SSU rRNA gene sequence data indicate that both organisms, and the previously sequenced Trachelocerca ditis, are located within the trachelocercid assemblage and that K. sulcata is sister to an unidentified taxon forming a clade that is basal to the core trachelocercids.

  7. Diversity, assembly and regulation of archaeal type IV pili-like and non-type-IV pili-like surface structures.

    PubMed

    Lassak, Kerstin; Ghosh, Abhrajyoti; Albers, Sonja-Verena

    2012-01-01

    Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures. Copyright © 2012. Published by Elsevier Masson SAS.

  8. Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Raza, Muhammad Akram; Kooij, Stefan; van Silfhout, Arend; Zandvliet, Harold; Poelsema, Bene; Physics Of Interfaces; Nanomaterials Team

    2011-03-01

    The importance of superhydrophobic substrates (contact angle > 150 r withslidingangle 10 r) inmoderntechnologyisundeniable . Wepresentasimplecolloidalroutetomanufacturesuperstructuredarrayswithsingle - andmulti - length - scaledroughnesstoobtainstickyandnon - stickysuperhydrophobicsurfaces . Thelargestlengthscaleisprovidedby (multi -) layersofsilicaspheres (1 μ m, 500nm and 150nm diameter). Decoration with gold nanoparticles (14nm, 26nm and 47nm) gives rise to a second length scale. To lower the surface energy, gold nanoparticles are functionalized with dodecanethiol and the silica spheres by perfluorooctyltriethoxysilane. The morphology was examined by helium ion microscopy (HIM), while wettability measurements were performed by using the sessile drop method. We conclude that wettability can be controlled by changing the surface chemistry and/or length scales of the structures. To achieve truly non-sticky superhydrophobic surfaces, hierarchical roughness plays a vital role.

  9. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly

    PubMed Central

    Wang, Won-Jing; Acehan, Devrim; Kao, Chien-Han; Jane, Wann-Neng; Uryu, Kunihiro; Tsou, Meng-Fu Bryan

    2015-01-01

    Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm. DOI: http://dx.doi.org/10.7554/eLife.10586.001 PMID:26609813

  10. Genetic differentiation of the mitochondrial cytochrome oxidase C subunit I gene in genus Paramecium (Protista, Ciliophora).

    PubMed

    Zhao, Yan; Gentekaki, Eleni; Yi, Zhenzhen; Lin, Xiaofeng

    2013-01-01

    The mitochondrial cytochrome c oxidase subunit I (COI) gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp.

  11. Genetic Differentiation of the Mitochondrial Cytochrome Oxidase c Subunit I Gene in Genus Paramecium (Protista, Ciliophora)

    PubMed Central

    Zhao, Yan; Gentekaki, Eleni; Yi, Zhenzhen; Lin, Xiaofeng

    2013-01-01

    Background The mitochondrial cytochrome c oxidase subunit I (COI) gene is being used increasingly for evaluating inter- and intra-specific genetic diversity of ciliated protists. However, very few studies focus on assessing genetic divergence of the COI gene within individuals and how its presence might affect species identification and population structure analyses. Methodology/Principal findings We evaluated the genetic variation of the COI gene in five Paramecium species for a total of 147 clones derived from 21 individuals and 7 populations. We identified a total of 90 haplotypes with several individuals carrying more than one haplotype. Parsimony network and phylogenetic tree analyses revealed that intra-individual diversity had no effect in species identification and only a minor effect on population structure. Conclusions Our results suggest that the COI gene is a suitable marker for resolving inter- and intra-specific relationships of Paramecium spp. PMID:24204730

  12. Kirigami artificial muscles with complex biologically inspired morphologies

    NASA Astrophysics Data System (ADS)

    Sareh, Sina; Rossiter, Jonathan

    2013-01-01

    In this paper we present bio-inspired smart structures which exploit the actuation of flexible ionic polymer composites and the kirigami design principle. Kirigami design is used to convert planar actuators into active 3D structures capable of large out-of-plane displacement and that replicate biological mechanisms. Here we present the burstbot, a fluid control and propulsion mechanism based on the atrioventricular cuspid valve, and the vortibot, a spiral actuator based on Vorticella campanula, a ciliate protozoa. Models derived from biological counterparts are used as a platform for design optimization and actuator performance measurement. The symmetric and asymmetric fluid interactions of the burstbot are investigated and the effectiveness in fluid transport applications is demonstrated. The vortibot actuator is geometrically optimized as a camera positioner capable of 360° scanning. Experimental results for a one-turn spiral actuator show complex actuation derived from a single degree of freedom control signal.

  13. Boundary conditions for a one-sided numerical model of evaporative instabilities in sessile drops of ethanol on heated substrates

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey; Carle, Florian; Medale, Marc; Brutin, David

    2017-12-01

    The work is focused on obtaining boundary conditions for a one-sided numerical model of thermoconvective instabilities in evaporating pinned sessile droplets of ethanol on heated substrates. In the one-sided model, appropriate boundary conditions for heat and mass transfer equations are required at the droplet surface. Such boundary conditions are obtained in the present work based on a derived semiempirical theoretical formula for the total droplet's evaporation rate, and on a two-parametric nonisothermal approximation of the local evaporation flux. The main purpose of these boundary conditions is to be applied in future three-dimensional (3D) one-sided numerical models in order to save a lot of computational time and resources by solving equations only in the droplet domain. Two parameters, needed for the nonisothermal approximation of the local evaporation flux, are obtained by fitting computational results of a 2D two-sided numerical model. Such model is validated here against parabolic flight experiments and the theoretical value of the total evaporation rate. This study combines theoretical, experimental, and computational approaches in convective evaporation of sessile droplets. The influence of the gravity level on evaporation rate and contributions of different mechanisms of vapor transport (diffusion, Stefan flow, natural convection) are shown. The qualitative difference (in terms of developing thermoconvective instabilities) between steady-state and unsteady numerical approaches is demonstrated.

  14. Contact angle of sessile drops in Lennard-Jones systems.

    PubMed

    Becker, Stefan; Urbassek, Herbert M; Horsch, Martin; Hasse, Hans

    2014-11-18

    Molecular dynamics simulations are used for studying the contact angle of nanoscale sessile drops on a planar solid wall in a system interacting via the truncated and shifted Lennard-Jones potential. The entire range between total wetting and dewetting is investigated by varying the solid-fluid dispersive interaction energy. The temperature is varied between the triple point and the critical temperature. A correlation is obtained for the contact angle in dependence of the temperature and the dispersive interaction energy. Size effects are studied by varying the number of fluid particles at otherwise constant conditions, using up to 150,000 particles. For particle numbers below 10,000, a decrease of the contact angle is found. This is attributed to a dependence of the solid-liquid surface tension on the droplet size. A convergence to a constant contact angle is observed for larger system sizes. The influence of the wall model is studied by varying the density of the wall. The effective solid-fluid dispersive interaction energy at a contact angle of θ = 90° is found to be independent of temperature and to decrease linearly with the solid density. A correlation is developed that describes the contact angle as a function of the dispersive interaction, the temperature, and the solid density. The density profile of the sessile drop and the surrounding vapor phase is described by a correlation combining a sigmoidal function and an oscillation term.

  15. Distinct Functional Roles of β-Tubulin Isotypes in Microtubule Arrays of Tetrahymena thermophila, a Model Single-Celled Organism

    PubMed Central

    Pucciarelli, Sandra; Ballarini, Patrizia; Sparvoli, Daniela; Barchetta, Sabrina; Yu, Ting; Detrich, H. William; Miceli, Cristina

    2012-01-01

    Background The multi-tubulin hypothesis proposes that each tubulin isotype performs a unique role, or subset of roles, in the universe of microtubule function(s). To test this hypothesis, we are investigating the functions of the recently discovered, noncanonical β-like tubulins (BLTs) of the ciliate, Tetrahymena thermophila. Tetrahymena forms 17 distinct microtubular structures whose assembly had been thought to be based on single α- and β-isotypes. However, completion of the macronuclear genome sequence of Tetrahymena demonstrated that this ciliate possessed a β-tubulin multigene family: two synonymous genes (BTU1 and BTU2) encode the canonical β-tubulin, BTU2, and six genes (BLT1-6) yield five divergent β-tubulin isotypes. In this report, we examine the structural features and functions of two of the BLTs (BLT1 and BLT4) and compare them to those of BTU2. Methodology/Principal Findings With respect to BTU2, BLT1 and BLT4 had multiple sequence substitutions in their GTP-binding sites, in their interaction surfaces, and in their microtubule-targeting motifs, which together suggest that they have specialized functions. To assess the roles of these tubulins in vivo, we transformed Tetrahymena with expression vectors that direct the synthesis of GFP-tagged versions of the isotypes. We show that GFP-BLT1 and GFP-BLT4 were not detectable in somatic cilia and basal bodies, whereas GFP-BTU2 strongly labeled these structures. During cell division, GFP-BLT1 and GFP-BLT4, but not GFP-BTU2, were incorporated into the microtubule arrays of the macronucleus and into the mitotic apparatus of the micronucleus. GFP-BLT1 also participated in formation of the microtubules of the meiotic apparatus of the micronucleus during conjugation. Partitioning of the isotypes between nuclear and ciliary microtubules was confirmed biochemically. Conclusion/Significance We conclude that Tetrahymena uses a family of distinct β-tubulin isotypes to construct subsets of functionally different microtubules, a result that provides strong support for the multi-tubulin hypothesis. PMID:22745812

  16. Cold-water corals and large hydrozoans provide essential fish habitat for Lappanella fasciata and Benthocometes robustus

    NASA Astrophysics Data System (ADS)

    Gomes-Pereira, José Nuno; Carmo, Vanda; Catarino, Diana; Jakobsen, Joachim; Alvarez, Helena; Aguilar, Ricardo; Hart, Justin; Giacomello, Eva; Menezes, Gui; Stefanni, Sergio; Colaço, Ana; Morato, Telmo; Santos, Ricardo S.; Tempera, Fernando; Porteiro, Filipe

    2017-11-01

    Many fish species are well-known obligatory inhabitants of shallow-water tropical coral reefs but such associations are difficult to study in deep-water environments. We address the association between two deep-sea fish with low mobility and large sessile invertebrates using a compilation of 20 years of unpublished in situ observations. Data were collected on Northeast Atlantic (NEA) island slopes and seamounts, from the Azores to the Canary Islands, comprising 127 new records of the circalittoral Labridae Lappanella fasciata and 15 of the upper bathyal Ophiididae Benthocometes robustus. Observations by divers, remote operated vehicles (ROV SP, Luso, Victor, Falcon Seaeye), towed vehicles (Greenpeace) and manned submersibles (LULA, Nautile) validated the species association to cold water corals (CWC) and large hydrozoans. L. fasciata occurred from lower infralittoral (41 m) throughout the circalittoral, down to the upper bathyal at 398 m depth. Smaller fishes (< 10 cm) tend to form larger schools up to five individuals, with larger fishes (10-15 cm) occurring alone or in smaller groups at greater depths. The labrids favoured areas with large sessile invertebrates (> 10 cm) occurring at < 1 body-length, swimming inside or in close vicinity to the tallest and most complex three-dimensional structure in the field of observation. These included hydrozoans (Polyplumaria flabellata, Nemertesia antennina), CWC (e.g. Antipathella wollastoni, Acanthogorgia armata, Stichopathes sp.), and less frequently sponges (e.g. Pseudotrachya hystrix). B. robustus presented a coral-cryptic behavior, being recorded in the bathyal zone between 350 and 734 m depth, always inside CWC (e.g. Acanthogorgia spp., Antipathella spp., Callogorgia verticillata, Dendrophyllia alternata, Leiopathes spp.), and remaining within the coral branching. B. robustus were collected with baited traps providing biological information and dietary information reinforcing the trophic linkage between the CWC habitat and this predator. Gathered evidence renders CWC and hydroid gardens as Essential Fish Habitats for both species, being therefore sensitive to environmental and anthropogenic impacts on these Vulnerable Marine Ecosystems. The Mediterranean distribution of L. fasciata is extended to NEA seamounts and island slopes and the amphi-Atlantic distribution of B. robustus is bridged with molecular data support. Both species are expected to occur throughout the Macaronesia and Mediterranean island slopes and shallow seamounts on habitats with large sessile invertebrates.

  17. The effects of the stem cell on ciliary regeneration of injured rabbit sinonasal epithelium.

    PubMed

    Kavuzlu, Ali; Tatar, Emel Çadallı; Karagöz, Tuğba; Pınarlı, Ferda Alpaslan; Tatar, İlkan; Bayır, Ömer; Korkmaz, Mehmet Hakan

    2017-08-01

    Defects in mucosal healing after sinonasal surgery cause infection, scar formation causing obstruction, relapse of the disease within a shorter period and revision surgery. The present study aimed to create a functional ciliated epithelium using a stem cell and stem cell sheet of adipose tissue origin and to show such regeneration ultra-structurally on experimentally injured rabbit nasal epithelium. This was an experimental animal study and basic research. A total of 18 white New Zealand rabbits were divided into three groups. The medial wall of the maxillary sinus of the subjects was peeled off bilaterally. No additional procedure was applied to the subjects in Group 1. In Group 2, adipose tissue-derived mesenchymal stem cell was implanted on the wound edges of the subjects. In Group 3, a stem cell sheet of three layers was laid onto the defect area. All subjects were killed after 3 weeks. The presence of the stem cell stained with bromo-deoxyuridine was assessed with a light microscope, whereas cilia density, ciliated orientation and cilia structure were evaluated with a scanning electron microscope. Ciliary densities in Group 2 and Group 3 were statistically superior compared to the control group (p < 0.001, p = 0.007). Cilia morphology in Group 2 and Group 3 was also better than the control group (p < 0.01, p = 0.048). Ciliary orientation in Group 2 was scored highest (p < 0.01). The ratio of BrDu-stained cells was observed to be 27% in Group 3 and 8% in Group 2. Sub-epithelial recovery was observed to be better in Group 3. Adipose tissue-derived mesenchymal stem cell increased the healing of the injured maxillary sinus mucosa of the rabbits in terms of cilia presence, density and morphology regardless of the implementation technique. Level of evidence NA.

  18. Retinoic Acid Improves Morphology of Cultured Peritoneal Mesothelial Cells from Patients Undergoing Dialysis

    PubMed Central

    Retana, Carmen; Sanchez, Elsa I.; Gonzalez, Sirenia; Perez-Lopez, Alejandro; Cruz, Armando; Lagunas-Munoz, Jesus; Alfaro-Cruz, Carmen; Vital-Flores, Socorro; Reyes, José L.

    2013-01-01

    Patients undergoing continuous ambulatory peritoneal dialysis are classified according to their peritoneal permeability as low transporter (low solute permeability) or High transporter (high solute permeability). Factors that determine the differences in permeability between them have not been fully disclosed. We investigated morphological features of cultured human peritoneal mesothelial cells from low or high transporter patients and its response to All trans retinoic Acid (ATRA, vitamin A active metabolite), as compared to non-uremic human peritoneal mesothelial cells. Control cells were isolated from human omentum. High or low transporter cells were obtained from dialysis effluents. Cells were cultured in media containing ATRA (0, 50, 100 or 200 nM). We studied length and distribution of microvilli and cilia (scanning electron microscopy), epithelial (cytokeratin, claudin-1, ZO-1 and occludin) and mesenchymal (vimentin and α-smooth muscle actin) transition markers by immunofluorescence and Western blot, and transforming growth factor β1 expression by Western blot. Low and high transporter exhibited hypertrophic cells, reduction in claudin-1, occludin and ZO-1 expression, cytokeratin and vimentin disorganization and positive α-smooth muscle actin label. Vimentin, α-smooth muscle actin and transforming growth factor- β1 were overexpressed in low transporter. Ciliated cells were diminished in low and high transporters. Microvilli number and length were severely reduced in high transporter. ATRA reduced hypertrophic cells number in low transporter. It also improved cytokeratin and vimentin organization, decreased vimentin and α-smooth muscle actin expression, and increased claudin 1, occludin and ZO-1 expression, in low and high transporter. In low transporter, ATRA reduced transforming growth factor-β1 expression. ATRA augmented percentage of ciliated cells in low and high transporter. It also augmented cilia length in high transporter. Alterations in structure, epithelial mesenchymal markers and transforming growth factor-β1expression were differential between low and high transporter. Beneficial effects of ATRA were improved human peritoneal mesothelial cells morphology tending to normalize structures. PMID:24223992

  19. Chain response of microbial loop to the decay of a diatom bloom in the East China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Linnan; Lin, Shiquan; Huang, Lingfeng; Lu, Jiachang; Chen, Wenzhao; Guo, Weidong; Zhang, Wuchang; Xiao, Tian; Sun, Jun

    2016-02-01

    Algal bloom has been regarded as one of the key causes for the summer hypoxia phenomena in the bottom water adjacent to the Yangtze River estuary in the East China Sea. Although a series of biological processes within microbial loop are involved in the development of oxygen depletion during the bloom decay, little has been known about the dynamics of microorganisms in response to the decaying process of the bloom through trophic interaction context. Here, we report some preliminary results of our observations about the response of microbial loop to the bloom decay, based on the onboard incubation experiments for 10 days during a diatom bloom near the Yangtze River estuary in August, 2011. Light and dark incubations were conducted to simulate the bloom decay inside and below the euphotic layer, respectively. In the first stage of bloom decay (Day 0 to Day 4), rapid response was found in heterotrophic bacteria (HB) and ciliate growth, which was in accordance with the decrease of total Chl a, indicating a "bottom-up" control at the early stage of bloom decay. However, the increase of heterotrophic nanoflagellates (HNF) abundance was rather inconspicuous, suggesting predation pressure on HNF from ciliate or other predator at this stage. In the second stage (Day 4 to Day 8), HB and ciliate decreased rapidly with the increase of HNF, revealing the release of HNF form ciliate predation, which suggested a "top-down" control. In the last stage of our experiment (Day 8 to Day 10), the trophic interactions were more complex, but it also implied a "top-down" control within the microbial loop. Meanwhile, virus had been monitored in the whole process of our incubations. It was found that virus lysed microalgae at the first stage, and lysed HB at the second stage. In addition, the bacterial mortality was principally caused by HNF grazing in the light-sufficient incubations and by viral lysis in the light-insufficient incubations. Our results suggest tight trophic interactions within the microbial loop in the decaying process of the algal bloom, which may assist our understanding of the role of microbial loop in hypoxia formation in coastal waters.

  20. Acidobacteria appear to dominate the microbiome of two sympatric Caribbean Sponges and one Zoanthid.

    PubMed

    O'Connor-Sánchez, Aileen; Rivera-Domínguez, Adán J; Santos-Briones, César de los; López-Aguiar, Lluvia K; Peña-Ramírez, Yuri J; Prieto-Davo, Alejandra

    2014-12-10

    Marine invertebrate-associated microbial communities are interesting examples of complex symbiotic systems and are a potential source of biotechnological products. In this work, pyrosequencing-based assessment from bacterial community structures of sediments, two sponges, and one zoanthid collected in the Mexican Caribbean was performed. The results suggest that the bacterial diversity at the species level is higher in the sediments than in the animal samples. Analysis of bacterial communities' structure showed that about two thirds of the bacterial diversity in all the samples belongs to the phyla Acidobacteria and Proteobacteria. The genus Acidobacterium appears to dominate the bacterial community in all the samples, reaching almost 80% in the sponge Hyrtios. Our evidence suggests that the sympatric location of these benthonic species may lead to common bacterial structure features among their bacterial communities. The results may serve as a first insight to formulate hypotheses that lead to more extensive studies of sessile marine organisms' microbiomes from the Mexican Caribbean.

Top