Sample records for structures show promise

  1. Subsurface Growth Of Silicide Structures In Silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; George, Thomas; Pike, William T.; Schowalter, Leo

    1993-01-01

    Technique shows promise for fabrication of novel electronic, optoelectronic, and electro-optical devices. Experiments demonstrated feasibility of growing microscopic single-crystal CoSi2 structures beneath surfaces of Si substrates.

  2. Statistical Control Paradigm for Aerospace Structures Under Impulsive Disturbances

    DTIC Science & Technology

    2006-08-03

    attitude control system with an innovative and robust statistical controller design shows significant promise for use in attitude hold mode operation...indicate that the existing attitude control system with an innovative and robust statistical controller design shows significant promise for use in...and three thrusters are for use in controlling the attitude of the satellite. Then the angular momentum of the satellite with three thrusters and a

  3. Pharmacophore Hybridization To Discover Novel Topoisomerase II Poisons with Promising Antiproliferative Activity.

    PubMed

    Ortega, Jose Antonio; Riccardi, Laura; Minniti, Elirosa; Borgogno, Marco; Arencibia, Jose M; Greco, Maria L; Minarini, Anna; Sissi, Claudia; De Vivo, Marco

    2018-02-08

    We used a pharmacophore hybridization strategy to combine key structural elements of merbarone and etoposide and generated new type II topoisomerase (topoII) poisons. This first set of hybrid topoII poisons shows promising antiproliferative activity on human cancer cells, endorsing their further exploration for anticancer drug discovery.

  4. Multiscale Design and Manufacturing of Hybrid DWCNT-Polymer Fibers

    DTIC Science & Technology

    2016-02-09

    lower temperatures , but further increase of temperature produced insignificant structural changes. The latter effect shows promise for the control...elevated temperatures . Increase in crystallinity was confirmed by XRD experiments. Such nanofibers exhibited size effects for strength and modulus...Schatz group) study of the effects of higher carbonization temperatures . Some promising initial results are being now analyzed experimentally and

  5. Structural features and oil-and-gas bearing of the Caribbean region

    NASA Astrophysics Data System (ADS)

    Zabanbark, A.; Lobkovsky, L. I.

    2017-09-01

    The structure of the Caribbean region testifies to the extremely unstable condition of the terrestrial crust of this intercontinental and simultaneously interoceanic area. In the recent geological epoch, the Caribbean region is represented by a series of structural elements, the main of which are the Venezuelan and Colombian deep-sea suboceanic depressions, the Nicaraguan Rise, and the Greater and Lesser Antilles bordering the Caribbean Sea in the north and east. There are 63 sedimentary basins in the entire Caribbean region. However, only the Venezuelan and Colombian basins, the Miskito Basin in Nicaragua, and the northern and eastern shelves of the Antilles, Paria Bay, Barbodos-Tobago, and Grenada basins are promising in terms of oil-and-gas bearig. In the Colombian Basin, the southwestern part, located in the rift zone of the Gulf of Uraba, is the most promising. In the Venezuelan Basin, possible oil-and-gas-bearing basins showing little promise are assumed to be in the northern and eastern margins. The main potential of the eastern Caribbean region is attributed to the southern margin, at the shelf zone of which are the Tokuyo-Bonaire, Tuy-Cariaco, Margarita, Paria Bay, Barbados-Tobago, and Grenada oil-and-gas-bearing basins. The rest of the deepwater depressions of the Caribbean Sea show little promise for hydrocarbon research due to the small thickness of the deposits, their flat bedding, and probably a lack of fluid seals.

  6. Structural colored liquid membrane without angle dependence.

    PubMed

    Takeoka, Yukikazu; Honda, Masaki; Seki, Takahiro; Ishii, Masahiko; Nakamura, Hiroshi

    2009-05-01

    We have demonstrated for the first time that condensed gel particle suspensions in amorphous-like states display structural color with low angle dependence. This finding is in contrast to the common understanding that a periodic dielectric structure is fundamental to photonic band gap (PBG) production, and it validates the theory that a "tight bonding model" that is applicable to semiconductor systems can also be applied to photonic systems. More practically, this structural colored suspension represents a promising new material for the manufacture of reflective full-color displays with a wide viewing angle and nonfading color materials. This liquid system shows promise as a display material because electronic equipment used for display systems can easily be filled with the liquid in the same way that liquid crystals are currently used.

  7. Improved stud configurations for attaching laminated wood wind turbine blades

    NASA Technical Reports Server (NTRS)

    Fadoul, J. R.

    1985-01-01

    A series of bonded stud design configurations was screened on the basis of tension-tension cyclic tests to determine the structural capability of each configuration for joining a laminated wood structure (wind turbine blade) to a steel flange (wind turbine hub). Design parameters which affected the joint strength (ultimate and fatigue) were systematically varied and evaluated through appropriate testing. Two designs showing the most promise were used to fabricate addiate testing. Two designs showing the most promise were used to fabricate additional test specimens to determine ultimate strength and fatigue curves. Test results for the bonded stud designs demonstrated that joint strengths approaching the 10,000 to 12,000 psi ultimate strength and 5000 psi high cycle fatigue strength of the wood epoxy composite could be achieved.

  8. Confirmatory Factor and Rasch Analyses Support a Revised 14-Item Version of the Organizational, Policies, and Practices (OPP) Scale.

    PubMed

    Shi, Qiyun; MacDermid, Joy C; Tang, Kenneth; Sinden, Kathryn E; Walton, Dave; Grewal, Ruby

    2017-06-01

    Background The long version of the organizational, policies and practices (OPP) had a high burden and short versions were developed to solve this drawback. The 11-item version showed promise, but the ergonomic subscale was deficient. The OPP-14 was developed by adding three additional items to the ergonomics subscale. The aim of this study is to evaluate the factor structure using confirmatory factor and Rasch analyses in healthy firefighters. Methods A sample of 261 firefighters (Mean age 42 years, 95 % male) were sampled. A confirmatory factor and Rasch analyses were used to assess the internal consistency, factor structure and other psychometric characteristics of revised OPP-14. Results The OPP-14 demonstrates sound factor structure and internal consistency in firefighters. Confirmatory factor analysis confirmed the consistency of the original 4-domain structure (CFI = 0.97, TLI = 0.96, and RMSEA = 0.053). The 5 items showing misfit initially with disordered thresholds were rescored. The four subscales satisfied Rasch expectations with well target and acceptable reliability. Conclusions The OPP-14 scale shows a promising factor structure in this sample and remediated deficits found in OPP-11. This version may be preferable for musculoskeletal concerns or work applications where ergonomic indicators are relevant.

  9. Microporous metal organic framework [M2(hfipbb)2(ted)] (M=Zn, Co; H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine): Synthesis, structure analysis, pore characterization, small gas adsorption and CO2/N2 separation properties

    NASA Astrophysics Data System (ADS)

    Xu, William W.; Pramanik, Sanhita; Zhang, Zhijuan; Emge, Thomas J.; Li, Jing

    2013-04-01

    Carbon dioxide is a greenhouse gas that is a major contributor to global warming. Developing methods that can effectively capture CO2 is the key to reduce its emission to the atmosphere. Recent research shows that microporous metal organic frameworks (MOFs) are emerging as a promising family of adsorbents that may be promising for use in adsorption based capture and separation of CO2 from power plant waste gases. In this work we report the synthesis, crystal structure analysis and pore characterization of two microporous MOF structures, [M2(hfipbb)2(ted)] (M=Zn (1), Co (2); H2hfipbb=4,4-(hexafluoroisopropylidene)-bis(benzoic acid); ted=triethylenediamine). The CO2 and N2 adsorption experiments and IAST calculations are carried out on [Zn2(hfipbb)2(ted)] under conditions that mimic post-combustion flue gas mixtures emitted from power plants. The results show that the framework interacts with CO2 strongly, giving rise to relatively high isosteric heats of adsorption (up to 28 kJ/mol), and high adsorption selectivity for CO2 over N2, making it promising for capturing and separating CO2 from CO2/N2 mixtures.

  10. Larvicidal activity and structure activity relationship of cinnamoyl amides from Zanthoxylum armatum and their synthetic analogues against diamondback moth, Plutella xylostella.

    PubMed

    Kumar, Vishal; Reddy, S G Eswara; Bhardwaj, Anuja; Dolma, Shudh Kirti; Kumar, Neeraj

    2016-01-01

    Cinnamoyl amides isolated from Zanthoxylum armatum (Rutaceae) and their synthetic analogues were tested for their insecticidal activity against the second instar larvae of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) to determine the promising structures with insecticidal activity. Most of the test compounds showed promising activity against larvae of P. xylostella. However, the activities of different compounds varied depending on the presence of different substituents at various positions of both the aromatic rings A and B. Among the tested compounds, 8, N-(3-bromo-4-methoxyphenethyl)cinnamamide showed best larvicidal activity with an LC50 = 62.13 mg/L followed by 6, N-(3׳-bromophenethyl)cinnamamide (LC50=128.49 mg/L) and 2 N-(4׳-methoxyphenylethyl)cinnamamide (LC50 = 225.65 mg/L).

  11. Larvicidal activity and structure activity relationship of cinnamoyl amides from Zanthoxylum armatum and their synthetic analogues against diamondback moth, Plutella xylostella

    PubMed Central

    Kumar, Vishal; Reddy, S. G. Eswara; Bhardwaj, Anuja; Dolma, Shudh Kirti; Kumar, Neeraj

    2016-01-01

    Cinnamoyl amides isolated from Zanthoxylum armatum (Rutaceae) and their synthetic analogues were tested for their insecticidal activity against the second instar larvae of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) to determine the promising structures with insecticidal activity. Most of the test compounds showed promising activity against larvae of P. xylostella. However, the activities of different compounds varied depending on the presence of different substituents at various positions of both the aromatic rings A and B. Among the tested compounds, 8, N-(3-bromo-4-methoxyphenethyl)cinnamamide showed best larvicidal activity with an LC50 = 62.13 mg/L followed by 6, N-(3׳-bromophenethyl)cinnamamide (LC50=128.49 mg/L) and 2 N-(4׳-methoxyphenylethyl)cinnamamide (LC50 = 225.65 mg/L). PMID:27231477

  12. Hybrid solar cells composed of perovskite and polymer photovoltaic structures

    NASA Astrophysics Data System (ADS)

    Phaometvarithorn, Apatsanan; Chuangchote, Surawut; Kumnorkaew, Pisist; Wootthikanokkhan, Jatuphorn

    2018-06-01

    Organic/inorganic lead halide perovskite solar cells have recently attracted much attention in photovoltaic research, due to the devices show promising ways to achieve high efficiencies. The perovskite devices with high efficiencies, however, are typically fabricated in tandem solar cell which is complicated. In this research work, we introduce a solar cell device with the combination of CH3NH3PbI3-xClx perovskite and bulk heterojunction PCDTBT:PC70BM polymer without any tandem structure. The new integrated perovskite/polymer hybrid structure of ITO/PEDOT:PSS/perovskite/PCDTBT:PC70BM/PC70BM/TiOx/Al provides higher power conversion efficiency (PCE) of devices compared with conventional perovskite cell structure. With the optimized PCDTBT:PC70BM thickness of ∼70 nm, the highest PCE of 11.67% is achieved. Variation of conducting donor polymers in this new structure is also preliminary demonstrated. This study provides an attractively innovative structure and a promising design for further development of the new-generation solar cells.

  13. Tuning the Hydrogen Storage in Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Er, Suleyman; de Wijs, Gilles A.; Brocks, Geert

    2011-03-01

    We investigate the hydrogen storage properties of promising magnesium alloys. Mg H2 (7.6 wt % H) would be a very useful storage material if the (de)hydrogenation kinetics can be improved and the desorption temperature is markedly lowered. Using first principles calculations, we show that hydrides of Mg-transition metal (TM) alloys adopt a structure that promotes faster (de)hydrogenation kinetics, as is also observed in experiment. Within the lightweight TMs, the most promising alloying element is titanium. Alloying Mg with Ti alone, however, is not sufficient to decrease the stability of the hydride phases, which is necessary to reduce the hydrogen desorption temperature. We find that adding aluminium or silicon markedly destabilizes Mg-Ti hydrides and stabilizes Mg-Ti alloys. Finally, we show that controlling the structure of Mg-Ti-Al(Si) system by growing it as multilayers, has a beneficial influence on the thermodynamic properties and makes it a stronger candidate for hydrogen storage.

  14. Influence of surfactants on the release behaviour and structural properties of sol-gel derived silica xerogels embedded with metronidazole.

    PubMed

    Czarnobaj, Katarzyna; Sawicki, Wiesław

    2013-01-01

    The aim of this study was to obtain stable and controlled release silica xerogels containing metronidazole (MT) prepared with surfactants with different charges: cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulphate (SDS) and hydroxypropyl cellulose (HPC), which could be the promising carrier materials used as the implantable drug delivery systems. The xerogels were prepared by the sol-gel method. The influence of various formulation precursors on porosity parameters and drug release were investigated. Addition of surfactants showed a promising result in controlling the MT release. Dissolution study revealed increased release of MT from silica modified SDS and CTAB, whereas the release of MT from silica modified HPC considerably decreased, in comparison with unmodified silica. The addition of surfactants showed slight changes in porosity parameters. All xerogels are characterized by a highly developed surface area (701-642 m(2) g(-1)) and mesoporous structure. The correlation between pore size obtained matrices and release rate of drug was also observed. Based on the presented results of this study, it may be stated that applied xerogel matrices: pure silica and surfactants-modified silica could be promising candidates for the formulation in local delivery systems.

  15. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-01

    Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04782f

  16. Anomaly Detection In Additively Manufactured Parts Using Laser Doppler Vibrometery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Carlos A.

    Additively manufactured parts are susceptible to non-uniform structure caused by the unique manufacturing process. This can lead to structural weakness or catastrophic failure. Using laser Doppler vibrometry and frequency response analysis, non-contact detection of anomalies in additively manufactured parts may be possible. Preliminary tests show promise for small scale detection, but more future work is necessary.

  17. Monte Carlo random walk simulation of electron transport in confined porous TiO{sub 2} as a promising candidate for photo-electrode of nano-crystalline solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javadi, M.; Abdi, Y., E-mail: y.abdi@ut.ac.ir

    2015-08-14

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO{sub 2}. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO{sub 2} used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, wemore » demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ∼1 μm{sup 2} and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.« less

  18. Monte Carlo random walk simulation of electron transport in confined porous TiO2 as a promising candidate for photo-electrode of nano-crystalline solar cells

    NASA Astrophysics Data System (ADS)

    Javadi, M.; Abdi, Y.

    2015-08-01

    Monte Carlo continuous time random walk simulation is used to study the effects of confinement on electron transport, in porous TiO2. In this work, we have introduced a columnar structure instead of the thick layer of porous TiO2 used as anode in conventional dye solar cells. Our simulation results show that electron diffusion coefficient in the proposed columnar structure is significantly higher than the diffusion coefficient in the conventional structure. It is shown that electron diffusion in the columnar structure depends both on the cross section area of the columns and the porosity of the structure. Also, we demonstrate that such enhanced electron diffusion can be realized in the columnar photo-electrodes with a cross sectional area of ˜1 μm2 and porosity of 55%, by a simple and low cost fabrication process. Our results open up a promising approach to achieve solar cells with higher efficiencies by engineering the photo-electrode structure.

  19. Methods for constraining fine structure constant evolution with OH microwave transitions.

    PubMed

    Darling, Jeremy

    2003-07-04

    We investigate the constraints that OH microwave transitions in megamasers and molecular absorbers at cosmological distances may place on the evolution of the fine structure constant alpha=e(2)/ variant Planck's over 2pi c. The centimeter OH transitions are a combination of hyperfine splitting and lambda doubling that can constrain the cosmic evolution of alpha from a single species, avoiding systematic errors in alpha measurements from multiple species which may have relative velocity offsets. The most promising method compares the 18 and 6 cm OH lines, includes a calibration of systematic errors, and offers multiple determinations of alpha in a single object. Comparisons of OH lines to the HI 21 cm line and CO rotational transitions also show promise.

  20. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    PubMed

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  1. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yubo; Zhang, Jiawei; Wang, Youwei

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of themore » mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV.« less

  2. Fabrication of biomimetic resorption lacunae-like structure on titanium surface and its osteoblast responses

    NASA Astrophysics Data System (ADS)

    Huo, Fangjun; Guo, Weihua; Wu, Hao; Wang, Yueting; He, Gang; Xie, Li; Tian, Weidong

    2018-04-01

    Biomimetic specific surface structure could improve biological behaviors of specific cells and eventual tissue integration. Featuring titanium surface with structures resembling bone resorption lacunae (RL) can be a promising approach to improve the osteoblast responses and osseointegration of implants. As a most common used dental implant surface, sandblasting and acid etching (SLA) surface has micro-sized structures with dimensions similar to RL, but great differences exist when it comes to shape and contour. In this work, by anodizing titanium substrate in a novel HCOONa/CH3COONa electrolyte, RL-like crater structures were fabricated with highly similar size, shape and contour. Compared with SLA, it was much more similar to RL structure in shape and contour. Furthermore, through subsequent alkali-heat treatment, nano-sized structures that overlaid the whole surface were obtained, which further mimic undercuts features inside the RL. The as-prepared surface was consisted of crystalline titania and exhibited super-hydrophilicity with good stability. In vitro evaluation results showed that the surface could significantly improve adhesion, proliferation and differentiation of MG63 cells in comparison with SLA. This new method may be a promising candidate for biomimetic modification of titanium implant to promote osseointegration.

  3. Assessment of the integrity of concrete bridge structures by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Park, Philip; Jung, Juong-Chae; Lee, Seung-Seok

    2002-06-01

    This study was aimed at developing a new method for assessing the integrity of concrete structures. Especially acoustic emission technique was used in carrying out both laboratory experiment and field application. From the previous laboratory study, we confirmed that AE analysis provided a promising approach for estimating the level of damage and distress in concrete structures. The Felicity ratio, one of the key parameter for assessing damage, exhibits a favorable correlation with the overall damage level. The total number of AE events under stepwise cyclic loading also showed a good agreement with the damage level. In this study, a new suggested technique was applied to several concrete bridges in Korea in order to verify the applicability in field. The AE response was analyzed to obtain key parameters such as the total number and rate of AE events, AE parameter analysis for each event, and the characteristic features of the waveform as well as Felicity ratio analysis. Stepwise loading-unloading procedure for AE generation was introduced in field test by using each different weight of vehicle. According to the condition of bridge, for instance new or old bridge, AE event rate and AE generation behavior indicated many different aspects. The results showed that the suggested analyzing method would be a promising approach for assessing the integrity of concrete structures.

  4. Magnetoimpedance effect in the FeNi/Ti-based multilayered structure: A pressure sensor prototype

    NASA Astrophysics Data System (ADS)

    Chlenova, A. A.; Melnikov, G. Yu.; Svalov, A. V.; Kurlyandskaya, G. V.

    2016-09-01

    Magnetically soft [Ti/FeNi]5/Ti/Cu/Ti/[FeNi/Ti]4 multilayered structures were obtained by magnetron sputtering. Based on them sensitive elements have been investigated with focus on the design of the giant magnetoimpedance (MI) pressure sensors. Magnetic properties and MI of fabricated sensitive elements were comparatively analyzed for both multilayers deposited both onto rigid and flexible polymer substrates. Structures on a rigid substrate had the highest MI ratio of 140 %. They showed the sensitivity of 0.70 %/Ba suitable for possible applications in pressure sensing. Structures deposited onto flexible Cyclo Olefin Copolymer substrates had slightly lower sensitivity of 0.55 %/Ba. That structures showing linear dependence of MI ratio in the pressure range of 0 to 360 Ba are promising for microfluidic and biosensor applications.

  5. An Overview of Metallic Nanowire Networks, Promising Building Blocks for Next Generation Transparent Conductors: Emergence, Fundamentals and Challenges

    NASA Astrophysics Data System (ADS)

    Pirsalami, Sedigheh; Zebarjad, Seyed Mojtaba; Daneshmanesh, Habib

    2017-08-01

    Transparent conductors (TCs) have a wide range of applications in numerous electronic and optoelectronic devices. This review provides an overview of the emergence of metallic nanowire networks (MNNs) as promising building blocks for the next generation transparent conductors. The fundamental aspects, structure-property relations, fabrication techniques and the corresponding challenges are reviewed. Theoretical and experimental researches suggest that nanowires with smaller diameter, longer length and higher aspect ratio have higher performance. Yet, the development of an efficient synthesis technique for the production of MNNs has remained a challenge. The synthesis method is also crucial to the scalability and the commercial potential of these emerging TCs. The most promising techniques for the synthesis together with their advantages, limitations and the recent findings are here discussed. Finally, we will try to show the promising future research trends in MNNs to have an approach to design the next generation TCs.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor

    Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO 2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.

  7. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    PubMed

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  8. Preparation, in vitro evaluation and molecular modelling of pyridinium-quinolinium/isoquinolinium non-symmetrical bisquaternary cholinesterase inhibitors.

    PubMed

    Komloova, Marketa; Horova, Anna; Hrabinova, Martina; Jun, Daniel; Dolezal, Martin; Vinsova, Jarmila; Kuca, Kamil; Musilek, Kamil

    2013-12-15

    Two series of non-symmetrical bisquaternary pyridinium-quinolinium and pyridinium-isoquinolinium compounds were prepared as molecules potentially applicable in myasthenia gravis treatment. Their inhibitory ability towards human recombinant acetylcholinesterase and human plasmatic butyrylcholinesterase was determined and the results were compared to the known effective inhibitors such as ambenonium dichloride, edrophonium bromide and experimental compound BW284C51. Two compounds, 1-(10-(pyridinium-1-yl)decyl)quinolinium dibromide and 1-(12-(pyridinium-1-yl)dodecyl)quinolinium dibromide, showed very promising affinity for acetylcholinesterase with their IC50 values reaching nM inhibition of acetylcholinesterase. These most active compounds also showed satisfactory selectivity towards acetylcholinesterase and they seem to be very promising as leading structures for further modifications and optimization. Two of the most promising compounds were examined in the molecular modelling study in order to find the possible interactions between the ligand and tested enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Structure and Properties of Intercalated Graphite Fiber-Polymer Composites.

    DTIC Science & Technology

    1983-07-07

    resistivities of all com- nal graphite. Experimental evidence (1,2) in- plexes were determined both before and after dicated that the electrophilic N02...others show promise as fluorinating agents in chemical synthesisI21. At this point, however, so little is Known of processing parameters and long-term

  10. Strategies for estimating the marine geoid from altimeter data

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Kahn, W. D.; Garza-Robles, R.

    1976-01-01

    Altimeter data from a spacecraft borne altimeter was processed to estimate the fine structure of the marine geoid. Simulation studies show that, among several competing parameterizations, the mean free air gravity anomaly model exhibited promising geoid recovery characteristics. Using covariance analysis techniques, quantitative measures of the orthogonality properties are investigated.

  11. Characterising large-scale structure with the REFLEX II cluster survey

    NASA Astrophysics Data System (ADS)

    Chon, Gayoung

    2016-10-01

    We study the large-scale structure with superclusters from the REFLEX X-ray cluster survey together with cosmological N-body simulations. It is important to construct superclusters with criteria such that they are homogeneous in their properties. We lay out our theoretical concept considering future evolution of superclusters in their definition, and show that the X-ray luminosity and halo mass functions of clusters in superclusters are found to be top-heavy, different from those of clusters in the field. We also show a promising aspect of using superclusters to study the local cluster bias and mass scaling relation with simulations.

  12. New concept of critical infrastructure strengthening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazizov, Talgat R.; Orlov, Pavel E.; Zabolotsky, Alexander M.

    2016-06-08

    Strengthening of critical infrastructure is considered. Modal reservation of electronics is proposed as a new concept of the strengthening. The concept combines a widely used cold backup and a recently proposed modal filtration. It makes electronics reliable as well as protected against electromagnetic interference, especially the ultra-wide band pulses. New printed circuit board structure is suggested for implementation of the proposed concept. Results of simulation in time and frequency domains are presented for the suggested structures. Considerable attenuation of dangerous excitations shows that the new concept and structure are promising.

  13. Strain-engineering of Janus SiC monolayer functionalized with H and F atoms

    NASA Astrophysics Data System (ADS)

    Drissi, L. B.; Sadki, K.; Kourra, M.-H.; Bousmina, M.

    2018-05-01

    Based on ab initio density functional theory calculations, the structural, electronic, mechanical, acoustic, thermodynamic, and piezoelectric properties of (F,H) Janus SiC monolayers are studied. The new set of derivatives shows buckled structures and different band gap values. Under strain, the buckling changes and the structures pass from semiconducting to metallic. The elastic limits and the metastable regions are determined. The Young's modulus and Poisson ratio reveal stronger behavior for the modified conformers with respect to graphene. The values of the Debye temperature make the new materials suitable for thermal application. Moreover, all the conformers show in-plane and out-of-plane piezoelectric responses comparable with known two-dimensional materials. If engineered, such piezoelectric Janus structures may be promising materials for various nanoelectromechanical applications.

  14. Ultra-high-performance core–shell structured Ru@Pt/C catalyst prepared by a facile pulse electrochemical deposition method

    DOE PAGES

    Chen, Dan; Li, Yuexia; Liao, Shijun; ...

    2015-08-03

    Core–shell structured catalysts, made by placing either a monolayer or a thin layer of a noble metal on relatively cheap core-metal nanoparticles, are fascinating and promising fuel cell catalysts due to their high utilization of noble metals. Here, we report our development of a core–shell structured catalyst, Ru@Pt/C, generated by a novel and facile pulse electrochemical deposition (PED) approach. We demonstrate that compared with a commercial Pt/C catalyst, this novel catalyst achieves over four times higher mass activity towards the anodic oxidation of methanol, and 3.6 times higher mass activity towards the cathodic reduction of oxygen. Importantly, we find thatmore » the intrinsic activity of Pt in this Ru@Pt/C catalyst is doubled due to the formation of the core–shell structure. The catalyst also shows superior stability: even after 2000 scans, it still retains up to 90% of the peak current. As a result, our findings demonstrate that this novel PED approach is a promising method for preparing high-performance core–shell catalysts for fuel cell applications.« less

  15. Phosphate Framework Electrode Materials for Sodium Ion Batteries.

    PubMed

    Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Cao, Yuliang; Yang, Hanxi

    2017-05-01

    Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li-ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single-phosphates, pyrophosphates and mixed-phosphates. We provide the detailed and comprehensive understanding of structure-composition-performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next-generation of energy storage devices.

  16. LaCu6-xAgx : A promising host of an elastic quantum critical point

    NASA Astrophysics Data System (ADS)

    Poudel, L.; Cruz, C. de la; Koehler, M. R.; McGuire, M. A.; Keppens, V.; Mandrus, D.; Christianson, A. D.

    2018-05-01

    Structural properties of LaCu6-xAgx have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P21 / c) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu6-xAgx decrease with Ag composition until the monoclinic phase is completely suppressed at xc = 0.225 . All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu6-xAgx .

  17. LaCu 6-xAg x: A promising host of an elastic quantum critical point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Lekh; Dela Cruz, Clarina R.; Koehler, Michael R.

    Structural properties of LaCu 6-xAg x have been investigated using neutron and x-ray diffraction, and resonant ultrasound spectroscopy (RUS) measurements. Diffraction measurements indicate a continuous structural transition from orthorhombic (Pnma) to monoclinic (P2₁/C) structure. RUS measurements show softening of natural frequencies at the structural transition, consistent with the elastic nature of the structural ground state. The structural transition temperatures in LaCu 6-xAg x decrease with Ag composition until the monoclinic phase is completely suppressed at x c=0.225. All of the evidence is consistent with the presence of an elastic quantum critical point in LaCu 6-xAg x.

  18. Missing Data as a Causal and Probabilistic Problem

    DTIC Science & Technology

    2015-07-01

    for causal effects identification [18] seems promising. That is, use MID as a guide for constructing a “ zoo ” of structures where recoverability does...not seem to be possible, and then construct a general method for show- ing non-recoverability for this “ zoo .” Some results on non-recoverability do

  19. A mild process to design silk scaffolds with reduced β-sheet structure and various topographies at the nanometer scale.

    PubMed

    Pei, Yazhen; Liu, Xi; Liu, Shanshan; Lu, Qiang; Liu, Jing; Kaplan, David L; Zhu, Hesun

    2015-02-01

    Three-dimensional (3-D) porous silk scaffolds with good biocompatibility and minimal immunogenicity show promise in a range of tissue regeneration applications. However, the challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy the specific requirements of different tissues. In this study, silk scaffolds were fabricated to form an extracellular matrix (ECM) mimetic nanofibrous architecture using a mild process. A slowly increasing concentration process was applied to regulate silk self-assembly into nanofibers in aqueous solution. Then glycerol was blended with the nanofiber solution and induced silk crystallization in the lyophilization process, endowing freeze-dried scaffolds with water stability. The glycerol was leached from the scaffolds, leaving a similar porous structure at the micrometer scale but different topographies at the nanoscale. Compared to previous salt-leached and methanol-annealed scaffolds, the present scaffolds showed lower β-sheet content, softer mechanical property and improved cell growth and differentiation behaviors, suggesting their promising future as platforms for controlling stem cell fate and soft tissue regeneration. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Discovery of Novel Pyridone-Conjugated Monosulfactams as Potent and Broad-Spectrum Antibiotics for Multidrug-Resistant Gram-Negative Infections.

    PubMed

    Tan, Liang; Tao, Yunliang; Wang, Ting; Zou, Feng; Zhang, Shuhua; Kou, Qunhuan; Niu, Ao; Chen, Qian; Chu, Wenjing; Chen, Xiaoyan; Wang, Haidong; Yang, Yushe

    2017-04-13

    Conjugating a siderophore to an antibiotic is a promising strategy to overcome the permeability-mediated resistance of Gram-negative pathogens. On the basis of the structure of BAL30072, novel pyridone-conjugated monosulfactams incorporating diverse substituents into the methylene linker between the 1,3-dihydroxypyridin-4(1H)-one and the aminothiazole oxime were designed and synthesized. Structure-activity relationship studies revealed that a variety of substituents were tolerated, with isopropyl (compound 12c) and methylthiomethyl (compound 16a) showing the best efficacy against multidrug-resistant (MDR) Gram-negative pathogens. In addition, compound 12c exhibits a good free fraction rate in an in vitro human plasma protein binding test, along with a low clearance and favorable plasma exposure in vivo. In a murine systemic infection model with MDR Klebsiella pneumoniae, compound 12c shows an ED 50 of 10.20 mg/kg. Taken together, the results indicate that compound 12c is a promising drug candidate for the treatment of serious infections caused by MDR Gram-negative pathogens.

  1. Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Junhua; Zheng, Jianming; Feng, Shuo

    Lithium sulfur (LiS) batteries are promising alternatives to conventional Li-ion batteries in terms of specific capacity and energy. But, the technical challenges raised from the soluble polysulfide (PS) in organic electrolyte deter their implementation in practical applications. Nanoengineered structure and chemical adsorptive materials hold great promise in mitigating the PS migration problem. We develop a tubular titanium oxide (TiO 2)/reduced graphene oxide (rGO) composite structure (TG) as a sulfur hosting material for constructing better performed LiS batteries. The TG/sulfur cathode (TG/S) is able to deliver ~1200 mAh g -1 specific capacity with stable operation for over 550 cycles. Moreover, themore » TG/S composite cathode shows stable Coulombic efficiencies of over ~95% at various C rates, which are ~10% higher than those of the rGO/sulfur (G/S) counterparts. The superior electrochemical performances of TG/S could be ascribed to the synergistic effects between the conductive rGO support and the physically/chemically absorptive TiO 2, that is, the spatial tubular structure of TiO 2 provides intimate contact and physical confinement for sulfur, while the polar TiO 2 in TG/S shows strong chemical interaction towards the sulfur species.« less

  2. Directional Carrier Transfer in Strongly Coupled Binary Nanocrystal Superlattice Films Formed by Assembly and in Situ Ligand Exchange at a Liquid–Air Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yaoting; Li, Siming; Gogotsi, Natalie

    Two species of monodisperse nanocrystals (NCs) can self-assemble into a variety of complex 2D and 3D periodic structures, or binary NC superlattice (BNSL) films, based on the relative number and size of the NCs. BNSL films offer great promise for both fundamental scientific studies and optoelectronic applications; however, the utility of as-assembled structures has been limited by the insulating ligands that originate from the synthesis of NCs. Here we report the application of an in situ ligand exchange strategy at a liquid–air interface to replace the long synthesis ligands with short ligands while preserving the long-range order of BNSL films.more » This approach is demonstrated for BNSL structures consisting of PbSe NCs of different size combinations and ligands of interest for photovoltaic devices, infrared detectors, and light-emitting diodes. To confirm enhanced coupling introduced by ligand exchange, we show ultrafast (~1 ps) directional carrier transfer across the type-I heterojunction formed by NCs of different sizes within ligand-exchanged BNSL films. In conclusion, this approach shows the potential promise of functional BNSL films, where the local and long-range energy landscape and electronic coupling can be adjusted by tuning NC composition, size, and interparticle spacing.« less

  3. Tubular titanium oxide/reduced graphene oxide-sulfur composite for improved performance of lithium sulfur batteries

    DOE PAGES

    Song, Junhua; Zheng, Jianming; Feng, Shuo; ...

    2017-11-20

    Lithium sulfur (LiS) batteries are promising alternatives to conventional Li-ion batteries in terms of specific capacity and energy. But, the technical challenges raised from the soluble polysulfide (PS) in organic electrolyte deter their implementation in practical applications. Nanoengineered structure and chemical adsorptive materials hold great promise in mitigating the PS migration problem. We develop a tubular titanium oxide (TiO 2)/reduced graphene oxide (rGO) composite structure (TG) as a sulfur hosting material for constructing better performed LiS batteries. The TG/sulfur cathode (TG/S) is able to deliver ~1200 mAh g -1 specific capacity with stable operation for over 550 cycles. Moreover, themore » TG/S composite cathode shows stable Coulombic efficiencies of over ~95% at various C rates, which are ~10% higher than those of the rGO/sulfur (G/S) counterparts. The superior electrochemical performances of TG/S could be ascribed to the synergistic effects between the conductive rGO support and the physically/chemically absorptive TiO 2, that is, the spatial tubular structure of TiO 2 provides intimate contact and physical confinement for sulfur, while the polar TiO 2 in TG/S shows strong chemical interaction towards the sulfur species.« less

  4. Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Liling; Huang, Da; Hu, Nantao; Yang, Chao; Li, Ming; Wei, Hao; Yang, Zhi; Su, Yanjie; Zhang, Yafei

    2017-02-01

    A novel three-dimensional (3D) structure of reduced graphene oxide/polyaniline (rGO/PANI) hybrid films has been demonstrated for high-performance supercapacitors. Steamed water in closed vessels with high pressure and moderately high temperature is applied to facilely construct this structure. The as-designed rGO/PANI hybrid films exhibit a highest gravimetric specific capacitance of 1182 F g-1 at 1 A g-1 in the three-electrode test. The assembled symmetric device based on this structure shows both a high capacitance of 808 F g-1 at 1 A g-1 and a high gravimetric energy density (28.06 Wh kg-1 at a power density of 0.25 kW kg-1). Above all, this novel 3D structure constructed by steamed water regulation techniques shows excellent capacitance performance and holds a great promise for high-performance energy storage applications.

  5. Theoretical Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2012-10-10

    We use density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, nonhollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity towards the oxygen reduction reaction of platinum nanowires was addressed by studying the change in the chemisorption energies of oxygen and hydroxyl groups, inducedmore » by inserting the inner chain of platinum atoms into the hollow nanotubes. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Nanotubes with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less

  6. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando

    2013-03-14

    We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, inducedmore » by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.« less

  7. The establishment and application of direct coupled electrostatic-structural field model in electrostatically controlled deployable membrane antenna

    NASA Astrophysics Data System (ADS)

    Gu, Yongzhen; Duan, Baoyan; Du, Jingli

    2018-05-01

    The electrostatically controlled deployable membrane antenna (ECDMA) is a promising space structure due to its low weight, large aperture and high precision characteristics. However, it is an extreme challenge to describe the coupled field between electrostatic and membrane structure accurately. A direct coupled method is applied to solve the coupled problem in this paper. Firstly, the membrane structure and electrostatic field are uniformly described by energy, considering the coupled problem is an energy conservation phenomenon. Then the direct coupled electrostatic-structural field governing equilibrium equations are obtained by energy variation approach. Numerical results show that the direct coupled method improves the computing efficiency by 36% compared with the traditional indirect coupled method with the same level accuracy. Finally, the prototype has been manufactured and tested and the ECDMA finite element simulations show good agreement with the experiment results as the maximum surface error difference is 6%.

  8. Hierarchical photonic structured stimuli-responsive materials as high-performance colorimetric sensors

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Zhu, Shenmin; Chen, Zhixin; Wang, Wanlin; Zhang, Wang; Zhang, Di

    2016-05-01

    Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures.Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01875k

  9. In vitro anti-MRSA activity of Couroupita guianensis extract and its component Tryptanthrin.

    PubMed

    Costa, Danielle Cristina Machado; Azevedo, Mariana Maria Barros de; Silva, Davi Oliveira E; Romanos, Maria Teresa Villela; Souto-Padrón, Thais Cristina Baeta Soares; Alviano, Celuta Sales; Alviano, Daniela Sales

    2017-09-01

    Couroupita guianensis is known in Brazil as 'Abricó-de-Macaco' and it has some attributes such as: antihypertensive, analgesic and anti-inflammatory activities. This study evaluated the antimicrobial activity of ethanolic extract and fractions of C. guianensis flowers and isolation of bioactive component. These extracts and fractions were subjected to agar diffusion, MIC, TLC and bioautography to bacteria, filamentous fungi and yeasts. Among the fractions of EtOH extract, the DCM fraction was the most active, particularly against Methicillin-resistant Staphylococcus aureus (MRSA) with MIC of 156 μg/mL. The active compound in this fraction was identified as Tryptanthrin, which showed promising antibacterial activity for MRSA showing MIC of 62.5 μg/mL. Ultrastructural analysis of MRSA incubated in the presence of Tryptanthrin by transmission electron microscope showed significant alterations in the cellular structure. Cytotoxicity tests demonstrated that DCM fraction and Tryptanthrin showed low toxicity, which makes it a promising candidate for alternative therapies to control and combat diseases.

  10. Porous hollow Co₃O₄ with rhombic dodecahedral structures for high-performance supercapacitors.

    PubMed

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-06

    Porous hollow Co₃O₄ with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co₃O₄ rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g(-1) and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co₃O₄ with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.

  11. Reduced thermal conductivity of nanotwinned random layer structures: a promising nanostructuring towards efficient Si and Si/Ge thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Samaraweera, Nalaka; Chan, Kin L.; Mithraratne, Kumar

    2018-05-01

    Si and Si/Ge based nanostructures of reduced lattice thermal conductivity are widely attractive for developing efficient thermoelectric materials. In this study, we demonstrate the reduced thermal conductivity of Si nanotwinned random layer (NTRL) structures over corresponding superlattice and twin-free counterparts. The participation ratio analysis of vibrational modes shows that a possible cause of thermal conductivity reduction is phonon localization due to the random arrangement of twin boundaries. Via non-equilibrium molecular dynamic simulations, it is shown that ~23 and ~27% reductions over superlattice counterparts and ~55 and 53% over twin-free counterparts can be attained for the structures of total lengths of 90 and 170 nm, respectively. Furthermore, a random twin boundary distribution is applied for Si/Ge random layer structures seeking further reduction of thermal conductivity. A significant reduction in thermal conductivity of Si/Ge structures exceeding the thermal insulating performance of the corresponding amorphous Si structure by ~31% for a total length of 90 nm can be achieved. This reduction is as high as ~98% compared to the twin-free Si counterpart. It is demonstrated that application of randomly organised nanoscale twin boundaries is a promising nanostructuring strategy towards developing efficient Si and Si/Ge based thermoelectric materials in the future.

  12. Object-oriented structures supporting remote sensing databases

    NASA Technical Reports Server (NTRS)

    Wichmann, Keith; Cromp, Robert F.

    1995-01-01

    Object-oriented databases show promise for modeling the complex interrelationships pervasive in scientific domains. To examine the utility of this approach, we have developed an Intelligent Information Fusion System based on this technology, and applied it to the problem of managing an active repository of remotely-sensed satellite scenes. The design and implementation of the system is compared and contrasted with conventional relational database techniques, followed by a presentation of the underlying object-oriented data structures used to enable fast indexing into the data holdings.

  13. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    PubMed

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  14. FUNCTIONAL ANALYSIS OF A NOVEL POSITIVE ALLOSTERIC MODULATOR OF AMPA RECEPTORS DERIVED FROM A STRUCTURE-BASED DRUG DESIGN STRATEGY

    PubMed Central

    Harms, Jonathan E.; Benveniste, Morris; Maclean, John K. F.; Partin, Kathryn M.; Jamieson, Craig

    2012-01-01

    Positive allosteric modulators of α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) receptors facilitate synaptic plasticity and can improve various forms of learning and memory. These modulators show promise as therapeutic agents for the treatment of neurological disorders such as schizophrenia, ADHD, and mental depression. Three classes of positive modulator, the benzamides, the thiadiazides, and the biarylsulfonamides differentially occupy a solvent accessible binding pocket at the interface between the two subunits that form the AMPA receptor ligand-binding pocket. Here, we describe the electrophysiological properties of a new chemotype derived from a structure-based drug design strategy (SBDD), which makes similar receptor interactions compared to previously reported classes of modulator. This pyrazole amide derivative, JAMI1001A, with a promising developability profile, efficaciously modulates AMPA receptor deactivation and desensitization of both flip and flop receptor isoforms. PMID:22735771

  15. Targeting the Cytochrome bc1 Complex of Leishmania Parasites for Discovery of Novel Drugs.

    PubMed

    Ortiz, Diana; Forquer, Isaac; Boitz, Jan; Soysa, Radika; Elya, Carolyn; Fulwiler, Audrey; Nilsen, Aaron; Polley, Tamsen; Riscoe, Michael K; Ullman, Buddy; Landfear, Scott M

    2016-08-01

    Endochin-like quinolones (ELQs) are potent and specific inhibitors of cytochrome bc1 from Plasmodium falciparum and Toxoplasma gondii and show promise for novel antiparasitic drug development. To determine whether the mitochondrial electron transport chain of Leishmania parasites could be targeted similarly for drug development, we investigated the activity of 134 structurally diverse ELQs. A cohort of ELQs was selectively toxic to amastigotes of Leishmania mexicana and L. donovani, with 50% inhibitory concentrations (IC50s) in the low micromolar range, but the structurally similar hydroxynaphthoquinone buparvaquone was by far the most potent inhibitor of electron transport, ATP production, and intracellular amastigote growth. Cytochrome bc1 is thus a promising target for novel antileishmanial drugs, and further improvements on the buparvaquone scaffold are warranted for development of enhanced therapeutics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Perylene-Based All-Organic Redox Battery with Excellent Cycling Stability.

    PubMed

    Iordache, Adriana; Delhorbe, Virginie; Bardet, Michel; Dubois, Lionel; Gutel, Thibaut; Picard, Lionel

    2016-09-07

    Organic materials derived from biomass can constitute a viable option as replacements for inorganic materials in lithium-ion battery electrodes owing to their low production costs, recyclability, and structural diversity. Among them, conjugated carbonyls have become the most promising type of organic electrode material as they present high theoretical capacity, fast reaction kinetics, and quasi-infinite structural diversity. In this letter, we report a new perylene-based all-organic redox battery comprising two aromatic conjugated carbonyl electrode materials, the prelithiated tetra-lithium perylene-3,4,9,10-tetracarboxylate (PTCLi6) as negative electrode material and the poly(N-n-hexyl-3,4,9,10-perylene tetracarboxylic)imide (PTCI) as positive electrode material. The resulting battery shows promising long-term cycling stability up to 200 cycles. In view of the enhanced cycling performances, the two organic materials studied herein are proposed as suitable candidates for the development of new all-organic lithium-ion batteries.

  17. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases

    PubMed Central

    Gul, Waseem; Hamann, Mark T.

    2016-01-01

    The marine environment produces natural products from a variety of structural classes exhibiting activity against numerous disease targets. Historically marine natural products have largely been explored as anticancer agents. The indole alkaloids are a class of marine natural products that show unique promise in the development of new drug leads. This report reviews the literature on indole alkaloids of marine origin and also highlights our own research. Specific biological activities of indole alkaloids presented here include: cytotoxicity, antiviral, antiparasitic, anti-inflammatory, serotonin antagonism, Ca-releasing, calmodulin antagonism, and other pharmacological activities. PMID:16236327

  18. Opal shell structures: direct assembly versus inversion approach.

    PubMed

    Deng, Tian-Song; Sharifi, Parvin; Marlow, Frank

    2013-09-16

    Opal shell structures can be fabricated in two ways: By direct assembly from hollow spheres (hs-opal) or by infiltration of precursors into opal templates and inversion. The resulting lattice disturbances were characterized by scanning electron microscopy (SEM), optical microscopy, and transmission spectra. The hs-opal system shows much lower disturbances, for example, a lower number of cracks and lattice deformations. The strong suppression of crack formation in one of these inverse opal structures can be considered as promising candidates for the fabrication of more perfect photonic crystals. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A confined "microreactor" synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Li, Jiajie; Zhang, Yumin; Gao, Tangling; Han, Jiecai; Wang, Xianjie; Hultman, Benjamin; Xu, Ping; Zhang, Zhihua; Wu, Gang; Song, Bo

    2018-02-01

    In virtue of abundant sodium resources, sodium ion batteries (SIBs) have been regarded as one of the most promising alternatives for large-scale energy storage applications. However, the absence of a suitable anode material makes it difficult to realize these applications. Here, we demonstrate an effective synthesis strategy of using a "microreactor" consisting of melamine fiber (inside) and graphene oxide (GO, outside) to fabricate three dimensional (3D) nitrogen doped (N-doped) graphene as high-performance anode materials for sodium ion batteries. Through a controlled pyrolysis, the inside melamine fiber and the outside GO layer has been converted into N-doped graphene and reduced graphene oxide (r-GO) respectively, and thus the "microreactor" is transformed into interconnected 3D N-doped graphene structures. Such highly desired 3D graphene structures show reversible sodium storage capacities up to ∼305 mA h g-1 after 500 cycles at a current density of 0.2 A g-1 and promising long cycling stability with a stable capacity of ∼198 mA h g-1 at 5 A g-1 after 5000 cycles. The high capacity and superior durability in combination with the facile synthesis procedure of the 3D graphene structure make it a promising anode material for SIBs and other energy storage applications.

  20. Journey of the ALK-inhibitor CH5424802 to phase II clinical trial.

    PubMed

    Latif, Muhammad; Saeed, Aamer; Kim, Seong Hwan

    2013-09-01

    The anaplastic lymphoma kinase (ALK) receptor tyrosine kinase represents a potential therapeutic target. Specially, a variety of alterations in the ALK gene including mutations, overexpression, amplification, translocations and structural rearrangements, are involved in human cancer tumorigenesis. The second-generation ALK inhibitor CH5424802 (development code: AF802; Chugai Pharmaceutical, a subsidiary of Roche) achieves tumor regression with excellent tolerance and shows promising efficacy in patients with ALK-positive non-small cell lung cancer. CH5424802 shows good kinase selectivity, has a promising pharmacokinetics profile, and has strong antiproliferative activity in several ALK-driven tumor models. CH5424802 has also shown anti-tumor activity in mouse xenograft studies. Here, we summarize recent advances and the evidence that CH5424802 acts as an ALK inhibitor. We also discuss its potential for further development as an anticancer drug in clinical trials.

  1. Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery.

    PubMed

    Quiliano, Miguel; Pabón, Adriana; Moles, Ernest; Bonilla-Ramirez, Leonardo; Fabing, Isabelle; Fong, Kim Y; Nieto-Aco, Diego A; Wright, David W; Pizarro, Juan C; Vettorazzi, Ariane; López de Cerain, Adela; Deharo, Eric; Fernández-Busquets, Xavier; Garavito, Giovanny; Aldana, Ignacio; Galiano, Silvia

    2018-05-25

    Design, synthesis, structure-activity relationship, cytotoxicity studies, in silico drug-likeness, genotoxicity screening, and in vivo studies of new 1-aryl-3-substituted propanol derivatives led to the identification of nine compounds with promising in vitro (55, 56, 61, 64, 66, and 70-73) and in vivo (66 and 72) antimalarial profiles against Plasmodium falciparum and Plasmodium berghei. Compounds 55, 56, 61, 64, 66 and 70-73 exhibited potent antiplasmodial activity against chloroquine-resistant strain FCR-3 (IC 50 s < 0.28 μM), and compounds 55, 56, 64, 70, 71, and 72 showed potent biological activity in chloroquine-sensitive and multidrug-resistant strains (IC 50 s < 0.7 μM for 3D7, D6, FCR-3 and C235). All of these compounds share appropriate drug-likeness profiles and adequate selectivity indexes (77 < SI < 184) as well as lack genotoxicity. In vivo efficacy tests in a mouse model showed compounds 66 and 72 to be promising candidates as they exhibited significant parasitemia reductions of 96.4% and 80.4%, respectively. Additional studies such as liver stage and sporogony inhibition, target exploration of heat shock protein 90 of P. falciparum, targeted delivery by immunoliposomes, and enantiomer characterization were performed and strongly reinforce the hypothesis of 1-aryl-3-substituted propanol derivatives as promising antimalarial compounds. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Physical exercise and cognitive performance in the elderly: current perspectives

    PubMed Central

    Kirk-Sanchez, Neva J; McGough, Ellen L

    2014-01-01

    In an aging population with increasing incidence of dementia and cognitive impairment, strategies are needed to slow age-related decline and reduce disease-related cognitive impairment in older adults. Physical exercise that targets modifiable risk factors and neuroprotective mechanisms may reduce declines in cognitive performance attributed to the normal aging process and protect against changes related to neurodegenerative diseases such as Alzheimer’s disease and other types of dementia. In this review we summarize the role of exercise in neuroprotection and cognitive performance, and provide information related to implementation of physical exercise programs for older adults. Evidence from both animal and human studies supports the role of physical exercise in modifying metabolic, structural, and functional dimensions of the brain and preserving cognitive performance in older adults. The results of observational studies support a dose-dependent neuroprotective relationship between physical exercise and cognitive performance in older adults. Although some clinical trials of exercise interventions demonstrate positive effects of exercise on cognitive performance, other trials show minimal to no effect. Although further research is needed, physical exercise interventions aimed at improving brain health through neuroprotective mechanisms show promise for preserving cognitive performance. Exercise programs that are structured, individualized, higher intensity, longer duration, and multicomponent show promise for preserving cognitive performance in older adults. PMID:24379659

  3. Holistic computational structure screening of more than 12,000 candidates for solid lithium-ion conductor materials

    NASA Astrophysics Data System (ADS)

    Sendek, Austin D.; Yang, Qian; Cubuk, Ekin D.; Duerloo, Karel-Alexander N.; Cui, Yi; Reed, Evan J.

    We present a new type of large-scale computational screening approach for identifying promising candidate materials for solid state electrolytes for lithium ion batteries that is capable of screening all known lithium containing solids. To predict the likelihood of a candidate material exhibiting high lithium ion conductivity, we leverage machine learning techniques to train an ionic conductivity classification model using logistic regression based on experimental measurements reported in the literature. This model, which is built on easily calculable atomistic descriptors, provides new insight into the structure-property relationship for superionic behavior in solids and is approximately one million times faster to evaluate than DFT-based approaches to calculating diffusion coefficients or migration barriers. We couple this model with several other technologically motivated heuristics to reduce the list of candidate materials from the more than 12,000 known lithium containing solids to 21 structures that show promise as electrolytes, few of which have been examined experimentally. Our screening utilizes structures and electronic information contained in the Materials Project database. This work is supported by an Office of Technology Licensing Fellowship through the Stanford Graduate Fellowship Program and a seed Grant from the TomKat Center for Sustainable Energy at Stanford.

  4. The growth and perfection of β-cyclotetramethylene-tetranitramine (HMX) studied by laboratory and synchrotron X-ray topography

    NASA Astrophysics Data System (ADS)

    Gallagher, H. G.; Sherwood, J. N.; Vrcelj, R. M.

    2017-10-01

    An examination has been made of the defect structure of crystals of the energetic material β-cyclotetramethylene-tetranitramine (HMX) using both Laboratory (Lang method) and Synchrotron (Bragg Reflection and Laue method) techniques. The results of the three methods are compared with particular attention to the influence of potential radiation damage caused to the samples by the latter, more energetic, technique. The comparison shows that both techniques can be confidently used to evaluate the defect structures yielding closely similar results. The results show that, even under the relatively casual preparative methods used (slow evaporation of unstirred solutions at constant temperature), HMX crystals of high perfection can be produced. The crystals show well defined bulk defect structures characteristic of organic materials in general: growth dislocations, twins, growth sector boundaries, growth banding and solvent inclusions. The distribution of the defects in specific samples is correlated with the morphological variation of the grown crystals. The results show promise for the further evaluation and characterisation of the structure and properties of dislocations and other defects and their involvement in mechanical and energetic processes in this material.

  5. Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Kaviyarasu, K.; Murmu, P. P.; Kennedy, J.; Thema, F. T.; Letsholathebe, Douglas; Kotsedi, L.; Maaza, M.

    2017-10-01

    Gadolinium implanted cerium oxide (Gd-CeO2) nanocomposites is an important candidate which have unique hexagonal structure and high K- dielectric constant. Gd-CeO2 nanoparticles were synthesized using hydrothermal method. X-ray diffraction (XRD) results showed that the peaks are consistent with pure phase cubic structure the XRD pattern also confirmed crystallinity and phase purity of the sample. Nanocrystals sizes were found to be up to 25 nm as revealed by XRD and SEM. It is suggested that Gd gives an affirmative effect on the ion influence behavior of Gd-CeO2. XRD patterns showed formation of new phases and SEM micrographs revealed hexagonal structure. Photoluminescence measurement (PL) reveals the systematic shift of the emission band towards lower wavelength thereby ascertaining the quantum confinement effect (QCE). The PL spectrum has wider broad peak ranging from 390 nm to 770 nm and a sharp one centered on at 451.30 nm which is in tune with Gd ions. In the Raman spectra showed intense band observed between 460 cm-1 and 470 cm-1 which is attributed to oxygen ions into CeO2. Room temperature ferromagnetism was observed in un-doped and Gd implanted and annealed CeO2 nanocrystals. In the recent studies, ceria based materials have been considered as one of the most promising electrolytes for reduced temperature SOFC (solid oxide fuel cell) system due to their high ionic conductivities allowing its use in stainless steel supported fuel cells. CeO2 having an optical bandgap 3.3 eV and n-type carrier density which make it a promising candidate for various technological application such as buffer layer on silicon on insulator devices.

  6. Compact 3D photonic crystals sensing platform with 45 degree angle polished fibers

    NASA Astrophysics Data System (ADS)

    Guo, Yuqing; Chen, Lu; Zhu, Jiali; Ni, Haibin; Xia, Wei; Wang, Ming

    2017-07-01

    Three dimensional photonic crystals are a kind of promising sensing materials in biology and chemistry. A compact structure, consists of planner colloidal crystals and 45 degree angle polished fiber, is proposed as a platform for accurate, fast, reliable three dimensional photonic crystals sensing in practice. This structure show advantages in compact size for integration and it is ease for large scale manufacture. Reflectivity of the 45 degree angle polished surface with and without a layer of Ag film are simulated by FDTD simulation. Refractive index sensing properties as well as mode distribution of this structure consists of both polystyrene opal and silica inverse opal film is investigated, and an experimental demonstration of silica inverse opal film is performed, which shows a sensitivity of 733 nm/RIU. Different kinds of three dimensional photonic crystals can also be applied in this structure for particular purpose.

  7. Exploration of mild copper-mediated coupling of organotrifluoroborates in the synthesis of thiirane-based inhibitors of matrix metalloproteinases.

    PubMed

    Testero, Sebastian A; Bouley, Renee; Fisher, Jed F; Chang, Mayland; Mobashery, Shahriar

    2011-05-01

    The copper-mediated and non-basic oxidative cross-coupling of organotrifluoroborates with phenols was applied to elaboration of the structures of thiirane-based inhibitors of matrix metalloproteinases. By revision of the synthetic sequence to allow this cross-coupling as the final step, and taking advantage of the neutral nature of organotrifluoroborate cross-coupling, a focussed series of inhibitors showing aryloxy and alkenyloxy replacement of the phenoxy substituent was prepared. This reaction shows exceptional promise as an alternative to the classic copper-mediated but strongly basic Ullmann reaction, for the diversification of ether segments within base-labile lead structures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Synthesis and Evaluation of Novel Pyrroles and Pyrrolopyrimidines as Anti-Hyperglycemic Agents

    PubMed Central

    Mohamed, M. S.; Ali, S. A.; Abdelaziz, D. H. A.; Fathallah, Samar S.

    2014-01-01

    A series of pyrrole and pyrrolopyrimidine derivatives were examined for their in vivo antihyperglycemic activity. Compounds Ia–c,e, and IVg showed promising antihyperglycemic activity equivalent to a well-known standard antihyperglycemic drug, Glimepiride (Amaryl, 4 mg/kg). In this paper, we examine and discuss the structure-activity relationships and antihyperglycemic activity of these compounds. PMID:25054134

  9. On Demand Internal Short Circuit Device Enables Verification of Safer, Higher Performing Battery Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darcy, Eric; Keyser, Matthew

    The Internal Short Circuit (ISC) device enables critical battery safety verification. With the aluminum interstitial heat sink between the cells, normal trigger cells cannot be driven into thermal runaway without excessive temperature bias of adjacent cells. With an implantable, on-demand ISC device, thermal runaway tests show that the conductive heat sinks protected adjacent cells from propagation. High heat dissipation and structural support of Al heat sinks show high promise for safer, higher performing batteries.

  10. High-temperature annealing of graphite: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Petersen, Andrew; Gillette, Victor

    2018-05-01

    A modified AIREBO potential was developed to simulate the effects of thermal annealing on the structure and physical properties of damaged graphite. AIREBO parameter modifications were made to reproduce Density Functional Theory interstitial results. These changes to the potential resulted in high-temperature annealing of the model, as measured by stored-energy reduction. These results show some resemblance to experimental high-temperature annealing results, and show promise that annealing effects in graphite are accessible with molecular dynamics and reactive potentials.

  11. The oxadiazole antibacterials.

    PubMed

    Janardhanan, Jeshina; Chang, Mayland; Mobashery, Shahriar

    2016-10-01

    The oxadiazoles are a class of antibacterials discovered by in silico docking and scoring of compounds against the X-ray structure of a penicillin-binding protein. These antibacterials exhibit activity against Gram-positive bacteria, including against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). They show in vivo efficacy in murine models of peritonitis/sepsis and neutropenic thigh MRSA infection. They are bactericidal and orally bioavailable. The oxadiazoles show promise in treatment of MRSA infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. An efficient synthesis strategy for metal-organic frameworks: Dry-gel synthesis of MOF-74 framework with high yield and improved performance

    DOE PAGES

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; ...

    2016-06-16

    Here, vapor-assisted dry-gel synthesis of MOF-74 structure, specifically NiMOF-74 from its synthetic precursors, was conducted with high yield and improved performance showing promise for gas (CO 2) and water adsorption applications. Unlike conventional synthesis, which takes 72 h, this kinetic study showed that NiMOF-74 forms within 12 h under dry-gel conditions with similar performance characteristics and exhibits the best performance characteristics after 48 h of heating.

  13. Co-synthesis and drug delivery properties of mesoporous hydroxyapatite-silica composites.

    PubMed

    Zhao, Y F; Loo, S C J; Ma, J

    2009-06-01

    In this work, mesoporous hydroxyapatite-silica (HA-silica) composite materials with four different Si:Ca:P ratios were sol-gel derived through self-assembly using triblock copolymer Pluronics P123 as template. The composition and mesoporous structure formed were characterized by X-ray diffraction and electron microscopy. The XRD patterns indicated that the intensity of the HA phase becomes stronger as the Ca/Si ratio of the composite increases. From nitrogen gas analysis at 77 K, type IV isotherm plots for typical mesoporous materials were observed for all of the samples. However, the mesoporous structure of HA-silica tends to becomes less ordered as the Ca/Si ratio increases. Promising consistency between the pore sizes from the Barrett, Joyner and Halenda (BJH) method, Transmission Electron Microscopy (TEM) and Small Angle X-ray diffraction (SAXRD) was also observed. The formation mechanism of mesoporous HA-silica composites was proposed, where the interaction between the crystallization of HA and the surfactant liquid crystal determines the regularity of the meso-structure. In vitro drug loading and release studies showed that drug loading capacity is dependent on the pore volume of the sample, and the mesoporosity of the samples were responsible for the sustained release of drugs. In vitro cell culture of the samples showed promising biocompatibility where osteosarcoma cells were observed to grow favourably on the synthesized composites.

  14. Lithium-functionalized germanene: A promising media for CO2 capture

    NASA Astrophysics Data System (ADS)

    Mehdi Aghaei, S.; Monshi, M. M.; Torres, I.; Banakermani, M.; Calizo, I.

    2018-02-01

    Density functional theory (DFT) is employed to investigate the interactions of CO2 gas molecules with pristine and lithium-functionalized germanene. It is discovered that although a single CO2 molecule is weakly physisorbed on pristine germanene, a significant improvement on its adsorption energy is found by utilizing Li-functionalized germanene as the adsorbent. Excitingly, the moderate adsorption energy at high CO2 coverage secures an easy release step. Moreover, the structure of Li-functionalized germanene can be fully recovered after removal of CO2 gas molecules. Our results suggest that Li-functionalized germanene show promise for CO2 sensing and capture with a storage capacity of 12.57 mol/kg.

  15. Thermostructural applications of heat pipes

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Reeder, J. C.; Sontag, K. E.

    1979-01-01

    The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.

  16. Proposed structural basis of interaction of piperine and related compounds with monoamine oxidases.

    PubMed

    Rahman, Taufiq; Rahmatullah, Mohammed

    2010-01-15

    Several studies have revealed piperine and a few related compounds as potent inhibitors of monoamine oxidases without delineating the underlying mechanism. Using in silico modelling, we propose a structural basis of such activity by showing that these compounds can successfully dock into the inhibitor binding pockets of human monoamine oxidase isoforms with predicted affinities comparable to some known inhibitors. The results therefore suggest that piperine can be a promising lead for developing novel monoamine oxidase inhibitors. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Engineering titania nanostructure to tune and improve its photocatalytic activity

    PubMed Central

    Cargnello, Matteo; Montini, Tiziano; Smolin, Sergey Y.; Priebe, Jacqueline B.; Delgado Jaén, Juan J.; Doan-Nguyen, Vicky V. T.; McKay, Ian S.; Schwalbe, Jay A.; Pohl, Marga-Martina; Gordon, Thomas R.; Lu, Yupeng; Baxter, Jason B.; Brückner, Angelika; Murray, Christopher B.

    2016-01-01

    Photocatalytic pathways could prove crucial to the sustainable production of fuels and chemicals required for a carbon-neutral society. Electron−hole recombination is a critical problem that has, so far, limited the efficiency of the most promising photocatalytic materials. Here, we show the efficacy of anisotropy in improving charge separation and thereby boosting the activity of a titania (TiO2) photocatalytic system. Specifically, we show that H2 production in uniform, one-dimensional brookite titania nanorods is highly enhanced by engineering their length. By using complimentary characterization techniques to separately probe excited electrons and holes, we link the high observed reaction rates to the anisotropic structure, which favors efficient carrier utilization. Quantum yield values for hydrogen production from ethanol, glycerol, and glucose as high as 65%, 35%, and 6%, respectively, demonstrate the promise and generality of this approach for improving the photoactivity of semiconducting nanostructures for a wide range of reacting systems. PMID:27035977

  18. Microcrystalline silicon growth for heterojunction solar cells

    NASA Technical Reports Server (NTRS)

    Leung, D. C.; Iles, P. A.; Fang, P. H.

    1984-01-01

    Microcrystalline Si (m-Si) films with a 1.7eV energy bandgap and crystal size of several hundred A were e-beam evaporated on single crystalline Si (c-Si) to form a heterojunction with the substrate, or a window layer to a single crystalline p-n junction (heteroface structure). The goal was to enhance Voc by such uses of the larger bandgap m-Si, with the intriguing prospect of forming heterostructures with exact lattice match on each layer. The heterojunction structure was affected by interface and shunting problems and the best Voc achieved was only 482mV, well below that of single crystal Si homojunctions. The heteroface structure showed promise for some of the samples with p m-Si/p-n structure (the complementary structure did not show any improvement). Although several runs with different deposition conditions were run, the results were inconsistent. Any Voc enhancement obtained was too small to compensate for the current loss due to the extra absorption and poor carrier transport properties of the m-Si film.

  19. Two-dimensional pentagonal CrX (X = S, Se or Te) monolayers: antiferromagnetic semiconductors for spintronics and photocatalysts.

    PubMed

    Chen, Wenzhou; Kawazoe, Yoshiyuki; Shi, Xingqiang; Pan, Hui

    2018-06-25

    Two dimensional (2D) materials with hexagonal building blocks have received tremendous interest in recent years and show promise as nanoscale devices for versatile applications. Herein, we propose a new family of 2D pentagonal CrX (X = S, Se or Te) monolayers (penta-CrX) for applications in electronics, spintronics and photocatalysis. We find that the 2D penta-CrX monolayers are thermally, structurally and mechanically stable. The penta-CrX monolayers are antiferromagnetic and semiconducting. We show that the magnetism is attributed to the super-exchange induced by the ionic interactions between the Cr and X atoms and can be enhanced upon applying tension. We further show that the penta-CrS and penta-CrSe monolayers show good redox potentials versus a normal hydrogen electrode, and their band gaps are comparable to the energy of a photon in the visible light region, indicating their capability of maximal utilization of solar energy for water splitting. With intrinsic semiconducting and controllable magnetic properties, the proposed penta-CrX monolayers may hold promise as flexible spintronics and photocatalysts.

  20. Substituted 7-amino-5-thio-thiazolo[4,5-d]pyrimidines as potent and selective antagonists of the fractalkine receptor (CX3CR1).

    PubMed

    Karlström, Sofia; Nordvall, Gunnar; Sohn, Daniel; Hettman, Andreas; Turek, Dominika; Åhlin, Kristofer; Kers, Annika; Claesson, Martina; Slivo, Can; Lo-Alfredsson, Yvonne; Petersson, Carl; Bessidskaia, Galina; Svensson, Per H; Rein, Tobias; Jerning, Eva; Malmberg, Åsa; Ahlgen, Charlotte; Ray, Colin; Vares, Lauri; Ivanov, Vladimir; Johansson, Rolf

    2013-04-25

    We have developed two parallel series, A and B, of CX3CR1 antagonists for the treatment of multiple sclerosis. By modifying the substituents on the 7-amino-5-thio-thiazolo[4,5-d]pyrimidine core structure, we were able to achieve compounds with high selectivity for CX3CR1 over the closely related CXCR2 receptor. The structure-activity relationships showed that a leucinol moiety attached to the core-structure in the 7-position together with α-methyl branched benzyl derivatives in the 5-position displayed promising affinity, and selectivity as well as physicochemical properties, as exemplified by compounds 18a and 24h. We show the preparation of the first potent and selective orally available CX3CR1 antagonists.

  1. Compact and low power operation optical switch using silicon-germanium/silicon hetero-structure waveguide.

    PubMed

    Sekiguchi, Shigeaki; Kurahashi, Teruo; Zhu, Lei; Kawaguchi, Kenichi; Morito, Ken

    2012-04-09

    We proposed a silicon-based optical switch with a carrier-plasma-induced phase shifter which employs a silicon-germanium (SiGe) / silicon (Si) hetero-structure in the waveguide core. A type-I hetero-interface formed by SiGe and Si is expected to confine carriers effectively in the SiGe waveguide core. The fabricated Mach-Zehnder optical switch shows a low switching power of only 1.53 mW with a compact phase shifter length of 250 μm. The switching time of the optical switch is less than 4.6 ns for the case of a square waveform driving condition, and 1 ns for the case of a pre-emphasis electric driving condition. These results show that our proposed SiGe/Si waveguide structure holds promise for active devices with compact size and low operation power.

  2. Mild process to design silk scaffolds with reduced β-sheet structure and various topographies at nanometer scale

    PubMed Central

    Pei, Yazhen; Liu, Xi; Liu, Shanshan; Lu, Qiang; Liu, Jing; Kaplan, David L; Zhu, Hesun

    2014-01-01

    Three-dimensional (3D) porous silk scaffolds with good biocompatibility and minimal immunogenicity, have promising applications in different tissue regenerations. However, a challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy specific requirements of different tissues. In this study, silk scaffolds were fabricated to form extracellular matrix (ECM) mimetic nanofibrous architecture in a mild process. A slowly increasing concentration process was applied to regulate silk self-assembly into nanofibers in aqueous solution. Then glycerol was blended with the nanofiber solution and induced silk crystallization in lyophilization process, endowing freeze-dried scaffolds water-stability. The glycerol was leached from the scaffolds, leaving similar porous structure at a micrometer scale but different topographies at nanoscale. Compared to previous salt-leached and methanol annealed scaffolds, the present scaffolds showed lower β-sheet content, softer mechanical property, and improved cell growth and differentiation behaviors, implying their promising future as platforms for controlling stem cell fate and soft tissue regeneration. PMID:25463497

  3. Ultralow-Noise Atomic-Scale Structures for Quantum Circuitry in Silicon.

    PubMed

    Shamim, Saquib; Weber, Bent; Thompson, Daniel W; Simmons, Michelle Y; Ghosh, Arindam

    2016-09-14

    The atomically precise doping of silicon with phosphorus (Si:P) using scanning tunneling microscopy (STM) promises ultimate miniaturization of field effect transistors. The one-dimensional (1D) Si:P nanowires are of particular interest, retaining exceptional conductivity down to the atomic scale, and are predicted as interconnects for a scalable silicon-based quantum computer. Here, we show that ultrathin Si:P nanowires form one of the most-stable electrical conductors, with the phenomenological Hooge parameter of low-frequency noise being as low as ≈10(-8) at 4.2 K, nearly 3 orders of magnitude lower than even carbon-nanotube-based 1D conductors. A in-built isolation from the surface charge fluctuations due to encapsulation of the wires within the epitaxial Si matrix is the dominant cause for the observed suppression of noise. Apart from quantum information technology, our results confirm the promising prospects for precision-doped Si:P structures in atomic-scale circuitry for the 11 nm technology node and beyond.

  4. Exploration of Novel Botanical Insecticide Leads: Synthesis and Insecticidal Activity of β-Dihydroagarofuran Derivatives.

    PubMed

    Zhao, Ximei; Xi, Xin; Hu, Zhan; Wu, Wenjun; Zhang, Jiwen

    2016-02-24

    The discovery of novel leads and new mechanisms of action is of vital significance to the development of pesticides. To explore lead compounds for botanical insecticides, 77 β-dihydroagarofuran derivatives were designed and synthesized. Their structures were mainly confirmed by (1)H NMR, (13)C NMR, DEPT-135°, IR, MS, and HRMS. Their insecticidal activity was evaluated against the third-instar larvae of Mythimna separata Walker, and the results indicated that, of these derivatives, eight exhibited more promising insecticidal activity than the positive control, celangulin-V. Particularly, compounds 5.7, 6.6, and 6.7 showed LD50 values of 37.9, 85.1, and 21.1 μg/g, respectively, which were much lower than that of celangulin-V (327.6 μg/g). These results illustrated that β-dihydroagarofuran ketal derivatives can be promising lead compounds for developing novel mechanism-based and highly effective botanical insecticides. Moreover, some newly discovered structure-activity relationships are discussed, which may provide some important guidance for insecticide development.

  5. Phosphate Framework Electrode Materials for Sodium Ion Batteries

    PubMed Central

    Fang, Yongjin; Zhang, Jiexin; Xiao, Lifen; Ai, Xinping; Yang, Hanxi

    2017-01-01

    Sodium ion batteries (SIBs) have been considered as a promising alternative for the next generation of electric storage systems due to their similar electrochemistry to Li‐ion batteries and the low cost of sodium resources. Exploring appropriate electrode materials with decent electrochemical performance is the key issue for development of sodium ion batteries. Due to the high structural stability, facile reaction mechanism and rich structural diversity, phosphate framework materials have attracted increasing attention as promising electrode materials for sodium ion batteries. Herein, we review the latest advances and progresses in the exploration of phosphate framework materials especially related to single‐phosphates, pyrophosphates and mixed‐phosphates. We provide the detailed and comprehensive understanding of structure–composition–performance relationship of materials and try to show the advantages and disadvantages of the materials for use in SIBs. In addition, some new perspectives about phosphate framework materials for SIBs are also discussed. Phosphate framework materials will be a competitive and attractive choice for use as electrodes in the next‐generation of energy storage devices. PMID:28546907

  6. Reversible manipulation of the G-quadruplex structures and enzymatic reactions through supramolecular host–guest interactions

    PubMed Central

    Tian, Tian; Song, Yanyan; Wei, Lai; Wang, Jiaqi; Fu, Boshi; He, Zhiyong; Yang, Xi-Ran; Wu, Fan; Xu, Guohua; Liu, Si-Min; Li, Conggang

    2017-01-01

    Abstract Supramolecular chemistry addresses intermolecular forces and consequently promises great flexibility and precision. Biological systems are often the inspirations for supramolecular research. The G-quadruplex (G4) belongs to one of the most important secondary structures in nucleic acids. Until recently, the supramolecular manipulation of the G4 has not been reported. The present study is the first to disclose a supramolecular switch for the reversible control of human telomere G4s. Moreover, this supramolecular switch has been successfully used to manipulate an enzymatic reaction. Using various methods, we show that cucurbit[7]uril preferably locks and encapsulates the positively charged piperidines of Razo through supramolecular interactions. They can switch the conformations of the DNA inhibitor between a flexible state and the rigid G4 and are therefore responsible for the reversible control of the thrombin activity. Thus, our findings open a promising route and exhibit potential applications in future studies of chemical biology. PMID:28115627

  7. Approaches to the induction of HIV broadly neutralizing antibodies.

    PubMed

    Moore, Penny L; Williamson, Carolyn

    2016-11-01

    A vaccine that elicits antibody responses that can neutralize the diversity of HIV clades has not yet been achieved, and is a major focus of HIV vaccine research. Here, we provide an update on the barriers to eliciting such antibodies, and how advances in immunogen design may circumvent these roadblocks, focusing on data published in the last year. Studies of how broadly neutralizing antibodies (bNAbs) develop in HIV-infected donors continue to produce key insights, suggesting that for some viral targets there are common pathways to developing breadth. Germline-targeting strategies, that aim to recruit rare precursors of bNAbs, have shown promise in immunogenicity studies, and structural biology has led to advances in immunogen design. Mapping of strain-specific tier 2 vaccine responses has highlighted the challenges that remain in driving antibodies toward breadth. Elucidation of the HIV envelope structure, together with an understanding of how bNAbs emerge in vivo has guided the design of new immunogens and vaccine strategies that show promise for eliciting protective antibodies.

  8. Tin and germanium based two-dimensional Ruddlesden-Popper hybrid perovskites for potential lead-free photovoltaic and photoelectronic applications.

    PubMed

    Ma, Liang; Ju, Ming-Gang; Dai, Jun; Zeng, Xiao Cheng

    2018-06-21

    Despite their high power conversion efficiency, the commercial applications of hybrid organic-inorganic lead (Pb) halide perovskite based solar cells are still hampered by concerns about the toxicity of Pb and the structural stability in open air. Herein, based on density-functional theory computation, we show that lead-free tin (Sn) and germanium (Ge) based two-dimensional (2D) Ruddlesden-Popper hybrid organic-inorganic perovskites with a thickness of a few unit-cells, BA2MAn-1MnI3n+1 (M = Sn or Ge, n = 2-4), possess desirable electronic, excitonic and light absorption properties, thereby showing promise for photovoltaic and/or photoelectronic applications. In particular, we show that by increasing the layer thickness of the Sn-based 2D perovskites, the bandgap can be lowered towards the optimal range (0.9-1.6 eV) for solar cells. Meanwhile, the exciton binding energy is reduced to a more optimal value. In addition, theoretical assessment indicates that the thermodynamic stability of Sn-/Ge-based 2D perovskites is notably enhanced compared to that of their 3D analogues. These features render the Sn-/Ge-based 2D hybrid perovskites with a thickness of a few tens of unit cells promising lead-free perovskites with much improved structural stabilities for photovoltaic and/or photoelectronic applications.

  9. A Delphi Study of Additive Manufacturing Applicability for United States Air Force Civil Engineer Contingency Operations

    DTIC Science & Technology

    2015-03-26

    10 Table 2. Additive Manufacturing Categories (ASTM International , 2012) ..................... 14 Table 3. Delphi... flexibility in the design and structure of manufactured parts. It also allows for the creation of thousands of possible parts or tools from a single...machine. These benefits of 3 precision and flexibility in design and manufacturing show promising possibilities for addressing the general nature of

  10. Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-04-04

    Disilaoxacyclopentanes have proven to be excellent precursors to sol-gel type materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared without the use of solvents and water, they have low VOC's and show little shrinkage during processing.

  11. Discovery and structural optimization of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-ones as RORc inverse agonists.

    PubMed

    Wu, Xi-Shan; Wang, Rui; Xing, Yan-Li; Xue, Xiao-Qian; Zhang, Yan; Lu, Yong-Zhi; Song, Yu; Luo, Xiao-Yu; Wu, Chun; Zhou, Yu-Lai; Jiang, Jian-Qin; Xu, Yong

    2016-11-01

    Retinoic acid receptor-related orphan nuclear receptors (RORs) are orphan nuclear receptors that show constitutive activity in the absence of ligands. Among 3 subtypes of RORs, RORc is a promising therapeutic target for the treatment of Th17-mediated autoimmune diseases. Here, we report novel RORc inverse agonists discovered through structure-based drug design. Based on the structure of compound 8, a previously described agonist of RORa, a series of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives were designed and synthesized. The interaction between the compounds and RORc was detected at molecular level using AlphaScreen assay. The compounds were further examined in 293T cells transfected with RORc and luciferase reporter gene. Thermal stability shift assay was used to evaluate the effects of the compounds on protein stability. A total of 27 derivatives were designed and synthesized. Among them, the compound 22b was identified as the most potent RORc inverse agonist. Its IC 50 values were 2.39 μmol/L in AlphaScreen assay, and 0.82 μmol/L in inhibition of the cell-based luciferase reporter activity. Furthermore, the compound 22b displayed a 120-fold selectivity for RORc over other nuclear receptors. Moreover, a molecular docking study showed that the structure-activity relationship was consistent with the binding mode of compound 22b in RORc. 4-(4-(Benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives are promising candidates for the treatment of Th17-mediated autoimmune diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.

  12. Electromagnetic ray tracing model for line structures.

    PubMed

    Tan, C B; Khoh, A; Yeo, S H

    2008-03-17

    In this paper, a model for electromagnetic scattering of line structures is established based on high frequency approximation approach - ray tracing. This electromagnetic ray tracing (ERT) model gives the advantage of identifying each physical field that contributes to the total solution of the scattering phenomenon. Besides the geometrical optics field, different diffracted fields associated with the line structures are also discussed and formulated. A step by step addition of each electromagnetic field is given to elucidate the causes of a disturbance in the amplitude profile. The accuracy of the ERT model is also discussed by comparing with the reference finite difference time domain (FDTD) solution, which shows a promising result for a single polysilicon line structure with width of as narrow as 0.4 wavelength.

  13. Synthesis and characterization of Graphene oxide/Zinc oxide nanorods sandwich structure

    NASA Astrophysics Data System (ADS)

    Boukhoubza, I.; Khenfouch, M.; Achehboune, M.; Mouthudi, B.; Zorkani, I.; Jorio, A.

    2018-03-01

    Graphene-ZnO nanostructures composite materials have been used as very efficient candidates for various optoelectronic applications. Nowadays, the composite structure formation of ZnO nanostructures with graphene or graphene oxide is a novel, cost effective and efficient approach to control the morphology, surface defect states, band gap of ZnO nanocrystals. In this paper, we have prepared ZnO nanorods between two layers graphene oxide (GO/ZnO NRs/GO) via a simple hydrothermal method. Their morphology, structural and optical properties have been investigated. The obtained results of our composites GO/ZnO NRs/GO presented here showing an enhancement in the structural and optical properties. Thus may hold great promise to the development of the optoelectronic devices.

  14. 3D topography of biologic tissue by multiview imaging and structured light illumination

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Shiwu; Xu, Ronald

    2014-02-01

    Obtaining three-dimensional (3D) information of biologic tissue is important in many medical applications. This paper presents two methods for reconstructing 3D topography of biologic tissue: multiview imaging and structured light illumination. For each method, the working principle is introduced, followed by experimental validation on a diabetic foot model. To compare the performance characteristics of these two imaging methods, a coordinate measuring machine (CMM) is used as a standard control. The wound surface topography of the diabetic foot model is measured by multiview imaging and structured light illumination methods respectively and compared with the CMM measurements. The comparison results show that the structured light illumination method is a promising technique for 3D topographic imaging of biologic tissue.

  15. In vitro assessment of three dimensional dense chitosan-based structures to be used as bioabsorbable implants.

    PubMed

    Guitian Oliveira, Nuno; Sirgado, Tatiana; Reis, Luís; Pinto, Luís F V; da Silva, Cláudia Lobato; Ferreira, Frederico Castelo; Rodrigues, Alexandra

    2014-12-01

    Chitosan biocompatibility and biodegradability properties make this biopolymer promising for the development of advanced internal fixation devices for orthopedic applications. This work presents a detailed study on the production and characterization of three dimensional (3D) dense, non-porous, chitosan-based structures, with the ability to be processed in different shapes, and also with high strength and stiffness. Such features are crucial for the application of such 3D structures as bioabsorbable implantable devices. The influence of chitosan's molecular weight and the addition of one plasticizer (glycerol) on 3D dense chitosan-based products' biomechanical properties were explored. Several specimens were produced and in vitro studies were performed in order to assess the cytotoxicity of these specimens and their physical behavior throughout the enzymatic degradation experiments. The results point out that glycerol does not impact on cytotoxicity and has a high impact in improving mechanical properties, both elasticity and compressive strength. In addition, human mesenchymal stem/stromal cells (MSC) were used as an ex-vivo model to study cell adhesion and proliferation on these structures, showing promising results with fold increase values in total cell number similar to the ones obtained in standard cell culture flasks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 3: Sections 12 through 14

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The design of an economically viable supersonic cruise aircraft requires the lowest attainable structural-mass fraction commensurate with the selected near-term structural material technology. To achieve this goal of minimum structural-mass fraction, various combinations of promising wing and fuselage primary structure were analyzed for the load-temperature environment applicable to the arrow wing configuration. This analysis was conducted in accordance with the design criteria specified and included extensive use of computer-aided analytical methods to screen the candidate concepts and select the most promising concepts for the in-depth structural analysis.

  17. Negative inotropism of terpenes on guinea pig left atrium: structure-activity relationships.

    PubMed

    Vasconcelos, Carla M L; Oliveira, Ingrid S N; Santos, José N A; Souza, Américo A; Menezes-Filho, José E R; Silva Neto, Júlio A; Lima, Tamires C; de Sousa, Damião P

    2018-06-01

    The aim of this work was to evaluate the pharmacological effect of seven structurally related terpenes on the contractility of cardiac muscle. The effect of terpenes was studied on isolated electrically driven guinea pig left atrium. From concentration-response curves for inotropic effect were determined the EC 50 and relative potency of such terpenes. Our results revealed that all terpenes, except phytol, showed ability to reduce the contractile response of guinea pig left atrium. Further, relative potency was directly related to the number of isoprene units and to the lipophilicity of the compounds. For example, sesquiterpenes farnesol and nerolidol showed higher relative potency when compared with the monoterpenes citronellol, geraniol and nerol. We can conclude that most of the evaluated terpenes showed a promising negative inotropism on the atrial muscle. Future studies are necessary to investigate their action mechanism.

  18. Structural damage continuous monitoring by using a data driven approach based on principal component analysis and cross-correlation analysis

    NASA Astrophysics Data System (ADS)

    Camacho-Navarro, Jhonatan; Ruiz, Magda; Villamizar, Rodolfo; Mujica, Luis; Moreno-Beltrán, Gustavo; Quiroga, Jabid

    2017-05-01

    Continuous monitoring for damage detection in structural assessment comprises implementation of low cost equipment and efficient algorithms. This work describes the stages involved in the design of a methodology with high feasibility to be used in continuous damage assessment. Specifically, an algorithm based on a data-driven approach by using principal component analysis and pre-processing acquired signals by means of cross-correlation functions, is discussed. A carbon steel pipe section and a laboratory tower were used as test structures in order to demonstrate the feasibility of the methodology to detect abrupt changes in the structural response when damages occur. Two types of damage cases are studied: crack and leak for each structure, respectively. Experimental results show that the methodology is promising in the continuous monitoring of real structures.

  19. Ballistic Puncture Self-Healing Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Siochi, Emilie J.; Yost, William T.; Bogert, Phil B.; Howell, Patricia A.; Cramer, K. Elliott; Burke, Eric R.

    2017-01-01

    Space exploration launch costs on the order of $10,000 per pound provide an incentive to seek ways to reduce structural mass while maintaining structural function to assure safety and reliability. Damage-tolerant structural systems provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to quickly heal following projectile penetration while retaining some structural function during the healing processes. Although there are materials known to possess this capability, they are typically not considered for structural applications. Current efforts use inexpensive experimental methods to inflict damage, after which analytical procedures are identified to verify that function is restored. Two candidate self-healing polymer materials for structural engineering systems are used to test these experimental methods.

  20. Comparative Analysis of Virtual Screening Approaches in the Search for Novel EphA2 Receptor Antagonists.

    PubMed

    Callegari, Donatella; Pala, Daniele; Scalvini, Laura; Tognolini, Massimiliano; Incerti, Matteo; Rivara, Silvia; Mor, Marco; Lodola, Alessio

    2015-09-17

    The EphA2 receptor and its ephrin-A1 ligand form a key cell communication system, which has been found overexpressed in many cancer types and involved in tumor growth. Recent medicinal chemistry efforts have identified bile acid derivatives as low micromolar binders of the EphA2 receptor. However, these compounds suffer from poor physicochemical properties, hampering their use in vivo. The identification of compounds able to disrupt the EphA2-ephrin-A1 complex lacking the bile acid scaffold may lead to new pharmacological tools suitable for in vivo studies. To identify the most promising virtual screening (VS) protocol aimed at finding novel EphA2 antagonists, we investigated the ability of both ligand-based and structure-based approaches to retrieve known EphA2 antagonists from libraries of decoys with similar molecular properties. While ligand-based VSs were conducted using UniPR129 and ephrin-A1 ligand as reference structures, structure-based VSs were performed with Glide, using the X-ray structure of the EphA2 receptor/ephrin-A1 complex. A comparison of enrichment factors showed that ligand-based approaches outperformed the structure-based ones, suggesting ligand-based methods using the G-H loop of ephrin-A1 ligand as template as the most promising protocols to search for novel EphA2 antagonists.

  1. Preparation and characterization of a possible topological insulator BiYO3: experiment versus theory.

    PubMed

    Zhang, Y; Deng, S; Pan, M; Lei, M; Kan, X; Ding, Y; Zhao, Y; Köhler, J

    2016-03-21

    The Bi-Y-O system has been investigated by X-ray powder diffraction, electron diffraction, UV-vis and IR experiments. A metastable cubic high temperature phase of BiYO3 with fluorite-type structure has been structurally characterized for the first time and shows a large band gap of ∼ 5.9 eV. A unified description for the numerous structural variants discovered in the Bi-Y-O system is established within the symmetry breaking approach. This rich structural phenomenon makes the Bi-Y-O system a promising candidate in the search for new topological insulators for applications. On this basis, a long standing controversy on the phase diagram of the Bi-Y-O system has been solved. Our DFT calculations predict a high pressure phase for BiYO3 with perovskite (ABO3) structure and ordering of Bi and Y on the A and B sites, respectively. However, our analysis of the nature of the low energy electronic structure shows that this phase is not a suitable candidate for a topological insulator.

  2. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds

    NASA Astrophysics Data System (ADS)

    Fang, Hao; Wen, Ming; Chen, Hanxing; Wu, Qingsheng; Li, Weiying

    2015-12-01

    Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (~2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s-1, with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry. Electronic supplementary information (ESI) available: Detailed SEM and TEM images, XRD patterns, XPS, EDS, Raman spectra, gas chromatograms, TG analyses, UV-vis spectra, and reaction rate constant tables. See DOI: 10.1039/c5nr05016b

  3. The problem and promise of scale dependency in community phylogenetics.

    PubMed

    Swenson, Nathan G; Enquist, Brian J; Pither, Jason; Thompson, Jill; Zimmerman, Jess K

    2006-10-01

    The problem of scale dependency is widespread in investigations of ecological communities. Null model investigations of community assembly exemplify the challenges involved because they typically include subjectively defined "regional species pools." The burgeoning field of community phylogenetics appears poised to face similar challenges. Our objective is to quantify the scope of the problem of scale dependency by comparing the phylogenetic structure of assemblages across contrasting geographic and taxonomic scales. We conduct phylogenetic analyses on communities within three tropical forests, and perform a sensitivity analysis with respect to two scaleable inputs: taxonomy and species pool size. We show that (1) estimates of phylogenetic overdispersion within local assemblages depend strongly on the taxonomic makeup of the local assemblage and (2) comparing the phylogenetic structure of a local assemblage to a species pool drawn from increasingly larger geographic scales results in an increased signal of phylogenetic clustering. We argue that, rather than posing a problem, "scale sensitivities" are likely to reveal general patterns of diversity that could help identify critical scales at which local or regional influences gain primacy for the structuring of communities. In this way, community phylogenetics promises to fill an important gap in community ecology and biogeography research.

  4. Recent advances in aerospace composite NDE

    NASA Astrophysics Data System (ADS)

    Georgeson, Gary E.

    2002-06-01

    As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.

  5. Design of hat-stiffened composite panels loaded in axial compression

    NASA Astrophysics Data System (ADS)

    Paul, T. K.; Sinha, P. K.

    An integrated step-by-step analysis procedure for the design of axially compressed stiffened composite panels is outlined. The analysis makes use of the effective width concept. A computer code, BUSTCOP, is developed incorporating various aspects of buckling such as skin buckling, stiffener crippling and column buckling. Other salient features of the computer code include capabilities for generation of data based on micromechanics theories and hygrothermal analysis, and for prediction of strength failure. Parametric studies carried out on a hat-stiffened structural element indicate that, for all practical purposes, composite panels exhibit higher structural efficiency. Some hybrid laminates with outer layers made of aluminum alloy also show great promise for flight vehicle structural applications.

  6. Improving enzymatic hydrolysis efficiency of wheat straw through sequential autohydrolysis and alkaline post-extraction.

    PubMed

    Wu, Xinxing; Huang, Chen; Zhai, Shengcheng; Liang, Chen; Huang, Caoxing; Lai, Chenhuan; Yong, Qiang

    2018-03-01

    In this work, a two-step pretreatment process of wheat straw was established by combining autohydrolysis pretreatment and alkaline post-extraction. The results showed that employing alkaline post-extraction to autohydrolyzed wheat straw could significantly improve its enzymatic hydrolysis efficiency from 36.0% to 83.7%. Alkaline post-extraction lead to the changes of the structure characteristics of autohydrolyzed wheat straw. Associations between enzymatic hydrolysis efficiency and structure characteristics were also studied. The results showed that the factors of structure characteristics such as delignification, xylan removal yield, crystallinity, accessibility and hydrophobicity are positively related to enzymatic hydrolysis efficiency within a certain range for alkaline post-extracted wheat straw. The results demonstrated that autohydrolysis coupled with alkaline post-extraction is an effective and promising method to gain fermentable sugars from biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The structural and optical properties of GaSb/InGaAs type-II quantum dots grown on InP (100) substrate

    PubMed Central

    2012-01-01

    We have investigated the structural and optical properties of type-II GaSb/InGaAs quantum dots [QDs] grown on InP (100) substrate by molecular beam epitaxy. Rectangular-shaped GaSb QDs were well developed and no nanodash-like structures which could be easily found in the InAs/InP QD system were formed. Low-temperature photoluminescence spectra show there are two peaks centered at 0.75eV and 0.76ev. The low-energy peak blueshifted with increasing excitation power is identified as the indirect transition from the InGaAs conduction band to the GaSb hole level (type-II), and the high-energy peak is identified as the direct transition (type-I) of GaSb QDs. This material system shows a promising application on quantum-dot infrared detectors and quantum-dot field-effect transistor. PMID:22277096

  8. Magnetic characteristics of CoPd and FePd antidot arrays on nanoperforated Al2O3 templates

    NASA Astrophysics Data System (ADS)

    Maximenko, A.; Fedotova, J.; Marszałek, M.; Zarzycki, A.; Zabila, Y.

    2016-02-01

    Hard magnetic antidot arrays show promising results in context of designing of percolated perpendicular media. In this work the technology of magnetic FePd and CoPd antidot arrays fabrication is presented and correlation between surface morphology, structure and magnetic properties is discussed. CoPd and FePd antidot arrays were fabricated by deposition of Co/Pd and Fe/Pd multilayers (MLs) on porous anodic aluminum oxide templates with bowl-shape cell structure with inclined intercellular regions. FePd ordered L10 structure was obtained by successive vacuum annealing at elevated temperatures (530 °C) and confirmed by XRD analysis. Systematic analysis of magnetization curves evidenced perpendicular magnetic anisotropy of CoPd antidot arrays, while FePd antidot arrays revealed isotropic magnetic anisotropy with increased out-of-plane magnetic contribution. MFM images of antidots showed more complicated contrast, with alternating magnetic dots oriented parallel and antiparallel to tip magnetization moment.

  9. Structure of Room Temperature Ionic Liquids on Charged Graphene: An integrated experimental and computational study

    NASA Astrophysics Data System (ADS)

    Uysal, Ahmet; Zhou, Hua; Lee, Sang Soo; Fenter, Paul; Feng, Guang; Li, Song; Cummings, Peter; Fulvio, Pasquale; Dai, Sheng; McDonough, Jake; Gogotsi, Yury

    2014-03-01

    Electrical double layer capacitors (EDLCs) with room temperature ionic liquid (RTIL) electrolytes and carbon electrodes are promising candidates for energy storage devices with high power density and long cycle life. We studied the potential and time dependent changes in the electric double layer (EDL) structure of an imidazolium-based room temperature ionic liquid (RTIL) electrolyte at an epitaxial graphene (EG) surface. We used in situ x-ray reflectivity (XR) to determine the EDL structure at static potentials, during cyclic voltammetry (CV) and potential step measurements. The static potential structures were also investigated with fully atomistic molecular dynamics (MD) simulations. Combined XR and MD results show that the EDL structure has alternating anion/cation layers within the first nanometer of the interface. The dynamical response of the EDL to potential steps has a slow component (>10 s) and the RTIL structure shows hysteresis during CV scans. We propose a conceptual model that connects nanoscale interfacial structure to the macroscopic measurements. This material is based upon work supported as part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science (SC), Office of Basic Energy

  10. [Am]Mn(H2POO)3: A New Family of Hybrid Perovskites Based on the Hypophosphite Ligand.

    PubMed

    Wu, Yue; Shaker, Sammy; Brivio, Federico; Murugavel, Ramaswamy; Bristowe, Paul D; Cheetham, Anthony K

    2017-11-29

    A family of five hybrid ABX 3 perovskites has been synthesized using hypophosphite (H 2 POO) - as the X-site ion. These compounds adopt the general formula [Am]Mn(H 2 POO) 3 , where Am = guanidinium (GUA), formamidinium (FA), imidazolium, triazolium, and dabconium. We explore the diverse structural and phase transition behavior of these materials through single-crystal diffraction measurements and demonstrate contrasting magnetism in two of the phases, Am = GUA and FA, that arises from structural distortions. The results show that hypophosphite perovskites offer a promising platform for generating new functional materials.

  11. Quantitative diagnostics of multilayered composite structures with ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Friedersdorf, Fritz; Na, Jeong K.

    2015-03-01

    The main objective of the current work is to develop a practical nondestructive inspection methodology for a highly sound absorbing composite structural system consisting of polymeric and metallic materials. Due to constraints in geometrical shapes and thicknesses of the composite system used in this work, ultrasonic guided wave approach has been chosen. Since the polymer coatings have high damping properties, less energy is dissipated into the adjacent media in the presence of interface delaminations. Experimental measurements performed on a targeted composite system, whether it has an aluminum, carbon-fiber-composite, or steel outer casing, show promising results.

  12. Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating

    PubMed Central

    Mrówczyński, Radosław; Michalak, Natalia; Załęski, Karol; Matczak, Michał; Kempiński, Mateusz; Pietralik, Zuzanna; Lewandowski, Mikołaj; Jurga, Stefan; Stobiecki, Feliks

    2018-01-01

    Reduced graphene oxide–magnetite hybrid aerogels attract great interest thanks to their potential applications, e.g., as magnetic actuators. However, the tendency of magnetite particles to migrate within the matrix and, ultimately, escape from the aerogel structure, remains a technological challenge. In this article we show that coating magnetite particles with polydopamine anchors them on graphene oxide defects, immobilizing the particles in the matrix and, at the same time, improving the aerogel structure. Polydopamine coating does not affect the magnetic properties of magnetite particles, making the fabricated materials promising for industrial applications. PMID:29527434

  13. Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells.

    PubMed

    Dong, Pei; Pint, Cary L; Hainey, Mel; Mirri, Francesca; Zhan, Yongjie; Zhang, Jing; Pasquali, Matteo; Hauge, Robert H; Verduzco, Rafael; Jiang, Mian; Lin, Hong; Lou, Jun

    2011-08-01

    A novel dye-sensitized solar cell (DSSC) structure using vertically aligned single-walled carbon nanotubes (VASWCNTs) as the counter electrode has been developed. In this design, the VASWCNTs serve as a stable high surface area and highly active electrocatalytic counter-electrode that could be a promising alternative to the conventional Pt analogue. Utilizing a scalable dry transfer approach to form a VASWCNTs conductive electrode, the DSSCs with various lengths of VASWCNTs were studied. VASWCNTs-DSSC with 34 μm original length was found to be the optimal choice in the present study. The highest conversion efficiencies of VASWCNTs-DSSC achieved 5.5%, which rivals that of the reference Pt DSSC. From the electrochemical impedance spectroscopy analysis, it shows that the new DSSC offers lower interface resistance between the electrolyte and the counter electrode. This reproducible work emphasizes the promise of VASWCNTs as efficient and stable counter electrode materials in DSSC device design, especially taking into account the low-cost merit of this promising material.

  14. Duplex-imprinted nano well arrays for promising nanoparticle assembly

    NASA Astrophysics Data System (ADS)

    Li, Xiangping; Manz, Andreas

    2018-02-01

    A large area nano-duplex-imprint technique is presented in this contribution using natural cicada wings as stamps. The glassy wings of the cicada, which are abundant in nature, exhibit strikingly interesting nanopillar structures over their membrane. This technique, with excellent performance despite the nonplanar surface of the wings, combines both top-down and bottom-up nanofabrication techniques. It transitions micro-nanofabrication from a cleanroom environment to the bench. Two different materials, dicing tape with an acrylic layer and a UV optical adhesive, are used to make replications at the same time, thus achieving duplex imprinting. The promise of a large volume of commercial manufacturing of these nanostructure elements can be envisaged through this contribution to speeding up the fabrication process and achieving a higher throughput. The contact angle of the replicated nanowell arrays before and after oxygen plasma was measured. Gold nanoparticles (50 nm) were used to test how the nanoparticles behaved on the untreated and plasma-treated replica surface. The experiments show that promising nanoparticle self-assembly can be obtained.

  15. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.

    In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less

  16. Automatic Classification of Protein Structure Using the Maximum Contact Map Overlap Metric

    DOE PAGES

    Andonov, Rumen; Djidjev, Hristo Nikolov; Klau, Gunnar W.; ...

    2015-10-09

    In this paper, we propose a new distance measure for comparing two protein structures based on their contact map representations. We show that our novel measure, which we refer to as the maximum contact map overlap (max-CMO) metric, satisfies all properties of a metric on the space of protein representations. Having a metric in that space allows one to avoid pairwise comparisons on the entire database and, thus, to significantly accelerate exploring the protein space compared to no-metric spaces. We show on a gold standard superfamily classification benchmark set of 6759 proteins that our exact k-nearest neighbor (k-NN) scheme classifiesmore » up to 224 out of 236 queries correctly and on a larger, extended version of the benchmark with 60; 850 additional structures, up to 1361 out of 1369 queries. Finally, our k-NN classification thus provides a promising approach for the automatic classification of protein structures based on flexible contact map overlap alignments.« less

  17. Punch Response of Gels at Different Loading Rates

    DTIC Science & Technology

    2014-03-01

    calibration (4, 6). While similar in density, neither clay nor gelatin simulates the tissue structure of the human body accurately. Danelson et al. (7...the load response of human tissue. 2 Recent work on gelatins has shown promise in robotics, sensors, and microfluidics (9). Hydrogels ( water -based...images of a high-contrast, random pattern of speckles and a sophisticated optimization program to measure full-field deformation. Figure 1 shows an

  18. Electrophoretic-deposited CNT/MnO2 composites for high-power electrochemical energy storage/conversion applications

    NASA Astrophysics Data System (ADS)

    Xiao, Wei; Xia, Hui; Fuh, Jerry Y. H.; Lu, Li

    2010-05-01

    CNT/MnO2 (birnessite-type) composite films have been successfully deposited on Ni-foil substrate via electrophoretic deposition (EPD). The unique EPD CNT/MnO2 composite film electrode shows enhanced electrical conductivity, good contact between composite films and the substrate and open porous structure, which makes the EPD composite films a promising electrode for high-power supercapacitors and lithium ion batteries.

  19. Assessment and Treatment of Combat-Related PTSD in Returning War Veterans

    DTIC Science & Technology

    2011-01-01

    treatment interventions. Adrenergic agents such as Beta - blockers showed initial promise in the mitigation of the length and severity of PTSD illness...responses (e.g. anxiety , palpitations, escape or avoidance). The conditioned response can be conceptual- ized as an automatic fight or flight response that...sound and is positively correlated with measures of trauma, depression and anxiety (Foa et al., 1993). As compared with the Structured Clinical

  20. Bayesian automated cortical segmentation for neonatal MRI

    NASA Astrophysics Data System (ADS)

    Chou, Zane; Paquette, Natacha; Ganesh, Bhavana; Wang, Yalin; Ceschin, Rafael; Nelson, Marvin D.; Macyszyn, Luke; Gaonkar, Bilwaj; Panigrahy, Ashok; Lepore, Natasha

    2017-11-01

    Several attempts have been made in the past few years to develop and implement an automated segmentation of neonatal brain structural MRI. However, accurate automated MRI segmentation remains challenging in this population because of the low signal-to-noise ratio, large partial volume effects and inter-individual anatomical variability of the neonatal brain. In this paper, we propose a learning method for segmenting the whole brain cortical grey matter on neonatal T2-weighted images. We trained our algorithm using a neonatal dataset composed of 3 fullterm and 4 preterm infants scanned at term equivalent age. Our segmentation pipeline combines the FAST algorithm from the FSL library software and a Bayesian segmentation approach to create a threshold matrix that minimizes the error of mislabeling brain tissue types. Our method shows promising results with our pilot training set. In both preterm and full-term neonates, automated Bayesian segmentation generates a smoother and more consistent parcellation compared to FAST, while successfully removing the subcortical structure and cleaning the edges of the cortical grey matter. This method show promising refinement of the FAST segmentation by considerably reducing manual input and editing required from the user, and further improving reliability and processing time of neonatal MR images. Further improvement will include a larger dataset of training images acquired from different manufacturers.

  1. Toward high performance nanoscale optoelectronic devices: super solar energy harvesting in single standing core-shell nanowire.

    PubMed

    Zhou, Jian; Wu, Yonggang; Xia, Zihuan; Qin, Xuefei; Zhang, Zongyi

    2017-11-27

    Single nanowire solar cells show great promise for next-generation photovoltaics and for powering nanoscale devices. Here, we present a detailed study of light absorption in a single standing semiconductor-dielectric core-shell nanowire (CSNW). We find that the CSNW structure can not only concentrate the incident light into the structure, but also confine most of the concentrated light to the semiconductor core region, which boosts remarkably the light absorption cross-section of the semiconductor core. The CSNW can support multiple higher-order HE modes, as well as Fabry-Pérot (F-P) resonance, compared to the bare nanowire (BNW). Overlapping of the adjacent higher-order HE modes results in broadband light absorption enhancement in the solar radiation spectrum. Results based on detailed balance analysis demonstrate that the super light concentration of the single CSNW gives rise to higher short-circuit current and open-circuit voltage, and thus higher apparent power conversion efficiency (3644.2%), which goes far beyond that of the BNW and the Shockley-Queisser limit that restricts the performance of a planar counterparts. Our study shows that the single CSNW can be a promising platform for construction of high performance nanoscale photodetectors, nanoelectronic power sources, super miniature cells, and diverse integrated nanosystems.

  2. Nanoparticulate hollow TiO2 fibers as light scatterers in dye-sensitized solar cells: layer-by-layer self-assembly parameters and mechanism.

    PubMed

    Rahman, Masoud; Tajabadi, Fariba; Shooshtari, Leyla; Taghavinia, Nima

    2011-04-04

    Hollow structures show both light scattering and light trapping, which makes them promising for dye-sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO(2) fibers are prepared by layer-by-layer (LbL) self-assembly deposition of TiO(2) nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO(2) dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO(2) nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25-fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50% in conversion efficiency. By employing the intensity-modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light-harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Controllable synthesis of layered Co-Ni hydroxide hierarchical structures for high-performance hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou; Liu, Xiaohe

    2016-01-01

    A facile solvothermal method is developed for synthesizing layered Co-Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co-Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g-1 at a galvanic current density of 1 A g-1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co-Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.

  4. Theoretical prediction of a novel inorganic fullerene-like family of silicon-carbon materials

    NASA Astrophysics Data System (ADS)

    Wang, Ruoxi; Zhang, Dongju; Liu, Chengbu

    2005-08-01

    In an effort to search for new inorganic fullerene-like structures, we designed a series of novel silicon-carbon cages, (SiC) n ( n = 6-36), based on the uniformly hybrid Si-C four- and six-membered-rings, and researched their geometrical and electronic structures, as well as their relative stabilities using the density function theory. Among these cages, the structures for n = 12, 16, and 36 were found to been energetically more favorable. The calculated disproportionation energy and binding energy per SiC unit show that the (SiC) 12 cage is the most stable one among these designed structures. The present calculations not only indicate that silicon-carbon fullerenes are promised to be synthesized in future, but also provide a new way for stabilizing silicon cages by uniformly doping carbon atoms into silicon structures.

  5. Resveratrol as a Pan-HDAC Inhibitor Alters the Acetylation Status of Jistone Proteins in Human-Derived Hepatoblastoma Cells

    PubMed Central

    Böcker, Alexander; Busch, Christian; Weiland, Timo; Noor, Seema; Leischner, Christian; Schleicher, Sabine; Mayer, Mascha; Weiss, Thomas S.; Bischoff, Stephan C.; Lauer, Ulrich M.; Bitzer, Michael

    2013-01-01

    The polyphenolic alcohol resveratrol has demonstrated promising activities for the prevention and treatment of cancer. Different modes of action have been described for resveratrol including the activation of sirtuins, which represent the class III histone deacetylases (HDACs). However, little is known about the activity of resveratrol on the classical HDACs of class I, II and IV, although these classes are involved in cancer development or progression and inhibitors of HDACs (HDACi) are currently under investigation as promising novel anticancer drugs. We could show by in silico docking studies that resveratrol has the chemical structure to inhibit the activity of different human HDAC enzymes. In vitro analyses of overall HDAC inhibition and a detailed HDAC profiling showed that resveratrol inhibited all eleven human HDACs of class I, II and IV in a dose-dependent manner. Transferring this molecular mechanism into cancer therapy strategies, resveratrol treatment was analyzed on solid tumor cell lines. Despite the fact that hepatocellular carcinoma (HCC) is known to be particularly resistant against conventional chemotherapeutics, treatment of HCC with established HDACi already has shown promising results. Testing of resveratrol on hepatoma cell lines HepG2, Hep3B and HuH7 revealed a dose-dependent antiproliferative effect on all cell lines. Interestingly, only for HepG2 cells a specific inhibition of HDACs and in turn a histone hyperacetylation caused by resveratrol was detected. Additional testing of human blood samples demonstrated a HDACi activity by resveratrol ex vivo. Concluding toxicity studies showed that primary human hepatocytes tolerated resveratrol, whereas in vivo chicken embryotoxicity assays demonstrated severe toxicity at high concentrations. Taken together, this novel pan-HDACi activity opens up a new perspective of resveratrol for cancer therapy alone or in combination with other chemotherapeutics. Moreover, resveratrol may serve as a lead structure for chemical optimization of bioavailability, pharmacology or HDAC inhibition. PMID:24023672

  6. Small-angle x-ray scattering study of polymer structure: Carbosilane dendrimers in hexane solution

    NASA Astrophysics Data System (ADS)

    Shtykova, E. V.; Feigin, L. A.; Volkov, V. V.; Malakhova, Yu. N.; Streltsov, D. R.; Buzin, A. I.; Chvalun, S. N.; Katarzhanova, E. Yu.; Ignatieva, G. M.; Muzafarov, A. M.

    2016-09-01

    The three-dimensional organization of monodisperse hyper-branched macromolecules of regular structure—carbosilane dendrimers of zero, third, and sixth generations—has been studied by small-angle X-ray scattering (SAXS) in solution. The use of modern methods of SAXS data interpretation, including ab initio modeling, has made it possible to determine the internal architecture of the dendrimers in dependence of the generation number and the number of cyclosiloxane end groups (forming the shell of dendritic macromolecules) and show dendrimers to be spherical. The structural results give grounds to consider carbosilane dendrimers promising objects for forming crystals with subsequent structural analysis and determining their structure with high resolution, as well as for designing new materials to be used in various dendrimer-based technological applications.

  7. The structural characteristics of inflatable beams

    NASA Astrophysics Data System (ADS)

    Wicker, William J.

    1992-08-01

    Two inflatable beams are designed and fabricated from polyethylene of ultrahigh molecular weight, and the structures are tested against similar composite and metal-alloy tubes. Specific attention is given to the choice of material that insures material stiffness, good strength-to-weight ratio, creep resistance, and durability. A cloth beam is built from a commercial extended-chain polyethylene fiber, and the inflated beams are tested by means of three- and four-point loading to measure bending and shear deformation. Comparing geometrically similar structures shows that the fabric beams can be about 35 percent as stiff as aluminum for small deflections. The inflatable beams have elastic stiffness coefficients five and two times higher than those for nylon and polyester tubes, respectively. Inflatable structures are concluded to hold promise for lightweight aerospace applications which demand small storage areas.

  8. Extremely strong self-assembly of a bimetallic salen complex visualized at the single-molecule level.

    PubMed

    Salassa, Giovanni; Coenen, Michiel J J; Wezenberg, Sander J; Hendriksen, Bas L M; Speller, Sylvia; Elemans, Johannes A A W; Kleij, Arjan W

    2012-04-25

    A bis-Zn(salphen) structure shows extremely strong self-assembly both in solution as well as at the solid-liquid interface as evidenced by scanning tunneling microscopy, competitive UV-vis and fluorescence titrations, dynamic light scattering, and transmission electron microscopy. Density functional theory analysis on the Zn(2) complex rationalizes the very high stability of the self-assembled structures provoked by unusual oligomeric (Zn-O)(n) coordination motifs within the assembly. This coordination mode is strikingly different when compared with mononuclear Zn(salphen) analogues that form dimeric structures having a typical Zn(2)O(2) central unit. The high stability of the multinuclear structure therefore holds great promise for the development of stable self-assembled monolayers with potential for new opto-electronic materials.

  9. Image enhancement for on-site X-ray nondestructive inspection of reinforced concrete structures.

    PubMed

    Pei, Cuixiang; Wu, Wenjing; Ueaska, Mitsuru

    2016-11-22

    The use of portable and high-energy X-ray system can provide a very promising approach for on-site nondestructive inspection of inner steel reinforcement of concrete structures. However, the noise properties and contrast of the radiographic images for thick concrete structures do often not meet the demands. To enhance the images, we present a simple and effective method for noise reduction based on a combined curvelet-wavelet transform and local contrast enhancement based on neighborhood operation. To investigate the performance of this method for our X-ray system, we have performed several experiments with using simulated and experimental data. With comparing to other traditional methods, it shows that the proposed image enhancement method has a better performance and can significantly improve the inspection performance for reinforced concrete structures.

  10. Novel structure design of composite proton exchange membranes with continuous and through-membrane proton-conducting channels

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Tang, Chenxiao; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Li, Hongjun

    2017-10-01

    The primary goal of this study is to develop a high-performanced proton exchange membrane with the characteristics of through-membrane and continuous solution blown nanofibers as proton-conducting channels. The curled sulfonated phenolphthalein poly (ether sulfone) and poly (vinylidene fluoride) nanofibers were separately fabricated through the solution blowing process which is a new nanofiber fabricating method with high productivity, then they were fabricated into a sandwich-structured mat. Then this sandwich-structured mat was hot-pressed to form the designed structure using different melting temperatures of the two polymers by melting and making poly (vinylidene fluoride) flow into the phenolphthalein poly (ether sulfone) nanofiber mat. The characteristics of the composite membrane, such as morphology and performance of the membrane, were investigated. The characterization results proved the successful preparation of the membrane structure. Performance results showed that the novel structured membrane with through-membrane nanofibers significantly improved water swelling and methanol permeability, though its conductivity is lower than that of Nafion, the cell performance showed comparable results. Therefore, the novel structure design can be considered as a promising method for preparing of proton exchange membranes.

  11. Hierarchical Structure of Articular Bone-Cartilage Interface and Its Potential Application for Osteochondral Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin

    2010-09-01

    The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.

  12. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.

    PubMed

    Jun, Dongsuk; Kim, Soojung; Choi, Wonchul; Kim, Junsoo; Zyung, Taehyoung; Jang, Moongyu

    2015-10-01

    We fabricated silicide/silicon hetero-junction structured thermoelectric device by CMOS process for the reduction of thermal conductivity with the scatterings of phonons at silicide/silicon interfaces. Electrical conductivities, Seebeck coefficients, power factors, and temperature differences are evaluated using the steady state analysis method. Platinum silicide/silicon multilayered structure showed an enhanced Seebeck coefficient and power factor characteristics, which was considered for p-leg element. Also, erbium silicide/silicon structure showed an enhanced Seebeck coefficient, which was considered for an n-leg element. Silicide/silicon multilayered structure is promising for thermoelectric applications by reducing thermal conductivity with an enhanced Seebeck coefficient. However, because of the high thermal conductivity of the silicon packing during thermal gradient is not a problem any temperature difference. Therefore, requires more testing and analysis in order to overcome this problem. Thermoelectric generators are devices that based on the Seebeck effect, convert temperature differences into electrical energy. Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, it is only in recent years that interest has increased in energy generation.

  13. Structural Laminate Aluminum-Glass-Fiber Materials 1441-Sial

    NASA Astrophysics Data System (ADS)

    Shestov, V. V.; Antipov, V. V.; Senatorova, O. G.; Sidel'nikov, V. V.

    2014-01-01

    The structure, composition and set of properties of specimens and components, and some parameters of the process of production of a promising FML class of metallic polymers based on sheets of high-modulus ( E 79 GPa) alloy 1441 with reduced density ( d 2.6 g/cm3) and an optimized glued prepreg reinforced with fibers of high-strength high-modulus VMPglass are described. Results of fire and fatigue tests of a promising 1441-SIAL structural laminate are presented.

  14. Automatic analysis of stereoscopic satellite image pairs for determination of cloud-top height and structure

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Strong, J.; Woodward, R. H.; Pierce, H.

    1991-01-01

    Results are presented on an automatic stereo analysis of cloud-top heights from nearly simultaneous satellite image pairs from the GOES and NOAA satellites, using a massively parallel processor computer. Comparisons of computer-derived height fields and manually analyzed fields show that the automatic analysis technique shows promise for performing routine stereo analysis in a real-time environment, providing a useful forecasting tool by augmenting observational data sets of severe thunderstorms and hurricanes. Simulations using synthetic stereo data show that it is possible to automatically resolve small-scale features such as 4000-m-diam clouds to about 1500 m in the vertical.

  15. Discovery and structural optimization of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-ones as RORc inverse agonists

    PubMed Central

    Wu, Xi-shan; Wang, Rui; Xing, Yan-li; Xue, Xiao-qian; Zhang, Yan; Lu, Yong-zhi; Song, Yu; Luo, Xiao-yu; Wu, Chun; Zhou, Yu-lai; Jiang, Jian-qin; Xu, Yong

    2016-01-01

    Aim: Retinoic acid receptor-related orphan nuclear receptors (RORs) are orphan nuclear receptors that show constitutive activity in the absence of ligands. Among 3 subtypes of RORs, RORc is a promising therapeutic target for the treatment of Th17-mediated autoimmune diseases. Here, we report novel RORc inverse agonists discovered through structure-based drug design. Methods: Based on the structure of compound 8, a previously described agonist of RORa, a series of 4-(4-(benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives were designed and synthesized. The interaction between the compounds and RORc was detected at molecular level using AlphaScreen assay. The compounds were further examined in 293T cells transfected with RORc and luciferase reporter gene. Thermal stability shift assay was used to evaluate the effects of the compounds on protein stability. Results: A total of 27 derivatives were designed and synthesized. Among them, the compound 22b was identified as the most potent RORc inverse agonist. Its IC50 values were 2.39 μmol/L in AlphaScreen assay, and 0.82 μmol/L in inhibition of the cell-based luciferase reporter activity. Furthermore, the compound 22b displayed a 120-fold selectivity for RORc over other nuclear receptors. Moreover, a molecular docking study showed that the structure-activity relationship was consistent with the binding mode of compound 22b in RORc. Conclusion: 4-(4-(Benzyloxy)phenyl)-3,4-dihydropyrimidin-2(1H)-one derivatives are promising candidates for the treatment of Th17-mediated autoimmune diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis. PMID:27374490

  16. A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Siracusano, Giulio; Lamonaca, Francesco; Tomasello, Riccardo; Garescì, Francesca; Corte, Aurelio La; Carnì, Domenico Luca; Carpentieri, Mario; Grimaldi, Domenico; Finocchio, Giovanni

    2016-06-01

    The acoustic emission (AE) is a powerful and potential nondestructive testing method for structural monitoring in civil engineering. Here, we show how systematic investigation of crack phenomena based on AE data can be significantly improved by the use of advanced signal processing techniques. Such data are a fundamental source of information that can be used as the basis for evaluating the status of the material, thereby paving the way for a new frontier of innovation made by data-enabled analytics. In this article, we propose a framework based on the Hilbert-Huang Transform for the evaluation of material damages that (i) facilitates the systematic employment of both established and promising analysis criteria, and (ii) provides unsupervised tools to achieve an accurate classification of the fracture type, the discrimination between longitudinal (P-) and traversal (S-) waves related to an AE event. The experimental validation shows promising results for a reliable assessment of the health status through the monitoring of civil infrastructures.

  17. Polyoxygenated Cyclohexenoids with Promising α-Glycosidase Inhibitory Activity Produced by Phomopsis sp. YE3250, an Endophytic Fungus Derived from Paeonia delavayi.

    PubMed

    Huang, Rong; Jiang, Bo-Guang; Li, Xiao-Nian; Wang, Ya-Ting; Liu, Si-Si; Zheng, Kai-Xuan; He, Jian; Wu, Shao-Hua

    2018-02-07

    Seven new polyoxygenated cyclohexenoids, namely, phomopoxides A-G (1-7), were isolated from the fermentation broth extract of an endophytic fungal strain Phomopsis sp. YE3250 from the medicinal plant Paeonia delavayi Franch. The structures of these compounds were established by spectroscopic interpretation. The absolute configurations of compounds 1 and 4 were confirmed by X-ray crystallographic analysis and chemical derivative approach. All isolated compounds showed weak cytotoxic activities toward three human tumor cell lines (Hela, MCF-7, and NCI-H460) and weak antifungal activities against five pathogenic fungi (Candida albicans, Aspergillus niger, Pyricularia oryzae, Fusarium avenaceum, and Hormodendrum compactum). In addition, compounds 1-7 showed a promising α-glycosidase inhibitory activity with IC 50 values of 1.47, 1.55, 1.83, 2.76, 2.88, 3.16, and 2.94 mM, respectively, as compared with a positive control of acarbose (IC 50 = 1.22 mM).

  18. Atomically thin gallium layers from solid-melt exfoliation

    PubMed Central

    Kochat, Vidya; Samanta, Atanu; Zhang, Yuan; Bhowmick, Sanjit; Manimunda, Praveena; Asif, Syed Asif S.; Stender, Anthony S.; Vajtai, Robert; Singh, Abhishek K.; Tiwary, Chandra S.; Ajayan, Pulickel M.

    2018-01-01

    Among the large number of promising two-dimensional (2D) atomic layer crystals, true metallic layers are rare. Using combined theoretical and experimental approaches, we report on the stability and successful exfoliation of atomically thin “gallenene” sheets on a silicon substrate, which has two distinct atomic arrangements along crystallographic twin directions of the parent α-gallium. With a weak interface between solid and molten phases of gallium, a solid-melt interface exfoliation technique is developed to extract these layers. Phonon dispersion calculations show that gallenene can be stabilized with bulk gallium lattice parameters. The electronic band structure of gallenene shows a combination of partially filled Dirac cone and the nonlinear dispersive band near the Fermi level, suggesting that gallenene should behave as a metallic layer. Furthermore, it is observed that the strong interaction of gallenene with other 2D semiconductors induces semiconducting to metallic phase transitions in the latter, paving the way for using gallenene as promising metallic contacts in 2D devices. PMID:29536039

  19. New insights into selective PDE4D inhibitors: 3-(Cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl) oxime (GEBR-7b) structural development and promising activities to restore memory impairment.

    PubMed

    Brullo, Chiara; Ricciarelli, Roberta; Prickaerts, Jos; Arancio, Ottavio; Massa, Matteo; Rotolo, Chiara; Romussi, Alessia; Rebosio, Claudia; Marengo, Barbara; Pronzato, Maria Adelaide; van Hagen, Britt T J; van Goethem, Nick P; D'Ursi, Pasqualina; Orro, Alessandro; Milanesi, Luciano; Guariento, Sara; Cichero, Elena; Fossa, Paola; Fedele, Ernesto; Bruno, Olga

    2016-11-29

    Phosphodiesterase type 4D (PDE4D) has been indicated as a promising target for treating neurodegenerative pathologies such as Alzheimer's Disease (AD). By preventing cAMP hydrolysis, PDE4 inhibitors (PDE4Is) increase the cAMP response element-binding protein (CREB) phosphorylation, synaptic plasticity and long-term memory formation. Pharmacological and behavioral studies on our hit GEBR-7b demonstrated that selective PDE4DIs could improve memory without causing emesis and sedation. The hit development led to new molecule series, herein reported, characterized by a catechol structure bonded to five member heterocycles. Molecular modeling studies highlighted the pivotal role of a polar alkyl chain in conferring selective enzyme interaction. Compound 8a showed PDE4D3 selective inhibition and was able to increase intracellular cAMP levels in neuronal cells, as well as in the hippocampus of freely moving rats. Furthermore, 8a was able to readily cross the blood-brain barrier and enhanced memory performance in mice without causing any emetic-like behavior. These data support the view that PDE4D is an adequate molecular target to restore memory deficits in different neuropathologies, including AD, and also indicate compound 8a as a promising candidate for further preclinical development. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. InAs/GaAs p-type quantum dot infrared photodetector with higher efficiency

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Wolde, Seyoum; Unil Perera, A. G.; Zhang, Y. H.; Wang, T. M.; Liu, H. C.; Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S. S.

    2013-12-01

    An InAs/GaAs quantum dot infrared photodetector (QDIP) based on p-type valence-band intersublevel hole transitions as opposed to conventional electron transitions is reported. Two response bands observed at 1.5-3 and 3-10 μm are due to transitions from the heavy-hole to spin-orbit split-off QD level and from the heavy-hole to heavy-hole level, respectively. Without employing optimized structures (e.g., the dark current blocking layer), the demonstrated QDIP displays promising characteristics, including a specific detectivity of 1.8×109 cm.Hz1/2/W and a quantum efficiency of 17%, which is about 5% higher than that of present n-type QDIPs. This study shows the promise of utilizing hole transitions for developing QDIPs.

  1. Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures.

    PubMed

    Elfiky, A A; Ismail, A M

    2018-05-01

    A new Zika virus (ZIKV) outbreak started in 2015. According to the World Health Organization, 84 countries confirmed ZIKV infection. RNA-dependent RNA polymerase (RdRp) was an appealing target for drug designers during the last two decades. Through molecular docking, we screened 16 nucleotide/side inhibitors against ZIKV RdRp. While the mode of interaction with ZIKV is different from that in the hepatitis C virus (HCV), nucleotide/side inhibitors in this study (mostly anti-HCV) showed promising binding affinities (-6.2 to -9.7 kcal/mol calculated by AutoDock Vina) to ZIKV RdRp. Setrobuvir, YAK and, to a lesser extent, IDX-184 reveal promising results compared to other inhibitors in terms of binding ZIKV RdRp. These candidates would be powerful anti-ZIKV drugs.

  2. Size and Composition Optimized Nanocatalysts for Propulsion Applications

    DTIC Science & Technology

    2013-10-01

    accepted for publication in Science. A promising route for endothermic reforming applications involves the use of acidic zeolites . In our first...and 633 K. The rates showed the effects of saturated adsorption for n-hexane in the zeolite , with the reaction being first- order at low pressures and...remarkably stable with time. Preliminary measurements on other zeolite structures, H-Y, H-MOR, and H-BETA, suggest that the conclusions from H-ZSM

  3. Therapeutic Mechanisms for Cannabinoid-Promoted Survival of Oligodendrocytes

    DTIC Science & Technology

    2013-06-21

    studied as a possible treatment for MS and one class of compounds that is showing particular promise are the cannabinoids. Cannabis , or marijuana, as it...recreational drug. This effect was described by French poet Charles Baudelaire who gives a vivid account of the effects of the hemp plant ( Cannabis ...Research on the properties of cannabis sativa has dramatically increased since 1964 when the chemical structure of t’l.9-tetrahydrocannabinol (THC

  4. CO binding improves the structural, functional, physical and anti-oxidation properties of the PEGylated hemoglobin.

    PubMed

    Wang, Qingqing; Hu, Tao; Sun, Lijing; Ji, Shaoyang; Zhao, Dawei; Liu, Jiaxin; Ma, Guanghui; Su, Zhiguo

    2015-02-01

    PEGylated hemoglobin (Hb) is a promising oxygen therapeutic agent for clinical application. However, it suffered from structural perturbation, functional instability and methemoglobin (metHb) formation. To improve the structural, functional, physical and anti-oxidation properties of the PEGylated Hb. PEGylation of Hb with CO binding (HbCO) was conducted using maleimide and acylation chemistry, respectively. Physical and chemical parameters were measured for Hb samples. The circular dichroism spectra, dynamic light scattering and analytical ultracentrifugation were used to investigate the structure and conformation of PEGylated HbCO. CO binding can inhibit the autoxidation of the PEGylated Hb, structurally stabilize its tetramer and improve its thermal and pH stability. Importantly, the circular dichroism spectra showed that CO binding can decrease the structural perturbation of Hb induced by PEGylation. The PEGylated HbCO with CO release showed slightly higher oxygen-delivery capacity than the PEGylated Hb. The PEGylated HbCO did not show metHb formation after 30-day storage at 4°C. CO binding structurally stabilized the PEGylated Hb, abolished its metHb formation, and significantly increased its physical stability. In particular, it also avoided the perturbation of PEG chains on the heme microenvironment. The functional property of the PEGylated HbCO can be maintained during its long-term storage, which is of great significance for field transfusion.

  5. Operando Multi-modal Synchrotron Investigation for Structural and Chemical Evolution of Cupric Sulfide (CuS) Additive in Li-S battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ke; Zhao, Chonghang; Lin, Cheng-Hung

    Conductive metal sulfides are promising multi-functional additives for future lithium-sulfur (Li-S) batteries. These can increase the sulfur cathode’s electrical conductivity to improve the battery’s power capability, as well as contribute to the overall cell-discharge capacity. This multi-functional electrode design showed initial promise; however, complicated interactions at the system level are accompanied by some detrimental side effects. The metal sulfide additives with a chemical conversion as the reaction mechanism, e.g., CuS and FeS 2, can increase the theoretical capacity of the Li-S system. However, these additives may cause undesired parasitic reactions, such as the dissolution of the additive in the electrolyte.more » Studying such complex reactions presents a challenge because it requires experimental methods that can track the chemical and structural evolution of the system during an electrochemical process. To address the fundamental mechanisms in these systems, we employed an operando multimodal x-ray characterization approach to study the structural and chemical evolution of the metal sulfide—utilizing powder diffraction and fluorescence imaging to resolve the former and absorption spectroscopy the latter—during lithiation and de-lithiation of a Li-S battery with CuS as the multi-functional cathode additive. The resulting elucidation of the structural and chemical evolution of the system leads to a new description of the reaction mechanism.« less

  6. Operando Multi-modal Synchrotron Investigation for Structural and Chemical Evolution of Cupric Sulfide (CuS) Additive in Li-S battery

    DOE PAGES

    Sun, Ke; Zhao, Chonghang; Lin, Cheng-Hung; ...

    2017-10-11

    Conductive metal sulfides are promising multi-functional additives for future lithium-sulfur (Li-S) batteries. These can increase the sulfur cathode’s electrical conductivity to improve the battery’s power capability, as well as contribute to the overall cell-discharge capacity. This multi-functional electrode design showed initial promise; however, complicated interactions at the system level are accompanied by some detrimental side effects. The metal sulfide additives with a chemical conversion as the reaction mechanism, e.g., CuS and FeS 2, can increase the theoretical capacity of the Li-S system. However, these additives may cause undesired parasitic reactions, such as the dissolution of the additive in the electrolyte.more » Studying such complex reactions presents a challenge because it requires experimental methods that can track the chemical and structural evolution of the system during an electrochemical process. To address the fundamental mechanisms in these systems, we employed an operando multimodal x-ray characterization approach to study the structural and chemical evolution of the metal sulfide—utilizing powder diffraction and fluorescence imaging to resolve the former and absorption spectroscopy the latter—during lithiation and de-lithiation of a Li-S battery with CuS as the multi-functional cathode additive. The resulting elucidation of the structural and chemical evolution of the system leads to a new description of the reaction mechanism.« less

  7. Tuning the structural and electronic properties of heterogeneous chalcogenide nanostructures

    NASA Astrophysics Data System (ADS)

    Giberti, Federico; Voros, Marton; Galli, Giulia

    Heterogeneous nanostructures, such as quantum dots (QDs) embedded in solid matrices, are promising platforms for solar energy conversion. Unfortunately, there is scarce information on the structure of the interface between the dots and their embedding matrix, thus hampering the design of functional materials with desired optoelectronic properties. Here, we developed a hierarchical computational strategy to obtain realistic models of semiconductor QDs embedded in matrices using enhanced sampling classical molecular dynamics simulations and predicted their electronic structure using first-principles electronic structure methods. We investigated PbSe/CdSe systems which are promising materials for solar cell applications and found a favorable quasi-type-II band alignments both for PbSe QDs in CdSe matrices and for CdSe embedded in PbSe. However, in the former case, we found the presence of detrimental intra-gap states, while in the latter no defect states are present. Hence we predict that embedding CdSe in PbSe leads to a more efficient platform for solar energy conversion. In addition, we showed that the structure of CdSe QD and in turn its band gap might be tuned by applying pressure to the PbSe matrix, providing a way to engineer the properties of new functional materials. Work by F. Giberti was supported by MICCoM funded by the U.S. Department of Energy (DOE), DOE/BES 5J-30161-0010A; work by M. Voros was supported by the U.S. DOE, under Award DE-AC02-06CH11357.

  8. Spin wave steering in three-dimensional magnonic networks

    NASA Astrophysics Data System (ADS)

    Beginin, E. N.; Sadovnikov, A. V.; Sharaevskaya, A. Yu.; Stognij, A. I.; Nikitov, S. A.

    2018-03-01

    We report the concept of three-dimensional (3D) magnonic structures which are especially promising for controlling and manipulating magnon currents. The approach for fabrication of 3D magnonic crystals (MCs) and 3D magnonic networks is presented. A meander type ferromagnetic film grown at the top of the initially structured substrate can be a candidate for such 3D crystals. Using the finite element method, transfer matrix method, and micromagnetic simulations, we study spin-wave propagation in both isolated and coupled 3D MCs and reconstruct spin-wave dispersion and transmission response to elucidate the mechanism of magnonic bandgap formation. Our results show the possibility of the utilization of proposed structures for fabrication of a 3D magnonic network.

  9. Improved Fibroblast Functionalities by Microporous Pattern Fabricated by Microelectromechanical Systems

    PubMed Central

    Wei, Hongbo; Zhao, Lingzhou; Chen, Bangdao; Bai, Shizhu; Zhao, Yimin

    2014-01-01

    Fibroblasts, which play an important role in biological seal formation and maintenance, determine the long-term success of percutaneous implants. In this study, well-defined microporous structures with micropore diameters of 10–60 µm were fabricated by microelectromechanical systems and their influence on the fibroblast functionalities was observed. The results show that the microporous structures with micropore diameters of 10–60 µm did not influence the initial adherent fibroblast number; however, those with diameters of 40 and 50 µm improved the spread, actin stress fiber organization, proliferation and fibronectin secretion of the fibroblasts. The microporous structures with micropore diameters of 40–50 µm may be promising for application in the percutaneous part of an implant. PMID:25054322

  10. Artificial Structural Color Pixels: A Review

    PubMed Central

    Zhao, Yuqian; Zhao, Yong; Hu, Sheng; Lv, Jiangtao; Ying, Yu; Gervinskas, Gediminas; Si, Guangyuan

    2017-01-01

    Inspired by natural photonic structures (Morpho butterfly, for instance), researchers have demonstrated varying artificial color display devices using different designs. Photonic-crystal/plasmonic color filters have drawn increasing attention most recently. In this review article, we show the developing trend of artificial structural color pixels from photonic crystals to plasmonic nanostructures. Such devices normally utilize the distinctive optical features of photonic/plasmon resonance, resulting in high compatibility with current display and imaging technologies. Moreover, dynamical color filtering devices are highly desirable because tunable optical components are critical for developing new optical platforms which can be integrated or combined with other existing imaging and display techniques. Thus, extensive promising potential applications have been triggered and enabled including more abundant functionalities in integrated optics and nanophotonics. PMID:28805736

  11. Formation of crystal-like structures and branched networks from nonionic spherical micelles

    NASA Astrophysics Data System (ADS)

    Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.

    2015-12-01

    Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.

  12. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com; Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów; Szade, J.

    Metal ion in bimetallic nanoparticles has shown vast potential in a variety of applications. In this paper we show the results of physical and chemical investigations of powder Ag/Cu nanoparticles obtained by chemical synthesis. Transmission electron microscopy (TEM) experiment indicated the presence of bimetallic nanoparticles in the agglomerated form. The average size of silver and copper nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu) basing on the X-ray diffraction (XRD) data. X-ray photoelectron (XPS) and Raman spectroscopies revealed the existence of metallic silver and copper as well as Cu{sub 2}O and CuO being a part of the nanoparticles. Moreover,more » UV–Vis spectroscopy showed surface alloy of Ag and Cu while Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and Energy Dispersive X-ray Spectroscopy (EDX) showed heterogeneously distributed Ag structures placed on spherical Cu nanoparticles. The tests of antibacterial activity show promising killing/inhibiting growth behaviour for Gram positive and Gram negative bacteria. - Highlights: • Ag/Cu nanoparticles were obtained in the powder form. • The average size of nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu). • Ag/Cu powder nanoparticle shows promising antibacterial properties.« less

  13. The Acquisition of Ask, Tell and Promise Structures by Arabic Speaking Children.

    ERIC Educational Resources Information Center

    Aller, Wayne K.; And Others

    In a study extending and refining Carol Chomsky's research, 48 Arabic speaking children aged six, eight, and ten were tested for their comprehension of imperatives using the complement-requiring verbs Ask, Tell, and Promise. Clear support for children's overgeneralization of the minimal distance principle was found only with Promise constructions.…

  14. Vertically Emitting Indium Phosphide Nanowire Lasers.

    PubMed

    Xu, Wei-Zong; Ren, Fang-Fang; Jevtics, Dimitars; Hurtado, Antonio; Li, Li; Gao, Qian; Ye, Jiandong; Wang, Fan; Guilhabert, Benoit; Fu, Lan; Lu, Hai; Zhang, Rong; Tan, Hark Hoe; Dawson, Martin D; Jagadish, Chennupati

    2018-06-13

    Semiconductor nanowire (NW) lasers have attracted considerable research effort given their excellent promise for nanoscale photonic sources. However, NW lasers currently exhibit poor directionality and high threshold gain, issues critically limiting their prospects for on-chip light sources with extremely reduced footprint and efficient power consumption. Here, we propose a new design and experimentally demonstrate a vertically emitting indium phosphide (InP) NW laser structure showing high emission directionality and reduced energy requirements for operation. The structure of the laser combines an InP NW integrated in a cat's eye (CE) antenna. Thanks to the antenna guidance with broken asymmetry, strong focusing ability, and high Q-factor, the designed InP CE-NW lasers exhibit a higher degree of polarization, narrower emission angle, enhanced internal quantum efficiency, and reduced lasing threshold. Hence, this NW laser-antenna system provides a very promising approach toward the achievement of high-performance nanoscale lasers, with excellent prospects for use as highly localized light sources in present and future integrated nanophotonics systems for applications in advanced sensing, high-resolution imaging, and quantum communications.

  15. Detecting Damage in Composite Material Using Nonlinear Elastic Wave Spectroscopy Methods

    NASA Astrophysics Data System (ADS)

    Meo, Michele; Polimeno, Umberto; Zumpano, Giuseppe

    2008-05-01

    Modern aerospace structures make increasing use of fibre reinforced plastic composites, due to their high specific mechanical properties. However, due to their brittleness, low velocity impact can cause delaminations beneath the surface, while the surface may appear to be undamaged upon visual inspection. Such damage is called barely visible impact damage (BVID). Such internal damages lead to significant reduction in local strengths and ultimately could lead to catastrophic failures. It is therefore important to detect and monitor damages in high loaded composite components to receive an early warning for a well timed maintenance of the aircraft. Non-linear ultrasonic spectroscopy methods are promising damage detection and material characterization tools. In this paper, two different non-linear elastic wave spectroscopy (NEWS) methods are presented: single mode nonlinear resonance ultrasound (NRUS) and nonlinear wave modulation technique (NWMS). The NEWS methods were applied to detect delamination damage due to low velocity impact (<12 J) on various composite plates. The results showed that the proposed methodology appear to be highly sensitive to the presence of damage with very promising future NDT and structural health monitoring applications.

  16. Action detection by double hierarchical multi-structure space-time statistical matching model

    NASA Astrophysics Data System (ADS)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-03-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  17. A simple structure of Cu2ZnSnS4/CdS solar cells prepared by sputtering

    NASA Astrophysics Data System (ADS)

    Li, Zhishan; Wang, Shurong; Ma, Xun; Yang, Min; Jiang, Zhi; Liu, Tao; Lu, Yilei; Liu, Sijia

    2017-12-01

    In this work, Cu2ZnSnS4 (CZTS) thin films were grown on Mo-coated Soda-lime-glass (SLG) substrates by annealing of sputtered ZnS/Sn/CuS precursors at 580 ℃ for 15 min. As a try, the CZTS solar cells were fabricated using simple structure of Mo-coated SLG/CZTS/CdS/Al and traditional structure of Mo-coated SLG/CZTS/CdS/i-ZnO/In2O3:SnO2 (ITO)/Al, respectively. The results show that the CZTS device with simple structure can achieve same level of the open circuit voltage (Voc) compared with that of traditional structure. In addition, the power conversion efficiency of 2.95% and 3.59% were obtained with simple structure and traditional structure, respectively. The CZTS solar cell with simple structure provides a promising way and an easy process to prepare high-performance CZTS thin film solar cells which is available to large-scale industrial production in the future.

  18. Action detection by double hierarchical multi-structure space–time statistical matching model

    NASA Astrophysics Data System (ADS)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-06-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  19. Solution structure of the Legionella pneumophila Mip-rapamycin complex.

    PubMed

    Ceymann, Andreas; Horstmann, Martin; Ehses, Philipp; Schweimer, Kristian; Paschke, Anne-Katrin; Steinert, Michael; Faber, Cornelius

    2008-03-17

    Legionella pneumphila is the causative agent of Legionnaires' disease. A major virulence factor of the pathogen is the homodimeric surface protein Mip. It shows peptidyl-prolyl cis/trans isomerase activty and is a receptor of FK506 and rapamycin, which both inhibit its enzymatic function. Insight into the binding process may be used for the design of novel Mip inhibitors as potential drugs against Legionnaires' disease. We have solved the solution structure of free Mip77-213 and the Mip77-213-rapamycin complex by NMR spectroscopy. Mip77-213 showed the typical FKBP-fold and only minor rearrangements upon binding of rapamycin. Apart from the configuration of a flexible hairpin loop, which is partly stabilized upon binding, the solution structure confirms the crystal structure. Comparisons to the structures of free FKBP12 and the FKBP12-rapamycin complex suggested an identical binding mode for both proteins. The structural similarity of the Mip-rapamycin and FKBP12-rapamycin complexes suggests that FKBP12 ligands may be promising starting points for the design of novel Mip inhibitors. The search for a novel drug against Legionnaires' disease may therefore benefit from the large variety of known FKBP12 inhibitors.

  20. Solution structure of the Legionella pneumophila Mip-rapamycin complex

    PubMed Central

    Ceymann, Andreas; Horstmann, Martin; Ehses, Philipp; Schweimer, Kristian; Paschke, Anne-Katrin; Steinert, Michael; Faber, Cornelius

    2008-01-01

    Background Legionella pneumphila is the causative agent of Legionnaires' disease. A major virulence factor of the pathogen is the homodimeric surface protein Mip. It shows peptidyl-prolyl cis/trans isomerase activty and is a receptor of FK506 and rapamycin, which both inhibit its enzymatic function. Insight into the binding process may be used for the design of novel Mip inhibitors as potential drugs against Legionnaires' disease. Results We have solved the solution structure of free Mip77–213 and the Mip77–213-rapamycin complex by NMR spectroscopy. Mip77–213 showed the typical FKBP-fold and only minor rearrangements upon binding of rapamycin. Apart from the configuration of a flexible hairpin loop, which is partly stabilized upon binding, the solution structure confirms the crystal structure. Comparisons to the structures of free FKBP12 and the FKBP12-rapamycin complex suggested an identical binding mode for both proteins. Conclusion The structural similarity of the Mip-rapamycin and FKBP12-rapamycin complexes suggests that FKBP12 ligands may be promising starting points for the design of novel Mip inhibitors. The search for a novel drug against Legionnaires' disease may therefore benefit from the large variety of known FKBP12 inhibitors. PMID:18366641

  1. Ligand Binding Site Detection by Local Structure Alignment and Its Performance Complementarity

    PubMed Central

    Lee, Hui Sun; Im, Wonpil

    2013-01-01

    Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is a room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands’ positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a non-template geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy. The G-LoSA source code is freely available at http://im.bioinformatics.ku.edu/GLoSA. PMID:23957286

  2. Oxygen Reduction Reaction on Platinum-Terminated “Onion-structured” Alloy Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herron, Jeffrey A.; Jiao, Jiao; Hahn, Konstanze

    Using periodic, self-consistent density functional theory (GGA-PW91) calculations, a series of onion-structured metal alloys have been investigated for their catalytic performance towards the oxygen reduction reaction (ORR). The onion-structures consist of a varying number of atomic layers of one or two metals each, pseudomorphically deposited on top of one another to form the overall structure. All catalysts studied feature a Pt overlayer, and often consist of at least one Pd layer below the surface. Three distinct ORR mechanisms were analyzed on the close-packed facets of all the structures considered. These mechanisms include a direct route of O2 dissociation and twomore » hydrogen-assisted routes of O–O bond-breaking in peroxyl (OOH) and in hydrogen peroxide (HOOH) intermediates. A thermochemical analysis of the elementary steps provides information on the operating potential, and thereby energy efficiency of each electrocatalyst. A Sabatier analysis of catalytic activity based on thermochemistry of proton/electron transfer steps and activation energy barrier for O–O bond-breaking steps leads to a “volcano” relation between the surfaces’ activity and the binding energy of O. Several of the onion-structured alloys studied here show promise for achieving energy efficiency higher than that of Pt, by being active at potentials higher than the operating potential of Pt. Furthermore, some have at least as good activity as pure Pt at that operating potential. Thus, a number of the onion-structured alloys studied here are promising as cathode electrocatalysts in proton exchange membrane fuel cells.« less

  3. Laser Embossing of Micro-and Submicrometer Surface Structures in Copper

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Martin; Lorenz, Pierre; Frost, Frank; Zimmer, Klaus

    Micro- and submicrometer structures have been transferred from nickel foils into solid copper surfaces by laser microembossing. The developed arrangement for laser microembossing allows a large-area replication using multi- pulse laser scanning scheme, guaranties a low contamination of the embossed surface and enables the utilization of thick workpieces. In the micrometer range the replicated patterns feature a high accuracy regarding the shape. A significant difference between the master and the replication pattern could be observed for the laser embossing of submicrometer patterns. In conclusion, the results show that the proposed laser embossing process is a promising method with a number of applications in microengineering.

  4. Interlayer interactions in graphites.

    PubMed

    Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian

    2013-11-06

    Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.

  5. Varic acid analogues from fungus as PTP1B inhibitors: Biological evaluation and structure-activity relationships.

    PubMed

    Sun, Wenlong; Zhuang, Chunlin; Li, Xia; Zhang, Bowei; Lu, Xinhua; Zheng, Zhihui; Dong, Yuesheng

    2017-08-01

    Protein tyrosine phosphatase 1B (PTP1B) inhibitors as potential therapies for diabetes and obesity have attracted much attention in recent years. Six varic acid analogues were isolated from two strains of fungi and evaluated for PTP1B inhibition activities. The structure-activity relationships were also characterized and predicted by molecular modeling. Further kinetic studies indicated the reversible and competitive inhibition manner of varic acid analogues. Trivaric acid showed insulin-sensitizing effect not only in vitro but also in vivo, representing a promising lead compound for further optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Spectroscopic notes of Methyl Red (MR) dye.

    PubMed

    El-Mansy, M A M; Yahia, I S

    2014-09-15

    In the present work, a combined experimental and theoretical study on molecular structure and vibrational frequencies of MR were reported. The FT-IR spectrum of MR is recorded in the solid phase. The equilibrium geometries, harmonic vibrational frequencies, thermo-chemical parameters, total dipole moment and HOMO-LUMO energies are calculated by DFT/B3LYP utilizing 6-311G(d,p) basis set. Results showed that MR is highly recommended to be a promising structure for many applications in optoelectronic devices due to its high calculated dipole moment value (7.2 Debye) and lower HOMO-LUMO energy gap of 3.5 eV. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Wavelets and molecular structure

    NASA Astrophysics Data System (ADS)

    Carson, Mike

    1996-08-01

    The wavelet method offers possibilities for display, editing, and topological comparison of proteins at a user-specified level of detail. Wavelets are a mathematical tool that first found application in signal processing. The multiresolution analysis of a signal via wavelets provides a hierarchical series of `best' lower-resolution approximations. B-spline ribbons model the protein fold, with one control point per residue. Wavelet analysis sets limits on the information required to define the winding of the backbone through space, suggesting a recognizable fold is generated from a number of points equal to 1/4 or less the number of residues. Wavelets applied to surfaces and volumes show promise in structure-based drug design.

  8. Tunable Multiple Plasmon-Induced Transparencies Based on Asymmetrical Graphene Nanoribbon Structures

    PubMed Central

    Lu, Chunyu; Wang, Jicheng; Yan, Shubin; Hu, Zheng-Da; Zheng, Gaige; Yang, Liu

    2017-01-01

    We present plasmonic devices, consisting of periodic arrays of graphene nanoribbons (GNRs) and a graphene sheet waveguide, to achieve controllable plasmon-induced transparency (PIT) by numerical simulation. We analyze the bright and dark elements of the GNRs and graphene-sheet waveguide structure. Results show that applying the gate voltage can electrically tune the PIT spectrum. Adjusting the coupling distance and widths of GNRs directly results in a shift of transmission dips. In addition, increased angle of incidence causes the transmission to split into multiple PIT peaks. We also demonstrate that PIT devices based on graphene plasmonics may have promising applications as plasmonic sensors in nanophotonics. PMID:28773062

  9. Unraveling Unprecedented Charge Carrier Mobility through Structure Property Relationship of Four Isomers of Didodecyl[1]benzothieno[3,2-b][1]benzothiophene.

    PubMed

    Tsutsui, Yusuke; Schweicher, Guillaume; Chattopadhyay, Basab; Sakurai, Tsuneaki; Arlin, Jean-Baptiste; Ruzié, Christian; Aliev, Almaz; Ciesielski, Artur; Colella, Silvia; Kennedy, Alan R; Lemaur, Vincent; Olivier, Yoann; Hadji, Rachid; Sanguinet, Lionel; Castet, Frédéric; Osella, Silvio; Dudenko, Dmytro; Beljonne, David; Cornil, Jérôme; Samorì, Paolo; Seki, Shu; Geerts, Yves H

    2016-09-01

    The structural and electronic properties of four isomers of didodecyl[1]-benzothieno[3,2-b][1]benzothiophene (C12-BTBT) have been investigated. Results show the strong impact of the molecular packing on charge carrier transport and electronic polarization properties. Field-induced time-resolved microwave conductivity measurements unravel an unprecedented high average interfacial mobility of 170 cm(2) V(-1) s(-1) for the 2,7-isomer, holding great promise for the field of organic electronics. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Magnesium Oxide (MgO) pH-sensitive Sensing Membrane in Electrolyte-Insulator-Semiconductor Structures with CF4 Plasma Treatment.

    PubMed

    Kao, Chyuan-Haur; Chang, Chia Lung; Su, Wei Ming; Chen, Yu Tzu; Lu, Chien Cheng; Lee, Yu Shan; Hong, Chen Hao; Lin, Chan-Yu; Chen, Hsiang

    2017-08-03

    Magnesium oxide (MgO) sensing membranes in pH-sensitive electrolyte-insulator-semiconductor structures were fabricated on silicon substrate. To optimize the sensing capability of the membrane, CF 4 plasma was incorporated to improve the material quality of MgO films. Multiple material analyses including FESEM, XRD, AFM, and SIMS indicate that plasma treatment might enhance the crystallization and increase the grain size. Therefore, the sensing behaviors in terms of sensitivity, linearity, hysteresis effects, and drift rates might be improved. MgO-based EIS membranes with CF 4 plasma treatment show promise for future industrial biosensing applications.

  11. Coated columbium thermal protection systems: An assessment of technological readiness

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1973-01-01

    Evaluation and development to date show that of the coated columbium alloys FS-85 coated with R512E shows significant promise for a reusable thermal protection system (TPS) as judged by environmental resistance and the retention of mechanical properties and structural integrity of panels upon repeated reentry simulation. Production of the alloy, the coating, and full-sized TPS panels is well within current manufacturing technology. Small defects which arise from impact damage or from local coating breakdown do not appear to have serious immediate consequences in the use environment anticipated for the space shuttle orbiter TPS.

  12. Iterative Tensor Voting for Perceptual Grouping of Ill-Defined Curvilinear Structures: Application to Adherens Junctions

    PubMed Central

    Loss, Leandro A.; Bebis, George; Parvin, Bahram

    2012-01-01

    In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined curvilinear structures. Our approach builds upon the tensor voting and the iterative voting frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the aperture of the tensor voting fields, which is shown to improve curve grouping and inference by enhancing the concentration of the votes over promising, salient structures. The proposed technique is applied to delineation of adherens junctions imaged through fluorescence microscopy. This class of membrane-bound macromolecules maintains tissue structural integrity and cell-cell interactions. Visually, it exhibits fibrous patterns that may be diffused, punctate and frequently perceptual. Besides the application to real data, the proposed method is compared to prior methods on synthetic and annotated real data, showing high precision rates. PMID:21421432

  13. Investigation of graphene-integrated tunable metamaterials in THz regime

    NASA Astrophysics Data System (ADS)

    Demir, S. Mahircan; Yüksek, Yahya; Sabah, Cumali

    2018-05-01

    A metallic fishnet metamaterial structure in sub-THz region is presented. The proposed structure is based on hexagonal resonators. Simulations have been performed by a 3D full-wave electromagnetic simulator and a negative refractive index has been observed at the frequency range between 0.55 and 0.70 THz with the help of the graphene layer. In order to observe the effect of the graphene layer, the metamaterial structure has been simulated and examined before and after graphene integration. Significant modification in the propagation properties has been observed after the graphene integration. Change in S-parameters with the size variation of hexagonal resonators and alteration in graphene thickness are also presented as a parametric study to show the tunability of the structure. Suitability of the metamaterial for sensor applications has been investigated. The proposed metamaterial structure is promising to be effectively used for tunability and sensor applications.

  14. Distinct molecular structures and hydrogen bond patterns of α,α-diethyl-substituted cyclic imide, lactam, and acetamide derivatives in the crystalline phase

    NASA Astrophysics Data System (ADS)

    Krivoshein, Arcadius V.; Ordonez, Carlos; Khrustalev, Victor N.; Timofeeva, Tatiana V.

    2016-10-01

    α,α-Dialkyl- and α-alkyl-α-aryl-substituted cyclic imides, lactams, and acetamides show promising anticonvulsant, anxiolytic, and anesthetic activities. While a number of crystal structures of various α-substituted cyclic imides, lactams, and acetamides were reported, no in-depth comparison of crystal structures and solid-state properties of structurally matched compounds have been carried out so far. In this paper, we report molecular structure and intermolecular interactions of three α,α-diethyl-substituted compounds - 3,3-diethylpyrrolidine-2,5-dione, 3,3-diethylpyrrolidin-2-one, and 2,2-diethylacetamide - in the crystalline phase, as studied using single-crystal X-ray diffraction and IR spectroscopy. We found considerable differences in the patterns of H-bonding and packing of the molecules in crystals. These differences correlate with the compounds' melting points and are of significance to physical pharmacy and formulation development of neuroactive drugs.

  15. Preparation of novel porous starch microsphere foam for loading and release of poorly water soluble drug.

    PubMed

    Jiang, Tongying; Wu, Chao; Gao, Yikun; Zhu, Wenquan; Wan, Long; Wang, Zhanyou; Wang, Siling

    2014-02-01

    Organic porous material is a promising carrier for enhancing the dissolution of poorly water soluble drug. The aim of the present study was to enhance dissolution and oral bioavailability of lovastatin (LV) by preparing a porous starch microsphere foam (PSM) using a novel method, meanwhile, looking into the mechanism of improving dissolution of LV. PSM was prepared by the W/O emulsion-freeze thawing method. The porous structure of PSM was characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. The adsorption role of nanopores on the drug dissolution and physical state of LV was systematically studied by instrumental analysis, and in vitro and in vivo drug dissolution studies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate carrier cytotoxicity. The SEM images of PSM showed nanometer-sized pores. Physical state characterization indicated that porous structure effectively limited the degree of crystallinity of LV. The results of in vitro and in vivo tests testified that PSM accelerated the release of LV and enhanced its oral bioavailability in comparison with crude LV and commercial capsules. The loaded PSM powder indicated a good physical stability under storage for 12 months. MTT assay shows PSM has no toxicity for Caco-2 cell. The preparation was a promising method to produce small and uniform PSM with markedly enhanced dissolution rate and oral bioavailability due to the spatial confinement effect of porous structure. The present work demonstrates the significant potential for the use of PSM as a novel delivery system for poorly water soluble drugs.

  16. Constraints and consequences of reducing small scale structure via large dark matter-neutrino interactions

    DOE PAGES

    Bertoni, Bridget; Ipek, Seyda; McKeen, David; ...

    2015-04-30

    Here, cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable model with new interactions between neutrinos and dark matter and provide the first discussion of how these new dark matter-neutrino interactions affect neutrino phenomenology. We show that addressing the small scale structure problems requires asymmetric dark matter with amore » mass that is tens of MeV. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial τ neutrino component, while the three nearly massless neutrinos are partly sterile. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. Promising signatures of this model include alterations to the neutrino energy spectrum and flavor content observed from a future nearby supernova, anomalous matter effects in neutrino oscillations, and a component of the τ neutrino with mass around 100 MeV.« less

  17. Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes

    NASA Astrophysics Data System (ADS)

    Yadav, Abhijit A.; Chavan, U. J.

    2018-04-01

    Transition-metal oxides with porous structure are considered for use as promising electrodes for high-performance supercapacitors. Nanocrystalline nickel oxide (NiO) thin films have been prepared as active material for supercapacitors by spray pyrolysis. In this study, the effects of the film thickness on its structural, morphological, optical, electrical, and electrochemical properties were studied. X-ray diffraction analysis revealed cubic structure with average crystalline size of around 21 nm. Scanning electron microscopy showed porous morphology. The optical bandgap decreased from 3.04 eV to 2.97 eV with increase in the film thickness. Electrical resistivity measurements indicated semiconducting behavior. Cyclic voltammetry and galvanostatic charge/discharge study revealed good pseudocapacitive behavior. Specific capacitance of 564 F g-1 at scan rate of 5 mV s-1 and 553 F g-1 at current density of 1 A g-1 was observed. An NiO-based supercapacitor delivered specific energy of 22.8 W h kg-1 at specific power of 2.16 kW kg-1, and retained 93.01% specific capacitance at current density of 1 A g-1 after 1000 cycles. Therefore, taking advantage of the porous morphology that exists in the nanostructure, such NiO materials can be considered for use as promising electrodes for high-performance supercapacitors.

  18. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    PubMed

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  19. Spider web-inspired acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Miniaci, Marco; Krushynska, Anastasiia; Movchan, Alexander B.; Bosia, Federico; Pugno, Nicola M.

    2016-08-01

    Spider silk is a remarkable example of bio-material with superior mechanical characteristics. Its multilevel structural organization of dragline and viscid silk leads to unusual and tunable properties, extensively studied from a quasi-static point of view. In this study, inspired by the Nephila spider orb web architecture, we propose a design for mechanical metamaterials based on its periodic repetition. We demonstrate that spider-web metamaterial structure plays an important role in the dynamic response and wave attenuation mechanisms. The capability of the resulting structure to inhibit elastic wave propagation in sub-wavelength frequency ranges is assessed, and parametric studies are performed to derive optimal configurations and constituent mechanical properties. The results show promise for the design of innovative lightweight structures for tunable vibration damping and impact protection, or the protection of large scale infrastructure such as suspended bridges.

  20. Tunnel field-effect transistor charge-trapping memory with steep subthreshold slope and large memory window

    NASA Astrophysics Data System (ADS)

    Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2018-04-01

    Charge-trapping memory requires the increase of bit density per cell and a larger memory window for lower-power operation. A tunnel field-effect transistor (TFET) can achieve to increase the bit density per cell owing to its steep subthreshold slope. In addition, a TFET structure has an asymmetric structure, which is promising for achieving a larger memory window. A TFET with the N-type gate shows a higher electric field between the P-type source and the N-type gate edge than the conventional FET structure. This high electric field enables large amounts of charges to be injected into the charge storage layer. In this study, we fabricated silicon-oxide-nitride-oxide-semiconductor (SONOS) memory devices with the TFET structure and observed a steep subthreshold slope and a larger memory window.

  1. Local structure and structural rigidity of the green phosphor β -SiAlON:Eu 2+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brgoch, J.; Gaultois, M. W.; Balasubramanian, M.

    Eu2+ inserted in beta-Si3-xAlxOxN4-x is a material that shows exceptional promise as a green-emitting phosphor. Synchrotron X-ray and neutron scattering, in conjunction with first-principles calculations and Eu L-3 X-ray absorption measurements, yield a consistent picture of the composition, and the favorable position for Eu2+ substitution in the crystal structure. The Debye temperature Theta(D), which is a proxy for structural rigidity relating to effectiveness as a phosphor, is very high for the starting beta-Si3N4 framework and is determined to decrease only slightly for the small amounts of Al3+ and O2- co-substitution that are required for charge balance associated with Eu2+ insertion.more » (C) 2014 AIP Publishing LLC.« less

  2. Mold-Based Application of Laser-Induced Periodic Surface Structures (LIPSS) on Biomaterials for Nanoscale Patterning.

    PubMed

    Hendrikson, Wim; Masman-Bakker, Wendy; van Bochove, Bas; Skolski, Johann; Eichstädt, Justus; Koopman, Bart; van Blitterswijk, Clemens; Grijpma, Dirk; Römer, Gert-Willem; Moroni, Lorenzo; Rouwkema, Jeroen

    2016-01-01

    Laser-induced periodic surface structures (LIPSS) are highly regular, but at the same time contain a certain level of disorder. The application of LIPSS is a promising method to functionalize biomaterials. However, the absorption of laser energy of most polymer biomaterials is insufficient for the direct application of LIPSS. Here, we report the application of LIPSS to relevant biomaterials using a two-step approach. First, LIPSS are fabricated on a stainless steel surface. Then, the structures are replicated onto biomaterials using the steel as a mold. Results show that LIPSS can be transferred successfully using this approach, and that human mesenchymal stromal cells respond to the transferred structures. With this approach, the range of biomaterials that can be supplied with LIPSS increases dramatically. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Insight into Ca-Substitution Effects on O3-Type NaNi1/3 Fe1/3 Mn1/3 O2 Cathode Materials for Sodium-Ion Batteries Application.

    PubMed

    Sun, Liqi; Xie, Yingying; Liao, Xiao-Zhen; Wang, Hong; Tan, Guoqiang; Chen, Zonghai; Ren, Yang; Gim, Jihyeon; Tang, Wan; He, Yu-Shi; Amine, Khalil; Ma, Zi-Feng

    2018-04-18

    O3-type NaNi 1/3 Fe 1/3 Mn 1/3 O 2 (NaNFM) is well investigated as a promising cathode material for sodium-ion batteries (SIBs), but the cycling stability of NaNFM still needs to be improved by using novel electrolytes or optimizing their structure with the substitution of different elements sites. To enlarge the alkali-layer distance inside the layer structure of NaNFM may benefit Na + diffusion. Herein, the effect of Ca-substitution is reported in Na sites on the structural and electrochemical properties of Na 1- x Ca x /2 NFM (x = 0, 0.05, 0.1). X-ray diffraction (XRD) patterns of the prepared Na 1- x Ca x /2 NFM samples show single α-NaFeO 2 type phase with slightly increased alkali-layer distance as Ca content increases. The cycling stabilities of Ca-substituted samples are remarkably improved. The Na 0.9 Ca 0.05 Ni 1/3 Fe 1/3 Mn 1/3 O 2 (Na 0.9 Ca 0.05 NFM) cathode delivers a capacity of 116.3 mAh g -1 with capacity retention of 92% after 200 cycles at 1C rate. In operando XRD indicates a reversible structural evolution through an O3-P3-P3-O3 sequence of Na 0.9 Ca 0.05 NFM cathode during cycling. Compared to NaNMF, the Na 0.9 Ca 0.05 NFM cathode shows a wider voltage range in pure P3 phase state during the charge/discharge process and exhibits better structure recoverability after cycling. The superior cycling stability of Na 0.9 Ca 0.05 NFM makes it a promising material for practical applications in sodium-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Improving the durability of methanol oxidation reaction electro-catalysts through the modification of carbon architectures

    NASA Astrophysics Data System (ADS)

    Wood, Kevin N.

    Carbon materials represent one of the largest areas of studied research today, having integrated applications stretching from energy production and storage to medical use and far beyond. One of these many intriguing applications is fuel cells, which offers the promise of clean electricity through a direct electrochemical energy conversion process. Unfortunately, at the present time the cost per watt-hour produced by fuel cells is more expensive than conventional methods of energy production/storage (i.e. combustion engines, batteries, etc.). Under the umbrella of fuel cell systems, methanol is a promising fuel source because of its high energy density and convenience of direct liquid fuel operation. In this field, recent advancements are bringing direct methanol fuel cells (DMFCs) closer to commercial viability. However, just as in other fuel cell systems, further improvements are greatly needed, particularly in the area of catalyst durability. This need for improved durability has led to increased research activity focused on improving catalyst stability and utilization. This thesis explores one of the most promising areas of enhancing catalyst-support interactions; namely, modification of carbon support architectures. Through the use of heteroatom modifiers, such as nitrogen, fuel cell support systems can be enhanced in such a way as to improve metal nucleation and growth, catalyst durability and catalytic activity. To this end, this thesis employs advanced characterization techniques to study the changes in catalyst particle morphology before and after nitrogen modification of the support structure. These results clearly show the beneficial effects of nitrogen moieties on carbon structures and help elucidate the effects of nitrogen on the stability of supported catalytic nanoparticles systems. Similarly, the novel concept of post-modifying commercially available supported catalysts with nitrogen ion implantation gives further insight into the behavior of modified support structures. This result shows a method by which current industry leading benchmarks can be improved, in some cases by up to 100%. This thesis also explores the intriguing prospect of heteroatom modification beyond the effects of just nitrogen. Specifically, the consequences of halide functionalization are explored and shown to significantly improve durability, even to a greater extent than nitrogen modification. In total these results give great promise for the future of fuel cell technology and the field of carbon modification in general. While the techniques and results presented in this thesis are employed to study durability in direct methanol fuel cells, the benefits of heteroatom modified carbon structures can be applied to other polymer electrolyte fuel cells and beyond. Many other devices and applications, including batteries, supercapacitors, hydrogen storage, and even biosensing and drug delivery can benefit from the work discussed within these pages.

  5. Activation of structural carbon fibres for potential applications in multifunctional structural supercapacitors.

    PubMed

    Qian, Hui; Diao, Hele; Shirshova, Natasha; Greenhalgh, Emile S; Steinke, Joachim G H; Shaffer, Milo S P; Bismarck, Alexander

    2013-04-01

    The feasibility of modifying conventional structural carbon fibres via activation has been studied to create fibres, which can be used simultaneously as electrode and reinforcement in structural composite supercapacitors. Both physical and chemical activation, including using steam, carbon dioxide, acid and potassium hydroxide, were conducted and the resulting fibre properties compared. It was proven that the chemical activation using potassium hydroxide is an effective method to prepare activated structural carbon fibres that possess both good electrochemical and mechanical properties. The optimal activation conditions, such as the loading of activating agent and the burn-off of carbon fibres, was identified and delivered a 100-fold increase in specific surface area and 50-fold improvement in specific electrochemical capacitance without any degradation of the fibre mechanical properties. The activation process was successfully scaled-up, showing good uniformity and reproducibility. These activated structural carbon fibres are promising candidates as reinforcement/electrodes for multifunctional structural energy storage devices. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Structural transition and amorphization in compressed α - Sb 2 O 3

    DOE PAGES

    Zhao, Zhao; Zeng, Qiaoshi; Zhang, Haijun; ...

    2015-05-27

    Sb₂O₃-based materials are of broad interest in materials science and industry. High-pressure study using diamond anvil cells shows promise in obtaining new crystal and electronic structures different from their pristine states. Here, we conducted in situ angle dispersive synchrotron x-ray-diffraction and Raman spectroscopy experiments on α-Sb₂O₃ up to 50 GPa with neon as the pressure transmitting medium. A first-order structural transition was observed in between 15 and 20 GPa, where the cubic phase I gradually transformed into a layered tetragonal phase II through structural distortion and symmetry breaking. To explain the dramatic changes in sample color and transparency, we performedmore » first-principles calculations to track the evolution of its density of states and electronic structure under pressure. At higher pressure, a sluggish amorphization was observed. Our results highlight the structural connections among the sesquioxides, where the lone electron pair plays an important role in determining the local structures.« less

  7. Design and Synthesis of Mannich bases as Benzimidazole Derivatives as Analgesic Agents.

    PubMed

    Datar, Prasanna A; Limaye, Saleel A

    2015-01-01

    Mannich bases were selected for 2D QSAR study to derive meaningful relationship between the structural features and analgesic activity. Using the knowledge of important features a novel series was designed to obtain improved analgesic activity. A series of novel Mannich bases 1-(N-substituted amino)methyl]-2-substituted benzimidazole derivatives were synthesized and were screened for analgesic activity. Some of these compounds showed promising analgesic activity when compared with the standard drug diclofenac sodium.

  8. Tough, Microcracking-Resistant, High-Temperature Polymer

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Razon, Pert; Smith, Ricky; Working, Dennis; Chang, Alice; Gerber, Margaret

    1990-01-01

    Simultaneous synthesis from thermosetting and thermoplastic components yields polyimide with outstanding properties. Involves process in which one polymer cross-linked in immediate presence of other, undergoing simultaneous linear chain extension. New material, LaRC-RP40 synthesized from high-temperature thermosetting imide prepolymer and from thermoplastic monomer. Three significantly improved properties: toughness, resistance to microcracking, and glass-transition temperature. Shows promise as high-temperature matrix resin for variety of components of aircraft engines and for use in other aerospace structures.

  9. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-03-01

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co0.54Fe0.46OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co0.54Fe0.46OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.

  10. Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application.

    PubMed

    Zhang, Xinyu; An, Li; Yin, Jie; Xi, Pinxian; Zheng, Zhiping; Du, Yaping

    2017-03-08

    Rational design of high efficient and low cost electrocatalysts for oxygen evolution reaction (OER) plays an important role in water splitting. Herein, a general gelatin-assisted wet chemistry method is employed to fabricate well-defined iron oxy-hydroxides and transitional metal doped iron oxy-hydroxides nanomaterials, which show good catalytic performances for OER. Specifically, the Co-doped iron oxy-hydroxides (Co 0.54 Fe 0.46 OOH) show the excellent electrocatalytic performance for OER with an onset potential of 1.52 V, tafel slope of 47 mV/dec and outstanding stability. The ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the pure iron oxy-hydroxide (FeOOH) catalysts, originate from the branch structure of Co 0.54 Fe 0.46 OOH on its surface so as to provide many active edge sites, enhanced mass/charge transport capability, easy release oxygen gas bubbles, and strong structural stability, which are advantageous for OER. Meanwhile, Co-doping in FeOOH nanostructures constitutes a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices. This work may provide a new insight into constructing the promising water oxidation catalysts for practical clean energy application.

  11. Ba2ZnWO6:Sm3+ as promising orange-red emitting phosphors: Photoluminescence properties and energy transfer process

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Hu, Wenyuan; Yang, Dingming; Zhu, Jiayi; Zhang, Jing; Wu, Yadong

    2018-02-01

    Novel orange-red emitting phosphors, Ba2Zn1-xWO6:xSm3+ (x = 0.03, 0.04, 0.05, 0.06 and 0.07) (BZW:Sm3+), were prepared using a high-temperature solid-state reaction method. Their crystal structure and photoluminescence properties were characterized and the mechanism of energy transfers between Ba2ZnWO6 and Sm3+ elucidated in detail. It was found that the phosphors had a cubic structure with space group Fm 3 bar m . They can be excited by near-ultraviolet light, and the characteristic emissions of Sm3+ ions are observed at 564 nm, 598 nm and 645 nm, corresponding to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions, respectively. The 4G5/2 → 6H9/2 transitions shows the greatest intensity, which indicates that Sm3+ ions occupy the noncentrosymmetric sites. The optimal doping concentration of Sm3+ ions in Ba2ZnWO6 is about 5 mol% and the phenomenon of concentration quenching occurs when the content of Sm3+ ions exceeds 5 mol%. All results show that the Ba2ZnWO6:Sm3+ phosphor holds great promise for use in high-quality white light-emitting diodes.

  12. Structural analysis of zwitterionic liquids vs. homologous ionic liquids

    NASA Astrophysics Data System (ADS)

    Wu, Boning; Kuroda, Kosuke; Takahashi, Kenji; Castner, Edward W.

    2018-05-01

    Zwitterionic liquids (Zw-ILs) have been developed that are homologous to monovalent ionic liquids (ILs) and show great promise for controlled dissolution of cellulosic biomass. Using both high energy X-ray scattering and atomistic molecular simulations, this article compares the bulk liquid structural properties for novel Zw-ILs with their homologous ILs. It is shown that the significant localization of the charges on Zw-ILs leads to charge ordering similar to that observed for conventional ionic liquids with monovalent anions and cations. A low-intensity first sharp diffraction peak in the liquid structure factor S(q) is observed for both the Zw-IL and the IL. This is unexpected since both the Zw-IL and IL have a 2-(2-methoxyethoxy)ethyl (diether) functional group on the cationic imidazolium ring and ether functional groups are known to suppress this peak. Detailed analyses show that this intermediate range order in the liquid structure arises for slightly different reasons in the Zw-IL vs. the IL. For the Zw-IL, the ether tails in the liquid are shown to aggregate into nanoscale domains.

  13. Digital Alchemy for Materials Design: Colloids and Beyond

    NASA Astrophysics Data System (ADS)

    van Anders, Greg; Klotsa, Daphne; Karas, Andrew; Dodd, Paul; Glotzer, Sharon

    Starting with the early alchemists, a holy grail of science has been to make desired materials by manipulating basic building blocks. Building blocks that show promise for assembling new complex materials can be synthesized at the nanoscale with attributes that would astonish the ancient alchemists in their versatility. However, this versatility means that connecting building-block attributes to bulk structure is both necessary for rationally engineering materials and difficult because building block attributes can be altered in many ways. We show how to exploit the malleability of colloidal nanoparticle ``elements'' to quantitatively link building-block attributes to bulk structure through a statistical thermodynamic framework we term ``digital alchemy''. We use this framework to optimize building blocks for a given target structure and to determine which building-block attributes are most important to control for self-assembly, through a set of novel thermodynamic response functions. We thereby establish direct links between the attributes of colloidal building blocks and the bulk structures they form. Moreover, our results give concrete solutions to the more general conceptual challenge of optimizing emergent behaviors in nature and can be applied to other types of matter.

  14. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21.

    PubMed

    Jiang, Qi; Chu, Zema; Wang, Pengyang; Yang, Xiaolei; Liu, Heng; Wang, Ye; Yin, Zhigang; Wu, Jinliang; Zhang, Xingwang; You, Jingbi

    2017-12-01

    Low temperature solution processed planar-structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI 2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI 2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI 2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm 2 ) and 20.1% in large size (1 cm 2 ) with moderate residual PbI 2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar-structure perovskite solar cells, showing the planar-structure perovskite solar cells are very promising. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In Vitro Maturation and In Vivo Integration and Function of an Engineered Cell-Seeded Disc-like Angle Ply Structure (DAPS) for Total Disc Arthroplasty.

    PubMed

    Martin, J T; Gullbrand, S E; Kim, D H; Ikuta, K; Pfeifer, C G; Ashinsky, B G; Smith, L J; Elliott, D M; Smith, H E; Mauck, R L

    2017-11-17

    Total disc replacement with an engineered substitute is a promising avenue for treating advanced intervertebral disc disease. Toward this goal, we developed cell-seeded disc-like angle ply structures (DAPS) and showed through in vitro studies that these constructs mature to match native disc composition, structure, and function with long-term culture. We then evaluated DAPS performance in an in vivo rat model of total disc replacement; over 5 weeks in vivo, DAPS maintained their structure, prevented intervertebral bony fusion, and matched native disc mechanical function at physiologic loads in situ. However, DAPS rapidly lost proteoglycan post-implantation and did not integrate into adjacent vertebrae. To address this, we modified the design to include polymer endplates to interface the DAPS with adjacent vertebrae, and showed that this modification mitigated in vivo proteoglycan loss while maintaining mechanical function and promoting integration. Together, these data demonstrate that cell-seeded engineered discs can replicate many characteristics of the native disc and are a viable option for total disc arthroplasty.

  16. Evolution of band topology by competing band overlap and spin-orbit coupling: Twin Dirac cones in Ba3SnO as a prototype

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze; Ogata, Masao

    2017-11-01

    We theoretically demonstrate how competition between band inversion and spin-orbit coupling (SOC) results in nontrivial evolution of band topology, taking antiperovskite Ba3SnO as a prototype material. A key observation is that when the band inversion dominates over SOC, there appear "twin" Dirac cones in the band structure. Due to the twin Dirac cones, the band shows highly peculiar structure in which the upper cone of one of the twin continuously transforms to the lower cone of the other. Interestingly, the relative size of the band inversion and SOC is controlled in this series of antiperovskite A3E O by substitution of A (Ca, Sr, Ba) and/or E (Sn, Pb) atoms. Analysis of an effective model shows that the emergence of twin Dirac cones is general, which makes our argument a promising starting point for finding a singular band structure induced by the competing band inversion and SOC.

  17. Photonic-structured fibers assembled from cellulose nanocrystals with tunable polarized selective reflection.

    PubMed

    Meng, Xin; Pan, Hui; Lu, Tao; Chen, Zhixin; Chen, Yanru; Zhang, Di; Zhu, Shenmin

    2018-08-10

    Fibers with self-assembled photonic structures are of special interest due to their unique photonic properties and potential applications in the smart textile industry. Inspired by nature, the photonic-structured fibers were fabricated through the self-assembly of chiral nematic cellulose nanocrystals (CNCs) and the fibers showed tunably brilliant and selectively reflected colors under crossed-polarization. A simple wet-spinning method was applied to prepare composite fibers of the mixed CNC matrix and polyvinyl alcohol (PVA) additions. During the processing, a cholesteric CNC phase formed photonic fibers through a self-assembly process. The selective color reflection of the composite fibers in the polarized condition showed a typical red-shift tendency with an increase in the PVA content, which was attributed to the increased helical pitch of the CNC. Furthermore, the polarized angle could also alter the reflected colors. Owing to their excellent selective reflection properties under the polarized condition, CNC-based photonic fibers are promising as the next-generation of smart fibers, applied in the fields of specific display and sensing.

  18. The nitric oxide prodrug JS-K and its structural analogues as cancer therapeutic agents.

    PubMed

    Maciag, Anna E; Saavedra, Joseph E; Chakrapani, Harinath

    2009-09-01

    Nitric oxide (NO) prodrugs of the diazeniumdiolate class are routinely used as reliable sources of nitric oxide in chemical and biological laboratory settings. O(2)-(2,4-dinitrophenyl) diazeniumdiolates, which are derivatized forms of ionic diazeniumdiolates, have been found to show potent anti-proliferative activity in a variety of cancer cells, presumably through the effects of NO. One important member of this class of diazeniumdiolates, O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K), has shown promise as a novel cancer therapeutic agent in a number of animal models. This review describes the developments in chemical and biochemical characterization and structure-activity relationship of JS-K and its analogues. In addition, some molecular mechanistic insights into the observed anti-proliferative activity of JS-K are discussed. Finally, a structural motif is presented for O(2)-(aryl) diazeniumdiolate nitric oxide prodrugs that show potency comparable with that of JS-K.

  19. Novel modified steroid derivatives of androstanolone as chemotherapeutic anti-cancer agents.

    PubMed

    El-Far, Mohamed; Elmegeed, Gamal A; Eskander, Emad F; Rady, Hanaa M; Tantawy, Mohamed A

    2009-10-01

    The aim of the present study is to synthesize and evaluate new potential chemotherapeutic anti-tumor agents. Several thiazolo-, pyrido-, pyrano- and lactam steroid derivatives were obtained using 17beta-hydroxy-5alpha-androstan-3-one (androstanolone) 1 as starting steroid. The structure of the novel steroid derivatives was confirmed using the analytical and spectral data. The most pure and structurally promising compounds 7a, 10a, 12b, 18 and 23 were evaluated as anti-tumor agents. The in vitro cytotoxic activity was evaluated against hepatoma cell lines using MTT assay. Also the in vivo anti-tumor activity was evaluated against Ehrlich ascites carcinoma (EAC). The results of the in vitro study showed that at incubation time 72h, in olive oil, compound 7a was the most effective cytotoxic compound with IC(50) of 30 microM, while the effects of compounds 18 and 23 were approximately similar with IC(50) of 37 microM and 35 microM respectively. While the tested compounds when dissolved in DMSO showed approximately the same IC(50) at both 48 and 72h incubation period, compound 23 was the most effective cytotoxic with IC(50) 42 microM at 48h and 40 microM at 72h. The results of the in vivo study showed that all the tested novel compounds at 25mg/kg were effective against EAC. Our novel steroid derivatives are promising candidates as anti-cancer agents, none of the mice treated with our novel derivatives showed any toxic symptoms, but they also completely inhibited tumor growth and retained the hemoglobin content, body weight, and WBCs near normal values and similar to what obtained for the standard drug 5-flurouracil.

  20. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.

    PubMed

    Tan, Wei; Twomey, John; Guo, Dongjie; Madhavan, Krishna; Li, Min

    2010-06-01

    Collagen I is an essential structural and mechanical building block of various tissues, and it is often used as tissue-engineering scaffolds. However, collagen-based constructs reconstituted in vitro often lacks robust fiber structure, mechanical stability, and molecule binding capability. To enhance these performances, the present study developed 3-D collagen-nanotube composite constructs with two types of functionalized carbon nanotubes, carboxylated nanotubes and covalently functionalized nanotubes (CFNTs). The influences of nanotube functionalization and loading concentration on the collagen fiber structure, mechanical property, biocompatibility, and molecule binding were examined. Results revealed that surface modification and loading concentration of nanotubes determined the interactions between nanotubes and collagen fibrils, thus altering the structure and property of nanotube-collagen composites. Scanning electron microscopy and confocal microscopy revealed that the incorporation of CFNT in collagen-based constructs was an effective means of restructuring collagen fibrils because CFNT strongly bound to collagen molecules inducing the formation of larger fibril bundles. However, increased nanotube loading concentration caused the formation of denser fibril network and larger aggregates. Static stress-strain tests under compression showed that the addition of nanotube into collagen-based constructs did not significantly increase static compressive moduli. Creep/recovery testing under compression revealed that CFNT-collagen constructs showed improved mechanical stability under continuous loading. Testing with endothelial cells showed that biocompatibility was highly dependent on nanotube loading concentration. At a low loading level, CFNT-collagen showed higher endothelial coverage than the other tested constructs or materials. Additionally, CFNT-collagen showed capability of binding to other biomolecules to enhance the construct functionality. In conclusion, functionalized nanotube-collagen composites, particularly CFNT-collagen composites, could be promising materials, which provide structural support showing bundled fibril structure, biocompatibility, multifunctionality, and mechanical stability, but rigorous control over chemical modification, loading concentration, and nanotube dispersion are needed.

  1. PIM kinases as therapeutic targets against advanced melanoma

    PubMed Central

    Shannan, Batool; Watters, Andrea; Chen, Quan; Mollin, Stefan; Dörr, Markus; Meggers, Eric; Xu, Xiaowei; Gimotty, Phyllis A.; Perego, Michela; Li, Ling; Benci, Joseph; Krepler, Clemens; Brafford, Patricia; Zhang, Jie; Wei, Zhi; Zhang, Gao; Liu, Qin; Yin, Xiangfan; Nathanson, Katherine L.; Herlyn, Meenhard; Vultur, Adina

    2016-01-01

    Therapeutic strategies for the treatment of metastatic melanoma show encouraging results in the clinic; however, not all patients respond equally and tumor resistance still poses a challenge. To identify novel therapeutic targets for melanoma, we screened a panel of structurally diverse organometallic inhibitors against human-derived normal and melanoma cells. We observed that a compound that targets PIM kinases (a family of Ser/Thr kinases) preferentially inhibited melanoma cell proliferation, invasion, and viability in adherent and three-dimensional (3D) melanoma models. Assessment of tumor tissue from melanoma patients showed that PIM kinases are expressed in pre- and post-treatment tumors, suggesting PIM kinases as promising targets in the clinic. Using knockdown studies, we showed that PIM1 contributes to melanoma cell proliferation and tumor growth in vivo; however, the presence of PIM2 and PIM3 could also influence the outcome. The inhibition of all PIM isoforms using SGI-1776 (a clinically-available PIM inhibitor) reduced melanoma proliferation and survival in preclinical models of melanoma. This was potentiated in the presence of the BRAF inhibitor PLX4720 and in the presence of PI3K inhibitors. Our findings suggest that PIM inhibitors provide promising additions to the targeted therapies available to melanoma patients. PMID:27448973

  2. Development of lightweight reinforced plastic laminates for spacecraft interior applications

    NASA Technical Reports Server (NTRS)

    Hertz, J.

    1975-01-01

    Lightweight, Kevlar - reinforced laminating systems that are non-burning, generate little smoke in the space shuttle environment, and are physically equivalent to the fiberglass/polyimide system used in the Apollo program for non-structural cabin panels, racks, etc. Resin systems representing five generic classes were screened as matrices for Kevlar 49 reinforced laminates. Of the systems evaluated, the polyimides were the most promising with the phenolics a close second. Skybond 703 was selected as the most promising resin candidate. With the exception of compression strength, all program goals of physical and mechanical properties were exceeded. Several prototype space shuttle mobility and translation handrail segments were manufactured using Kevlar/epoxy and Kevlar-graphite/epoxy. This application shows significant weight savings over the baseline aluminum configuration used previous. The hybrid Kevlar-graphite/epoxy is more suitable from a processing standpoint.

  3. Mechanism of Action of Thalassospiramides, A New Class of Calpain Inhibitors

    PubMed Central

    Lu, Liang; Meehan, Michael J.; Gu, Shuo; Chen, Zhilong; Zhang, Weipeng; Zhang, Gen; Liu, Lingli; Huang, Xuhui; Dorrestein, Pieter C.; Xu, Ying; Moore, Bradley S.; Qian, Pei-Yuan

    2015-01-01

    Thalassospiramides comprise a large family of lipopeptide natural products produced by Thalassospira and Tistrella marine bacteria. Here we provide further evidence of their nanomolar inhibitory activity against the human calpain 1 protease. Analysis of structure-activity relationship data supported our hypothesis that the rigid 12-membered ring containing an α,β-unsaturated carbonyl moiety is the pharmacologically active functional group, in contrast to classic electrophilic “warheads” in known calpain inhibitors. Using a combination of chemical modifications, mass spectrometric techniques, site-directed mutagenesis, and molecular modeling, we show the covalent binding of thalassospiramide's α,β-unsaturated carbonyl moiety to the thiol group of calpain's catalytic Cys115 residue by a Michael 1,4-addition reaction. As nanomolar calpain inhibitors with promising selectivity and low toxicity from natural sources are rare, we consider thalassospiramides as promising drug leads. PMID:25740631

  4. Mechanism of action of thalassospiramides, a new class of calpain inhibitors.

    PubMed

    Lu, Liang; Meehan, Michael J; Gu, Shuo; Chen, Zhilong; Zhang, Weipeng; Zhang, Gen; Liu, Lingli; Huang, Xuhui; Dorrestein, Pieter C; Xu, Ying; Moore, Bradley S; Qian, Pei-Yuan

    2015-03-05

    Thalassospiramides comprise a large family of lipopeptide natural products produced by Thalassospira and Tistrella marine bacteria. Here we provide further evidence of their nanomolar inhibitory activity against the human calpain 1 protease. Analysis of structure-activity relationship data supported our hypothesis that the rigid 12-membered ring containing an α,β-unsaturated carbonyl moiety is the pharmacologically active functional group, in contrast to classic electrophilic "warheads" in known calpain inhibitors. Using a combination of chemical modifications, mass spectrometric techniques, site-directed mutagenesis, and molecular modeling, we show the covalent binding of thalassospiramide's α,β-unsaturated carbonyl moiety to the thiol group of calpain's catalytic Cys115 residue by a Michael 1,4-addition reaction. As nanomolar calpain inhibitors with promising selectivity and low toxicity from natural sources are rare, we consider thalassospiramides as promising drug leads.

  5. Programmable resistive-switch nanowire transistor logic circuits.

    PubMed

    Shim, Wooyoung; Yao, Jun; Lieber, Charles M

    2014-09-10

    Programmable logic arrays (PLA) constitute a promising architecture for developing increasingly complex and functional circuits through nanocomputers from nanoscale building blocks. Here we report a novel one-dimensional PLA element that incorporates resistive switch gate structures on a semiconductor nanowire and show that multiple elements can be integrated to realize functional PLAs. In our PLA element, the gate coupling to the nanowire transistor can be modulated by the memory state of the resistive switch to yield programmable active (transistor) or inactive (resistor) states within a well-defined logic window. Multiple PLA nanowire elements were integrated and programmed to yield a working 2-to-4 demultiplexer with long-term retention. The well-defined, controllable logic window and long-term retention of our new one-dimensional PLA element provide a promising route for building increasingly complex circuits with nanoscale building blocks.

  6. Computational design of molecules for an all-quinone redox flow battery.

    PubMed

    Er, Süleyman; Suh, Changwon; Marshak, Michael P; Aspuru-Guzik, Alán

    2015-02-01

    Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH 2 ) ( i.e. , two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships.

  7. Guided wave propagation and spectral element method for debonding damage assessment in RC structures

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhu, Xinqun; Hao, Hong; Ou, Jinping

    2009-07-01

    A concrete-steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the concrete-steel interface.

  8. Visualization of retinal vascular structure and perfusion with a nonconfocal adaptive optics scanning light ophthalmoscope

    PubMed Central

    Sulai, Yusufu N.; Scoles, Drew; Harvey, Zachary; Dubra, Alfredo

    2015-01-01

    Imaging of the retinal vascular structure and perfusion was explored by confocal illumination and nonconfocal detection in an adaptive optics scanning light ophthalmoscope (AOSLO), as an extension of the work by Chui et al. [Biomed. Opt. Express 3, 2537 (2012)]. Five different detection schemes were evaluated at multiple retinal locations: circular mask, annular mask, circular mask with filament, knife-edge, and split-detector. Given the superior image contrast in the reflectance and perfusion maps, the split-detection method was further tested using pupil apodization, polarized detection, and four different wavelengths. None of these variations provided noticeable contrast improvement. The noninvasive visualization of capillary flow and structure provided by AOSLO split-detection shows great promise for studying ocular and systemic conditions that affect the retinal vasculature. PMID:24690655

  9. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring.

    PubMed

    Baptista, Fabricio G; Budoya, Danilo E; de Almeida, Vinicius A D; Ulson, Jose Alfredo C

    2014-01-10

    The electromechanical impedance (EMI) technique is considered to be one of the most promising methods for developing structural health monitoring (SHM) systems. This technique is simple to implement and uses small and inexpensive piezoelectric sensors. However, practical problems have hindered its application to real-world structures, and temperature effects have been cited in the literature as critical problems. In this paper, we present an experimental study of the effect of temperature on the electrical impedance of the piezoelectric sensors used in the EMI technique. We used 5H PZT (lead zirconate titanate) ceramic sensors, which are commonly used in the EMI technique. The experimental results showed that the temperature effects were strongly frequency-dependent, which may motivate future research in the SHM field.

  10. Study of Thermal Electrical Modified Etching for Glass and Its Application in Structure Etching

    PubMed Central

    Zhan, Zhan; Li, Wei; Yu, Lingke; Wang, Lingyun; Sun, Daoheng

    2017-01-01

    In this work, an accelerating etching method for glass named thermal electrical modified etching (TEM etching) is investigated. Based on the identification of the effect in anodic bonding, a novel method for glass structure micromachining is proposed using TEM etching. To validate the method, TEM-etched glasses are prepared and their morphology is tested, revealing the feasibility of the new method for micro/nano structure micromachining. Furthermore, two kinds of edge effect in the TEM and etching processes are analyzed. Additionally, a parameter study of TEM etching involving transferred charge, applied pressure, and etching roughness is conducted to evaluate this method. The study shows that TEM etching is a promising manufacture method for glass with low process temperature, three-dimensional self-control ability, and low equipment requirement. PMID:28772521

  11. Lagrangian space consistency relation for large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  12. Lagrangian space consistency relation for large scale structure

    DOE PAGES

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-09-29

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias & Riotto and Peloso & Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » Furthermore, the simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  13. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors.

    PubMed

    Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao

    2014-08-27

    A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.

  14. High power microwave source with a three dimensional printed metamaterial slow-wave structure.

    PubMed

    French, David M; Shiffler, Don

    2016-05-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  15. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, David M.; Shiffler, Don

    2016-05-15

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for buildingmore » these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.« less

  16. Structure, mechanical and tribological properties of TiSiC films deposited by magnetron sputtering segment target

    NASA Astrophysics Data System (ADS)

    Jiang, Jinlong; He, Kaichen; He, XingXing; Huang, Hao; Pang, Xianjuan; Wei, Zhiqiang

    2017-12-01

    In this work, the TiSiC films were deposited by magnetron sputtering segment target with various areal ratio of Ti80Si20 to C. The effects of segment target component on the structure, mechanical and tribological properties of the films were investigated. The results revealed that the deposited films exhibited a structural transform from a cubic TiC structure to a nanocomposite structure with nanocrystalline TiC in a-C:Si matrix, and finally x-ray amorphous structures with decreasing areal ratio of Ti80Si20 to C. The TiSiC film deposited at the Ti80Si20:C areal ratio of 7:7 showed superior mechanical and tribological properties such as high hardness (18.6 Gpa), good scratch resistant (46 N), low friction coefficient (0.2) and low wear rate (8.6  ×  10-7 mm3 Nm-1), which suggests that it is a promising candidate for the protective films.

  17. Iterative tensor voting for perceptual grouping of ill-defined curvilinear structures.

    PubMed

    Loss, Leandro A; Bebis, George; Parvin, Bahram

    2011-08-01

    In this paper, a novel approach is proposed for perceptual grouping and localization of ill-defined curvilinear structures. Our approach builds upon the tensor voting and the iterative voting frameworks. Its efficacy lies on iterative refinements of curvilinear structures by gradually shifting from an exploratory to an exploitative mode. Such a mode shifting is achieved by reducing the aperture of the tensor voting fields, which is shown to improve curve grouping and inference by enhancing the concentration of the votes over promising, salient structures. The proposed technique is validated on delineating adherens junctions that are imaged through fluorescence microscopy. However, the method is also applicable for screening other organisms based on characteristics of their cell wall structures. Adherens junctions maintain tissue structural integrity and cell-cell interactions. Visually, they exhibit fibrous patterns that may be diffused, heterogeneous in fluorescence intensity, or punctate and frequently perceptual. Besides the application to real data, the proposed method is compared to prior methods on synthetic and annotated real data, showing high precision rates.

  18. All-carbon sp-sp2 hybrid structures: Geometrical properties, current rectification, and current amplification

    PubMed Central

    Zhang, Zhenhua; Zhang, Junjun; Kwong, Gordon; Li, Ji; Fan, Zhiqiang; Deng, Xiaoqing; Tang, Guiping

    2013-01-01

    All-carbon sp-sp2 hybrid structures comprised of a zigzag-edged trigonal graphene (ZTG)and carbon chains are proposed and constructed as nanojunctions. It has been found that such simple hybrid structures possess very intriguing propertiesapp:addword:intriguing. The high-performance rectifying behaviors similar to macroscopic p-n junction diodes, such as a nearly linear positive-bias I-V curve (metallic behavior), a very small leakage current under negative bias (insulating behavior), a rather low threshold voltage, and a large bias region contributed to a rectification, can be predicted. And also, a transistor can be built by such a hybrid structure, which can show an extremely high current amplification. This is because a sp-hybrid carbon chain has a special electronic structure which can limit the electronic resonant tunneling of the ZTG to a unique and favorable situation. These results suggest that these hybrid structures might promise importantly potential applications for developing nano-scale integrated circuits. PMID:23999318

  19. Erasers of Histone Acetylation: The Histone Deacetylase Enzymes

    PubMed Central

    Seto, Edward; Yoshida, Minoru

    2014-01-01

    Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. In humans, there are 18 HDAC enzymes that use either zinc- or NAD+-dependent mechanisms to deacetylate acetyl lysine substrates. Although removal of histone acetyl epigenetic modification by HDACs regulates chromatin structure and transcription, deacetylation of nonhistones controls diverse cellular processes. HDAC inhibitors are already known potential anticancer agents and show promise for the treatment of many diseases. PMID:24691964

  20. Development of a method for fabricating metallic matrix composite shapes by a continuous mechanical process

    NASA Technical Reports Server (NTRS)

    Divecha, A. P.

    1974-01-01

    Attempts made to develop processes capable of producing metal composites in structural shapes and sizes suitable for space applications are described. The processes must be continuous and promise to lower fabrication costs. Special attention was given to the aluminum boride (Al/b) composite system. Results show that despite adequate temperature control, the consolidation characteristics did not improve as expected. Inadequate binder removal was identified as the cause responsible. An Al/c (aluminum-graphite) composite was also examined.

  1. Antimycobacterial activity generated by the amide coupling of (-)-fenchone derived aminoalcohol with cinnamic acids and analogues.

    PubMed

    Slavchev, Ivaylo; Dobrikov, Georgi M; Valcheva, Violeta; Ugrinova, Iva; Pasheva, Evdokia; Dimitrov, Vladimir

    2014-11-01

    Aminoethyl substituted 2-endo-fenchol prepared from (-)-fenchone was used as scaffold for the synthesis of series of 31 amide structures by N-acylation applying cinnamic acids and analogues. The evaluation of their in vitro activity against Mycobacterium tuberculosis H37Rv showed for some of them promising activity-up to 0.2 μg/ml, combined with relatively low cytotoxicity of the selected active compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag 8 SiSe 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heep, Barbara K.; Weldert, Kai S.; Krysiak, Yasar

    Superionic chalcopyrites have recently attracted interest in their use as potential thermoelectric materials because of extraordinary low thermal conductivities. To overcome long-term stability issues in thermoelectric generators using superionic materials at evaluated temperatures, materials need to be found that show good thermoelectric performance at moderate temperatures. Here, we present the structural and thermoelectric properties of the argyrodite Ag 8SiSe 6, which exhibits promising thermoelectric performance close to room temperature.

  3. Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-05-01

    Ring-opening polymerization (ROP) of disilaoxacyclopentanes has proven to be an excellent approach to sol-gel type hybrid organic-inorganic materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared by an organic base or Bronsted acid (formic or triflic acid), without the use of solvents and water, they have low VOC's and show little shrinkage during processing.

  4. Novel ROCK inhibitors for the treatment of pulmonary arterial hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Duncan; Hollingworth, Greg; Soldermann, Nicolas

    A novel class of selective inhibitors of ROCK1 and ROCK2 has been identified by structural based drug design. PK/PD experiments using a set of highly selective Rho kinase inhibitors suggest that systemic Rho kinase inhibition is linked to a reversible reduction in lymphocyte counts. These results led to the consideration of topical delivery of these molecules, and to the identification of a lead molecule 7 which shows promising PK and PD in a murine model of pulmonary hypertension after intra-tracheal dosing.

  5. Structure and dynamics of solvated polyethylenimine chains

    NASA Astrophysics Data System (ADS)

    Beu, Titus A.; Farcaş, Alexandra

    2017-12-01

    Polimeric gene-delivery carriers have attracted great interest in recent years, owing to their applicability in gene therapy. In particular, cationic polymers represent the most promising delivery vectors for nucleic acids into the cells. This study presents extensive atomistic molecular dynamics simulations of linear polyethylenimine chains. The simulations show that the variation of the chain size and protonation fraction causes a substantial change of the diffusion coefficient. Examination of the solvated chains suggests the possibility of controlling the polymer diffusion mobility in solution.

  6. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  7. Facile and template-free method toward chemical synthesis of polyaniline film/nanotube structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei; Zhu, Yisi; Torres, Jorge

    A facile and template-free method is reported to synthesize a new thin film structure: polyaniline (PANI) film/nanotubes (F/N) structure. The PANI F/N is a 100-nm thick PANI film embedded with PANI nanotubes. This well-controlled method requires no surfactant or organic acid as well as relatively low concentration of reagents. Synthesis condition studies reveal that aniline oligomers with certain structures are responsible for guiding the growth of the nanotubes. Electrical characterization also indicates that the PANI F/N possesses similar field-effect transistor characteristics to bare PANI film. With its 20% increased surface-area-to-volume (S/V) ratio contributed by surface embedded nanotubes and the excellentmore » p-type semiconducting characteristic, PANI F/N shows clear superiority compared with bare PANI film. Such advantages guarantee the PANI F/N a promising future toward the development of ultra-high sensitivity and low-cost biosensors.« less

  8. Monodisperse Carbon Nanospheres with Hierarchical Porous Structure as Electrode Material for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Xiutao; Xia, Hui; Liang, Zhongguan; Li, Haiyan; Yu, Hongwen

    2017-09-01

    Carbon nanospheres with distinguishable microstructure were prepared by carbonization and subsequent KOH activation of F108/resorcinol-formaldehyde composites. The dosage of triblock copolymer Pluronic F108 is crucial to the microstructure differences. With the adding of F108, the polydisperse carbon nanospheres (PCNS) with microporous structure, monodisperse carbon nanospheres (MCNS) with hierarchical porous structure, and agglomerated carbon nanospheres (ACNS) were obtained. Their microstructure and capacitance properties were carefully compared. As a result of the synergetic effect of mono-dispersion spheres and hierarchical porous structures, the MCNS sample shows improved electrochemical performance, i.e., the highest specific capacitance of 224 F g-1 (0.2 A g-1), the best rate capability (73% retention at 20 A g-1), and the most excellent capacitance retention of 93% over 10,000 cycles, making it to be the promising electrode material for high-performance supercapacitors.

  9. Modeling helical proteins using residual dipolar couplings, sparse long-range distance constraints and a simple residue-based force field

    PubMed Central

    Eggimann, Becky L.; Vostrikov, Vitaly V.; Veglia, Gianluigi; Siepmann, J. Ilja

    2013-01-01

    We present a fast and simple protocol to obtain moderate-resolution backbone structures of helical proteins. This approach utilizes a combination of sparse backbone NMR data (residual dipolar couplings and paramagnetic relaxation enhancements) or EPR data with a residue-based force field and Monte Carlo/simulated annealing protocol to explore the folding energy landscape of helical proteins. By using only backbone NMR data, which are relatively easy to collect and analyze, and strategically placed spin relaxation probes, we show that it is possible to obtain protein structures with correct helical topology and backbone RMS deviations well below 4 Å. This approach offers promising alternatives for the structural determination of proteins in which nuclear Overha-user effect data are difficult or impossible to assign and produces initial models that will speed up the high-resolution structure determination by NMR spectroscopy. PMID:24639619

  10. Photoelectron diffraction and holography: Some new directions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadley, C.S.

    1993-08-01

    Photoelectron diffraction has by now become a versatile and powerful technique for studying surface structures, with special capabilities for resolving chemical and magnetic states of atoms and deriving direct structural information from both forward scattering along bond directions and back-scattering path length differences. Further fitting experiment to theory can lead to structural accuracies in the {plus_minus}0.03 ){Angstrom} range. Holographic inversions of such diffraction data also show considerable promise for deriving local three-dimensional structures around a given emitter with accuracies of {plus_minus}0.2--0.3 {Angstrom}. Resolving the photoelectron spin in some way and using circularly polarized radiation for excitation provide added dimensions formore » the study of magnetic systems and chiral experimental geometries. Synchrotron radiation with the highest brightness and energy resolution, as well as variable polarization, is crucial to the full exploitation of these techniques.« less

  11. Local structure and structural rigidity of the green phosphor β-SiAlON:Eu{sup 2+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brgoch, J., E-mail: jbrgoch@uh.edu; Gaultois, M. W., E-mail: mgaultois@mrl.ucsb.edu; Seshadri, R.

    Eu{sup 2+} inserted in β-Si{sub 3−x}Al{sub x}O{sub x}N{sub 4−x} is a material that shows exceptional promise as a green-emitting phosphor. Synchrotron X-ray and neutron scattering, in conjunction with first-principles calculations and Eu L{sub 3} X-ray absorption measurements, yield a consistent picture of the composition, and the favorable position for Eu{sup 2+} substitution in the crystal structure. The Debye temperature Θ{sub D}, which is a proxy for structural rigidity relating to effectiveness as a phosphor, is very high for the starting β-Si{sub 3}N{sub 4} framework and is determined to decrease only slightly for the small amounts of Al{sup 3+} and O{supmore » 2−} co-substitution that are required for charge balance associated with Eu{sup 2+} insertion.« less

  12. Microwave assisted growth of nanorods vanadium dioxide VO2 (R): structural and electrical properties

    NASA Astrophysics Data System (ADS)

    Derkaoui, I.; Khenfouch, M.; Mothudi, B. M.; Moloi, S. J.; Zorkani, I.; Jorio, A.; Maaza, M.

    2018-03-01

    Nanostructured metal oxides have attracted a lot of attention recently owning to their unique structural advantages and demonstrated promising chemical and physical properties for various applications. In this study, we report the structural and electrical properties of vanadium dioxide VO2 (R) prepared via a single reaction microwave (SRC) synthesis. Our results are revealing that the components of VO2 (R) films have a rod-like shape with a uniform size distribution. The nanorods with very smooth and flat surfaces have a typical length of up to 2μm and a width of about several nanometers. The structural investigations reveal the high crystallinity of VO2 (R) ensuring good electrical contact and showing a high conductivity as a function of temperature. This synthesis method provides a new simple route to fabricate one-dimensional nanostructured metal oxides which is suitable for a large field of applications especially for smart windows.

  13. Higher Throughput Calorimetry: Opportunities, Approaches and Challenges

    PubMed Central

    Recht, Michael I.; Coyle, Joseph E.; Bruce, Richard H.

    2010-01-01

    Higher throughput thermodynamic measurements can provide value in structure-based drug discovery during fragment screening, hit validation, and lead optimization. Enthalpy can be used to detect and characterize ligand binding, and changes that affect the interaction of protein and ligand can sometimes be detected more readily from changes in the enthalpy of binding than from the corresponding free-energy changes or from protein-ligand structures. Newer, higher throughput calorimeters are being incorporated into the drug discovery process. Improvements in titration calorimeters come from extensions of a mature technology and face limitations in scaling. Conversely, array calorimetry, an emerging technology, shows promise for substantial improvements in throughput and material utilization, but improved sensitivity is needed. PMID:20888754

  14. Polymer-stabilized liquid crystalline topological defect network for micro-pixelated optical devices

    NASA Astrophysics Data System (ADS)

    Araoka, Fumito; Le, Khoa V.; Fujii, Shuji; Orihara, Hiroshi; Sasaki, Yuji

    2018-02-01

    Spatially and temporally controlled topological defects in nematic liquid crystals (NLCs) are promising for its potential in optical applications. Utilization of self-organization is a key to fabricate complex micro- and nano-structures which are often difficult to obtain by conventional lithographic tools. Using photo-polymerization technique, here we show a polymer-stabilized NLC having a micro-pixelated structure of regularly ordered umbilical defects which are induced by an electric field. Due to the formation of polymer network, the self-organized pattern is kept stable without deterioration. Moreover, the polymer network allows to template other LCs whose optical properties can be tuned with external stimuli such as temperature and electric fields.

  15. Tubular nanostructured materials for bioapplications

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Chen, Linfeng; Srivatsan, Malathi; Varadan, Vijay K.

    2009-03-01

    Tubular nanomaterials possess hollow structures as well as high aspect ratios. In addition to their unique physical and chemical properties induced by their nanoscale dimensions, their inner voids and outer surfaces make them ideal candidates for a number of biomedical applications. In this work, three types of tubular nanomaterials including carbon nanotubes, hematite nanotubes, and maghemite nanotubes, were synthesized by different chemical techniques. Their structural and crystalline properties were characterized. For potential bioapplications of tubular nanomaterials, experimental investigations were carried out to demonstrate the feasibility of using carbon nanotubes, hematite nanotubes, and maghemite nanotubes in glucose sensing, neuronal growth, and drug delivery, respectively. Preliminary results show the promise of tubular nanomaterials in future biomedical applications.

  16. Molecular hydrogen sorption capacity of D-shwarzites

    NASA Astrophysics Data System (ADS)

    Krasnov, Pavel O.; Shkaberina, Guzel S.; Kuzubov, Alexander A.; Kovaleva, Evgenia A.

    2017-09-01

    Schwarzites are one of the most well-known forms of nanoporous carbon. High porosity and large surface area of these materials make them promising candidates for molecular hydrogen storage. Quantum-chemical modeling showed that hydrogen weight fraction inside D-schwarzite structure depends on the number of atoms per unit cell that determines its size and morphology. D480 schwarzite has demonstrated the largest value of hydrogen sorption capacity amongst the structures considered in this work. It reaches 7.65% at the technologically acceptable values of temperature and pressure (300 K and 10 MPa). Though being lower than that required by DOE (9%), this amount can be increased by using schwarzites with larger unit cell corresponding to the larger surface area.

  17. A new Keggin-type polyoxometalate catalyst for degradation of aqueous organic contaminants

    NASA Astrophysics Data System (ADS)

    Olgun, Asim; Çolak, Alper Tolga; Gübbük, İ. Hilal; Şahin, Onur; Kanar, Ebru

    2017-04-01

    In this study, a new polyoxometalate, K16[Ni(H2O)6]2[BW12O40]4·48H2O (1) was synthesized at room temperature and characterized by X-ray single crystal diffractions, elemental analyses, IR spectra, and thermo gravimetric analyses (TGA). Crystal structure analysis reveals that compound 1 exhibits a supramolecular structure containing one Keggin-type [BW12O40]4 heteropoly anion. The catalytic properties of this molecule for the degradation of Methyl red (MR), Rhodamine B (RhB), Methyl orange (MO) and Congo red (CR) were investigated. The results show that the compound 1 is a promising catalyst candidate for dye degradation.

  18. Design of nano-groove photonic crystal cavities in lithium niobate.

    PubMed

    Li, Yihang; Wang, Cheng; Loncar, Marko

    2015-06-15

    We propose a novel design of photonic-crystal nanobeam cavities in lithium niobate (LN) for both TE and TM modes, addressing problems associated with tilted sidewalls, which commonly result from dry etching. Using optimized periodical nano-groove structures, the proposed devices could achieve quality factors as high as 3.9×10(6) with a modal volume of 5.0 (λ/n)3. We also show that such a design is promising for applications in nonlinear optics by theoretically predicting the efficiencies for electro-optic modulation and second-harmonic generation. The proposed nano-groove structures and design rules could also be applied for other material platforms that possess tilted sidewalls.

  19. Iptycene-based stationary phase with three-dimensional aromatic structure for highly selective separation of H-bonding analytes and aromatic isomers.

    PubMed

    Yang, Xiaohong; Han, Ying; Qi, Meiling; Chen, Chuanfeng

    2016-05-06

    Unique structures and molecular recognition ability endow iptycene derivatives with great potential as stationary phases in chromatography, which, however, has not been explored yet. Herein, we report the first example of utilizing a pentiptycene quinone (PQ) for gas chromatographic (GC) separations. Remarkably, the statically coated capillary column with the stationary phase achieved extremely high column efficiency of 4800 plates/m. It exhibited preferential retention and high resolving capability for H-bonding and aromatic analytes and positional isomers, showing advantages over the ordinary polysiloxane phase. Moreover, the fabricated iptycene column showed excellent separation repeatability with RSD values of 0.02-0.06% for intra-day, 0.20-0.35% for inter-day and 3.1-5.5% for between-column, respectively. In conclusion, iptycene derivatives as a new class of stationary phases show promising future for their use in GC separations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    NASA Astrophysics Data System (ADS)

    Isaac, Rohan; Goetz, Katelyn P.; Roberts, Drew; Jurchescu, Oana D.; McNeil, L. E.

    2018-02-01

    Charge-transfer (CT) complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA) confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD) results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene) and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  1. Persistent electrochemical performance in epitaxial VO 2(B)

    DOE PAGES

    Lee, Shinbuhm; Sun, Xiao -Guang; Lubimtsev, Andrew A.; ...

    2017-03-07

    Discovering high-performance energy storage materials is indispensable for renewable energy, electric vehicle performance, and mobile computing. Owing to the open atomic framework and good room temperature conductivity, bronze-phase vanadium dioxide [VO 2(B)] has been regarded as a highly promising electrode material for Li ion batteries. However, previous attempts were unsuccessful to show the desired cycling performance and capacity without chemical modification. Here, we show with epitaxial VO 2(B) films that one can accomplish the theoretical limit for capacity with persistent charging–discharging cyclability owing to the high structural stability and unique open pathways for Li ion conduction. Atomic-scale characterization by scanningmore » transmission electron microscopy and density functional theory calculations also reveal that the unique open pathways in VO 2(B) provide the most stable sites for Li adsorption and diffusion. Furthermore, this work ultimately demonstrates that VO 2(B) is a highly promising energy storage material and has no intrinsic hindrance in achieving superior cyclability with a very high power and capacity in a Li-ion conductor.« less

  2. ARTICLES: Microwave Assisted Synthesis of a New Triplet Iridium(III) Pyrazine Complex

    NASA Astrophysics Data System (ADS)

    Wu, Qiu-hua; Wang, Chuan-hong; Song, Xi-ming; Zhang, Guo-lin

    2010-06-01

    A new cyclometalated iridium(III) complex Ir(DPP)3 (DPP = 2,3-diphenylpyrazine) was prepared by reaction of DPP with iridium trichloride hydrate under microwave irradiation. The structure of the complex was confirmed by elemental analysis, 1H NMR, and mass spectroscopy. The UV-Vis absorption and photoluminescent properties of the complex were investigated. The complex shows strong 1MLCT (singlet metal to ligand charge-transfer) and 3MLCT (triplet metal to ligand charge-transfer) absorption at 382 and 504 nm, respectively. The complex also shows strong photoluminescence at 573 nm at room temperature. These results suggest the complex to be a promising phosphorescent material.

  3. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  4. 1-Formyl-3-phenyl-5-(4-isopropylphenyl)-2-pyrazoline: Synthesis, characterization, antimicrobial activity and DFT studies

    NASA Astrophysics Data System (ADS)

    Sid, Assia; Messai, Amel; Parlak, Cemal; Kazancı, Nadide; Luneau, Dominique; Keşan, Gürkan; Rhyman, Lydia; Alswaidan, Ibrahim A.; Ramasami, Ponnadurai

    2016-10-01

    The structure of 1-formyl-3-phenyl-5-(4-isopropylphenyl)-2-pyrazoline synthesized as single crystal was investigated by FTIR, NMR, XRD. Experimental data were complemented by quantum mechanical calculations. XRD data show that the compound crystallizes in the triclinic system (P-1) via trans isomer (a = 6.4267(4) Å, b = 10.9259(12) Å, c = 12.4628(9) Å and α = 102.894(8)°, β = 102.535(6)°, γ = 101.633(7)°). Anti-microbial screening results indicate that the compound shows promising activity. The theoretically predicted and experimentally obtained parameters reveal further insight into pyrazoline systems.

  5. STREAMFINDER II: A possible fanning structure parallel to the GD-1 stream in Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Malhan, Khyati; Ibata, Rodrigo A.; Goldman, Bertrand; Martin, Nicolas F.; Magnier, Eugene; Chambers, Kenneth

    2018-05-01

    STREAMFINDER is a new algorithm that we have built to detect stellar streams in an automated and systematic way in astrophysical datasets that possess any combination of positional and kinematic information. In Paper I, we introduced the methodology and the workings of our algorithm and showed that it is capable of detecting ultra-faint and distant halo stream structures containing as few as ˜15 members (ΣG ˜ 33.6 mag arcsec-2) in the Gaia dataset. Here, we test the method with real proper motion data from the Pan-STARRS1 survey, and by selecting targets down to r0 = 18.5 mag we show that it is able to detect the GD-1 stellar stream, whereas the structure remains below a useful detection limit when using a Matched Filter technique. The radial velocity solutions provided by STREAMFINDER for GD-1 candidate members are found to be in good agreement with observations. Furthermore, our algorithm detects a ˜ {40}° long structure approximately parallel to GD-1, and which fans out from it, possibly a sign of stream-fanning due to the triaxiality of the Galactic potential. This analysis shows the promise of this method for detecting and analysing stellar streams in the upcoming Gaia DR2 catalogue.

  6. Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterisation and mechanical properties.

    PubMed

    Jia, Jiangang; Siddiq, Abdur R; Kennedy, Andrew R

    2015-08-01

    Porous Ti with open porosity in the range of 70-80% has been made using Ti powder and a particulate leaching technique using porous, spherical, NaCl beads. By incorporating the Ti powder into a pre-existing network of salt beads, by tapping followed by compaction, salt dissolution and "sintering", porous structures with uniform density, pore and strut sizes and a predictable level of connectivity have been produced, showing a significant improvement on the structures made by conventional powder mixing processes. Parts made using beads with sizes in the range of 0.5-1.0 mm show excellent promise as porous metals for medical devices, showing structures and porosities similar to those of commercial porous metals used in this sector, with inter-pore connections that are similar to trabecular bone. The elastic modulus (0.86 GPa) is lower than those for commercial porous metals and more closely matches that of trabecular bone and good compressive yield strength is retained (21 MPa). The ability to further tailor the structure, in terms of the density and the size of the pores and interconnections has also been demonstrated by immersion of the porous components in acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs.

    PubMed

    Saini, Vipin K; Pires, João

    2017-05-01

    Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds (VOCs), particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks (MOFs), referred as ZMF, has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5 (ZSM-5) Zeolitic structure, referred as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area, pore volume, and VOCs adsorption capacity, as compared to ZF-structure. Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs (benzene, n-hexane, and cyclohexane), using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene>n-hexane>cyclohexane. In comparison with MOF-199 and ZF, the composite structure ZMF shows improvement in selectivity for benzene from other two VOCs. Further, improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units. Copyright © 2016. Published by Elsevier B.V.

  8. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.

    PubMed

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-14

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  9. Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica.

    PubMed

    Ji, Yazhou; Caskey, Christopher; Richards, Ryan M

    2015-07-09

    As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability.

  10. Synthesis and Catalytic Performance of Gold Intercalated in the Walls of Mesoporous Silica

    PubMed Central

    Ji, Yazhou; Caskey, Christopher; Richards, Ryan M.

    2015-01-01

    As a promising catalytically active nano reactor, gold nanoparticles intercalated in mesoporous silica (GMS) were successfully synthesized and properties of the materials were investigated. We used a one pot sol-gel approach to intercalate gold nano particles in the walls of mesoporous silica. To start with the synthesis, P123 was used as template to form micelles. Then TESPTS was used as a surface modification agent to intercalate gold nano particles. Following this process, TEOS was added in as a silica source which underwent a polymerization process in acid environment. After hydrothermal processing and calcination, the final product was acquired. Several techniques were utilized to characterize the porosity, morphology and structure of the gold intercalated mesoporous silica. The results showed a stable structure of mesoporous silica after gold intercalation. Through the oxidation of benzyl alcohol as a benchmark reaction, the GMS materials showed high selectivity and recyclability. PMID:26274058

  11. The State of the Summer: a Review of Child Summer Weight Gain and Efforts to Prevent It.

    PubMed

    Tanskey, Lindsay A; Goldberg, Jeanne; Chui, Kenneth; Must, Aviva; Sacheck, Jennifer

    2018-06-01

    Accumulating evidence shows that children in the USA gain weight more rapidly during the summer, when school is not in session. This narrative review spanning 2007 to 2017 summarizes efforts to characterize the problem, identify key determinants, and intervene to prevent excess summer weight gain. Summer weight gain remains a concern for elementary-age youth. Few studies have examined its determinants, but unfavorable summertime shifts in diet, physical activity, sedentary time, screen media use, and sleep have been reported. Increased structure is thought to protect against summer weight gain. Interventions to support physical activity and nutrition during the summer show promise, though large-scale impact on weight outcomes remains to be seen. Supporting health behaviors during the summer remains a priority for obesity prevention researchers, practitioners, and policymakers. Strategies to expand access to structured programs and reach beyond such programs to improve behaviors at home are of particular importance.

  12. New possibility on InZnO nano thin film for green emissive optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Sugumaran, Sathish; Noor Bin Ahmad, Mohd; Faizal Jamlos, Mohd; Bellan, Chandar Shekar; Chandran, Sharmila; Sivaraj, Manoj

    2016-04-01

    Indium zinc oxide (InZnO) nano thin film was prepared from InZnO nanoparticles (NPs) by thermal evaporation technique. Fourier transform infrared spectroscopy showed the presence of metal-oxide bond. X-ray diffraction pattern revealed the mixed phase structure. The presence of elements In, Zn and O were identified from energy dispersive X-ray analysis. Size of the NPs was found to be 171 and 263 nm by transmission electron microscopy. Scanning electron microscopy image showed the spherical shape uniform morphology with uniform distribution grains. Photoluminescence spectrum exhibited a broad green emission for InZnO nano thin film. The acquired results of structure, smooth morphology and photoluminescence property suggested that the InZnO nano thin film to be a promising material for room temperature green emissive optoelectronic, laser diodes, solar cells and other optical devices.

  13. Synthesis and structure-activity relationship of novel cinnamamide derivatives as antidepressant agents.

    PubMed

    Han, Min; Ma, Xiaohui; Jin, Yuanpeng; Zhou, Wangyi; Cao, Jing; Wang, Yahu; Zhou, Shuiping; Wang, Guocheng; Zhu, Yonghong

    2014-11-15

    Cinnamamide 3a, a leading compound with antidepressant-like activity, and its derivatives were synthesized and their antidepressant activity and structure-activity relationship were investigated. Most of the compounds with trifluoromethyl group in methylenedioxyphenyl moiety (3f, 4b-c and 6a-b) exhibited significant antidepressant activity, measured in terms of percentage decrease in immobility duration by tail suspension test. In addition, the dose-dependent antidepressant effect of the most potent compound 3f was subsequently confirmed in tail suspension test and forced swim test. The test results showed that 3f was equal to or more effective than the standard drug fluoxetine at a concentration of 10mg/kg. Furthermore, compound 3f did not show any central nervous system stimulant properties in the open-field test and the preliminary results were promising enough to warrant further detailed antidepressant research around this scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Theoretical study on electronic properties of MoS{sub 2} antidot lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Li; Chen, Guangde; Ye, Honggang, E-mail: hgye@mail.xjtu.edu.cn

    2014-09-21

    Motivated by the state of the art method for etching hexagonal array holes in molybdenum disulfide (MoS{sub 2}), the electronic properties of MoS{sub 2} antidot lattices (MoS{sub 2}ALs) with zigzag edge were studied with first-principles calculations. Monolayer MoS{sub 2}ALs are semiconducting and the band gaps converge to constant values as the supercell area increases, which can be attributed to the edge effect. Multilayer MoS{sub 2}ALs and chemical adsorbed MoS{sub 2}ALs by F atoms show metallic behavior, while the structure adsorbed with H atoms remains to be semiconducting with a tiny bandgap. Our results show that forming periodically repeating structures inmore » MoS{sub 2} can develop a promising technique for engineering nano materials and offer new opportunities for designing MoS{sub 2}-based nanoscale electronic devices and chemical sensors.« less

  15. Structural and biocompatibility properties of dextran from Weissella cibaria JAG8 as food additive.

    PubMed

    Tingirikari, Jagan Mohan Rao; Kothari, Damini; Shukla, Rishikesh; Goyal, Arun

    2014-09-01

    Dextran produced from Weissella cibaria JAG8 was purified and characterized. The molecular mass of dextran as determined by the gel filtration and copper bicinchoninate method was approximately, 800 kDa. Monosaccharide analysis revealed that the polysaccharide comprised only glucose units. Dynamic light scattering study confirmed the mono-disperse nature of dextran with hydrodynamic radius of 900 nm. Surface morphology study of dextran by scanning electron microscopy showed the porous web like structure. Cytotoxicity studies on human cervical cancer (HeLa) cell line showed non-toxic and biocompatible nature of dextran. The relative browning for dextran from W. cibaria JAG8 was similar to commercial prebiotic Nutraflora P-95 and 3-fold lower than Raftilose P-95. Synthesis of dextran by dextransucrase treated, sucrose-supplemented skimmed milk revealed the promising potential of dextran as a food additive.

  16. Label-Free Direct Detection of miRNAs with Poly-Silicon Nanowire Biosensors

    PubMed Central

    Gong, Changguo; Qi, Jiming; Xiao, Han; Jiang, Bin; Zhao, Yulan

    2015-01-01

    Background The diagnostic and prognostic value of microRNAs (miRNAs) in a variety of diseases is promising. The novel silicon nanowire (SiNW) biosensors have advantages in molecular detection because of their high sensitivity and fast response. In this study, poly-crystalline silicon nanowire field-effect transistor (poly-SiNW FET) device was developed to achieve specific and ultrasensitive detection of miRNAs without labeling and amplification. Methods The poly-SiNW FET was fabricated by a top–down Complementary Metal Oxide Semiconductor (CMOS) wafer fabrication based technique. Single strand DNA (ssDNA) probe was bind to the surface of the poly-SiNW device which was silanated and aldehyde-modified. By comparing the difference of resistance value before and after ssDNA and miRNA hybridization, poly-SiNW device can be used to detect standard and real miRNA samples. Results Poly-SiNW device with different structures (different line width and different pitch) was applied to detect standard Let-7b sample with a detection limitation of 1 fM. One-base mismatched sequence could be distinguished meanwhile. Furthermore, these poly-SiNW arrays can detect snRNA U6 in total RNA samples extracted from HepG2 cells with a detection limitation of 0.2 μg/mL. In general, structures with pitch showed better results than those without pitch in detection of both Let-7b and snRNA U6. Moreover, structures with smaller pitch showed better detection efficacy. Conclusion Our findings suggest that poly-SiNW arrays could detect standard and real miRNA sample without labeling or amplification. Poly-SiNW biosensor device is promising for miRNA detection. PMID:26709827

  17. Three dimensional (3D) microstructure-based finite element modeling of Al-SiC nanolaminates using focused ion beam (FIB) tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, Carl R.

    Al-SiC nanolaminate composites show promise as high performance coating materials due to their combination of strength and toughness. Although a significant amount of modeling effort has been focused on materials with an idealized flat nanostructure, experimentally these materials exhibit complex undulating layer geometries. This work utilizes FIB tomography to characterize this nanostructure in 3D and finite element modeling to determine the effect that this complex structure has on the mechanical behavior of these materials. A sufficiently large volume was characterized such that a 1 × 2 μm micropillar could be generated from the dataset and compared directly to experimental results.more » The mechanical response from this nanostructure was then compared to pillar models using simplified structures with perfectly flat layers, layers with sinusoidal waviness, and layers with arc segment waviness. The arc segment based layer geometry showed the best agreement with the experimentally determined structure, indicating it would be the most appropriate geometry for future modeling efforts. - Highlights: •FIB tomography was used to determine the structure of an Al-SiC nanolaminate in 3D. •FEM was used to compare the deformation of the nanostructure to experimental results. •Idealized structures from literature were compared to the FIB determined structure. •Arc segment based structures approximated the FIB determined structure most closely.« less

  18. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs.

    PubMed

    Regad, Leslie; Martin, Juliette; Camproux, Anne-Claude

    2011-06-20

    One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.

  19. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs

    PubMed Central

    2011-01-01

    Background One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Results Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Conclusions Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins. PMID:21689388

  20. Efficient Design and Analysis of Lightweight Reinforced Core Sandwich and PRSEUS Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Lucking, Ryan C.; Collier, Craig S.; Ainsworth, James J.; Toubia, Elias A.

    2012-01-01

    Design, analysis, and sizing methods for two novel structural panel concepts have been developed and incorporated into the HyperSizer Structural Sizing Software. Reinforced Core Sandwich (RCS) panels consist of a foam core with reinforcing composite webs connecting composite facesheets. Boeing s Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panels use a pultruded unidirectional composite rod to provide axial stiffness along with integrated transverse frames and stitching. Both of these structural concepts are ovencured and have shown great promise applications in lightweight structures, but have suffered from the lack of efficient sizing capabilities similar to those that exist for honeycomb sandwich, foam sandwich, hat stiffened, and other, more traditional concepts. Now, with accurate design methods for RCS and PRSEUS panels available in HyperSizer, these concepts can be traded and used in designs as is done with the more traditional structural concepts. The methods developed to enable sizing of RCS and PRSEUS are outlined, as are results showing the validity and utility of the methods. Applications include several large NASA heavy lift launch vehicle structures.

  1. Durable and mass producible polymer surface structures with different combinations of micro-micro hierarchy

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2016-01-01

    Extensive studies have been performed with the aim of fabricating hierarchical surface structures inspired by nature. However, synthetic hierarchical structures have to sacrifice mechanical resistance to functionality by introducing finer scaled structures. Therefore, surfaces are less durable. Surface micro-micro hierarchy has been proven to be effective in replacing micro-nano hierarchy in the sense of superhydrophobicity. However, less attention has been paid to the combined micro-micro hierarchies with surface pillars and pits incorporated together. The fabrication of this type of hierarchy may be less straightforward, with the possibility of being a complicated multi-step process. In this study, we present a simple yet mass producible fabrication method for hierarchical structures with different combinations of surface pillars and pits. The fabrication was based on only one aluminum (Al) mold with sequential mountings. The fabricated structures exhibit high mechanical durability and structural stabilities with a normal load up to 100 kg. In addition, the theoretical estimation of the wetting state shows a promising way of stabilizing a water droplet on the surface pit structures with a more stable Cassie-Baxter state.

  2. The 1990 high-speed civil transport studies. Summary report

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report contains the results of the Douglas Aircraft Company system studies related to High-Speed Civil Transports (HSCT's). The tasks were performed under an 18-month extension of NASA Langley Research Center Contract NAS1-18378. The system studies were conducted to assess the emission impact of HSCT's at design Mach numbers ranging from 1.6 to 3.2. In particular, engine cycles were assessed regarding community noise and atmospheric emissions impact, and a HSCT route structure was developed. The general results indicated the following: (1) in the Mach number range 1.6 to 2.5, the development of polymer composite and discontinuous reinforced alumnium materials is essential to ensure a minimum operational weight; (2) the HSCT route structure to minimize supersonic overland can be increased by innovative routing to avoid land masses; (3) at least two engine concepts show promise in achieving sideline stage 3 noise limits; (4) two promising low-NO(x) combustor concepts were identified; (5) the atmospheric emission impact on ozone could be significantly lower for Mach 1.6 operations than for Mach 3.2 operations; and (6) sonic boom minimization concepts are maturing at an encouraging rate.

  3. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance

    NASA Astrophysics Data System (ADS)

    Lou, Shuaifeng; Cheng, Xinqun; Wang, Long; Gao, Jinlong; Li, Qin; Ma, Yulin; Gao, Yunzhi; Zuo, Pengjian; Du, Chunyu; Yin, Geping

    2017-09-01

    Orthorhombic Niobium oxide (T-Nb2O5) has been regarded as a promising anode material for high-rate lithium ion batteries (LIBs) due to its potential to operate at high rates with improved safety and high theoretical capacity of 200 mA h g-1. Herein, three-dimensionally ordered macroporous (3DOM) T-Nb2O5, with mesoporous hierarchical structure, was firstly prepared by a simple approach employing self-assembly polystyrene (PS) microspheres as hard templates. The obtained T-Nb2O5 anode material presents obvious and highly-efficiency pseudocapacitive Li+ intercalation behaviour, which plays a dominant role in the kinetics of electrode process. As a result, rapid Li+ intercalation/de-intercalation are achieved, leading to excellent rate capability and long cycle life. The 3DOM T-Nb2O5 shows a remarkable high capacity of 106 and 77 mA h g-1 at the rate of 20C and 50C. The work presented herein holds great promise for future design of material structure, and demonstrates the great potential of T-Nb2O5 as a practical high-rate anode material for LIBs.

  4. Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds.

    PubMed

    Fang, Hao; Wen, Ming; Chen, Hanxing; Wu, Qingsheng; Li, Weiying

    2016-01-07

    Nowadays, it is of great significance and a challenge to design a noble-metal-free catalyst with high activity and a long lifetime for the reduction of aromatic nitro-compounds. Here, a 2D structured nanocomposite catalyst with graphene supported CuNi alloy nanoparticles (NPs) is prepared, and is promising for meeting the requirements of green chemistry. In this graphene/CuNi nanocomposite, the ultra-small CuNi nanoparticles (∼2 nm) are evenly anchored on graphene sheets, which is not only a breakthrough in the structures, but also brings about an outstanding performance in activity and stability. Combined with a precise optimization of the alloy ratios, the reaction rate constant of graphene/Cu61Ni39 reached a high level of 0.13685 s(-1), with a desirable selectivity as high as 99% for various aromatic nitro-compounds. What's more, the catalyst exhibited a unprecedented long lifetime because it could be recycled over 25 times without obvious performance decay or even a morphology change. This work showed the promise and great potential of noble-metal-free catalysts in green chemistry.

  5. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices.

    PubMed

    Zhou, Si; Zhao, Jijun

    2016-04-28

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ∼1000 cm2 V(-1) s(-1) even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.

  6. Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery.

    PubMed

    Jiang, Tiancai; Bu, Fanxing; Feng, Xiaoxiang; Shakir, Imran; Hao, Guolin; Xu, Yuxi

    2017-05-23

    Integrating nanoscale porous metal oxides into three-dimensional graphene (3DG) with encapsulated structure is a promising route but remains challenging to develop high-performance electrodes for lithium-ion battery. Herein, we design 3DG/metal organic framework composite by an excessive metal-ion-induced combination and spatially confined Ostwald ripening strategy, which can be transformed into 3DG/Fe 2 O 3 aerogel with porous Fe 2 O 3 nanoframeworks well encapsulated within graphene. The hierarchical structure offers highly interpenetrated porous conductive network and intimate contact between graphene and porous Fe 2 O 3 as well as abundant stress buffer nanospace for effective charge transport and robust structural stability during electrochemical processes. The obtained free-standing 3DG/Fe 2 O 3 aerogel was directly used as highly flexible anode upon mechanical pressing for lithium-ion battery and showed an ultrahigh capacity of 1129 mAh/g at 0.2 A/g after 130 cycles and outstanding cycling stability with a capacity retention of 98% after 1200 cycles at 5 A/g, which is the best results that have been reported so far. This study offers a promising route to greatly enhance the electrochemical properties of metal oxides and provides suggestive insights for developing high-performance electrode materials for electrochemical energy storage.

  7. A promising biodegradable magnesium alloy suitable for clinical vascular stent application

    PubMed Central

    Mao, Lin; shen, Li; Chen, Jiahui; Zhang, Xiaobo; Kwak, Minsuk; Wu, Yu; Fan, Rong; Zhang, Lei; Pei, Jia; Yuan, Guangyin; Song, Chengli; Ge, Junbo; Ding, Wenjiang

    2017-01-01

    We report a Mg alloy Mg-2.2Nd-0.1Zn-0.4Zr (wt.%, denoted as JDBM-2) showing great potential in clinical vascular stent application by integrating the advantages of traditional medical stainless steel and polymer. This alloy exhibits high yield strength and elongation of 276 ± 6 MPa and 34.3 ± 3.4% respectively. The JDBM-2 with a stable degradation surface results in a highly homogeneous degradation mechanism and long-term structural and mechanical durability. In vitro cytotoxicity test of the Mg extract via human vascular endothelial cells (HUVECs) indicates that the corrosion products are well tolerated by the tested cells and potentially negligible toxic effect on arterial vessel walls. This alloy also exhibits compromised foreign body response (FBR) determined by human peripheral blood derived macrophage adhesion, foreign body giant cell (FBGC) formation and inflammatory cytokine and chemokine secretion. Finally, vascular stents manufactured from the JDBM-2 were implanted into rabbits for long-term evaluation. The results confirm excellent tissue compatibility and up to 6-month structural and mechanical integrity of the stent in vivo. Thus, the JDBM-2 stent with up to 6-month structural and mechanical integrity and excellent tissue compatibility represents a major breakthrough in this field and a promising alternative to traditional medical stainless steel and polymer for the clinical application. PMID:28397881

  8. Inactivation of TEM-1 by avibactam (NXL-104): insights from quantum mechanics/molecular mechanics metadynamics simulations.

    PubMed

    Sgrignani, Jacopo; Grazioso, Giovanni; De Amici, Marco; Colombo, Giorgio

    2014-08-12

    The fast and constant development of drug-resistant bacteria represents a serious medical emergence. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this context, avibactam represents a promising, innovative inhibitor of beta-lactamases with a novel molecular structure compared to previously developed inhibitors, showing a promising inhibitory activity toward a significant number of beta-lactamase enzymes. In this work, we studied, at the atomistic level, the mechanisms of formation of the covalent complex between avibactam and TEM-1, an experimentally well-characterized class A beta-lactamase, using classical and quantum mechanics/molecular mechanics (QM/MM) simulations combined with metadynamics. Our simulations provide a detailed structural and energetic picture of the molecular steps leading to the formation of the avibactam/TEM-1 covalent adduct. In particular, they support a mechanism in which the rate-determining step is the water-assisted Glu166 deprotonation by Ser70. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements. Additionally, our simulations highlight the important role of Lys73 in assisting the Ser70 and Ser130 deprotonations. While based on the specific case of the avibactam/TEM-1, the simple protocol we present here can be immediately extended and applied to the study of covalent complex formation in different enzyme-inhibitor pairs.

  9. Structure-Activity Relationship and Pharmacokinetic Studies of 1,5-Diheteroarylpenta-1,4-dien-3-ones: A Class of Promising Curcumin-Based Anticancer Agents.

    PubMed

    Wang, Rubing; Chen, Chengsheng; Zhang, Xiaojie; Zhang, Changde; Zhong, Qiu; Chen, Guanglin; Zhang, Qiang; Zheng, Shilong; Wang, Guangdi; Chen, Qiao-Hong

    2015-06-11

    Forty-three 1,5-diheteroaryl-1,4-pentadien-3-ones were designed as potential curcumin mimics, structurally featuring a central five-carbon dienone linker and two identical nitrogen-containing aromatic rings. They were synthesized using a Horner-Wadsworth-Emmons reaction as the critical step and evaluated for their cytotoxicity and antiproliferative activities toward both androgen-insensitive and androgen-sensitive prostate cancer cell lines and an aggressive cervical cancer cell line. Most of the synthesized compounds showed distinctly better in vitro potency than curcumin in the four cancer cell lines. The structure-activity data acquired from the study validated (1E,4E)-1,5-dihereroaryl-1,4-pentadien-3-ones as an excellent scaffold for in-depth development for clinical treatment of prostate and cervical cancers. 1-Alkyl-1H-imidazol-2-yl, ortho pyridyl, 1-alkyl-1H-benzo[d]imidazole-2-yl, 4-bromo-1-methyl-1H-pyrazol-3-yl, thiazol-2-yl, and 2-methyl-4-(trifluoromethyl)thiazol-5-yl were identified as optimal heteroaromatic rings for the promising in vitro potency. (1E,4E)-1,5-Bis(2-methyl-4-(trifluoromethyl)thiazol-5-yl)penta-1,4-dien-3-one, featuring thiazole rings and trifluoromethyl groups, was established as the optimal lead compound because of its good in vitro potency and attractive in vivo pharmacokinetic profiles.

  10. Conceptual Design of a Z-Pinch Fusion Propulsion System

    NASA Technical Reports Server (NTRS)

    Adams, Robert; Polsgrove, Tara; Fincher, Sharon; Fabinski, Leo; Maples, Charlotte; Miernik, Janie; Stratham, Geoffrey; Cassibry, Jason; Cortez, Ross; Turner, Matthew; hide

    2010-01-01

    This slide presentation reviews a project that aims to develop a conceptual design for a Z-pinch thruster, that could be applied to develop advanced thruster designs which promise high thrust/high specific impulse propulsion. Overviews shows the concept of the design, which use annular nozzles with deuterium-tritium (D-T) fuel and a Lithium mixture as a cathode, Charts show the engine performance as a function of linear mass, nozzle performance (i.e., plasma segment trajectories), and mission analysis for possible Mars and Jupiter missions using this concept for propulsion. Slides show views of the concepts for the vehicle configuration, thrust coil configuration, the power management system, the structural analysis of the magnetic nozzle, the thermal management system, and the avionics suite,

  11. The multifunctional wound dressing with core-shell structured fibers prepared by coaxial electrospinning

    NASA Astrophysics Data System (ADS)

    Wei, Qilin; Xu, Feiyang; Xu, Xingjian; Geng, Xue; Ye, Lin; Zhang, Aiying; Feng, Zengguo

    2016-06-01

    The non-woven wound dressing with core-shell structured fibers was prepared by coaxial electrospinning. The polycaprolactone (PCL) was electrospun as the fiber's core to provide mechanical strength whereas collagen was fabricated into the shell in order to utilize its good biocompatibility. Simultaneously, the silver nanoparticles (Ag-NPs) as anti-bacterial agent were loaded in the shell whereas the vitamin A palmitate (VA) as healing-promoting drug was encapsulated in the core. Resulting from the fiber's core-shell structure, the VA released from the core and Ag-NPs present in the shell can endow the dressing both heal-promoting and anti-bacteria ability simultaneously, which can greatly enhance the dressing's clinical therapeutic effect. The dressing can maintain high swelling ratio of 190% for 3 d indicating its potential application as wet dressing. Furthermore, the dressing's anti-bacteria ability against Staphylococcus aureus was proved by in vitro anti-bacteria test. The in vitro drug release test showed the sustainable release of VA within 72 h, while the cell attachment showed L929 cells can well attach on the dressing indicating its good biocompatibility. In conclusion, the fabricated nanofibrous dressing possesses multiple functions to benefit wound healing and shows promising potential for clinical application.

  12. Potassium Niobate Nanolamina: A Promising Adsorbent for Entrapment of Radioactive Cations from Water

    PubMed Central

    Sun, Jin; Yang, Dongjiang; Sun, Cuihua; Liu, Long; Yang, Shuanglei; (Alec) Jia, Yi; Cai, Rongsheng; Yao, Xiangdong

    2014-01-01

    Processing and managing radioactive waste is a great challenge worldwide as it is extremely difficult and costly; the radioactive species, cations or anions, leaked into the environment are a serious threat to the health of present and future generations. We report layered potassium niobate (K4Nb6O17) nanolamina as adsorbent to remove toxic Sr2+, Ba2+ and Cs+ cations from wastewater. The results show that K4Nb6O17 nanolamina can permanently confine the toxic cations within the interlayer spacing via a considerable deformation of the metastable layered structure during the ion exchange process. At the same time, the nanolaminar adsorbent exhibits prompt adsorption kinetics, high adsorption capacity and selectivity, and superior acid resistance. These merits make it be a promising material as ion exchanger for the removal of radioactive cations from wastewater. PMID:25472721

  13. Potassium niobate nanolamina: a promising adsorbent for entrapment of radioactive cations from water.

    PubMed

    Sun, Jin; Yang, Dongjiang; Sun, Cuihua; Liu, Long; Yang, Shuanglei; Alec Jia, Yi; Cai, Rongsheng; Yao, Xiangdong

    2014-12-04

    Processing and managing radioactive waste is a great challenge worldwide as it is extremely difficult and costly; the radioactive species, cations or anions, leaked into the environment are a serious threat to the health of present and future generations. We report layered potassium niobate (K4Nb6O17) nanolamina as adsorbent to remove toxic Sr(2+), Ba(2+) and Cs(+) cations from wastewater. The results show that K4Nb6O17 nanolamina can permanently confine the toxic cations within the interlayer spacing via a considerable deformation of the metastable layered structure during the ion exchange process. At the same time, the nanolaminar adsorbent exhibits prompt adsorption kinetics, high adsorption capacity and selectivity, and superior acid resistance. These merits make it be a promising material as ion exchanger for the removal of radioactive cations from wastewater.

  14. Porous Hard Carbon Derived from Walnut Shell as an Anode Material for Sodium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Sensen; Li, Ying; Li, Min

    2018-02-01

    Porous hard carbon with large interlayer distance was fabricated from walnut shells through a facile high-temperature pyrolysis process and investigated as an anode material for sodium-ion batteries (SIBs). The results show that the electrochemical performance is mainly dependent on the pyrolysis temperature. The porous hard carbon, which was carbonized at 1300°C, displays the highest reversible capacity of 230 mAh g-1 at 20 mA g-1 and an excellent cycling stability (96% capacity retained over 200 cycles). The promising electrochemical performances are attributed to the porous structure reducing distances for sodium ion diffusion and expanded interlayer spacing, which is beneficial for sodium reversible insertion/extraction. The excellent electrochemical performance as well as the low-cost and environmental friendliness demonstrates that walnut shell-derived porous hard carbon is a promising anode material candidate for SIBs.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chundong; Zhou, Yungang; He, Lifang

    Due to its unique electronic properties and wide spectrum of promising applications, graphene has attracted much attention from scientists in various fields. Control and engineering of graphene’s semiconducting properties is considered to be the key of its applications in electronic devices. Here, we report a novel method to prepare in situ nitrogen-doped graphene by microwave plasma assisted chemical vapor deposition (CVD) using PDMS (Polydimethylsiloxane) as a solid carbon source. Based on this approach, the concentration of nitrogen-doping can be easily controlled via the flow rate of nitrogen during the CVD process. X-ray photoelectron spectroscopy results indicated that the nitrogen atomsmore » doped into graphene lattice were mainly in the forms of pyridinic and pyrrolic structures. Moreover, first-principles calculations show that the incorporated nitrogen atoms can lead to p-type doping of graphene. This in situ approach provides a promising strategy to prepare graphene with controlled electronic properties.« less

  16. Transition-Metal Decorated Aluminum Nanocrystals.

    PubMed

    Swearer, Dayne F; Leary, Rowan K; Newell, Ryan; Yazdi, Sadegh; Robatjazi, Hossein; Zhang, Yue; Renard, David; Nordlander, Peter; Midgley, Paul A; Halas, Naomi J; Ringe, Emilie

    2017-10-24

    Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.

  17. Nature-inspired indolyl-2-azabicyclo[2.2.2]oct-7-ene derivatives as promising agents for the attenuation of withdrawal symptoms: synthesis of 20-desethyl-20-hydroxymethyl-11-demethoxyibogaine.

    PubMed

    Passarella, D; Barilli, A; Efange, S M N; Elisabetsky, E; Leal, M B; Lesma, G; Linck, V M; Mash, D C; Martinelli, M; Peretto, I; Silvani, A; Danieli, B

    2006-07-10

    Microwave assisted Diels-Alder cycloaddition of 5-Br-N-benzylpyridinone (2) with methyl acrylate is described to gain an easy access to 7-bromo-2-benzyl-3-oxo-2-aza-5 or 6-carbomethoxy bicyclo[2.2.2]oct-7-enes (3)-(6). The preparation of the ibogaine analogue 20-desethyl-(20-endo)-hydroxymethyl-11-demethoxyibogaine (17) is described by stereoselective hydrogenation of the C(7)-C(8) double bond. Biological evaluation showed an interesting in vitro binding profile toward dopamine transporter, serotonin transporter and opioid receptor systems accompanied by an antiwithdrawal effect in mice for hydroxymethyl 7-indolyl-2-aza-bicyclo[2.2.2]oct-2-ene (14). The simplification of the ibogaine structure appears as a promising approach toward the design of compounds that could reduce the withdrawal symptoms.

  18. Thermal and Electrical Stability of Sr 0.9Y 0.1CoO 2.5+δ as a Promising Cathode for Intermediate-Temperature Solid Oxide Fuel Cells

    DOE PAGES

    Jiang, Long; Wang, Jie; Xiong, Xiaolei; ...

    2016-01-21

    Here, the present study reports thermal and electrical properties of Sr 1-xYxCoO 2.5+δ (x = 0–0.40) as a promising cathode for intermediatetemperature solid oxide fuel cells. The results show that x = 0.10 is the best composition possessing a single primitive cubic perovskite structure, stable conductivity and the lowest polarization resistance. Thermogravimetric analysis indicates an oxygen intake from RT to ~375°C, above which oxygen loss occurs. The oxygen gain-loss behavior corresponds well with the conductivity increase-decrease trending, reflecting that oxygen-nonstoichiometry controls the hole-concentration (or oxidation-state of Co-ions). Electrochemical impedance spectroscopy analysis further reveals that the overall ORR polarization consists ofmore » a faster charge-transfer and a slower surface oxygen exchange.« less

  19. Thermal and Electrical Stability of Sr 0.9Y 0.1CoO 2.5+δ as a Promising Cathode for Intermediate-Temperature Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Long; Wang, Jie; Xiong, Xiaolei

    Here, the present study reports thermal and electrical properties of Sr 1-xYxCoO 2.5+δ (x = 0–0.40) as a promising cathode for intermediatetemperature solid oxide fuel cells. The results show that x = 0.10 is the best composition possessing a single primitive cubic perovskite structure, stable conductivity and the lowest polarization resistance. Thermogravimetric analysis indicates an oxygen intake from RT to ~375°C, above which oxygen loss occurs. The oxygen gain-loss behavior corresponds well with the conductivity increase-decrease trending, reflecting that oxygen-nonstoichiometry controls the hole-concentration (or oxidation-state of Co-ions). Electrochemical impedance spectroscopy analysis further reveals that the overall ORR polarization consists ofmore » a faster charge-transfer and a slower surface oxygen exchange.« less

  20. Dispersion-cancelled biological imaging with quantum-inspired interferometry

    PubMed Central

    Mazurek, M. D.; Schreiter, K. M.; Prevedel, R.; Kaltenbaek, R.; Resch, K. J.

    2013-01-01

    Quantum information science promises transformative impact over a range of key technologies in computing, communication, and sensing. A prominent example uses entangled photons to overcome the resolution-degrading effects of dispersion in the medical-imaging technology, optical coherence tomography. The quantum solution introduces new challenges: inherently low signal and artifacts, additional unwanted signal features. It has recently been shown that entanglement is not a requirement for automatic dispersion cancellation. Such classical techniques could solve the low-signal problem, however they all still suffer from artifacts. Here, we introduce a method of chirped-pulse interferometry based on shaped laser pulses, and use it to produce artifact-free, high-resolution, dispersion-cancelled images of the internal structure of a biological sample. Our work fulfills one of the promises of quantum technologies: automatic-dispersion-cancellation interferometry in biomedical imaging. It also shows how subtle differences between a quantum technique and its classical analogue may have unforeseen, yet beneficial, consequences. PMID:23545597

  1. Material Innovation in Advancing Organometal Halide Perovskite Functionality.

    PubMed

    Zheng, Fan; Saldana-Greco, Diomedes; Liu, Shi; Rappe, Andrew M

    2015-12-03

    Organometal halide perovskites (OMHPs) have garnered much attention recently for their unprecedented rate of increasing power conversion efficiency (PCE), positioning them as a promising basis for the next-generation photovoltaic devices. However, the gap between the rapid increasing PCE and the incomplete understanding of the structure-property-performance relationship prevents the realization of the true potential of OMHPs. This Perspective aims to provide a concise overview of the current status of OMHP research, highlighting the unique properties of OMHPs that are critical for solar applications but still not adequately explained. Stability and performance challenges of OMHP solar cells are discussed, calling upon combined experimental and theoretical efforts to address these challenges for pioneering commercialization of OMHP solar cells. Various material innovation strategies for improving the performance and stability of OMHPs are surveyed, showing that the OMHP architecture can serve as a promising and robust platform for the design and optimization of materials with desired functionalities.

  2. New amides from seeds of Silybum marianum with potential antioxidant and antidiabetic activities.

    PubMed

    Qin, Ning-Bo; Jia, Cui-Cui; Xu, Jun; Li, Da-Hong; Xu, Fan-Xing; Bai, Jiao; Li, Zhan-Lin; Hua, Hui-Ming

    2017-06-01

    Two new amide compounds, mariamides A and B (1-2), were obtained together with fourteen known compounds from the seeds of milk thistle (Silybum marianum). Their structures were established on the basis of extensive 1D and 2D NMR analyses, as well as HR-ESI-MS data. Most of the compounds showed significant antioxidant activities than positive control in ABTS and FRAP assays. However, only amide compounds 1-4 showed moderate DPPH radical scavenging activity and compounds 7 and 16 showed the most potent activity against DPPH. Most of the compounds showed moderate to stronger α-glucosidase inhibitory activities. Nevertheless, only flavonoids showed strong PTP1B inhibitory activities. These results indicate a use of milk thistle seed extracts as promising antioxidant and antidiabetic agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Bioaccessibility of nutrients and micronutrients from dispersed food systems: impact of the multiscale bulk and interfacial structures.

    PubMed

    Marze, Sébastien

    2013-01-01

    Many food systems are dispersed systems, that is, they possess at least two immiscible phases. This is generally due to the coexistence of domains with different physicochemical properties separated by many interfaces which control the apparent thermodynamic equilibrium. This feature was and is still largely studied to design pharmaceutical delivery systems. In food science, the recent intensification of in vitro digestion tests to complement the in vivo ones holds promises in the identification of the key parameters controlling the bioaccessibility of nutrients and micronutrients. In this review, we present the developments of in vitro digestion tests for dispersed food systems (mainly emulsions, dispersions and gels). We especially highlight the evidences detailing the roles of the constituting multiscale structures. In a perspective section, we show the potential of structured interfaces to allow controlled bioaccessibility.

  4. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins.

    PubMed

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A; Kruse, Andrew C; Nurva, Shailika; Loland, Claus J; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H

    2010-12-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.

  5. Metal-Organic-Framework-Derived Yolk-Shell-Structured Cobalt-Based Bimetallic Oxide Polyhedron with High Activity for Electrocatalytic Oxygen Evolution.

    PubMed

    Yu, Zhou; Bai, Yu; Liu, Yuxuan; Zhang, Shimin; Chen, Dandan; Zhang, Naiqing; Sun, Kening

    2017-09-20

    The development of inexpensive, efficient, and environmentally friendly catalysts for oxygen evolution reaction (OER) is of great significant for green energy utilization. Herein, binary metal oxides (M x Co 3-x O 4 , M = Zn, Ni, and Cu) with yolk-shell polyhedron (YSP) structure were fabricated by facile pyrolysis of bimetallic zeolitic imidazolate frameworks (MCo-ZIFs). Benefiting from the synergistic effects of metal ions and the unique yolk-shell structure, M x Co 3-x O 4 YSP displays good OER catalytic activity in alkaline media. Impressively, Zn x Co 3-x O 4 YSP shows a comparable overpotential of 337 mV at 10 mA cm -2 to commercial RuO 2 and exhibits superior long-term durability. The high activity and good stability reveals its promising application.

  6. Lagrangian space consistency relation for large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, Bart; Hui, Lam; Xiao, Xiao, E-mail: bh2478@columbia.edu, E-mail: lh399@columbia.edu, E-mail: xx2146@columbia.edu

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present.more » The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space.« less

  7. Puncture Self-Healing Polymers for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  8. Bioprospecting for Exopolysaccharides from Deep-Sea Hydrothermal Vent Bacteria: Relationship between Bacterial Diversity and Chemical Diversity

    PubMed Central

    Delbarre-Ladrat, Christine; Leyva Salas, Marcia; Zykwinska, Agata; Colliec-Jouault, Sylvia

    2017-01-01

    Many bacteria biosynthesize structurally diverse exopolysaccharides (EPS) and excrete them into their surrounding environment. The EPS functional features have found many applications in industries such as cosmetics and pharmaceutics. In particular, some EPS produced by marine bacteria are composed of uronic acids, neutral sugars, and N-acetylhexosamines, and may also bear some functional sulfate groups. This suggests that they can share common structural features with glycosaminoglycans (GAG) like the two EPS (HE800 and GY785) originating from the deep sea. In an attempt to discover new EPS that may be promising candidates as GAG-mimetics, fifty-one marine bacterial strains originating from deep-sea hydrothermal vents were screened. The analysis of the EPS chemical structure in relation to bacterial species showed that Vibrio, Alteromonas, and Pseudoalteromonas strains were the main producers. Moreover, they produced EPS with distinct structural features, which might be useful for targeting marine bacteria that could possibly produce structurally GAG-mimetic EPS. PMID:28930185

  9. Portable wireless ultrasonic systems for remote inspection

    NASA Astrophysics Data System (ADS)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2015-03-01

    The weight and power storage of conventional wire and active wireless systems limit their applications to composite structures such as wind turbines and aerospace structures. In this paper, a structurally-integrated, inert, wireless guided wave system for rapid composite inspection is demonstrated. The wireless interface is based on electromagnetic coupling between three coils, one of which is physically connected to an ultrasonic piezoelectric transducer and embedded in the structure, while the other two are in a separate probing unit. Compact encapsulated sensor units are designed, built and successfully embedded into carbon fibre composite panel at manufacture. Chirp-based excitation is used to enable single-shot measurements with high signal-to-noise ratios to be obtained. Results from sensors embedded in carbon fibre reinforced composite panel show that signal amplitude obtained by embedding the sensor into composite is almost twice that of a surface-bonded sensor. The promising results indicate that the developed sensor can be potentially used for impact damage in a large composite structure.

  10. Nanofibers-based nanoweb promise superhydrophobic polyaniline: from star-shaped to leaf-shaped structures.

    PubMed

    Fan, Haosen; Wang, Hao; Guo, Jing; Zhao, Ning; Xu, Jian

    2013-11-01

    Star-shaped and leaf-shaped polyaniline (PANI) hierarchical structures with interlaced nanofibers on the surface were successfully prepared by chemical polymerization of aniline in the presence of lithium triflate (LT). Chemical structure and composition of the star-like PANI obtained were characterized by FTIR and UV-vis spectra. PANI 2D architectures can be tailored from star-shaped to leaf-shaped structures by change the concentration of LT. The synthesized star-like and leaf-like polyaniline show good superhydrophobicity with water contact angles of both above 150° due to the combination of the rough nanoweb structure and the low surface tension of fluorinated chain of dopant. This method is a facile and applicable strategy for a large-scale fabrication of 2D PANI micro/nanostructures. Many potential applications such as self-cleaning and antifouling coating can be expected based on the superhydrophobic PANI micro/nanostructures. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  11. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen

    2018-03-01

    Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.

  12. Ontology-based structured cosine similarity in document summarization: with applications to mobile audio-based knowledge management.

    PubMed

    Yuan, Soe-Tsyr; Sun, Jerry

    2005-10-01

    Development of algorithms for automated text categorization in massive text document sets is an important research area of data mining and knowledge discovery. Most of the text-clustering methods were grounded in the term-based measurement of distance or similarity, ignoring the structure of the documents. In this paper, we present a novel method named structured cosine similarity (SCS) that furnishes document clustering with a new way of modeling on document summarization, considering the structure of the documents so as to improve the performance of document clustering in terms of quality, stability, and efficiency. This study was motivated by the problem of clustering speech documents (of no rich document features) attained from the wireless experience oral sharing conducted by mobile workforce of enterprises, fulfilling audio-based knowledge management. In other words, this problem aims to facilitate knowledge acquisition and sharing by speech. The evaluations also show fairly promising results on our method of structured cosine similarity.

  13. Polarized Redundant-Baseline Calibration for 21 cm Cosmology Without Adding Spectral Structure

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.

    2018-04-01

    21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly-constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally-smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.

  14. Polarized redundant-baseline calibration for 21 cm cosmology without adding spectral structure

    NASA Astrophysics Data System (ADS)

    Dillon, Joshua S.; Kohn, Saul A.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Bernardi, Gianni; Kern, Nicholas S.; Li, Wenyang; Liu, Adrian; Nunhokee, Chuneeta D.; Pober, Jonathan C.

    2018-07-01

    21 cm cosmology is a promising new probe of the evolution of visible matter in our universe, especially during the poorly constrained Cosmic Dawn and Epoch of Reionization. However, in order to separate the 21 cm signal from bright astrophysical foregrounds, we need an exquisite understanding of our telescopes so as to avoid adding spectral structure to spectrally smooth foregrounds. One powerful calibration method relies on repeated simultaneous measurements of the same interferometric baseline to solve for the sky signal and for instrumental parameters simultaneously. However, certain degrees of freedom are not constrained by asserting internal consistency between redundant measurements. In this paper, we review the origin of these degeneracies of redundant-baseline calibration and demonstrate how they can source unwanted spectral structure in our measurement and show how to eliminate that additional, artificial structure. We also generalize redundant calibration to dual-polarization instruments, derive the degeneracy structure, and explore the unique challenges to calibration and preserving spectral smoothness presented by a polarized measurement.

  15. Structure-guided statistical textural distinctiveness for salient region detection in natural images.

    PubMed

    Scharfenberger, Christian; Wong, Alexander; Clausi, David A

    2015-01-01

    We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.

  16. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    PubMed Central

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-01-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water. PMID:27095387

  17. Direct Synthesis of Novel and Reactive Sulfide-modified Nano Iron through Nanoparticle Seeding for Improved Cadmium-Contaminated Water Treatment

    NASA Astrophysics Data System (ADS)

    Su, Yiming; Adeleye, Adeyemi S.; Huang, Yuxiong; Zhou, Xuefei; Keller, Arturo A.; Zhang, Yalei

    2016-04-01

    Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) is of great technical and scientific interest because of its promising application in groundwater remediation, although its synthesis is still a challenge. We develop a new nanoparticle seeding method to obtain a novel and reactive nanohybrid, which contains an Fe(0) core covered by a highly sulfidized layer under high extent of sulfidation. Syntheses monitoring experiments show that seeding accelerates the reduction rate from Fe2+ to Fe0 by 19%. X-ray adsorption near edge structure (XANES) spectroscopy and extended X-ray absorption fine structure analyses demonstrate the hexahedral Fe-Fe bond (2.45 and 2.83 Å) formation through breaking down of the 1.99 Å Fe-O bond both in crystalline and amorphous iron oxide. The XANES analysis also shows 24.2% (wt%) of FeS with bond length of 2.4 Å in final nanohybrid. Both X-ray diffraction and Mössbauer analyses further confirm that increased nanoparticle seeding results in formation of more Fe0 crystals. Nano-SiO2 seeding brings down the size of single Fe0 grain from 32.4 nm to 18.7 nm, enhances final Fe0 content from 5.9% to 55.6%, and increases magnetization from 4.7 to 65.5 emu/g. The synthesized nanohybrid has high cadmium removal capacity and holds promising prospects for treatment of metal-contaminated water.

  18. Synthesis and applications of titania nanotubes: Drug delivery and ionomer composites

    NASA Astrophysics Data System (ADS)

    Kulkarni, Harsha Prabhakar

    In this dissertation, the potential of a tubular form of titania (titanium dioxide) has been explored for two diverse applications, in the field of targeted drug delivery for medical applications and in the field of composite materials for structural applications. We introduce the tubular form of titania, a material well known for its catalytic properties. The tubes are synthesized by hydrothermal procedure and are nanometers in dimension, with an inside diameter of 5-6 nm, outside diameter of 10-12, and an aspect ratio of ˜100:1 (l:d), structures both chemically and thermally stable. Biocompatible titania nanotubes with large catalytic surface area are used as vehicles for carrying Doxorubicin, an anticancer chemotherapeutic drug, to explore its potential in targeted drug delivery. Optical properties of Doxorubicin are used to study adsorption and release of the drug molecule from the nanotube surface. Pilot experiments show strong adsorption of 4 wt% of doxorubicin on the nanotube surface characterized by the quenching of its absorption centered at 490 nm. Quinone and protonated amino groups on the drug molecule, involved in protonation and deprotonation with the surface hydroxyls and molecular water on the nanotube surface, are responsible for adsorption. Doxorubicin adsorbed on the nanotube surface show pH specific release, with 40% release at a physiological pH of 7.4 as compared to 4% and 10% at pH values of 3.4 and 5.7 respectively under sink conditions. In vitro cytotoxicity experiments, used to characterize the anticancer potential of the nanotube-drug conjugate, shows comparable toxicity for the conjugates as the free drug. Nanotubes with strong adsorption of doxorubicin, large surface area, pH controlled release, and effective toxicity, demonstrate its potential as a vehicle for targeted drug delivery. If nanotube-drug conjugates with reversible bonds between them, and a pH controlled release in an aqueous solution are promising for medical applications, nanotube-polymer conjugates with nanotubes as reinforcing structures in a polymer matrix with improved mechanical properties are equally promising for structural applications. Nanotubes are used as reinforcing structures in Surlyn, a polyethylene-co-methacrylic acid polymer containing ions. When cooled from the melt, Surlyn shows strong aging effects on mechanical properties over periods of several days to months. Structures in the matrix of the polymer which form with time are responsible for these aging effects on mechanical properties. Aging at short times after cooling from the melt reveal subtle contributions from these structures not fully formed and mechanical properties not fully recovered. Nanotubes are used as reinforcing structures to improve the mechanical properties at short aging times, a property desired for high temperature applications demanding a quick recovery of mechanical properties. A unique Atomic Force Microscope (AFM) based Local Thermal Analysis (LTA) probe is used to study the mechanical properties of Surlyn and Nanotube-Surlyn composite. Nanotube-Surlyn composites show superior mechanical properties at both short and long aging times after cooling from the melt, as the structures in the matrix continue to form at long aging times.

  19. Optimal Control Allocation with Load Sensor Feedback for Active Load Suppression, Flight-Test Performance

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Goodrick, Dan

    2017-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. The aircraft structure and the control architecture must be designed to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to utilize high structural margins, restrict control surface commands to a limited set of analyzed combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage. An optimal control technique has been explored and shown to achieve desirable vehicle control performance while limiting sensed structural loads to specified values. This technique has been implemented and flown on the National Aeronautics and Space Administration Full-scale Advanced Systems Testbed aircraft. The flight tests illustrate that the approach achieves the desired performance and show promising potential benefits. The flights also uncovered some important issues that will need to be addressed for production application.

  20. Coupled Finite Volume and Finite Element Method Analysis of a Complex Large-Span Roof Structure

    NASA Astrophysics Data System (ADS)

    Szafran, J.; Juszczyk, K.; Kamiński, M.

    2017-12-01

    The main goal of this paper is to present coupled Computational Fluid Dynamics and structural analysis for the precise determination of wind impact on internal forces and deformations of structural elements of a longspan roof structure. The Finite Volume Method (FVM) serves for a solution of the fluid flow problem to model the air flow around the structure, whose results are applied in turn as the boundary tractions in the Finite Element Method problem structural solution for the linear elastostatics with small deformations. The first part is carried out with the use of ANSYS 15.0 computer system, whereas the FEM system Robot supports stress analysis in particular roof members. A comparison of the wind pressure distribution throughout the roof surface shows some differences with respect to that available in the engineering designing codes like Eurocode, which deserves separate further numerical studies. Coupling of these two separate numerical techniques appears to be promising in view of future computational models of stochastic nature in large scale structural systems due to the stochastic perturbation method.

  1. Broadband absorption and enhanced photothermal conversion property of octopod-like Ag@Ag2S core@shell structures with gradually varying shell thickness.

    PubMed

    Jiang, Qian; Zeng, Wenxia; Zhang, Canying; Meng, Zhaoguo; Wu, Jiawei; Zhu, Qunzhi; Wu, Daxiong; Zhu, Haitao

    2017-12-19

    Photothermal conversion materials have promising applications in many fields and therefore they have attracted tremendous attention. However, the multi-functionalization of a single nanostructure to meet the requirements of multiple photothermal applications is still a challenge. The difficulty is that most nanostructures have specific absoprtion band and are not flexible to different demands. In the current work, we reported the synthesis and multi-band photothermal conversion of Ag@Ag 2 S core@shell structures with gradually varying shell thickness. We synthesized the core@shell structures through the sulfidation of Ag nanocubes by taking the advantage of their spatially different reactivity. The resulting core@shell structures show an octopod-like mopgorlogy with a Ag 2 S bulge sitting at each corner of the Ag nanocubes. The thickness of the Ag 2 S shell gradually increases from the central surface towards the corners of the structure. The synthesized core@shell structures show a broad band absorption spectrum from 300 to 1100 nm. Enhanced photothermal conversion effect is observed under the illuminations of 635, 808, and 1064 nm lasers. The results indicate that the octopod-like Ag@Ag 2 S core@shell structures have characteristics of multi-band photothermal conversion. The current work might provide a guidance for the design and synthesis of multifunctional photothermal conversion materials.

  2. Crystal Structure of Schistosoma mansoni Adenosine Phosphorylase/5’-Methylthioadenosine Phosphorylase and Its Importance on Adenosine Salvage Pathway

    PubMed Central

    Torini, Juliana Roberta; Brandão-Neto, José; DeMarco, Ricardo; Pereira, Humberto D'Muniz

    2016-01-01

    Schistosoma mansoni do not have de novo purine pathways and rely on purine salvage for their purine supply. It has been demonstrated that, unlike humans, the S. mansoni is able to produce adenine directly from adenosine, although the enzyme responsible for this activity was unknown. In the present work we show that S. mansoni 5´-deoxy-5´-methylthioadenosine phosphorylase (MTAP, E.C. 2.4.2.28) is capable of use adenosine as a substrate to the production of adenine. Through kinetics assays, we show that the Schistosoma mansoni MTAP (SmMTAP), unlike the mammalian MTAP, uses adenosine substrate with the same efficiency as MTA phosphorolysis, which suggests that this enzyme is part of the purine pathway salvage in S. mansoni and could be a promising target for anti-schistosoma therapies. Here, we present 13 SmMTAP structures from the wild type (WT), including three single and one double mutant, and generate a solid structural framework for structure description. These crystal structures of SmMTAP reveal that the active site contains three substitutions within and near the active site when compared to it mammalian counterpart, thus opening up the possibility of developing specific inhibitors to the parasite MTAP. The structural and kinetic data for 5 substrates reveal the structural basis for this interaction, providing substract for inteligent design of new compounds for block this enzyme activity. PMID:27935959

  3. Type I clathrates as novel silicon anodes: An electrochemical and structural investigation

    DOE PAGES

    Li, Ying; Raghavan, Rahul; Wagner, Nicholas A.; ...

    2015-05-05

    In this study, silicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. Here we present an electrochemical evaluation of type I silicon clathrates based on Ba 8Al ySi 46-y for the anode material in lithium-ion batteries. Post-cycling characterization with NMR and XRD show no discernible structural or volume changes even after electrochemical insertion of 44 Li into the clathrate structure. The observed properties are in stark contrast with lithiation of other silicon anodes, which become amorphous and suffer from larger volume changes. The lithiation/delithiation processes are proposed to occur in single phase reactions at approximately 0.2more » and 0.4 V vs. Li/Li +, respectively, distinct from other diamond cubic or amorphous silicon anodes. Reversible capacities as high as 499 mAh g -1 at a 5 mA g -1 rate were observed for silicon clathrate with composition Ba 8Al 8.54S i37.46, corresponding to Li:Si of 1.18:1. The results show that silicon clathrates could be promising durable anodes for lithium-ion batteries.« less

  4. Type I clathrates as novel silicon anodes: An electrochemical and structural investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Raghavan, Rahul; Wagner, Nicholas A.

    In this study, silicon clathrates contain cage-like structures that can encapsulate various guest atoms or molecules. Here we present an electrochemical evaluation of type I silicon clathrates based on Ba 8Al ySi 46-y for the anode material in lithium-ion batteries. Post-cycling characterization with NMR and XRD show no discernible structural or volume changes even after electrochemical insertion of 44 Li into the clathrate structure. The observed properties are in stark contrast with lithiation of other silicon anodes, which become amorphous and suffer from larger volume changes. The lithiation/delithiation processes are proposed to occur in single phase reactions at approximately 0.2more » and 0.4 V vs. Li/Li +, respectively, distinct from other diamond cubic or amorphous silicon anodes. Reversible capacities as high as 499 mAh g -1 at a 5 mA g -1 rate were observed for silicon clathrate with composition Ba 8Al 8.54S i37.46, corresponding to Li:Si of 1.18:1. The results show that silicon clathrates could be promising durable anodes for lithium-ion batteries.« less

  5. Promising Thermoelectric Bulk Materials with 2D Structures.

    PubMed

    Zhou, Yiming; Zhao, Li-Dong

    2017-12-01

    Given that more than two thirds of all energy is lost, mostly as waste heat, in utilization processes worldwide, thermoelectric materials, which can directly convert waste heat to electricity, provide an alternative option for optimizing energy utilization processes. After the prediction that superlattices may show high thermoelectric performance, various methods based on quantum effects and superlattice theory have been adopted to analyze bulk materials, leading to the rapid development of thermoelectric materials. Bulk materials with two-dimensional (2D) structures show outstanding properties, and their high performance originates from both their low thermal conductivity and high Seebeck coefficient due to their strong anisotropic features. Here, the advantages of superlattices for enhancing the thermoelectric performance, the transport mechanism in bulk materials with 2D structures, and optimization methods are discussed. The phenomenological transport mechanism in these materials indicates that thermal conductivities are reduced in 2D materials with intrinsically short mean free paths. Recent progress in the transport mechanisms of Bi 2 Te 3 -, SnSe-, and BiCuSeO-based systems is summarized. Finally, possible research directions to enhance the thermoelectric performance of bulk materials with 2D structures are briefly considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Human action recognition with group lasso regularized-support vector machine

    NASA Astrophysics Data System (ADS)

    Luo, Huiwu; Lu, Huanzhang; Wu, Yabei; Zhao, Fei

    2016-05-01

    The bag-of-visual-words (BOVW) and Fisher kernel are two popular models in human action recognition, and support vector machine (SVM) is the most commonly used classifier for the two models. We show two kinds of group structures in the feature representation constructed by BOVW and Fisher kernel, respectively, since the structural information of feature representation can be seen as a prior for the classifier and can improve the performance of the classifier, which has been verified in several areas. However, the standard SVM employs L2-norm regularization in its learning procedure, which penalizes each variable individually and cannot express the structural information of feature representation. We replace the L2-norm regularization with group lasso regularization in standard SVM, and a group lasso regularized-support vector machine (GLRSVM) is proposed. Then, we embed the group structural information of feature representation into GLRSVM. Finally, we introduce an algorithm to solve the optimization problem of GLRSVM by alternating directions method of multipliers. The experiments evaluated on KTH, YouTube, and Hollywood2 datasets show that our method achieves promising results and improves the state-of-the-art methods on KTH and YouTube datasets.

  7. Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens

    NASA Astrophysics Data System (ADS)

    Velikova, Nadya; Fulle, Simone; Manso, Ana Sousa; Mechkarska, Milena; Finn, Paul; Conlon, J. Michael; Oggioni, Marco Rinaldo; Wells, Jerry M.; Marina, Alberto

    2016-05-01

    Novel antibacterials are urgently needed to address the growing problem of bacterial resistance to conventional antibiotics. Two-component systems (TCS) are widely used by bacteria to regulate gene expression in response to various environmental stimuli and physiological stress and have been previously proposed as promising antibacterial targets. TCS consist of a sensor histidine kinase (HK) and an effector response regulator. The HK component contains a highly conserved ATP-binding site that is considered to be a promising target for broad-spectrum antibacterial drugs. Here, we describe the identification of putative HK autophosphorylation inhibitors following two independent experimental approaches: in vitro fragment-based screen via differential scanning fluorimetry and in silico structure-based screening, each followed up by the exploration of analogue compounds as identified by ligand-based similarity searches. Nine of the tested compounds showed antibacterial effect against multi-drug resistant clinical isolates of bacterial pathogens and include three novel scaffolds, which have not been explored so far in other antibacterial compounds. Overall, putative HK autophosphorylation inhibitors were found that together provide a promising starting point for further optimization as antibacterials.

  8. Modified Allergens for Immunotherapy.

    PubMed

    Satitsuksanoa, Pattraporn; Głobińska, Anna; Jansen, Kirstin; van de Veen, Willem; Akdis, Mübeccel

    2018-02-16

    During the past few decades, modified allergens have been developed for use in allergen-specific immunotherapy (AIT) with the aim to improve efficacy and reduce adverse effects. This review aims to provide an overview of the different types of modified allergens, their mechanism of action and their potential for improving AIT. In-depth research in the field of allergen modifications as well as the advance of recombinant DNA technology have paved the way for improved diagnosis and research on human allergic diseases. A wide range of structurally modified allergens has been generated including allergen peptides, chemically altered allergoids, adjuvant-coupled allergens, and nanoparticle-based allergy vaccines. These modified allergens show promise for the development of AIT regimens with improved safety and long-term efficacy. Certain modifications ensure reduced IgE reactivity and retained T cell reactivity, which facilities induction of immune tolerance to the allergen. To date, multiple clinical trials have been performed using modified allergens. Promising results were obtained for the modified cat, grass and birch pollen, and house dust mite allergens. The use of modified allergens holds promise for improving AIT efficacy and safety. There is however a need for larger clinical studies to reliably assess the added benefit for the patient of using modified allergens for AIT.

  9. Comparative performance study of smart structure for thermal microactuators

    NASA Astrophysics Data System (ADS)

    Yahya, Zulkarnain; Johar, Muhammad Akmal

    2017-04-01

    Thermal microactuator is one of earliest types of microactuators. Typical thermal actuators are in the form of Bimorph and Chevron structures. A bimorph thermal actuator has a complex movement direction, in arc motion and thus it is not feasible in the most MEMS designs. While Chevron actuator has a tendency to produce an off-plane movement which lead to low precision in lateral movement. A new thermal actuator design in the form of serpentine structures shows promising feature to have better performances in terms of more predictive lateral movement with smaller off-plane displacement. In MEMS chip design, areas play a critical role as it will impact with the cost of the final product. In this study, four different structures of thermal actuator were simulated using ANSYS v15. Three different set of area sizes which are 240 µm x 1000 µm, 240 µm x 1500 µm and 240 µm x 2000 µm have been analyzed. All four structures were named as Serpentine01, Serpentine02, Bimorph and Chevron. The data with regards to temperature produced by the structure and z-axis directional deformation were collected and analyzed. This paper reported the investigation result of comparison between these three types of thermal actuator structures design with a given area. From all of the result obtained, it is shown that the area 240 µm x 1500 µm showed a well balance performance in term of huge deformations and low power consumption. The Serpentine01 structure produced 16.7 µm deformation at 4mA of current. The results shows the potential of Serpentine01 structure as a new candidate for thermal microactuator for MEMS applications.

  10. Novel sarsasapogenin-triazolyl hybrids as potential anti-Alzheimer's agents: Design, synthesis and biological evaluation.

    PubMed

    Wang, Wenbao; Wang, Wei; Yao, Guodong; Ren, Qiang; Wang, Di; Wang, Zedan; Liu, Peng; Gao, Pinyi; Zhang, Yan; Wang, Shaojie; Song, Shaojiang

    2018-05-10

    Sarsasapogenin, an active ingredient in Rhizoma anemarrhenae, is a promising bioactive lead compound in the treatment of Alzheimer's disease. To search for more efficient anti-Alzheimer agents, a series of novel sarsasapogenin-triazolyl hybrids were designed, synthesized, and evaluated for their Aβ 1-42 aggregation inhibitory activities. Most of these new hybrids displayed potent Aβ 1-42 aggregation inhibition. In particular, the promising compounds 6j and 6o displayed a better ability to interrupt the formation of Aβ 1-42 fibrils than curcumin. Moreover, 6j and 6o exhibited moderate neuroprotective effects against H 2 O 2 -induced neurotoxicity in SH-SY5Y cells. To investigate whether 6j and 6o could improve cognitive deficits, we performed behavioral tests to examine the learning and memory impairments induced by intracerebroventricular injection of Aβ 1-42 (ICV-Aβ 1-42 ) in mice and TUNEL staining to observe neuronal apoptosis in the hippocampus. The results obtained indicated that oral treatment with 6j and 6o significantly ameliorated cognitive impairments in behavioral tests and TUNEL staining showed that 6j and 6o attenuated neuronal loss in the brain. Taken together, the results we obtained showed that the sarsasapogenin skeleton could be a promising structural template for the development of new anti-Alzheimer drug candidates, and compounds 6j and 6o have the potential to be important lead compounds for further research. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Goumri-Said, Souraya; Tahir, S. A.

    2018-05-01

    Germanium mono-chalcogenides have received considerable attention for being a promising replacement for the relatively toxic and expensive chalcogenides in renewable and sustainable energy applications. In this paper, we explore the potential of the recently discovered novel cubic structured (π-phase) GeS and GeSe for thermoelectric applications in the framework of density functional theory coupled with Boltzmann transport theory. To examine the modifications in their physical properties, the across composition alloying of π-GeS and π-GeSe (such as π-GeS1-xSex for x =0, 0.25, 0.50, 0.75, and 1) has been performed that has shown important effects on the electronic band structures and effective masses of charge carriers. An increase in Se composition in π-GeS1-xSex has induced a downward shift in their conduction bands, resulting in the narrowing of their energy band gaps. The thermoelectric coefficients of π-GeS1-xSex have been accordingly influenced by the evolution of the electronic band structures and effective masses of charge carriers. π-GeS1-xSex features sufficiently larger values of Seebeck coefficients, power factors and figures of merit (ZTs), which experience further improvement with an increase in temperature, revealing their potential for high-temperature applications. The calculated results show that ZT values equivalent to unity can be achieved for π-GeS1-xSex at appropriate n-type doping levels. Our calculations for the formation enthalpies indicate that a π-GeS1-xSex alloying system is energetically stable and could be synthesized experimentally. These intriguing characteristics make π-GeS1-xSex a promising candidate for futuristic thermoelectric applications in energy harvesting devices.

  12. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists.

    PubMed

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.

  13. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists

    PubMed Central

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior. PMID:23653617

  14. A promising high-energy-density material.

    PubMed

    Zhang, Wenquan; Zhang, Jiaheng; Deng, Mucong; Qi, Xiujuan; Nie, Fude; Zhang, Qinghua

    2017-08-03

    High-energy density materials represent a significant class of advanced materials and have been the focus of energetic materials community. The main challenge in this field is to design and synthesize energetic compounds with a highest possible density and a maximum possible chemical stability. Here we show an energetic compound, [2,2'-bi(1,3,4-oxadiazole)]-5,5'-dinitramide, is synthesized through a two-step reaction from commercially available reagents. It exhibits a surprisingly high density (1.99 g cm -3 at 298 K), poor solubility in water and most organic solvents, decent thermal stability, a positive heat of formation and excellent detonation properties. The solid-state structural features of the synthesized compound are also investigated via X-ray diffraction and several theoretical techniques. The energetic and sensitivity properties of the explosive compound are similar to those of 2, 4, 6, 8, 10, 12-(hexanitrohexaaza)cyclododecane (CL-20), and the developed compound shows a great promise for potential applications as a high-energy density material.High energy density materials are of interest, but density is the limiting factor for many organic compounds. Here the authors show the formation of a high density energetic compound from a two-step reaction between commercially available compounds that exhibit good heat thermal stability and detonation properties.

  15. Single-crystalline dendritic bimetallic and multimetallic nanocubes.

    PubMed

    Kuang, Yun; Zhang, Ying; Cai, Zhao; Feng, Guang; Jiang, Yingying; Jin, Chuanhong; Luo, Jun; Sun, Xiaoming

    2015-12-01

    Developing facial synthetic routes for fabrication of multimetallic nanocatalysts with open porous morphology, tunable composition and tailored crystalline structure is a big challenge for fabrication of low-cost electrocatalysts. Here we report on the synthesis of single-crystalline dendritic bimetallic and multimetallic nanocubes via a solvothermal co-reduction method. These cubes show highly porous, complex 3D inner connections but single-crystalline structure. Tuning the reduction kinetics of metal precursors and introducing galvanic reaction at the active sites during growth were believed to be the keys for the formation of such unique nanostructure. Electro-catalytic oxygen reduction (ORR) and methanol oxidation (MOR) on these catalysts showed dramatic enhancements for both cathodic and anodic electrocatalysis in fuel cells, which were attributed to their unique morphology and crystalline structure, as well as synergetic effect of the multi-metallic components. This work uncovers the formation mechanism of such complex single-crystalline dendritic multimetallic nanocrystals and offers a promising synthetic strategy for geometric and crystalline control of multimetallic nanocrystals with tailored physical and chemical properties, which will benefit the development of clean energy.

  16. Picoampere Resistive Switching Characteristics Realized with Vertically Contacted Carbon Nanotube Atomic Force Microscope Probe

    NASA Astrophysics Data System (ADS)

    Nakano, Haruhisa; Takahashi, Makoto; Sato, Motonobu; Kotsugi, Masato; Ohkochi, Takuo; Muro, Takayuki; Nihei, Mizuhisa; Yokoyama, Naoki

    2013-11-01

    The resistive switching characteristics of a TiO2/Ti structure have been investigated using a conductive atomic force microscopy (AFM) system with 5-nm-diameter carbon nanotube (CNT) probes. The resistive switching showed bipolar resistive random access memory (ReRAM) behaviors with extremely low switching currents in the order of Picoamperes when voltages were applied. From transmission electron microscopy (TEM) observation, we confirmed that filament-like nanocrystals, having a diameter of about 10 nm, existed in TiO2 films at resistive switching areas after not only set operation but also reset operation. Moreover, photoemission electron microscopy (PEEM) analysis showed that the anatase-type TiO2 structure did not change after set and reset operations. From these results, we suggested that the Picoampere resistive switching occurred at the interface between the TiO2 dielectric and conductive nanocrystal without any structural changes in the TiO2 film and nanocrystal. The resistive switching mechanism we suggested is highly promising to realize extremely low-power-consumption ReRAMs with vertically contacted CNT electrodes.

  17. Preparation and characterization of core-shell structured LiFePO4/C composite using a novel carbon source for lithium-ion battery cathode

    NASA Astrophysics Data System (ADS)

    Huang, Zan; Luo, Peifang; Wang, Daxiang

    2017-03-01

    Core-shell structured LiFePO4/C1 cathode material is synthesized via a rapid microwave irradiation route using ethylene diamine tetraacetic acid (EDTA) as the novel carbon source. XRD results reveal that all the patterns can be indexed as the olivine-type structured LiFePO4 with the space group of Pnma. TEM images show that the obtained carbon is an amorphous layer with a thickness of about 3-4 nm. When the LiFePO4/C1 used as cathode material for lithium-ion battery, it delivers an initial discharge capacity of 163.1 mAh g-1 at 0.1 C which is about 96% of the theoretical capacity. Moreover, it also shows excellent rate performance and good cycle stability due to the enhanced electronic conductivity as proved by the electrochemical impedance spectroscopy (EIS). Thus, this carbon decorated LiFePO4 composite synthesized via the rapid microwave irradiation method is a promising cathode material for high-performance lithium-ion battery.

  18. Synthesis of chitin nanofibers, MWCNTs and MnO2 nanoflakes 3D porous network flexible gel-film for high supercapacitive performance electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Li, Dagang

    2017-03-01

    As the porous structure and conductivity result in improvement of electrochemical properties, the chitin nanofibers (ChNFs), multi-walled carbon nanotubes (MWCNTs) and MnO2 (manganese dioxide) nanoflakes 3D porous network core-shell structure gel-film was fabricated for flexible free-standing supercapacitor electrodes. The electrodes were characterized by various techniques and the results demonstrate that the as-synthesized ChNFs/MWCNTs/MnO2 gel-film electrodes exhibits excellent supercapacitive behaviours. The ChNFs/MWCNTs/MnO2 gel-film electrode shows a high capacitance of 295.2 mF/cm2 at 0.1 mA/cm2 in 1 M Na2SO4 aqueous electrolyte because of its 3D porous structure. Furthermore, the electrodes also showed surprising cycling stability for 5000 cycles with retention rate up to 157.14% at 1 mA/cm2. The data presents great promise in the application of high-performance flexible supercapacitors with the low cost, light-weight and excellent cycling ability.

  19. Self-assembled clusters of spheres related to spherical codes.

    PubMed

    Phillips, Carolyn L; Jankowski, Eric; Marval, Michelle; Glotzer, Sharon C

    2012-10-01

    We consider the thermodynamically driven self-assembly of spheres onto the surface of a central sphere. This assembly process forms self-limiting, or terminal, anisotropic clusters (N-clusters) with well-defined structures. We use Brownian dynamics to model the assembly of N-clusters varying in size from two to twelve outer spheres and free energy calculations to predict the expected cluster sizes and shapes as a function of temperature and inner particle diameter. We show that the arrangements of outer spheres at finite temperatures are related to spherical codes, an ideal mathematical sequence of points corresponding to the densest possible sphere packings. We demonstrate that temperature and the ratio of the diameters of the inner and outer spheres dictate cluster morphology. We present a surprising result for the equilibrium structure of a 5-cluster, for which the square pyramid arrangement is preferred over a more symmetric structure. We show this result using Brownian dynamics, a Monte Carlo simulation, and a free energy approximation. Our results suggest a promising way to assemble anisotropic building blocks from constituent colloidal spheres.

  20. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates.

    PubMed

    Bhatta, Umananda M; Rath, Ashutosh; Dash, Jatis K; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P V

    2009-11-18

    Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.

  1. 3D ordered porous MoxC (x = 1 or 2) for advanced hydrogen evolution and Li storage.

    PubMed

    Yu, Hong; Fan, Haosen; Wang, Jiong; Zheng, Yun; Dai, Zhengfei; Lu, Yizhong; Kong, Junhua; Wang, Xin; Kim, Young Jin; Yan, Qingyu; Lee, Jong-Min

    2017-06-01

    3D ordered porous structures of Mo x C are prepared with different Mo to C ratios and tested for two possible promising applications: hydrogen evolution reaction (HER) through water splitting and lithium ion batteries (LIBs). Mo 2 C and MoC with 3D periodic ordered structures are prepared with a similar process but different precursors. The 3D ordered porous MoC exhibits excellent cycling stability and rate performance as an anode material for LIBs. A discharge capacity of 450.9 mA h g -1 is maintained up to 3000 cycles at 10.0 A g -1 . The Mo 2 C with a similar ordered porous structure shows impressive electrocatalytic activity for the HER in neutral, alkaline and acidic pH solutions. In particular, Mo 2 C shows an onset potential of only 33 mV versus a reversible hydrogen electrode (RHE) and a Tafel slope of 42.5 mV dec -1 in a neutral aqueous solution (1.0 M phosphate buffer solution), which is approaching that of the commercial Pt/C catalyst.

  2. Flexible body control using neural networks

    NASA Technical Reports Server (NTRS)

    Mccullough, Claire L.

    1992-01-01

    Progress is reported on the control of Control Structures Interaction suitcase demonstrator (a flexible structure) using neural networks and fuzzy logic. It is concluded that while control by neural nets alone (i.e., allowing the net to design a controller with no human intervention) has yielded less than optimal results, the neural net trained to emulate the existing fuzzy logic controller does produce acceptible system responses for the initial conditions examined. Also, a neural net was found to be very successful in performing the emulation step necessary for the anticipatory fuzzy controller for the CSI suitcase demonstrator. The fuzzy neural hybrid, which exhibits good robustness and noise rejection properties, shows promise as a controller for practical flexible systems, and should be further evaluated.

  3. Observation of Anderson localization in disordered nanophotonic structures

    NASA Astrophysics Data System (ADS)

    Sheinfux, Hanan Herzig; Lumer, Yaakov; Ankonina, Guy; Genack, Azriel Z.; Bartal, Guy; Segev, Mordechai

    2017-06-01

    Anderson localization is an interference effect crucial to the understanding of waves in disordered media. However, localization is expected to become negligible when the features of the disordered structure are much smaller than the wavelength. Here we experimentally demonstrate the localization of light in a disordered dielectric multilayer with an average layer thickness of 15 nanometers, deep into the subwavelength regime. We observe strong disorder-induced reflections that show that the interplay of localization and evanescence can lead to a substantial decrease in transmission, or the opposite feature of enhanced transmission. This deep-subwavelength Anderson localization exhibits extreme sensitivity: Varying the thickness of a single layer by 2 nanometers changes the reflection appreciably. This sensitivity, approaching the atomic scale, holds the promise of extreme subwavelength sensing.

  4. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures

    PubMed Central

    Gao, Wei

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  5. Terahertz-induced photothermoelectric response in graphene-metal contact structures

    NASA Astrophysics Data System (ADS)

    Deng, Xiangquan; Wang, Yingxin; Zhao, Ziran; Chen, Zhiqiang; Sun, Jia-Lin

    2016-10-01

    We report on the photoresponse of a graphene-metal contact device under terahertz (THz) illumination. The device has an extremely simple structure consisting of a large-area monolayer graphene stripe contacted with two gold electrodes. A significant position-dependent photovoltage is observed across the device by THz excitation, exhibiting a linear relationship with the incident beam power. Experimental results show that the graphene channel length and the substrate thermal conductivity have obvious influence on the photovoltage amplitude and response time, which is consistent with the photothermoelectric mechanism. This compact and powerless device is expected to have a promising application in THz detection. Our work provides theoretical and experimental evidence for the development of high-performance graphene-based THz photodetectors.

  6. Atomic structure of nano voids in irradiated 3C-SiC

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Ru; Chen, Liu-Gu; Hsieh, Cheng-Yo; Hu, Alice; Lo, Sheng-Chuan; Chen, Fu-Rong; Kai, Ji-Jung

    2018-01-01

    It is important to understand the atomic structure of defect clusters in SiC, a promising material for nuclear application. In this study, we have directly observed and identified nano voids in ion irradiated 3C-SiC at 800 °C, 20 dpa through ABF and HAADF STEM images. A quantitative method was used to analyze HAADF images in which atomic columns with a difference in the number of atoms could be identified and scattered intensities can be computed. Our result shows that these voids are composed of atomic vacancies in an octahedral arrangement. The density of the void was measured by STEM to be 9.2 × 1019m-3 and the size was ∼1.5 nm.

  7. Scaling laws from geomagnetic time series

    USGS Publications Warehouse

    Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.

    1998-01-01

    The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.

  8. Phase contrast imaging of cochlear soft tissue.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.; Hwang, M.; Rau, C.

    A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imagingmore » and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.« less

  9. A novel addition polyimide adhesive

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Progar, D. J.

    1981-01-01

    An addition polyimide adhesive, LARC 13, was developed which shows promise for bonding both titanium and composites for applications which require service temperatures in excess of 533 K. The LARC 13 is based on an oligomeric bis nadimide containing a meta linked aromatic diamine. The adhesive melts prior to polymerization due to its oligomeric nature, thereby allowing it to be processed at 344 kPa or less. Therefore, LARC 13 is ideal for the bonding of honeycomb sandwich structures. After melting, the resin thermosets during the cure of the nadic endcaps to a highly crosslinked system. Few volatiles are evolved, thus allowing large enclosed structures to be bonded. Preparation of the adhesive as well as bonding, aging, and testing of lap shear and honeycomb samples are discussed.

  10. Laminar iridium coating produced by pulse current electrodeposition from chloride molten salt

    NASA Astrophysics Data System (ADS)

    Zhu, Li'an; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2013-10-01

    Due to the unique physical and chemical properties, Iridium (Ir) is one of the most promising oxidation-resistant coatings for refractory materials above 1800 °C in aerospace field. However, the Ir coatings prepared by traditional methods are composed of columnar grains throughout the coating thickness. The columnar structure of the coating is considered to do harm to its oxidation resistance. The laminar Ir coating is expected to have a better high-temperature oxidation resistance than the columnar Ir coating does. The pulse current electrodeposition, with three independent parameters: average current density (Jm), duty cycle (R) and pulse frequency (f), is considered to be a promising method to fabricate layered Ir coating. In this study, laminar Ir coatings were prepared by pulse current electrodeposition in chloride molten salt. The morphology, roughness and texture of the coatings were determined by scanning electron microscope (SEM), profilometer and X-ray diffraction (XRD), respectively. The results showed that the laminar Ir coatings were composed of a nucleation layer with columnar structure and a growth layer with laminar structure. The top surfaces of the laminar Ir coatings consisted of cauliflower-like aggregates containing many fine grains, which were separated by deep grooves. The laminar Ir coating produced at the deposition condition of 20 mA/cm2 (Jm), 10% (R) and 6 Hz (f) was quite smooth (Ra 1.01 ± 0.09 μm) with extremely high degree of preferred orientation of <1 1 1>, and its laminar structure was well developed with clear boundaries and uniform thickness of sub-layers.

  11. Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template.

    PubMed

    Song, Yan-Yan; Zhang, Dai; Gao, Wei; Xia, Xing-Hua

    2005-03-18

    A three-dimensionally ordered, macroporous, inverse-opal platinum film was synthesized electrochemically by the inverted colloidal-crystal template technique. The inverse-opal film that contains platinum nanoparticles showed improved electrocatalytic activity toward glucose oxidation with respect to the directly deposited platinum; this improvement is due to the interconnected porous structure and the greatly enhanced effective surface area. In addition, the inverse-opal Pt-film electrode responds more sensitively to glucose than to common interfering species of ascorbic acid, uric acid, and p-acetamidophenol due to their different electrochemical reaction mechanisms. Results showed that the ordered macroporous materials with enhanced selectivity and sensitivity are promising for fabrication of nonenzymatic glucose biosensors.

  12. The relationship between the microstructure and magnetic properties of sputtered Co/Pt multilayer films

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Petford-Long, Amanda K.; Jakubovics, J. P.

    1994-11-01

    Co/Pd multilayer films (MLFs) are of interest because of their potential application as high-density magneto-optical recording media. Co/Pd MLFs with varying Co and Pd layer thicknesses were grown by sputter-deposition onto (100) Si wafers. X-ray diffraction and high resolution electron microscopy were used to study the microstructure of the films, and Lorentz microscopy was used to analyze their magnetic domain structure. The films show an fcc crystal structure with a compromised lattice parameter and a strong (111) crystallographic texture in the growth direction. The compromised interplanar spacing parallel to the surface increased with decreasing thickness ratio (t(sub Co)/t(sub Pd), and the columnar grain size decreased with increasing Pd layer thickness. Films with t(sub Co) = 0.35 nm and t(sub Pd) = 2.8 nm (columnar grain diameter 20 nm) showed promising magnetic properties, namely a high perpendicular magnetic anisotropy (1.85x10(exp 5) J/cu m), with a perpendicular coercivity of 98.7 kA/m, a perpendicular remanence ratio of 99%, and a perpendicular coercivity ratio of 88%. The magnetic domains were uniform and of a narrow stripe type, confirming the perpendicular easy axis of magnetization. The Curie temperature was found to be about 430 C. Films of pure Co and Pd, grown for comparison, also showed columnar grain structure with grain-sizes of the same order as those seen in the MLFs. In addition the Pd films showed a (111) textured fcc structure.

  13. (M)- and (P)-bicelaphanol A, dimeric trinorditerpenes with promising neuroprotective activity from Celastrus orbiculatus.

    PubMed

    Wang, Luo-Yi; Wu, Jian; Yang, Zhuo; Wang, Xu-Jie; Fu, Yan; Liu, Shuang-Zhu; Wang, Hong-Min; Zhu, Wei-Liang; Zhang, Hai-Yan; Zhao, Wei-Min

    2013-04-26

    (M)-Bicelaphanol A (1) and (P)-bicelaphanol A (2), two unprecedented dimeric trinorditerpenes existing as atropisomers, together with their monomer celaphanol A (3), were isolated from the root bark of Celastrus orbiculatus. The structures and absolute configurations of 1 and 2 were determined by spectroscopic and single-crystal X-ray diffraction analyses. Compound 1 exhibited a significant in vitro neuroprotective effect against a hydrogen peroxide-induced cell viability decrease in PC12 cells at 1 μM, while compounds 2 and 3 showed such effects at 10 μM.

  14. High-speed holocinematographic velocimeter for studying turbulent flow control physics

    NASA Technical Reports Server (NTRS)

    Weinstein, L. M.; Beeler, G. B.; Lindemann, A. M.

    1985-01-01

    Use of a dual view, high speed, holographic movie technique is examined for studying turbulent flow control physics. This approach, which eliminates some of the limitations of previous holographic techniques, is termed a holocinematographic velocimeter (HCV). The data from this system can be used to check theoretical turbulence modeling and numerical simulations, visualize and measure coherent structures in 'non-simple' turbulent flows, and examine the mechanisms operative in various turbulent control/drag reduction concepts. This system shows promise for giving the most complete experimental characterization of turbulent flows yet available.

  15. The role of networks and artificial intelligence in nanotechnology design and analysis.

    PubMed

    Hudson, D L; Cohen, M E

    2004-05-01

    Techniques with their origins in artificial intelligence have had a great impact on many areas of biomedicine. Expert-based systems have been used to develop computer-assisted decision aids. Neural networks have been used extensively in disease classification and more recently in many bioinformatics applications including genomics and drug design. Network theory in general has proved useful in modeling all aspects of biomedicine from healthcare organizational structure to biochemical pathways. These methods show promise in applications involving nanotechnology both in the design phase and in interpretation of system functioning.

  16. Gd-doped BNNTs as T2-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Ciofani, Gianni; Boni, Adriano; Calucci, Lucia; Forte, Claudia; Gozzi, Alessandro; Mazzolai, Barbara; Mattoli, Virgilio

    2013-08-01

    This work describes, for the first time, doping of boron nitride nanotubes (BNNTs) with gadolinium (Gd@BNNTs), a stable functionalization that permits non-invasive BNNT tracking via magnetic resonance imaging (MRI). We report the structure, Gd loading, and relaxometric properties in water suspension at 7 T of Gd@BNNTs, and show the behaviour of these nanostructures as promising T2-weighted contrast agents. Finally, we demonstrate their complete biocompatibility in vitro on human neuroblastoma cells, together with their ability to effectively label and affect contrast in MRI images at 7 T.

  17. Hydrothermal synthesis of MnO2 thin film for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Tarwate, Soni B.; Wahule, Swati S.; Gattu, Ketan P.; Ghule, Anil V.; Sharma, Ramphal

    2018-05-01

    MnO2 thin films were directly grown on stainless steel mesh via a facile hydrothermal method. The structural properties revealed the formation of delta MnO2. The capacitive performance of the as-obtained MnO2 electrode was evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. The synthesized electrode showed a high specific capacitance of 321 F g-1 at 5 A g-1. The excellent electrochemical performance identifies the MnO2 as a promising electrode material for next-generation energy storage devices.

  18. SiC Fiber-Reinforced Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2003-01-01

    Celsian is a promising matrix material for fiber-reinforced composites for high temperature structural applications. Processing and fabrication of small diameter multifilament silicon carbide tow reinforced celsian matrix composites are described. Mechanical and microstructural properties of these composites at ambient and elevated temperatures are presented. Effects of high-temperature exposures in air on the mechanical behavior of these composites are also given. The composites show mechanical integrity up to 1100 C but degrade at higher temperatures in oxidizing atmospheres. A model has been proposed for the degradation of these composites in oxidizing atmospheres at high temperatures.

  19. Coherent spin transfer between molecularly bridged quantum dots.

    PubMed

    Ouyang, Min; Awschalom, David D

    2003-08-22

    Femtosecond time-resolved Faraday rotation spectroscopy reveals the instantaneous transfer of spin coherence through conjugated molecular bridges spanning quantum dots of different size over a broad range of temperature. The room-temperature spin-transfer efficiency is approximately 20%, showing that conjugated molecules can be used not only as interconnections for the hierarchical assembly of functional networks but also as efficient spin channels. The results suggest that this class of structures may be useful as two-spin quantum devices operating at ambient temperatures and may offer promising opportunities for future versatile molecule-based spintronic technologies.

  20. Spontaneous superfluid unpinning and the inhomogeneous distribution of vortex lines in neutron stars

    NASA Technical Reports Server (NTRS)

    Cheng, K. S.; Pines, D.; Alpar, M. A.; Shaham, J.

    1988-01-01

    The equation of motion of the pinned superfluid which couples to the crust of neutron stars via thermal vortex creep is studied. Spontaneous unpinning at locations characterized by a very inhomogeneous distribution of vortex lines is examined as a possible mechanism for the initiation of glitches. It is suggested that structural inhomogeneities in the crust of neutron stars may be responsible for frequent microglitches which lead to pulsar timing noise. A generalization of the model shows promise for explaining the origin of the giant glitches in pulsars.

  1. Evolutionary and biological metaphors for engineering design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakiela, M.

    1994-12-31

    Since computing became generally available, there has been strong interest in using computers to assist and automate engineering design processes. Specifically, for design optimization and automation, nonlinear programming and artificial intelligence techniques have been extensively studied. New computational techniques, based upon the natural processes of evolution, adaptation, and learing, are showing promise because of their generality and robustness. This presentation will describe the use of two such techniques, genetic algorithms and classifier systems, for a variety of engineering design problems. Structural topology optimization, meshing, and general engineering optimization are shown as example applications.

  2. Surface regulated arsenenes as Dirac materials: From density functional calculations

    NASA Astrophysics Data System (ADS)

    Yuan, Junhui; Xie, Qingxing; Yu, Niannian; Wang, Jiafu

    2017-02-01

    Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.

  3. Competitive Adsorption-Assisted Formation of One-Dimensional Cobalt Nanochains with High CO Hydrogenation Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Xin; Ren, Zhibo; Zhu, Xiaolin

    In the present work, cobalt nanochains have been successfully synthesized by a novel co assisted self-assembling formation strategy. A dramatic morphology transformation from cobalt nanoparticles to nanochains are observed when co molecules were introduced into the synthetic system. DFT calculations further confirm that competitive co-adsorbed co and oleylamine over the cobalt nanoparticles facilitates the formation of cobalt nanochains, which show higher co hydrogenation performance. The present work provides a new strategic and promising method for controllable synthesis of catalyst nanomaterials with the preferred surface structure and morphology.

  4. A Rhodium(III) Complex as an Inhibitor of Neural Precursor Cell Expressed, Developmentally Down-Regulated 8-Activating Enzyme with in Vivo Activity against Inflammatory Bowel Disease.

    PubMed

    Zhong, Hai-Jing; Wang, Wanhe; Kang, Tian-Shu; Yan, Hui; Yang, Yali; Xu, Lipeng; Wang, Yuqiang; Ma, Dik-Lung; Leung, Chung-Hang

    2017-01-12

    We report herein the identification of the rhodium(III) complex [Rh(phq) 2 (MOPIP)] + (1) as a potent and selective ATP-competitive neural precursor cell expressed, developmentally down-regulated 8 (NEDD8)-activating enzyme (NAE) inhibitor. Structure-activity relationship analysis indicated that the overall organometallic design of complex 1 was important for anti-inflammatory activity. Complex 1 showed promising anti-inflammatory activity in vivo for the potential treatment of inflammatory bowel disease.

  5. Improved stability of highly fluorinated phospholipid-based vesicles in the presence of bile salts.

    PubMed

    Gadras, C; Santaella, C; Vierling, P

    1999-01-04

    The stability of fluorinated phospholipid-based vesicles in terms of detergent-induced release of encapsulated carboxyfluorescein has been evaluated. The fluorinated liposomes are substantially more resistant towards the lytic action of sodium taurocholate than conventional DSPC or even DSPC/CH 1/1 liposomes. Concerning structure/permeability relationships, the larger the fluorination degree of the membrane, the higher the resistance of the fluorinated liposomes to their destruction by the detergent. These results show that fluorinated liposomes have a promising potential as drug carrier and delivery systems for oral administration.

  6. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. State-of-the-Art Procedures for Sealing Coastal Structures with Grouts and Concretes

    DTIC Science & Technology

    1989-04-01

    the shape it had as it was ex- truded from the grout tube . Figure 3 shows the type of voids in which the ma- terial is expected to form a barrier...has promising characteristics for coastal engi- neering applications. Microfine Cement, a company which markets ultrafine ce- ment, claims the product...can penetrate fine sand, and is strong and durable with a 4- to 5-hr set time. Fifty percent of Microfine Cement’s particles are less than 4 microns

  7. Effect of tyrosinase-aided crosslinking on the IgE binding potential and conformational structure of shrimp (Metapenaeus ensis) tropomyosin.

    PubMed

    Ahmed, Ishfaq; Lv, Liangtao; Lin, Hong; Li, Zhenxing; Ma, Jiaju; Guanzhi, Chen; Sun, Lirui; Xu, Lili

    2018-05-15

    The present study was performed to determine crosslinking and oxidative reactions catalyzed by tyrosinase (Tyr), caffeic acid (CA) and their combination with respect to IgE binding potential and conformational structure of shrimp tropomyosin (TM). Cross-links and IgE binding potentials were analyzed by SDS-PAGE, western blot and indirect ELISA. While structural changes were characterized using surface hydrophobicity, ultraviolet (UV), fluorescence and circular dichroism (CD) spectroscopies. Maximum reduction in the IgG (37.19%) and IgE binding potentials (49.41%) were observed when treated with 2000 nkat/g Tyr + CA, as indicated by ELISA analyses. These findings correlated well with the denaturation of protein, as evident by slight blue shift and alterations in the ellipticities observed via structural analyses. The results demonstrated that addition of CA mediator with Tyr pronouncedly enhanced crosslinking, and altered the conformational structure, thereby mitigated allergenicity of TM, thus showing promise in developing novel food structures with reduced allergenic potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Ultralow-phase-noise oscillators based on BAW resonators.

    PubMed

    Li, Mingdong; Seok, Seonho; Rolland, Nathalie; Rolland, Paul; El Aabbaoui, Hassan; de Foucauld, Emeric; Vincent, Pierre; Giordano, Vincent

    2014-06-01

    This paper presents two 2.1-GHz low-phase noise oscillators based on BAW resonators. Both a single-ended common base structure and a differential Colpitts structure have been implemented in a 0.25-μm BiCMOS process. The detailed design methods including the realization, optimization, and test are reported. The differential Colpitts structure exhibits a phase noise 6.5 dB lower than the single-ended structure because of its good performance of power noise immunity. Comparison between the two structures is also carried out. The differential Colpitts structure shows a phase noise level of -87 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -162 dBc/Hz, with an output power close to -6.5 dBm and a core consumption of 21.6 mW. Furthermore, with the proposed optimization methods, both proposed devices have achieved promising phase noise performance compared with state-of-the-art oscillators described in the literature. Finally, we briefly present the application of the proposed BAW oscillator to a micro-atomic clock.

  9. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent

    NASA Astrophysics Data System (ADS)

    Liu, Lihong; Xu, Kaijin; Wang, Huaying; Jeremy Tan, P. K.; Fan, Weimin; Venkatraman, Subbu S.; Li, Lanjuan; Yang, Yi-Yan

    2009-07-01

    Antimicrobial cationic peptides are of interest because they can combat multi-drug-resistant microbes. Most peptides form α-helices or β-sheet-like structures that can insert into and subsequently disintegrate negatively charged bacterial cell surfaces. Here, we show that a novel class of core-shell nanoparticles formed by self-assembly of an amphiphilic peptide have strong antimicrobial properties against a range of bacteria, yeasts and fungi. The nanoparticles show a high therapeutic index against Staphylococcus aureus infection in mice and are more potent than their unassembled peptide counterparts. Using Staphylococcus aureus-infected meningitis rabbits, we show that the nanoparticles can cross the blood-brain barrier and suppress bacterial growth in infected brains. Taken together, these nanoparticles are promising antimicrobial agents that can be used to treat brain infections and other infectious diseases.

  10. Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics.

    PubMed

    Chek, Min Fey; Kim, Sun-Yong; Mori, Tomoyuki; Arsad, Hasni; Samian, Mohammed Razip; Sudesh, Kumar; Hakoshima, Toshio

    2017-07-13

    Polyhydroxyalkanoate (PHA) is a promising candidate for use as an alternative bioplastic to replace petroleum-based plastics. Our understanding of PHA synthase PhaC is poor due to the paucity of available three-dimensional structural information. Here we present a high-resolution crystal structure of the catalytic domain of PhaC from Chromobacterium sp. USM2, PhaC Cs -CAT. The structure shows that PhaC Cs -CAT forms an α/β hydrolase fold comprising α/β core and CAP subdomains. The active site containing Cys291, Asp447 and His477 is located at the bottom of the cavity, which is filled with water molecules and is covered by the partly disordered CAP subdomain. We designated our structure as the closed form, which is distinct from the recently reported catalytic domain from Cupriavidus necator (PhaC Cn -CAT). Structural comparison showed PhaC Cn -CAT adopting a partially open form maintaining a narrow substrate access channel to the active site, but no product egress. PhaC Cs -CAT forms a face-to-face dimer mediated by the CAP subdomains. This arrangement of the dimer is also distinct from that of the PhaC Cn -CAT dimer. These findings suggest that the CAP subdomain should undergo a conformational change during catalytic activity that involves rearrangement of the dimer to facilitate substrate entry and product formation and egress from the active site.

  11. Full-Scale Test and Analysis Results of a PRSEUS Fuselage Panel to Assess Damage Containment Features

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew; Bakuckas, John G., Jr.; Lovejoy, Andrew; Jegley, Dawn; Linton, Kim; Neal, Bert; Korkosz, Gregory; Awerbuch, Jonathan; Tan, Tein-Min

    2012-01-01

    Integrally stitched composite technology is an area that shows promise in enhancing the structural integrity of aircraft and aerospace structures. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. The goal of the PRSEUS concept relevant to this test is to provide damage containment capability for composite structures while reducing overall structural weight. The National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and The Boeing Company have partnered in an effort to assess the damage containment features of a full-scale curved PRSEUS panel using the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. A single PRSEUS test panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure loads. The test results showed excellent performance of the PRSEUS concept. No growth of Barely Visible Impact Damage (BVID) was observed after ultimate loads were applied. With a two-bay notch severing the central stringer, damage was contained within the two-bay region well above the required limit load conditions. Catastrophic failure was well above the ultimate load level. Information describing the test panel and procedure has been previously presented, so this paper focuses on the experimental procedure, test results, nondestructive inspection results, and preliminary test and analysis correlation.

  12. Learning to Lead Together: The Promise and Challenge of Sharing Leadership

    ERIC Educational Resources Information Center

    Chrispeels, Janet H., Ed.

    2004-01-01

    "Learning to Lead Together: The Promise and Challenge of Sharing Leadership" examines the dilemmas for school leaders and administrators, and the benefits for schools and students, when principals work with teachers (and their communities) to share leadership. Most schools function within existing hierarchical structures that contradict…

  13. Identification of a non-competitive inhibitor of Plasmodium falciparum aspartate transcarbamoylase.

    PubMed

    Lunev, Sergey; Bosch, Soraya S; Batista, Fernando A; Wang, Chao; Li, Jingyao; Linzke, Marleen; Kruithof, Paul; Chamoun, George; Dömling, Alexander S S; Wrenger, Carsten; Groves, Matthew R

    2018-03-11

    Aspartate transcarbamoylase catalyzes the second step of de-novo pyrimidine biosynthesis. As malarial parasites lack pyrimidine salvage machinery and rely on de-novo production for growth and proliferation, this pathway is a target for drug discovery. Previously, an apo crystal structure of aspartate transcarbamoylase from Plasmodium falciparum (PfATC) in its T-state has been reported. Here we present crystal structures of PfATC in the liganded R-state as well as in complex with the novel inhibitor, 2,3-napthalenediol, identified by high-throughput screening. Our data shows that 2,3-napthalediol binds in close proximity to the active site, implying an allosteric mechanism of inhibition. Furthermore, we report biophysical characterization of 2,3-napthalenediol. These data provide a promising starting point for structure based drug design targeting PfATC and malarial de-novo pyrimidine biosynthesis. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Free-floating magnetic microstructures by mask photolithography

    NASA Astrophysics Data System (ADS)

    Huong Au, Thi; Thien Trinh, Duc; Bich Do, Danh; Phu Nguyen, Dang; Cong Tong, Quang; Diep Lai, Ngoc

    2018-03-01

    This work explores the fabrication of free-floating magnetic structures on a photocurable nanocomposite consisting of superparamagnetic magnetite nanoparticles (Fe3O4) and a commercial SU-8 negative tone photoresist. The nanocomposite was synthesized by mixing magnetic nanoparticles with different kinds of SU-8 resin. We demonstrated that the dispersion of Fe3O4 nanoparticles in nanocomposite solution strongly depended on the particles concentration, the viscosity of SU-8 polymer, and the mixing time. The influence of these factors was demonstrated by examining the structures fabricated by mask photolithography technique. We obtained the best quality of structures at a low concentration, below 5 wt%, of Fe3O4 nanoparticles in SU-8 2005 photoresist for a mixing time of about 20 days. The manipulation of free-floating magnetic microstructures by an external magnetic field was also demonstrated showing promising applications of this magnetic nanocomposite.

  15. Autonomous self-healing structural composites with bio-inspired design

    PubMed Central

    D’Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo

    2016-01-01

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli. PMID:27146382

  16. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Beck, Michael W.; Derrick, Jeffrey S.; Kerr, Richard A.; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C.; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D.; Kim, Kwang S.; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee

    2016-10-01

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  17. Autonomous self-healing structural composites with bio-inspired design.

    PubMed

    D'Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K; Saiz, Eduardo

    2016-05-05

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli.

  18. Autonomous self-healing structural composites with bio-inspired design

    NASA Astrophysics Data System (ADS)

    D'Elia, Eleonora; Eslava, Salvador; Miranda, Miriam; Georgiou, Theoni K.; Saiz, Eduardo

    2016-05-01

    Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli.

  19. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-06-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated ( 6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated ( 6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  20. Virtual screening of B-Raf kinase inhibitors: A combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy calculation studies.

    PubMed

    Zhang, Wen; Qiu, Kai-Xiong; Yu, Fang; Xie, Xiao-Guang; Zhang, Shu-Qun; Chen, Ya-Juan; Xie, Hui-Ding

    2017-10-01

    B-Raf kinase has been identified as an important target in recent cancer treatment. In order to discover structurally diverse and novel B-Raf inhibitors (BRIs), a virtual screening of BRIs against ZINC database was performed by using a combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy (ΔG bind ) calculation studies in this work. After the virtual screening, six promising hit compounds were obtained, which were then tested for inhibitory activities of A375 cell lines. In the result, five hit compounds show good biological activities (IC 50 <50μM). The present method of virtual screening can be applied to find structurally diverse inhibitors, and the obtained five structurally diverse compounds are expected to develop novel BRIs. Copyright © 2017. Published by Elsevier Ltd.

  1. Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering.

    PubMed

    Chen, Weiming; Ma, Jun; Zhu, Lei; Morsi, Yosry; -Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-06-01

    Fabrication of 3D scaffold to mimic the nanofibrous structure of the nature extracellular matrix (ECM) with appropriate mechanical properties and excellent biocompatibility, remain an important technical challenge in tissue engineering. The present study reports the strategy to fabricate a 3D nanofibrous scaffold with similar structure to collagen in ECM by combining electrospinning and freeze-drying technique. With the technique reported here, a nanofibrous structure scaffold with hydrophilic and superabsorbent properties can be readily prepared by Gelatin and Polylactic acid (PLA). In wet state the scaffold also shows a super-elastic property, which could bear a compressive strain as high as 80% and recovers its original shape afterwards. Moreover, after 6 days of culture, L-929 cells grow, proliferate and infiltrated into the scaffold. The results suggest that this 3D nanofibrous scaffold would be promising for varied field of tissue engineering application. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Peculiar bonding associated with atomic doping and hidden honeycombs in borophene

    NASA Astrophysics Data System (ADS)

    Lee, Chi-Cheng; Feng, Baojie; D'angelo, Marie; Yukawa, Ryu; Liu, Ro-Ya; Kondo, Takahiro; Kumigashira, Hiroshi; Matsuda, Iwao; Ozaki, Taisuke

    2018-02-01

    Engineering atomic-scale structures allows great manipulation of physical properties and chemical processes for advanced technology. We show that the B atoms deployed at the centers of honeycombs in boron sheets, borophene, behave as nearly perfect electron donors for filling the graphitic σ bonding states without forming additional in-plane bonds by first-principles calculations. The dilute electron density distribution owing to the weak bonding surrounding the center atoms provides easier atomic-scale engineering and is highly tunable via in-plane strain, promising for practical applications, such as modulating the extraordinarily high thermal conductance that exceeds the reported value in graphene. The hidden honeycomb bonding structure suggests an unusual energy sequence of core electrons that has been verified by our high-resolution core-level photoelectron spectroscopy measurements. With the experimental and theoretical evidence, we demonstrate that borophene exhibits a peculiar bonding structure and is distinctive among two-dimensional materials.

  3. Structure-guided development of dual β2 adrenergic/dopamine D2 receptor agonists.

    PubMed

    Weichert, Dietmar; Stanek, Markus; Hübner, Harald; Gmeiner, Peter

    2016-06-15

    Aiming to discover dual-acting β2 adrenergic/dopamine D2 receptor ligands, a structure-guided approach for the evolution of GPCR agonists that address multiple targets was elaborated. Starting from GPCR crystal structures, we describe the design, synthesis and biological investigation of a defined set of compounds leading to the identification of the benzoxazinone (R)-3, which shows agonist properties at the adrenergic β2 receptor and substantial G protein-promoted activation at the D2 receptor. This directed approach yielded molecular probes with tuned dual activity. The congener desOH-3 devoid of the benzylic hydroxyl function was shown to be a β2 adrenergic antagonist/D2 receptor agonist with Ki values in the low nanomolar range. The compounds may serve as a promising starting point for the investigation and treatment of neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation.

    PubMed

    Zhu, Wei; Ye, Tao; Lee, Se-Jun; Cui, Haitao; Miao, Shida; Zhou, Xuan; Shuai, Danmeng; Zhang, Lijie Grace

    2017-05-25

    Carbon-based nanomaterials have shown great promise in regenerative medicine because of their unique electrical, mechanical, and biological properties; however, it is still difficult to engineer 2D pure carbon nanomaterials into a 3D scaffold while maintaining its structural integrity. In the present study, we developed novel carbon nanofibrous scaffolds by annealing electrospun mats at elevated temperature. The resultant scaffold showed a cohesive structure and excellent mechanical flexibility. The graphitic structure generated by annealing renders superior electrical conductivity to the carbon nanofibrous scaffold. By integrating the conductive scaffold with biphasic electrical stimulation, neural stem cell proliferation was promoted associating with upregulated neuronal gene expression level and increased microtubule-associated protein 2 immunofluorescence, demonstrating an improved neuronal differentiation and maturation. The findings suggest that the integration of the conducting carbon nanofibrous scaffold and electrical stimulation may pave a new avenue for neural tissue regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Revealing Abrupt and Spontaneous Ruptures of Protein Native Structure under picoNewton Compressive Force Manipulation.

    PubMed

    Chowdhury, S Roy; Cao, Jin; He, Yufan; Lu, H Peter

    2018-03-27

    Manipulating protein conformations for exploring protein structure-function relationship has shown great promise. Although protein conformational changes under pulling force manipulation have been extensively studied, protein conformation changes under a compressive force have not been explored quantitatively. The latter is even more biologically significant and relevant in revealing protein functions in living cells associated with protein crowdedness, distribution fluctuations, and cell osmotic stress. Here we report our experimental observations on abrupt ruptures of protein native structures under compressive force, demonstrated and studied by single-molecule AFM-FRET spectroscopic nanoscopy. Our results show that the protein ruptures are abrupt and spontaneous events occurred when the compressive force reaches a threshold of 12-75 pN, a force amplitude accessible from thermal fluctuations in a living cell. The abrupt ruptures are sensitive to local environment, likely a general and important pathway of protein unfolding in living cells.

  6. Adaptive management of rangeland systems

    USGS Publications Warehouse

    Allen, Craig R.; Angeler, David G.; Fontaine, Joseph J.; Garmestani, Ahjond S.; Hart, Noelle M.; Pope, Kevin L.; Twidwell, Dirac

    2017-01-01

    Adaptive management is an approach to natural resource management that uses structured learning to reduce uncertainties for the improvement of management over time. The origins of adaptive management are linked to ideas of resilience theory and complex systems. Rangeland management is particularly well suited for the application of adaptive management, having sufficient controllability and reducible uncertainties. Adaptive management applies the tools of structured decision making and requires monitoring, evaluation, and adjustment of management. Adaptive governance, involving sharing of power and knowledge among relevant stakeholders, is often required to address conflict situations. Natural resource laws and regulations can present a barrier to adaptive management when requirements for legal certainty are met with environmental uncertainty. However, adaptive management is possible, as illustrated by two cases presented in this chapter. Despite challenges and limitations, when applied appropriately adaptive management leads to improved management through structured learning, and rangeland management is an area in which adaptive management shows promise and should be further explored.

  7. Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease.

    PubMed

    Beck, Michael W; Derrick, Jeffrey S; Kerr, Richard A; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D; Kim, Kwang S; Lee, Joo-Yong; Ruotolo, Brandon T; Lim, Mi Hee

    2016-10-13

    The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.

  8. Inner-shell chemistry under high pressure

    NASA Astrophysics Data System (ADS)

    Miao, Maosheng; Botana, Jorge; Pravica, Michael; Sneed, Daniel; Park, Changyong

    2017-05-01

    Chemistry at ambient conditions has implicit boundaries rooted in the atomic shell structure: the inner-shell electrons and the unoccupied outer-shell orbitals do not contribute as the major component to chemical reactions and in chemical bonds. These general rules govern our understanding of chemical structures and reactions. We review the recent progresses in high-pressure chemistry demonstrating that the above rules can be violated under extreme conditions. Using a first principles computation method and crystal structure search algorithm, we demonstrate that stable compounds involving inner shell electrons such as CsF3, CsF5, HgF3, and HgF4 can form under high external pressure and may present exotic properties. We also discuss experimental studies that have sought to confirm these predictions. Employing our recently developed hard X-ray photochemistry methods in a diamond anvil cell, we show promising early results toward realizing inner shell chemistry experimentally.

  9. Protein Tertiary Structure Prediction Based on Main Chain Angle Using a Hybrid Bees Colony Optimization Algorithm

    NASA Astrophysics Data System (ADS)

    Mahmood, Zakaria N.; Mahmuddin, Massudi; Mahmood, Mohammed Nooraldeen

    Encoding proteins of amino acid sequence to predict classified into their respective families and subfamilies is important research area. However for a given protein, knowing the exact action whether hormonal, enzymatic, transmembranal or nuclear receptors does not depend solely on amino acid sequence but on the way the amino acid thread folds as well. This study provides a prototype system that able to predict a protein tertiary structure. Several methods are used to develop and evaluate the system to produce better accuracy in protein 3D structure prediction. The Bees Optimization algorithm which inspired from the honey bees food foraging method, is used in the searching phase. In this study, the experiment is conducted on short sequence proteins that have been used by the previous researches using well-known tools. The proposed approach shows a promising result.

  10. Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in Li-ion battery

    NASA Astrophysics Data System (ADS)

    You, Jiangfeng; Xin, Ling; Yu, Xiao; Zhou, Xiang; Liu, Yong

    2018-03-01

    Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge-discharge cycles at a current density of 200 mA/g, showing good cycling performance.

  11. Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence.

    PubMed

    Yang, Ke; Huang, Xingyi; Xie, Liyuan; Wu, Chao; Jiang, Pingkai; Tanaka, Toshikatsu

    2012-11-23

    A novel route to prepare core-shell structured nanocomposites with excellent dielectric performance is reported. This approach involves the grafting of polystyrene (PS) from the surface of BaTiO(3) by an in situ RAFT polymerization. The core-shell structured PS/BaTiO(3) nanocomposites not only show significantly increased dielectric constant and very low dielectric loss, but also have a weak frequency dependence of dielectric properties over a wide range of frequencies. In addition, the dielectric constant of the nanocomposites can also be easily tuned by varying the thickness of the PS shell. Our method is very promising for preparing high-performance nanocomposites used in energy-storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A self-assembled synthesis of carbon nanotubes for interconnects.

    PubMed

    Chen, Zexiang; Cao, Guichuan; Lin, Zulun; Koehler, Irmgard; Bachmann, Peter K

    2006-02-28

    We report a novel approach to grow highly oriented, freestanding and structured carbon nanotubes (CNTs) between two substrates, using microwave plasma chemical vapour deposition. Sandwiched, multi-layered catalyst structures are employed to generate such structures. The as-grown CNTs adhere well to both the substrate and the top contact, and provide a low-resistance electric contact between the two. High-resolution scanning electron microscope (SEM) images show that the CNTs grow perpendicular to these surfaces. This presents a simple way to grow CNTs in different, predetermined directions in a single growth step. The overall resistance of a CNT bundle and two CNT-terminal contacts is measured to be about 14.7 k Ω. The corresponding conductance is close to the quantum limit conductance G(0). This illustrates that our new approach is promising for the direct assembly of CNT-based interconnects in integrated circuits (ICs) or other micro-electronic devices.

  13. Nanoelectronics from the bottom up.

    PubMed

    Lu, Wei; Lieber, Charles M

    2007-11-01

    Electronics obtained through the bottom-up approach of molecular-level control of material composition and structure may lead to devices and fabrication strategies not possible with top-down methods. This review presents a brief summary of bottom-up and hybrid bottom-up/top-down strategies for nanoelectronics with an emphasis on memories based on the crossbar motif. First, we will discuss representative electromechanical and resistance-change memory devices based on carbon nanotube and core-shell nanowire structures, respectively. These device structures show robust switching, promising performance metrics and the potential for terabit-scale density. Second, we will review architectures being developed for circuit-level integration, hybrid crossbar/CMOS circuits and array-based systems, including experimental demonstrations of key concepts such lithography-independent, chemically coded stochastic demultipluxers. Finally, bottom-up fabrication approaches, including the opportunity for assembly of three-dimensional, vertically integrated multifunctional circuits, will be critically discussed.

  14. The comparative toxicity of phosphoramidothionates and phosphoramidates to susceptible and insecticide-resistant houseflies and mosquitos*

    PubMed Central

    March, R. B.; Georghiou, G. P.; Metcalf, R. L.; Printy, G. E.

    1964-01-01

    Studies of the comparative toxicity of a number of homologous X-chlorophenyl phosphoramidothionates and phosphoramidates and related analogues to susceptible and insecticide-resistant houseflies (Musca domestica L.) and mosquitos (Culex pipiens quinquefasciatus Say and Anopheles albimanus Wied.) have shown that the 2,4,5-trichlorophenyl series is the most active and the 4-chlorophenyl series the least active. Toxicity decreases in general with increasing chain length of the alkoxy and alkylamido moieties, maximum toxicity residing in methoxy, ethoxy, amido, methylamido, and ethylamido homologues. Toxicity is greatest to the susceptible strain but the alkylamido and X-chlorophenyl structures confer toxicological advantages from the standpoint of relative effectiveness against organophosphorus-resistance and organophosphorus vigour-tolerance. Many of the phosphoramidates are less toxic than their phosphoramidothionate analogues, probably due to less favourable physical properties. Certain of these compounds show promise against both susceptible and insecticide-resistant housefly adults and it is suggested that they be further evaluated in broad-spectrum field trials. Although some show promise as mosquito larvicides, in general the introduction of an alkyl-amido group markedly decreases residual toxicity from a filter-paper residue to mosquito adults in comparison with the corresponding dialkoxy analogues. PMID:14122443

  15. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Qi, Xin; Pei, Peng; Zhu, Min; Du, Xiaoyu; Xin, Chen; Zhao, Shichang; Li, Xiaolin; Zhu, Yufang

    2017-02-01

    In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the effect of CSH/MBG scaffolds on bone regeneration in vivo. The in vitro results showed that CSH/MBG scaffolds stimulated the adhesion, proliferation, alkaline phosphatase (ALP) activity and osteogenesis-related gene expression of hBMSCs. In vivo results showed that CSH/MBG scaffolds could significantly enhance new bone formation in calvarial defects compared to CSH scaffolds. Thus 3D printed CSH/MBG scaffolds would be promising candidates for promoting bone regeneration.

  16. GaAs integrated circuits and heterojunction devices

    NASA Astrophysics Data System (ADS)

    Fowlis, Colin

    1986-06-01

    The state of the art of GaAs technology in the U.S. as it applies to digital and analog integrated circuits is examined. In a market projection, it is noted that whereas analog ICs now largely dominate the market, in 1994 they will amount to only 39 percent vs. 57 percent for digital ICs. The military segment of the market will remain the largest (42 percent in 1994 vs. 70 percent today). ICs using depletion-mode-only FETs can be constructed in various forms, the closest to production being BFL or buffered FET logic. Schottky diode FET logic - a lower power approach - can reach higher complexities and strong efforts are being made in this direction. Enhancement type devices appear essential to reach LSI and VLSI complexity, but process control is still very difficult; strong efforts are under way, both in the U.S. and in Japan. Heterojunction devices appear very promising, although structures are fairly complex, and special fabrication techniques, such as molecular beam epitaxy and MOCVD, are necessary. High-electron-mobility-transistor (HEMT) devices show significant performance advantages over MESFETs at low temperatures. Initial results of heterojunction bipolar transistor devices show promise for high speed A/D converter applications.

  17. Structural conservation, variability, and immunogenicity of the T6 backbone pilin of serotype M6 Streptococcus pyogenes.

    PubMed

    Young, Paul G; Moreland, Nicole J; Loh, Jacelyn M; Bell, Anita; Atatoa Carr, Polly; Proft, Thomas; Baker, Edward N

    2014-07-01

    Group A streptococcus (GAS; Streptococcus pyogenes) is a Gram-positive human pathogen that causes a broad range of diseases ranging from acute pharyngitis to the poststreptococcal sequelae of acute rheumatic fever. GAS pili are highly diverse, long protein polymers that extend from the cell surface. They have multiple roles in infection and are promising candidates for vaccine development. This study describes the structure of the T6 backbone pilin (BP; Lancefield T-antigen) from the important M6 serotype. The structure reveals a modular arrangement of three tandem immunoglobulin-like domains, two with internal isopeptide bonds. The T6 pilin lysine, essential for polymerization, is located in a novel VAKS motif that is structurally homologous to the canonical YPKN pilin lysine in other three- and four-domain Gram-positive pilins. The T6 structure also highlights a conserved pilin core whose surface is decorated with highly variable loops and extensions. Comparison to other Gram-positive BPs shows that many of the largest variable extensions are found in conserved locations. Studies with sera from patients diagnosed with GAS-associated acute rheumatic fever showed that each of the three T6 domains, and the largest of the variable extensions (V8), are targeted by IgG during infection in vivo. Although the GAS BP show large variations in size and sequence, the modular nature of the pilus proteins revealed by the T6 structure may aid the future design of a pilus-based vaccine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Additive manufacturing of magnetic shielding and ultra-high vacuum flange for cold atom sensors.

    PubMed

    Vovrosh, Jamie; Voulazeris, Georgios; Petrov, Plamen G; Zou, Ji; Gaber, Youssef; Benn, Laura; Woolger, David; Attallah, Moataz M; Boyer, Vincent; Bongs, Kai; Holynski, Michael

    2018-01-31

    Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological performance. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique relevant to the manufacture of quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of 5 ± 0.5 × 10 -10 mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.

  19. Exploration of Al-Doped ZnO in Photovoltaic Thin Films

    NASA Astrophysics Data System (ADS)

    Ciccarino, Christopher; Sahiner, M. Alper

    The electrical properties of Al doped ZnO-based thin films represent a potential advancement in the push for increasing solar cell efficiency. Doping with Aluminum will theoretically decrease resistivity of the film and therefore achieve this potential as a viable option in the P-N junction phase of photovoltaic cells. The n-type semi-conductive characteristics of the ZnO layer will theoretically be optimized with the addition of Aluminum carriers. In this study, Aluminum doping concentrations ranging from 1-3% by mass were produced, analyzed, and compared. Films were developed onto ITO coated glass using the Pulsed Laser Deposition technique. Target thickness was 250 nm and ellipsometry measurements showed uniformity and accuracy in this regard. Active dopant concentrations were determined using Hall Effect measurements. Efficiency measurements showed possible applications of this doped compound, with upwards of 7% efficiency measured, using a Keithley 2602 SourceMeter set-up. XRD scans showed highly crystalline structures, with effective Al intertwining of the hexagonal wurtzile ZnO molecular structure. This alone indicates a promising future of collaboration between these two materials.

  20. Peptoid nanosheets exhibit a new secondary-structure motif.

    PubMed

    Mannige, Ranjan V; Haxton, Thomas K; Proulx, Caroline; Robertson, Ellen J; Battigelli, Alessia; Butterfoss, Glenn L; Zuckermann, Ronald N; Whitelam, Stephen

    2015-10-15

    A promising route to the synthesis of protein-mimetic materials that are capable of complex functions, such as molecular recognition and catalysis, is provided by sequence-defined peptoid polymers--structural relatives of biologically occurring polypeptides. Peptoids, which are relatively non-toxic and resistant to degradation, can fold into defined structures through a combination of sequence-dependent interactions. However, the range of possible structures that are accessible to peptoids and other biological mimetics is unknown, and our ability to design protein-like architectures from these polymer classes is limited. Here we use molecular-dynamics simulations, together with scattering and microscopy data, to determine the atomic-resolution structure of the recently discovered peptoid nanosheet, an ordered supramolecular assembly that extends macroscopically in only two dimensions. Our simulations show that nanosheets are structurally and dynamically heterogeneous, can be formed only from peptoids of certain lengths, and are potentially porous to water and ions. Moreover, their formation is enabled by the peptoids' adoption of a secondary structure that is not seen in the natural world. This structure, a zigzag pattern that we call a Σ('sigma')-strand, results from the ability of adjacent backbone monomers to adopt opposed rotational states, thereby allowing the backbone to remain linear and untwisted. Linear backbones tiled in a brick-like way form an extended two-dimensional nanostructure, the Σ-sheet. The binary rotational-state motif of the Σ-strand is not seen in regular protein structures, which are usually built from one type of rotational state. We also show that the concept of building regular structures from multiple rotational states can be generalized beyond the peptoid nanosheet system.

  1. Discrete Haar transform and protein structure.

    PubMed

    Morosetti, S

    1997-12-01

    The discrete Haar transform of the sequence of the backbone dihedral angles (phi and psi) was performed over a set of X-ray protein structures of high resolution from the Brookhaven Protein Data Bank. Afterwards, the new dihedral angles were calculated by the inverse transform, using a growing number of Haar functions, from the lower to the higher degree. New structures were obtained using these dihedral angles, with standard values for bond lengths and angles, and with omega = 0 degree. The reconstructed structures were compared with the experimental ones, and analyzed by visual inspection and statistical analysis. When half of the Haar coefficients were used, all the reconstructed structures were not yet collapsed to a tertiary folding, but they showed yet realized most of the secondary motifs. These results indicate a substantial separation of structural information in the space of Haar transform, with the secondary structural information mainly present in the Haar coefficients of lower degrees, and the tertiary one present in the higher degree coefficients. Because of this separation, the representation of the folded structures in the space of Haar transform seems a promising candidate to encompass the problem of premature convergence in genetic algorithms.

  2. Influence of the extraction process on the rheological and structural properties of agars.

    PubMed

    Sousa, Ana M M; Borges, João; Silva, A Fernando; Gonçalves, Maria P

    2013-07-01

    Agars obtained by traditional hot-water (TWE) and microwave-assisted (MAE) extractions were compared in terms of their rheological and physicochemical properties and molecular self-association in solutions of low (0.05%, w/w) and high (1.5%, w/w) polymer concentrations. At low concentration, thin gelled layers were imaged by AFM. Slow or rapid cooling of the solutions influenced structure formation. In each case, TWE and MAE agar structures were different and apparently larger for MAE. At high concentration, progressive structural reinforcement was seen; while TWE agar showed a more open and irregular 3D network, MAE agar gel imaged by cryoSEM was denser and fairly uniform. The rheological (higher thermal stability and consistency) and mechanical (higher gel strength) behaviors of MAE agar seemed consistent with a positive effect of molecular mass and 3,6-anhydro-α-l-galactose content. MAE produced non-degraded agar comparable with commercial ones and if properly monitored, could be a promising alternative to TWE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Imaging of cardiovascular structures using near-infrared femtosecond multiphoton laser scanning microscopy.

    PubMed

    Schenke-Layland, Katja; Riemann, Iris; Stock, Ulrich A; König, Karsten

    2005-01-01

    Multiphoton imaging represents a novel and very promising medical diagnostic technology for the high-resolution analysis of living biological tissues. We performed multiphoton imaging to analyzed structural features of extracellular matrix (ECM) components, e.g., collagen and elastin, of vital pulmonary and aortic heart valves. High-resolution autofluorescence images of collagenous and elastic fibers were demonstrated using multifluorophore, multiphoton excitation at two different wavelengths and optical sectioning, without the requirement of embedding, fixation, or staining. Collagenous structures were selectively imaged by detection of second harmonic generation (SHG). Additionally, routine histology and electron microscopy were integrated to verify the observed results. In comparison with pulmonary tissues, aortic heart valve specimens show very similar matrix formations. The quality of the resulting three-dimensional (3-D) images enabled the differentiation between collagenous and elastic fibers. These experimental results indicate that multiphoton imaging with near-infrared (NIR) femtosecond laser pulses may prove to be a useful tool for the nondestructive monitoring and characterization of cardiovascular structures. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.

  4. Multiple topological electronic phases in superconductor MoC

    NASA Astrophysics Data System (ADS)

    Huang, Angus; Smith, Adam D.; Schwinn, Madison; Lu, Qiangsheng; Chang, Tay-Rong; Xie, Weiwei; Jeng, Horng-Tay; Bian, Guang

    2018-05-01

    The search for a superconductor with non-s -wave pairing is important not only for understanding unconventional mechanisms of superconductivity but also for finding new types of quasiparticles such as Majorana bound states. Materials with both topological band structure and superconductivity are promising candidates as p +i p superconducting states can be generated through pairing the spin-polarized topological surface states. In this work, the electronic and phonon properties of the superconductor molybdenum carbide (MoC) are studied with first-principles methods. Our calculations show that nontrivial band topology and s -wave Bardeen-Cooper-Schrieffer superconductivity coexist in two structural phases of MoC, namely the cubic α and hexagonal γ phases. The α phase is a strong topological insulator and the γ phase is a topological nodal-line semimetal with drumhead surface states. In addition, hole doping can stabilize the crystal structure of the α phase and elevate the transition temperature in the γ phase. Therefore, MoC in different structural forms can be a practical material platform for studying topological superconductivity.

  5. A novel fiber optic Fabry-Perot structure with a micrometric diameter tip

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Xu, Juncheng; Wang, Zhuang; Cooper, Kristie L.; Wang, Anbo

    2006-08-01

    This paper presents a novel fiber optic Fabry-Perot (FP) structure with a micrometric diameter tip. The fabrication of micro scale probes has become essential in intracellular surgery, in cell sensing, manipulation, and injection. It is of great importance in many fields, such as genetics, pathology, criminology, pharmacogenetics, and food safety. With such a tiny protrusion, the sensor can be inserted into micron size cells, say, for DNA analysis. With the FP cavity inside the fiber, the change of optical path difference (OPD) caused by the environment can be demodulated. In addition, the structure is intrinsically capable of temperature compensation. What's more, it is simple, cost-efficient, and compact. Last but not the least, the structure shows promise for nanometric protrusion. Once this goal is achieved, the sensor can be inserted into most cells. The sensor could pave the way for faster, more accurate medical diagnostic tests for countless conditions and may ultimately save lives by allowing earlier disease detection and intervention.

  6. Enhanced perfume surface delivery to interfaces using surfactant surface multilayer structures.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2016-01-01

    Enhanced surface delivery and retention of perfumes at interfaces are the keys to their more effective and efficient deployment in a wide range of home and personal care related formulations. It has been previously demonstrated that the addition of multivalent counterions, notably Ca(2+), induces multilayer adsorption at the air-water interface for the anionic surfactant, sodium dodecyl-6-benzenesulfonate, LAS-6. Neutron reflectivity, NR, measurements are reported here which demonstrate that such surfactant surface multilayer structures are a potentially promising vehicle for enhanced delivery of perfumes to interfaces. The data show that the incorporation of the model perfumes, phenylethanol, PE, and linalool, LL, into the surface multilayer structure formed by LAS-6/Ca(2+) results in the surface structures being retained up to relatively high perfume mole fractions. Furthermore the amount of perfume at the surface is enhanced by at least an order of magnitude, compared to that co-adsorbed with a surfactant monolayer. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin.

    PubMed

    Gómez-Mascaraque, Laura G; Casagrande Sipoli, Caroline; de La Torre, Lucimara Gaziola; López-Rubio, Amparo

    2017-10-15

    Novel food-grade hybrid encapsulation structures based on the entrapment of phosphatidylcholine liposomes, within a WPC matrix through electrospraying, were developed and used as delivery vehicles for curcumin. The loading capacity and encapsulation efficiency of the proposed system was studied, and the suitability of the approach to stabilize curcumin and increase its bioaccessibility was assessed. Results showed that the maximum loading capacity of the liposomes was around 1.5% of curcumin, although the loading capacity of the hybrid microencapsulation structures increased with the curcumin content by incorporation of curcumin microcrystals upon electrospraying. Microencapsulation of curcumin within the proposed hybrid structures significantly increased its bioaccessibility (∼1.7-fold) compared to the free compound, and could successfully stabilize it against degradation in PBS (pH=7.4). The proposed approach thus proved to be a promising alternative to produce powder-like functional ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Silk fibroin nanostructured materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  9. Sustainable Separations of C4 -Hydrocarbons by Using Microporous Materials.

    PubMed

    Gehre, Mascha; Guo, Zhiyong; Rothenberg, Gadi; Tanase, Stefania

    2017-10-23

    Petrochemical refineries must separate hydrocarbon mixtures on a large scale for the production of fuels and chemicals. Typically, these hydrocarbons are separated by distillation, which is extremely energy intensive. This high energy cost can be mitigated by developing materials that can enable efficient adsorptive separation. In this critical review, the principles of adsorptive separation are outlined, and then the case for C 4 separations by using zeolites and metal-organic frameworks (MOFs) is examined. By analyzing both experimental and theoretical studies, the challenges and opportunities in C 4 separation are outlined, with a focus on the separation mechanisms and structure-selectivity correlations. Zeolites are commonly used as adsorbents and, in some cases, can separate C 4 mixtures well. The pore sizes of eight-membered-ring zeolites, for example, are in the order of the kinetic diameters of C 4 isomers. Although zeolites have the advantage of a rigid and highly stable structure, this is often difficult to functionalize. MOFs are attractive candidates for hydrocarbon separation because their pores can be tailored to optimize the adsorbate-adsorbent interactions. MOF-5 and ZIF-7 show promising results in separating all C 4 isomers, but breakthrough experiments under industrial conditions are needed to confirm these results. Moreover, the flexibility of the MOF structures could hamper their application under industrial conditions. Adsorptive separation is a promising viable alternative and it is likely to play an increasingly important role in tomorrow's refineries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Genetic structure along an altitudinal gradient in Lippia origanoides, a promising aromatic plant species restricted to semiarid areas in northern South America.

    PubMed

    Vega-Vela, Nelson Enrique; Sánchez, María Isabel Chacón

    2012-11-01

    The genetic diversity and population structure of Lippia origanoides, a species of the Verbenaceae family that shows promise as a crop plant, was investigated along an altitudinal gradient in the basin of the Chicamocha River in northeastern Colombia. The economic importance of the species, quality of its essential oils, and the fact that it is restricted to some few semiarid areas in northern South America may put the species at risk in a scenario of uncontrolled harvest of natural populations. Lippia origanoides was sampled along an altitudinal gradient from 365 to 2595 m.a.s.l. throughout Chicamocha River Canyon, a semiarid area in northeastern Colombia. Genetic diversity was assessed by means of AFLP markers. The number of AFLP loci (355) and the number of individuals sampled (173) were sufficient to reliably identify four populations at contrasting altitudes (F(ST) = 0.18, P-value < 0.0000), two populations in the lower basin, one population in the medium basin, and one population in the upper basin, with a low level of admixture between them. In average, genetic diversity within populations was relatively high (Ht = 0.32; I = 0.48); nevertheless, diversity was significantly reduced at higher altitude, a pattern that may be consistent with a scenario of range expansion toward higher elevations in an environment with more extreme conditions. The differences in altitude among the basins in the Chicamocha River seem to be relevant in determining the genetic structure of this species.

  11. The Effect of SbI3 Doping on the Structure and Electrical Properties of n-Type Bi1.8Sb0.2Te2.85Se0.15 Alloy Prepared by the Free Growth Method

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyu; Yu, Yuan; Zhu, Bin; Gao, Na; Huang, Zhongyue; Xiang, Bo; Zu, Fangqiu

    2018-02-01

    Thermoelectric technology is regarded as one of the most promising direct power generation techniques via thermoelectric materials. However, the batch production and scale-up application are hindered because of the high-cost and poor performance. In this work, we adopt the free growth method to synthesize a series of the bulk materials of SbI3-doped Bi1.8Sb0.2Te2.85Se0.15 alloys. The structural and component investigations as well as the electrical properties characterization are carried out. The results show that SbI3 promotes the formation of Te-rich regions in the matrix. In addition, the synergistically optimized electrical conductivity and Seebeck coefficient are attained by controlling the SbI3 doping concentration. Thus, the sample with 0.30 wt.% SbI3 displays a highly increased power factor of ˜ 13.57 μW cm-1 K-2, which is nearly 21 times higher than that of the undoped one. Moreover, the free growth method is reproducible, convenient and economical. Therefore, it has great potential as a promising technology for the batch synthesis.

  12. Molecular modeling and in-silico engineering of Cardamom mosaic virus coat protein for the presentation of immunogenic epitopes of Leptospira LipL32.

    PubMed

    Kumar, Vikram; Damodharan, S; Pandaranayaka, Eswari P J; Madathiparambil, Madanan G; Tennyson, Jebasingh

    2016-01-01

    Expression of Cardamom mosaic virus (CdMV) coat protein (CP) in E. coli forms virus-like particles. In this study, the structure of CdMV CP was predicted and used as a platform to display epitopes of the most abundant surface-associated protein, LipL32 of Leptospira at C, N, and both the termini of CdMV CP. In silico, we have mapped sequential and conformational B-cell epitopes from the crystal structure of LipL32 of Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130 using IEDB Elipro, ABCpred, BCPRED, and VaxiJen servers. Our results show that the epitopes displayed at the N-terminus of CdMV CP are promising vaccine candidates as compared to those displayed at the C-terminus or at both the termini. LipL32 epitopes, EP2, EP3, EP4, and EP6 are found to be promising B-cell epitopes for vaccine development. Based on the type of amino acids, length, surface accessibility, and docking energy with CdMV CP model, the order of antigenicity of the LipL32 epitopes was found to be EP4 > EP3 > EP2 > EP6.

  13. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  14. A robust multi-frequency mixing algorithm for suppression of rivet signal in GMR inspection of riveted structures

    NASA Astrophysics Data System (ADS)

    Safdernejad, Morteza S.; Karpenko, Oleksii; Ye, Chaofeng; Udpa, Lalita; Udpa, Satish

    2016-02-01

    The advent of Giant Magneto-Resistive (GMR) technology permits development of novel highly sensitive array probes for Eddy Current (EC) inspection of multi-layer riveted structures. Multi-frequency GMR measurements with different EC pene-tration depths show promise for detection of bottom layer notches at fastener sites. However, the distortion of the induced magnetic field due to flaws is dominated by the strong fastener signal, which makes defect detection and classification a challenging prob-lem. This issue is more pronounced for ferromagnetic fasteners that concentrate most of the magnetic flux. In the present work, a novel multi-frequency mixing algorithm is proposed to suppress rivet signal response and enhance defect detection capability of the GMR array probe. The algorithm is baseline-free and does not require any assumptions about the sample geometry being inspected. Fastener signal suppression is based upon the random sample consensus (RANSAC) method, which iteratively estimates parameters of a mathematical model from a set of observed data with outliers. Bottom layer defects at fastener site are simulated as EDM notches of different length. Performance of the proposed multi-frequency mixing approach is evaluated on finite element data and experimental GMR measurements obtained with unidirectional planar current excitation. Initial results are promising demonstrating the feasibility of the approach.

  15. Two luminescent d10 metal coordination polymers assembled from a semirigid terpyridyl carboxylate ligand with high selective detecting of Cu2+, Cr2O72- and acetone

    NASA Astrophysics Data System (ADS)

    Yuan, Fei; Wang, Ting-Ting; Hu, Huai-Ming; Li, Chuan-Ti; Zhou, Chun-Sheng; Wang, Xiaofang; Xue, Ganglin

    2017-07-01

    Using a carboxylic oligopyridine ligand, 4‧-(4-carboxyphenyl)-4,2‧:6‧,4″- terpyridine (Hcptpy), and imidazole-4,5-dicarboxylic acid (H3idc), two metal(II)-cptpy compounds formulated as [Zn2(cptpy)4]n·nH2O (1), [Zn2(cptpy)2(Hidc)(H2O)2]n·nH2O (2) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Compound 1 shows a 2D +2D →3D supramolecular framework structure generated by two-fold interpenetrating 3-connected 2D framework (2D+2D→2D) with the sql topological net and the Schläfli symbol of {44·62}. Compound 2 displays a 1D ladder chain structure. The luminescent properties of 1 and the ones immersed in various kinds of organic compounds and nitrate@DMF solutions have been investigated. Importantly, 1 shows highly selective and sensitive response to acetone and Cu2+ through luminescence quenching effects, making it a promising luminescent sensor for acetone molecule and Cu2+. Meaningwhile, compound 2 shows highly selective sensitivity for Cr2O72-.

  16. Development and characterization of a novel lipohydrogel nanocarrier: repaglinide as a lipophilic model drug.

    PubMed

    Ebrahimi, Hossein Ali; Javadzadeh, Yousef; Hamidi, Mehrdad; Barzegar Jalali, Mohammad

    2016-04-01

    Solid lipid nanoparticles (SLNs) are highly susceptible to phagocytosis by reticuloendothelial system (RES). To overcome this problem, a novel hydrogel-coated SLNs structure was developed and evaluated in this study. Solid lipid nanoparticles surface was coated with chitosan, via electrostatic attraction with the negatively charged SLNs surface. The resulting polymer-coated SLNs then hosted an inorganic poly-anionic agent, tripolyphosphate, to form the final lipohydrogel structure. Compared with the bare SLNs, lipohydrogel nanoparticles (LHNs) showed a significant increase in size and zeta potential. The release profile showed lower burst release and lower release rate for LHNs compared with SLNs. LHNs nanoparticles released the model antidiabetic drug, repaglinide, in a more sustained manner with lower burst effect compared with the corresponding SLN structure. Cytotoxicity studies via cell culture and MTT assay revealed no bio-toxicity of the SLNs and LHNs. In addition, intravenous administration of repaglinide-loaded SLNs and LHNs in rats showed longer drug residence time in circulation for LHNs, a trend also evident for the blood glucose level-time profile. The particle size, zeta potential, FTIR and microscopy data demonstrated the formation of the supposed lipohydrogel nanoparticles. All these benefits of LHNs propose it as a promising candidate for controlled release of the drugs. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  17. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures.

    PubMed

    Afshar, M; Anaraki, A Pourkamali; Montazerian, H; Kadkhodapour, J

    2016-09-01

    Since the advent of additive manufacturing techniques, triply periodic minimal surfaces have emerged as a novel tool for designing porous scaffolds. Whereas scaffolds are expected to provide multifunctional performance, spatially changing pore patterns have been a promising approach to integrate mechanical characteristics of different architectures into a unique scaffold. Smooth morphological variations are also frequently seen in nature particularly in bone and cartilage structures and can be inspiring for designing of artificial tissues. In this study, we carried out experimental and numerical procedures to uncover the mechanical properties and deformation mechanisms of linearly graded porosity scaffolds for two different mathematically defined pore structures. Among TPMS-based scaffolds, P and D surfaces were subjected to gradient modeling to explore the mechanical responses for stretching and bending dominated deformations, respectively. Moreover, the results were compared to their corresponding uniform porosity structures. Mechanical properties were found to be by far greater for the stretching dominated structure (P-Surface). For bending dominated architecture (D-Surface), although there was no global fracture for uniform structures, graded structure showed a brittle fracture at 0.08 strain. A layer by layer deformation mechanism for stretching dominated structure was observed. For bending dominated scaffolds, deformation was accompanied by development of 45° shearing bands. Finite element simulations were also performed and the results showed a good agreement with the experimental observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs

    NASA Astrophysics Data System (ADS)

    Song, Yuanyuan; Jiang, Yaoquan; Shi, Liyi; Cao, Shaomei; Feng, Xin; Miao, Miao; Fang, Jianhui

    2015-08-01

    Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products.Natural biomass based cellulose nanopaper is becoming a promising transparent substrate to supersede traditional petroleum based polymer films in realizing future flexible paper-electronics. Here, ultrathin, highly transparent, outstanding conductive hybrid nanopaper with excellent mechanical flexibility was synthesized by the assembly of nanofibrillated cellulose (NFC) and silver nanowires (AgNWs) using a pressured extrusion paper-making technique. The hybrid nanopaper with a thickness of 4.5 μm has a good combination of transparent conductive performance and mechanical stability using bamboo/hemp NFC and AgNWs cross-linked by hydroxypropylmethyl cellulose (HPMC). The heterogeneous fibrous structure of BNFC/HNFC/AgNWs endows a uniform distribution and an enhanced forward light scattering, resulting in high electrical conductivity and optical transmittance. The hybrid nanopaper with an optimal weight ratio of BNFC/HNFC to AgNWs shows outstanding synergistic properties with a transmittance of 86.41% at 550 nm and a sheet resistance of 1.90 ohm sq-1, equal to the electronic conductivity, which is about 500 S cm-1. The BNFC/HNFC/AgNW hybrid nanopaper maintains a stable electrical conductivity after the peeling test and bending at 135° for 1000 cycles, indicating remarkably strong adhesion and mechanical flexibility. Of importance here is that the high-performance and low-cost hybrid nanopaper shows promising potential for electronics application in solar cells, flexible displays and other high-technology products. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03218k

  19. 3D inverse-opal structured Li4Ti5O12 Anode for fast Li-Ion storage capabilities

    NASA Astrophysics Data System (ADS)

    Kim, Dahye; Quang, Nguyen Duc; Hien, Truong Thi; Chinh, Nguyen Duc; Kim, Chunjoong; Kim, Dojin

    2017-11-01

    Since the demand for high power Li-ion batteries (LIBs) is increasing, spinel-structured lithium titanate, Li4Ti5O12 (LTO), as the anode material has attracted great attention because of its excellent cycle retention, good thermal stability, high rate capability, and so on. However, LTO shows relatively low conductivity due to empty 3 d orbital of Ti4+ state. Nanoscale architectures can shorten electron conduction path, thus such low electronic conductivity can be overcome while Li+ can be easily accessed due to large surface area. Herein, three dimensional bicontinuous LTO electrodes were prepared via close-packed self-assembly with polystyrene (PS) spheres followed by removal of them, which leads to no blockage of Li+ ion transportation pathways as well as fast electron conduction. 3D bicontinuous LTO electrodes showed high-rate lithium storage capability (103 mAh/g at 20 C), which is promising as the power sources that require rapid electrochemical response.[Figure not available: see fulltext.

  20. Cellulose fibers extracted from rice and oat husks and their application in hydrogel.

    PubMed

    Oliveira, Jean Paulo de; Bruni, Graziella Pinheiro; Lima, Karina Oliveira; Halal, Shanise Lisie Mello El; Rosa, Gabriela Silveira da; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-04-15

    The commercial cellulose fibers and cellulose fibers extracted from rice and oat husks were analyzed by chemical composition, morphology, functional groups, crystallinity and thermal properties. The cellulose fibers from rice and oat husks were used to produce hydrogels with poly (vinyl alcohol). The fibers presented different structural, crystallinity, and thermal properties, depending on the cellulose source. The hydrogel from rice cellulose fibers had a network structure with a similar agglomeration sponge, with more homogeneous pores compared to the hydrogel from oat cellulose fibers. The hydrogels prepared from the cellulose extracted from rice and oat husks showed water absorption capacity of 141.6-392.1% and high opacity. The highest water absorption capacity and maximum stress the compression were presented by rice cellulose hydrogel at 25°C. These results show that the use of agro-industrial residues is promising for the biomaterial field, especially in the preparation of hydrogels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Zn(II)-dipicolylamine-based metallo-lipids as novel non-viral gene vectors.

    PubMed

    Su, Rong-Chuan; Liu, Qiang; Yi, Wen-Jing; Zhao, Zhi-Gang

    2017-08-01

    In this study, a series of Zn(II)-dipicolylamine (Zn-DPA) based cationic lipids bearing different hydrophobic tails (long chains, α-tocopherol, cholesterol or diosgenin) were synthesized. Structure-activity relationship (SAR) of these lipids was studied in detail by investigating the effects of several structural aspects including the type of hydrophobic tails, the chain length and saturation degree. In addition, several assays were used to study their interactions with plasmid DNA, and results reveal that these lipids could condense DNA into nanosized particles with appropriate size and zeta-potentials. MTT-based cell viability assays showed that lipoplexes 5 had low cytotoxicity. The in vitro gene transfection studies showed the hydrophobic tails clearly affected the TE, and hexadecanol-containing lipid 5b gives the best TE, which was 2.2 times higher than bPEI 25k in the presence of 10% serum. The results not only demonstrate that these lipids might be promising non-viral gene vectors, but also afford us clues for further optimization of lipidic gene delivery materials.

  2. Magnetic microgels for drug targeting applications: Physical-chemical properties and cytotoxicity evaluation

    NASA Astrophysics Data System (ADS)

    Turcu, Rodica; Craciunescu, Izabell; Garamus, Vasil M.; Janko, Christina; Lyer, Stefan; Tietze, Rainer; Alexiou, Christoph; Vekas, Ladislau

    2015-04-01

    Magnetoresponsive microgels with high saturation magnetization values have been obtained by a strategy based on the miniemulsion method using high colloidal stability organic carrier ferrofluid as primary material. Hydrophobic nanoparticles Fe3O4/oleic acid are densely packed into well-defined spherical nanoparticle clusters coated with polymers with sizes in the range 40-350 nm. Physical-chemical characteristics of magnetic microgels were investigated by TEM, SAXS, XPS and VSM measurements with the focus on the structure-properties relationship. The impact of magnetic microgels loaded with anticancer drug mitoxantrone (MTO) on the non-adherent human T cell leukemia line Jurkat was investigated in multiparameter flow cytometry. We showed that both MTO and microgel-loaded MTO penetrate into cells and both induce apoptosis and later secondary necrosis in a time- and dose dependent manner. In contrast, microgels without MTO are not cytotoxic in the corresponding concentrations. Our results show that MTO-loaded microgels are promising structures for application in magnetic drug targeting.

  3. Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications.

    PubMed

    Morimoto, Naoki; Kubo, Takuya; Nishina, Yuta

    2016-02-25

    Graphene oxide (GO) is widely recognized as a promising material in a variety of fields, but its structure and composition has yet to be fully controlled. We have developed general strategies to control the oxidation degree of graphene-like materials via two methods: oxidation of graphite by KMnO4 in H2SO4 (oGO), and reduction of highly oxidized GO by hydrazine (rGO). Even though the oxygen content may be the same, oGO and rGO have different properties, for example the adsorption ability, oxidation ability, and electron conductivity. These differences in property arise from the difference in the underlying graphitic structure and the type of defect present. Our results can be used as a guideline for the production of tailor-made graphitic carbons. As an example, we show that rGO with 23.1 wt% oxygen showed the best performance as an electrode of an electric double-layer capacitor.

  4. Tailoring the Oxygen Content of Graphite and Reduced Graphene Oxide for Specific Applications

    NASA Astrophysics Data System (ADS)

    Morimoto, Naoki; Kubo, Takuya; Nishina, Yuta

    2016-02-01

    Graphene oxide (GO) is widely recognized as a promising material in a variety of fields, but its structure and composition has yet to be fully controlled. We have developed general strategies to control the oxidation degree of graphene-like materials via two methods: oxidation of graphite by KMnO4 in H2SO4 (oGO), and reduction of highly oxidized GO by hydrazine (rGO). Even though the oxygen content may be the same, oGO and rGO have different properties, for example the adsorption ability, oxidation ability, and electron conductivity. These differences in property arise from the difference in the underlying graphitic structure and the type of defect present. Our results can be used as a guideline for the production of tailor-made graphitic carbons. As an example, we show that rGO with 23.1 wt% oxygen showed the best performance as an electrode of an electric double-layer capacitor.

  5. Evidence for Itinerant Carriers in an Anisotropic Narrow-Gap Semiconductor by Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Ju, Sailong; Bai, Wei; Wu, Liming; Lin, Hua; Xiao, Chong; Cui, Shengtao; Li, Zhou; Kong, Shuai; Liu, Yi; Liu, Dayong; Zhang, Guobin; Sun, Zhe; Xie, Yi

    2018-01-01

    The ability to accurately determine the electronic structure of solids has become a key prerequisite for modern functional materials. For example, the precise determination of the electronic structure helps to balance the three thermoelectric parameters, which is the biggest challenge to design high-performance thermoelectric materials. Herein, by high-resolution, angle-resolved photoemission spectroscopy (ARPES), the itinerant carriers in CsBi 4 Te 6 (CBT) are revealed for the first time. CBT is a typical anisotropic, narrow-gap semiconductor used as a practical candidate for low-temperature thermoelectric applications, and p-doped CBT series show superconductivity at relatively low carrier concentrations. The ARPES results show a significantly larger bandwidth near the Fermi surface than calculations, which means the carriers transport anisotropically and itinerantly in CBT. It is reasonable to believe that these newly discovered features of carriers in narrow-gap semiconductors are promising for designing optimal thermoelectric materials and superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chemical scissors cut phosphorene and their novel electronic properties

    NASA Astrophysics Data System (ADS)

    Peng, Xihong; Wei, Qun

    2015-03-01

    Phosphorene, a recently fabricated two-dimensional puckered honeycomb structure of black phosphorus, showed promising properties for applications in nano-electronics. In this work, we report a chemical scissors effect on phosphorene, using first principles density-functional methods. It was found that chemical species, such as H, OH, F, and Cl, can act as scissors to cut phosphorene. Phosphorus nanochains and nanoribbons can be obtained using such chemical scissors. The scissors effect results from the strong bonding between the chemical species and phosphorus atoms. Other species such as O, S and Se fail to cut phosphorene due to their weak bonding with phosphorus. The electronic structures of the produced P-chains reveal that the hydrogenated P-chain is an insulator; however, the pristine P-chain is a one-dimensional Dirac material, in which the charge carriers are massless fermions travelling at an effective speed of light approximately 8x105 m/s. The obtained zigzag phosphorene nanoribbons show either metallic or semiconducting behaviors, depending on the treatment of the edge phosphorus atoms.

  7. Chemical scissors cut phosphorene nanostructures

    NASA Astrophysics Data System (ADS)

    Peng, Xihong; Wei, Qun

    2014-12-01

    Phosphorene, a recently fabricated two-dimensional puckered honeycomb structure of phosphorus, showed promising properties for applications in nano-electronics. In this work, we report a chemical scissors effect on phosphorene, using first-principles method. It was found that chemical species, such as H, OH, F, and Cl, can act as scissors to cut phosphorene. Phosphorus nanochains and nanoribbons can be obtained. The scissors effect results from the strong bonding between the chemical species and phosphorus atoms. Other species such as O, S and Se fail to cut phosphorene nanostructures due to their weak bonding with phosphorus. The electronic structures of the produced P-chains reveal that the hydrogenated chain is an insulator while the pristine chain is a one-dimensional Dirac material, in which the charge carriers are massless fermions travelling at an effective speed of light ˜8 × 105 m s-1. The obtained zigzag phosphorene nanoribbons show either metallic or semiconducting behaviors, depending on the treatment of the edge phosphorus atoms.

  8. Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase

    PubMed Central

    Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; Hou, Guichuan; Zhang, Xuebin; Yang, Huijun; Feng, Huan; Miller, Lisa; Ralph, John; Liu, Chang-Jun

    2016-01-01

    Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens' lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in the yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Moreover, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications. PMID:27349324

  9. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities.

    PubMed

    Romdhane, Molka Ben; Haddar, Anissa; Ghazala, Imen; Jeddou, Khawla Ben; Helbert, Claire Boisset; Ellouz-Chaabouni, Semia

    2017-02-01

    In the present work, optimization of hot water extraction, structural characteristics, functional properties, and biological activities of polysaccharides extracted from watermelon rinds (WMRP) were investigated. The physicochemical characteristics and the monosaccharide composition of these polysaccharides were then determined using chemical composition analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and gas chromatography-flame ionization detection (GC-FID). SEM images showed that extracted polysaccharides had a rough surface with many cavities. GC-FID results proved that galactose was the dominant sugar in the extracted polysaccharides, followed by arabinose, glucose, galacturonic acid, rhamnose, mannose, xylose and traces of glucuronic acid. The findings revealed that WMRP displayed excellent antihypertensive and antioxidant activities. Those polysaccharides had also a protection effect against hydroxyl radical-induced DNA damage. Functional properties of extracted polysaccharides were also evaluated. WMRP showed good interfacial dose-dependent proprieties. Overall, the results suggested that WMRP presents a promising natural source of antioxidants and antihypertensive agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Enhancing digestibility and ethanol yield of Populus wood via expression of an engineered monolignol 4-O-methyltransferase

    DOE PAGES

    Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; ...

    2016-06-28

    Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens’ lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in themore » yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Furthermore, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications.« less

  11. Synthesis, growth, structure and nonlinear optical properties of a semiorganic 2-carboxy pyridinium dihydrogen phosphate single crystal

    NASA Astrophysics Data System (ADS)

    Nagapandiselvi, P.; Baby, C.; Gopalakrishnan, R.

    2015-09-01

    A new semiorganic compound namely, 2-carboxy pyridinium dihydrogen phosphate (2CPDP) was synthesised and grown as single crystals by slow evaporation solution growth technique. Single crystal XRD showed that 2CPDP belongs to monoclinic crystal system with space group P21/n. The molecular structure was further confirmed by modern spectroscopic techniques like FT-NMR (1H, 13C &31P), FT-IR, UV-Vis-NIR and Fluorescence. The UV-Vis-NIR analysis revealed suitability of the crystal for nonlinear optical applications. The photo active nature of the material is established from fluorescence studies. TG-DSC analysis showed that 2CPDP was thermally stable up to 170 °C. The dependence of dielectric properties on frequency and temperature were also studied. Nonlinear optical absorption determined from open aperture Z-Scan analysis by employing picosecond Nd-YAG laser, revealed that 2CPDP can serve as a promising candidate for optical limiting applications.

  12. Experience of modeling relief of impact lunar crater Aitken based on high-resolution orbital images

    NASA Astrophysics Data System (ADS)

    Mukhametshin, Ch R.; Semenov, A. A.; Shpekin, M. I.

    2018-05-01

    The paper presents the author’s results of modeling the relief of lunar Aitken crater on the basis of high-resolution orbital images. The images were taken in the frame of the “Apollo” program in 1971-1972 and delivered to the Earth by crews of “Apollo-15” and “Apollo-17”. The authors used the images obtained by metric and panoramic cameras. The main result is the careful study of the unusual features of Aitken crater on models created by the authors with the computer program, developed by “Agisoft Photoscan”. The paper shows what possibilities are opened with 3D models in the study of the structure of impact craters on the Moon. In particular, for the first time, the authors managed to show the structure of the glacier-like tongue in Aitken crater, which is regarded as one of the promising areas of the Moon for the forthcoming expeditions.

  13. Multicomponent polymeric nanoparticles enhancing intracellular drug release in cancer cells.

    PubMed

    Ahmed, Arsalan; Liu, Sen; Pan, Yutong; Yuan, Shanmei; He, Jian; Hu, Yong

    2014-12-10

    Three kinds of amphiphilic copolymer, that is, poly(ε-caprolactone)-SS-poly(ethylene glycol) (PCL-SS-PEG), poly(ε-caprolactone)-polyethylenimine (PCL-PEI), and poly(ε-caprolactone)-polyethylenimine-folate (PCL-PEI-Fol) were synthesized and self-assembled into surface engineered hybrid nanoparticles (NPs). Morphological studies elucidated the stable, spherical, and uniform sandwich structure of the NPs. PCL-PEI and PCL-SS-PEG segments have introduced pH and reduction responsive characteristics in these NPs, while PCL-PEI-FA copolymers could provide specific targeting capability to cancer cells. The stimuli responsive capabilities of these NPs were carried out. Negative-to-positive charge reversible property, in response to the pH change, was investigated by zeta potential and nuclear magnetic resonance (NMR) measurements. The structure cleavage, due to redox gradient, was studied by dynamic light scattering (DLS) and transmission electron microscopy (TEM). These NPs showed controlled degradation, better drug release, less toxicity, and effective uptake in MCF-7 breast cancer cells. These multifunctional NPs showed promising potential in the treatment of cancer.

  14. Design, synthesis and biological evaluation of indole derivatives as Vif inhibitors.

    PubMed

    Pu, Chunlan; Luo, Rong-Hua; Zhang, Mengqi; Hou, Xueyan; Yan, Guoyi; Luo, Jiang; Zheng, Yong-Tang; Li, Rui

    2017-09-01

    The crystal structure of viral infectivity factor (Vif) was reported recently, which makes it possible to design new inhibitors against Vif by structure-based drug design. Through analysis of the protein surface of Vif, the C2 pocket located in the N-terminal was found, which is suit for developing small molecular inhibitors. Then, in our article, fragment-based virtual screening (FBVS) was conducted and a series of fragments was obtained, among which, Zif-1 bearing indole scaffold and pyridine ring can form H-bonds with Tyr148 and Ile155. Subsequently, 19 derivatives of Zif-1 were synthesized. Through the immune-fluorescence staining and Western blot assays, Zif-15 shows potent activity in inhibiting Vif-mediated A3G degradation. Further docking experiment shows that Zif-15 form H-bond interactions with residues His139, Tyr148 and Ile155. Therefore, Zif-15 is a promising lead compound against Vif that can be used to treat AIDS. Copyright © 2017. Published by Elsevier Ltd.

  15. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Kryshtal, R. G.; Medved, A. V.

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW - magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW - magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW - magnonic crystals are promising for signal processing in the GHz range.

  16. Experimental and theoretical investigation of a mesoporous KxWO3 material having superior mechanical strength

    NASA Astrophysics Data System (ADS)

    Dey, Sonal; Anderson, Sean T.; Mayanovic, Robert A.; Sakidja, Ridwan; Landskron, Kai; Kokoszka, Berenika; Mandal, Manik; Wang, Zhongwu

    2016-01-01

    Mesoporous materials with tailored properties hold great promise for energy harvesting and industrial applications. We have synthesized a novel tungsten bronze mesoporous material (KxWO3; x ~ 0.07) having inverse FDU-12 type pore symmetry and a crystalline framework. In situ small angle X-ray scattering (SAXS) measurements of the mesoporous K0.07WO3 show persistence of a highly ordered meso-scale pore structure to high pressure conditions (~18.5 GPa) and a material with remarkable mechanical strength despite having ~35% porosity. Pressure dependent in situ SAXS measurements reveal a bulk modulus κ = 44 +/- 4 GPa for the mesoporous KxWO3 which is comparable to the corresponding value for the bulk monoclinic WO3 (γ-WO3). Evidence from middle angle (MAXS) and wide angle X-ray scattering (WAXS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy shows that the presence of potassium leads to the formation of a K-bearing orthorhombic tungsten bronze (OTB) phase within a monoclinic WO3 host structure. Our ab initio molecular dynamics calculations show that the formation of the OTB phase provides superior strength to the mesoporous K0.07WO3.Mesoporous materials with tailored properties hold great promise for energy harvesting and industrial applications. We have synthesized a novel tungsten bronze mesoporous material (KxWO3; x ~ 0.07) having inverse FDU-12 type pore symmetry and a crystalline framework. In situ small angle X-ray scattering (SAXS) measurements of the mesoporous K0.07WO3 show persistence of a highly ordered meso-scale pore structure to high pressure conditions (~18.5 GPa) and a material with remarkable mechanical strength despite having ~35% porosity. Pressure dependent in situ SAXS measurements reveal a bulk modulus κ = 44 +/- 4 GPa for the mesoporous KxWO3 which is comparable to the corresponding value for the bulk monoclinic WO3 (γ-WO3). Evidence from middle angle (MAXS) and wide angle X-ray scattering (WAXS), high-resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy shows that the presence of potassium leads to the formation of a K-bearing orthorhombic tungsten bronze (OTB) phase within a monoclinic WO3 host structure. Our ab initio molecular dynamics calculations show that the formation of the OTB phase provides superior strength to the mesoporous K0.07WO3. Electronic supplementary information (ESI) available: Experimental details of SEM and TEM measurements, SAXS data analysis, the procedure for Rietveld refinement, peak fitting for the Raman results, the modelling approach, UV-Vis and N2 sorption measurements. See DOI: 10.1039/c5nr07941a

  17. Micrometer scale guidance of mesenchymal stem cells to form structurally oriented large-scale tissue engineered cartilage.

    PubMed

    Chou, Chih-Ling; Rivera, Alexander L; Williams, Valencia; Welter, Jean F; Mansour, Joseph M; Drazba, Judith A; Sakai, Takao; Baskaran, Harihara

    2017-09-15

    Current clinical methods to treat articular cartilage lesions provide temporary relief of the symptoms but fail to permanently restore the damaged tissue. Tissue engineering, using mesenchymal stem cells (MSCs) combined with scaffolds and bioactive factors, is viewed as a promising method for repairing cartilage injuries. However, current tissue engineered constructs display inferior mechanical properties compared to native articular cartilage, which could be attributed to the lack of structural organization of the extracellular matrix (ECM) of these engineered constructs in comparison to the highly oriented structure of articular cartilage ECM. We previously showed that we can guide MSCs undergoing chondrogenesis to align using microscale guidance channels on the surface of a two-dimensional (2-D) collagen scaffold, which resulted in the deposition of aligned ECM within the channels and enhanced mechanical properties of the constructs. In this study, we developed a technique to roll 2-D collagen scaffolds containing MSCs within guidance channels in order to produce a large-scale, three-dimensional (3-D) tissue engineered cartilage constructs with enhanced mechanical properties compared to current constructs. After rolling the MSC-scaffold constructs into a 3-D cylindrical structure, the constructs were cultured for 21days under chondrogenic culture conditions. The microstructure architecture and mechanical properties of the constructs were evaluated using imaging and compressive testing. Histology and immunohistochemistry of the constructs showed extensive glycosaminoglycan (GAG) and collagen type II deposition. Second harmonic generation imaging and Picrosirius red staining indicated alignment of neo-collagen fibers within the guidance channels of the constructs. Mechanical testing indicated that constructs containing the guidance channels displayed enhanced compressive properties compared to control constructs without these channels. In conclusion, using a novel roll-up method, we have developed large scale MSC based tissue-engineered cartilage that shows microscale structural organization and enhanced compressive properties compared to current tissue engineered constructs. Tissue engineered cartilage constructs made with human mesenchymal stem cells (hMSCs), scaffolds and bioactive factors are a promising solution to treat cartilage defects. A major disadvantage of these constructs is their inferior mechanical properties compared to the native tissue, which is likely due to the lack of structural organization of the extracellular matrix of the engineered constructs. In this study, we developed three-dimensional (3-D) cartilage constructs from rectangular scaffold sheets containing hMSCs in micro-guidance channels and characterized their mechanical properties and metabolic requirements. The work led to a novel roll-up method to embed 2-D microscale structures in 3-D constructs. Further, micro-guidance channels incorporated within the 3-D cartilage constructs led to the production of aligned cell-produced matrix and enhanced mechanical function. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Influence of gamma irradiation on structural, thermal and antibacterial properties of HPMC/ZnO nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, B. Lakshmeesha; Madhukumar, R.; Latha, S.

    This work was carried out to evaluate the effect of gamma irradiation on the structural, thermal and antibacterial properties of HPMC/ZnO nanocomposite films exposed to Cobalt-60 (Average energy: 1.25 MeV). The X-ray diffraction study revealed that the crystallite size (L in Å) decreased as irradiation dose increased. The crystallinity (X{sub c}) of the nanocomposites initially increased and at higher doses it was decreased. The thermal stability of the nanocomposites increased up to 50 kGy and after that decreased as the irradiation dose increased. But, HPMC/ZnO nanocomposite films, showed a promising range of antimicrobial activity against tested micro-organisms making nanocomposites suitablemore » for food packing and other biomedical applications.« less

  19. Characterization of the interface interaction of cobalt on top of copper- and iron-phthalocyanine.

    PubMed

    Schmitt, Felix; Sauther, Jens; Lach, Stefan; Ziegler, Christiane

    2011-05-01

    The electronic structure of the interface between ferromagnetic cobalt and the organic semiconductors copper- (CuPc) and iron-phthalocyanine (FePc) was investigated by means of photoemission spectroscopy (UPS, IPES, and XPS). These metal-phthalocyanine (MePc) molecules have an open shell structure and are known to show promising properties for their use in organic spintronics. In spintronic devices, the interface between ferromagnetic electrode and the organic layer determines the spin injection properties and is hence important for the quality of, e.g., a possible spin-valve device. For this purpose, cobalt was deposited onto the MePcs, such as in devices with ferromagnetic top contacts. The reported investigations reveal a diffusion of cobalt into the organic layers and chemical reactions at the interface.

  20. Rigid shape matching by segmentation averaging.

    PubMed

    Wang, Hongzhi; Oliensis, John

    2010-04-01

    We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.

  1. Ultrafast Pulse Generation in an Organic Nanoparticle-Array Laser.

    PubMed

    Daskalakis, Konstantinos S; Väkeväinen, Aaro I; Martikainen, Jani-Petri; Hakala, Tommi K; Törmä, Päivi

    2018-04-11

    Nanoscale coherent light sources offer potentially ultrafast modulation speeds, which could be utilized for novel sensors and optical switches. Plasmonic periodic structures combined with organic gain materials have emerged as promising candidates for such nanolasers. Their plasmonic component provides high intensity and ultrafast nanoscale-confined electric fields, while organic gain materials offer fabrication flexibility and a low acquisition cost. Despite reports on lasing in plasmonic arrays, lasing dynamics in these structures have not been experimentally studied yet. Here we demonstrate, for the first time, an organic dye nanoparticle-array laser with more than a 100 GHz modulation bandwidth. We show that the lasing modulation speed can be tuned by the array parameters. Accelerated dynamics is observed for plasmonic lasing modes at the blue side of the dye emission.

  2. The molecular structure and absorption spectrum of hydroxy substituted dibenzoylmethanatoboron difluoride in solution: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Gelfand, Natalia; Freidzon, Alexandra; Fedorenko, Elena

    2018-01-01

    Electronic spectroscopy and quantum chemistry are used to study the structure and absorption spectra of the hydroxy substituted dibenzoylmethanatoboron difluoride (OHDBMBF2) in solutions. Introducing a hydroxy group in the diketonate moiety allows the dye to form intermolecular complexes with proton acceptors, such as solvents or analytes, thus making it a promising chemical sensor. Our calculations show that donor oxygen-containing solvents break the intramolecular hydrogen bond Osbnd H···Odik and form an intermolecular Osbnd H···Osolv bond thus disrupting the coplanarity of the dye and affecting the position and shape of its absorption bands. The spectra calculated with explicit solvent combined with polarizable continuum model (PCM) better agree with the experiment than those calculated only within PCM.

  3. Fine structure of modal focusing effect in a three dimensional plasma-sheath-lens formed by disk electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stamate, Eugen, E-mail: eust@dtu.dk; Venture Business Laboratory, Nagoya University, C3-1, Chikusa-ku, Nagoya 464-8603; Yamaguchi, Masahito

    2015-08-31

    Modal and discrete focusing effects associated with three-dimensional plasma-sheath-lenses show promising potential for applications in ion beam extraction, mass spectrometry, plasma diagnostics and for basic studies of plasma sheath. The ion focusing properties can be adjusted by controlling the geometrical structure of the plasma-sheath-lens and plasma parameters. The positive and negative ion kinetics within the plasma-sheath-lens are investigated both experimentally and theoretically and a modal focusing ring is identified on the surface of disk electrodes. The focusing ring is very sensitive to the sheath thickness and can be used to monitor very small changes in plasma parameters. Three dimensional simulationsmore » are found to be in very good agreement with experiments.« less

  4. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    PubMed

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  5. Inhibition of CatA: an emerging strategy for the treatment of heart failure.

    PubMed

    Ruf, Sven; Buning, Christian; Schreuder, Herman; Linz, Wolfgang; Hübschle, Thomas; Linz, Dominik; Ruetten, Hartmut; Wirth, Klaus; Sadowski, Thorsten

    2013-03-01

    The lysosomal serine carboxypeptidase CatA has a very important and well-known structural function as well as a, so far, less explored catalytic function. A complete loss of the CatA protein results in the lysosomal storage disease galactosialidosis caused by intralysosomal degradation of β-galactosidase and neuraminidase 1. However, mice with a catalytically inactive CatA enzyme show no signs of this disease. This observation establishes a clear distinction between structural and catalytic functions of the CatA enzyme. Recently, several classes of orally bioavailable synthetic inhibitors of CatA have been identified. Pharmacological studies in rodents indicate a remarkable influence of CatA inhibition on cardiovascular disease progression and identify CatA as a promising novel target for the treatment of heart failure.

  6. Perovskite Materials: Solar Cell and Optoelectronic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Geohegan, David B; Xiao, Kai

    2017-01-01

    Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure,more » and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.« less

  7. Enantioselective synthesis of pactamycin, a complex antitumor antibiotic.

    PubMed

    Malinowski, Justin T; Sharpe, Robert J; Johnson, Jeffrey S

    2013-04-12

    Medicinal application of many complex natural products is precluded by the impracticality of their chemical synthesis. Pactamycin, the most structurally intricate aminocyclopentitol antibiotic, displays potent antiproliferative properties across multiple phylogenetic domains, but it is highly cytotoxic. A limited number of analogs produced by genetic engineering technologies show reduced cytotoxicity against mammalian cells, renewing promise for therapeutic applications. For decades, an efficient synthesis of pactamycin amenable to analog derivatizations has eluded researchers. Here, we present a short asymmetric total synthesis of pactamycin. An enantioselective Mannich reaction and symmetry-breaking reduction sequence was designed to enable assembly of the entire carbon core skeleton in under five steps and control critical three-dimensional (stereochemical) functional group relationships. This modular route totals 15 steps and is immediately amenable for structural analog synthesis.

  8. Homology modeling of parasite histone deacetylases to guide the structure-based design of selective inhibitors.

    PubMed

    Melesina, Jelena; Robaa, Dina; Pierce, Raymond J; Romier, Christophe; Sippl, Wolfgang

    2015-11-01

    Histone deacetylases (HDACs) are promising epigenetic targets for the treatment of various diseases, including cancer and neurodegenerative disorders. There is evidence that they can also be addressed to treat parasitic infections. Recently, the first X-ray structure of a parasite HDAC was published, Schistosoma mansoni HDAC8, giving structural insights into its inhibition. However, most of the targets from parasites of interest still lack this structural information. Therefore, we prepared homology models of relevant parasitic HDACs and compared them to human and S. mansoni HDACs. The information about known S. mansoni HDAC8 inhibitors and compounds that affect the growth of Trypanosoma, Leishmania and Plasmodium species was used to validate the models by docking and molecular dynamics studies. Our results provide analysis of structural features of parasitic HDACs and should be helpful for selecting promising candidates for biological testing and for structure-based optimisation of parasite-specific inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Nanomanufacturing : nano-structured materials made layer-by-layer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with thesemore » processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.« less

  10. WhatsApp: A Real-Time Tool to Reduce the Knowledge Gap and Share the Best Clinical Practices in Psoriasis.

    PubMed

    Mazzuoccolo, Luis D; Esposito, Maria Noel; Luna, Paula C; Seiref, Sharon; Dominguez, Mirtha; Echeverria, Cristina M

    2018-06-20

    Psoriasis is a chronic inflammatory disease that affects around 100 million people worldwide. The burden of disease is high, but more recent therapies show promising results. Clinicians need, however, more training in the use of such therapies. Project ECHO ® (Extension for Community Healthcare Outcomes) is structured around the promise of delivering medical education at a distance, empowering clinicians who operate in remote areas. The use of instant messaging services, such as WhatsApp ® Messenger, has the potential to improve on the existing framework and bridge the existing gap of knowledge. This article reports on a study concerning the implementation of a WhatsApp discussion group in Project ECHO Psoriasis in Argentina. One hundred thirty-two dermatologists in Argentina were invited to participate in the WhatsApp discussion group. After 1 year of participation, a follow-up questionnaire was used to assess the effectiveness of the project. Eighty dermatologists participated. All questions placed in the discussion were answered by a psoriasis specialist, 79% of which were answered within the first 5 min. Clinicians report significant improvement in diagnosis, comorbidities, and treatment with both conventional and biological therapies. Preliminary results are promising. This new cost-effective solution builds on the existing Project ECHO Psoriasis in Argentina and shows potential in bridging the gap of knowledge, promoting better clinical decisions through empowerment of medical doctors operating in remote locations. Further research is needed to increase generalization of the results. Moreover, it would be interesting to match the data from the discussion group with follow-up questionnaires.

  11. Biomimetic structured surfaces increase primary adhesion capacity of cartilage implants.

    PubMed

    Lahner, Matthias; Kalwa, Lukas; Olbring, Roxana; Mohr, Charlotte; Göpfert, Lena; Seidl, Tobias

    2015-01-01

    In cartilage repair, scaffold-assisted single-step techniques are used to improve the cartilage regeneration. Nevertheless, the fixation of cartilage implants represents a challenge in orthopaedics, particularly in the moist conditions that pertain during arthroscopic surgery. Within the animal kingdom a broad range of species has developed working solutions to intermittent adhesion under challenging conditions. Using a top-down approach we identified promising mechanisms for biomimetic transfer The tree-frog adhesive system served as a test case to analyze the adhesion capacity of a polyglycolic acid (PGA) scaffold with and without a structural modification in a bovine articular cartilage defect model. To this end, PGA implants were modified with a simplified foot-pad structure and evaluated on femoral articular bovine cartilage lesions. Non-structured PGA scaffolds were used as control. Both implants were pressed on 20 mm × 20 mm full-thickness femoral cartilage defects using a dynamometer. The structured scaffolds showed a higher adhesion capacity on the cartilage defect than the non-structured original scaffolds. The results suggest that the adhesion ability can be increased by means of biomimetic structured surfaces without the need of additional chemical treatment and thus significantly facilitate primary fixation procedures.

  12. Gaussian mixture modeling of acoustic emissions for structural health monitoring of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Farhidzadeh, Alireza; Dehghan-Niri, Ehsan; Salamone, Salvatore

    2013-04-01

    Reinforced Concrete (RC) has been widely used in construction of infrastructures for many decades. The cracking behavior in concrete is crucial due to the harmful effects on structural performance such as serviceability and durability requirements. In general, in loading such structures until failure, tensile cracks develop at the initial stages of loading, while shear cracks dominate later. Therefore, monitoring the cracking modes is of paramount importance as it can lead to the prediction of the structural performance. In the past two decades, significant efforts have been made toward the development of automated structural health monitoring (SHM) systems. Among them, a technique that shows promises for monitoring RC structures is the acoustic emission (AE). This paper introduces a novel probabilistic approach based on Gaussian Mixture Modeling (GMM) to classify AE signals related to each crack mode. The system provides an early warning by recognizing nucleation of numerous critical shear cracks. The algorithm is validated through an experimental study on a full-scale reinforced concrete shear wall subjected to a reversed cyclic loading. A modified conventional classification scheme and a new criterion for crack classification are also proposed.

  13. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors

    PubMed Central

    Bremer, Kort; Weigand, Frank; Zheng, Yulong; Alwis, Lourdes Shanika; Helbig, Reinhard; Roth, Bernhard

    2017-01-01

    Optical fiber-based sensors “embedded” in functionalized carbon structures (FCSs) and textile net structures (TNSs) based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM) of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferometric (MZI) and optical attenuation measurement techniques, respectively. For this purpose, different FCS samples were subjected to varying elongation using a tensile testing machine by carefully incrementing the applied force, and good correlation between the applied force and measured length change was observed. For crack detection, the functionalized TNSs were embedded into a concrete block which was then exposed to varying load using the three-point flexural test until destruction. Promising results were observed, identifying that the location of the crack can be determined using the conventional optical time domain reflectometry (OTDR) technique. The embedded sensors thus evaluated show the value of the dual achievement of the schemes proposed in obtaining strain/crack measurement while being utilized as strengthening agents as well. PMID:28208636

  14. Tuning transport properties on graphene multiterminal structures by mechanical deformations

    NASA Astrophysics Data System (ADS)

    Latge, Andrea; Torres, Vanessa; Faria, Daiara

    The realization of mechanical strain on graphene structures is viewed as a promise route to tune electronic and transport properties such as changing energy band-gaps and promoting localization of states. Using continuum models, mechanical deformations are described by effective gauge fields, mirrored as pseudomagnetic fields that may reach quite high values. Interesting symmetry features are developed due to out of plane deformations on graphene; lift sublattice symmetry was predicted and observed in centrosymmetric bumps and strained nanobubbles. Here we discuss the effects of Gaussian-like strain on a hexagonal graphene flake connected to three leads, modeled as perfect graphene nanoribbons. The Green function formalism is used within a tight-binding approximation. For this particular deformation sharp resonant states are achieved depending on the strained structure details. We also study a fold-strained structure in which the three leads are deformed extending up to the very center of the hexagonal flake. We show that conductance suppressions can be controlled by the strain intensity and important transport features are modeled by the electronic band structure of the leads.

  15. Bias field tunable magnetic configuration and magnetization dynamics in Ni80Fe20 nano-cross structures with varying arm length

    NASA Astrophysics Data System (ADS)

    Adhikari, K.; Choudhury, S.; Mandal, R.; Barman, S.; Otani, Y.; Barman, A.

    2017-01-01

    Ferromagnetic nano-cross structures promise exotic static magnetic configurations and very rich and tunable magnetization dynamics leading towards potential applications in magnetic logic and communication devices. Here, we report an experimental study of external magnetic field tunable static magnetic configurations and magnetization dynamics in Ni80Fe20 nano-cross structures with varying arm lengths (L). Broadband ferromagnetic resonance measurements showed a strong variation in the number of spin-wave (SW) modes and mode frequencies (f) with bias field magnitude (H). Simulated static magnetic configurations and SW mode profiles explain the rich variation of the SW spectra, including mode softening, mode crossover, mode splitting, and mode merging. Such variation of SW spectra is further modified by the size of the nano-cross. Remarkably, with decreasing arm length of nano-cross structures, the onion magnetization ground state becomes more stable. Calculated magnetostatic field distributions support the above observations and revealed the non-collective nature of the dynamics in closely packed nano-cross structures. The latter is useful for their possible applications in magnetic storage and memory devices.

  16. Structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks.

    PubMed

    Karttunen, Antti J; Fässler, Thomas F

    2013-06-24

    We have investigated the structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks using quantum chemical methods. The experimentally known cubic 3C polytype was found to be the energetically most favorable framework, but the studied hexagonal polytypes (2 H, 4 H, 6 H, 8 H, 10 H) lie energetically close to it. In the case of germanium, the energy difference between the 3C and 6H clathrate-II polytypes is ten times smaller than the difference between the experimentally known 3C-Ge (α-Ge) and 4H-Ge polytypes. The thermoelectric properties of guest-occupied clathrate-II structures were investigated for compositions Na-Rb-Ga-Ge and Ge-As-I. The clathrate-II structures show promising thermoelectric properties and the highest Seebeck coefficients and thermoelectric power factors were predicted for the 3C polytype. The structural anisotropy of the largest studied hexagonal polytypes affects their thermoelectric power factors by over a factor of two. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex.

    PubMed

    Nguyen, Henry C; Yang, Haitao; Fribourgh, Jennifer L; Wolfe, Leslie S; Xiong, Yong

    2015-03-03

    The von Hippel-Lindau tumor suppressor protein (VHL) recruits a Cullin 2 (Cul2) E3 ubiquitin ligase to downregulate HIF-1α, an essential transcription factor for the hypoxia response. Mutations in VHL lead to VHL disease and renal cell carcinomas. Inhibition of this pathway to upregulate erythropoietin production is a promising new therapy to treat ischemia and chronic anemia. Here, we report the crystal structure of VHL bound to a Cul2 N-terminal domain, Elongin B, and Elongin C (EloC). Cul2 interacts with both the VHL BC box and cullin box and a novel EloC site. Comparison with other cullin E3 ligase structures shows that there is a conserved, yet flexible, cullin recognition module and that cullin selectivity is influenced by distinct electrostatic interactions. Our structure provides a structural basis for the study of the pathogenesis of VHL disease and rationale for the design of novel compounds that may modulate cullin-substrate receptor interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Assessment of Damage Containment Features of a Full-Scale PRSEUS Fuselage Panel Through Test and Teardown

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Bakuckas, John G., Jr.; Lovejoy, Andrew E.; Jegley, Dawn C.; Awerbuch, Jonathan; Tan, Tein-Min

    2012-01-01

    An area that shows promise in enhancing structural integrity of aircraft and aerospace structures is the integrally stitched composite technology. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept developed by Boeing Research and Technology and the National Aeronautics and Space Administration. A joint test program on the assessment of damage containment capabilities of the PRSEUS concept for curved fuselage structures was conducted recently at the Federal Aviation Administration William J. Hughes Technical Center. The panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure load conditions up to fracture, with a through-the-thickness, two-bay notch severing the central stiffener. For the purpose of future progressive failure analysis development and verification, extensive post failure nondestructive and teardown inspections were conducted. Detailed inspections were performed directly ahead of the notch tip where stable damage progression was observed. These examinations showed: 1) extensive delaminations developed ahead of the notch tip, 2) the extent and location of damage, 3) the typical damage mechanisms observed in composites, and 4) the role of stitching and warp-knitting in the failure mechanisms. The objective of this paper is to provide a summary of results from these posttest inspections.

  19. Composite cell sheet for periodontal regeneration: crosstalk between different types of MSCs in cell sheet facilitates complex periodontal-like tissue regeneration.

    PubMed

    Zhang, Hao; Liu, Shiyu; Zhu, Bin; Xu, Qiu; Ding, Yin; Jin, Yan

    2016-11-14

    Tissue-engineering strategies based on mesenchymal stem cells (MSCs) and cell sheets have been widely used for periodontal tissue regeneration. However, given the complexity in periodontal structure, the regeneration methods using a single species of MSC could not fulfill the requirement for periodontal regeneration. We researched the interaction between the periodontal ligament stem cells (PDLSCs) and jaw bone marrow-derived mesenchymal stem cells (JBMMSCs), and constructed a composite cell sheet comprising both of the above MSCs to regenerate complex periodontium-like structures in nude mice. Our results show that by co-culturing PDLSCs and JBMMSCs, the expressions of bone and extracellular matrix (ECM)-related genes and proteins were significantly improved in both MSCs. Further investigations showed that, compared to the cell sheet using PDLSCs or JBMMSCs, the composite stem cell sheet (CSCS), which comprises these two MSCs, expressed higher levels of bone- and ECM-related genes and proteins, and generated a composite structure more similar to the native periodontal tissue physiologically in vivo. In conclusion, our results demonstrate that the crosstalk between PDLSCs and JBMMSCs in cell sheets facilitate regeneration of complex periodontium-like structures, providing a promising new strategy for physiological and functional regeneration of periodontal tissue.

  20. MOF-Derived ZnO Nanoparticles Covered by N-Doped Carbon Layers and Hybridized on Carbon Nanotubes for Lithium-Ion Battery Anodes.

    PubMed

    Zhang, Hui; Wang, Yunsong; Zhao, Wenqi; Zou, Mingchu; Chen, Yijun; Yang, Liusi; Xu, Lu; Wu, Huaisheng; Cao, Anyuan

    2017-11-01

    Metal-organic frameworks (MOFs) have many promising applications in energy and environmental areas such as gas separation, catalysis, supercapacitors, and batteries; the key toward those applications is controlled pyrolysis which can tailor the porous structure, improve electrical conductivity, and expose metal ions in MOFs. Here, we present a systematic study on the structural evolution of zeolitic imidazolate frameworks hybridized on carbon nanotubes (CNTs) during the carbonization process. We show that a number of typical products can be obtained, depending on the annealing time, including (1) CNTs wrapped by relatively thick carbon layers, (2) CNTs grafted by ZnO nanoparticles which are covered by thin nitrogen-doped carbon layers, and (3) CNTs grafted by aggregated ZnO nanoparticles. We also investigated the electrochemical properties of those hybrid structures as freestanding membrane electrodes for lithium ion batteries, and the second one (CNT-supported ZnO covered by N-doped carbon) shows the best performance with a high specific capacity (850 mA h/g at a current density of 100 mA/g) and excellent cycling stability. Our results indicate that tailoring and optimizing the MOF-CNT hybrid structure is essential for developing high-performance energy storage systems.

  1. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes.

    PubMed

    López-Oyama, A B; Silva-Molina, R A; Ruíz-García, J; Gámez-Corrales, R; Guirado-López, R A

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ~2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ~0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications.

  2. Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires

    PubMed Central

    2016-01-01

    The tunable properties of molecular materials place them among the favorites for a variety of future generation devices. In addition, to maintain the current trend of miniaturization of those devices, a departure from the present top-down production methods may soon be required and self-assembly appears among the most promising alternatives. On-surface synthesis unites the promises of molecular materials and of self-assembly, with the sturdiness of covalently bonded structures: an ideal scenario for future applications. Following this idea, we report the synthesis of functional extended nanowires by self-assembly. In particular, the products correspond to one-dimensional organic semiconductors. The uniaxial alignment provided by our substrate templates allows us to access with exquisite detail their electronic properties, including the full valence band dispersion, by combining local probes with spatial averaging techniques. We show how, by selectively doping the molecular precursors, the product’s energy level alignment can be tuned without compromising the charge carrier’s mobility. PMID:26841052

  3. Hyaluronan hydrogels with a low degree of modification as scaffolds for cartilage engineering.

    PubMed

    La Gatta, Annalisa; Ricci, Giulia; Stellavato, Antonietta; Cammarota, Marcella; Filosa, Rosanna; Papa, Agata; D'Agostino, Antonella; Portaccio, Marianna; Delfino, Ines; De Rosa, Mario; Schiraldi, Chiara

    2017-10-01

    In the field of cartilage engineering, continuing efforts have focused on fabricating scaffolds that favor maintenance of the chondrocytic phenotype and matrix formation, in addition to providing a permeable, hydrated, microporous structure and mechanical support. The potential of hyaluronan-based hydrogels has been well established, but the ideal matrix remains to be developed. This study describes the development of hyaluronan sponges-based scaffolds obtained by lysine methyl-ester crosslinking. The reaction conditions are optimized with minimal chemical modifications to obtain materials that closely resemble elements in physiological cellular environments. Three hydrogels with different amounts of crosslinkers were produced that show morphological, water-uptake, mechanical, and stability properties comparable or superior to those of currently available hyaluronan-scaffolds, but with significantly fewer hyaluronan modifications. Primary human chondrocytes cultured with the most promising hydrogel were viable and maintained lineage identity for 3 weeks. They also secreted cartilage-specific matrix proteins. These scaffolds represent promising candidates for cartilage engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Elasticity of human embryonic stem cells as determined by atomic force microscopy.

    PubMed

    Kiss, Robert; Bock, Henry; Pells, Steve; Canetta, Elisabetta; Adya, Ashok K; Moore, Andrew J; De Sousa, Paul; Willoughby, Nicholas A

    2011-10-01

    The expansive growth and differentiation potential of human embryonic stem cells (hESCs) make them a promising source of cells for regenerative medicine. However, this promise is off set by the propensity for spontaneous or uncontrolled differentiation to result in heterogeneous cell populations. Cell elasticity has recently been shown to characterize particular cell phenotypes, with undifferentiated and differentiated cells sometimes showing significant differences in their elasticities. In this study, we determined the Young's modulus of hESCs by atomic force microscopy using a pyramidal tip. Using this method we are able to take point measurements of elasticity at multiple locations on a single cell, allowing local variations due to cell structure to be identified. We found considerable differences in the elasticity of the analyzed hESCs, reflected by a broad range of Young's modulus (0.05-10 kPa). This surprisingly high variation suggests that elasticity could serve as the basis of a simple and efficient large scale purification/separation technique to discriminate subpopulations of hESCs.

  5. Finite Element Analysis in Concurrent Processing: Computational Issues

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Watson, Brian; Vanderplaats, Garrett

    2004-01-01

    The purpose of this research is to investigate the potential application of new methods for solving large-scale static structural problems on concurrent computers. It is well known that traditional single-processor computational speed will be limited by inherent physical limits. The only path to achieve higher computational speeds lies through concurrent processing. Traditional factorization solution methods for sparse matrices are ill suited for concurrent processing because the null entries get filled, leading to high communication and memory requirements. The research reported herein investigates alternatives to factorization that promise a greater potential to achieve high concurrent computing efficiency. Two methods, and their variants, based on direct energy minimization are studied: a) minimization of the strain energy using the displacement method formulation; b) constrained minimization of the complementary strain energy using the force method formulation. Initial results indicated that in the context of the direct energy minimization the displacement formulation experienced convergence and accuracy difficulties while the force formulation showed promising potential.

  6. Epitaxial growth of highly strained antimonene on Ag(111)

    NASA Astrophysics Data System (ADS)

    Mao, Ya-Hui; Zhang, Li-Fu; Wang, Hui-Li; Shan, Huan; Zhai, Xiao-Fang; Hu, Zhen-Peng; Zhao, Ai-Di; Wang, Bing

    2018-06-01

    The synthesis of antimonene, which is a promising group-V 2D material for both fundamental studies and technological applications, remains highly challenging. Thus far, it has been synthesized only by exfoliation or growth on a few substrates. In this study, we show that thin layers of antimonene can be grown on Ag(111) by molecular beam epitaxy. High-resolution scanning tunneling microscopy combined with theoretical calculations revealed that the submonolayer Sb deposited on a Ag(111) surface forms a layer of AgSb2 surface alloy upon annealing. Further deposition of Sb on the AgSb2 surface alloy causes an epitaxial layer of Sb to form, which is identified as antimonene with a buckled honeycomb structure. More interestingly, the lattice constant of the epitaxial antimonene (5 Å) is much larger than that of freestanding antimonene, indicating a high tensile strain of more than 20%. This kind of large strain is expected to make the antimonene a highly promising candidate for roomtemperature quantum spin Hall material.

  7. Powder Injection Molding for mass production of He-cooled divertor parts

    NASA Astrophysics Data System (ADS)

    Antusch, S.; Norajitra, P.; Piotter, V.; Ritzhaupt-Kleissl, H.-J.

    2011-10-01

    A He-cooled divertor for future fusion power plants has been developed at KIT. Tungsten and tungsten alloys are presently considered the most promising materials for functional and structural divertor components. The advantages of tungsten materials lie, e.g. in the high melting point, and low activation, the disadvantages are high hardness and brittleness. The machinig of tungsten, e.g. milling, is very complex and cost-intensive. Powder Injection Molding (PIM) is a method for cost effective mass production of near-net-shape parts with high precision. The complete W-PIM process route is outlined and, results of product examination discussed. A binary tungsten powder feedstock with a grain size distribution in the range 0.7-1.7 μm FSSS, and a solid load of 50 vol.% was developed. After heat treatment, the successfully finished samples showed promising results, i.e. 97.6% theoretical density, a grain size of approximately 5 μm, and a hardness of 457 HV0.1.

  8. Self-assembled diatom substrates with plasmonic functionality

    NASA Astrophysics Data System (ADS)

    Kwon, Sun Yong; Park, Sehyun; Nichols, William T.

    2014-04-01

    Marine diatoms have an exquisitely complex exoskeleton that is promising for engineered surfaces such as sensors and catalysts. For such applications, creating uniform arrays of diatom frustules across centimeter scales will be necessary. Here, we present a simple, low-cost floating interface technique to self-assemble the diatom frustules. We show that well-prepared diatoms form floating hexagonal close-packed arrays at the air-water interface that can be transferred directly to a substrate. We functionalize the assembled diatom surfaces with gold and characterize the plasmonic functionality by using surface enhanced Raman scattering (SERS). Thin gold films conform to the complex, hierarchical diatom structure and produce a SERS enhancement factor of 2 × 104. Small gold nanoparticles attached to the diatom's surface produce a higher enhancement of 7 × 104 due to stronger localization of the surface plasmons. Taken together, the large-scale assembly and plasmonic functionalization represent a promising platform to control the energy and the material flows at a complex surface for applications such as sensors and plasmonic enhanced catalysts.

  9. Computational design of molecules for an all-quinone redox flow battery† †Electronic supplementary information (ESI) available: The list of computationally predicted candidate quinone molecules with interesting redox properties. See DOI: 10.1039/c4sc03030c Click here for additional data file.

    PubMed Central

    Er, Süleyman; Suh, Changwon; Marshak, Michael P.

    2015-01-01

    Inspired by the electron transfer properties of quinones in biological systems, we recently showed that quinones are also very promising electroactive materials for stationary energy storage applications. Due to the practically infinite chemical space of organic molecules, the discovery of additional quinones or other redox-active organic molecules for energy storage applications is an open field of inquiry. Here, we introduce a high-throughput computational screening approach that we applied to an accelerated study of a total of 1710 quinone (Q) and hydroquinone (QH2) (i.e., two-electron two-proton) redox couples. We identified the promising candidates for both the negative and positive sides of organic-based aqueous flow batteries, thus enabling an all-quinone battery. To further aid the development of additional interesting electroactive small molecules we also provide emerging quantitative structure-property relationships. PMID:29560173

  10. High-Throughput Printing Process for Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Hyun, Woo Jin

    Printed electronics is an emerging field for manufacturing electronic devices with low cost and minimal material waste for a variety of applications including displays, distributed sensing, smart packaging, and energy management. Moreover, its compatibility with roll-to-roll production formats and flexible substrates is desirable for continuous, high-throughput production of flexible electronics. Despite the promise, however, the roll-to-roll production of printed electronics is quite challenging due to web movement hindering accurate ink registration and high-fidelity printing. In this talk, I will present a promising strategy for roll-to-roll production using a novel printing process that we term SCALE (Self-aligned Capillarity-Assisted Lithography for Electronics). By utilizing capillarity of liquid inks on nano/micro-structured substrates, the SCALE process facilitates high-resolution and self-aligned patterning of electrically functional inks with greatly improved printing tolerance. I will show the fabrication of key building blocks (e.g. transistor, resistor, capacitor) for electronic circuits using the SCALE process on plastics.

  11. Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film.

    PubMed

    Sucaldito, Melvir R; Camacho, Drexel H

    2017-08-01

    Cellulose nanocrystals (CNCs) are promising materials that are readily extracted from plants and other cellulose-containing organisms. In this study, CNCs were isolated from freshwater green algae (Cladophora rupestris) thriving in a volcanic lake, using hydrobromic acid (HBr) hydrolysis. Morphological and structural studies revealed highly crystalline CNCs (94.0% crystallinity index) with preferred orientation to [100] lattice plane as shown by XRD measurements and have an average diameter of 20.0 (±4.4)nm as shown by TEM. Thermal studies showed increased temperature for thermal decomposition of CNCs (381.6°C), which is a result of HBr hydrolysis for CNCs isolation. The isolated CNCs were reinforced into starch based biocomposites via solution casting and evaporation method. Mechanical strength was improved as high as 78% upon addition of 1% cellulose nanocrystals in the films. The produced films are promising materials for their high mechanical strength, biodegradability and availability of raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Alectinib for ALK-positive non-small-cell lung cancer.

    PubMed

    Rossi, Antonio

    2016-08-01

    Anaplastic lymphoma kinase (ALK) rearrangements are present in about 5% of advanced non-small-cell lung cancer (NSCLC) patients. Despite the initial response, after a median of 1-2 years, ALK-positive patients developed an acquired resistance to the ALK-inhibitor crizotinib. Among the most promising second-generation ALK-inhibitors, alectinib is being investigated in crizotinib-naïve and -resistant ALK-positive NSCLC patients. The current state-of-the-art of ALK-inhibitors treatment, and in particular the role of alectinib in this setting, is reviewed and discussed. A structured search of bibliographic databases for peer-reviewed research literature and of main meetings using a focused review question was undertaken. Expert commentary: Alectinib reports promising results with a good safety profile, becoming a potentially very important option for ALK-translocated NSCLC patients. The preliminary results from the J-ALEX phase III randomized trial performed in ALK-rearranged NSCLC Japanese patients showed a better activity and tolerability of alectinib versus crizotinib.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tianqi; Beidaghi, Majid; Xiao, Xu

    Orthorhombic molybdenum trioxide (α-MoO 3) is a layered oxide with promising performance as electrode material for Li-ion capacitors. In this study, we show that expansion of the interlayer spacing (by ~0.32 Å) of the structure along the b-axis, introduced by partial reduction of α-MoO 3 and formation of MoO 3-x (x=0.06–0.43), results in enhanced diffusion of Li ions. Binder-free hybrid electrodes made of MoO 3-x nanobelts and carbon nanotubes show excellent electrical conductivity. The combination of increased interlayer spacing and enhanced electron transport leads to high gravimetric and volumetric capacitances of about 420 F/g or F/cm 3 and excellent cyclemore » life of binder-free MoO 3-x electrodes.« less

  14. The Interrelationships of Mathematical Precursors in Kindergarten

    PubMed Central

    Cirino, Paul T.

    2011-01-01

    This study evaluated the interrelations among cognitive precursors across quantitative, linguistic, and spatial attention domains that have been implicated for math achievement in young children. The dimensionality of the quantity precursors was evaluated in 286 Kindergarteners via latent variable techniques, and the contribution of precursors from each domain was established for small sums addition. Results showed a five factor structure for the quantity precursors with the major distinction between nonsymbolic and symbolic tasks. The overall model demonstrated good fit, and strong predictive power (R2 = 55%) for addition number combinations. Linguistic and spatial attention domains showed indirect relationships with outcomes, with their effects mediated by symbolic quantity measures. These results have implications for the measurement of mathematical precursors, and yield promise for predicting future math performance. PMID:21194711

  15. Thematic mapping, land use, geological structure and water resources in central Spain

    NASA Technical Reports Server (NTRS)

    Delascuevas, N. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. The images can be positioned in an absolute reference system (geographical coordinates or polar stereographic coordinates) by means of their marginal indicators. By digital analysis of LANDSAT data and geometric positioning of pixels in UTM projection, accuracy was achieved for corrected MSS information which could be used for updating maps at scale 1:200,000 or smaller. Results show that adjustment of the UTM grid was better obtained by a first order, or even second order, algorithm of geometric correction. Digital analysis of LANDSAT data from the Madrid area showed that this line of study was promising for automatic classification of data applied to thematic cartography and soils identification.

  16. Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process.

    PubMed

    Fousová, Michaela; Vojtěch, Dalibor; Kubásek, Jiří; Jablonská, Eva; Fojt, Jaroslav

    2017-05-01

    Porous structures, manufactured of a biocompatible metal, mimicking human bone structure are the future of orthopedic implantology. Fully porous materials, however, suffer from certain drawbacks. To overcome these, gradient in structure can be prepared. With gradient in porosity mechanical properties can be optimized to an appropriate value, implant can be attributed a similar gradient macrostructure as bone, tissue adhesion may be promoted and also various modification with organic or inorganic substances are possible. In this study, additive technology selective laser melting (SLM) was used to produce three types of gradient porosity model specimens of titanium alloy Ti-6Al-4V. As this technology has the potential to prepare complex structures in the near-net form, to control porosity, pore size and shape, it represents a promising option. The first part of the research work was focused on the characterization of the material itself in the as-produced state, only with heat treatment applied. The second part dealt with the influence of porosity on mechanical properties. The study has shown SLM brings significant changes in the surface chemistry. Despite this finding, titanium alloy retained its cytocompatibility, as it was outlined by in vitro tests with U-2 OS cells. With introduced porosity yield strength, ultimate strength and stiffness showed linear decrease, both in tension and compression. With respect to the future use in the form of orthopedic implant, especially reduction in Young's modulus down to the human bone value (30.5±2GPa) is very appreciated as the stress-shielding effect followed by possible implant loosening is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Switchable adhesion for wafer-handling based on dielectric elastomer stack transducers

    NASA Astrophysics Data System (ADS)

    Grotepaß, T.; Butz, J.; Förster-Zügel, F.; Schlaak, H. F.

    2016-04-01

    Vacuum grippers are often used for the handling of wafers and small devices. In order to evacuate the gripper, a gas flow is created that can harm the micro structures on the wafer. A promising alternative to vacuum grippers could be adhesive grippers with switchable adhesion. There have been some publications of gecko-inspired adhesive devices. Most of these former works consist of a structured surface which adheres to the object manipulated and an actuator for switching the adhesion. Until now different actuator principles have been investigated, like smart memory alloys and pneumatics. In this work for the first time dielectric elastomer stack transducers (DEST) are combined with a structured surface. DESTs are a promising new transducer technology with many applications in different industry sectors like medical devices, human-machine-interaction and soft robotics. Stacked dielectric elastomer transducers show thickness contraction originating from the electromechanical pressure of two compliant electrodes compressing an elastomeric dielectric when a voltage is applied. Since DESTs and the adhesive surfaces previously described are made of elastomers, it is self-evident to combine both systems in one device. The DESTs are fabricated by a spin coating process. If the flat surface of the spinning carrier is substituted for example by a perforated one, the structured elastomer surface and the DEST can be fabricated in one process. By electrical actuation the DEST contracts and laterally expands which causes the gecko-like cilia to adhere on the object to manipulate. This work describes the assembly and the experimental results of such a device using switchable adhesion. It is intended to be used for the handling of glass wafers.

  18. Structural Verification of the Space Shuttle's External Tank Super LightWeight Design: A Lesson in Innovation

    NASA Technical Reports Server (NTRS)

    Otte, Neil

    1997-01-01

    The Super LightWeight Tank (SLWT) team was tasked with a daunting challenge from the outset: boost the payload capability of the Shuttle System by safely removing 7500 lbs. from the existing 65,400 lb. External Tank (ET). Tools they had to work with included a promising new Aluminum Lithium alloy, the concept of a more efficient structural configuration for the Liquid Hydrogen (LH2) tank, and a highly successful, mature Light Weight Tank (LWT) program. The 44 month schedule which the SLWT team was given for the task was ambitious by any measure. During this time the team had to not only design, build, and verify the new tank, but they also had to move a material from the early stages of development to maturity. The aluminum lithium alloy showed great promise, with an approximately 29% increase in yield strength, 15% increase in ultimate strength, 5 deg/O increase in modulus and 5 deg/O decrease in density when compared to the current 2219 alloy. But processes had to be developed and brought under control, manufacturing techniques perfected, properties characterized, and design allowable generated. Because of the schedule constraint, this material development activity had to occur in parallel with design and manufacturing. Initial design was performed using design allowable believed to be achievable with the Aluminum Lithium alloy system, but based on limited test data. Preliminary structural development tests were performed with material still in the process of iteration. This parallel path approach posed obvious challenges and risks, but also allowed a unique opportunity for interaction between the structures and materials disciplines in the formulation of the material.

  19. Biosurfactants and surfactants interacting with membranes and proteins: Same but different?

    PubMed

    Otzen, Daniel E

    2017-04-01

    Biosurfactants (BS) are surface-active molecules produced by microorganisms. For several decades they have attracted interest as promising alternatives to current petroleum-based surfactants. Aside from their green profile, they have remarkably low critical micelle concentrations, reduce the air/water surface tension to very low levels and are excellent emulsifiers, all of which make them comparable or superior to their synthetic counterparts. These remarkable physical properties derive from their more complex chemical structures in which hydrophilic and hydrophobic regions are not as clearly separated as chemical surfactants but have a more mosaic distribution of polarity as well as branched or circular structures. This allows the lipopeptide surfactin to adopt spherical structures to facilitate dense packing at interfaces. They are also more complex. Glycolipid BS, e.g. rhamnolipids (RL) and sophorolipids, are produced biologically as mixtures which vary in the size and saturation of the hydrophobic region as well as modifications in the hydrophilic headgroup, such as the number of sugar groups and different levels of acetylation, leading to variable surface-active properties. Their amphiphilicity allows RL to insert easily into membranes at sub-cmc concentrations to modulate membrane structure and extract lipopolysaccharides, leading to extensive biofilm remodeling in vivo, sometimes in collaboration with hydrophobic RL precursors. Thanks to their mosaicity, even anionic BS like RL only bind weakly to proteins and show much lower denaturing potency, even supporting membrane protein refolding. Nevertheless, they can promote protein degradation by proteases e.g. by neutralizing positive charges, which together with their biofilm-combating properties makes them very promising detergent surfactants. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    PubMed

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical properties represents a good starting point for further biological research. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cytotoxicity investigation of a new hydroxyapatite scaffold with improved structural design.

    PubMed

    Sjerobabin, Nikola; Čolović, Božana; Petrović, Milan; Marković, Dejan; Živković, Slavoljub; Jokanović, Vukoman

    2016-01-01

    Biodegradable porous scaffolds are found to be very promising bone substitutes, acting as a temporary physical support to guide new tissue regeneration, until the entire scaffold is totally degraded and replaced by the new tissue. The aim of this study was to investigate cytotoxicity of a synthesized calcium hydroxyapatitebased scaffold, named ALBO-OS, with high porosity and optimal topology. The ALBO-OS scaffold was synthesized by the method of polymer foam template. The analysis of pore geometry and scaffold walls’ topography was made by scanning electron microscope (SEM). The biological investigations assumed the examinations of ALBO-OS cytotoxicity to mouse L929 fibroblasts, using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) and lactate dehydrogenase (LDH) tests and inverse phase microscopy. The SEM analysis showed high porosity with fair pore distribution and interesting morphology from the biological standpoint. The biological investigations showed that the material is not cytotoxic to L929 cells. Comparison of ALBO-OS with Bio-Oss, as the global gold standard as a bone substitute, showed similar results in MTT test, while LDH test showed significantly higher rate of cell multiplication with ALBO-OS. The scaffold design from the aspect of pore size, distribution, and topology seems to be very convenient for cell adhesion and occupation, which makes it a promising material as a bone substitute. The results of biological assays proved that ALBO-OS is not cytotoxic for L929 fibroblasts. In comparison with Bio-Oss, similar or even better results were obtained.

  2. ZnO for solar cell and thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Ghods, Amirhossein; Yunghans, Kelcy L.; Saravade, Vishal G.; Patel, Paresh V.; Jiang, Xiaodong; Kucukgok, Bahadir; Lu, Na; Ferguson, Ian

    2017-03-01

    ZnO-based materials show promise in energy harvesting applications, such as piezoelectric, photovoltaic and thermoelectric. In this work, ZnO-based vertical Schottky barrier solar cells were fabricated by MOCVD de- position of ZnO thin films on ITO back ohmic contact, while Ag served as the top Schottky contact. Various rapid thermal annealing conditions were studied to modify the carrier density and crystal quality. Greater than 200 nm thick ZnO films formed polycrystalline crystal structure, and were used to demonstrate Schottky solar cells. I-V characterizations of the devices showed photovoltaic performance, but but need further development. This is the first demonstration of vertical Schottky barrier solar cell based on wide bandgap ZnO film. Thin film and bulk ZnO grown by MOCVD or melt growth were also investigated in regards to their room- temperature thermoelectric properties. The Seebeck coefficient of bulk ZnO was found to be much larger than that of thin film ZnO at room temperature due to the higher crystal quality in bulk materials. The Seebeck coefficients decrease while the carrier concentration increases due to the crystal defects caused by the charge carriers. The co-doped bulk Zn0:96Ga0:02Al0:02O showed enhanced power factors, lower thermal conductivities and promising ZT values in the whole temperature range (300-1300 K).

  3. Carbon felt interlayer derived from rice paper and its synergistic encapsulation of polysulfides for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhong, Lei; Guan, Ruiteng; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong

    2018-05-01

    Lithium-sulfur (Li-S) batteries have remarkably high theoretical specific capacity as promising candidates for next-generation energy storage. However, the "polysulfides shuttle" effect hampers its commercial application. Here, we use a kind of rice paper as a raw material to get inorganic oxides doping carbon felt by the facile carbonization method, and then modified by a simple coating process using poly (fluorenyl ether ketone) and Super P slurry. The special structure of the carbon felt derived from rice paper and its modified layer endow the final electronic conductive interlayer with inherent polysulfides absorbents and ion Coulombic repulsion functions, respectively, which show synergistic effect for trapping polysulfides. As an interlayer of Li-S batteries, the obtained carbon felt/poly (fluorenyl ether ketone)& Super P (CFSS) interlayer shows excellent electrochemical performance in improving specific capacity and decreasing polarization. The batteries with CFSS interlayer exhibit a high capacity of 837 mA h g-1 at 2.0 C and a high initial capacity of 1073.4 mA h g-1 and good capacity retention of 824.5 mA h g-1 after 500 cycles at 0.5 C. CFSS interlayer also shows excellent anti-self-discharge performance. Therefore, the simple and economical CFSS interlayer can be considered as a promising component for high performance Li-S batteries.

  4. Structural and thermoelectric properties of zintl-phase CaLiPn (Pn=As, Sb, Bi)

    NASA Astrophysics Data System (ADS)

    Chandran, Anoop K.; Gudelli, Vijay Kumar; Sreeparvathy, P. C.; Kanchana, V.

    2016-11-01

    First-principles calculations were carried out to study the structural, mechanical, dynamical and transport properties of zintl phase materials CaLiPn (Pn=As, Sb and Bi). We have used two different approaches to solve the system based on density functional theory. The plane wave pseudopotential approach has been used to study the structural and dynamical properties whereas, full potential linear augment plane wave method is used to examine the electronic structure, mechanical and thermoelectric properties. The calculated ground-state properties agree quite well with experimental values. The computed electronic structure shows the investigated compounds to be direct band gap semiconductors. Further, we have calculated the thermoelectric properties of all the investigated compounds for both the carriers at various temperatures. We found a high thermopower for both the carriers, especially n-type doping to be more favourable, which enabled us to predict that CaLiPn might have promising applications as a good thermoelectric material. Further, the phonon dispersion curves of the investigated compounds showed flat phonon modes and we also find lower optical and acoustic modes to cut each other at the lower frequency range, which further indicate the investigated compounds to possess reasonably low thermal conductivity. We have also analysed the low value of the thermal conductivity through the empirical relations and discussions are presented here.

  5. Measurement and modeling of short and medium range order in amorphous Ta 2O 5 thin films

    DOE PAGES

    Shyam, Badri; Stone, Kevin H.; Bassiri, Riccardo; ...

    2016-08-26

    Here, amorphous films and coatings are rapidly growing in importance. Yet, there is a dearth of high-quality structural data on sub-micron films. Not understanding how these materials assemble at atomic scale limits fundamental insights needed to improve their performance. Here, we use grazing-incidence x-ray total scattering measurements to examine the atomic structure of the top 50–100 nm of Ta 2O 5 films; mirror coatings that show high promise to significantly improve the sensitivity of the next generation of gravitational-wave detectors. Our measurements show noticeable changes well into medium range, not only between crystalline and amorphous, but also between as-deposited, annealedmore » and doped amorphous films. It is a further challenge to quickly translate the structural information into insights into mechanisms of packing and disorder. Here, we illustrate a modeling approach that allows translation of observed structural features to a physically intuitive packing of a primary structural unit based on a kinked Ta-O-Ta backbone. Our modeling illustrates how Ta-O-Ta units link to form longer 1D chains and even 2D ribbons, and how doping and annealing influences formation of 2D order. We also find that all the amorphousTa 2O 5 films studied in here are not just poorly crystalline but appear to lack true 3D order.« less

  6. Tritiated amorphous silicon for micropower applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kherani, N.P.; Kosteski, T.; Zukotynski, S.

    1995-10-01

    The application of tritiated amorphous silicon as an intrinsic energy conversion semiconductor for radioluminescent structures and betavoltaic devices is presented. Theoretical analysis of the betavoltaic application shows an overall efficiency of 18% for tritiated amorphous silicon. This is equivalent to a 330 Ci intrinsic betavoltaic device producing 1 mW of power for 12 years. Photoluminescence studies of hydrogenated amorphous silicon, a-Si:H, show emission in the infra-red with a maximum quantum efficiency of 7.2% at 50 K; this value drops by 3 orders of magnitude at a temperature of 300 K. Similar studies of hydrogenated amorphous carbon show emission in themore » visible with an estimated quantum efficiency of 1% at 300 K. These results suggest that tritiated amorphous carbon may be the more promising candidate for room temperature radioluminescence in the visible. 18 refs., 5 figs.« less

  7. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L).

    PubMed

    Osorio-Guarín, Jaime A; Enciso-Rodríguez, Felix E; González, Carolina; Fernández-Pozo, Noé; Mueller, Lukas A; Barrero, Luz Stella

    2016-03-18

    Vascular wilt caused by Fusarium oxysporum is the most important disease in cape gooseberry (Physalis peruviana L.) in Colombia. The development of resistant cultivars is considered one of the most cost-effective means to reduce the impact of this disease. In order to do so, it is necessary to provide breeders with molecular markers and promising germplasm for introgression of different resistance loci as part of breeding schemes. Here we described an association mapping study in cape gooseberry with the goal to: (i) select promising materials for use in plant breeding and (ii) identify SNPs associated with the cape gooseberry resistance response to the F. oxysporum pathogen under greenhouse conditions, as potential markers for cape gooseberry breeding. We found a total of 21 accessions with different resistance responses within a diversity panel of 100 cape gooseberry accessions. A total of 60,663 SNPs were also identified within the same panel by means of GBS (Genotyping By Sequencing). Model-based population structure and neighbor-joining analyses showed three populations comprising the cape gooseberry panel. After correction for population structure and kinship, we identified SNPs markers associated with the resistance response against F. oxysporum. The identification of markers was based on common tags using the reference genomes of tomato and potato as well as the root/stem transcriptome of cape gooseberry. By comparing their location with the tomato genome, 16 SNPs were found in genes involved in defense/resistance response to pathogens, likewise when compared with the genome of potato, 12 markers were related. The work presented herein provides the first association mapping study in cape gooseberry showing both the identification of promising accessions with resistance response phenotypes and the identification of a set of SNP markers mapped to defense/resistance response genes of reference genomes. Thus, the work also provides new knowledge on candidate genes involved in the P. peruviana - F. oxysporum pathosystem as a foundation for further validation in marker-assisted selection. The results have important implications for conservation and breeding strategies in cape gooseberry.

  8. Fiber Angle and Aspect Ratio Influence the Shear Mechanics of Oriented Electrospun Nanofibrous Scaffolds

    PubMed Central

    Driscoll, Tristan P.; Nerurkar, Nandan L.; Jacobs, Nathan T.; Elliott, Dawn M.; Mauck, Robert L.

    2011-01-01

    Fibrocartilages, including the knee meniscus and the annulus fibrosus (AF) of the intervertebral disc, play critical mechanical roles in load transmission across joints and their function is dependent upon well-defined structural hierarchies, organization, and composition. All, however, are compromised in the pathologic transformations associated with tissue degeneration. Tissue engineering strategies that address these key features, for example, aligned nanofibrous scaffolds seeded with mesenchymal stem cells (MSCs), represent a promising approach for the regeneration of these fibrous structures. While such engineered constructs can replicate native tissue structure and uniaxial tensile properties, the multidirectional loading encountered by these tissues in vivo necessitates that they function adequately in other loading modalities as well, including shear. As previous findings have shown that native tissue tensile and shear properties are dependent on fiber angle and sample aspect ratio, respectively, the objective of the present study was to evaluate the effects of a changing fiber angle and sample aspect ratio on the shear properties of aligned electrospun poly(ε-caprolactone) (PCL) scaffolds, and to determine how extracellular matrix deposition by resident MSCs modulates the measured shear response. Results show that fiber orientation and sample aspect ratio significantly influence the response of scaffolds in shear, and that measured shear strains can be predicted by finite element models. Furthermore, acellular PCL scaffolds possessed a relatively high shear modulus, 2–4 fold greater than native tissue, independent of fiber angle and aspect ratio. It was further noted that under testing conditions that engendered significant fiber stretch, the aggregate resistance to shear was higher, indicating a role for fiber stretch in the overall shear response. Finally, with time in culture, the shear modulus of MSC laden constructs increased, suggesting that deposited ECM contributes to the construct shear properties. Collectively, these findings show that aligned electrospun PCL scaffolds are a promising tool for engineering fibrocartilage tissues, and that the shear properties of both acellular and cell-seeded formulations can match or exceed native tissue benchmarks. PMID:22098865

  9. Arginine-based poly(ester amide) nanoparticle platform: From structure-property relationship to nucleic acid delivery.

    PubMed

    You, Xinru; Gu, Zhipeng; Huang, Jun; Kang, Yang; Chu, Chih-Chang; Wu, Jun

    2018-05-25

    Many different types of polycations have been vigorously studied for nucleic acid delivery, but a systematical investigation of the structure-property relationships of polycations for nucleic acid delivery is still lacking. In this study, a new library of biodegradable and biocompatible arginine-based poly(ester amide) (Arg-PEA) biomaterials was designed and synthesized with a tunable structure for such a comprehensive structure-property research. Nanoparticle (NP) complexes were formed through the electrostatic interactions between the polycationic Arg-PEAs and anionic nucleic acids. The following structure effects of the Arg-PEAs on the transfection efficiency of nucleic acids were investigated: 1) the linker/spacer length (length effect and odd-even effect); 2) salt type of arginine; 3) the side chain; 4) chain stiffness; 5) molecular weight (MW). The data obtained revealed that a slight change in the Arg-PEA structure could finely tune its physicochemical property such as hydrophobicity, and this could subsequently affect the nanoparticle size and zeta potential, which, in turn, regulate the transfection efficiency and silencing outcomes. A further study of the Arg-PEA/CpG oligodeoxynucleotide NP complexes indicated that the polymer structure could precisily regulate the immune response of CpG, thus providing a new potential nano-immunotherapy strategy. The in vitro data have further confirmed that the Arg-PEA NPs showed a satisfactory delivery performance for a variety of nucleic acids. Therefore, the data from the current study provide comprehensive information about the Arg-PEA structure-transfection property relationship; the tunable property of the library of Arg-PEA biomaterials can be one of the promising candidates for nucleic acid delivery and other biomedical applications. Polycations have being intensive utilized for nucleic acid delivery. However, there has not been elucidated about the relationship between polycation's structure and the physicochemical properties/biological function. In this timely report, an arginine based poly(ester amide) (Arg-PEA) library was prepared with finely tunable structure to systematically investigate the structure-property relationships of polycations for nucleic acid delivery. The results revealed that slight change of Arg-PEA structure could finely tune the physicochemical property (such as hydrophobicity), which subsequently affect the size and zeta potential of Arg-PEA/nucleic acid nanoparticles(NPs), and finally regulate the resulting transfection or silencing outcomes. Further study of Arg-PEA/CpG NPs indicated that the polymer structure could precisely regulate immuno response of CpG, providing new potential nano-immunotherapy strategy. In vitro evaluations confirmed that the NPs showed satisfied delivery performance for a variety types of nucleic acids. Therefore, these studies provide comprehensive information of Arg-PEA structure-property relationship, and the tunable properties of Arg-PEAs make them promising candidates for nucleic acid delivery and other biomedical applications. Overall, we have shown enough significance and novelty in terms of nucleic acid delivery, biomaterials, pharmaceutical science and nanomedicine. Copyright © 2018. Published by Elsevier Ltd.

  10. FINDSITE-metal: Integrating evolutionary information and machine learning for structure-based metal binding site prediction at the proteome level

    PubMed Central

    Brylinski, Michal; Skolnick, Jeffrey

    2010-01-01

    The rapid accumulation of gene sequences, many of which are hypothetical proteins with unknown function, has stimulated the development of accurate computational tools for protein function prediction with evolution/structure-based approaches showing considerable promise. In this paper, we present FINDSITE-metal, a new threading-based method designed specifically to detect metal binding sites in modeled protein structures. Comprehensive benchmarks using different quality protein structures show that weakly homologous protein models provide sufficient structural information for quite accurate annotation by FINDSITE-metal. Combining structure/evolutionary information with machine learning results in highly accurate metal binding annotations; for protein models constructed by TASSER, whose average Cα RMSD from the native structure is 8.9 Å, 59.5% (71.9%) of the best of top five predicted metal locations are within 4 Å (8 Å) from a bound metal in the crystal structure. For most of the targets, multiple metal binding sites are detected with the best predicted binding site at rank 1 and within the top 2 ranks in 65.6% and 83.1% of the cases, respectively. Furthermore, for iron, copper, zinc, calcium and magnesium ions, the binding metal can be predicted with high, typically 70-90%, accuracy. FINDSITE-metal also provides a set of confidence indexes that help assess the reliability of predictions. Finally, we describe the proteome-wide application of FINDSITE-metal that quantifies the metal binding complement of the human proteome. FINDSITE-metal is freely available to the academic community at http://cssb.biology.gatech.edu/findsite-metal/. PMID:21287609

  11. Insight into the optoelectronic and thermoelectric properties of Ca-based Zintl phase CaCd2X2 (X = P, As) from first principles calculation

    NASA Astrophysics Data System (ADS)

    Belfarh, T.; Batouche, M.; Seddik, T.; Uğur, G.; Omran, S. Bin; Bouhemadou, A.; Sandeep; Wang, Xiaotian; Sun, Xiao-Wei; Khenata, R.

    2018-06-01

    We have studied the structural, optical, electronic and thermoelectric properties of the CaCd2X2 (X = P, As) compounds by using the full-potential augmented plane wave plus local orbitals method (FP-APW + lo). The exchange-correlation potential was treated using both the gradient generalized approximation (WC-GGA) and local density approximation (LDA). The estimated structural parameters, including the lattice parameters and internal coordinates agree well with the available experimental data. Our computed band structure shows that both studied compounds are semiconductors, with direct band gaps (Γ-Γ) of approximately 1.78 eV and 1.2 eV for CaCd2P2 and CaCd2As2, respectively, using GGA-TB-mBJ approach. The calculated optical spectra reveal a strong response of these materials in the energy range between the visible light and extreme UV regions, making them a good candidate for optoelectronic devices. Thermoelectric parameters, such as thermal conductivity, electrical conductivity, Seebeck coefficient, power factor and figure of merit were calculated. We note that both the CaCd2P2 and CaCd2As2 compounds show promising thermoelectric properties.

  12. Fungal lectins: a growing family.

    PubMed

    Kobayashi, Yuka; Kawagishi, Hirokazu

    2014-01-01

    Fungi are members of a large group of eukaryotic organisms that include yeasts and molds, as well as the most familiar member, mushrooms. Fungal lectins with unique specificity and structures have been discovered. In general, fungal lectins are classified into specific families based on their amino acid sequences and three-dimensional structures. In this chapter, we provide an overview of the approximately 80 types of mushroom and fungal lectins that have been isolated and studied to date. In particular, we have focused on ten fungal lectins (Agaricus bisporus, Agrocybe cylindracea, Aleuria aurantia, Aspergillus oryzae, Clitocybe nebularis, Marasmius oreades, Psathyrella velutina, Rhizopus stolonifer, Pholiota squarrosa, Polyporus squamosus), many of which are commercially available and their properties, sugar-binding specificities, structural grouping into families, and applications for biological research being described. The sialic acid-specific lectins (Agrocybe cylindracea and Polyporus squamosus) and fucose-specific lectins (Aleuria aurantia, Aspergillus oryzae, Rhizopus stolonifer, and Pholiota squarrosa) each showed potential for use in identifying sialic acid glycoconjugates and fucose glycoconjugates. Although not much is currently known about fungal lectins compared to animal and plant lectins, the knowledge accumulated thus far shows great promise for several applications in the fields of taxonomy, biomedicine, and molecular and cellular biology.

  13. Electrospun mulberry-like hierarchical carbon fiber web for high-performance supercapacitors.

    PubMed

    Liu, Chao; Liu, Jizi; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2018-02-15

    In this work, we have fabricated a kind of N-doped hierarchal carbon fiber web by electrospinning hollow mesoporous carbon spheres (HMCSs) into fibrous structure. The as-synthesized carbon fiber web with novel mulberry-like morphology, thus denoted as MC-FW, possesses micro/meso/macroporous porosity, large surface area, high conductivity and multi-level structure, which are highly desired for supercapacitor electrode materials. The electrochemical measurements demonstrate that the designed MC-FW shows high capacitance (298.6 F g -1 ), favorable capacitance retention (71.0%) and long cycle life (97.3% capacitance retention after 5000 cycles). Notably, the capacitance of 298.6 F g -1 for MC-FW is higher than the capacitance reported so far for many hollow carbon spheres and carbon fibers, which may contribute to the synergistic effect between the merits of HMCSs (e.g. micro/meso/macroporous hierarchal structure, large surface area, high pore volume) and advantages of 1D carbon fiber (e.g. large aspect ratio and high conductivity). It is believed that this distinctive carbon fiber web may show promising prospects as advanced energy storage materials and catalyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Structural Characteristics and In Vitro Biodegradation of a Novel Zn-Li Alloy Prepared by Induction Melting and Hot Rolling

    NASA Astrophysics Data System (ADS)

    Zhao, Shan; McNamara, Cameron T.; Bowen, Patrick K.; Verhun, Nicholas; Braykovich, Jacob P.; Goldman, Jeremy; Drelich, Jaroslaw W.

    2017-03-01

    Zinc shows great promise as a bioabsorbable metal; however, the low tensile strength of pure zinc limits its application for endovascular stent purposes. In this study, a new Zn- xLi alloy (with x = 2, 4, 6 at. pct) was prepared by induction melting in an argon atmosphere and processed through hot rolling. Structures of the formulated binary alloys were characterized by X-ray diffraction and optical microscopy. Mechanical testing showed that the incorporation of Li into Zn increased ultimate tensile strength from <120 MPa (pure Zn) to >560 MPa ( x = 6 at. pct). In vitro corrosion behavior was evaluated by immersion tests in simulated body fluid. The Zn-2Li and Zn-4Li corrosion study demonstrated that corrosion rates and products resemble those observed for pure Zn in vivo, and in addition, the Zn-4Li alloy exhibits higher resistance to corrosion as compared to Zn-2Li. The findings herein encourage further exploration of Zn-Li systems for structural use in biomedical vascular support applications with the ultimate goal of simplifying stent procedures, thereby reducing stent-related complications.

  15. Dihydro-β-agarofuran sesquiterpenes from celastraceae species as anti-tumour-promoting agents: Structure-activity relationship.

    PubMed

    Núñez, Marvin J; Jiménez, Ignacio A; Mendoza, Cristina R; Chavez-Sifontes, Marvin; Martinez, Morena L; Ichiishi, Eiichiro; Tokuda, Ryo; Tokuda, Harukuni; Bazzocchi, Isabel L

    2016-03-23

    Inhibition of tumour promotion in multistage chemical carcinogenesis is considered a promising strategy for cancer chemoprevention. In an ongoing investigation of bioactive secondary metabolites from Celastraceae species, five new dihydro-β-agarofuran sesquiterpenes (1-5), named Chiapens A-E, and seventeen known ones, were isolated from Maytenus chiapensis. Their structures were elucidated by extensive NMR spectroscopic and mass spectrometric techniques, and their absolute configurations were determined by circular dichroism studies, chemical correlations and biogenic means. The isolated compounds, along with twenty known sesquiterpenes, previously isolated from Zinowiewia costaricensis, have been tested for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorpol-13-acetate (TPA). Thirty three compounds from this series showed stronger effects than that of β-carotene, the reference inhibitor. The structure-activity relationship (SAR) analysis revealed that the type of substituent, in particular at the C-1 position of the sesquiterpene scaffold, was able to modulate the anti-tumour promoting activity. Compounds 3, 6, and 33 showed significant effects in an in vivo two-stage mouse-skin carcinogenesis model. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Environmental Screening Effects in 2D Materials: Renormalization of the Bandgap, Electronic Structure, and Optical Spectra of Few-Layer Black Phosphorus.

    PubMed

    Qiu, Diana Y; da Jornada, Felipe H; Louie, Steven G

    2017-08-09

    Few-layer black phosphorus has recently emerged as a promising 2D semiconductor, notable for its widely tunable bandgap, highly anisotropic properties, and theoretically predicted large exciton binding energies. To avoid degradation, it has become common practice to encapsulate black phosphorus devices. It is generally assumed that this encapsulation does not qualitatively affect their optical properties. Here, we show that the contrary is true. We have performed ab initio GW and GW plus Bethe-Salpeter equation (GW-BSE) calculations to determine the quasiparticle (QP) band structure and optical spectrum of one-layer (1L) through four-layer (4L) black phosphorus, with and without encapsulation between hexagonal boron nitride and sapphire. We show that black phosphorus is exceptionally sensitive to environmental screening. Encapsulation reduces the exciton binding energy in 1L by as much as 70% and completely eliminates the presence of a bound exciton in the 4L structure. The reduction in the exciton binding energies is offset by a similarly large renormalization of the QP bandgap so that the optical gap remains nearly unchanged, but the nature of the excited states and the qualitative features of the absorption spectrum change dramatically.

  17. Extended generalized recurrence plot quantification of complex circular patterns

    NASA Astrophysics Data System (ADS)

    Riedl, Maik; Marwan, Norbert; Kurths, Jürgen

    2017-03-01

    The generalized recurrence plot is a modern tool for quantification of complex spatial patterns. Its application spans the analysis of trabecular bone structures, Turing patterns, turbulent spatial plankton patterns, and fractals. Determinism is a central measure in this framework quantifying the level of regularity of spatial structures. We show by basic examples of fully regular patterns of different symmetries that this measure underestimates the orderliness of circular patterns resulting from rotational symmetries. We overcome this crucial problem by checking additional structural elements of the generalized recurrence plot which is demonstrated with the examples. Furthermore, we show the potential of the extended quantity of determinism applying it to more irregular circular patterns which are generated by the complex Ginzburg-Landau-equation and which can be often observed in real spatially extended dynamical systems. So, we are able to reconstruct the main separations of the system's parameter space analyzing single snapshots of the real part only, in contrast to the use of the original quantity. This ability of the proposed method promises also an improved description of other systems with complicated spatio-temporal dynamics typically occurring in fluid dynamics, climatology, biology, ecology, social sciences, etc.

  18. Hierarchical Bi2Te3 Nanostrings: Green Synthesis and Their Thermoelectric Properties.

    PubMed

    Song, Shuyan; Liu, Yu; Wang, Qishun; Pan, Jing; Sun, Yabin; Zhang, Lingling

    2018-05-20

    Bi2Te3 hierarchical nanostrings have been synthesized through a solvothermal approach with the assistance of sucrose. The hierarchical Bi2Te3 was supposed to be fabricated through a self-assembly process. Te nanorods first emerge with the reduction of TeO32- followed by heterogeneous nucleation of Bi2Te3 nanoplates on the surface and tips of Te nanorods. Te nanorods further transform into Bi2Te3 nanorods simultaneously with the nanoplates' growth leading to a hierarchical structure. Through controlling the reaction kinetics by adding different amount of ethylene glycol, the length of nanorods and the number of nanoplates could be tailored. The use of sucrose is vital to the formation of hierarchical structure because it not only serves as a template for the well-defined growth of Te nanorods but also promotes the heterogeneous nucleation of Bi2Te3 in the self-assembly process. The Bi2Te3 nanomaterial shows a moderate thermoelectric performance because of its hierarchical structure. This study shows a promising way to synthesize Bi2Te3-based nanostructures through environmental friendly approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. X-ray Absorption and Emission Spectroscopy of CrIII (Hydr)Oxides: Analysis of the K-Pre-Edge Region

    NASA Astrophysics Data System (ADS)

    Frommer, Jakob; Nachtegaal, Maarten; Czekaj, Izabela; Weng, Tsu-Chien; Kretzschmar, Ruben

    2009-10-01

    Pre-edge spectral features below the main X-ray absorption K-edge of transition metals show a pronounced chemical sensitivity and are promising sources of structural information. Nevertheless, the use of pre-edge analysis in applied research is limited because of the lack of definite theoretical peak-assignments. The aim of this study was to determine the factors affecting the chromium K-pre-edge features in trivalent chromium-bearing oxides and oxyhydroxides. The selected phases varied in the degree of octahedral polymerization and the degree of iron-for-chromium substitution in the crystal structure. We investigated the pre-edge fine structure by means of high-energy-resolution fluorescence detected X-ray absorption spectroscopy and by 1s2p resonant X-ray emission spectroscopy. Multiplet theory and full multiple-scattering calculations were used to analyze the experimental data. We show that the chromium K-pre-edge contains localized and nonlocalized transitions. Contributions arising from nonlocalized metal-metal transitions are sensitive to the nearest metal type and to the linkage mode between neighboring metal octahedra. Analyzing these transitions opens up new opportunities for investigating the local coordination environment of chromium in poorly ordered solids of environmental relevance.

  20. Intrinsic Properties and Structure of AB2 Laves Phase ZrW2

    NASA Astrophysics Data System (ADS)

    Wu, Junyan; Zhang, Bo; Zhan, Yongzhong

    2017-06-01

    Using the first-principle calculations along with the quasi-harmonic Debye model, we explore the structural, thermodynamic, mechanical, and electronic properties of ZrW2 intermetallic considering temperature or pressure effect. The computed equilibrium lattice parameter here is highly consistent with previous available results. The obtained formation enthalpy reveals that the ZrW2 is structurally stable in the pressure range of 0 to 100 GPa. The pressure and temperature dependences of V/ V 0 ratio, constant volume specific heat capacity, thermal expansion coefficient, and Debye temperature of ZrW2 have been obtained. The calculated minimum thermal conductivity k min of ZrW2 is fairly small and shows anisotropy, which implies that ZrW2 has promising thermal-insulating application in engineering and may be competent for the thermal barrier materials. Moreover, from the results of elastic properties, we found the ZrW2 is mechanically stable and exhibits elastic anisotropy and the extent of elastic anisotropy increases with pressure. Additionally, ZrW2 shows ductile nature and its mechanical moduli all enhance as pressure increases, which is further confirmed by the findings from the electronic properties.

  1. First principles investigations of Fe2CrSi Heusler alloys by substitution of Co at Fe site

    NASA Astrophysics Data System (ADS)

    Jain, Rakesh; Lakshmi, N.; Jain, Vivek Kumar; Chandra, Aarti R.

    2018-04-01

    Electronic structure and magnetic properties of Fe2-xCoxCrSi Heusler alloys have been investigated by varying Co concentration from x = 0 to 2. On increasing Co concentration, lattice constant and magnetic moment of Fe2-xCoxCrSi alloys increase. These alloys show true half metallic Ferromagnetic behavior with 100% spin polarization. Band gap of the alloys also increase from 0.54 eV to 0.85 eV on increasing Co concentration making these alloys promising materials for spintronics based device applications.

  2. Elastic Face, An Anatomy-Based Biometrics Beyond Visible Cue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsap, L V; Zhang, Y; Kundu, S J

    2004-03-29

    This paper describes a face recognition method that is designed based on the consideration of anatomical and biomechanical characteristics of facial tissues. Elastic strain pattern inferred from face expression can reveal an individual's biometric signature associated with the underlying anatomical structure, and thus has the potential for face recognition. A method based on the continuum mechanics in finite element formulation is employed to compute the strain pattern. Experiments show very promising results. The proposed method is quite different from other face recognition methods and both its advantages and limitations, as well as future research for improvement are discussed.

  3. Imidazopyridine-fused [1,3]-diazepinones part 2: Structure-activity relationships and antiproliferative activity against melanoma cells.

    PubMed

    Bellet, Virginie; Lichon, Laure; Arama, Dominique P; Gallud, Audrey; Lisowski, Vincent; Maillard, Ludovic T; Garcia, Marcel; Martinez, Jean; Masurier, Nicolas

    2017-01-05

    We recently described a pyrido-imidazodiazepinone derivative which could be a promising hit compound for the development of new drugs acting against melanoma cells. In this study, a series of 28 novel pyrido-imidazodiazepinones were synthesized and screened for their in vitro cytotoxic activities against the melanoma MDA-MB-435 cell line. Among the derivatives, seven of them showed 50% growth inhibitory activity at 1 μM concentration, and high selectivity against the melanoma cell line MDA-MB-435. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes.

    PubMed

    Yuan, Quanzi; Zhao, Ya-Pu

    2009-05-13

    A DFT/MD mutual iterative method was employed to give insights into the mechanism of voltage generation based on water-filled single-walled carbon nanotubes (SWCNTs). Our calculations showed that a constant voltage difference of several mV would generate between the two ends of a carbon nanotube, due to interactions between the water dipole chains and charge carriers in the tube. Our work validates this structure of a water-filled SWCNT as a promising candidate for a synthetic nanoscale power cell, as well as a practical nanopower harvesting device at the atomic level.

  5. In vitro corrosion and cytocompatibility properties of nano-whisker hydroxyapatite coating on magnesium alloy for bone tissue engineering applications.

    PubMed

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-03-17

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries.

  6. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    NASA Astrophysics Data System (ADS)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  7. Development of Colle-Salvetti type electron-nucleus correlation functional for MC-DFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udagawa, Taro; Tsuneda, Takao; Tachikawa, Masanori

    2015-12-31

    A Colle-Salvetti type electron-nucleus correlation functional for multicomponent density-functional theory is proposed. We demonstrate that our correlation functional quantitatively reproduces the quantum nuclear effects of protons; the mean absolute deviation value is 2.8 millihartrees for the optimized structure of hydrogen-containing molecules. We also show other practical calculations with our new electron-deuteron and electron-triton correlation functionals. Since this functional is derived without any unphysical assumption, the strategy taken in this development will be a promising recipe to make new functionals for the potentials of other particles’ interactions.

  8. A platform for large-scale graphene electronics--CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride.

    PubMed

    Wang, Min; Jang, Sung Kyu; Jang, Won-Jun; Kim, Minwoo; Park, Seong-Yong; Kim, Sang-Woo; Kahng, Se-Jong; Choi, Jae-Young; Ruoff, Rodney S; Song, Young Jae; Lee, Sungjoo

    2013-05-21

    Direct chemical vapor deposition (CVD) growth of single-layer graphene on CVD-grown hexagonal boron nitride (h-BN) film can suggest a large-scale and high-quality graphene/h-BN film hybrid structure with a defect-free interface. This sequentially grown graphene/h-BN film shows better electronic properties than that of graphene/SiO2 or graphene transferred on h-BN film, and suggests a new promising template for graphene device fabrication. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High-sensitivity silicon nanowire phototransistors

    NASA Astrophysics Data System (ADS)

    Tan, Siew Li; Zhao, Xingyan; Dan, Yaping

    2014-08-01

    Silicon nanowires (SiNWs) have emerged as a promising material for high-sensitivity photodetection in the UV, visible and near-infrared spectral ranges. In this work, we demonstrate novel planar SiNW phototransistors on silicon-oninsulator (SOI) substrate using CMOS-compatible processes. The device consists of a bipolar transistor structure with an optically-injected base region. The electronic and optical properties of the SiNW phototransistors are investigated. Preliminary simulation and experimental results show that nanowire geometry, doping densities and surface states have considerable effects on the device performance, and that a device with optimized parameters can potentially outperform conventional Si photodetectors.

  10. In Vitro Corrosion and Cytocompatibility Properties of Nano-Whisker Hydroxyapatite Coating on Magnesium Alloy for Bone Tissue Engineering Applications

    PubMed Central

    Yang, Huawei; Yan, Xueyu; Ling, Min; Xiong, Zuquan; Ou, Caiwen; Lu, Wei

    2015-01-01

    We report here the successful fabrication of nano-whisker hydroxyapatite (nHA) coatings on Mg alloy by using a simple one-step hydrothermal process in aqueous solution. The nHA coating shows uniform structure and high crystallinity. Results indicate that nHA coating is promising for improving the in vitro corrosion and cytocompatibility properties of Mg-based implants and devices for bone tissue engineering. In addition, the simple hydrothermal deposition method used in the current study is also applicable to substrates with complex shapes or surface geometries. PMID:25789500

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, H., E-mail: h-oda@photon.chitose.ac.jp; Yamanaka, A.; Ozaki, N.

    The development of small sized laser operating above room temperature is important in the realization of optical integrated circuits. Recently, micro-lasers consisting of photonic crystals (PhCs) and whispering gallery mode cavities have been demonstrated. Optically pumped laser devices could be easily designed using photonic crystal-slab waveguides (PhC-WGs) with an air-bridge type structure. In this study, we observe lasing at 1.3μm from two-photon pumped InAs-quantum-dots embedded GaAs PhC-WGs above room temperature. This type of compact laser shows promise as a new light source in ultra-compact photonics integrated circuits.

  12. Using Jupiter's gravitational field to probe the Jovian convective dynamo.

    PubMed

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2016-03-23

    Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection.

  13. Using Jupiter’s gravitational field to probe the Jovian convective dynamo

    PubMed Central

    Kong, Dali; Zhang, Keke; Schubert, Gerald

    2016-01-01

    Convective motion in the deep metallic hydrogen region of Jupiter is believed to generate its magnetic field, the strongest in the solar system. The amplitude, structure and depth of the convective motion are unknown. A promising way of probing the Jovian convective dynamo is to measure its effect on the external gravitational field, a task to be soon undertaken by the Juno spacecraft. We calculate the gravitational signature of non-axisymmetric convective motion in the Jovian metallic hydrogen region and show that with sufficiently accurate measurements it can reveal the nature of the deep convection. PMID:27005472

  14. Penetrating the Blood-Brain Barrier: Promise of Novel Nanoplatforms and Delivery Vehicles.

    PubMed

    Ali, Iqbal Unnisa; Chen, Xiaoyuan

    2015-10-27

    Multifunctional nanoplatforms combining versatile therapeutic modalities with a variety of imaging options have the potential to diagnose, monitor, and treat brain diseases. The promise of nanotechnology can only be realized by the simultaneous development of innovative brain-targeting delivery vehicles capable of penetrating the blood-brain barrier without compromising its structural integrity.

  15. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    PubMed

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  16. Synthesis and photocatalytic activity of electrospun niobium oxide nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Shishun; Zuo, Ruzhong, E-mail: piezolab@hfut.edu.cn; Liu, Yi

    2013-03-15

    Graphical abstract: Different morphologies are obtained for the electrospun niobium oxide nanofibers with different phase structures. The nanofibers of the two phase structures present different band gap value and the light absorption. Hexagonal phase nanofibers show better photocatalytic activity compared with the orthorhombic nanofibers. Highlights: ► Niobium oxide nanofibers of two phase structures were fabricated by electrospinning. ► Photocatalytic properties of the niobium oxide nanofibers were first explored. ► Nanofibers of different phase structures showed different photocatalytic activities. ► Reasons for the differences in the photocatalysis were carefully discussed. - Abstract: Niobium oxide (Nb{sub 2}O{sub 5}) nanofibers have been synthesizedmore » by sol–gel based electrospinning technique. Pure hexagonal phase (H-Nb{sub 2}O{sub 5}) and orthorhombic phase (O-Nb{sub 2}O{sub 5}) nanofibers were obtained by thermally annealing the electrospun Nb{sub 2}O{sub 5}/polyvinylpyrrolidone composite fibers in air at 500 °C and 700 °C, respectively. The fibers were characterized using the X-ray diffraction, scanning electron microscopy, specific surface area analyzer and UV–vis diffuse reflectance spectroscopy. Photocatalytic activities of the obtained nanofibers were evaluated depending on the degradation of methyl orange. The results indicate that the heat-treatment temperature, the crystalline structure and the morphology affected the physical and chemical properties of the as-prepared Nb{sub 2}O{sub 5} nanofibers. The H-Nb{sub 2}O{sub 5} nanofibers obtained at lower temperature showed better potential for the application as a promising photocatalyst.« less

  17. H2 gas sensing properties of a ZnO/CuO and ZnO/CuO/Cu2O Heterostructures

    NASA Astrophysics Data System (ADS)

    Ababii, N.; Postica, V.; Hoppe, M.; Adelung, R.; Lupan, O.; Railean, S.; Pauporté, T.; Viana, B.

    2017-03-01

    The most important parameters of gas sensors are sensitivity and especially high selectivity to specific chemical species. To improve these parameters we developed sensor structures based on layered semiconducting oxides, namely CuO/Cu2O, CuO:Zn/Cu2O:Zn, NiO/ZnO. In this work, the ZnO/CuxO (where x = 1, 2) bi-layer heterostructure were grown via a simple synthesis from chemical solution (SCS) at relatively low temperatures (< 95 °C), representing a combination of layered n-type and p-type semiconducting oxides which are widely used as sensing material for gas sensors. The main advantages of the developed device structures are given by simplicity of the synthesis and technological cost-efficiency. Structural investigations showed high crystallinity of synthesized layers confirming the presence of zinc oxide nanostructures on the surface of the copper oxide film deposited on glass substrate. Structural changes in morphology of grown nanostructures induced by post-grown thermal annealing were observed by scanning electron microscopy (SEM) investigations, and were studied in detail. The influence of thermal annealing type on the optical properties was also investigated. As an example of practical applications, the ZnO/CuxO bi-layer heterojunctions and ZnO/CuO/Cu2O three-layered structures were integrated into sensor structures and were tested to different types of reducing gases at different operating temperatures (OPT), showing promising results for fabrication of selective gas sensors.

  18. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  19. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE PAGES

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; ...

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  20. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells

    NASA Astrophysics Data System (ADS)

    Kourkoutis, Lena F.; Hao, Xiaojing; Huang, Shujuan; Puthen-Veettil, Binesh; Conibeer, Gavin; Green, Martin A.; Perez-Wurfl, Ivan

    2013-07-01

    All-Si tandem solar cells based on Si quantum dots (QDs) are a promising approach to future high-performance, thin film solar cells using abundant, stable and non-toxic materials. An important prerequisite to achieve a high conversion efficiency in such cells is the ability to control the geometry of the Si QD network. This includes the ability to control both, the size and arrangement of Si QDs embedded in a higher bandgap matrix. Using plasmon tomography we show the size, shape and density of Si QDs, that form in Si rich oxide (SRO)/SiO2 multilayers upon annealing, can be controlled by varying the SRO stoichiometry. Smaller, more spherical QDs of higher densities are obtained at lower Si concentrations. In richer SRO layers ellipsoidal QDs tend to form. Using electronic structure calculations within the effective mass approximation we show that ellipsoidal QDs give rise to reduced inter-QD coupling in the layer. Efficient carrier transport via mini-bands is in this case more likely across the multilayers provided the SiO2 spacer layer is thin enough to allow coupling in the vertical direction.All-Si tandem solar cells based on Si quantum dots (QDs) are a promising approach to future high-performance, thin film solar cells using abundant, stable and non-toxic materials. An important prerequisite to achieve a high conversion efficiency in such cells is the ability to control the geometry of the Si QD network. This includes the ability to control both, the size and arrangement of Si QDs embedded in a higher bandgap matrix. Using plasmon tomography we show the size, shape and density of Si QDs, that form in Si rich oxide (SRO)/SiO2 multilayers upon annealing, can be controlled by varying the SRO stoichiometry. Smaller, more spherical QDs of higher densities are obtained at lower Si concentrations. In richer SRO layers ellipsoidal QDs tend to form. Using electronic structure calculations within the effective mass approximation we show that ellipsoidal QDs give rise to reduced inter-QD coupling in the layer. Efficient carrier transport via mini-bands is in this case more likely across the multilayers provided the SiO2 spacer layer is thin enough to allow coupling in the vertical direction. Electronic supplementary information (ESI) available: Electron tomography reconstruction movies. See DOI: 10.1039/c3nr01998e

Top