Sample records for structures showed high

  1. Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Liling; Huang, Da; Hu, Nantao; Yang, Chao; Li, Ming; Wei, Hao; Yang, Zhi; Su, Yanjie; Zhang, Yafei

    2017-02-01

    A novel three-dimensional (3D) structure of reduced graphene oxide/polyaniline (rGO/PANI) hybrid films has been demonstrated for high-performance supercapacitors. Steamed water in closed vessels with high pressure and moderately high temperature is applied to facilely construct this structure. The as-designed rGO/PANI hybrid films exhibit a highest gravimetric specific capacitance of 1182 F g-1 at 1 A g-1 in the three-electrode test. The assembled symmetric device based on this structure shows both a high capacitance of 808 F g-1 at 1 A g-1 and a high gravimetric energy density (28.06 Wh kg-1 at a power density of 0.25 kW kg-1). Above all, this novel 3D structure constructed by steamed water regulation techniques shows excellent capacitance performance and holds a great promise for high-performance energy storage applications.

  2. High pressure transport and structural studies on Nb 3Ga superconductor

    DOE PAGES

    Mkrtcheyan, Vahe; Kumar, Ravhi; Baker, Jason; ...

    2014-11-24

    We investigated the crystal structure of A-15 superconductor Nb 3Ga with a critical temperature T c = 16.5 K by high pressure x-ray diffraction (HPXRD) using synchrotron x-rays and a diamond anvil cell under Ne pressure medium. Furthermore, the high pressure structural results indicate that Nb 3Ga is stable up to 41 GPa. The P-V plot shows an anomaly around 15 GPa even though there are no pressure induced structural transitions are observed. High pressure resistance measurements were performed up to 0.5 GPa to understand the variation of T c under pressure. Finally, our results show a positive pressure effectmore » on T c.« less

  3. Predicting nucleic acid binding interfaces from structural models of proteins

    PubMed Central

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2011-01-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767

  4. Tuning conductivity in boron nanowire by edge geometry

    NASA Astrophysics Data System (ADS)

    Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Sonvane, Yogesh; Gajjar, P. N.

    2018-04-01

    In present study, we have investigated electronic and temperature dependent transport properties of carbyne like linear chain and ribbon like zigzag structures of Boron (B) nanowire. The linear chain structure showed higher electric and thermal conductivity, as it is sp-hybridized, than its counterpart ribbon (R) structure. However the conductivity of ribbon structure increases with increases in width due to edge geometry effect. The ribbon (3R) structure showed high electric and thermal conductivity of 8.0×1019 1/Ω m s and 0.59×1015 W/ m K respectively. Interestingly we have observed that B linear chain showed higher thermal conductivity of 0.23×1015 W/ m K than its ribbon R and 2R structure above 600K. Because of high Seebeck co-efficient of boron chain and ribbon (R) structures at low temperature, they could find applications in thermoelectric sensors. Our results show that tuning conductivity property of boron nanowire could be of great interest in research for future electric connector in nanodevices.

  5. The pressure-induced structural response of rare earth hafnate and stannate pyrochlore from 0.1-50 GPa

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Rittman, D.; Heymach, R.; Turner, M.; Tracy, C.; Mao, W. L.; Ewing, R. C.

    2017-12-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. These compounds are under consideration for applications including as a proposed waste-form for actinides generated in the nuclear fuel cycle. High-pressure transformations in rare earth hafnates (A2Hf2O7, A=Sm, Eu, Gd, Dy, Y, Yb) and stannates (A2Sn2O7, A=Nd, Gd, Er) were investigated to 50 GPa by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Rare-earth hafnates form the pyrochlore structure for A=La-Tb and the defect-fluorite structure for A=Dy-Lu. Lanthanide stannates form the pyrochlore structure. Raman spectra revealed that at ambient pressure all compositions have pyrochlore-type short-range order. Stannate compositions show a larger degree of pyrochlore-type short-range ordering relative to hafnates. In situ high-pressure synchrotron XRD showed that rare earth hafnates and stannates underwent a pressure-induced phase transition to a cotunnite-like (Pnma) structure that begins between 18-25 GPa in hafnates and between 30-33 GPa in stannates. The phase transition is not complete at 50 GPa, and upon decompression, XRD indicates that all compositions transform to defect-fluorite with an amorphous component. In situ Raman spectroscopy showed that disordering in stannates and hafnates occurs gradually upon compression. Pyrochlore-structured hafnates retain short-range order to a higher pressure (30 GPa vs. <10 GPa) than defect-fluorite-structured hafnates. Hafnates and stannates decompressed from 50 GPa show Raman spectra consistent with weberite-type structures, also reported in irradiated stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of 250 GPa for hafnate compositions with the pyrochlore structure, and 400 GPa for hafnate compositions with the defect-fluorite structure. Stannates have a lower bulk modulus relative to hafnates (between 80-150 GPa). Stannate and hafnate pyrochlore compositions taken to high pressure show structural transformations consistent with irradiated pyrochlore, and compositionally disordered pyrochlore: a long-range structure best described by defect-fluorite, and a short-range structure best described by weberite.

  6. Electronic, ductile, phase transition and mechanical properties of Lu-monopnictides under high pressures.

    PubMed

    Gupta, Dinesh C; Bhat, Idris Hamid

    2013-12-01

    The structural, elastic and electronic properties of lutatium-pnictides (LuN, LuP, LuAs, LuSb, and LuBi) were analyzed by using full-potential linearized augmented plane wave within generalized gradient approximation in the stable rock-salt structure (B1 phase) with space group Fm-3m and high-pressure CsCl structure (B2 phase) with space group Pm-3m. Hubbard-U and spin-orbit coupling were included to predict correctly the semiconducting band gap of LuN. Under compression, these materials undergo first-order structural transitions from B1 to B2 phases at 241, 98, 56.82, 25.2 and 32.3 GPa, respectively. The computed elastic properties show that LuBi is ductile by nature. The electronic structure calculations show that LuN is semiconductor at ambient conditions with an indirect band gap of 1.55 eV while other Lu-pnictides are metallic. It was observed that LuN shows metallization at high pressures. The structural properties, viz, equilibrium lattice constant, bulk modulus and its pressure derivative, transition pressure, equation of state, volume collapse, band gap and elastic moduli, show good agreement with available data.

  7. Predicting nucleic acid binding interfaces from structural models of proteins.

    PubMed

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  8. Structural, morphological and optical studies of F doped SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Burhanuz; Rajaram, Poolla

    2018-05-01

    Highly conducting and transparent FTO (flourine doped tin Oxide) thin films were grown on the glass substrates using a low cost spray pyrolysis technique. The films were characterized for their structural, morphological and optical studies using XRD, SEM and UV-Vis spectroscopy. XRD studies show that the FTO films crystallize in Tetragonal cassiterite structure. Morphological analysis using SEM show that the films are uniformly covered with spherical grains albeit high in surface roughness. The average optical transmission greater than 80% in the visible region along with the appearance of interference fringes in the transmission curves confirms the high quality of the films. Electrical studies show that the films exhibit sheet resistance below 10 Ω ϒ-1.

  9. Research on Submarine Pipeline Steel with High Performance

    NASA Astrophysics Data System (ADS)

    Ren, Yi; Liu, Wenyue; Zhang, Shuai; Wang, Shuang; Gao, Hong

    Submarine pipeline steel has largely uniform elongation, low yield ratio and good balance between high strength and high plasticity because of the microstructure with dual phase. In this work, the microstructure and properties of the submarine pipeline steel are studied. The results show that the matrix structure is consisted of ferrite, bainite and martensite -austenite islands. The structure has a tight relationship with the thermal-mechanical controlled process. Fine dual phase shows good plasticity and low yield ratio, which can support the good balance between high strength and high plasticity.

  10. Structural characterization of nano-oxide layers in PtMn based specular spin valves

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming

    2005-05-01

    A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.

  11. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  12. Structural Distortions under pressure and doping in superconducting BaFe2As2

    NASA Astrophysics Data System (ADS)

    Kimber, Simon

    2010-03-01

    The discovery of a new family of high-TC materials, the iron arsenides, has led to a resurgence of interest in superconductivity. Several important traits of these materials are now apparent: for example, layers of iron tetrahedrally coordinated by arsenic are crucial structural ingredients. The structure and properties of chemically substituted samples are known to be intimately linked; however, until recently (1), remarkably little was known about this relationship when high pressure is used to induce superconductivity in undoped compounds. Here we show that the key structural features in BaFe2As2 show the same behaviour under pressure as found in chemically substituted samples. Using experimentally derived structural data, we show that the electronic structure evolves similarly in both cases. Our results show that, in contrast to the cuprates, structural distortions are more important than charge doping in the iron arsenides. This work was performed at the Helmholtz-Zentrum Berlin in collaboration with Ames Laboratory, Goethe-Universit"at Frankfurt, JCNS J"ulich and the Institute Laue-Langevin. (1) S.A.J. Kimber et al, Nature Materials,

  13. Evaluating the quality of NMR structures by local density of protons.

    PubMed

    Ban, Yih-En Andrew; Rudolph, Johannes; Zhou, Pei; Edelsbrunner, Herbert

    2006-03-01

    Evaluating the quality of experimentally determined protein structural models is an essential step toward identifying potential errors and guiding further structural refinement. Herein, we report the use of proton local density as a sensitive measure to assess the quality of nuclear magnetic resonance (NMR) structures. Using 256 high-resolution crystal structures with protons added and optimized, we show that the local density of different proton types display distinct distributions. These distributions can be characterized by statistical moments and are used to establish local density Z-scores for evaluating both global and local packing for individual protons. Analysis of 546 crystal structures at various resolutions shows that the local density Z-scores increase as the structural resolution decreases and correlate well with the ClashScore (Word et al. J Mol Biol 1999;285(4):1711-1733) generated by all atom contact analysis. Local density Z-scores for NMR structures exhibit a significantly wider range of values than for X-ray structures and demonstrate a combination of potentially problematic inflation and compression. Water-refined NMR structures show improved packing quality. Our analysis of a high-quality structural ensemble of ubiquitin refined against order parameters shows proton density distributions that correlate nearly perfectly with our standards derived from crystal structures, further validating our approach. We present an automated analysis and visualization tool for proton packing to evaluate the quality of NMR structures. 2005 Wiley-Liss, Inc.

  14. Study of thermal stability of spontaneously grown superlattice structures by metalorganic vapor phase epitaxy in AlxGa1-xAs/GaAs heterostructure

    NASA Astrophysics Data System (ADS)

    Pradhan, A.; Maitra, T.; Mukherjee, S.; Mukherjee, S.; Satpati, B.; Nayak, A.; Bhunia, S.

    2018-04-01

    Spontaneous superlattice ordering in a length scale larger than an atomic layer has been observed in AlxGa1-xAs layers grown on (100) GaAs substrates by metalorganic vapor phase epitaxy. Transmission electron microscopic image clearly revealed superlattice structures and the selected area electron diffraction showed closely spaced superlattice spots around the main diffraction pattern. High resolution x-ray diffraction showed distinct and sharp superlattice peaks symmetrically positioned around the central (004) Bragg peak and the similar measurement for (002) planes, which is quasi-forbidden for Bragg reflections showed only superlattice peaks. Thermal annealing studies showed the superlattice structure was stable up to 800 °C and disappeared after annealing at 900 °C retaining the crystallinity of the epilayer. Study of inter-diffusivitiesin such superlattice structures has been carried out using high temperaturex-ray diffraction results. Here we present (004) x-ray θ-2θ scans of the AlGaAs/GaAs (100) sample with annealing time for different temperatures. Conclusions regarding interdiffusion in such superlattice structures are drawn from high temperature X-ray measurements.

  15. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite

    NASA Astrophysics Data System (ADS)

    Capitani, Francesco; Marini, Carlo; Caramazza, Simone; Postorino, Paolo; Garbarino, Gaston; Hanfland, Michael; Pisanu, Ambra; Quadrelli, Paolo; Malavasi, Lorenzo

    2016-05-01

    In this paper we provide an accurate high-pressure structural and optical study of the MAPbI3 hybrid perovskite. Structural data show the presence of a phase transition toward an orthorhombic structure around 0.3 GPa followed by full amorphization of the system above 3 GPa. After releasing the pressure, the system keeps the high-pressure orthorhombic phase. The occurrence of these structural transitions is further confirmed by pressure induced variations of the photoluminescence signal at high pressure. These variations clearly indicate that the bandgap value and the electronic structure of MAPI change across the phase transition.

  16. A Unique Blend of 2-Fluorenyl-2-anthracene and 2-Anthryl-2-anthracence Showing White Emission and High Charge Mobility.

    PubMed

    Chen, Mengyun; Zhao, Yang; Yan, Lijia; Yang, Shuai; Zhu, Yanan; Murtaza, Imran; He, Gufeng; Meng, Hong; Huang, Wei

    2017-01-16

    White-light-emitting materials with high mobility are necessary for organic white-light-emitting transistors, which can be used for self-driven OLED displays or OLED lighting. In this study, we combined two materials with similar structures-2-fluorenyl-2-anthracene (FlAnt) with blue emission and 2-anthryl-2-anthracence (2A) with greenish-yellow emission-to fabricate OLED devices, which showed unusual solid-state white-light emission with the CIE coordinates (0.33, 0.34) at 10 V. The similar crystal structures ensured that the OTFTs based on mixed FlAnt and 2A showed high mobility of 1.56 cm 2  V -1  s -1 . This simple method provides new insight into the design of high-performance white-emitting transistor materials and structures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The highly efficient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes structure inspired from cicada wings.

    PubMed

    Zada, Imran; Zhang, Wang; Zheng, Wangshu; Zhu, Yuying; Zhang, Zhijian; Zhang, Jianzhong; Imtiaz, Muhammad; Abbas, Waseem; Zhang, Di

    2017-12-08

    The negative replica of biomorphic TiO 2 with nano-holes structure has been effectively fabricated directly from nano-nipple arrays structure of cicada wings by using a simple, low-cost and highly effective sol-gel ultrasonic method. The nano-holes array structure was well maintained after calcination in air at 500 °C. The Ag nanoparticles (10 nm-25 nm) were homogeneously decorated on the surface and to the side wall of nano-holes structure. It was observed that the biomorphic Ag-TiO 2 showed remarkable photocatalytic activity by degradation of methyl blue (MB) under UV-vis light irradiation. The biomorphic Ag-TiO 2 with nano-holes structure showed superior photocatalytic activity compared to the biomorphic TiO 2 and commercial Degussa P25. This high-performance photocatalytic activity of the biomorphic Ag-TiO 2 may be attributed to the nano-holes structure, localized surface plasmon resonance (LSPR) property of the Ag nanoparticles, and enhanced electron-hole separation. Moreover, the biomorphic Ag-TiO 2 showed more absorption capability in the visible wavelength range. This work provides a new insight to design such a structure which may lead to a range of novel applications.

  18. Effects of temperature and SDS on the structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus.

    PubMed Central

    D'auria, S; Barone, R; Rossi, M; Nucci, R; Barone, G; Fessas, D; Bertoli, E; Tanfani, F

    1997-01-01

    The effects of temperature and SDS on the three-dimensional organization and secondary structure of beta-glycosidase from the thermophilic archaeon Sulfolobus solfataricus were investigated by CD, IR spectroscopy and differential scanning calorimetry. CD spectra in the near UV region showed that the detergent caused a remarkable change in the protein tertiary structure, and far-UV CD analysis revealed only a slight effect on secondary structure. Infrared spectroscopy showed that low concentrations of the detergent (up to 0.02%) induced slight changes in the enzyme secondary structure, whereas high concentrations caused the alpha-helix content to increase at high temperatures and prevented protein aggregation. PMID:9169619

  19. Bend-resistant large mode area fiber with novel segmented cladding

    NASA Astrophysics Data System (ADS)

    Ma, Shaoshuo; Ning, Tigang; Pei, Li; Li, Jing; Zheng, Jingjing

    2018-01-01

    A novel structure of segment cladding fiber (SCF) with characteristics of bend-resistance and large-mode-area (LMA) is proposed. In this new structure, the high refractive index (RI) core is periodically surrounded by high RI fan-segmented claddings. Numerical investigations show that effective single-mode operation of the proposed fiber with mode field area of 700 μm2 can be achieved when the bending radius is 15 cm. Besides, this fiber is insensitive to the bending orientation at the ranging of [-180°, 180°]. The proposed design shows great potential in high power fiber lasers and amplifiers with compact structure.

  20. A Group 6 Late Embryogenesis Abundant Protein from Common Bean Is a Disordered Protein with Extended Helical Structure and Oligomer-forming Properties*

    PubMed Central

    Rivera-Najera, Lucero Y.; Saab-Rincón, Gloria; Battaglia, Marina; Amero, Carlos; Pulido, Nancy O.; García-Hernández, Enrique; Solórzano, Rosa M.; Reyes, José L.; Covarrubias, Alejandra A.

    2014-01-01

    Late embryogenesis-abundant proteins accumulate to high levels in dry seeds. Some of them also accumulate in response to water deficit in vegetative tissues, which leads to a remarkable association between their presence and low water availability conditions. A major sub-group of these proteins, also known as typical LEA proteins, shows high hydrophilicity and a high percentage of glycine and other small amino acid residues, distinctive physicochemical properties that predict a high content of structural disorder. Although all typical LEA proteins share these characteristics, seven groups can be distinguished by sequence similarity, indicating structural and functional diversity among them. Some of these groups have been extensively studied; however, others require a more detailed analysis to advance in their functional understanding. In this work, we report the structural characterization of a group 6 LEA protein from a common bean (Phaseolus vulgaris L.) (PvLEA6) by circular dichroism and nuclear magnetic resonance showing that it is a disordered protein in aqueous solution. Using the same techniques, we show that despite its unstructured nature, the addition of trifluoroethanol exhibited an intrinsic potential in this protein to gain helicity. This property was also promoted by high osmotic potentials or molecular crowding. Furthermore, we demonstrate that PvLEA6 protein is able to form soluble homo-oligomeric complexes that also show high levels of structural disorder. The association between PvLEA6 monomers to form dimers was shown to occur in plant cells by bimolecular fluorescence complementation, pointing to the in vivo functional relevance of this association. PMID:25271167

  1. Demonstration Show That Promotes and Assesses Conceptual Understanding Using the Structure of Drama

    ERIC Educational Resources Information Center

    Walter Kerby, Holly; DeKorver, Brittland K.; Cantor, Joanne; Weiland, Marcia J.; Babiarz, Christopher L.

    2016-01-01

    Demonstration shows are a widely used form of Informal Science Education. While there is evidence that the shows are highly enjoyable, little work has been done to investigate the cognitive impacts of these shows. This article describes the development and production of "The Boiling Point," a show that uses the structure of a play to…

  2. High pressure phase transitions in tetrahedrally coordinated semiconducting compounds

    NASA Technical Reports Server (NTRS)

    Yu, S. C.; Spain, I. L.; Skelton, E. F.

    1978-01-01

    New experimental results are reported for structural transitions at high pressure in several III-V compounds and two II-VI compounds. These data, together with earlier results, are then compared with the predictions of model calculations of Van Vechten. Experimental transition pressures are often at variance with calculated values. However, his calculation assumes that the high pressure phase is metallic, with the beta-Sn structure. The present results show that several compounds assume an ionic NaCl structure at high pressure, while others have neither the beta-Sn nor NaCl structure.

  3. Analysis of local bond-orientational order for liquid gallium at ambient pressure: Two types of cluster structures.

    PubMed

    Chen, Lin-Yuan; Tang, Ping-Han; Wu, Ten-Ming

    2016-07-14

    In terms of the local bond-orientational order (LBOO) parameters, a cluster approach to analyze local structures of simple liquids was developed. In this approach, a cluster is defined as a combination of neighboring seeds having at least nb local-orientational bonds and their nearest neighbors, and a cluster ensemble is a collection of clusters with a specified nb and number of seeds ns. This cluster analysis was applied to investigate the microscopic structures of liquid Ga at ambient pressure (AP). The liquid structures studied were generated through ab initio molecular dynamics simulations. By scrutinizing the static structure factors (SSFs) of cluster ensembles with different combinations of nb and ns, we found that liquid Ga at AP contained two types of cluster structures, one characterized by sixfold orientational symmetry and the other showing fourfold orientational symmetry. The SSFs of cluster structures with sixfold orientational symmetry were akin to the SSF of a hard-sphere fluid. On the contrary, the SSFs of cluster structures showing fourfold orientational symmetry behaved similarly as the anomalous SSF of liquid Ga at AP, which is well known for exhibiting a high-q shoulder. The local structures of a highly LBOO cluster whose SSF displayed a high-q shoulder were found to be more similar to the structure of β-Ga than those of other solid phases of Ga. More generally, the cluster structures showing fourfold orientational symmetry have an inclination to resemble more to β-Ga.

  4. Highly efficient organic light-emitting diodes with a quantum dot interfacial layer.

    PubMed

    Ryu, Seung Yoon; Hwang, Byoung Har; Park, Ki Wan; Hwang, Hyeon Seok; Sung, Jin Woo; Baik, Hong Koo; Lee, Chang Ho; Song, Seung Yong; Lee, Jun Yeob

    2009-02-11

    Advanced organic light-emitting diodes (OLEDs), based on a multiple structure, were achieved in combination with a quantum dot (QD) interfacial layer. The authors used core/shell CdSe/ZnS QDs passivated with trioctylphosphine oxide (TOPO) and TOPO-free QDs as interlayers. Multiple-structure OLEDs (MOLEDs) with TOPO-free QDs showed higher device efficiency because of a well-defined interfacial monolayer formation. Additionally, the three-unit MOLED showed high performance for device efficiency with double-structured QD interfacial layers due to the enhanced charge balance and recombination probability.

  5. Understanding the Structural Ensembles of a Highly Extended Disordered Protein†

    PubMed Central

    Daughdrill, Gary W.; Kashtanov, Stepan; Stancik, Amber; Hill, Shannon E.; Helms, Gregory; Muschol, Martin

    2013-01-01

    Developing a comprehensive description of the equilibrium structural ensembles for intrinsically disordered proteins (IDPs) is essential to understanding their function. The p53 transactivation domain (p53TAD) is an IDP that interacts with multiple protein partners and contains numerous phosphorylation sites. Multiple techniques were used to investigate the equilibrium structural ensemble of p53TAD in its native and chemically unfolded states. The results from these experiments show that the native state of p53TAD has dimensions similar to a classical random coil while the chemically unfolded state is more extended. To investigate the molecular properties responsible for this behavior, a novel algorithm that generates diverse and unbiased structural ensembles of IDPs was developed. This algorithm was used to generate a large pool of plausible p53TAD structures that were reweighted to identify a subset of structures with the best fit to small angle X-ray scattering data. High weight structures in the native state ensemble show features that are localized to protein binding sites and regions with high proline content. The features localized to the protein binding sites are mostly eliminated in the chemically unfolded ensemble; while, the regions with high proline content remain relatively unaffected. Data from NMR experiments support these results, showing that residues from the protein binding sites experience larger environmental changes upon unfolding by urea than regions with high proline content. This behavior is consistent with the urea-induced exposure of nonpolar and aromatic side-chains in the protein binding sites that are partially excluded from solvent in the native state ensemble. PMID:21979461

  6. Structural hierarchy in molecular films of two class II hydrophobins.

    PubMed

    Paananen, Arja; Vuorimaa, Elina; Torkkeli, Mika; Penttilä, Merja; Kauranen, Martti; Ikkala, Olli; Lemmetyinen, Helge; Serimaa, Ritva; Linder, Markus B

    2003-05-13

    Hydrophobins are highly surface-active proteins that are specific to filamentous fungi. They function as coatings on various fungal structures, enable aerial growth of hyphae, and facilitate attachment to surfaces. Little is known about their structures and structure-function relationships. In this work we show highly organized surface layers of hydrophobins, representing the most detailed structural study of hydrophobin films so far. Langmuir-Blodgett films of class II hydrophobins HFBI and HFBII from Trichoderma reesei were prepared and analyzed by atomic force microscopy. The films showed highly ordered two-dimensional crystalline structures. By combining our recent results on small-angle X-ray scattering of hydrophobin solutions, we found that the unit cells in the films have dimensions similar to those of tetrameric aggregates found in solutions. Further analysis leads to a model in which the building blocks of the two-dimensional crystals are shape-persistent supramolecules consisting of four hydrophobin molecules. The results also indicate functional and structural differences between HFBI and HFBII that help to explain differences in their properties. The possibility that the highly organized surface assemblies of hydrophobins could allow a route for manufacturing functional surfaces is suggested.

  7. Pressure-induced structural modifications of rare-earth hafnate pyrochlore

    NASA Astrophysics Data System (ADS)

    Turner, Katlyn M.; Rittman, Dylan R.; Heymach, Rachel A.; Tracy, Cameron L.; Turner, Madison L.; Fuentes, Antonio F.; Mao, Wendy L.; Ewing, Rodney C.

    2017-06-01

    Complex oxides with the pyrochlore (A2B2O7) and defect-fluorite ((A,B)4O7) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A2Hf2O7) form the pyrochlore structure for A  =  La-Tb and the defect-fluorite structure for A  =  Dy-Lu. High-pressure transformations in A2Hf2O7 pyrochlore (A  =  Sm, Eu, Gd) and defect-fluorite (A  =  Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs.  <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy2Hf2O7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr4+ and Hf4+, rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.

  8. Pressure-induced structural modifications of rare-earth hafnate pyrochlore.

    PubMed

    Turner, Katlyn M; Rittman, Dylan R; Heymach, Rachel A; Tracy, Cameron L; Turner, Madison L; Fuentes, Antonio F; Mao, Wendy L; Ewing, Rodney C

    2017-06-28

    Complex oxides with the pyrochlore (A 2 B 2 O 7 ) and defect-fluorite ((A,B) 4 O 7 ) structure-types undergo structural transformations under high-pressure. Rare-earth hafnates (A 2 Hf 2 O 7 ) form the pyrochlore structure for A  =  La-Tb and the defect-fluorite structure for A  =  Dy-Lu. High-pressure transformations in A 2 Hf 2 O 7 pyrochlore (A  =  Sm, Eu, Gd) and defect-fluorite (A  =  Dy, Y, Yb) were investigated up to ~50 GPa and characterized by in situ Raman spectroscopy and synchrotron x-ray diffraction (XRD). Raman spectra at ambient pressure revealed that all compositions, including the defect-fluorites, have some pyrochlore-type short-range order. In situ high-pressure synchrotron XRD showed that all of the rare earth hafnates investigated undergo a pressure-induced phase transition to a cotunnite-like (orthorhombic) structure that begins between 18 and 25 GPa. The phase transition to the cotunnite-like structure is not complete at 50 GPa, and upon release of pressure, the hafnates transform to defect-fluorite with an amorphous component. For all compositions, in situ Raman spectroscopy showed that disordering occurs gradually with increasing pressure. Pyrochlore-structured hafnates retain their short-range order to a higher pressure (30 GPa vs.  <10 GPa) than defect-fluorite-structured hafnates. Rare earth hafnates quenched from 50 GPa show Raman spectra consistent with weberite-type structures, as also reported for irradiated rare-earth stannates. The second-order Birch-Murnaghan equation of state fit gives a bulk modulus of ~250 GPa for hafnates with the pyrochlore structure, and ~400 GPa for hafnates with the defect-fluorite structure. Dy 2 Hf 2 O 7 is intermediate in its response, with some pyrochlore-type ordering, based on Raman spectroscopy and the equation of state, with a bulk modulus of ~300 GPa. As predicted based on the similar ionic radius of Zr 4+ and Hf 4+ , rare-earth hafnates show similar behavior to that reported for rare earth zirconates at high pressure.

  9. ERP Evidence for the Activation of Syntactic Structure During Comprehension of Lexical Idiom.

    PubMed

    Zhang, Meichao; Lu, Aitao; Song, Pingfang

    2017-10-01

    The present study used event-related potentials to investigate whether the syntactic structure was activated in the comprehension of lexical idioms, and if so, whether it varied as a function of familiarity and semantic transparency. Participants were asked to passively read the "1+2" structural Chinese lexical idioms with each being presented following 3-5 contextual "1+2" (congruent-structure condition) or "2+1" structural Chinese phrases (incongruent-structure condition). The N400 ERP responses showed more positivity in congruent-structure condition relative to incongruent-structure condition in idioms with high familiarity and high semantic transparency, but less positivity in congruent-structure condition in idioms with high familiarity but low semantic transparency, idioms with low familiarity but high semantic transparency, and idioms with low familiarity and low semantic transparency. Our results suggest that syntactic structure, as the unnecessarity of lexical idiomatic words, was nevertheless activated, independent of familiarity and semantic transparency.

  10. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition

    NASA Astrophysics Data System (ADS)

    Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko

    2018-04-01

    We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (<0.6 g/cm3 for multiwall nanotube wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.

  11. A Model Structure for the Heterodimer apoA-IMilano–apoA-II Supports Its Peculiar Susceptibility to Proteolysis

    PubMed Central

    Rocco, Alessandro Guerini; Mollica, Luca; Gianazza, Elisabetta; Calabresi, Laura; Franceschini, Guido; Sirtori, Cesare R.; Eberini, Ivano

    2006-01-01

    In this study, we propose a structure for the heterodimer between apolipoprotein A-IMilano and apolipoprotein A-II (apoA-IM–apoA-II) in a synthetic high-density lipoprotein (HDL) containing L-α-palmitoyloleoyl phosphatidylcholine. We applied bioinformatics/computational tools and procedures, such as molecular docking, molecular and essential dynamics, starting from published crystal structures for apolipoprotein A-I and apolipoprotein A-II. Structural and energetic analyses onto the simulated system showed that the molecular dynamics produced a stabilized synthetic HDL. The essential dynamic analysis showed a deviation from the starting belt structure. Our structural results were validated by limited proteolysis experiments on HDL from apoA-IM carriers in comparison with control HDL. The high sensitivity of apoA-IM–apoA-II to proteases was in agreement with the high root mean-square fluctuation values and the reduction in secondary structure content from molecular dynamics data. Circular dichroism on synthetic HDL containing apoA-IM–apoA-II was consistent with the α-helix content computed on the proposed model. PMID:16891368

  12. Perfect narrow band absorber for sensing applications.

    PubMed

    Luo, Shiwen; Zhao, Jun; Zuo, Duluo; Wang, Xinbing

    2016-05-02

    We design and numerically investigate a perfect narrow band absorber based on a metal-metal-dielectric-metal structure which consists of periodic metallic nanoribbon arrays. The absorber presents an ultra narrow absorption band of 1.11 nm with a nearly perfect absorption of over 99.9% in the infrared region. For oblique incidence, the absorber shows an absorption more than 95% for a wide range of incident angles from 0 to 50°. Structure parameters to the influence of the performance are investigated. The structure shows high sensing performance with a high sensitivity of 1170 nm/RIU and a large figure of merit of 1054. The proposed structure has great potential as a biosensor.

  13. Machine-learning approach for local classification of crystalline structures in multiphase systems

    NASA Astrophysics Data System (ADS)

    Dietz, C.; Kretz, T.; Thoma, M. H.

    2017-07-01

    Machine learning is one of the most popular fields in computer science and has a vast number of applications. In this work we will propose a method that will use a neural network to locally identify crystal structures in a mixed phase Yukawa system consisting of fcc, hcp, and bcc clusters and disordered particles similar to plasma crystals. We compare our approach to already used methods and show that the quality of identification increases significantly. The technique works very well for highly disturbed lattices and shows a flexible and robust way to classify crystalline structures that can be used by only providing particle positions. This leads to insights into highly disturbed crystalline structures.

  14. Spacer layer thickness dependent structural and magnetic properties of Co/Si multilayers

    NASA Astrophysics Data System (ADS)

    Roy, Ranjan; Singh, Dushyant; Kumar, M. Senthil

    2018-05-01

    In this article, the study of high resolution x-ray diffraction and magnetization of sputter deposited Co/Si multilayer is reported. Multilayers are prepared at ambient temperature by dc magnetron sputtering. Structural properties are studied by high resolution x-ray diffraction. Magnetic properties are studied at room temperature by vibrating sample magnetometer. Structural properties show that the Co layer is polycrystalline and the Si layer is amorphous. The magnetization study indicates that the samples are soft ferromagnetic in nature. The study of magnetization also shows that the easy axis of magnetization lies in the plane of the film.

  15. Understanding the Structure of High-K Gate Oxides - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Andre

    2015-08-25

    Hafnium Oxide (HfO 2) amorphous thin films are being used as gate oxides in transistors because of their high dielectric constant (κ) over Silicon Dioxide. The present study looks to find the atomic structure of HfO 2 thin films which hasn’t been done with the technique of this study. In this study, two HfO 2 samples were studied. One sample was made with thermal atomic layer deposition (ALD) on top of a Chromium and Gold layer on a silicon wafer. The second sample was made with plasma ALD on top of a Chromium and Gold layer on a Silicon wafer.more » Both films were deposited at a thickness of 50nm. To obtain atomic structure information, Grazing Incidence X-ray diffraction (GIXRD) was carried out on the HfO 2 samples. Because of this, absorption, footprint, polarization, and dead time corrections were applied to the scattering intensity data collected. The scattering curves displayed a difference in structure between the ALD processes. The plasma ALD sample showed the broad peak characteristic of an amorphous structure whereas the thermal ALD sample showed an amorphous structure with characteristics of crystalline materials. This appears to suggest that the thermal process results in a mostly amorphous material with crystallites within. Further, the scattering intensity data was used to calculate a pair distribution function (PDF) to show more atomic structure. The PDF showed atom distances in the plasma ALD sample had structure up to 10 Å, while the thermal ALD sample showed the same structure below 10 Å. This structure that shows up below 10 Å matches the bond distances of HfO 2 published in literature. The PDF for the thermal ALD sample also showed peaks up to 20 Å, suggesting repeating atomic spacing outside the HfO 2 molecule in the sample. This appears to suggest that there is some crystalline structure within the thermal ALD sample.« less

  16. Large and small-scale structures in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Albers, N.; Rehnberg, M. E.; Brown, Z. L.; Sremcevic, M.; Esposito, L. W.

    2017-09-01

    Observations made by the Cassini spacecraft have revealed both large and small scale structures in Saturn's rings in unprecedented detail. Analysis of high-resolution measurements by the Cassini Ultraviolet Spectrograph (UVIS) High Speed Photometer (HSP) and the Imaging Science Subsystem (ISS) show an abundance of intrinsic small-scale structures (or clumping) seen across the entire ring system. These include self-gravity wakes (50-100m), sub-km structure at the A and B ring edges, and "straw"/"ropy" structures (1-3km).

  17. What can one learn about material structure given a single first-principles calculation?

    NASA Astrophysics Data System (ADS)

    Rajen, Nicholas; Coh, Sinisa

    2018-05-01

    We extract a variable X from electron orbitals Ψn k and energies En k in the parent high-symmetry structure of a wide range of complex oxides: perovskites, rutiles, pyrochlores, and cristobalites. Even though calculation was done only in the parent structure, with no distortions, we show that X dictates material's true ground-state structure. We propose using Wannier functions to extract concealed variables such as X both for material structure prediction and for high-throughput approaches.

  18. Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies.

    PubMed

    Li, Chen; Cheng, Guanghua; Sedao, Xxx; Zhang, Wei; Zhang, Hao; Faure, Nicolas; Jamon, Damien; Colombier, Jean-Philippe; Stoian, Razvan

    2016-05-30

    The origin of high-spatial-frequency laser-induced periodic surface structures (HSFL) driven by incident ultrafast laser fields, with their ability to achieve structure resolutions below λ/2, is often obscured by the overlap with regular ripples patterns at quasi-wavelength periodicities. We experimentally demonstrate here employing defined surface topographies that these structures are intrinsically related to surface roughness in the nano-scale domain. Using Zr-based bulk metallic glass (Zr-BMG) and its crystalline alloy (Zr-CA) counterpart formed by thermal annealing from its glassy precursor, we prepared surfaces showing either smooth appearances on thermoplastic BMG or high-density nano-protuberances from randomly distributed embedded nano-crystallites with average sizes below 200 nm on the recrystallized alloy. Upon ultrashort pulse irradiation employing linearly polarized 50 fs, 800 nm laser pulses, the surfaces show a range of nanoscale organized features. The change of topology was then followed under multiple pulse irradiation at fluences around and below the single pulse threshold. While the former material (Zr-BMG) shows a specific high quality arrangement of standard ripples around the laser wavelength, the latter (Zr-CA) demonstrates strong predisposition to form high spatial frequency rippled structures (HSFL). We discuss electromagnetic scenarios assisting their formation based on near-field interaction between particles and field-enhancement leading to structure linear growth. Finite-difference-time-domain simulations outline individual and collective effects of nanoparticles on electromagnetic energy modulation and the feedback processes in the formation of HSFL structures with correlation to regular ripples (LSFL).

  19. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding.

    PubMed

    Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen

    2017-04-15

    We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.

  20. Structural and optical modification in 4H-SiC following 30 keV silver ion irradiation

    NASA Astrophysics Data System (ADS)

    Kaushik, Priya Darshni; Aziz, Anver; Siddiqui, Azher M.; Lakshmi, G. B. V. S.; Syväjärvi, Mikael; Yakimova, Rositsa; Yazdi, G. Reza

    2018-05-01

    The market of high power, high frequency and high temperature based electronic devices is captured by SiC due to its superior properties like high thermal conductivity and high sublimation temperature and also due to the limitation of silicon based electronics in this area. There is a need to investigate effect of ion irradiation on SiC due to its application in outer space as outer space is surrounded both by low and high energy ion irradiations. In this work, effect of low energy ion irradiation on structural and optical property of 4H-SiC is investigated. ATR-FTIR is used to study structural modification and UV-Visible spectroscopy is used to study optical modifications in 4H-SiC following 30 keV Ag ion irradiation. FTIR showed decrease in bond density of SiC along the ion path (track) due to the creation of point defects. UV-Visible absorption spectra showed decrease in optical band gap from 3.26 eV to 2.9 eV. The study showed degradation of SiC crystallity and change in optical band gap following low energy ion irradiation and should be addressed while fabricationg devices based on SiC for outer space application. Additionally, this study provides a platform for introducing structural and optical modification in 4H-SiC using ion beam technology in a controlled manner.

  1. What difference reveals about similarity.

    PubMed

    Sagi, Eyal; Gentner, Dedre; Lovett, Andrew

    2012-08-01

    Detecting that two images are different is faster for highly dissimilar images than for highly similar images. Paradoxically, we showed that the reverse occurs when people are asked to describe how two images differ--that is, to state a difference between two images. Following structure-mapping theory, we propose that this disassociation arises from the multistage nature of the comparison process. Detecting that two images are different can be done in the initial (local-matching) stage, but only for pairs with low overlap; thus, "different" responses are faster for low-similarity than for high-similarity pairs. In contrast, identifying a specific difference generally requires a full structural alignment of the two images, and this alignment process is faster for high-similarity pairs. We described four experiments that demonstrate this dissociation and show that the results can be simulated using the Structure-Mapping Engine. These results pose a significant challenge for nonstructural accounts of similarity comparison and suggest that structural alignment processes play a significant role in visual comparison. Copyright © 2012 Cognitive Science Society, Inc.

  2. Structural styles of the western onshore and offshore termination of the High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Hafid, Mohamad; Zizi, Mahmoud; Bally, Albert W.; Ait Salem, Abdellah

    2006-01-01

    The present work aims (1) at documenting, by regional seismic transects, how the structural style varies in the western High Atlas system and its prolongation under the present-day Atlantic margin, (2) at understanding how this variation is related to the local geological framework, especially the presence of salt within the sedimentary cover, and (3) at discussing the exact geographic location of the northern front of the western High Atlas and how it links with the most western Atlas front in the offshore Cap Tafelney High Atlas. Previous work showed that the structural style of the Atlas belt changes eastward from a dominantly thick-skinned one in central and eastern High Atlas and Middle Atlas of Morocco to a dominantly thin-skinned one in Algeria and Tunisia. We propose here to show that a similar structural style change can be observed in the other direction of the Atlas Belt within its western termination, where the western High Atlas intersects at right angle the Atlantic passive margin and develops into a distinct segment, namely the High Atlas of Cap Tafelney, where salt/evaporite-based décollement tectonics prevail. To cite this article: M. Hafid et al., C. R. Geoscience 338 (2006).

  3. The hydration structure at yttria-stabilized cubic zirconia (110)-water interface with sub-Ångström resolution

    DOE PAGES

    Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...

    2016-06-15

    The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas themore » second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. As a result, the multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.« less

  4. Phosphor chessboard packaging for white LEDs in high efficiency and high color performance

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang-Khoi; Chang, Yu-Yu; Lu, Chun-Yan; Yang, Tsung-Hsun; Chung, Te-Yuan; Sun, Ching-Cherng

    2016-09-01

    We performed the simulation of white LEDs packaging with different chessboard structures of white light converting phosphor layer covered on GaN die chip. Three different types of chessboard structures are called type 1, type 2 and type 3, respectively. The result of investigation according to the phosphor thickness show the increasing of thickness of phosphor layer are, the decreasing of output blue light power are. Meanwhile, the changes of yellow light are neglect. Type 3 shows highest packaging efficiency of 74.3 % compares with packaging efficiency of type 2 and type 1 (72.5 % and 71.3 %, respectively). Type 3 also shows the most effect of forward light. Attention that the type 3 chessboard structure gets packaging efficiency of 74.3 % at color temperature of daylight as well as high saving of phosphor amount. The color temperatures of three types of chessboard structure are higher than 5000 K, so they are suitable for lighting purpose. The angular correlate color temperature deviation (ACCTD) of type 1, type 2 and type 3 are 6500K, 11500K and 17000K, respectively.

  5. Processing/structure/property Relationships of Barium Strontium Titanate Thin Films for Dynamic Random Access Memory Application.

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Jien

    The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could significantly improve the time -dependent dielectric breakdown (TDDB) behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping.

  6. 3D P-Wave Velocity Structure of the Crust and Relocation of Earthquakes in 21 the Lushan Source Area

    NASA Astrophysics Data System (ADS)

    Yu, X.; Wang, X.; Zhang, W.

    2014-12-01

    The double difference seismic tomography method is applied to the absolute first arrival P wave arrival times and high quality relative P arrival times of the Lushan seismic sequence to determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the Lushan mainshock locates at 30.28 N, 103.98 E, with the depth of 16.38 km. The leading edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12 km. In the southwest of the Lushan mainshock, the leading edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23 km. The P wave velocity structure of the Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15 km depth,while the Cenozoic rocks are correlated with low-velocity anomalies. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. An obvious high-velocity anomaly is visible in Daxing area. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10 km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20 km depth the velocity structure in southwest and northeast segment of the mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. The Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while the hanging wall shows high-velocity anomalies. The northeastern aftershocks are distributed at the boundary between high-velocity anomalies in Baoxing and Daxing area. The main seismogenic layer dips to northwest.

  7. Pressure-Induced Structural Transition and Enhancement of Energy Gap of CuAlO2

    NASA Astrophysics Data System (ADS)

    Nakanishi, Akitaka

    2011-02-01

    By using first-principles calculations, we studied the stable crystal structures and energy gaps of CuAlO2 under high pressure. Our simulation shows that CuAlO2 transforms from a delafossite structure to a leaning delafossite structure. The critical pressure of the transition was determined to be 60 GPa. The energy gap of CuAlO2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We found that a chalcopyrite structure does not appear as a stable structure under high pressure.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyson, T. A.; Gao, W.; Chen, Y. -S.

    Solar cells based on hybrid perovskites have shown high efficiency while possessing simple processing methods. To gain a fundamental understanding of their properties on an atomic level, we investigate single crystals of CH 3NH 3PbI 3 with a narrow transition (~5 K) near 327 K. Temperature dependent structural measurements reveal a persistent tetragonal structure with smooth changes in the atomic displacement parameters (ADPs) on crossing T*. We show that the ADPs for I ions yield extended flat regions in the potential wells consistent with the measured large thermal expansion parameter. Molecular dynamics simulations reveal that this material exhibits significant asymmetriesmore » in the Pb-I pair distribution functions. We also show that the intrinsically enhanced freedom of motion of the iodine atoms enables large deformations. This flexibility (softness) of the atomic structure results in highly localized atomic relaxation about defects and hence accounts for both the high carrier mobility as well as the structural instability.« less

  9. Brain structure in people at ultra-high risk of psychosis, patients with first-episode schizophrenia, and healthy controls: a VBM study.

    PubMed

    Nenadic, Igor; Dietzek, Maren; Schönfeld, Nils; Lorenz, Carsten; Gussew, Alexander; Reichenbach, Jürgen R; Sauer, Heinrich; Gaser, Christian; Smesny, Stefan

    2015-02-01

    Early intervention research in schizophrenia has suggested that brain structural alterations might be present in subjects at high risk of developing psychosis. The heterogeneity of regional effects of these changes, which is established in schizophrenia, however, has not been explored in prodromal or high-risk populations. We used high-resolution MRI and voxel-based morphometry (VBM8) to analyze grey matter differences in 43 ultra high-risk subjects for psychosis (meeting ARMS criteria, identified through CAARMS interviews), 24 antipsychotic-naïve first-episode schizophrenia patients and 49 healthy controls (groups matched for age and gender). Compared to healthy controls, resp., first-episode schizophrenia patients had reduced regional grey matter in left prefrontal, insula, right parietal and left temporal cortices, while the high-risk group showed reductions in right middle temporal and left anterior frontal cortices. When dividing the ultra-high-risk group in those with a genetic risk vs. those with attenuated psychotic symptoms, the former showed left anterior frontal, right caudate, as well as a smaller right hippocampus, and amygdala reduction, while the latter subgroup showed right middle temporal cortical reductions (each compared to healthy controls). Our findings in a clinical psychosis high-risk cohort demonstrate variability of brain structural changes according to subgroup and background of elevated risk, suggesting frontal and possibly also hippocampal/amygdala changes in individuals with genetic susceptibility. Heterogeneity of structural brain changes (as seen in schizophrenia) appears evident even at high-risk stage, prior to potential onset of psychosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Ab-initio study of high temperature lattice dynamics of BCC zirconium (β-Zr) and uranium (γ-U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Partha S., E-mail: parthasarathi13@gmail.com; Arya, A., E-mail: parthasarathi13@gmail.com; Dey, G. K., E-mail: parthasarathi13@gmail.com

    2014-04-24

    Using self consistent ab-initio lattice dynamics calculations, we show that bcc structures of Zr and U phases become stable at high temperature by phonon-phonon interactions. The calculated temperature dependent phonon dispersion curve (PDC) of β-Zr match excellently with experimental PDC. But the calculated PDC for γ-U shows negative phonon frequencies even at solid to liquid transition temperature. We show that this discrepancy is due to an overestimation of instability depth of bcc U phase which is removed by incorporation of spin-orbit coupling in the electronic structure calculations.

  11. Bull’s-Eye Structure with a Sub-Wavelength Circular Aperture

    DTIC Science & Technology

    2013-08-30

    experimentation. Bull’s-eye structures were fabricated with high precision using a CNC lathe machine and a thermal evaporator. Then, quality of...periodic grooves in the 3-mm-wavelength bull’s-eye structure were created with a CNC lathe on a Teflon or high-density polyethylene (HDPE) substrate... CNC lathe . Figure 26 (far right) shows the cross section of the bull’s-eye structure with six periodic grooves. By clicking on “Preferences” in

  12. The Neo Personality Inventory-Revised: Factor Structure and Gender Invariance from Exploratory Structural Equation Modeling Analyses in a High-Stakes Setting

    ERIC Educational Resources Information Center

    Furnham, Adrian; Guenole, Nigel; Levine, Stephen Z.; Chamorro-Premuzic, Tomas

    2013-01-01

    This study presents new analyses of NEO Personality Inventory-Revised (NEO-PI-R) responses collected from a large British sample in a high-stakes setting. The authors show the appropriateness of the five-factor model underpinning these responses in a variety of new ways. Using the recently developed exploratory structural equation modeling (ESEM)…

  13. A shielding theory for upward lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shindo, Takatoshi; Aihara, Yoshinori

    1993-01-01

    A new shielding theory is proposed based on the assumption that the occurrence of lightning strokes on the Japan Sea coast in winter is due to the inception of upward leaders from tall structures. Ratios of the numbers of lightning strokes to high structures observed there in winter show reasonable agreement with values calculated by this theory. Shielding characteristics of a high structure in various conditions are predicted.

  14. Influence of vibration on structure rheological properties of a highly concentrated suspension

    NASA Astrophysics Data System (ADS)

    Ouriev Uriev, Boris N.; Uriev, Naum B.

    2005-08-01

    The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.

  15. Fast ion conductivity in strained defect-fluorite structure created by ion tracks in Gd 2Ti 2O 7

    DOE PAGES

    Aidhy, Dilpuneet S.; Sachan, Ritesh; Zarkadoula, Eva; ...

    2015-11-10

    In this research, the structure and ion-conducting properties of the defect-fluorite ring structure formed around amorphous ion-tracks by swift heavy ion irradiation of Gd 2Ti 2O 7 pyrochlore are investigated. High angle annular dark field imaging complemented with ion-track molecular dynamics simulations show that the atoms in the ring structure are disordered, and have relatively larger cation-cation interspacing than in the bulk pyrochlore, illustrating the presence of tensile strain in the ring region. Density functional theory calculations show that the non-equilibrium defect-fluorite structure can be stabilized by tensile strain. The pyrochlore to defect-fluorite structure transformation in the ring region ismore » predicted to be induced by recrystallization during a melt-quench process and stabilized by tensile strain. Static pair-potential calculations show that planar tensile strain lowers oxygen vacancy migration barriers in pyrochlores, in agreement with recent studies on fluorite and perovskite materials. From these results, it is suggested that strain engineering could be simultaneously used to stabilize the defect-fluorite structure and gain control over its high ion-conducting properties.« less

  16. Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors.

    PubMed

    Hao, Guang-Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan

    2014-07-22

    Conductive polymers showing stretchable and transparent properties have received extensive attention due to their enormous potential in flexible electronic devices. Here, we demonstrate a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent polyaniline-containing hybrid hydrogel networks as electrode, which show high-performances in supercapacitor application. Remarkably, the stability can extend up to 35,000 cycles at a high current density of 8 A/g, because of the combined structural advantages in terms of flexible polymer chains, highly interconnected pores, and excellent contact between the host and guest functional polymer phase.

  17. Selective Solvent-Induced Stabilization of Polar Oxide Surfaces in an Electrochemical Environment

    NASA Astrophysics Data System (ADS)

    Yoo, Su-Hyun; Todorova, Mira; Neugebauer, Jörg

    2018-02-01

    The impact of an electrochemical environment on the thermodynamic stability of polar oxide surfaces is investigated for the example of ZnO(0001) surfaces immersed in water using density functional theory calculations. We show that solvation effects are highly selective: They have little effect on surfaces showing a metallic character, but largely stabilize semiconducting structures, particularly those that have a high electrostatic penalty in vacuum. The high selectivity is shown to have direct consequences for the surface phase diagram and explains, e.g., why certain surface structures could be observed only in an electrochemical environment.

  18. Nanoporous structures on ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma

    2010-01-01

    Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.

  19. Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo

    2018-06-01

    The thermal stability of spectrally selective few-layer metallo-dielectric structures is evaluated to analyze their potential as absorber and emitter materials in solar thermophotovoltaic (STPV) systems. High-efficiency (e.g., STPV) systems require materials with spectrally selective properties, especially at high temperatures (>1273 K). Aiming to develop such materials for high-temperature applications, we propose a few-layer structure composed of a refractory metal (i.e., Mo) nanometric film sandwiched between the layers of a dielectric material (i.e., hafnium oxide, HfO2) deposited on a Mo bulk substrate. In vacuum conditions (<5 × 10-2 Pa), the few-layer structure shows thermal stability at 1423 K for at least 1 h. At 1473 K, the spectral selectivity was degraded. This could have been caused by the oxidation of the Mo thin film by the residual oxygen through the grain boundaries of the upper HfO2 layer. This experiment showed the potential stability of few-layer structures for applications working at temperatures greater than 1273 K as well as the degradation mechanism of the few-layer structure. This characteristic is expected to help improve the thermal stability in few-layer structures further.

  20. Design and experimentally measure a high performance metamaterial filter

    NASA Astrophysics Data System (ADS)

    Xu, Ya-wen; Xu, Jing-cheng

    2018-03-01

    Metamaterial filter is a kind of expecting optoelectronic device. In this paper, a metal/dielectric/metal (M/D/M) structure metamaterial filter is simulated and measured. Simulated results indicate that the perfect impedance matching condition between the metamaterial filter and the free space leads to the transmission band. Measured results show that the proposed metamaterial filter achieves high performance transmission on TM and TE polarization directions. Moreover, the high transmission rate is also can be obtained when the incident angle reaches to 45°. Further measured results show that the transmission band can be expanded through optimizing structural parameters. The central frequency of the transmission band is also can be adjusted through optimizing structural parameters. The physical mechanism behind the central frequency shifted is solved through establishing an equivalent resonant circuit model.

  1. Electron Heat Flux in Pressure Balance Structures at Ulysses

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.

  2. A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Dhakal, Suman K.; Chintzoglou, Georgios; Zhang, Jie

    2018-06-01

    We report a study of a compound solar eruption that was associated with two consecutively erupting magnetic structures and correspondingly two distinct peaks, during impulsive phase, of an M-class flare (M8.5). Simultaneous multi-viewpoint observations from SDO, GOES and STEREO-A show that this compound eruption originated from two pre-existing sigmoidal magnetic structures lying along the same polarity inversion line. Observations of the associated pre-existing filaments further show that these magnetic structures are lying one on top of the other, separated by 12 Mm in height, in a so-called “double-decker” configuration. The high-lying magnetic structure became unstable and erupted first, appearing as an expanding hot channel seen at extreme ultraviolet wavelengths. About 12 minutes later, the low-lying structure also started to erupt and moved at an even faster speed compared to the high-lying one. As a result, the two erupting structures interacted and merged with each other, appearing as a single coronal mass ejection in the outer corona. We find that the double-decker configuration is likely caused by the persistent shearing motion and flux cancellation along the source active region’s strong-gradient polarity inversion line. The successive destabilization of these two separate but closely spaced magnetic structures, possibly in the form of magnetic flux ropes, led to a compound solar eruption. The study of the compound eruption provides a unique opportunity to reveal the formation process, initiation, and evolution of complex eruptive structures in solar active regions.

  3. Rich structure in the correlation matrix spectra in non-equilibrium steady states

    NASA Astrophysics Data System (ADS)

    Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H.

    2017-01-01

    It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.

  4. Development of a New De Novo Design Algorithm for Exploring Chemical Space.

    PubMed

    Mishima, Kazuaki; Kaneko, Hiromasa; Funatsu, Kimito

    2014-12-01

    In the first stage of development of new drugs, various lead compounds with high activity are required. To design such compounds, we focus on chemical space defined by structural descriptors. New compounds close to areas where highly active compounds exist will show the same degree of activity. We have developed a new de novo design system to search a target area in chemical space. First, highly active compounds are manually selected as initial seeds. Then, the seeds are entered into our system, and structures slightly different from the seeds are generated and pooled. Next, seeds are selected from the new structure pool based on the distance from target coordinates on the map. To test the algorithm, we used two datasets of ligand binding affinity and showed that the proposed generator could produce diverse virtual compounds that had high activity in docking simulations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Extending the high-order-harmonic spectrum using surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Ebadian, H.; Mohebbi, M.

    2017-08-01

    Nanoparticle assisted high-order-harmonic generation by low-intensity ultrashort laser pulses in hydrogen atomic gas is studied. This work is based on surface plasmon-polariton coupling in metal-insulator-metal structures. The necessary laser intensity is provided by enhancement of the incident laser power in the vicinity of bowtie nanoparticles installed on an insulator-metal structure. The inhomogeneous electric field distribution in the Au nanobowtie gap region is investigated. Simulations show that the insulator layer installed on the Au metal film that supports the plasmon-polariton interactions has a dramatic effect on the field enhancement factor. High-order-harmonic generation cutoffs for different arrangements are calculated and results show that the metal-insulator-metal structure is an excellent device for high-order-harmonic generation purposes. Also, the harmonic cutoff order is extended to more than 170, which is a considerable value and will be an efficient source for extreme ultraviolet radiation.

  6. Rich structure in the correlation matrix spectra in non-equilibrium steady states.

    PubMed

    Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H

    2017-01-17

    It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.

  7. Archetypal sandwich-structured CuO for high performance non-enzymatic sensing of glucose.

    PubMed

    Meher, Sumanta Kumar; Rao, G Ranga

    2013-03-07

    In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions. The physicochemical studies carried out by XRD and BET methods show that the monoclinic CuO formed via thermal decomposition of Cu(2)(OH)(2)CO(3) possesses monomodal channel-type pores with largely improved surface area (~43 m(2) g(-1)) and pore volume (0.163 cm(3) g(-1)). The fascinating surface morphology and pore structure of CuO is formulated due to homogeneous crystallization and microwave induced self assembly during synthesis. The cyclic voltammetry and chronoamperometry studies show diffusion controlled glucose oxidation at ~0.6 V (vs. Ag/AgCl) with extremely high sensitivity of 5342.8 μA mM(-1) cm(-2) and respective detection limit and response time of ~1 μM and ~0.7 s, under a wide dynamic concentration range of glucose. The chronoamperometry measurements demonstrate that the sensitivity of CuO to glucose is unaffected by the absence of dissolved oxygen and presence of poisoning chloride ions in the reaction medium, which essentially implies high poison resistance activity of the sandwich-structured CuO. The sandwich-structured CuO also shows insignificant interference/significant selectivity to glucose, even in the presence of high concentrations of other sugars as well as reducing species. In addition, the sandwich-structured CuO shows excellent reproducibility (relative standard deviation of ~2.4% over ten identically fabricated electrodes) and outstanding long term stability (only ~1.3% loss in sensitivity over a period of one month) during non-enzymatic electrochemical sensing of glucose. The unique microstructure and suitable channel-type pore architecture provide structural stability and maximum accessible electroactive surface for unimpeded mobility of glucose as well as the product molecules, which result in the excellent sensitivity and selectivity of sandwich-structured CuO for glucose under non-enzymatic milieu.

  8. First-principles calculations of the thermal stability of Ti 3SiC 2(0001) surfaces

    NASA Astrophysics Data System (ADS)

    Orellana, Walter; Gutiérrez, Gonzalo

    2011-12-01

    The energetic, thermal stability and dynamical properties of the ternary layered ceramic Ti3SiC2(0001) surface are addressed by density-functional theory calculations and molecular dynamic (MD) simulations. The equilibrium surface energy at 0 K of all terminations is contrasted with thermal stability at high temperatures, which are investigated by ab initio MD simulations in the range of 800 to 1400 °C. We find that the toplayer (sublayer) surface configurations: Si(Ti2) and Ti2(Si) show the lowest surface energies with reconstruction features for Si(Ti2). However, at high temperatures they are unstable, forming disordered structures. On the contrary, Ti1(C) and Ti2(C) despite their higher surface energies, show a remarkable thermal stability at high temperatures preserving the crystalline structures up to 1400 °C. The less stable surfaces are those terminated in C atoms, C(Ti1) and C(Ti2), which at high temperatures show surface dissociation forming amorphous TiCx structures. Two possible atomic scale mechanisms involved in the thermal stability of Ti3SiC2(0001) are discussed.

  9. Fabrication of superhydrophilic and underwater superoleophobic metal mesh by laser treatment and its application

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Lian, Zhongxu; Xu, Jinkai; Yu, Zhanjiang; Ren, Wanfei; Yu, Huadong

    2018-04-01

    In this paper, a lot of micron-sized sand granular structures were formed on the substrate of the stainless steel mesh (SSM) by laser treatment. The rough surface with sand granular structures showed superhydrophilic in air and superoleophobic under water. With its special wettability, the SSM by laser treatment could achieve the separation of the oil/water mixture, showing good durability and high separation efficiency, which was very useful in the practical application of large-scale oil/water separation facility for reducing the impacts of oil leaked on the environment. In addition, it showed that the laser-treated SSM had a very high separation rate. The development of the laser-treated SSM is a simple, environmental, economical and high-efficiency method, which provides a new approach to the production of high efficiency facilities for oil/water separation.

  10. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    DOEpatents

    Sun, Shouheng; Zhang, Sen; Zhu, Huiyuan; Guo, Shaojun

    2015-07-28

    A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mA/mg Pt, and retain greater than 90% activity after a 13 hour stability test.

  11. Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy

    PubMed Central

    Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay

    2016-01-01

    Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT. PMID:27759052

  12. Nanostructured Boron Nitride With High Water Dispersibility For Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Singh, Bikramjeet; Kaur, Gurpreet; Singh, Paviter; Singh, Kulwinder; Kumar, Baban; Vij, Ankush; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Singh, Ajay; Thakur, Anup; Kumar, Akshay

    2016-10-01

    Highly water dispersible boron based compounds are innovative and advanced materials which can be used in Boron Neutron Capture Therapy for cancer treatment (BNCT). Present study deals with the synthesis of highly water dispersible nanostructured Boron Nitride (BN). Unique and relatively low temperature synthesis route is the soul of present study. The morphological examinations (Scanning/transmission electron microscopy) of synthesized nanostructures showed that they are in transient phase from two dimensional hexagonal sheets to nanotubes. It is also supported by dual energy band gap of these materials calculated from UV- visible spectrum of the material. The theoretically calculated band gap also supports the same (calculated by virtual nano lab Software). X-ray diffraction (XRD) analysis shows that the synthesized material has deformed structure which is further supported by Raman spectroscopy. The structural aspect of high water disperse ability of BN is also studied. The ultra-high disperse ability which is a result of structural deformation make these nanostructures very useful in BNCT. Cytotoxicity studies on various cell lines (Hela(cervical cancer), human embryonic kidney (HEK-293) and human breast adenocarcinoma (MCF-7)) show that the synthesized nanostructures can be used for BNCT.

  13. Hierarchical core-shell structure of ZnO nanorod@NiO/MoO₂ composite nanosheet arrays for high-performance supercapacitors.

    PubMed

    Hou, Sucheng; Zhang, Guanhua; Zeng, Wei; Zhu, Jian; Gong, Feilong; Li, Feng; Duan, Huigao

    2014-08-27

    A hierarchical core-shell structure of ZnO nanorod@NiO/MoO2 composite nanosheet arrays on nickel foam substrate for high-performance supercapacitors was constructed by a two-step solution-based method involving two hydrothermal processes followed by a calcination treatment. Compared to one composed of pure NiO/MoO2 composite nanosheets, the hierarchical core-shell structure electrode displays better pseudocapacitive behaviors in 2 M KOH, including high areal specific capacitance values of 1.18 F cm(-2) at 5 mA cm(-2) and 0.6 F cm(-2) at 30 mA cm(-2) as well as relatively good rate capability at high current densities. Furthermore, it also shows remarkable cycle stability, remaining at 91.7% of the initial value even after 4000 cycles at a current density of 10 mA cm(-2). The enhanced pseudocapacitive behaviors are mainly due to the unique hierarchical core-shell structure and the synergistic effect of combining ZnO nanorod arrays and NiO/MoO2 composite nanosheets. This novel hierarchical core-shell structure shows promise for use in next-generation supercapacitors.

  14. High power microwave source with a three dimensional printed metamaterial slow-wave structure.

    PubMed

    French, David M; Shiffler, Don

    2016-05-01

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.

  15. High power microwave source with a three dimensional printed metamaterial slow-wave structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, David M.; Shiffler, Don

    2016-05-15

    For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for buildingmore » these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.« less

  16. High-pressure studies on electronic and mechanical properties of FeBO3 (B = Ti, Mn, Cr) ceramics - a first-principles study

    NASA Astrophysics Data System (ADS)

    Kishore, N.; Nagarajan, V.; Chandiramouli, R.

    2018-04-01

    Using the density functional theory (DFT) method, the electronic and mechanical properties of perovskites FeBO3 (B = Ti, Mn, Cr) nanostructures were studied in the pressure range of 0-100 GPa. The band structure studies show the change in the band structure upon substitution of different B cation in FeBO3 perovskite structure. The density of states spectrum gives the perception of change in the electronic properties of FeBO3 with the substitution of B cation. The bulk, shear and Young's moduli were calculated and an increase in the moduli is noticed. Moreover, the hardness increases under high pressure. The high-pressure studies of FeBO3 perovskite nanostructures are explored at atomistic level. The findings show that ductility and hardness of FeBO3 get increased upon an increase in the applied pressure. The substitution of Ti, Mn and Cr on FeBO3 shows a significant change in the electronic and mechanical properties.

  17. Molecular modification of native coffee polysaccharide using subcritical water treatment: Structural characterization, antioxidant, and DNA protecting activities.

    PubMed

    Getachew, Adane Tilahun; Chun, Byung Soo

    2017-06-01

    Polysaccharides are an abundant resource in coffee beans and have proved to show numerous bioactivities. Despite their abundance, their activities are not always satisfactory mostly due to their structure and large molecular size. Molecular modifications of native polysaccharides can overcome this problem. In this study, we used a novel and green method to modify native coffee polysaccharides using subcritical water (SCW) treatment. The SCW treatment was used at the temperature of 180°C-220°C and pressure of 30-60bar. The molecular and structural modification of the polysaccharides was confirmed using several techniques such as FT-IR, UV spectroscopy, XRD, and TGA. The antioxidant activity of the modified polysaccharides was evaluated using several chemical and Saccharomyces cerevisiae-based high throughput assays. The modified polysaccharides showed high antioxidant activities in all tested assays. Moreover, the polysaccharides showed high DNA protection activities. Therefore, SCW could be employed as a green solvent for molecular modification of polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Irradiation effects in UO2 and CeO2

    NASA Astrophysics Data System (ADS)

    Ye, Bei; Oaks, Aaron; Kirk, Mark; Yun, Di; Chen, Wei-Ying; Holtzman, Benjamin; Stubbins, James F.

    2013-10-01

    Single crystal CeO2, as a surrogate material to UO2, was irradiated with 500 keV xenon ions at 800 °C while being observed using in situ transmission electron microscopy (TEM). Experimental results show the formation and growth of defect clusters including dislocation loops and cavities as a function of increasing atomic displacement dose. At high dose, the dislocation loop structure evolves into an extended dislocation line structure, which appears to remain stable to the high dose levels examined in this study. A high concentration of cavities was also present in the microstructure. Despite high atomic displacement doses, the specimen remained crystalline to a cumulated dose of 5 × 1015 ions/cm2, which is consistent with the known stability of the fluorite structure under high dose irradiation. Kinetic Monte Carlo calculations show that oxygen mobility is substantially higher in hypo-stoichiometric UO2/CeO2 than hyper-stoichiometric systems. This result is consistent with the ability of irradiation damage to recover even at intermediate irradiation temperatures.

  19. Durability Testing of Additively Manufactured High Power Microwave Structures

    DTIC Science & Technology

    2017-10-29

    the aluminum anode, generating microwave powers in excess of 150 MW. After 100 shots on each structure, neither anode showed any signs of...with an average instantaneous peak total efficiency of 27% ± 10%. After 100 shots on each structure, neither anode showed any signs of...uniform axial magnetic field, which was varied on a per- shot basis from 0.13 to 0.31 T. A #304 stainless steel vacuum chamber housed the magnetron

  20. Gyroid structure via highly asymmetric ABC and AB blends

    NASA Astrophysics Data System (ADS)

    Ahn, Seonghyeon; Kwak, Jongheon; Choi, Chungryong; Kim, Jin Kon

    Gyroid structures are very important because of their co-continuous and network structures. However, a block copolymer shows gyroid structures only at 35 % volume fraction of one block. In this study, we designed ABC/AB blend system. B (polystyrene (PS)) is the matrix, while A (polyisoprene (PI)) and C (poly(2-vinyl pridine (P2VP)) are the core part. This blend shows gyroid structures at 20 % volume fraction, that is smaller than that observed at diblock copolymer. Morphologies of neat block copolymers and blends were characterized by TEM and small angle X-ray scattering.

  1. Influence of high-molecular-weight glutenin subunit composition at Glu-A1 and Glu-D1 loci on secondary and micro structures of gluten in wheat (Triticum aestivum L.).

    PubMed

    Li, Xuejun; Liu, Tianhong; Song, Lijun; Zhang, Heng; Li, Liqun; Gao, Xin

    2016-12-15

    As one of critical gluten proteins, high-molecular-weight glutenin subunits (HMW-GS) mainly affect the rheological behaviour of wheat dough. The influence of HMW-GS variations at the Glu-A1 and Glu-D1 loci on both secondary and micro structures of gluten and rheological properties of wheat dough was investigated in this study. Results showed that the Amide I bands of the three near-isogenic lines (NILs) shifted slightly, but the secondary structures differed significantly. The micro structure of gluten in NIL 4 (Ax null) showed bigger apertures and less connection, compared to that in Xinong 1330 (Ax1). The micro structure of gluten in NIL 5 (Dx5+Dy10) showed more compact than that in Xinong 1330 (Dx2+Dy12). Correlation analysis demonstrated that the content of β-sheets and disulfide bonds in gluten has a significant relationship with dough properties. The secondary structures of native gluten are suggested to be used as predictors of wheat quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    PubMed Central

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-01-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings. PMID:23569417

  3. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study.

    PubMed

    de Oliveira Francisco, Flávio; Santiago, Leandro Rodrigues; Arias, Maria Cristina

    2013-03-01

    Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA) showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  4. Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process.

    PubMed

    Ahn, SeungHyun; Lee, SuYeon; Cho, Youngseok; Chun, Wook; Kim, GeunHyung

    2011-09-01

    Natural biopolymers, such as collagen or chitosan, are considered ideal for biomedical scaffolds. However, low processability of the materials has hindered the fabrication of designed pore structures controlled by various solid freeform-fabrication methods. A new technique to fabricate a biomedical three-dimensional collagen scaffold, supplemented with a sacrificial poly(ethylene oxide) mould is proposed. The fabricated collagen scaffold shows a highly porous surface and a three-dimensional structure with high porosity as well as mechanically stable structure. To show its feasibility for biomedical applications, fibroblasts/keratinocytes were co-cultured on the scaffold, and the cell proliferation and cell migration of the scaffold was more favorable than that obtained with a spongy-type collagen scaffold.

  5. One step synthesis of porous graphene by laser ablation: A new and facile approach

    NASA Astrophysics Data System (ADS)

    Kazemizadeh, Fatemeh; Malekfar, Rasoul

    2018-02-01

    Porous graphene (PG) was obtained using one step laser process. Synthesis was carried out by laser ablation of nickel-graphite target under ultra-high flow of argon gas. The field emission scanning electron microscopy (FE-SEM) results showed the formation of a porous structure and the transmission electron microscopy (TEM) revealed that the porosity of PGs increase under intense laser irradiation. Structural characterization study using Raman spectroscopy, X-ray powder diffraction (XRD) and selected area electron diffraction (SAED) technique showed that the obtained PGs display high crystalline structure in the form of few layer rhombohedral graphitic arrangement that can be interpreted as the phase prior to the formation of other carbon nanostructures.

  6. Virtual screening and rational drug design method using structure generation system based on 3D-QSAR and docking.

    PubMed

    Chen, H F; Dong, X C; Zen, B S; Gao, K; Yuan, S G; Panaye, A; Doucet, J P; Fan, B T

    2003-08-01

    An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.

  7. Photoelastic colloidal gel for a high-sensitivity strain sensor.

    PubMed

    Pan, Hui; Chen, Zhixin; Zhu, Shenmin; Jiang, Chun; Zhang, Di

    2018-04-27

    Nanoparticles, having the ability to self-assemble into an ordered structure in their suspensions, analogous to liquid crystals, have attracted extensive attention. Herein, we report a new type of colloidal gel with an ordered crystal structure assembled from 1D and 2D nanoparticles. The material has high elasticity and, more interestingly, it shows significant photoelasticity. Its refractive index can be tuned under external stress and exhibits an ultra-wide dynamic range (Δn) of the order of 10 -2 . Due to the large Δn, the material shows an extremely high strain sensibility of 720 nm/ε, an order of magnitude higher than the reported ones.

  8. Photoelastic colloidal gel for a high-sensitivity strain sensor

    NASA Astrophysics Data System (ADS)

    Pan, Hui; Chen, Zhixin; Zhu, Shenmin; Jiang, Chun; Zhang, Di

    2018-04-01

    Nanoparticles, having the ability to self-assemble into an ordered structure in their suspensions, analogous to liquid crystals, have attracted extensive attention. Herein, we report a new type of colloidal gel with an ordered crystal structure assembled from 1D and 2D nanoparticles. The material has high elasticity and, more interestingly, it shows significant photoelasticity. Its refractive index can be tuned under external stress and exhibits an ultra-wide dynamic range (Δn) of the order of 10-2. Due to the large Δn, the material shows an extremely high strain sensibility of 720 nm/ɛ, an order of magnitude higher than the reported ones.

  9. A high-throughput approach to profile RNA structure.

    PubMed

    Delli Ponti, Riccardo; Marti, Stefanie; Armaos, Alexandros; Tartaglia, Gian Gaetano

    2017-03-17

    Here we introduce the Computational Recognition of Secondary Structure (CROSS) method to calculate the structural profile of an RNA sequence (single- or double-stranded state) at single-nucleotide resolution and without sequence length restrictions. We trained CROSS using data from high-throughput experiments such as Selective 2΄-Hydroxyl Acylation analyzed by Primer Extension (SHAPE; Mouse and HIV transcriptomes) and Parallel Analysis of RNA Structure (PARS; Human and Yeast transcriptomes) as well as high-quality NMR/X-ray structures (PDB database). The algorithm uses primary structure information alone to predict experimental structural profiles with >80% accuracy, showing high performances on large RNAs such as Xist (17 900 nucleotides; Area Under the ROC Curve AUC of 0.75 on dimethyl sulfate (DMS) experiments). We integrated CROSS in thermodynamics-based methods to predict secondary structure and observed an increase in their predictive power by up to 30%. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ruggeri, Marco; Major, James C.; McKeown, Craig; Knighton, Robert W.; Puliafito, Carmen A.

    2010-01-01

    Purpose. To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. Methods. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. Results. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Conclusions. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey. PMID:20554605

  11. Mix-and-diffuse serial synchrotron crystallography

    DOE PAGES

    Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio; ...

    2017-10-09

    Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less

  12. Mix-and-diffuse serial synchrotron crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyerlein, Kenneth R.; Dierksmeyer, Dennis; Mariani, Valerio

    Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzymemore » at a high level of detail. Here, the success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.« less

  13. Study of Maxwell–Wagner (M–W) relaxation behavior and hysteresis observed in bismuth titanate layered structure obtained by solution combustion synthesis using dextrose as fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subohi, Oroosa, E-mail: oroosa@gmail.com; Shastri, Lokesh; Kumar, G.S.

    2014-01-01

    Graphical abstract: X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample. - Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12} is synthesized using solution combustion technique with dextrose as fuel. • Dextrose has high reducing capacity (+24) and generates more no. of moles of gases. • Impedance studies showmore » that the sample follows Maxwell–Wagner relaxation behavior. • Shows lower remnant polarization due to higher c-axis ratio. - Abstract: Structural, dielectric and ferroelectric properties of bismuth titanate (Bi{sub 4}Ti{sub 3}O{sub 12}) obtained by solution combustion technique using dextrose as fuel is studied extensively in this paper. Dextrose is used as fuel as it has high reducing valancy and generates more number of moles of gases during the reaction. X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T{sub c}) to be 650 °C. The dielectric loss is very less (tan δ < 1) at lower temperatures but increases around T{sub c} due to structural changes in the sample. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample.« less

  14. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    NASA Astrophysics Data System (ADS)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  15. Thermodynamic and structural characterization of an antibody gel

    PubMed Central

    Esue, Osigwe; Xie, Anna X.; Kamerzell, Tim J.; Patapoff, Thomas W.

    2013-01-01

    Although extensively studied, protein–protein interactions remain highly elusive and are of increasing interest in drug development. We show the assembly of a monoclonal antibody, using multivalent carboxylate ions, into highly-ordered structures. While the presence and function of similar structures in vivo are not known, the results may present a possible unexplored area of antibody structure-function relationships. Using a variety of tools (e.g., mechanical rheology, electron microscopy, isothermal calorimetry, Fourier transform infrared spectroscopy), we characterized the physical, biochemical, and thermodynamic properties of these structures and found that citrate may interact directly with the amino acid residue histidine, after which the individual protein units assemble into a filamentous network gel exhibiting high elasticity and interfilament interactions. Citrate interacts exothermically with the monoclonal antibody with an association constant that is highly dependent on solution pH and temperature. Secondary structure analysis also reveals involvement of hydrophobic and aromatic residues. PMID:23425660

  16. Large Thermal Motion in Halide Perovskites

    DOE PAGES

    Tyson, T. A.; Gao, W.; Chen, Y. -S.; ...

    2017-08-24

    Solar cells based on hybrid perovskites have shown high efficiency while possessing simple processing methods. To gain a fundamental understanding of their properties on an atomic level, we investigate single crystals of CH 3NH 3PbI 3 with a narrow transition (~5 K) near 327 K. Temperature dependent structural measurements reveal a persistent tetragonal structure with smooth changes in the atomic displacement parameters (ADPs) on crossing T*. We show that the ADPs for I ions yield extended flat regions in the potential wells consistent with the measured large thermal expansion parameter. Molecular dynamics simulations reveal that this material exhibits significant asymmetriesmore » in the Pb-I pair distribution functions. We also show that the intrinsically enhanced freedom of motion of the iodine atoms enables large deformations. This flexibility (softness) of the atomic structure results in highly localized atomic relaxation about defects and hence accounts for both the high carrier mobility as well as the structural instability.« less

  17. Purification and sequence characterization of chondroitin sulfate and dermatan sulfate from fishes.

    PubMed

    Lin, Na; Mo, Xiaoli; Yang, Yang; Zhang, Hong

    2017-04-01

    Chondroitin sulfate (CS) and dermatan sulfate (DS) were extracted and purified from skins or bones of salmon (Salmo salar), snakehead (Channa argus), monkfish (Lophius litulon) and skipjack tuna (Katsuwonus pelamis). Size, structural sequences and sulfate groups of oligosaccharides in the purified CS and DS could be characterized and identified using high performance liquid chromatography (HPLC) combined with Orbitrap mass spectrometry. CS and DS chain structure varies depending on origin, but motif structure appears consistent. Structures of CS and DS oligosaccharides with different size and sulfate groups were compared between fishes and other animals, and results showed that some minor differences of special structures could be identified by hydrophilic interaction chromatography-liquid chromatography-fourier transform-mass/mass spectrometry (HILIC-LC-FT-MS/MS). For example, data showed that salmon and skipjack CS had a higher percentage content of high-level sulfated oligosaccharides than that porcine CS. In addition, structural information of different origins of CS and DS was analyzed by principal component analysis (PCA) and results showed that CS and DS samples could be differentiated according to their molecular conformation and oligosaccharide fragments information. Understanding CS and DS structure derived from different origins may lead to the production of CS or DS with unique disaccharides or oligosaccharides sequence composition and biological functions.

  18. A high-throughput exploration of magnetic materials by using structure predicting methods

    NASA Astrophysics Data System (ADS)

    Arapan, S.; Nieves, P.; Cuesta-López, S.

    2018-02-01

    We study the capability of a structure predicting method based on genetic/evolutionary algorithm for a high-throughput exploration of magnetic materials. We use the USPEX and VASP codes to predict stable and generate low-energy meta-stable structures for a set of representative magnetic structures comprising intermetallic alloys, oxides, interstitial compounds, and systems containing rare-earths elements, and for both types of ferromagnetic and antiferromagnetic ordering. We have modified the interface between USPEX and VASP codes to improve the performance of structural optimization as well as to perform calculations in a high-throughput manner. We show that exploring the structure phase space with a structure predicting technique reveals large sets of low-energy metastable structures, which not only improve currently exiting databases, but also may provide understanding and solutions to stabilize and synthesize magnetic materials suitable for permanent magnet applications.

  19. Wind tunnel investigation of the effect of high relative velocities on the structural integrity of birds

    NASA Technical Reports Server (NTRS)

    Bresnahan, D. L.

    1972-01-01

    An experimental investigation was conducted in a supersonic wind tunnel to determine the effect a sudden high velocity headwind had on the physical deformation and structural breakup characteristics of birds. Several sizes of recently killed birds were dropped into the test section at free-stream Mach numbers ranging from 0.2 to 0.8 and photographed with high-speed motion-picture cameras. These conditions simulated flow conditions encountered when birds are ingested into the inlets of high speed aircraft, thereby constituting a safety hazard to the aircraft and its occupants. The investigation shows that, over the range of headwind conditions tested, the birds remained structurally intact and did not suffer any appreciable deformation or structural breakup.

  20. Theoretical investigation of surface acoustic wave in the new, three-layered structure: ZnO/AlN/diamond.

    PubMed

    El Hakiki, Mohamed; Elmazria, Omar; Alnot, Patrick

    2007-03-01

    The new layered structure, ZnO/AlN/diamond, for surface acoustic wave (SAW) devices is investigated for gigahertz-band applications. This structure combines the advantages of both piezoelectric materials, with a high electromechanical coupling coefficient (K2) of ZnO and high acoustic velocity of AlN. Theoretical results show that Rayleigh mode SAWs with large phase velocities up to 12,200 m/s and large K2 from 1 to 3% were generated with this new structure.

  1. A petrographical and geochemical study of quartzose nodules, country rocks, and dike rocks from the Upheaval Dome structure, Utah

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Plescia, J. B.; Hayward, Chris L.; Reimold, Wolf Uwe

    1999-11-01

    Upheaval Dome, in Canyonlands National Park, Utah, USA, is a unique structure on the Colorado Plateau. It has earlier been interpreted as an impact structure or as a pinched-off salt diapir. Some subrounded quartzose fragments were found in a ring depression near the eastern margin of the structure and, based on vesicularity and apparent flow structure, the fragments were earlier interpreted researchers as "impactites". Our petrographic studies show no indication of a high-temperature history and are in agreement with a slow, low-temperature formation of the quartz nodules. Compositionally, the lag deposit samples are almost pure SiO2. They show no chemical similarity to any of the possible target rocks (e.g., Navajo Sandstone), from which they should have formed by melting if they were impactites. Instead, the samples have relatively high contents of elements that indicate fluid interaction (e.g., hydrothermal growth), such as As, Sb, Ba, and U, and show positive Ce anomalies. Thus, we interpret the "lag deposit samples" as normal low-temperature (hydrothermally-grown?) quartz that show no indication of being impact-derived. In addition, a petrographic and geochemical analysis of a series of dike samples yielded no evidence for shock metamorphism or a meteoritic component.

  2. A petrographical and geochemical study of quartzose nodules, country rocks, and dike rocks from the Upheaval Dome structure, Utah

    USGS Publications Warehouse

    Koeberl, C.; Plescia, J.B.; Hayward, C.L.; Reimold, W.U.

    1999-01-01

    Upheaval Dome, in Canyonlands National Park, Utah, USA, is a unique structure on the Colorado Plateau. It has earlier been interpreted as an impact structure or as a pinched-off salt diapir. Some subrounded quartzose fragments were found in a ring depression near the eastern margin of the structure and, based on vesicularity and apparent flow structure, the fragments were interpreted by early researchers as 'impactites.' Our petrographic studies show no indication of a high-temperature history and are in agreement with a slow, low-temperature formation of the quartz nodules. Compositionally, the lag deposit samples are almost pure SiO2. They show no chemical similarity to any of the possible target rocks (e.g., Navajo Sandstone), from which they should have formed by melting if they were impactites. Instead, the samples have relatively high contents of elements that indicate fluid interaction (e.g., hydrothermal growth), such as As, Sb, Ba, and U, and show positive Ce anomalies. Thus, we interpret the 'lag deposit samples' as normal low-temperature (hydrothermally-grown?) quartz that show no indication of being impact-derived. In addition, a petrographic and geochemical analysis of a series of dike samples yielded no evidence for shock metamorphism or a meteoritic component.

  3. Simulation of the novel compact structure of an interferometric biosensor based on multimode interference waveguides

    NASA Astrophysics Data System (ADS)

    Xhoxhi, Moisi; Dudia, Alma; Ymeti, Aurel

    2017-05-01

    We propose the novel structure of an interferometric biosensor based on multimode interference (MMI) waveguides. We present the design of the biosensor using eigenmode expansion (EME) method in accordance with the requirements and standards of today's photonic technology. The MMI structures with a 90 nm Si3N4 core are used as power splitters with 5 outputs. The 5 high-resolution images at the end of the multimode region show high power balance. We analyze the coupling efficiency of the laser source with the structure, the excess loss and power imbalance for different compact MMI waveguides with widths ranging from 45 μm to 15 μm. For a laser source with a tolerance of +/-1mm in linearization we could achieve a coupling efficiency of 52%. MMI waveguides with tapered channels show excess loss values under 0.5 dB and power imbalance values under 0.08 dB. In addition, we show that for a 10 nm deviation of the source wavelength from its optimal value and for a 10 μm deviation of the MMI length from its optimal value, the performance of the MMI waveguides remains acceptable. Finally, we analyze the power budget of the whole biosensor structure and show that it is sufficient for the proper operation of this device.

  4. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

    PubMed

    Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2012-06-13

    Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.

  5. Interaction Networks: Generating High Level Hints Based on Network Community Clustering

    ERIC Educational Resources Information Center

    Eagle, Michael; Johnson, Matthew; Barnes, Tiffany

    2012-01-01

    We introduce a novel data structure, the Interaction Network, for representing interaction-data from open problem solving environment tutors. We show how using network community detecting techniques are used to identify sub-goals in problems in a logic tutor. We then use those community structures to generate high level hints between sub-goals.…

  6. A High-Sensitivity Current Sensor Utilizing CrNi Wire and Microfiber Coils

    PubMed Central

    Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou

    2014-01-01

    We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications. PMID:24824372

  7. A high-sensitivity current sensor utilizing CrNi wire and microfiber coils.

    PubMed

    Xie, Xiaodong; Li, Jie; Sun, Li-Peng; Shen, Xiang; Jin, Long; Guan, Bai-ou

    2014-05-12

    We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications.

  8. The German version of the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): psychometric properties and diagnostic utility.

    PubMed

    Krüger-Gottschalk, Antje; Knaevelsrud, Christine; Rau, Heinrich; Dyer, Anne; Schäfer, Ingo; Schellong, Julia; Ehring, Thomas

    2017-11-28

    The Posttraumatic Stress Disorder (PTSD) Checklist (PCL, now PCL-5) has recently been revised to reflect the new diagnostic criteria of the disorder. A clinical sample of trauma-exposed individuals (N = 352) was assessed with the Clinician Administered PTSD Scale for DSM-5 (CAPS-5) and the PCL-5. Internal consistencies and test-retest reliability were computed. To investigate diagnostic accuracy, we calculated receiver operating curves. Confirmatory factor analyses (CFA) were performed to analyze the structural validity. Results showed high internal consistency (α = .95), high test-retest reliability (r = .91) and a high correlation with the total severity score of the CAPS-5, r = .77. In addition, the recommended cutoff of 33 on the PCL-5 showed high diagnostic accuracy when compared to the diagnosis established by the CAPS-5. CFAs comparing the DSM-5 model with alternative models (the three-factor solution, the dysphoria, anhedonia, externalizing behavior and hybrid model) to account for the structural validity of the PCL-5 remained inconclusive. Overall, the findings show that the German PCL-5 is a reliable instrument with good diagnostic accuracy. However, more research evaluating the underlying factor structure is needed.

  9. Phosphorus Enrichment as a New Composition in the Solid Electrolyte Interphase of High-Voltage Cathodes and Its Effects on Battery Cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan

    2015-11-10

    Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupledmore » with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.« less

  10. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties.

    PubMed

    Jaffe, Adam; Lin, Yu; Beavers, Christine M; Voss, Johannes; Mao, Wendy L; Karunadasa, Hemamala I

    2016-04-27

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3 (+), X = Br(-) or I(-)) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites' precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material's resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br x I1-x )3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors.

  11. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties

    PubMed Central

    2016-01-01

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3+, X = Br– or I–) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites’ precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material’s resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(BrxI1–x)3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors. PMID:27163050

  12. High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties

    DOE PAGES

    Jaffe, Adam; Lin, Yu; Beavers, Christine M.; ...

    2016-04-06

    Here, we report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX 3 (MA = CH 3NH 3 +, X = Br – or I –) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites’ precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaquemore » black with compression. Indeed, electronic conductivity measurements of (MA)PbI 3 obtained within a diamond-anvil cell show that the material’s resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br xI 1–x) 3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors.« less

  13. Effect of protein solution components in the adsorption of Herbaspirillum seropedicae GlnB protein on mica.

    PubMed

    Ferreira, Cecília F G; Benelli, Elaine M; Klein, Jorge J; Schreiner, Wido; Camargo, Paulo C

    2009-10-15

    The adsorption of proteins and its buffer solution on mica surfaces was investigated by atomic force microscopy (AFM). Different salt concentration of the Herbaspirillum seropedicae GlnB protein (GlnB-Hs) solution deposited on mica was investigated. This protein is a globular, soluble homotrimer (36kDa), member of PII-like proteins family involved in signal transducing in prokaryote. Supramolecular structures were formed when this protein was deposited onto bare mica surface. The topographic AFM images of the GlnB-Hs films showed that at high salt concentration the supramolecular structures are spherical-like, instead of the typical doughnut-like shape for low salt concentration. AFM images of NaCl and Tris from the buffer solution showed structures with the same pattern as those observed for high salt protein solution, misleading the image interpretation. XPS experiments showed that GlnB protein film covers the mica surface without chemical reaction.

  14. Visualizing impact structures using high-resolution LiDAR-derived DEMs: A case study of two structures in Missouri

    USGS Publications Warehouse

    Finn, Michael P.; Krizanich, Gary W.; Evans, Kevin R.; Cox, Melissa R.; Yamamoto, Kristina H.

    2015-01-01

    Evidence suggests that a crypto-explosive hypothesis and a meteorite impact hypothesis may be partly correct in explaining several anomalous geological features in the middle of the United States. We used a primary geographic information science (GIScience) technique of creating a digital elevation model (DEM) of two of these features that occur in Missouri. The DEMs were derived from airborne light detection and ranging, or LiDAR. Using these DEMs, we characterized the Crooked Creek structure in southern Crawford County and the Weaubleau structure in southeastern St. Clair County, Missouri. The mensuration and study of exposed and buried impact craters implies that the craters may have intrinsic dimensions which could only be produced by collision. The results show elevations varying between 276 and 348 m for Crooked Creek and between 220 and 290 m for Weaubleau structure. These new high- resolution DEMs are accurate enough to allow for precise measurements and better interpretations of geological structures, particularly jointing in the carbonate rocks, and they show greater definition of the central uplift area in the Weaubleau structure than publicly available DEMs.

  15. Growth and structure of hydrogenated carbon films containing fullerene-like structure

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Wang, Xia; Liu, Weimin; Zhang, Junyan

    2008-04-01

    Hydrogenated carbon films were prepared by magnetron sputtering of a titanium target in methane and argon atmosphere. The film grown at -800 V bias exhibits excellent mechanical properties with a hardness of 20.9 GPa and an elastic recovery as high as 85%. Its structure, characterized by high-resolution transmission electron microscopy, Raman spectrum, and x-ray photoelectron spectroscopy, can be described as fullerene-like structures uniformly dispersed in an amorphous carbon matrix. In order to reveal the evolution of fullerene-like structures in our films, different bias voltages were introduced. The results show that high bias voltage leads to the accumulation of high compressive internal stress in the film and promotes the evolution of fullerene-like structures. Although the film grown at -800 V bias presents high sp2 bonding content, it exhibits good mechanical properties with high hardness and high elasticity at the same time; we attribute it to the unique structure of the film, in which a fullerene-like structure, just like a molecule spring dispersed in the film, reserves the elastic energy during distortion through reversible bond rotation and bond angle deflection, while the amorphous carbon matrix restrains the relaxation of the rigid C-C network and compressive stress and restricts the slip of graphene sheets.

  16. Highly tunable porous organic polymer (POP) supports for metallocene-based ethylene polymerization

    NASA Astrophysics Data System (ADS)

    Wang, Xiong; Li, Zhenyou; Han, Xiaoyu; Han, Zhengang; Bai, Yongxiao

    2017-10-01

    Porous organic Polymers (POPs) can not only exhibit high specific surface area and pore volume, but also tunable pore size distribution. Herein, copolymers of 2-hydroxyethylmethylacrylate (HEMA) and divinylbenzene (DVB) with specific pore structure were synthesized via a dispersion polymerization strategy, and then immobilized metallocene catalysts with well-defined pore structure were obtained on the produced POP supports. The nitrogen sorption and Gel permeation chromatography (GPC) results demonstrate that the pore structure of the immobilized metallocene catalyst is highly dependent on the pore structure of the POPs, and the pore structure of metallocene catalysts or the POPs has a significant influence on the molecular chain growth of the produced polyethylene. By tuning the distribution of the active species scattered in the micro- and the narrow meso-pore range (roughly ≤4 nm), the chain growth of the polyolefin can be tailored effectively during the polymerization process, although differential scanning calorimetry (DSC) and temperature rising elution fractionation (TREF) results show that the chemical composition distributions (CCDs) of produced PE from the POPs-supported metallocene catalysts are not determined by polymerization activity or molecule chain length, but mainly by the active site species scattered in the supported catalysts. Scanning electron micrograph (SEM) shows that the produced polyethylene has highly porous fabric which consists of nanofiber and spherical beads of micron dimension.

  17. Methodological assessment of 2b-RAD genotyping technique for population structure inferences in yellowfin tuna (Thunnus albacares).

    PubMed

    Pecoraro, Carlo; Babbucci, Massimiliano; Villamor, Adriana; Franch, Rafaella; Papetti, Chiara; Leroy, Bruno; Ortega-Garcia, Sofia; Muir, Jeff; Rooker, Jay; Arocha, Freddy; Murua, Hilario; Zudaire, Iker; Chassot, Emmanuel; Bodin, Nathalie; Tinti, Fausto; Bargelloni, Luca; Cariani, Alessia

    2016-02-01

    Global population genetic structure of yellowfin tuna (Thunnus albacares) is still poorly understood despite its relevance for the tuna fishery industry. Low levels of genetic differentiation among oceans speak in favour of the existence of a single panmictic population worldwide of this highly migratory fish. However, recent studies indicated genetic structuring at a much smaller geographic scales than previously considered, pointing out that YFT population genetic structure has not been properly assessed so far. In this study, we demonstrated for the first time, the utility of 2b-RAD genotyping technique for investigating population genetic diversity and differentiation in high gene-flow species. Running de novo pipeline in Stacks, a total of 6772 high-quality genome-wide SNPs were identified across Atlantic, Indian and Pacific population samples representing all major distribution areas. Preliminary analyses showed shallow but significant population structure among oceans (FST=0.0273; P-value<0.01). Discriminant Analysis of Principal Components endorsed the presence of genetically discrete yellowfin tuna populations among three oceanic pools. Although such evidence needs to be corroborated by increasing sample size, these results showed the efficiency of this genotyping technique in assessing genetic divergence in a marine fish with high dispersal potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Investigation of structural and mechanical properties of rare-earth bismuthide (RBi, R=Ce & Pr) with the NaCl structure at high pressure

    NASA Astrophysics Data System (ADS)

    Yaduvanshi, Namrata; Kapoor, Shilpa; Singh, Sadhna

    2018-05-01

    We have investigated the structural and mechanical properties of Cerium and Praseodymium Bismuthides under pressure by means of a three body interaction potential model which includes long range columbic interaction, three body interactions and short range overlap repulsive interaction operative up to second nearest neighbor. These compounds shows transition from NaCl structure to body-centered tetragonal (BCT) structure (distorted CsCl-type P4/mmm). The elastic constants and their properties are also reported. Our calculated results of phase transitions and volume collapses of these compounds show a good agreement with available theoretical and experimental results.

  19. Influence of high-pressure torsion on formation/destruction of nano-sized spinodal structures

    NASA Astrophysics Data System (ADS)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji

    2018-04-01

    The microstructures and hardness of Al - 30 mol.% Zn are investigated after processing by high-pressure torsion (HPT) for different numbers of revolutions, N = 1, 3, 10 or 25, as well as after post-HPT annealing at different temperatures, T = 373 K, 473 K, 573 K and 673 K. It was found that a work softening occurs by decreasing the grain size to the submicrometer level and increasing the fraction of high-angle boundaries. As a result of HPT processing, a complete decomposition of supersaturated solid solution of Zn in Al occurs and the spinodal structure is destroyed. This suggests that softening of the Al-Zn alloys after HPT is due to the decomposition of the supersaturated solid solution and destruction of spinodal decomposition. After post-HPT annealing, ultrafine-grained Al-Zn alloys show an unusual mechanical properties and its hardness increased to 187 HV. Microstructural analysis showed that the high hardness after post-HPT annealing is due to the formation of spinodal structures.

  20. Thin Planes of Satellites in ΛCDM are not kinematically coherent

    NASA Astrophysics Data System (ADS)

    Buck, Tobias; Dutton, Aaron A.; Macciò, Andrea V.

    2017-03-01

    Recently it has been shown by Ibata et al. (2013) that a large fraction of the dwarf satellite galaxies found in the PAndAS survey (McConnachie et al. 2009) and orbiting the Andromeda galaxy are surprisingly aligned in a thin, extended, and kinematically coherent planar structure. The presence of such a structure seems to challenge the current Cold Dark Matter paradigm of structure formation (Ibata et al. 2014, Pawlowski et al. 2014), which predicts a more uniform distribution of satellites around central objects. We show that it is possible to obtain a thin, extended, rotating plane of satellites resembling the one in Andromeda in cosmological collisionless simulations based on this model. Our new 21 high-resolution simulations (see Buck et al. 2015) show a correlation between the formation time of the dark matter halo and the thickness of the plane of satellites. Our simulations have a high incidence of satellite planes as thin, extended, and as rich as the one in Andromeda and with a very coherent kinematic structure when we select early forming haloes. By tracking the formation of the satellites in the plane we show that they have mainly been accreted onto the main object along thin dark matter filaments at high redshift (Dekel et al. 2009, Libeskind et al. 2009, 2011). Our results show that the presence of a thin, extended, rotating plane of satellites is not a challenge for the Cold Dark Matter paradigm, but actually supports one of the predictions of this paradigm related to the presence of filaments of dark matter around galaxies at high redshift.

  1. 3D P-wave velocity structure of the crust and relocation of earthquakes in the Lushan, China, source area

    NASA Astrophysics Data System (ADS)

    Yu, Xiangwei; Wang, Xiaona; Zhang, Wenbo

    2016-04-01

    Many researchers have investigated the Lushan source area with geological and geophysical approaches since the 2013 Lushan, China, earthquake happened. Compared with the previous tomographic studies, we have used a much large data set and an updated tomographic method to determine a small scale three-dimensional P wave velocity structure with spatial resolution less than 5km, which plays the important role for understanding the deep structure and the genetic mechanism beneath the Lushan area. The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. This method takes account of the path anomaly biases explicitly by making full use of valuable information of seismic wave propagation jointly with absolute and relative arrival time data. Our results show that the Lushan mainshock locates at 30.28N, 103.98E, with the depth of 16.38km. The front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12km. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23km. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20km depth the velocity structure in southwest and northeast segment of mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while the hanging wall shows high-velocity anomalies. The northeastern aftershocks are distributed at the boundary between high-velocity anomalies in Baoxing and Daxing area. The P wave velocity structure of Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxingarea the complex rocks correspond obvious high-velocity anomalies extending down to 15km depth,while the Cenozoic rocks are correlated with low-velocity anomalies. Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The main seismogenic layer dips to northwest. Meanwhile, a recoil seismic belt dips to southeast above the main seismogenic layer exists at the lower boundary of Baoxing high-velocity anomaly.

  2. Real time analysis of self-assembled InAs/GaAs quantum dot growth by probing reflection high-energy electron diffraction chevron image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudo, Takuya; Inoue, Tomoya; Kita, Takashi

    2008-10-01

    Self-assembling process of InAs/GaAs quantum dots has been investigated by analyzing reflection high-energy electron diffraction chevron images reflecting the crystal facet structure surrounding the island. The chevron image shows dramatic changes during the island formation. From the temporal evolution of the chevron tail structure, the self-assembling process has been found to consist of four steps. The initial islands do not show distinct facet structures. Then, the island surface is covered by high-index facets, and this is followed by the formation of stable low-index facets. Finally, the flow of In atoms from the islands occurs, which contributes to flatten the wettingmore » layer. Furthermore, we have investigated the island shape evolution during the GaAs capping layer growth by using the same real-time analysis technique.« less

  3. Three-dimensional fine structure of the organization of microtubules in neurite varicosities by ultra-high voltage electron microscope tomography.

    PubMed

    Nishida, Tomoki; Yoshimura, Ryoichi; Endo, Yasuhisa

    2017-09-01

    Neurite varicosities are highly specialized compartments that are involved in neurotransmitter/ neuromodulator release and provide a physiological platform for neural functions. However, it remains unclear how microtubule organization contributes to the form of varicosity. Here, we examine the three-dimensional structure of microtubules in varicosities of a differentiated PC12 neural cell line using ultra-high voltage electron microscope tomography. Three-dimensional imaging showed that a part of the varicosities contained an accumulation of organelles that were separated from parallel microtubule arrays. Further detailed analysis using serial sections and whole-mount tomography revealed microtubules running in a spindle shape of swelling in some other types of varicosities. These electron tomographic results showed that the structural diversity and heterogeneity of microtubule organization supported the form of varicosities, suggesting that a different distribution pattern of microtubules in varicosities is crucial to the regulation of varicosities development.

  4. Viscoelastic relaxations of high alcohols and alkanes: Effects of heterogeneous structure and translation-orientation coupling

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tsuyoshi

    2017-03-01

    The frequency-dependent shear viscosity of high alcohols and linear alkanes, including 1-butanol, 1-octanol, 1-dodecanol, n-hexane, n-decane, and n-tetradecane, was calculated using molecular dynamics simulation. The relaxation of all the liquids was bimodal. The correlation functions of the collective orientation were also evaluated. The analysis of these functions showed that the slower relaxation mode of alkanes is assigned to the translation-orientation coupling, while that of high alcohols is not. The X-ray structure factors of all the alcohols showed prepeaks, as have been reported in the literature, and the intermediate scattering functions were calculated at the prepeak. Comparing the intermediate scattering function with the frequency-dependent shear viscosity based on the mode-coupling theory, it was demonstrated that the slower viscoelastic relaxation of the alcohols is assigned to the relaxation of the heterogeneous structure described by the prepeak.

  5. Reversible structural transformation and enhanced performance of PEDOT:PSS-based hybrid solar cells driven by light intensity.

    PubMed

    Thomas, Joseph Palathinkal; Srivastava, Saurabh; Zhao, Liyan; Abd-Ellah, Marwa; McGillivray, Donald; Kang, Jung Soo; Rahman, Md Anisur; Moghimi, Nafiseh; Heinig, Nina F; Leung, Kam Tong

    2015-04-15

    Hybrid solar cells made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) and appropriate amounts of a cosolvent and a fluorosurfactant on planar n-type silicon substrates showed a photoconversion efficiency (PCE) of above 13%. These cells also exhibited stable, reproducible, and high external quantum efficiency (EQE) that was not sensitive to light-bias intensity (LBI). In contrast, solar cells made of pristine PSS showed low PCE and high EQE only under certain measurement conditions. The EQE was found to degrade with increasing LBI. Here we report that the LBI-sensitive variation of EQE of the low-PCE cells is related to a reversible structural transformation from a quinoid to a benzoid structure of PEDOT.

  6. A coronal hole and its identification as the source of a high velocity solar wind stream

    NASA Technical Reports Server (NTRS)

    Krieger, A. S.; Timothy, A. F.; Roelof, E. C.

    1973-01-01

    X-ray images of the solar corona showed a magnetically open structure in the low corona which extended from N20W20 to the south pole. Analysis of the measured X-ray intensities shows the density scale heights within the structure to be typically a factor of two less than that in the surrounding large scale magnetically closed regions. The structure is identified as a coronal hole. Wind measurements for the appropriate period were traced back to the sun by the method of instantaneous ideal spirals. A striking agreement was found between the Carrington longitude of the solar source of a recurrent high velocity solar wind stream and the position of the hole.

  7. Investigation on Quantitative Structure Activity Relationships of a Series of Inducible Nitric Oxide.

    PubMed

    Sharma, Mukesh C; Sharma, S

    2016-12-01

    A series of 2-dihydro-4-quinazolin with potent highly selective inhibitors of inducible nitric oxide synthase activities was subjected to quantitative structure activity relationships (QSAR) analysis. Statistically significant equations with high correlation coefficient (r 2  = 0.8219) were developed. The k-nearest neighbor model has showed good cross-validated correlation coefficient and external validation values of 0.7866 and 0.7133, respectively. The selected electrostatic field descriptors the presence of blue ball around R1 and R4 in the quinazolinamine moiety showed electronegative groups favorable for nitric oxide synthase activity. The QSAR models may lead to the structural requirements of inducible nitric oxide compounds and help in the design of new compounds.

  8. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao

    2013-05-01

    We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization. Electronic supplementary information (ESI) available: More TEM and SEM images, digital photo, XPS, and XRD of the samples. See DOI: 10.1039/c3nr00209h

  9. Ballistic Fracturing of Carbon Nanotubes.

    PubMed

    Ozden, Sehmus; Machado, Leonardo D; Tiwary, ChandraSekhar; Autreto, Pedro A S; Vajtai, Robert; Barrera, Enrique V; Galvao, Douglas S; Ajayan, Pulickel M

    2016-09-21

    Advanced materials with multifunctional capabilities and high resistance to hypervelocity impact are of great interest to the designers of aerospace structures. Carbon nanotubes (CNTs) with their lightweight and high strength properties are alternative to metals and/or metallic alloys conventionally used in aerospace applications. Here we report a detailed study on the ballistic fracturing of CNTs for different velocity ranges. Our results show that the highly energetic impacts cause bond breakage and carbon atom rehybridizations, and sometimes extensive structural reconstructions were also observed. Experimental observations show the formation of nanoribbons, nanodiamonds, and covalently interconnected nanostructures, depending on impact conditions. Fully atomistic reactive molecular dynamics simulations were also carried out in order to gain further insights into the mechanism behind the transformation of CNTs. The simulations show that the velocity and relative orientation of the multiple colliding nanotubes are critical to determine the impact outcome.

  10. Effect of Destined High-Pressure Torsion on the Structure and Mechanical Properties of Rare Earth-Based Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Cheng, H.; Jiang, X.; Wu, M. L.; Li, G.

    2018-03-01

    Changes in the atomic structure and mechanical properties of rare earth-based metallic glasses caused by destined high-pressure torsion (HPT) were studied by X-ray diffraction synchrotron radiation and nanoindentation. Results showed that destined HPT improved nanohardness and wear resistance, which indicated the significant contributions of this technique. The diffraction patterns showed that the contents of pairs between solvent and solute atoms with a large negative mixing enthalpy increased, whereas those of pairs between solvent atoms and between solute atoms decreased after destined HPT. Thus, the process was improved by increasing the proportion of high-intensity pairs between solvent and solute atoms.

  11. Further Investigations of High Temperature Knitted Spring Tubes for Advanced Control Surface Seal Applications

    NASA Technical Reports Server (NTRS)

    Taylor, Shawn C.; DeMange, Jeffrey J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2006-01-01

    Knitted metallic spring tubes are the structural backbones that provide resiliency in control surface seals for use on current and future reusable space launch vehicles. Control surface seals fill the space between movable control surfaces such as body flaps, rudders and elevons, and the static body structures to which they are attached. These seals must remain in continuous contact with opposing surfaces to prevent the ingestion of damaging hot gases encountered during atmospheric re-entry. The Inconel X-750 (Special Metals Corporation) spring tube utilized in the baseline control surface seal shows significant resiliency loss when compressed at temperatures as low as 1200 F. High temperature compression testing and microstructural analysis show that creep is the dominant deformation mechanism leading to permanent set and resiliency loss in tested spring tube samples. Additional evaluation using a structured design of experiments approach shows that spring tube performance, primarily high temperature resiliency, can be enhanced through material substitution of Rene 41 (Allvac) alloy (for the baseline Inconel X-750 material) when coupled with specialized thermal processing.

  12. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load.

    PubMed

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai

    2016-10-13

    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C.

  13. Structural and functional rich club organization of the brain in children and adults.

    PubMed

    Grayson, David S; Ray, Siddharth; Carpenter, Samuel; Iyer, Swathi; Dias, Taciana G Costa; Stevens, Corinne; Nigg, Joel T; Fair, Damien A

    2014-01-01

    Recent studies using Magnetic Resonance Imaging (MRI) have proposed that the brain's white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain's major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism.

  14. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashkin, E. Y.; Pankov, A. M.; Kulnitskiy, B. A.

    The behavior of multiwall carbon nanotubes under a high pressure (up to 55 GPa) combined with shear deformation was studied by experimental and theoretical methods. The unexpectedly high stability of the nanotubes' structure under high stresses was observed. After the pressure was released, we observed that the nanotubes had restored their shapes. Atomistic simulations show that the hydrostatic and shear stresses affect the nanotubes' structure in a different way. It was found that the shear stress load in the multiwall nanotubes' outer walls can induce their connection and formation of an amorphized sp{sup 3}-hybridized region but internal core keeps the tubularmore » structure.« less

  16. Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain

    NASA Astrophysics Data System (ADS)

    Newland, B.; Aied, A.; Pinoncely, A. V.; Zheng, Y.; Zhao, T.; Zhang, H.; Niemeier, R.; Dowd, E.; Pandit, A.; Wang, W.

    2014-06-01

    The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies.The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies. Electronic supplementary information (ESI) available: 1H NMR spectroscopy data and gel permeation chromatography data. See DOI: 10.1039/c3nr06737h

  17. Study of 3D P-wave Velocity Structure in Lushan Area of Yunnan Province

    NASA Astrophysics Data System (ADS)

    Wang, X.

    2017-12-01

    The double difference seismic tomography method is applied to 50,711 absolute first arrival P wave arrival times and 7,294,691 high quality relative P arrival times of 5,285 events of Lushan seismic sequence to simultaneously determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the front edge of aftershock in the northeast of mainshock present a spade with a steep dip angle. In the southwest of Lushan mainshock, the front edge of aftershock in low velocity zone slope gently. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. The Tianquan, Shuangshi and Daguan line lies in the transition zone between high velocity anomalies to the southeast and low velocity anomalies to the northwest at the ground surface. An obvious high-velocity anomaly is visible in Daxing area. With the depth increasing, Baoxing high velocity anomaly extends to Lingguan, while the southeast of the Tianquan, Shuangshi and Daguan line still shows low velocity. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10km depth, which makes the contrast between high and low velocity anomalies more sharp. Above all, the P wave velocity structure of Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15km depth, while the Cenozoic rocks are correlated with low-velocity anomalies. Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The main seismogenic layer dips to northwest. Meanwhile, a recoil seismic belt dips to southeast above the main seismogenic layer exists at the lower boundary of Baoxing high-velocity anomaly. A "y" distribution pattern is shown between two seismic belts.

  18. Pressure-induced changes of the structure and properties of monoclinic α -chalcocite Cu2S

    NASA Astrophysics Data System (ADS)

    Zimmer, D.; Ruiz-Fuertes, J.; Morgenroth, W.; Friedrich, A.; Bayarjargal, L.; Haussühl, E.; Santamaría-Pérez, D.; Frischkorn, S.; Milman, V.; Winkler, B.

    2018-04-01

    The high-pressure behavior of monoclinic (P 21/c ) α -chalcocite, Cu2S , was investigated at ambient temperature by single-crystal x-ray diffraction, electrical resistance measurements, and optical absorption spectroscopy up to 16 GPa. The experiments were complemented by density-functional-theory-based calculations. Single-crystal x-ray diffraction data show that monoclinic α -chalcocite undergoes two pressure-induced first-order phase transitions at ˜3.1 and ˜7.1 GPa. The crystal structure of the first high-pressure polymorph, HP1, was solved and refined in space group P 21/c with a =10.312 (4 )Å , b =6.737 (3 )Å , c =7.305 (1 )Å , and β =100.17 (2) ∘ at 6.2(3) GPa. The crystal structure of the second high-pressure polymorph, HP2, was solved and refined in space group P 21/c with a =6.731 (4 )Å , b =6.689 (2 )Å , c =6.967 (8 )Å , and β =93.18 (3) ∘ at 7.9(4) GPa. Electrical resistance measurements upon compression and optical absorption experiments upon decompression show that the structural changes in α -chalcocite are accompanied by changes of the electrical and optical properties. Upon pressure release, the band gap Eg of α -chalcocite (1.24 eV at ambient conditions) widens across the first structural phase transition, going from 1.24 eV at 2.2 GPa (α -chalcocite) to 1.35 eV at 2.6 GPa (HP1), and closes significantly across the second phase transition, going from 1.32 eV at 4.4 GPa (HP1) to 0.87 eV at 4.9 GPa (HP2). The electrical resistance shows similar behavior: its highest value is for the first high-pressure polymorph (HP1), and its lowest value is for the second high-pressure polymorph (HP2) of α -chalcocite. These results are interpreted on the basis of calculated electronic band structures.

  19. Seamless growth of a supramolecular carpet

    PubMed Central

    Kim, Ju-Hyung; Ribierre, Jean-Charles; Yang, Yu Seok; Adachi, Chihaya; Kawai, Maki; Jung, Jaehoon; Fukushima, Takanori; Kim, Yousoo

    2016-01-01

    Organic/metal interfaces play crucial roles in the formation of intermolecular networks on metal surfaces and the performance of organic devices. Although their purity and uniformity have profound effects on the operation of organic devices, the formation of organic thin films with high interfacial uniformity on metal surfaces has suffered from the intrinsic limitation of molecular ordering imposed by irregular surface structures. Here we demonstrate a supramolecular carpet with widely uniform interfacial structure and high adaptability on a metal surface via a one-step process. The high uniformity is achieved with well-balanced interfacial interactions and site-specific molecular rearrangements, even on a pre-annealed amorphous gold surface. Co-existing electronic structures show selective availability corresponding to the energy region and the local position of the system. These findings provide not only a deeper insight into organic thin films with high structural integrity, but also a new way to tailor interfacial geometric and electronic structures. PMID:26839053

  20. Structural vibration passive control and economic analysis of a high-rise building in Beijing

    NASA Astrophysics Data System (ADS)

    Chen, Yongqi; Cao, Tiezhu; Ma, Liangzhe; Luo, Chaoying

    2009-12-01

    Performance analysis of the Pangu Plaza under earthquake and wind loads is described in this paper. The plaza is a 39-story steel high-rise building, 191 m high, located in Beijing close to the 2008 Olympic main stadium. It has both fluid viscous dampers (FVDs) and buckling restrained braces or unbonded brace (BRB or UBB) installed. A repeated iteration procedure in its design and analysis was adopted for optimization. Results from the seismic response analysis in the horizontal and vertical directions show that the FVDs are highly effective in reducing the response of both the main structure and the secondary system. A comparative analysis of structural seismic performance and economic impact was conducted using traditional methods, i.e., increased size of steel columns and beams and/or use of an increased number of seismic braces versus using FVD. Both the structural response and economic analysis show that using FVD to absorb seismic energy not only satisfies the Chinese seismic design code for a “rare” earthquake, but is also the most economical way to improve seismic performance both for one-time direct investment and long term maintenance.

  1. Structural and optical properties of CuS thin films deposited by Thermal co-evaporation

    NASA Astrophysics Data System (ADS)

    Sahoo, A. K.; Mohanta, P.; Bhattacharyya, A. S.

    2015-02-01

    Copper sulfide (CuS) thin films with thickness 100, 150 and 200 nm have been deposited on glass substrates by thermal co-evaporation of Copper and Sulphur. The effect of CuS film thickness on the structural and optical properties have investigated and discussed. Structural and optical investigations of the films were carried out by X-ray diffraction, atomic force microscopy, high-resolution transmission electron microscopy and UV spectroscopy. XRD and selected area electron diffraction conforms that polycrystalline in nature with hexagonal crystal structure. AFM studies revealed a smooth surface morphology with root mean-square roughness values increases from 24 nm to 42 nm as the film thickness increase from 100 nm to 200 nm. AFM image showed that grain size increases with thickness of film increases and good agreement with the calculated from full width half maximum of the X-ray diffraction peak using Scherrer's formula and Williamson-Hall plot. The absorbance of the thin films were absorbed decreases with wavelength through UV-visible regions but showed a increasing in the near-infrared regions. The reflectance spectra also showed lower reflectance peak (25% to 32%) in visible region and high reflectance peak (49 % to 54 %) in near-infrared region. These high absorbance films made them for photo-thermal conversion of solar energy.

  2. High-refractive index polyacrylates based on quinolinone-structures for intraocular lenses

    NASA Astrophysics Data System (ADS)

    Dams, Christian; Helmstetter, Simon; Hampp, Norbert

    2017-02-01

    Intraocular lenses (IOL) have experienced an expanding application over the last decades. Not only they can be used to cure cataract caused blindness, but they are also appointed to ease visual impairments (e.g. -18 - 10 dioptre or astigmatism).[1] These phake IOL require materials with very high refractive indices due to the limited space at the implanting position in the eye of the patient. This enables less invasive operations and such with smaller incisions.[2] Quinolinone derivates, like carbostyril, are currently known from drug design and as a main structural component of several antibiotics.[3] Although they show high refractive indices and good dispersions they have not yet been used in materials for ophthalmic applications. We synthesized and characterized novel high refractive index polymers containing quinolinones as the main refractive unit of the structure.[4] We showed that it was possible to build quinolinone polymers with high refractive indices up to 1.685 at 589 nm. Using this material it would theoretically be possible to reduce the lens thickness of an IOL to under 40 percent compared to a commercial hydrogel lens with a refractive index of 1.470. We also used the synthesized quinolinone acrylates to create hydrophobic copolymers with improved physical properties and high transmission in the visible spectral range. Besides the good lightfastness these copolymers also showed very low tendencies of glistening. In conclusion quinolinones show attractive performances for the usage as a component in acrylic copolymers. If the requirements for IOL keep rising in the coming years these monomers could be used to boost the refractive index of ophthalmic polymer compositions.

  3. Buffet induced structural/flight-control system interaction of the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Voracek, David F.; Clarke, Robert

    1991-01-01

    High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.

  4. Structural Maps of the V-17 Beta Regio Quadrangle, Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. t.; Head, James W.

    2008-01-01

    These represent slices of the geologic map into 7 time-stratigraphic levels whose descriptions are found in [3-6]. From older to younger they are: 1) Tessera material unit (t), 2) Densely fractured plains material unit (pdf), 3) Fractured and ridged plains material unit (pfr), 4) Tessera transitional terrain structural unit (tt), 5) Fracture belts structural unit (fb), 6) Shield plains (psh) and plains with wrinkle ridges (pwr) material units combined, and 7) Lobate (pl) and smooth (ps) plains material units combined and, approximately contemporaneous with them, the structural unit of rifted terrain (rt). Each slice shows the generalized pattern of structures typical of these units. Figures 1-7 show the seven maps and Figure 8 shows the combined map illustrating what is shown in the seven maps. To visualize the Beta Regio uplift outlines, the major structure of this area, we show the +0.5 km and +2.5 km contour lines, corresponding respectively to the base and the mid-height of the uplift. It is seen in Figures 1-2 and 4 the trends of t, pdf and tt occupy relatively small areas and their structures seen in these small windows appear rather variable and with almost no orientation heritage with time. Figure 3 shows that swarms of ridge belts trend mostly NW and go through the Beta structure with no alignment with it, suggesting that this structure did not yet exist at this time. Figure 5 shows that fracture belts align along the northern base of the Beta uplift suggesting onset of the formation of this structure. Figure 6 shows that wrinkle ridges do not show alignment with the Beta uplift suggesting that this already forming structure was not high enough to exert topographic stress in its vicinity. Figure 7 shows that the Beta uplift has Devana Chasma as an axial rift zone, suggesting a genetic link between the uplift and rifting. Figure 8 shows that structural trends in this area significantly changed with time.

  5. [Effects of dynamic high-pressure microfluidization on the structure of waxy rice starch].

    PubMed

    Tu, Zong-Cai; Zhu, Xiu-Mei; Chen, Gang; Wang, Hui; Zhang, Bo; Huang, Xiao-Qin; Li, Zhi

    2010-03-01

    The effects of dynamic ultra high-pressure microfluidization on the structure of waxy rice starch solutions (6%) were analyzed using SEM, UV-Vis spectra, polarized light microscopy, and X-ray diffraction spectra. The results showed that: SEM graphs demonstrated that the crystal structure of waxy rice starch under different pressure treatment was destroyed with different degrees and impacted into flake up to 160 MPa; from the ultraviolet-visible spectrum we know the reduction in the blue iodine value and the decrease in the amylopectin content, which illustrated that the structure of waxy rice starch was fractured; polarized microscopic images showed that the polarization crosses of starch molecules became misty with the pressure increasing, and most of starch molecules lost polarization cross when the pressure reached 160 MPa; X-ray diffraction spectra indicated that relative crystallinity began to decline at 120 MPa with pressure treatment, and the decreased amplitude was slightly lower.

  6. 3D flower-like hierarchical Ag@nickel-cobalt hydroxide microsphere with enhanced electrochemical properties

    NASA Astrophysics Data System (ADS)

    Lv, Zijian; Zhong, Qin; Bu, Yunfei; Wu, Junpeng

    2016-10-01

    The morphology and electrical conductivity are essential to electrochemical performance of electrode materials in renewable energy conversion and storage technologies such as fuel cells and supercapacitors. Here, we explored a facile method to grow Ag@nickel-cobalt layered double hydroxide (Ag@Ni/Co-LDHs) with 3D flower-like microsphere structure. The results show the morphology of Ni/Co-LDHs varies with the introduction of Ag species. The prepared Ag@Ni/Co-LDHs not only exhibits an open hierarchical structure with high specific capacitance but also shows good electrical conductivity to support fast electron transport. Benefiting from the unique structural features, these flower-like Ag@Ni/Co-LDHs microspheres have impressive specific capacitance as high as 1768 F g-1 at 1 A g-1. It can be concluded that engineering the structure of the electrode can increase the efficiency of the specific capacitance as a battery-type electrode for hybrid supercapacitors.

  7. Nanotribological performance of fullerene-like carbon nitride films

    NASA Astrophysics Data System (ADS)

    Flores-Ruiz, Francisco Javier; Enriquez-Flores, Christian Ivan; Chiñas-Castillo, Fernando; Espinoza-Beltrán, Francisco Javier

    2014-09-01

    Fullerene-like carbon nitride films exhibit high elastic modulus and low friction coefficient. In this study, thin CNx films were deposited on silicon substrate by DC magnetron sputtering and the tribological behavior at nanoscale was evaluated using an atomic force microscope. Results show that CNx films with fullerene-like structure have a friction coefficient (CoF ∼ 0.009-0.022) that is lower than amorphous CNx films (CoF ∼ 0.028-0.032). Analysis of specimens characterized by X-ray photoelectron spectroscopy shows that films with fullerene-like structure have a higher number of sp3 CN bonds and exhibit the best mechanical properties with high values of elastic modulus (E > 180 GPa) and hardness (H > 20 GPa). The elastic recovery determined on specimens with a fullerene-like CNx structure was of 95% while specimens of amorphous CNx structure had only 75% elastic recovery.

  8. Atomic structure and electronic properties of MgO grain boundaries in tunnelling magnetoresistive devices

    PubMed Central

    Bean, Jonathan J.; Saito, Mitsuhiro; Fukami, Shunsuke; Sato, Hideo; Ikeda, Shoji; Ohno, Hideo; Ikuhara, Yuichi; McKenna, Keith P.

    2017-01-01

    Polycrystalline metal oxides find diverse applications in areas such as nanoelectronics, photovoltaics and catalysis. Although grain boundary defects are ubiquitous their structure and electronic properties are very poorly understood since it is extremely challenging to probe the structure of buried interfaces directly. In this paper we combine novel plan-view high-resolution transmission electron microscopy and first principles calculations to provide atomic level understanding of the structure and properties of grain boundaries in the barrier layer of a magnetic tunnel junction. We show that the highly [001] textured MgO films contain numerous tilt grain boundaries. First principles calculations reveal how these grain boundaries are associated with locally reduced band gaps (by up to 3 eV). Using a simple model we show how shunting a proportion of the tunnelling current through grain boundaries imposes limits on the maximum magnetoresistance that can be achieved in devices. PMID:28374755

  9. Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands

    PubMed Central

    Kosaki, Randall K.; Wagner, Daniel; Kane, Corinne

    2016-01-01

    Mesophotic coral ecosystems (MCEs) support diverse communities of marine organisms with changes in community structure occurring along a depth gradient. In recent years, MCEs have gained attention due to their depths that provide protection from natural and anthropogenic stressors and their relative stability over evolutionary time periods, yet ecological structures of fish assemblages in MCEs remain largely un-documented. Here, we investigated composition and trophic structure of reef fish assemblages in the Northwestern Hawaiian Islands (NWHI) along a depth gradient from 1 to 67 m. The structure of reef fish assemblages as a whole showed a clear gradient from shallow to mesophotic depths. Fish assemblages at mesophotic depths had higher total densities than those in shallower waters, and were characterized by relatively high densities of planktivores and invertivores and relatively low densities of herbivores. Fishes that typified assemblages at mesophotic depths included six species that are endemic to the Hawaiian Islands. The present study showed that mesophotic reefs in the NWHI support unique assemblages of fish that are characterized by high endemism and relatively high densities of planktivores. Our findings underscore the ecological importance of these undersurveyed ecosystems and warrant further studies of MCEs. PMID:27383614

  10. Identify High-Quality Protein Structural Models by Enhanced K-Means.

    PubMed

    Wu, Hongjie; Li, Haiou; Jiang, Min; Chen, Cheng; Lv, Qiang; Wu, Chuang

    2017-01-01

    Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K -means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K -means clustering ( SK -means), whereas the other employs squared distance to optimize the initial centroids ( K -means++). Our results showed that SK -means and K -means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K -means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK -means and K -means++ demonstrated substantial improvements relative to results from SPICKER and classical K -means.

  11. Identify High-Quality Protein Structural Models by Enhanced K-Means

    PubMed Central

    Li, Haiou; Chen, Cheng; Lv, Qiang; Wu, Chuang

    2017-01-01

    Background. One critical issue in protein three-dimensional structure prediction using either ab initio or comparative modeling involves identification of high-quality protein structural models from generated decoys. Currently, clustering algorithms are widely used to identify near-native models; however, their performance is dependent upon different conformational decoys, and, for some algorithms, the accuracy declines when the decoy population increases. Results. Here, we proposed two enhanced K-means clustering algorithms capable of robustly identifying high-quality protein structural models. The first one employs the clustering algorithm SPICKER to determine the initial centroids for basic K-means clustering (SK-means), whereas the other employs squared distance to optimize the initial centroids (K-means++). Our results showed that SK-means and K-means++ were more robust as compared with SPICKER alone, detecting 33 (59%) and 42 (75%) of 56 targets, respectively, with template modeling scores better than or equal to those of SPICKER. Conclusions. We observed that the classic K-means algorithm showed a similar performance to that of SPICKER, which is a widely used algorithm for protein-structure identification. Both SK-means and K-means++ demonstrated substantial improvements relative to results from SPICKER and classical K-means. PMID:28421198

  12. Molecular Dynamic Simulation of Space and Earth-Grown Crystal Structures of Thermostable T1 Lipase Geobacillus zalihae Revealed a Better Structure.

    PubMed

    Ishak, Siti Nor Hasmah; Aris, Sayangku Nor Ariati Mohamad; Halim, Khairul Bariyyah Abd; Ali, Mohd Shukuri Mohamad; Leow, Thean Chor; Kamarudin, Nor Hafizah Ahmad; Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd

    2017-09-25

    Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacillus zalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.

  13. 3D numerical study of the propagation characteristics of a consequence of coronal mass ejections in a structured ambient solar wind

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Feng, X. S.

    2015-12-01

    CMEs have been identified as a prime causal link between solar activity and large, nonrecurrent geomagnetic storm. In order to improve geomagnetic storm predictions, a careful study of CME's propagation characteristics is important. Here, we analyze and quantitatively study the evolution and propagation characteristics of coronal mass ejections (CMEs) launched at several positions into a structured real ambient solar wind by using a three-dimensional (3D) numerical magnetohydrodynamics (MHD) simulation. The ambient solar wind structure during Carrington rotation 2095 is selected, which is an appropriate around activity minimum and declining phase. The CME is initiated by a simple spherical plasmoid model: a spheromak magnetic structure with high speed, high pressure and high plasma density plasmoid. We present a detailed analysis of the plasma, magnetic field, geoeffectiveness, and composition signatures of these CMEs. Results show that the motion and local appearance of a CME in interplanetary space is strongly affected by its interaction with the background solar wind structure, including its velocity, density, and magnetic structures. The simulations show that the initial launched position substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory and even the geo-effectiveness

  14. Reason for high strength and good ductility in dual phase steels composed of soft ferrite and hard martensite

    NASA Astrophysics Data System (ADS)

    Terada, Daisuke; Ikeda, Gosuke; Park, Myeong-heom; Shibata, Akinobu; Tsuji, Nobuhiro

    2017-07-01

    Dual phase (DP) steels in which the microstructures are composed of a soft ferrite phase and a hard martensite phase are known to show good strain-hardening, high strength and large elongation, but reasons for their superior mechanical properties are still unclear. In the present study, two types of DP structures, having either networked martensite or isolated martensite were fabricated in a low-carbon steel by different heat treatment routes, and their tensile deformation behavior was analyzed using the digital image correlation (DIC) technique. It was revealed that the DP specimens having networked martensite microstructures showed a better strength-ductility balance than the DP specimens with isolated martensite structures. The microscopic DIC analysis of identical areas showed that the strain distribution within the DP microstructures was not uniform and the plastic strain was localized in soft ferrite grains. The strain localized regions tended to detour around hard martensite but eventually propagated across the martensite. It was found also from the DIC analysis that the degree of strain partitioning between ferrite and martensite in the networked DP structure was lower than that in the isolated DP structure. The deformation became more homogeneous when the hard phase (martensite) was connected to form a network structure, which could be one of the reasons for the better strength-ductility balance in the networked DP structure compared to that in the isolated DP structure.

  15. Modification of electronic structure, magnetic structure, and topological phase of bismuthene by point defects

    NASA Astrophysics Data System (ADS)

    Kadioglu, Yelda; Kilic, Sevket Berkay; Demirci, Salih; Aktürk, O. Üzengi; Aktürk, Ethem; Ciraci, Salim

    2017-12-01

    This paper reveals how the electronic structure, magnetic structure, and topological phase of two-dimensional (2D), single-layer structures of bismuth are modified by point defects. We first showed that a free-standing, single-layer, hexagonal structure of bismuth, named h-bismuthene, exhibits nontrivial band topology. We then investigated interactions between single foreign adatoms and bismuthene structures, which comprise stability, bonding, electronic structure, and magnetic structures. Localized states in diverse locations of the band gap and resonant states in band continua of bismuthene are induced upon the adsorption of different adatoms, which modify electronic and magnetic properties. Specific adatoms result in reconstruction around the adsorption site. Single vacancies and divacancies can form readily in bismuthene structures and remain stable at high temperatures. Through rebondings, Stone-Whales-type defects are constructed by divacancies, which transform into a large hole at high temperature. Like adsorbed adatoms, vacancies induce also localized gap states, which can be eliminated through rebondings in divacancies. We also showed that not only the optical and magnetic properties, but also the topological features of pristine h-bismuthene can be modified by point defects. The modification of the topological features depends on the energies of localized states and also on the strength of coupling between point defects.

  16. High-Resolution Structure of a Self-Assembly-Competent Form of a Hydrophobic Peptide Captured in a Soluble [beta]-Sheet Scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makabe, Koki; Biancalana, Matthew; Yan, Shude

    2010-02-08

    {beta}-Rich self-assembly is a major structural class of polypeptides, but still little is known about its atomic structures and biophysical properties. Major impediments for structural and biophysical studies of peptide self-assemblies include their insolubility and heterogeneous composition. We have developed a model system, termed peptide self-assembly mimic (PSAM), based on the single-layer {beta}-sheet of Borrelia outer surface protein A. PSAM allows for the capture of a defined number of self-assembly-like peptide repeats within a water-soluble protein, making structural and energetic studies possible. In this work, we extend our PSAM approach to a highly hydrophobic peptide sequence. We show that amore » penta-Ile peptide (Ile{sub 5}), which is insoluble and forms {beta}-rich self-assemblies in aqueous solution, can be captured within the PSAM scaffold in a form capable of self-assembly. The 1.1-{angstrom} crystal structure revealed that the Ile{sub 5} stretch forms a highly regular {beta}-strand within this flat {beta}-sheet. Self-assembly models built with multiple copies of the crystal structure of the Ile5 peptide segment showed no steric conflict, indicating that this conformation represents an assembly-competent form. The PSAM retained high conformational stability, suggesting that the flat {beta}-strand of the Ile{sub 5} stretch primed for self-assembly is a low-energy conformation of the Ile{sub 5} stretch and rationalizing its high propensity for self-assembly. The ability of the PSAM to 'solubilize' an otherwise insoluble peptide stretch suggests the potential of the PSAM approach to the characterization of self-assembling peptides.« less

  17. In-situ and real-time growth observation of high-quality protein crystals under quasi-microgravity on earth.

    PubMed

    Nakamura, Akira; Ohtsuka, Jun; Kashiwagi, Tatsuki; Numoto, Nobutaka; Hirota, Noriyuki; Ode, Takahiro; Okada, Hidehiko; Nagata, Koji; Kiyohara, Motosuke; Suzuki, Ei-Ichiro; Kita, Akiko; Wada, Hitoshi; Tanokura, Masaru

    2016-02-26

    Precise protein structure determination provides significant information on life science research, although high-quality crystals are not easily obtained. We developed a system for producing high-quality protein crystals with high throughput. Using this system, gravity-controlled crystallization are made possible by a magnetic microgravity environment. In addition, in-situ and real-time observation and time-lapse imaging of crystal growth are feasible for over 200 solution samples independently. In this paper, we also report results of crystallization experiments for two protein samples. Crystals grown in the system exhibited magnetic orientation and showed higher and more homogeneous quality compared with the control crystals. The structural analysis reveals that making use of the magnetic microgravity during the crystallization process helps us to build a well-refined protein structure model, which has no significant structural differences with a control structure. Therefore, the system contributes to improvement in efficiency of structural analysis for "difficult" proteins, such as membrane proteins and supermolecular complexes.

  18. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-01

    Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.Porous hollow Co3O4 with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co3O4 rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g-1 and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co3O4 with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04782f

  19. High resolution digital elevation modelling from TLS and UAV campaign reveals structural complexity at the 2014/15 Holuhraun eruption site, Iceland

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Walter, Thomas R.; Schöpa, Anne; Witt, Tanja; Steinke, Bastian; Gudmundsson, Magnús T.; Dürig, Tobias

    2017-07-01

    Fissure eruptions are commonly linked to magma dikes at depth, associated with elastic and anelastic surface deformation. Elastic deformation is well described by subsidence above, uplift and lateral widening perpendicular to the dike plane. The anelastic part is associated with the formation of a graben, bordered by graben parallel faults that might express as sets of fractures at the surface. Additionally secondary structures, like push ups, bends and step overs yield information about the deforming domain. The formation of such structures associated with fissure eruptions, however, is barely preserved in nature because of the rapid erosion or sediment coverage. Therefore, simple normal fault displacements are commonly assumed at dikes. At the 2014/2015 Holuhraun eruption sites (Iceland), evidence is increasing that the developing fractures are showing variations in their displacement modes. In an attempt to investigate these variations, a fieldwork mapping project combining Terrestrial Laser Scanning (TLS) and Unmanned Aerial Vehicle (UAV) based aerophoto analysis was realized. From this data, we generated locally high resolution Digital Elevation Models (DEMs) and a structural map that allows for identification of kinematic indicators and assessing particularities of the observed structures. We identified 315 fracture segments from satellite data. For single segments we measured strike directions including the amount of opening and opening angles, indicating that many of the measured fractures show transtensional dislocations. Out of these, 81 % are showing significant left-lateral slip, only 17% right-lateral slip and 2% pure tensile opening. We show that local complexities in the fracture traces and geometries are closely related to variations in the transtensional opening direction. Moreover, we identified local changes in fracture azimuths and offsets close to eruption sites, which we speculate to be associated with geometrical changes in the magma feeder itself. Results highlight that opening of fractures associated with an erupting fissure commonly show transtensional modes having both, left-lateral and right-lateral slip, with important implications for interpreting the expression of surface structures at rift zones elsewhere. Results further highlight the great value of UAV based high resolution data to contribute to the integrity of observations of structural complexities at local geologic events.

  20. Reaction Dynamics at Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Benjamin, Ilan

    2015-04-01

    The liquid interface is a narrow, highly anisotropic region, characterized by rapidly varying density, polarity, and molecular structure. I review several aspects of interfacial solvation and show how these affect reactivity at liquid/liquid interfaces. I specifically consider ion transfer, electron transfer, and SN2 reactions, showing that solvent effects on these reactions can be understood by examining the unique structure and dynamics of the liquid interface region.

  1. Popular or Unpopular? Therapists' Use of Structured Interviews and Their Estimation of Patient Acceptance

    ERIC Educational Resources Information Center

    Bruchmuller, Katrin; Margraf, Jurgen; Suppiger, Andrea; Schneider, Silvia

    2011-01-01

    An accurate diagnosis is an important precondition for effective psychotherapeutic treatment. The use of structured interviews provides the gold standard for reliable diagnosis. Suppiger et al. (2009) showed that structured interviews have a high acceptance among patients. On a scale from 0 ("not at all satisfied") to 100 ("totally…

  2. Proteopedia Entry: The Large Ribosomal Subunit of "Haloarcula Marismortui"

    ERIC Educational Resources Information Center

    Decatur, Wayne A.

    2010-01-01

    This article presents a "Proteopedia" page that shows the refined version of the structure of the "Haloarcula" large ribosomal subunit as solved by the laboratories of Thomas Steitz and Peter Moore. The landmark structure is of great impact as it is the first atomic-resolution structure of the highly conserved ribosomal subunit which harbors…

  3. Application of PolyHIPE Membrane with Tricaprylmethylammonium Chloride for Cr(VI) Ion Separation: Parameters and Mechanism of Transport Relating to the Pore Structure

    PubMed Central

    Chen, Jyh-Herng; Le, Thi Tuyet Mai; Hsu, Kai-Chung

    2018-01-01

    The structural characteristics of membrane support directly affect the performance of carrier facilitated transport membrane. A highly porous PolyHIPE impregnated with Aliquat 336 is proposed for Cr(VI) separation. PolyHIPE consisting of poly(styrene-co-2-ethylhexyl acrylate) copolymer crosslinked with divinylbenzene has the pore structure characteristic of large pore spaces interconnected with small window throats. The unique pore structure provides the membrane with high flux and stability. The experimental results indicate that the effective diffusion coefficient D* of Cr(VI) through Aliquat 336/PolyHIPE membrane is as high as 1.75 × 10−11 m2 s−1. Transport study shows that the diffusion of Cr(VI) through Aliquat 336/PolyHIPE membrane can be attributed to the jumping transport mechanism. The hydraulic stability experiment shows that the membrane is quite stable, with recovery rates remaining at 95%, even after 10 consecutive cycles of operation. The separation study demonstrates the potential application of this new type of membrane for Cr(VI) recovery. PMID:29498709

  4. Application of PolyHIPE Membrane with Tricaprylmethylammonium Chloride for Cr(VI) Ion Separation: Parameters and Mechanism of Transport Relating to the Pore Structure.

    PubMed

    Chen, Jyh-Herng; Le, Thi Tuyet Mai; Hsu, Kai-Chung

    2018-03-02

    The structural characteristics of membrane support directly affect the performance of carrier facilitated transport membrane. A highly porous PolyHIPE impregnated with Aliquat 336 is proposed for Cr(VI) separation. PolyHIPE consisting of poly(styrene- co -2-ethylhexyl acrylate) copolymer crosslinked with divinylbenzene has the pore structure characteristic of large pore spaces interconnected with small window throats. The unique pore structure provides the membrane with high flux and stability. The experimental results indicate that the effective diffusion coefficient D* of Cr(VI) through Aliquat 336/PolyHIPE membrane is as high as 1.75 × 10 -11 m² s -1 . Transport study shows that the diffusion of Cr(VI) through Aliquat 336/PolyHIPE membrane can be attributed to the jumping transport mechanism. The hydraulic stability experiment shows that the membrane is quite stable, with recovery rates remaining at 95%, even after 10 consecutive cycles of operation. The separation study demonstrates the potential application of this new type of membrane for Cr(VI) recovery.

  5. Negative-pressure polymorphs made by heterostructural alloying.

    PubMed

    Siol, Sebastian; Holder, Aaron; Steffes, James; Schelhas, Laura T; Stone, Kevin H; Garten, Lauren; Perkins, John D; Parilla, Philip A; Toney, Michael F; Huey, Bryan D; Tumas, William; Lany, Stephan; Zakutayev, Andriy

    2018-04-01

    The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material's structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures-a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixing two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2× to 4× lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. This example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties-materials that are otherwise nearly impossible to make.

  6. Preparation and characterization of a possible topological insulator BiYO3: experiment versus theory.

    PubMed

    Zhang, Y; Deng, S; Pan, M; Lei, M; Kan, X; Ding, Y; Zhao, Y; Köhler, J

    2016-03-21

    The Bi-Y-O system has been investigated by X-ray powder diffraction, electron diffraction, UV-vis and IR experiments. A metastable cubic high temperature phase of BiYO3 with fluorite-type structure has been structurally characterized for the first time and shows a large band gap of ∼ 5.9 eV. A unified description for the numerous structural variants discovered in the Bi-Y-O system is established within the symmetry breaking approach. This rich structural phenomenon makes the Bi-Y-O system a promising candidate in the search for new topological insulators for applications. On this basis, a long standing controversy on the phase diagram of the Bi-Y-O system has been solved. Our DFT calculations predict a high pressure phase for BiYO3 with perovskite (ABO3) structure and ordering of Bi and Y on the A and B sites, respectively. However, our analysis of the nature of the low energy electronic structure shows that this phase is not a suitable candidate for a topological insulator.

  7. Magnetic field effects on charge structure factors of gapped graphene structure

    NASA Astrophysics Data System (ADS)

    Rezania, Hamed; Tawoose, Nasrin

    2018-02-01

    We present the behaviors of dynamical and static charge susceptibilities of undoped gapped graphene using the Green's function approach in the context of tight binding model Hamiltonian. Specially, the effects of magnetic field on the plasmon modes of gapped graphene structure are investigated via calculating correlation function of charge density operators. Our results show the increase of magnetic field leads to disappear high frequency plasmon mode for gapped case. We also show that low frequency plasmon mode has not affected by increase of magnetic field and chemical potential. Finally the temperature dependence of static charge structure factor of gapp graphene structure is studied. The effects of both magnetic field and gap parameter on the static structure factor are discusses in details.

  8. Robust, nonlinear, high angle-of-attack control design for a supermaneuverable vehicle

    NASA Technical Reports Server (NTRS)

    Adams, Richard J.

    1993-01-01

    High angle-of-attack flight control laws are developed for a supermaneuverable fighter aircraft. The methods of dynamic inversion and structured singular value synthesis are combined into an approach which addresses both the nonlinearity and robustness problems of flight at extreme operating conditions. The primary purpose of the dynamic inversion control elements is to linearize the vehicle response across the flight envelope. Structured singular value synthesis is used to design a dynamic controller which provides robust tracking to pilot commands. The resulting control system achieves desired flying qualities and guarantees a large margin of robustness to uncertainties for high angle-of-attack flight conditions. The results of linear simulation and structured singular value stability analysis are presented to demonstrate satisfaction of the design criteria. High fidelity nonlinear simulation results show that the combined dynamics inversion/structured singular value synthesis control law achieves a high level of performance in a realistic environment.

  9. Electrospun mulberry-like hierarchical carbon fiber web for high-performance supercapacitors.

    PubMed

    Liu, Chao; Liu, Jizi; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2018-02-15

    In this work, we have fabricated a kind of N-doped hierarchal carbon fiber web by electrospinning hollow mesoporous carbon spheres (HMCSs) into fibrous structure. The as-synthesized carbon fiber web with novel mulberry-like morphology, thus denoted as MC-FW, possesses micro/meso/macroporous porosity, large surface area, high conductivity and multi-level structure, which are highly desired for supercapacitor electrode materials. The electrochemical measurements demonstrate that the designed MC-FW shows high capacitance (298.6 F g -1 ), favorable capacitance retention (71.0%) and long cycle life (97.3% capacitance retention after 5000 cycles). Notably, the capacitance of 298.6 F g -1 for MC-FW is higher than the capacitance reported so far for many hollow carbon spheres and carbon fibers, which may contribute to the synergistic effect between the merits of HMCSs (e.g. micro/meso/macroporous hierarchal structure, large surface area, high pore volume) and advantages of 1D carbon fiber (e.g. large aspect ratio and high conductivity). It is believed that this distinctive carbon fiber web may show promising prospects as advanced energy storage materials and catalyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The relationship between the microstructure and magnetic properties of sputtered Co/Pt multilayer films

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Petford-Long, Amanda K.; Jakubovics, J. P.

    1994-11-01

    Co/Pd multilayer films (MLFs) are of interest because of their potential application as high-density magneto-optical recording media. Co/Pd MLFs with varying Co and Pd layer thicknesses were grown by sputter-deposition onto (100) Si wafers. X-ray diffraction and high resolution electron microscopy were used to study the microstructure of the films, and Lorentz microscopy was used to analyze their magnetic domain structure. The films show an fcc crystal structure with a compromised lattice parameter and a strong (111) crystallographic texture in the growth direction. The compromised interplanar spacing parallel to the surface increased with decreasing thickness ratio (t(sub Co)/t(sub Pd), and the columnar grain size decreased with increasing Pd layer thickness. Films with t(sub Co) = 0.35 nm and t(sub Pd) = 2.8 nm (columnar grain diameter 20 nm) showed promising magnetic properties, namely a high perpendicular magnetic anisotropy (1.85x10(exp 5) J/cu m), with a perpendicular coercivity of 98.7 kA/m, a perpendicular remanence ratio of 99%, and a perpendicular coercivity ratio of 88%. The magnetic domains were uniform and of a narrow stripe type, confirming the perpendicular easy axis of magnetization. The Curie temperature was found to be about 430 C. Films of pure Co and Pd, grown for comparison, also showed columnar grain structure with grain-sizes of the same order as those seen in the MLFs. In addition the Pd films showed a (111) textured fcc structure.

  11. A unified picture of the crystal structures of metals

    NASA Astrophysics Data System (ADS)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  12. Lunar troilite: Crystallography

    USGS Publications Warehouse

    Evans, H.T.

    1970-01-01

    Fine, euhedral crystals of troilite from lunar sample 10050 show a hexagonal habit consistent with the high-temperature NiAs-type structure. Complete three-dimensional counter intensity data have been measured and used to confirm and refine Bertaut's proposed low-temperature crystal structure.

  13. Self-assembly and structural relaxation in a model ionomer melt

    DOE PAGES

    Goswami, Monojoy; Borreguero, Jose M.; Sumpter, Bobby G.

    2015-02-26

    Molecular dynamics simulations are used to understand the self-assembly and structural relaxation in ionomer melts containing less than 10% degree of ionization on the backbone. We study the self-assembly of charged sites and counterions that show structural ordering and agglomeration with a range of structures that can be achieved by changing the dielectric constant of the medium. The intermediate scattering function shows a decoupling of charge and counterion relaxation at longer length scales for only high dielectric constant and at shorter length scales for all dielectric constants. Finally, the slow structural decay of counterions in the strongly correlated ionomer systemmore » closely resembles transport properties of semi-flexible polymers.« less

  14. Controlled Detonation Dynamics in Additively Manufactured High Explosives

    NASA Astrophysics Data System (ADS)

    Schmalzer, Andrew; Tappan, Bryce; Bowden, Patrick; Manner, Virginia; Clements, Brad; Menikoff, Ralph; Ionita, Axinte; Branch, Brittany; Dattelbaum, Dana; Espy, Michelle; Patterson, Brian; Wu, Ruilian; Mueller, Alexander

    2017-06-01

    The effect of structure in explosives has long been a subject of interest to explosives engineers and scientists. Through structure, detonation dynamics in explosives can be manipulated, introducing a new level of safety and directed performance into these previously difficult to control materials. New advances in additive manufacturing (AM) allow the deliberate introduction of exact internal structures at dimensions approaching the mesoscale of these energetic materials. We show through simulation and experiment that this structure can be used to control detonation behavior by manipulating complex shockwave interactions. We use high-speed video and shorting mag-wires to determine the detonation velocity in AM generated explosive structures, demonstrating, for the first time, a method of controlling the directional propagation of reactive flow through the controlled introduction of structure within a high explosive. With ongoing improvement in the AM methods available coupled with guidance through modeling and simulations, more complex interactions are being explored. LANL LDRD Office.

  15. Treatment of high ethanol concentration wastewater by biological sand filters: enhanced COD removal and bacterial community dynamics.

    PubMed

    Rodriguez-Caballero, A; Ramond, J-B; Welz, P J; Cowan, D A; Odlare, M; Burton, S G

    2012-10-30

    Winery wastewater is characterized by its high chemical oxygen demand (COD), seasonal occurrence and variable composition, including periodic high ethanol concentrations. In addition, winery wastewater may contain insufficient inorganic nutrients for optimal biodegradation of organic constituents. Two pilot-scale biological sand filters (BSFs) were used to treat artificial wastewater: the first was amended with ethanol and the second with ethanol, inorganic nitrogen (N) and phosphorus (P). A number of biochemical parameters involved in the removal of pollutants through BSF systems were monitored, including effluent chemistry and bacterial community structures. The nutrient supplemented BSF showed efficient COD, N and P removal. Comparison of the COD removal efficiencies of the two BSFs showed that N and P addition enhanced COD removal efficiency by up to 16%. Molecular fingerprinting of BSF sediment samples using denaturing gradient gel electrophoresis (DGGE) showed that amendment with high concentrations of ethanol destabilized the microbial community structure, but that nutrient supplementation countered this effect. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Physical structure and algae community of summer upwelling off eastern Hainan

    NASA Astrophysics Data System (ADS)

    Xu, H.; Liu, S.; Xie, Q.; Hong, B.; Long, T.

    2017-12-01

    The upwelling system is the most productive ecosystem along the continental shelf of the northern South China Sea Shelf. It brings nutrient from bottom to surface and blooms biotic community driven by summer monsoon. In this study, we present observed results of physical and biotic community structures during August, 2015 in the upwelling system along Hainan eastern coast, which is one the strongest upwelling systems in the northern South China Sea. By using hydrological data collected by CTD, we found a significant cold water tongue with high salinity which extended from offshore to 100 m isobaths. However, dissolved oxygen (DO) showed a sandwich structure in which high core of DO concentration appeared at the layer from 5 m to 30 m. It possibly was caused by the advection transport of high DO from adjacent area. Basically, this upwelling system was constrained at northern area of 18.8ºN in horizontal due to the weakening summer monsoon in August. In addition, we collected water sample at the upwelling area and measured algae categories and concentration by high performance liquid chromatography (HPLC). Results show the biotic community was dominated by five types of algae mainly, they were diatoms, dinoflagellates, green algae, prokaryotes and prochlorococcus. And different patterns of different algae were demonstrated. In the upwelling area, diatoms and prokaryotes show opposite structures, and more complex pattern for the rest three algae indicating an active biotic community in the upwelling system.

  17. Sources of Geomagnetic Activity during Nearly Three Solar Cycles (1972-2000)

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.; Cliver, E. W.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We examine the contributions of the principal solar wind components (corotating highspeed streams, slow solar wind, and transient structures, i.e., interplanetary coronal mass ejections (CMEs), shocks, and postshock flows) to averages of the aa geomagnetic index and the interplanetary magnetic field (IMF) strength in 1972-2000 during nearly three solar cycles. A prime motivation is to understand the influence of solar cycle variations in solar wind structure on long-term (e.g., approximately annual) averages of these parameters. We show that high-speed streams account for approximately two-thirds of long-term aa averages at solar minimum, while at solar maximum, structures associated with transients make the largest contribution (approx. 50%), though contributions from streams and slow solar wind continue to be present. Similarly, high-speed streams are the principal contributor (approx. 55%) to solar minimum averages of the IMF, while transient-related structures are the leading contributor (approx. 40%) at solar maximum. These differences between solar maximum and minimum reflect the changing structure of the near-ecliptic solar wind during the solar cycle. For minimum periods, the Earth is embedded in high-speed streams approx. 55% of the time versus approx. 35% for slow solar wind and approx. 10% for CME-associated structures, while at solar maximum, typical percentages are as follows: high-speed streams approx. 35%, slow solar wind approx. 30%, and CME-associated approx. 35%. These compositions show little cycle-to-cycle variation, at least for the interval considered in this paper. Despite the change in the occurrences of different types of solar wind over the solar cycle (and less significant changes from cycle to cycle), overall, variations in the averages of the aa index and IMF closely follow those in corotating streams. Considering solar cycle averages, we show that high-speed streams account for approx. 44%, approx. 48%, and approx. 40% of the solar wind composition, aa, and the IMF strength, respectively, with corresponding figures of approx. 22%, approx. 32%, and approx. 25% for CME-related structures, and approx. 33%, approx. 19%, and approx. 33% for slow solar wind.

  18. Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution.

    PubMed

    Kailasam, Kamalakannan; Schmidt, Johannes; Bildirir, Hakan; Zhang, Guigang; Blechert, Siegfried; Wang, Xinchen; Thomas, Arne

    2013-06-25

    Two emerging material classes are combined in this work, namely polymeric carbon nitrides and microporous polymer networks. The former, polymeric carbon nitrides, are composed of amine-bridged heptazine moieties and showed interesting performance as a metal-free photocatalyst. These materials have, however, to be prepared at high temperatures, making control of their chemical structure difficult. The latter, microporous polymer networks have received increasing interest due to their high surface area, giving rise to interesting applications in gas storage or catalysis. Here, the central building block of carbon nitrides, a functionalized heptazine as monomer, and tecton are used to create microporous polymer networks. The resulting heptazine-based microporous polymers show high porosity, while their chemical structure resembles the ones of carbon nitrides. The polymers show activity for the photocatalytic production of hydrogen from water, even under visible light illumination. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Systems integration and demonstration of advanced reusable structure for ALS

    NASA Technical Reports Server (NTRS)

    Gibbins, Martin N.

    1991-01-01

    The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.

  20. Rough-pipe flows and the existence of fully developed turbulence

    NASA Astrophysics Data System (ADS)

    Gioia, G.; Chakraborty, Pinaki; Bombardelli, Fabián A.

    2006-03-01

    It is widely believed that at high Reynolds number (Re) all turbulent flows approach a limiting state of "fully developed turbulence" in which the statistics of the velocity fluctuations are independent of Re. Nevertheless, direct measurements of the velocity fluctuations have failed to yield firm empirical evidence that even the second-order structure function becomes independent of Re at high Re, let alone structure functions of higher order. Here we relate the friction coefficient (f) of rough-pipe flows to the second-order structure function. Then we show that in light of experimental measurements of f our results yield unequivocal evidence that the second-order structure function becomes independent of Re at high Re, compatible with the existence of fully developed turbulence.

  1. Concentration Measurements in Self-Excited, Momentum-Dominated Helium Jets

    NASA Technical Reports Server (NTRS)

    Yildirim, Bekir Sedat

    2004-01-01

    Flow structure of momentum-dominated pure helium jets discharged vertically into ambient air was investigated using high-speed rainbow schlieren deflectometry (RSD) technique. Effects of the operating parameters, i.e., Reynolds number (Re) and Richardson number (Ri), on the oscillatory behavior of the flow were examined over a range of experimental conditions. To seek the individual effect of these parameters, one of them was fixed and the other was varied with certain constraints. Measurements revealed highly periodic oscillations in the laminar region as well as high regularity in transition and turbulent regions. Maximum spectral power profiles at different axial locations indicated the oscillation amplitude increasing until the breakdown of the jet in the turbulent regime. The transition from the laminar to turbulent flow was also investigated. Fast Fourier transform analysis performed in the transition regime showed that the flow oscillates at a unique frequency, which was the same in the upstream laminar flow region. Measured deflection angle data were used in Abel inversion algorithm to construct the helium concentration fields. Instantaneous helium concentration contours revealed changes in the flow structure and evolution of vortical structures during an oscillation cycle. Temporal evolution plots of helium concentration at different axial location showed repeatable oscillations at all axial and radial locations up to the turbulent regime. A cross-correlation technique, applied to find the spatial displacements of the vortical structures, provided correlation coefficient peaks between consecutive schlieren images. Results show that the vortical structure convected and accelerated only in the axial direction.

  2. Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure.

    PubMed

    Wang, Baochun; Walther, Andreas

    2015-11-24

    Natural high-performance materials inspire the pursuit of ordered hard/soft nanocomposite structures at high fractions of reinforcements and with balanced molecular interactions. Herein, we develop a facile, waterborne self-assembly pathway to mimic the multiscale cuticle structure of the crustacean armor by combining hard reinforcing cellulose nanocrystals (CNCs) with soft poly(vinyl alcohol) (PVA). We show iridescent CNC nanocomposites with cholesteric liquid-crystal structure, in which different helical pitches and photonic band gaps can be realized by varying the CNC/PVA ratio. We further show that multilayered crustacean-mimetic materials with tailored periodicity and layered cuticular structure can be obtained by sequential preparation pathways. The transition from a cholesteric to a disordered structure occurs for a critical polymer concentration. Correspondingly, we find a transition from stiff and strong mechanical behavior to materials with increasing ductility. Crack propagation studies using scanning electron microscopy visualize the different crack growth and toughening mechanisms inside cholesteric nanocomposites as a function of the interstitial polymer content for the first time. Different extents of crack deflection, layered delamination, ligament bridging, and constrained microcracking can be observed. Drawing of highly plasticized films sheds light on the mechanistic details of the transition from a cholesteric/chiral nematic to a nematic structure. The study demonstrates how self-assembly of biobased CNCs in combination with suitable polymers can be used to replicate a hierarchical biological structure and how future design of these ordered multifunctional nanocomposites can be optimized by understanding mechanistic details of deformation and fracture.

  3. Graphene-like carbon synthesized from popcorn flakes

    NASA Astrophysics Data System (ADS)

    Mendoza, D.; Flores, C. B.; Berrú, R. Y. Sato

    2015-01-01

    The synthesis of graphene-like carbon using popcorn kernels as a renewable resource is presented. In a first step popcorn kernels were heated to produce popcorn flakes with a spongy appearance consisting of a polygonal cellular structure. In a second step, the flakes were treated at high temperature in an inert atmosphere to produce carbonization. Raman spectroscopy shows graphene-like structure with a high degree of disorder.

  4. Molecular dynamics study of silicon carbide properties under external dynamic loading

    NASA Astrophysics Data System (ADS)

    Utkin, A. V.; Fomin, V. M.

    2017-10-01

    In this study, molecular dynamic simulations of high-velocity impact of a spherical 3C-SiC cluster, with a wide range of velocities (from 100 to 2600 m/s) and with a rigid wall, were performed. The analysis of the final structure shows that no structural phase transformation occurred in the material, despite the high pressure during the collision process.

  5. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    PubMed Central

    Chang, Shu-Wei; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-01-01

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future. PMID:29271937

  6. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    PubMed

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  7. High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst.

    PubMed

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Lu Hua; Han, Yu; Chen, Ying; Jaroniec, Mietek; Qiao, Shi-Zhang

    2016-12-14

    Hydrogen evolution reaction (HER) is a critical process due to its fundamental role in electrocatalysis. Practically, the development of high-performance electrocatalysts for HER in alkaline media is of great importance for the conversion of renewable energy to hydrogen fuel via photoelectrochemical water splitting. However, both mechanistic exploration and materials development for HER under alkaline conditions are very limited. Precious Pt metal, which still serves as the state-of-the-art catalyst for HER, is unable to guarantee a sustainable hydrogen supply. Here we report an anomalously structured Ru catalyst that shows 2.5 times higher hydrogen generation rate than Pt and is among the most active HER electrocatalysts yet reported in alkaline solutions. The identification of new face-centered cubic crystallographic structure of Ru nanoparticles was investigated by high-resolution transmission electron microscopy imaging, and its formation mechanism was revealed by spectroscopic characterization and theoretical analysis. For the first time, it is found that the Ru nanocatalyst showed a pronounced effect of the crystal structure on the electrocatalytic activity tested under different conditions. The combination of electrochemical reaction rate measurements and density functional theory computation shows that the high activity of anomalous Ru catalyst in alkaline solution originates from its suitable adsorption energies to some key reaction intermediates and reaction kinetics in the HER process.

  8. Effect of dope solution temperature on the membrane structure and membrane distillation performance

    NASA Astrophysics Data System (ADS)

    Nawi, N. I. M.; Bilad, M. R.; Nordin, N. A. H. M.

    2018-04-01

    Membrane distillation (MD) is a non-isothermal process applicable to purify water using hydrophobic membrane. Membrane in MD is hydrophobic, permeable to water vapor but repels liquid water. MD membrane is expected to pose high flux, high fouling and scaling resistances and most importantly high wetting resistance. This study develops flat-sheet polyvinylidene fluoride (PVDF) membrane by exploring both liquid-liquid and liquid-solid phase inversion technique largely to improve its wetting resistance and flux performance. We hypothesize that temperature of dope solution play roles in solid-liquid separation during membrane formation and an optimum balance between liquid-liquid and liquid-solid (crystallization) separation leads to highly performance PVDF membrane. Findings obtained from differential scanning calorimeter test show that increasing dope solution temperature reduces degree of PVDF crystallinity and suppresses formation of crystalline structure. The morphological images of the resulting membranes show that at elevated dope solution temperature (40, 60, 80 and 100°C), the spherulite-like structures are formed across the thickness of membranes ascribed from due to different type of crystals. The performance of direct-contact MD shows that the obtained flux of the optimum dope temperature (60°C) of 10.8 L/m2h is comparable to commercial PTFE-based MD membrane.

  9. Study and analysis of filtering characteristics of 1D photonic crystal

    NASA Astrophysics Data System (ADS)

    Juyal, Rohan; Suthar, Bhuvneshwer; Kumar, Arun

    2018-05-01

    Propagation of electromagnetic wave have been studied and analyzed through 1D photonic crystal. 1D photonic band gap material with low and high refractive index material has been chosen for this study. Band structure and reflectivity of this 1D structure has been calculated using transmission matrix method (TMM). Study and analysis of the band structure and reflectivity of this structure shows that this structure may work as an optical filter.

  10. Coaxial-cable structure composite cathode material with high sulfur loading for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Zhang, Zhian; Guo, Zaiping; Zhang, Kai; Lai, Yanqing; Li, Jie

    2015-01-01

    Hollow carbon nanofiber@nitrogen-doped porous carbon (HCNF@NPC) coaxial-cable structure composite, which is carbonized from HCNF@polydopamine, is prepared as an improved high conductive carbon matrix for encapsulating sulfur as a composite cathode material for lithium-sulfur batteries. The prepared HCNF@NPC-S composite with high sulfur content of approximately 80 wt% shows an obvious coaxial-cable structure with an NPC layer coating on the surface of the linear HCNFs along the length and sulfur homogeneously distributes in the coating layer. This material exhibits much better electrochemical performance than the HCNF-S composite, delivers initial discharge capacity of 982 mAh g-1 and maintains a high capacity retention rate of 63% after 200 cycles at a high current density of 837.5 mA g-1. The significantly enhanced electrochemical performance of the HCNF@NPC-S composite is attributed to the unique coaxial-cable structure, in which the linear HCNF core provides electronic conduction pathways and works as mechanical support, and the NPC shell with nitrogen-doped and porous structure can trap sulfur/polysulfides and provide Li+ conductive pathways.

  11. High power, 1060-nm diode laser with an asymmetric hetero-waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Zhang, Yu; Hao, E

    2015-07-31

    By introducing an asymmetric hetero-waveguide into the epitaxial structure of a diode laser, a 6.21-W output is achieved at a wavelength of 1060 nm. A different design in p- and n-confinement, based on optimisation of energy bands, is used to reduce voltage loss and meet the requirement of high power and high wall-plug efficiency. A 1060-nm diode laser with a single quantum well and asymmetric hetero-structure waveguide is fabricated and analysed. Measurement results show that the asymmetric hetero-structure waveguide can be efficiently used for reducing voltage loss and improving the confinement of injection carriers and wall-plug efficiency. (lasers)

  12. Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang; Wei, Tao; Carr, David; Harrison, Robert; Edwards, Lyndon; Hoffelner, Wolfgang; Seo, Dongyi; Maruyama, Kouichi

    2012-12-01

    Titanium aluminide (TiAl) alloys exhibit high specific strength, low density, good oxidation, corrosion, and creep resistance at elevated temperatures, making them good candidate materials for aerospace and automotive applications. TiAl alloys also show excellent radiation resistance and low neutron activation, and they can be developed to have various microstructures, allowing different combinations of properties for various extreme environments. Hence, TiAl alloys may be used in advanced nuclear systems as high-temperature structural materials. Moreover, TiAl alloys are good materials to be used for fundamental studies on microstructural effects on irradiation behavior of advanced nuclear structural materials. This article reviews the microstructure, creep, radiation, and oxidation properties of TiAl alloys in comparison with other nuclear structural materials to assess the potential of TiAl alloys as candidate structural materials for future nuclear applications.

  13. Novel structure design of composite proton exchange membranes with continuous and through-membrane proton-conducting channels

    NASA Astrophysics Data System (ADS)

    Wang, Hang; Tang, Chenxiao; Zhuang, Xupin; Cheng, Bowen; Wang, Wei; Kang, Weimin; Li, Hongjun

    2017-10-01

    The primary goal of this study is to develop a high-performanced proton exchange membrane with the characteristics of through-membrane and continuous solution blown nanofibers as proton-conducting channels. The curled sulfonated phenolphthalein poly (ether sulfone) and poly (vinylidene fluoride) nanofibers were separately fabricated through the solution blowing process which is a new nanofiber fabricating method with high productivity, then they were fabricated into a sandwich-structured mat. Then this sandwich-structured mat was hot-pressed to form the designed structure using different melting temperatures of the two polymers by melting and making poly (vinylidene fluoride) flow into the phenolphthalein poly (ether sulfone) nanofiber mat. The characteristics of the composite membrane, such as morphology and performance of the membrane, were investigated. The characterization results proved the successful preparation of the membrane structure. Performance results showed that the novel structured membrane with through-membrane nanofibers significantly improved water swelling and methanol permeability, though its conductivity is lower than that of Nafion, the cell performance showed comparable results. Therefore, the novel structure design can be considered as a promising method for preparing of proton exchange membranes.

  14. Asymmetric actuating structure generates negligible influence on the supporting base for high performance scanning probe microscopies

    NASA Astrophysics Data System (ADS)

    Yi Yan, Gang; Bin Liu, Yong; Hua Feng, Zhi

    2014-02-01

    An asymmetric actuating structure generating negligible influence on the supporting base for high performance scanning probe microscopies is proposed in this paper. The actuator structure consists of two piezostacks, one is used for actuating while the other is for counterbalancing. In contrast with balanced structure, the two piezostacks are installed at the same side of the supporting base. The effectiveness of the structure is proved by some experiments with the actuators fixed to the free end of a cantilever. Experimental results show that almost all of the vibration modes of the cantilever are suppressed effectively at a wide frequency range of 90 Hz-10 kHz.

  15. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, D.S.; Catchings, R.D.; Goldman, M.R.; Gohn, G.S.; Horton, J. Wright; Edwards, L.E.; Rymer, M.J.; Gandhok, G.

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (??5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientifi c Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderateamplitude, discontinuous, dipping reflections below ??527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ??527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fi ll sediments and postimpact Eocene to Pleistocene sediments. Refl ections with ??20-30 m of relief in the uppermost part of the crater-fi ll and lowermost part of the postimpact section suggest differential compaction of the crater-fi ll materials during early postimpact time. The top of the crater-fi ll section also shows ??20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostratigraphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the fi rst possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postimpact section unrelated to structures in the crater fi ll indicates postimpact sediment compaction. ?? 2009 The Geological Society of America.

  16. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  17. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    PubMed

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  18. A Cultural Resources Survey of the Whitlow Ranch Dam and Reservoir Area, Eastern Pinal County, Arizona,

    DTIC Science & Technology

    1986-01-01

    Superstition foothills. What was not expected was the high proportion of sites which show evidence of structures, and the equally high proportion which can be...to look at an attempt to hit paydirt that ultimately failed. Specifically, we can ask: what is the structure of a mining effort at this early stage...badly disturbed by looting but (as has been learned in recent years) even highly disturbed pueblo sites can be made to yield significant new information

  19. A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang, Ping

    2011-01-01

    Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (R s = 10 ohms/square (Ω /2)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowiremore » and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2Ω /2. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.« less

  20. Thermal spike effect in sputtering of porous germanium to form surface pattern by high energy heavy ions irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooda, Sonu; Khan, S. A.; Kanjilal, D.

    2016-05-16

    Germanium exhibits a remarkable effect when subjected to high energy heavy ions irradiation. A synergic effect of high electronic energy loss (S{sub e} = 16.4 keV nm{sup −1}) and nuclear energy loss (S{sub n} = 0.1 keV nm{sup −1}) of 100 MeV Ag ions irradiation in Ge is presented. The results show that crystalline Ge is insensitive to the ionizing part of energy loss whereas thermal spike generated in the damaged Ge leads to the formation of porous structure. Further, an unusual high sputtering of the porous structure opens up the sub-surface voids to show the surface pattern. We explore the role of electron and phonon confinement to explainmore » this effect.« less

  1. High-pressure phase transitions of nitinol NiTi to a semiconductor with an unusual topological structure

    NASA Astrophysics Data System (ADS)

    Liu, Guangtao; Liu, Hanyu; Feng, Xiaolei; Redfern, Simon A. T.

    2018-04-01

    Systematic ab initio structure simulations have been used to explore the high-pressure behavior of nitinol (NiTi) at zero temperature. Our crystal structure prediction and first-principles calculations reveal that the known B 19 phase is dynamically unstable, and an orthorhombic structure (Pbcm) and a face-centered-cubic B 32 structure (F d 3 ¯m ) become stable above ˜4 and 29 GPa, respectively. The predicted, highest-pressure, B 32 phase is composed of two interpenetrating diamond structures, with a structural topology that is quite distinct from that of the other phases of NiTi. Interestingly, the B 32 phase shows an unusual semiconducting characteristic as a result of its unique band structure and the nature of 3 d orbitals localization, whose expected synthesis pressure is accessible to current experimental techniques.

  2. Selector-free resistive switching memory cell based on BiFeO3 nano-island showing high resistance ratio and nonlinearity factor

    PubMed Central

    Jeon, Ji Hoon; Joo, Ho-Young; Kim, Young-Min; Lee, Duk Hyun; Kim, Jin-Soo; Kim, Yeon Soo; Choi, Taekjib; Park, Bae Ho

    2016-01-01

    Highly nonlinear bistable current-voltage (I–V) characteristics are necessary in order to realize high density resistive random access memory (ReRAM) devices that are compatible with cross-point stack structures. Up to now, such I–V characteristics have been achieved by introducing complex device structures consisting of selection elements (selectors) and memory elements which are connected in series. In this study, we report bipolar resistive switching (RS) behaviours of nano-crystalline BiFeO3 (BFO) nano-islands grown on Nb-doped SrTiO3 substrates, with large ON/OFF ratio of 4,420. In addition, the BFO nano-islands exhibit asymmetric I–V characteristics with high nonlinearity factor of 1,100 in a low resistance state. Such selector-free RS behaviours are enabled by the mosaic structures and pinned downward ferroelectric polarization in the BFO nano-islands. The high resistance ratio and nonlinearity factor suggest that our BFO nano-islands can be extended to an N × N array of N = 3,740 corresponding to ~107 bits. Therefore, our BFO nano-island showing both high resistance ratio and nonlinearity factor offers a simple and promising building block of high density ReRAM. PMID:27001415

  3. Surface and structure modification induced by high energy and highly charged uranium ion irradiation in monocrystal spinel

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Song, Yin; Gou, Jie; Zhang, Liqing; Meng, Yancheng; Zhang, Hengqing; Ma, Yizhun

    2014-05-01

    Due to its high temperature properties and relatively good behavior under irradiation, magnesium aluminate spinel (MgAl2O4) is considered as a possible material to be used as inert matrix for the minor actinides burning. In this case, irradiation damage is an unavoidable problem. In this study, high energy and highly charged uranium ions (290 MeV U32+) were used to irradiate monocrystal spinel to the fluence of 1.0 × 1013 ions/cm2 to study the modification of surface and structure. Highly charged ions carry large potential energy, when they interact with a surface, the release of potential energy results in the modification of surface. Atomic force microscopy (AFM) results showed the occurrence of etching on surface after uranium ion irradiation. The etching depth reached 540 nm. The surprising efficiency of etching is considered to be induced by the deposition of potential energy with high density. The X-ray diffraction results showed that the (4 4 0) diffraction peak obviously broadened after irradiation, which indicated that the distortion of lattice has occurred. After multi-peak Gaussian fitting, four Gaussian peaks were separated, which implied that a structure with different damage layers could be formed after irradiation.

  4. Functional traits determine formation of mutualism and predation interactions in seed-rodent dispersal system of a subtropical forest

    NASA Astrophysics Data System (ADS)

    Chang, Gang; Zhang, Zhibin

    2014-02-01

    Network structure in plant-animal systems has been widely investigated but the roles of functional traits of plants and animals in formation of mutualism and predation interactions and community structure are still not fully understood. In this study, we quantitatively assessed interaction strength of mutualism and predation between 5 tree species and 7 rodent species by using semi-natural enclosures in a subtropical forest in southwest China. Seeds with high handling-time and nutrition traits (for both rat and mouse species) or high tannin trait (for mouse species) show high mutualism but low predation with rodents; while seeds with low handling-time and low nutrition traits show high predation but low mutualism with rodents. Large-sized rat species are more linked to seeds with high handling-time and high nutrition traits, while small-sized mouse species are more connected with seeds with low handling-time, low nutrition value and high tannin traits. Anti-predation seed traits tend to increase chance of mutualism instead of reducing predation by rodents, suggesting formation of mutualism may be connected with that of predation. Our study demonstrates that seed and animal traits play significant roles in the formation of mutualism and predation and network structure of the seed-rodent dispersal system.

  5. Few-Layer MXenes Delaminated via High-Energy Mechanical Milling for Enhanced Sodium-Ion Batteries Performance.

    PubMed

    Wu, Yuting; Nie, Ping; Wang, Jiang; Dou, Hui; Zhang, Xiaogang

    2017-11-15

    The global availability of sodium makes the exploration of superior sodium-ion batteries attractive for energy storage application. MXenes, as one of the most promising anodes for sodium-ion batteries, have been reported to have many advantages, such as high electronic conductivity and a hydrophilic surface. However, the compact multilayer structure and deficient delamination significantly inhibits their application, requiring high energy and showing decreased storage capacity and poor rate capabilities. Few-layer MXene has been proved to benefit superior electrochemical properties with a better ionic conductivity and two-dimensional layer structure. Herein, we report scale delamination of few-layer MXene nanosheets as anodes for sodium-ion batteries, which are prepared via an organic solvent assist high-energy mechanical-milling method. This approach efficiently prevents the oxidation of MXene and produces few-layer nanosheets structure, facilitating fast electron transport and Na + diffusion. Electrochemical tests demonstrate that the few-layer MXenes show high specific capacity, excellent cycle stability, and good rate performance. Specifically, few-layer MXene nanosheets deliver a high reversible capacity of 267 mA h g -1 at a current density of 0.1 A g -1 . After cycling 1500 cycles at a high rate of 1 A g -1 , a reversible capacity of 76 mA h g -1 could be maintained.

  6. Effects of Link Annotations on Search Performance in Layered and Unlayered Hierarchically Organized Information Spaces.

    ERIC Educational Resources Information Center

    Fraser, Landon; Locatis, Craig

    2001-01-01

    Investigated the effects of link annotations on high school user search performance in Web hypertext environments having deep (layered) and shallow link structures. Results confirmed previous research that shallow link structures are better than deep (layered) link structures, and also showed that annotations had virtually no effect on search…

  7. High pressure effects on a trimetallic Mn(II/III) SMM.

    PubMed

    Prescimone, Alessandro; Sanchez-Benitez, Javier; Kamenev, Konstantin V; Moggach, Stephen A; Lennie, Alistair R; Warren, John E; Murrie, Mark; Parsons, Simon; Brechin, Euan K

    2009-09-28

    A combined study of the high pressure crystallography and high pressure magnetism of the complex [Mn3(Hcht)2(bpy)4](ClO4)3.Et2O.2MeCN (1.Et2O.2MeCN) (H3cht is cis,cis-1,3,5-cyclohexanetriol) is presented in an attempt to observe and correlate pressure induced changes in its structural and physical properties. At 0.16 GPa the complex 1.Et2O.2MeCN loses all associated solvent in the crystal lattice, becoming 1. At higher pressures structural distortions occur changing the distances between the metal centres and the bridging oxygen atoms making the magnetic exchange between the manganese ions weaker. No significant variations are observed in the Jahn-Teller axis of the only Mn(III) present in the structure. High pressure dc chiMT plots display a gradual decrease in both the low temperature value and slope. Simulations show a decrease in J with increasing pressure although the ground state is preserved. Magnetisation data do not show any change in |D|.

  8. Synthesis and structural studies of two pyridine-armed reinforced cyclen chelators and their transition metal complexes.

    PubMed

    Wilson, Kevin R; Cannon-Smith, Desiray J; Burke, Benjamin P; Birdsong, Orry C; Archibald, Stephen J; Hubin, Timothy J

    2016-08-16

    Two novel pyridine pendant-armed macrocycles structurally reinforced by an ethyl bridge, either between adjacent nitrogens (for side-bridged) or non-adjacent nitrogens (for cross-bridged), have been synthesized and complexed with a range of transition metal ions (Co 2+ , Ni 2+ , Cu 2+ and Zn 2+ ). X-ray crystal structures of selected cross-bridged complexes were obtained which showed the characteristic cis-V configuration with potential labile cis binding sites. The complexes have been characterized by their electronic spectra and magnetic moments, which show the expected high spin divalent metal complex in most cases. Exceptions are the nickel side-bridged complex, which shows a mixture of high-spin and low spin, and the cobalt cross-bridged complex which has oxidized to cobalt(III). Cyclic voltammetry in acetonitrile was carried out to assess the potential future use of these complexes in oxidation catalysis. Selected complexes offer significant catalytic potential enhanced by the addition of the pyridyl arm to a reinforced cyclen backbone.

  9. Structural analysis of as-deposited and annealed low-temperature gallium arsenide

    NASA Astrophysics Data System (ADS)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1993-04-01

    The structure of GaAs grown at low substrate temperatures (LT-GaAs) by molecular beam epitaxy has been studied using high resolution X-ray diffraction methods. Double crystal rocking curves from the as-deposited LT-GaAs show well defined interference fringes, indicating a high level of structural perfection. Triple crystal diffraction analysis of the as-deposited sample showed significantly less diffuse scattering near the LT-GaAs 004 reciprocal lattice point compared with the substrate 004 reciprocal lattice point, suggesting that despite the incorporation of approximately 1% excess arsenic, the epitaxial layer had superior crystalline perfection than did the GaAs substrate. Triple crystal scans of annealed LT-GaAs showed an increase in the integrated diffuse intensity by approximately a factor of three as the anneal temperature was increased from 700 to 900°C. Analogous to the effects of SiO2 precipitates in annealed Czochralski silicon, the diffuse intensity is attributed to distortions in the epitaxial LT-GaAs lattice by arsenic precipitates.

  10. Relation between native ensembles and experimental structures of proteins

    PubMed Central

    Best, Robert B.; Lindorff-Larsen, Kresten; DePristo, Mark A.; Vendruscolo, Michele

    2006-01-01

    Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of “high-sequence similarity Protein Data Bank” (HSP) structures and consider the extent to which such ensembles represent the structural heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest that even a modest number of structures of a protein determined under different conditions, or with small variations in sequence, capture a representative subset of the true native-state ensemble. PMID:16829580

  11. Exploring the origin of high optical absorption in conjugated polymers.

    PubMed

    Vezie, Michelle S; Few, Sheridan; Meager, Iain; Pieridou, Galatia; Dörling, Bernhard; Ashraf, Raja Shahid; Goñi, Alejandro R; Bronstein, Hugo; McCulloch, Iain; Hayes, Sophia C; Campoy-Quiles, Mariano; Nelson, Jenny

    2016-07-01

    The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

  12. Spatial frequency maps of power flow in metamaterials and photonic crystals: Investigating backward-wave modes across the electromagnetic spectrum

    NASA Astrophysics Data System (ADS)

    Aghanejad, Iman; Markley, Loïc

    2017-11-01

    We present spatial frequency maps of power flow in metamaterials and photonic crystals in order to provide insights into their electromagnetic responses and further our understanding of backward power in periodic structures. Since 2001, many different structures across the electromagnetic spectrum have been presented in the literature as exhibiting an isotropic negative effective index. Although these structures all exhibit circular or spherical equifrequency contours that resemble those of left-handed media, here we show through k -space diagrams that the distribution of power in the spatial frequency domain can vary considerably across these structures. In particular, we show that backward power arises from high-order right-handed harmonics in photonic crystals, magnetodielectric crystals, and across the layers of coupled-plasmonic-waveguide metamaterials, while arising from left-handed harmonic pairs in split-ring resonator and wire composites, plasmonic crystals, and along the layers of coupled-plasmonic-waveguide metamaterials. We also show that the fishnet structure exhibits the same left-handed harmonic pairs as the latter group. These observations allow us to categorize different metamaterials according to their spatial spectral source of backward power and identify the mechanism behind negative refraction at a given interface. Finally, we discuss how k -space maps of power flow can be used to explain the high or low transmittance of power into different metamaterial or photonic crystal structures.

  13. Quantitative Protein Topography Analysis and High-Resolution Structure Prediction Using Hydroxyl Radical Labeling and Tandem-Ion Mass Spectrometry (MS)*

    PubMed Central

    Kaur, Parminder; Kiselar, Janna; Yang, Sichun; Chance, Mark R.

    2015-01-01

    Hydroxyl radical footprinting based MS for protein structure assessment has the goal of understanding ligand induced conformational changes and macromolecular interactions, for example, protein tertiary and quaternary structure, but the structural resolution provided by typical peptide-level quantification is limiting. In this work, we present experimental strategies using tandem-MS fragmentation to increase the spatial resolution of the technique to the single residue level to provide a high precision tool for molecular biophysics research. Overall, in this study we demonstrated an eightfold increase in structural resolution compared with peptide level assessments. In addition, to provide a quantitative analysis of residue based solvent accessibility and protein topography as a basis for high-resolution structure prediction; we illustrate strategies of data transformation using the relative reactivity of side chains as a normalization strategy and predict side-chain surface area from the footprinting data. We tested the methods by examination of Ca+2-calmodulin showing highly significant correlations between surface area and side-chain contact predictions for individual side chains and the crystal structure. Tandem ion based hydroxyl radical footprinting-MS provides quantitative high-resolution protein topology information in solution that can fill existing gaps in structure determination for large proteins and macromolecular complexes. PMID:25687570

  14. Thermoelectric properties of layered NaSbSe2.

    PubMed

    Putatunda, Aditya; Xing, Guangzong; Sun, Jifeng; Li, Yuwei; Singh, David J

    2018-06-06

    We investigate ordered monoclinic NaSbSe 2 as a thermoelectric using first principles calculations. We find that from an electronic point of view, ordered and oriented n-type NaSbSe 2 is comparable to the best known thermoelectric materials. This phase has a sufficiently large band gap for thermoelectric and solar absorber applications in contrast to the disordered phase which has a much narrower gap. The electronic structure shows anisotropic, non-parabolic bands. The results show a high Seebeck coefficient in addition to direction dependent high conductivity. The electronic structure quantified by an electron fitness function is very favorable, especially in the n-type case.

  15. Thermoelectric properties of layered NaSbSe2

    NASA Astrophysics Data System (ADS)

    Putatunda, Aditya; Xing, Guangzong; Sun, Jifeng; Li, Yuwei; Singh, David J.

    2018-06-01

    We investigate ordered monoclinic NaSbSe2 as a thermoelectric using first principles calculations. We find that from an electronic point of view, ordered and oriented n-type NaSbSe2 is comparable to the best known thermoelectric materials. This phase has a sufficiently large band gap for thermoelectric and solar absorber applications in contrast to the disordered phase which has a much narrower gap. The electronic structure shows anisotropic, non-parabolic bands. The results show a high Seebeck coefficient in addition to direction dependent high conductivity. The electronic structure quantified by an electron fitness function is very favorable, especially in the n-type case.

  16. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load

    PubMed Central

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai

    2016-01-01

    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C. PMID:27754356

  17. Porous hollow Co₃O₄ with rhombic dodecahedral structures for high-performance supercapacitors.

    PubMed

    Zhang, Yi-Zhou; Wang, Yang; Xie, Ye-Lei; Cheng, Tao; Lai, Wen-Yong; Pang, Huan; Huang, Wei

    2014-11-06

    Porous hollow Co₃O₄ with rhombic dodecahedral structures were prepared by the calcination of ZIF-67 ([Co(mim)2; mim = 2-methylimidazolate]) rhombic dodecahedral microcrystals. A supercapacitor was successfully constructed by adopting the resulting porous hollow Co₃O₄ rhombic dodecahedral structure as the electrode material, which showed a large specific capacitance of 1100 F g(-1) and retained more than 95.1% of the specific capacitance after 6000 continuous charge-discharge cycles. The excellent capacitive properties and stability mark the porous hollow Co₃O₄ with the rhombic dodecahedral structure as one of the most promising electrode materials for high-performance supercapacitors.

  18. Secondary structural analyses of ITS1 in Paramecium.

    PubMed

    Hoshina, Ryo

    2010-01-01

    The nuclear ribosomal RNA gene operon is interrupted by internal transcribed spacer (ITS) 1 and ITS2. Although the secondary structure of ITS2 has been widely investigated, less is known about ITS1 and its structure. In this study, the secondary structure of ITS1 sequences for Paramecium and other ciliates was predicted. Each Paramecium ITS1 forms an open loop with three helices, A through C. Helix B was highly conserved among Paramecium, and similar helices were found in other ciliates. A phylogenetic analysis using the ITS1 sequences showed high-resolution, implying that ITS1 is a good tool for species-level analyses.

  19. Dark localized structures in a cavity filled with a left-handed material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tlidi, Mustapha; Kockaert, Pascal; Gelens, Lendert

    2011-07-15

    We consider a nonlinear passive optical cavity filled with left-handed and right-handed materials and driven by a coherent injected beam. We assume that both left-handed and right-handed materials possess a Kerr focusing type of nonlinearity. We show that close to the zero-diffraction regime, high-order diffraction allows us to stabilize dark localized structures in this device. These structures consist of dips in the transverse profile of the intracavity field and do not exist without high-order diffraction. We analyze the snaking bifurcation diagram associated with these structures. Finally, a realistic estimation of the model parameters is provided.

  20. Tilapia and human CLIC2 structures are highly conserved.

    PubMed

    Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam

    2018-01-08

    Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Group-III elements under high pressure.

    NASA Astrophysics Data System (ADS)

    Simak, S. I.; Haussermann, U.; Ahuja, R.; Johansson, B.

    2000-03-01

    At ambient conditions the Group-III elements Ga and In attain unusual open ground-state crystal structures. Recent experiments have discovered that Ga under high pressure transforms into the face-centered (fcc) cubic close-packed structure, while such a transition for In has so far not been observed. We offer a simple explanation for such different behavior based on results from first principles calculations. We predict a so far undiscovered transition of In to the fcc structure at extreme pressures and show that the structure determining mechanism originates from the degree of s-p mixing of the valence orbitals. A unified bonding picture for the Group-III elements is discussed.

  2. Damping in Space Constructions

    NASA Astrophysics Data System (ADS)

    de Vreugd, Jan; de Lange, Dorus; Winters, Jasper; Human, Jet; Kamphues, Fred; Tabak, Erik

    2014-06-01

    Monolithic structures are often used in optomechanical designs for space applications to achieve high dimensional stability and to prevent possible backlash and friction phenomena. The capacity of monolithic structures to dissipate mechanical energy is however limited due to the high Q-factor, which might result in high stresses during dynamic launch loads like random vibration, sine sweeps and shock. To reduce the Q-factor in space applications, the effect of constrained layer damping (CLD) is investigated in this work. To predict the damping increase, the CLD effect is implemented locally at the supporting struts in an existing FE model of an optical instrument. Numerical simulations show that the effect of local damping treatment in this instrument could reduce the vibrational stresses with 30-50%. Validation experiments on a simple structure showed good agreement between measured and predicted damping properties. This paper presents material characterization, material modeling, numerical implementation of damping models in finite element code, numerical results on space hardware and the results of validation experiments.

  3. The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content.

    PubMed

    Szwengiel, Artur; Lewandowicz, Grażyna; Górecki, Adrian R; Błaszczak, Wioletta

    2018-02-01

    The effect of high hydrostatic pressure processing (650MPa/9min) on molecular mass distribution, and hydrodynamic and structural parameters of amylose (maize, sorghum, Hylon VII) and amylopectin (waxy maize, amaranth) starches was studied. The starches were characterized by high-performance size-exclusion chromatography (HPSEC) equipped with static light scattering and refractive index detectors and by Fourier Transform Infrared (FTIR) spectroscopy. Significant changes were observed in molecular mass distribution of pressurized waxy maize starch. Changes in branches/branch frequency, intrinsic viscosity, and radius of gyration were observed for all treated starches. The combination of SEC and FTIR data showed that α-1,6-glycosidic bonds are more frequently split in pressurized amaranth, Hylon VII, and waxy maize starch, while in sorghum and maize starches, the α-1,4 bonds are most commonly split. Our results show that the structural changes found for pressurized starches were more strongly determined by the starch origin than by the processing applied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Magnetoresistance behavior in nanobulk assembled Bi2Se3 topological insulator

    NASA Astrophysics Data System (ADS)

    Bera, Sumit; Behera, P.; Mishra, A. K.; Krishnan, M.; Patidar, Manju Mishra; Singh, Durgesh; Venkatesh, R.; Phase, D. M.; Ganesan, V.

    2018-05-01

    Temperature and magnetic field dependent magnetoresistance (MR) including structural, morphological studies of Bi2Se3 nanoflower like structure synthesized by microwave assisted solvothermal method has been investigated. Powder X-ray diffraction (XRD) has confirmed the formation of single phase. Morphology of the material shows nanoflower kind of structures with edge to edge size of around 4 µm and such occurrences are quite high. The temperature dependent resistance invokes a metallic behavior up to a certain lower temperature, below which it follows -ln(T) behavior that has been elucidated in literature using electron-electron interaction and weak anti-localization effects. High temperature magnetoresistance is consistent with parabolic field dependence indicating a classical magnetoresistance in metals as a result of Lorenz force. In low temperature regime magnetoresistance as a function of magnetic field at different temperatures obeys power law near low field which indicates a three dimensional weak-antilocalization. A linear magnetoresistance at low temperature and high magnetic field shows the domination of surface state conduction.

  5. A general strategy for hybrid thin film fabrication and transfer onto arbitrary substrates.

    PubMed

    Zhang, Yong; Magan, John J; Blau, Werner J

    2014-04-28

    The development of thin film-based structures/devices often requires thin films to be transferred onto arbitrary substrates/surfaces. Controllable and non-destructive transfer method, although highly desired, remains quite challenging. Here we report a general method for fabrication and transfer of hybrid (ultra)thin films. The proposed solution-based in-situ transfer method shows not only its robust ability for thin film transfer onto arbitrary substrates but also its highly controlled and non-destructive characteristic. With a hole structure as the support, fully-stretched free-standing thin film is prepared. The successful transfer to a curved surface demonstrates the possibility for production of thin film-coated complex optical components. Ultrathin (35 nm) hybrid film transferred onto PET (50 μm thick) shows high transparency (>90% in visible range), conductivity (1.54 × 10(4) S/m), and flexibility (radius of curvature down to mm scale). The reported transfer method would provide a powerful route towards complex thin film-based structures/devices.

  6. A General Strategy for Hybrid Thin Film Fabrication and Transfer onto Arbitrary Substrates

    PubMed Central

    Zhang, Yong; Magan, John J.; Blau, Werner J.

    2014-01-01

    The development of thin film-based structures/devices often requires thin films to be transferred onto arbitrary substrates/surfaces. Controllable and non-destructive transfer method, although highly desired, remains quite challenging. Here we report a general method for fabrication and transfer of hybrid (ultra)thin films. The proposed solution-based in-situ transfer method shows not only its robust ability for thin film transfer onto arbitrary substrates but also its highly controlled and non-destructive characteristic. With a hole structure as the support, fully-stretched free-standing thin film is prepared. The successful transfer to a curved surface demonstrates the possibility for production of thin film-coated complex optical components. Ultrathin (35 nm) hybrid film transferred onto PET (50 μm thick) shows high transparency (>90% in visible range), conductivity (1.54 × 104 S/m), and flexibility (radius of curvature down to mm scale). The reported transfer method would provide a powerful route towards complex thin film-based structures/devices. PMID:24769689

  7. The Influence of Spray Parameters on the Characteristics of Hydroxyapatite In-Flight Particles, Splats and Coatings by Micro-plasma Spraying

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-mei; He, Ding-yong; Wang, Yi-ming; Zhou, Zheng; Wang, Guo-hong; Tan, Zhen; Wang, Zeng-jie

    2018-04-01

    Hydroxyapatite (HA) is one of the most important bioceramic materials used in medical implants. The structure of HA coatings is closely related to their manufacturing process. In the present study, HA coatings were deposited on Ti-6Al-4V substrate by micro-plasma spraying. Results show that three distinct HA coatings could be obtained by changing the spraying power from 0.5 to 1.0 kW and spraying stand-off distance from 60 to 110 mm: (1) high crystallinity (93.3%) coatings with porous structure, (2) high crystallinity coatings (86%) with columnar structure, (3) higher amorphous calcium phosphate (ACP, 50%) coatings with dense structure. The in-flight particles melting state and splat topography was analyzed to better understand the formation mechanism of three distinct HA coatings. Results show that HA coatings sprayed at low spraying power and short stand-off distance exhibit high crystallinity and porosity is attributed to the presence of partially melted particles. High crystallinity HA coatings with (002) crystallographic texture could be deposited due to the complete melting of the in-flight particles and low cooling rate of the disk shape splats under higher spraying power and shorter SOD. However, splashed shape splats with relative high cooling can be provided by increasing SOD, which leads to the formation of ACP.

  8. High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries

    DOE PAGES

    Zhou, Yong-Ning; Yue, Ji-Li; Hu, Enyuan; ...

    2016-08-08

    Using fast time-resolved in situ X-ray diffraction, charge-rate dependent phase transition processes of layer structured cathode material LiNi 1/3Mn 1/3Co 1/3O 2 for lithium-ion batteries are studied. During first charge, intermediate phases emerge at high rates of 10C, 30C, and 60C, but not at low rates of 0.1C and 1C. These intermediate phases can be continuously observed during relaxation after the charging current is switched off. After half-way charging at high rate, sample studied by scanning transmission electron microscopy shows Li-rich and Li-poor phases' coexistence with tetrahedral occupation of Li in Li-poor phase. Also, the high rate induced overpotential ismore » thought to be the driving force for the formation of this intermediate Li-poor phase. The in situ quick X-ray absorption results show that the oxidation of Ni accelerates with increasing charging rate and the Ni 4+ state can be reached at the end of charge with 30C rate. Finally, these results give new insights in the understanding of the layered cathodes during high-rate charging.« less

  9. Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur.

    PubMed

    Zhang, Linji; Ren, Yang; Liu, Xiuru; Han, Fei; Evans-Lutterodt, Kenneth; Wang, Hongyan; He, Yali; Wang, Junlong; Zhao, Yong; Yang, Wenge

    2018-03-14

    Amorphous sulfur was prepared by rapid compression of liquid sulfur at temperatures above the λ-transition for to preserve the high-temperature liquid structure. We conducted synchrotron high-energy X-ray diffraction and Raman spectroscopy to diagnose the structural evolution of amorphous sulfur from room temperature to post-λ-transition temperature. Discontinuous changes of the first and second peaks in atomic pair-distribution-function, g(r), were observed during the transition from amorphous to liquid sulfur. The average first-neighbor coordination numbers showed an abrupt drop from 1.92 to 1.81. The evolution of the chain length clearly shows that the transition was accompanied by polymeric chains breaking. Furthermore, a re-entry of the λ-transition structure was involved in the heating process. The amorphous sulfur, which inherits the post-λ-transition structure from its parent melts, transformed to the pre-λ-transition liquid structure at around 391 K. Upon further heating, the pre-λ-transition liquid transformed to a post-λ-transition structure through the well-known λ-transition process. This discovery offers a new perspective on amorphous sulfur's structural inheritance from its parent liquid and has implications for understanding the structure, evolution and properties of amorphous sulfur and its liquids.

  10. Sensitivity of ab Initio vs Empirical Methods in Computing Structural Effects on NMR Chemical Shifts for the Example of Peptides.

    PubMed

    Sumowski, Chris Vanessa; Hanni, Matti; Schweizer, Sabine; Ochsenfeld, Christian

    2014-01-14

    The structural sensitivity of NMR chemical shifts as computed by quantum chemical methods is compared to a variety of empirical approaches for the example of a prototypical peptide, the 38-residue kaliotoxin KTX comprising 573 atoms. Despite the simplicity of empirical chemical shift prediction programs, the agreement with experimental results is rather good, underlining their usefulness. However, we show in our present work that they are highly insensitive to structural changes, which renders their use for validating predicted structures questionable. In contrast, quantum chemical methods show the expected high sensitivity to structural and electronic changes. This appears to be independent of the quantum chemical approach or the inclusion of solvent effects. For the latter, explicit solvent simulations with increasing number of snapshots were performed for two conformers of an eight amino acid sequence. In conclusion, the empirical approaches neither provide the expected magnitude nor the patterns of NMR chemical shifts determined by the clearly more costly ab initio methods upon structural changes. This restricts the use of empirical prediction programs in studies where peptide and protein structures are utilized for the NMR chemical shift evaluation such as in NMR refinement processes, structural model verifications, or calculations of NMR nuclear spin relaxation rates.

  11. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior

    NASA Astrophysics Data System (ADS)

    Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten

    2018-01-01

    In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.

  12. Health monitoring for subway station structure by fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Wang, Yuan-Feng; Han, Bing; Zhou, Zhi

    2008-03-01

    Fiber Bragg grating (FBG) sensors hold a great deal of potential for structural monitoring because of their high sensitivity and exceptional stability for long-term monitoring. FBG sensors have been applied to sense a number of physical measurands including strain, temperature, pressure etc. These applications are based on the same principle, i.e. the measurement of Bragg wavelength shift caused by the measurands. The characters and principle of FBG sensors have been introduced in detail. The relative experiment is done. The results show that FBG sensors have high sensitivity and long-term stability. It is feasible to use the sensors to the structural health monitoring (SHM). Cement hydration produces heat, which may provoke important temperature rises in massive structures. Such a high temperature may be a factor for cracking during the cooling phase. Thus, it is important to be able to calculate and control the heat to be produced by a given concrete at the mixture-proportioning stage. Theory of heat of hydration is also introduced in this paper. FBG sensors have been applied successfully in health monitoring for Guomao subway station structure. Compared with results measured by vibrating wire sensors and computed by finite element method, the monitoring results show temperature and strains can be accurately measured by FBG sensors. It is convenient to study on heat of hydration of massive concrete and guide structural design.

  13. Ionization-induced annealing of pre-existing defects in silicon carbide

    DOE PAGES

    Zhang, Yanwen; Sachan, Ritesh; Pakarinen, Olli H.; ...

    2015-08-12

    A long-standing objective in materials research is to find innovative ways to remove preexisting damage and heal fabrication defects or environmentally induced defects in materials. Silicon carbide (SiC) is a fascinating wide-band gap semiconductor for high-temperature, high-power, high-frequency applications. Its high corrosion and radiation resistance makes it a key refractory/structural material with great potential for extremely harsh radiation environments. Here we show that the energy transferred to the electron system of SiC by energetic ions via inelastic ionization processes results in a highly localized thermal spike that can effectively heal preexisting defects and restore the structural order. This work revealsmore » an innovative self-healing process using highly ionizing ions, and it describes a critical aspect to be considered in modeling SiC performance as either a functional or a structural material for device applications or high-radiation environments.« less

  14. Structural Characterization of a Thrombin-Aptamer Complex by High Resolution Native Top-Down Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Loo, Rachel R. Ogorzalek; Loo, Joseph A.

    2017-09-01

    Native mass spectrometry (MS) with electrospray ionization (ESI) has evolved as an invaluable tool for the characterization of intact native proteins and non-covalently bound protein complexes. Here we report the structural characterization by high resolution native top-down MS of human thrombin and its complex with the Bock thrombin binding aptamer (TBA), a 15-nucleotide DNA with high specificity and affinity for thrombin. Accurate mass measurements revealed that the predominant form of native human α-thrombin contains a glycosylation mass of 2205 Da, corresponding to a sialylated symmetric biantennary oligosaccharide structure without fucosylation. Native MS showed that thrombin and TBA predominantly form a 1:1 complex under near physiological conditions (pH 6.8, 200 mM NH4OAc), but the binding stoichiometry is influenced by the solution ionic strength. In 20 mM ammonium acetate solution, up to two TBAs were bound to thrombin, whereas increasing the solution ionic strength destabilized the thrombin-TBA complex and 1 M NH4OAc nearly completely dissociated the complex. This observation is consistent with the mediation of thrombin-aptamer binding through electrostatic interactions and it is further consistent with the human thrombin structure that contains two anion binding sites on the surface. Electron capture dissociation (ECD) top-down MS of the thrombin-TBA complex performed with a high resolution 15 Tesla Fourier transform ion cyclotron resonance (FTICR) mass spectrometer showed the primary binding site to be at exosite I located near the N-terminal sequence of the heavy chain, consistent with crystallographic data. High resolution native top-down MS is complementary to traditional structural biology methods for structurally characterizing native proteins and protein-DNA complexes. [Figure not available: see fulltext.

  15. Puncture Self-Healing Polymers for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  16. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen

    2018-03-01

    Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.

  17. An antisymmetric cell structure for high-performance zinc bromine flow battery

    NASA Astrophysics Data System (ADS)

    Kim, Yongbeom; Jeon, Joonhyeon

    2017-12-01

    Zinc-bromine flow batteries (ZBBs) remain a problem of designing a cell with high coulombic efficiency and stability. This problem is caused intrinsically by different phase transition in each side of the half-cells during charge-discharge process. This paper describes a ZBB with an antisymmetric cell structure, which uses anode and cathode with different surface morphologies, for high-discharge capacity and reliability. The structure of the antisymmetric ZBB cell contains a carbon-surface electrode and a carbon-volume electrode in zinc and bromine half cells, respectively. To demonstrate the effectiveness of this proposed ZBB cell structure, Cyclic Voltammetry measurement is performed on a graphite foil and a carbon felt which are used as the surface and electrodes. Charge and discharge cyclic operations are also carried out with symmetric and antisymmetric ZBB cells combined with the two electrode types. Experimental results show that the arrangement of antisymmetric cell structure in ZBB provides a solution to the high performance and durability.

  18. Conjugation in multi-tetrazole derivatives: a new design direction for energetic materials.

    PubMed

    Sun, Shuyang; Lu, Ming

    2018-06-23

    Multi-tetrazole derivatives with conjugated structures were designed and investigated in this study. Using quantum chemistry methods, the crystal structures, electrostatic potentials (ESPs), multicenter bond orders, HOMO-LUMO energy gaps, and detonation properties of the derivatives were calculated. As expected, these molecules with conjugated structures showed low energies of their crystal structures, molecular layering in their crystals, high average ESPs, high multicenter bond order values, and enhanced detonation properties. The derivative 1,2-di(1H-tetrazol-5-yl)diazene (N2) was predicted to have the best density (1.87 g/cm 3 ), detonation velocity (9006 m/s), and detonation pressure (36.8 GPa) of the designed molecules, while its total crystal energy was low, suggesting that it is relatively stable. Its sensitivity was also low, as the molecular stacking that occurs in its crystal allows external forces to be dissipated into movements of crystal layers. Finally, its multicenter bond order was high, indicating a highly conjugated structure.

  19. Pressure induced structural phase transition of OsB 2: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Ren, Fengzhu; Wang, Yuanxu; Lo, V. C.

    2010-04-01

    Orthorhombic OsB 2 was synthesized at 1000 °C and its compressibility was measured by using the high-pressure X-ray diffraction in a Diacell diamond anvil cell from ambient pressure to 32 GPa [R.W. Cumberland, et al. (2005)]. First-principles calculations were performed to study the possibility of the phase transition of OsB 2. An analysis of the calculated enthalpy shows that orthorhombic OsB 2 can transfer to the hexagonal phase at 10.8 GPa. The calculated results with the quasi-harmonic approximation indicate that this phase transition pressure is little affected by the thermal effect. The calculated phonon band structure shows that the hexagonal P 6 3/ mmc structure (high-pressure phase) is stable for OsB 2. We expect the phase transition can be further confirmed by the experimental work.

  20. Geophysical interpretations of the Libby thrust belt, northwestern Montana

    USGS Publications Warehouse

    Kleinkopf, M. Dean; with sections by Harrison, Jack Edward; Stanley, W.D.

    1997-01-01

    Interpretations of gravity and aeromagnetic anomaly data, supplemented by results from two seismic reflection profiles and five magnetotelluric soundings, were used to study buried structure and lithology of the Libby thrust belt of northwestern Montana. The gravity anomaly data show a marked correlation with major structures. The Purcell anticlinorium and the Sylvanite anticline are very likely cored by stacks of thrust slices of dense crystalline basement rocks that account for the large gravity highs across these two structures. Gravity anomaly data for the Cabinet Mountains Wilderness show a string of four broad highs. The principal magnetic anomaly sources are igneous intrusive rocks, major fault zones, and magnetite-bearing sedimentary rocks of the Ravalli Group. The most important magnetic anomalies in the principal study area are five distinct positive anomalies associated with Cretaceous or younger cupolas and stocks.

  1. Preparing highly ordered glasses of discotic liquid crystalline systems by vapor deposition

    NASA Astrophysics Data System (ADS)

    Gujral, Ankit; Gomez, Jaritza; Bishop, Camille E.; Toney, Michael F.; Ediger, M. D.

    Anisotropic molecular packing, particularly in highly ordered liquid-crystalline arrangements, has the potential for optimizing performance in organic electronic and optoelectronic applications. Here we show that physical vapor deposition can be used to prepare highly organized out-of-equilibrium (glassy) solids of discotic liquid-crystalline (LC) systems. Using grazing incidence x-ray scattering, we compare 3 systems: a rectangular columnar LC, a hexagonal columnar LC and a non-liquid crystal former. The packing motifs accessible by vapor deposition are highly organized and vary from face-on to edge-on columnar arrangements depending upon substrate temperature. A subset of these structures cannot be accessed under equilibrium conditions. The structures formed at a given substrate temperature can be understood as the result of the system partially equilibrating toward the structure of the free surface of the equilibrium liquid crystal. Consistent with this view, the structures formed are independent of the substrate material.

  2. Read count-based method for high-throughput allelic genotyping of transposable elements and structural variants.

    PubMed

    Kuhn, Alexandre; Ong, Yao Min; Quake, Stephen R; Burkholder, William F

    2015-07-08

    Like other structural variants, transposable element insertions can be highly polymorphic across individuals. Their functional impact, however, remains poorly understood. Current genome-wide approaches for genotyping insertion-site polymorphisms based on targeted or whole-genome sequencing remain very expensive and can lack accuracy, hence new large-scale genotyping methods are needed. We describe a high-throughput method for genotyping transposable element insertions and other types of structural variants that can be assayed by breakpoint PCR. The method relies on next-generation sequencing of multiplex, site-specific PCR amplification products and read count-based genotype calls. We show that this method is flexible, efficient (it does not require rounds of optimization), cost-effective and highly accurate. This method can benefit a wide range of applications from the routine genotyping of animal and plant populations to the functional study of structural variants in humans.

  3. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Feng, Song-Lin

    2009-11-01

    A three-dimensional finite element model for phase change random access memory (PCRAM) is established for comprehensive electrical and thermal analysis during SET operation. The SET behaviours of the heater addition structure (HS) and the ring-type contact in bottom electrode (RIB) structure are compared with each other. There are two ways to reduce the RESET current, applying a high resistivity interfacial layer and building a new device structure. The simulation results indicate that the variation of SET current with different power reduction ways is little. This study takes the RESET and SET operation current into consideration, showing that the RIB structure PCRAM cell is suitable for future devices with high heat efficiency and high-density, due to its high heat efficiency in RESET operation.

  4. Reconstructive structural phase transitions in dense Mg

    NASA Astrophysics Data System (ADS)

    Yao, Yansun; Klug, Dennis D.

    2012-07-01

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.

  5. Reconstructive structural phase transitions in dense Mg.

    PubMed

    Yao, Yansun; Klug, Dennis D

    2012-07-04

    The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.

  6. Pressure effects on band structures in dense lithium

    NASA Astrophysics Data System (ADS)

    Goto, Naoyuki; Nagara, Hitose

    2012-07-01

    We studied the change of the band structures in some structures of Li predicted at high pressures, using GGA and GW calculations. The width of the 1s band coming from the 1s electron of Li shows broadening by the pressurization, which is the normal behavior of bands at high pressure. The width of the band just below the Fermi level decreases by the pressurization, which is an opposite behavior to the normal bands. The character of this narrowing band is mostly p-like with a little s-like portion. The band gaps in some structures are really observed even by the GGA calculations. The gaps by the GW calculations increase to about 1.5 times the GGA values. Generally the one-shot GW calculation (diagonal only calculations) gives more reliable values than the GGA, but it may fail to predict band gaps for the case where band dispersion shows complex crossing near the Fermi level. There remains some structures for which GW calculations with off-diagonal elements taken into account are needed to identify the phase to be metallic or semiconducting.

  7. Negative-pressure polymorphs made by heterostructural alloying

    PubMed Central

    Perkins, John D.

    2018-01-01

    The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material’s structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures—a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixing two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2× to 4× lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. This example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties—materials that are otherwise nearly impossible to make. PMID:29725620

  8. Mechanisms governing brittle fault mechanics - a multi-scale study from the Permian Khao-Kwang fold-and-thrust belt, Thailand

    NASA Astrophysics Data System (ADS)

    von Hagke, Christoph; Morley, Chris; Kanitpanyacharoen, Waruntorn

    2017-04-01

    Despite our qualitative understanding of factors contributing to thrust and detachment weakness such as mineralogy, pore fluid pressure, or efficiency of structure localization, it is difficult to assess the contribution of the individual factors. Here we present multi-scale analysis of a mixed clay / carbonate high displacement (kms of heave) thrust zone, where it is possible to study structures formed within a similar temperature and pressure regime, and thus only varying due to lithological contrasts. We mapped the well-exposed thrust zone in a large quarry at outcrop scale in five separate sections present along a strike-distance of 1 km. The thrust zone shows considerable variations in structural style, as well as localization within different clay and limestone horizons. Zones of low and high strain have been identified. We investigate these changes in macroscopic deformation style using Virtual Polarizing Microscopy, and the combined methods of Broad Ion Beam milling and Scanning Electron Microscopy in addition with XRD analysis. We characterize structural and mineralogical variations in the thrust zone at all scales, from outcrop down to nano-meters. Results show strain localization is heterogeneous, with strong variations along strike. Within the clay package, strain localizes along zones rich in organic matter. Microstructures are complex, and show multiple deformation events, including crack-seal processes and reworking of vein material. Pressure solution is dominant. XRD analysis shows mineralogical differences between zones of high and low strain within the shale-dominated package. However, highest strain does not only occur in the clay units, but partly is accommodated in the surrounding limestone.

  9. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  10. A Componential IRT Model for Guilt.

    ERIC Educational Resources Information Center

    Smits, Dirk J. M.; De Boeck, Paul

    2003-01-01

    Studied the process structure of guilt with an adaptation of the Model with Internal Restrictions on Item Difficulty (R. Butter and others, 1998) administered to 270 high school students. Findings show that this kind of modeling is appropriate to investigate the structure of other emotions. (SLD)

  11. Salmonella Typhimurium Enzymatically Landscapes the Host Intestinal Epithelial Cell (IEC) Surface Glycome to Increase Invasion*

    PubMed Central

    Park, Dayoung; Arabyan, Narine; Williams, Cynthia C.; Song, Ting; Mitra, Anupam; Weimer, Bart C.; Lebrilla, Carlito B.

    2016-01-01

    Although gut host-pathogen interactions are glycan-mediated processes, few details are known about the participating structures. Here we employ high-resolution mass spectrometric profiling to comprehensively identify and quantitatively measure the exact modifications of native intestinal epithelial cell surface N-glycans induced by S. typhimurium infection. Sixty minutes postinfection, select sialylated structures showed decreases in terms of total number and abundances. To assess the effect of cell surface mannosylation, we selectively rerouted glycan expression on the host using the alpha-mannosidase inhibitor, kifunensine, toward overexpression of high mannose. Under these conditions, internalization of S. typhimurium significantly increased, demonstrating that bacteria show preference for particular structures. Finally, we developed a novel assay to measure membrane glycoprotein turnover rates, which revealed that glycan modifications occur by bacterial enzyme activity rather than by host-derived restructuring strategies. This study is the first to provide precise structural information on how host N-glycans are altered to support S. typhimurium invasion. PMID:27754876

  12. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries

    NASA Astrophysics Data System (ADS)

    Odziomek, Mateusz; Chaput, Frédéric; Rutkowska, Anna; Świerczek, Konrad; Olszewska, Danuta; Sitarz, Maciej; Lerouge, Frédéric; Parola, Stephane

    2017-05-01

    High-performance Li-ion batteries require materials with well-designed and controlled structures on nanometre and micrometre scales. Electrochemical properties can be enhanced by reducing crystallite size and by manipulating structure and morphology. Here we show a method for preparing hierarchically structured Li4Ti5O12 yielding nano- and microstructure well-suited for use in lithium-ion batteries. Scalable glycothermal synthesis yields well-crystallized primary 4-8 nm nanoparticles, assembled into porous secondary particles. X-ray photoelectron spectroscopy reveals presence of Ti+4 only; combined with chemical analysis showing lithium deficiency, this suggests oxygen non-stoichiometry. Electron microscopy confirms hierarchical morphology of the obtained material. Extended cycling tests in half cells demonstrates capacity of 170 mAh g-1 and no sign of capacity fading after 1,000 cycles at 50C rate (charging completed in 72 s). The particular combination of nanostructure, microstructure and non-stoichiometry for the prepared lithium titanate is believed to underlie the observed electrochemical performance of material.

  13. Thermal Transport at Solid-Liquid Interfaces: High Pressure Facilitates Heat Flow through Nonlocal Liquid Structuring.

    PubMed

    Han, Haoxue; Mérabia, Samy; Müller-Plathe, Florian

    2017-05-04

    The integration of three-dimensional microelectronics is hampered by overheating issues inherent to state-of-the-art integrated circuits. Fundamental understanding of heat transfer across soft-solid interfaces is important for developing efficient heat dissipation capabilities. At the microscopic scale, the formation of a dense liquid layer at the solid-liquid interface decreases the interfacial heat resistance. We show through molecular dynamics simulations of n-perfluorohexane on a generic wettable surface that enhancement of the liquid structure beyond a single adsorbed layer drastically enhances interfacial heat conductance. Pressure is used to control the extent of the liquid layer structure. The interfacial thermal conductance increases with pressure values up to 16.2 MPa at room temperature. Furthermore, it is shown that liquid structuring enhances the heat-transfer rate of high-energy lattice waves by broadening the transmission peaks in the heat flux spectrum. Our results show that pressure is an important external parameter that may be used to control interfacial heat conductance at solid-soft interfaces.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaffe, Adam; Lin, Yu; Beavers, Christine M.

    Here, we report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX 3 (MA = CH 3NH 3 +, X = Br – or I –) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites’ precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaquemore » black with compression. Indeed, electronic conductivity measurements of (MA)PbI 3 obtained within a diamond-anvil cell show that the material’s resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br xI 1–x) 3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors.« less

  15. Molecular and functional characterization of single-box high-mobility group B (HMGB) chromosomal protein from Aedes aegypti.

    PubMed

    de Abreu da Silva, Isabel Caetano; Vicentino, Amanda Roberta Revoredo; Dos Santos, Renata Coutinho; da Fonseca, Rodrigo Nunes; de Mendonça Amarante, Anderson; Carneiro, Vitor Coutinho; de Amorim Pinto, Marcia; Aguilera, Estefania Anahi; Mohana-Borges, Ronaldo; Bisch, Paulo Mascarello; da Silva-Neto, Mario Alberto Cardoso; Fantappié, Marcelo Rosado

    2018-05-30

    High-mobility group B (HMGB) proteins have highly conserved, unique DNA-binding domains, HMG boxes, that can bind non-B-type DNA structures, such as bent, kinked and unwound structures, with high affinity. HMGB proteins also promote DNA bending, looping and unwinding. In this study, we determined the role of the Aedes aegypti single HMG-box domain protein AaHMGB; characterized its structure, spatiotemporal expression levels, subcellular localization, and nucleic acid binding activities; and compared these properties with those of its double-HMG-box counterpart protein, AaHMGB1. Via qRT-PCR, we showed that AaHMGB is expressed at much higher levels than AaHMGB1 throughout mosquito development. In situ hybridization results suggested a role for AaHMGB and AaHMGB1 during embryogenesis. Immunolocalization in the midgut revealed that AaHMGB is exclusively nuclear. Circular dichroism and fluorescence spectroscopy analyses showed that AaHMGB exhibits common features of α-helical structures and is more stably folded than AaHMGB1, likely due to the presence of one or two HMG boxes. Using several DNA substrates or single-stranded RNAs as probes, we observed significant differences between AaHMGB and AaHMGB1 in terms of their binding patterns, activity and/or specificity. Importantly, we showed that the phosphorylation of AaHMGB plays a critical role in its DNA-binding activity. Our study provides additional insight into the roles of single- versus double-HMG-box-containing proteins in nucleic acid interactions for better understanding of mosquito development, physiology and homeostasis. Copyright © 2017. Published by Elsevier B.V.

  16. High-Order Ca(II)-Chloro Complexes in Mixed CaCl2-LiCl Aqueous Solution: Insights from Density Functional Theory and Molecular Dynamics Simulations.

    PubMed

    Wang, Yu-Lin; Wang, Ying; Yi, Hai-Bo

    2016-07-21

    In this study, the structural characteristics of high-coordinated Ca-Cl complexes present in mixed CaCl2-LiCl aqueous solution were investigated using density functional theory (DFT) and molecular dynamics (MD) simulations. The DFT results show that [CaClx](2-x) (x = 4-6) clusters are quite unstable in the gas phase, but these clusters become metastable when hydration is considered. The MD simulations show that high-coordinated Ca-chloro complexes are possible transient species that exist for up to nanoseconds in concentrated (11.10 mol·kg(-1)) Cl(-) solution at 273 and 298 K. As the temperature increases to 423 K, these high-coordinated structures tend to disassociate and convert into smaller clusters and single free ions. The presence of high-order Ca-Cl species in concentrated LiCl solution can be attributed to their enhanced hydration shell and the inadequate hydration of ions. The probability of the [CaClx](2-x)aq (x = 4-6) species being present in concentrated LiCl solution decreases greatly with increasing temperature, which also indicates that the formation of the high-coordinated Ca-Cl structure is related to its hydration characteristics.

  17. Highly reliable 637-639 nm red high-power LDs for displays

    NASA Astrophysics Data System (ADS)

    Nishida, Takehiro; Shimada, Naoyuki; Ono, Kenichi; Yagi, Tetsuya; Shima, Akihiro

    2010-02-01

    Higher power laser diodes (LDs) with a wavelength of 637-639nm are strongly demanded as a light source of display applications because luminosity factor of laser light is relatively high. In order to realize reliable high power operation, we have optimized LD structure, focusing on improvement of power saturation and sudden degradation. As a result, 40μm-wide broad-area (BA) LDs with window-mirror structure have been designed. We fabricated two kinds of single emitter LDs of 1.0mm cavity and 1.5mm cavity. The single LD is installed in conventional φ5.6 mm TO-CAN package. The 1.0mm LD showed very high wall plug efficiency (WPE) of 33% at 25 ºC (23% at 45 ºC) in the power range of around 300mW (30 lm). High output power of 600mW (60 lm) is realized by the 1.5mm LD. Both LDs have operated for over 1,000 hours without any degradation. Estimated mean time to failure (MTTF) is 10,000 hours. In addition, we fabricated an array LD consisting of 20 emitters (BA-LD structure), which shows reliable CW operation of 8W (at junction temperature of 50 ºC) for 10,000 hours.

  18. Structure and mechanical properties of coatings fabricated by nonvacuum electron beam cladding of Ti-Ta-Zr powder mixtures

    NASA Astrophysics Data System (ADS)

    Samoylenko, Vitaliy V.; Lenivtseva, Olga G.; Polyakov, Igor A.; Laptev, Ilya S.

    2015-10-01

    In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of cladded layers to the substrate, which exceeded cp-titanium strength characteristics.

  19. Negative-pressure polymorphs made by heterostructural alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siol, Sebastian; Holder, Aaron; Steffes, James

    The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material's structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures - a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixingmore » two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2x to 4x lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. Lastly, this example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties - materials that are otherwise nearly impossible to make.« less

  20. Negative-pressure polymorphs made by heterostructural alloying

    DOE PAGES

    Siol, Sebastian; Holder, Aaron; Steffes, James; ...

    2018-04-20

    The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material's structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures - a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixingmore » two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2x to 4x lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. Lastly, this example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties - materials that are otherwise nearly impossible to make.« less

  1. Phonon dispersions, band structures, and dielectric functions of BeO and BeS polymorphs

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Long; Gao, Shang-Peng

    2018-07-01

    Structures, phonon dispersions, electronic structures, and dielectric functions of beryllium oxide (BeO) and beryllium sulfide (BeS) polymorphs are investigated by density functional theory and many-body perturbation theory. Phonon calculations indicate that both wurtzite (w-) and zincblende (zb-) structures are dynamically stable for BeO and BeS, whereas rocksalt (rs-) structures for both BeO and BeS have imaginary phonon frequencies and thus are dynamically unstable at zero pressure. Band structures for the 4 dynamically stable phases show that only w-BeO has a direct band gap. Both the one-shot G0W0 and quasiparticle self-consistent GW methods are used to correct band energies at high symmetry k-points. Bethe-Salpeter equation (BSE), which considers Coulomb correlated electron-hole pairs, is employed to deal with the computation of macroscopic dielectric functions. It is shown that BSE calculation, employing scissors operator derived by self-consistent GW method, can give dielectric functions agreeing very well with experimental measurement of w-BeO. Weak anisotropic characters can be observed for w-BeO and w-BeS. Both zb-BeS and w-BeS show high optical transition probabilities within a narrow ultraviolet energy range.

  2. Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode.

    PubMed

    Kim, Guk-Hyun; Lee, Yong-Hee; Shinya, Akihiko; Notomi, Masaya

    2004-12-27

    Coupling characteristics between the single-cell hexapole mode and the triangular-lattice photonic crystal slab waveguide mode is studied by the finite-difference time-domain method. The single-cell hexapole mode has a high quality factor (Q) of 3.3Chi106 and a small modal volume of 1.18(lambda/n)3. Based on the symmetry, three representative types of coupling geometries (shoulder-couple, butt-couple and side-couple structures) are selected and tested. The coupling efficiency shows strong dependence on the transverse overlap of the cavity mode and the waveguide mode over the region of the waveguide. The shoulder-couple structure shows best coupling characteristics among three tested structures. For example, two shouldercouple waveguides and a hexapole cavity result in a high performance resonant-tunneling-filter with Q of 9.7Chi105 and transmittance of 0.48. In the side-couple structure, the coupling strength is much weaker than that of the shoulder-couple structure because of the poor spatial overlap between the mode profiles. In the direct-couple structure, the energy transfer from the cavity to the waveguide is prohibited because of the symmetry mismatch and no coupling is observed.

  3. For or against structural realism? A verdict from high energy physics

    NASA Astrophysics Data System (ADS)

    Nounou, Antigone M.

    2015-02-01

    When it comes to supporting the main ontic structural realist thesis, that we are better off with a metaphysics purged of objects, its proponents have to meet several challenges, three of which are to ensure that objects can be recast in terms of structure alone at both the level of theory and the level of ontology, to justify on physical grounds that structure exists in the world in a way that affects the goings-on in it, and to show that the relation between objects and structure is non-reciprocal, so that structure is ontologically prior to objects but not the converse. Assuming-tacitly or explicitly-that the objects of physics can be thus recast using symmetry group structure, supporters of the thesis have, therefore, to meet the remaining challenges. The present paper discusses and contests two such attempts, which typify arguments in favor of ontic structural realism from high-energy physics.

  4. Sensitivity to musical structure in the human brain

    PubMed Central

    McDermott, Josh H.; Norman-Haignere, Sam; Kanwisher, Nancy

    2012-01-01

    Evidence from brain-damaged patients suggests that regions in the temporal lobes, distinct from those engaged in lower-level auditory analysis, process the pitch and rhythmic structure in music. In contrast, neuroimaging studies targeting the representation of music structure have primarily implicated regions in the inferior frontal cortices. Combining individual-subject fMRI analyses with a scrambling method that manipulated musical structure, we provide evidence of brain regions sensitive to musical structure bilaterally in the temporal lobes, thus reconciling the neuroimaging and patient findings. We further show that these regions are sensitive to the scrambling of both pitch and rhythmic structure but are insensitive to high-level linguistic structure. Our results suggest the existence of brain regions with representations of musical structure that are distinct from high-level linguistic representations and lower-level acoustic representations. These regions provide targets for future research investigating possible neural specialization for music or its associated mental processes. PMID:23019005

  5. Highly damped quasinormal modes and the small scale structure of quantum corrected black hole exteriors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babb, James; Kunstatter, Gabor; Daghigh, Ramin

    2011-10-15

    Quasinormal modes provide valuable information about the structure of spacetime outside a black hole. There is also a conjectured relationship between the highly damped quasinormal modes and the semiclassical spectrum of the horizon area/entropy. In this paper, we show that for spacetimes characterized by more than one scale, the 'infinitely damped' modes in principle probe the structure of spacetime outside the horizon at the shortest length scales. We demonstrate this with the calculation of the highly damped quasinormal modes of the nonsingular, single-horizon, quantum corrected black hole derived in [A. Peltola and G. Kunstatter, Phys. Rev. D 79, 061501 (2009);more » ].« less

  6. Diffraction studies of the high pressure phases of GaAs and GaP

    NASA Technical Reports Server (NTRS)

    Baublitz, M., Jr.; Ruoff, A. L.

    1982-01-01

    High pressure structural phase transitions of GaAs and GaP have been studied by energy dispersive X-ray diffraction with the radiation from the Cornell High Energy Synchrotron Source. GaAs began to transform at 172 + or - 7 kbar to an orthorhombic structure possibly belonging to space group Fmmm. GaP transformed to a tetragonal beta-Sn type phase at 215 + or - 8 kbar. Although pressure transmitting media were used to minimize shear stresses in the specimens, the high pressure diffraction results were interpreted as showing evidence for planar defects in the specimens.

  7. On the design of high-rise buildings with a specified level of reliability

    NASA Astrophysics Data System (ADS)

    Dolganov, Andrey; Kagan, Pavel

    2018-03-01

    High-rise buildings have a specificity, which significantly distinguishes them from traditional buildings of high-rise and multi-storey buildings. Steel structures in high-rise buildings are advisable to be used in earthquake-proof regions, since steel, due to its plasticity, provides damping of the kinetic energy of seismic impacts. These aspects should be taken into account when choosing a structural scheme of a high-rise building and designing load-bearing structures. Currently, modern regulatory documents do not quantify the reliability of structures. Although the problem of assigning an optimal level of reliability has existed for a long time. The article shows the possibility of designing metal structures of high-rise buildings with specified reliability. Currently, modern regulatory documents do not quantify the reliability of high-rise buildings. Although the problem of assigning an optimal level of reliability has existed for a long time. It is proposed to establish the value of reliability 0.99865 (3σ) for constructions of buildings and structures of a normal level of responsibility in calculations for the first group of limiting states. For increased (construction of high-rise buildings) and reduced levels of responsibility for the provision of load-bearing capacity, it is proposed to assign respectively 0.99997 (4σ) and 0.97725 (2σ). The coefficients of the use of the cross section of a metal beam for different levels of security are given.

  8. A Copper(II)-Paddlewheel Metal-Organic Framework with Exceptional Hydrolytic Stability and Selective Adsorption and Detection Ability of Aniline in Water.

    PubMed

    Chen, Ya; Wang, Bin; Wang, Xiaoqing; Xie, Lin-Hua; Li, Jinping; Xie, Yabo; Li, Jian-Rong

    2017-08-16

    Copper(II)-paddlewheel-based metal-organic frameworks (CP-MOFs) represent a unique subclass of MOFs with highly predictable porous structures, facile syntheses, and functional open metal sites. However, the lack of high hydrolytic stability is an obstacle for CP-MOFs in many practical applications. In this work, we report a new CP-MOF, [Cu 4 (tdhb)] (BUT-155), which is constructed from a judiciously designed carboxylate ligand with high coordination connectivity (octatopic), abundant hydrophobic substituents (six methyl groups), and substituent constrained geometry (tetrahedral backbone), tdhb 8- [H 8 tdhb = 3,3',5,5'-tetrakis(3,5-dicarboxyphenyl)-2,2',4,4',6,6'-hexamethylbiphenyl)]. BUT-155 shows high porosity with a Brunauer-Emmett-Teller surface area of 2070 m 2 /g. Quite interestingly, this CP-MOF retains its structural integrity after being treated in water for 10 days at room temperature or in boiling water for 24 h. To the best of our knowledge, BUT-155 represents the first CP-MOF that is demonstrated to retain its structural integrity in boiling water. The high hydrolytic stability of BUT-155 allowed us to carry out adsorption studies of water vapor and aqueous organic pollutants on it. Water-vapor adsorption reveals a sigmoidal isotherm and a high uptake (46.7 wt %), which is highly reversible and regenerable. In addition, because of the availability of soft-acid-type open Cu(II) sites, BUT-155 shows a high performance for selective adsorption of soft-base-type aniline over water or phenol, and a naked-eye detectable color change for the MOF sample accompanies this. The adsorption selectivity and high adsorption capacity of aniline in BUT-155 are also well-interpreted by single-crystal structures of the water- and aniline-included phases of BUT-155.

  9. Promising Thermoelectric Bulk Materials with 2D Structures.

    PubMed

    Zhou, Yiming; Zhao, Li-Dong

    2017-12-01

    Given that more than two thirds of all energy is lost, mostly as waste heat, in utilization processes worldwide, thermoelectric materials, which can directly convert waste heat to electricity, provide an alternative option for optimizing energy utilization processes. After the prediction that superlattices may show high thermoelectric performance, various methods based on quantum effects and superlattice theory have been adopted to analyze bulk materials, leading to the rapid development of thermoelectric materials. Bulk materials with two-dimensional (2D) structures show outstanding properties, and their high performance originates from both their low thermal conductivity and high Seebeck coefficient due to their strong anisotropic features. Here, the advantages of superlattices for enhancing the thermoelectric performance, the transport mechanism in bulk materials with 2D structures, and optimization methods are discussed. The phenomenological transport mechanism in these materials indicates that thermal conductivities are reduced in 2D materials with intrinsically short mean free paths. Recent progress in the transport mechanisms of Bi 2 Te 3 -, SnSe-, and BiCuSeO-based systems is summarized. Finally, possible research directions to enhance the thermoelectric performance of bulk materials with 2D structures are briefly considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Sapphire Fabry-Perot high-temperature sensor study

    NASA Astrophysics Data System (ADS)

    Yao, Yi-qiang; Liang, Wei-long; Gui, Xinwang; Fan, Dian

    2017-04-01

    A new structure sapphire fiber Fabry-Perot (F-P) high-temperature sensor based on sapphire wafer was proposed and fabricated. The sensor uses the sapphire fiber as a transmission waveguide, the sapphire wafer as an Fabry-Perot (F-P) interferometer and the new structure of "Zirconia ferrule-Zirconia tube" as the sensor fixing structure of the sensor. The reflection spectrum of the interferometer was demodulated by a serial of data processing including FIR bandpass filter, FFT (Fast Fourier Transformation) estimation and LSE (least squares estimation) compensation to obtain more precise OPD. Temperature measurement range is from 20 to 1000°C in experiment. The experimental results show that the sensor has the advantages of small size, low cost, simple fabrication and high repeatability. It can be applied for longterm, stable and high-precision high temperature measurement in harsh environments.

  11. High-harmonic spectroscopy of aligned molecules

    NASA Astrophysics Data System (ADS)

    Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee

    2017-01-01

    High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.

  12. A qualitative inquiry into the effects of visualization on high school chemistry students' learning process of molecular structure

    NASA Astrophysics Data System (ADS)

    Deratzou, Susan

    This research studies the process of high school chemistry students visualizing chemical structures and its role in learning chemical bonding and molecular structure. Minimal research exists with high school chemistry students and more research is necessary (Gabel & Sherwood, 1980; Seddon & Moore, 1986; Seddon, Tariq, & Dos Santos Veiga, 1984). Using visualization tests (Ekstrom, French, Harman, & Dermen, 1990a), a learning style inventory (Brown & Cooper, 1999), and observations through a case study design, this study found visual learners performed better, but needed more practice and training. Statistically, all five pre- and post-test visualization test comparisons were highly significant in the two-tailed t-test (p > .01). The research findings are: (1) Students who tested high in the Visual (Language and/or Numerical) and Tactile Learning Styles (and Social Learning) had an advantage. Students who learned the chemistry concepts more effectively were better at visualizing structures and using molecular models to enhance their knowledge. (2) Students showed improvement in learning after visualization practice. Training in visualization would improve students' visualization abilities and provide them with a way to think about these concepts. (3) Conceptualization of concepts indicated that visualizing ability was critical and that it could be acquired. Support for this finding was provided by pre- and post-Visualization Test data with a highly significant t-test. (4) Various molecular animation programs and websites were found to be effective. (5) Visualization and modeling of structures encompassed both two- and three-dimensional space. The Visualization Test findings suggested that the students performed better with basic rotation of structures as compared to two- and three-dimensional objects. (6) Data from observations suggest that teaching style was an important factor in student learning of molecular structure. (7) Students did learn the chemistry concepts. Based on the Visualization Test results, which showed that most of the students performed better on the post-test, the visualization experience and the abstract nature of the content allowed them to transfer some of their chemical understanding and practice to non-chemical structures. Finally, implications for teaching of chemistry, students learning chemistry, curriculum, and research for the field of chemical education were discussed.

  13. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications.

    PubMed

    Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John

    2005-10-01

    Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.

  14. Investigating Molecular Structures of Bio-Fuel and Bio-Oil Seeds as Predictors To Estimate Protein Bioavailability for Ruminants by Advanced Nondestructive Vibrational Molecular Spectroscopy.

    PubMed

    Ban, Yajing; L Prates, Luciana; Yu, Peiqiang

    2017-10-18

    This study was conducted to (1) determine protein and carbohydrate molecular structure profiles and (2) quantify the relationship between structural features and protein bioavailability of newly developed carinata and canola seeds for dairy cows by using Fourier transform infrared molecular spectroscopy. Results showed similarity in protein structural makeup within the entire protein structural region between carinata and canola seeds. The highest area ratios related to structural CHO, total CHO, and cellulosic compounds were obtained for carinata seeds. Carinata and canola seeds showed similar carbohydrate and protein molecular structures by multivariate analyses. Carbohydrate molecular structure profiles were highly correlated to protein rumen degradation and intestinal digestion characteristics. In conclusion, the molecular spectroscopy can detect inherent structural characteristics in carinata and canola seeds in which carbohydrate-relative structural features are related to protein metabolism and utilization. Protein and carbohydrate spectral profiles could be used as predictors of rumen protein bioavailability in cows.

  15. Molecular ecology meets remote sensing: environmental drivers to population structure of humpback dolphins in the Western Indian Ocean.

    PubMed

    Mendez, M; Subramaniam, A; Collins, T; Minton, G; Baldwin, R; Berggren, P; Särnblad, A; Amir, O A; Peddemors, V M; Karczmarski, L; Guissamulo, A; Rosenbaum, H C

    2011-10-01

    Genetic analyses of population structure can be placed in explicit environmental contexts if appropriate environmental data are available. Here, we use high-coverage and high-resolution oceanographic and genetic sequence data to assess population structure patterns and their potential environmental influences for humpback dolphins in the Western Indian Ocean. We analyzed mitochondrial DNA data from 94 dolphins from the coasts of South Africa, Mozambique, Tanzania and Oman, employing frequency-based and maximum-likelihood algorithms to assess population structure and migration patterns. The genetic data were combined with 13 years of remote sensing oceanographic data of variables known to influence cetacean dispersal and population structure. Our analyses show strong and highly significant genetic structure between all putative populations, except for those in South Africa and Mozambique. Interestingly, the oceanographic data display marked environmental heterogeneity between all sampling areas and a degree of overlap between South Africa and Mozambique. Our combined analyses therefore suggest the occurrence of genetically isolated populations of humpback dolphins in areas that are environmentally distinct. This study highlights the utility of molecular tools in combination with high-resolution and high-coverage environmental data to address questions not only pertaining to genetic population structure, but also to relevant ecological processes in marine species.

  16. Molecular ecology meets remote sensing: environmental drivers to population structure of humpback dolphins in the Western Indian Ocean

    PubMed Central

    Mendez, M; Subramaniam, A; Collins, T; Minton, G; Baldwin, R; Berggren, P; Särnblad, A; Amir, O A; Peddemors, V M; Karczmarski, L; Guissamulo, A; Rosenbaum, H C

    2011-01-01

    Genetic analyses of population structure can be placed in explicit environmental contexts if appropriate environmental data are available. Here, we use high-coverage and high-resolution oceanographic and genetic sequence data to assess population structure patterns and their potential environmental influences for humpback dolphins in the Western Indian Ocean. We analyzed mitochondrial DNA data from 94 dolphins from the coasts of South Africa, Mozambique, Tanzania and Oman, employing frequency-based and maximum-likelihood algorithms to assess population structure and migration patterns. The genetic data were combined with 13 years of remote sensing oceanographic data of variables known to influence cetacean dispersal and population structure. Our analyses show strong and highly significant genetic structure between all putative populations, except for those in South Africa and Mozambique. Interestingly, the oceanographic data display marked environmental heterogeneity between all sampling areas and a degree of overlap between South Africa and Mozambique. Our combined analyses therefore suggest the occurrence of genetically isolated populations of humpback dolphins in areas that are environmentally distinct. This study highlights the utility of molecular tools in combination with high-resolution and high-coverage environmental data to address questions not only pertaining to genetic population structure, but also to relevant ecological processes in marine species. PMID:21427750

  17. SMARTIV: combined sequence and structure de-novo motif discovery for in-vivo RNA binding data.

    PubMed

    Polishchuk, Maya; Paz, Inbal; Yakhini, Zohar; Mandel-Gutfreund, Yael

    2018-05-25

    Gene expression regulation is highly dependent on binding of RNA-binding proteins (RBPs) to their RNA targets. Growing evidence supports the notion that both RNA primary sequence and its local secondary structure play a role in specific Protein-RNA recognition and binding. Despite the great advance in high-throughput experimental methods for identifying sequence targets of RBPs, predicting the specific sequence and structure binding preferences of RBPs remains a major challenge. We present a novel webserver, SMARTIV, designed for discovering and visualizing combined RNA sequence and structure motifs from high-throughput RNA-binding data, generated from in-vivo experiments. The uniqueness of SMARTIV is that it predicts motifs from enriched k-mers that combine information from ranked RNA sequences and their predicted secondary structure, obtained using various folding methods. Consequently, SMARTIV generates Position Weight Matrices (PWMs) in a combined sequence and structure alphabet with assigned P-values. SMARTIV concisely represents the sequence and structure motif content as a single graphical logo, which is informative and easy for visual perception. SMARTIV was examined extensively on a variety of high-throughput binding experiments for RBPs from different families, generated from different technologies, showing consistent and accurate results. Finally, SMARTIV is a user-friendly webserver, highly efficient in run-time and freely accessible via http://smartiv.technion.ac.il/.

  18. Space charge induced resonance excitation in high intensity rings

    NASA Astrophysics Data System (ADS)

    Cousineau, S.; Lee, S. Y.; Holmes, J. A.; Danilov, V.; Fedotov, A.

    2003-03-01

    We present a particle core model study of the space charge effect on high intensity synchrotron beams, with specific emphasis on the Proton Storage Ring (PSR) at Los Alamos National Laboratory. Our particle core model formulation includes realistic lattice focusing and dispersion. We transport both matched and mismatched beams through real lattice structure and compare the results with those of an equivalent uniform-focusing approximation. The effects of lattice structure and finite momentum spread on the resonance behavior are specifically targeted. Stroboscopic maps of the mismatched envelope are constructed and show high-order resonances and stochastic effects that dominate at high mismatch or high intensity. We observe the evolution of the envelope phase-space structure during a high intensity PSR beam accumulation. Finally, we examine the envelope-particle parametric resonance condition and discuss the possibility for halo growth in synchrotron beams due to this mechanism.

  19. Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: effects of current density and temperature.

    PubMed

    Hambali, Nur Ashikyn; Yahaya, Hafizal; Mahmood, Mohamad Rusop; Terasako, Tomoaki; Hashim, Abdul Manaf

    2014-01-01

    The electrochemical growth of zinc oxide (ZnO) nanostructures on graphene on glass using zinc nitrate hexahydrate was studied. The effects of current densities and temperatures on the morphological, structural, and optical properties of the ZnO structures were studied. Vertically aligned nanorods were obtained at a low temperature of 75°C, and the diameters increased with current density. Growth temperature seems to have a strong effect in generating well-defined hexagonal-shape nanorods with a smooth top edge surface. A film-like structure was observed for high current densities above -1.0 mA/cm(2) and temperatures above 80°C due to the coalescence between the neighboring nanorods with large diameter. The nanorods grown at a temperature of 75°C with a low current density of -0.1 mA/cm(2) exhibited the highest density of 1.45 × 10(9) cm(-2). X-ray diffraction measurements revealed that the grown ZnO crystallites were highly oriented along the c-axis. The intensity ratio of the ultraviolet (UV) region emission to the visible region emission, I UV/I VIS, showed a decrement with the current densities for all grown samples. The samples grown at the current density below -0.5 mA/cm(2) showed high I UV/I VIS values closer to or higher than 1.0, suggesting their fewer structural defects. For all the ZnO/graphene structures, the high transmittance up to 65% was obtained at the light wavelength of 550 nm. Structural and optical properties of the grown ZnO structures seem to be effectively controlled by the current density rather than the growth temperature. ZnO nanorod/graphene hybrid structure on glass is expected to be a promising structure for solar cell which is a conceivable candidate to address the global need for an inexpensive alternative energy source.

  20. Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy.

    PubMed

    Nair, R B; Arora, H S; Mukherjee, Sundeep; Singh, S; Singh, H; Grewal, H S

    2018-03-01

    Cavitation erosion and corrosion of structural materials are serious concerns for marine and offshore industries. Durability and performance of marine components are severely impaired due to degradation from erosion and corrosion. Utilization of advanced structural materials can play a vital role in limiting such degradation. High entropy alloys (HEAs) are a relatively new class of advanced structural materials with exceptional properties. In the present work, we report on the cavitation erosion behavior of Al 0.1 CoCrFeNi HEA in two different media: distilled water with and without 3.5wt% NaCl. For comparison, conventionally used stainless steel SS316L was also evaluated in identical test conditions. Despite lower hardness and yield strength, the HEA showed significantly longer incubation period and lower erosion-corrosion rate (nearly 1/4th) compared to SS316L steel. Enhanced erosion resistance of HEA was attributed to its high work-hardening behavior and stable passivation film on the surface. The Al 0.1 CoCrFeNi HEA showed lower corrosion current density, high pitting resistance and protection potential compared to SS316L steel. Further, HEA showed no evidence of intergranular corrosion likely due to the absence of secondary precipitates. Although, the degradation mechanisms (formation of pits and fatigue cracks) were similar for both the materials, the damage severity was found to be much higher for SS316L steel compared to HEA. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Phase-Separated Polyaniline/Graphene Composite Electrodes for High-Rate Electrochemical Supercapacitors.

    PubMed

    Wu, Jifeng; Zhang, Qin'e; Zhou, An'an; Huang, Zhifeng; Bai, Hua; Li, Lei

    2016-12-01

    Polyaniline/graphene hydrogel composites with a macroscopically phase-separated structure are prepared. The composites show high specific capacitance and excellent rate performance. Further investigation demonstrates that polyaniline inside the graphene hydrogel has low rate performance, thus a phase-separated structure, in which polyaniline is mainly outside the graphene hydrogel matrix, can enhance the rate performance of the composites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Predictability of currency market exchange

    NASA Astrophysics Data System (ADS)

    Ohira, Toru; Sazuka, Naoya; Marumo, Kouhei; Shimizu, Tokiko; Takayasu, Misako; Takayasu, Hideki

    2002-05-01

    We analyze tick data of yen-dollar exchange with a focus on its up and down movement. We show that there exists a rather particular conditional probability structure with such high frequency data. This result provides us with evidence to question one of the basic assumptions of the traditional market theory, where such bias in high frequency price movements is regarded as not present. We also construct systematically a random walk model reflecting this probability structure.

  3. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Haiqing; Liu, Xiaoyan; Huang, Jianguo, E-mail: jghuang@zju.edu.cn

    Graphical abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material with high photocatalytic activity under UV light was fabricated employing natural cellulosic substance (cotton) as hard template and cetyltrimethylammonium bromide (CTAB) surfactant as soft template using a one-pot sol-gel method. Highlights: {yields} Tubular structured mesoporous titania material was fabricated by sol-gel method. {yields} The titania material faithfully recorded the hierarchical structure of the template substrate (cotton). {yields} The titania material exhibited high photocatalytic activity in decomposition of methylene blue. -- Abstract: Bio-inspired, tubular structured hierarchical mesoporous titania material was designed and fabricated employing natural cellulosic substance (cotton) as hard template andmore » cetyltrimethylammonium bromide (CTAB) surfactant as soft template by one-pot sol-gel method. The tubular structured hierarchical mesoporous titania material processes large specific surface area (40.23 m{sup 2}/g) and shows high photocatalytic activity in the photodegradation of methylene blue under UV light irradiation.« less

  4. High-pressure phases of Weyl semimetals NbP, NbAs, TaP, and TaAs

    NASA Astrophysics Data System (ADS)

    Guo, ZhaoPeng; Lu, PengChao; Chen, Tong; Wu, JueFei; Sun, Jian; Xing, DingYu

    2018-03-01

    In this study, we used the crystal structure search method and first-principles calculations to systematically explore the highpressure phase diagrams of the TaAs family (NbP, NbAs, TaP, and TaAs). Our calculation results show that NbAs and TaAs have similar phase diagrams, the same structural phase transition sequence I41 md→ P6¯ m2→ P21/ c→ Pm3¯ m, and slightly different transition pressures. The phase transition sequence of NbP and TaP differs somewhat from that of NbAs and TaAs, in which new structures emerge, such as the Cmcm structure in NbP and the Pmmn structure in TaP. Interestingly, we found that in the electronic structure of the high-pressure phase P6¯ m2-NbAs, there are coexistingWeyl points and triple degenerate points, similar to those found in high-pressure P6¯ m2-TaAs.

  5. Structural, magnetic and transport properties of 2D structured perovskite oxychalcogenides

    NASA Astrophysics Data System (ADS)

    Berthebaud, David; Lebedev, Oleg I.; Pelloquin, Denis; Maignan, Antoine

    2014-10-01

    We have been looking for new potential thermoelectric materials in the family of 2D structured perovskite oxychalcogenides containing [Cu2Ch2]2- blocks (Ch = S or Se). Using high temperature syntheses, a new oxyselenide Sr2CuFeO3Se has been isolated and its structure has been compared to the isotypes sulfides, Ca2CuFeO3S and Sr2CuFeO3S, prepared by the same technique. By combining powder XRD and TEM analyses their composition and structure were analyzed. They all three crystallize in the Sr2CuGaO3S-type structure, with only the oxyselenide showing a Fe deficiency which is related to the stacking faults evidenced by high resolution TEM. Transport and magnetic properties of the samples have been studied; especially their electrical resistivity is characterized by high values in the range from 1 to 10 kΩ cm at 300 K. Thermoelectric potential of these materials is also discussed.

  6. Highly textured and transparent RF sputtered Eu2O3 doped ZnO films

    PubMed Central

    Sreedharan, Remadevi Sreeja; Ganesan, Vedachalaiyer; Sudarsanakumar, Chellappan Pillai; Bhavsar, Kaushalkumar; Prabhu, Radhakrishna; Mahadevan Pillai, Vellara Pappukutty Pillai

    2015-01-01

    Background Zinc oxide (ZnO) is a wide, direct band gap II-VI oxide semiconductor. ZnO has large exciton binding energy at room temperature, and it is a good host material for obtaining visible and infrared emission of various rare-earth ions. Methods Europium oxide (Eu2O3) doped ZnO films are prepared on quartz substrate using radio frequency (RF) magnetron sputtering with doping concentrations 0, 0.5, 1, 3 and 5 wt%. The films are annealed in air at a temperature of 773 K for 2 hours. The annealed films are characterized using X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy and photoluminescence (PL) spectroscopy. Results XRD patterns show that the films are highly c-axis oriented exhibiting hexagonalwurtzite structure of ZnO. Particle size calculations using Debye-Scherrer formula show that average crystalline size is in the range 15–22 nm showing the nanostructured nature of the films. The observation of low- and high-frequency E2 modes in the Raman spectra supports the hexagonal wurtzite structure of ZnO in the films. The surface morphology of the Eu2O3 doped films presents dense distribution of grains. The films show good transparency in the visible region. The band gaps of the films are evaluated using Tauc plot model. Optical constants such as refractive index, dielectric constant, loss factor, and so on are calculated using the transmittance data. The PL spectra show both UV and visible emissions. Conclusion Highly textured, transparent, luminescent Eu2O3 doped ZnO films have been synthesized using RF magnetron sputtering. The good optical and structural properties and intense luminescence in the ultraviolet and visible regions from the films suggest their suitability for optoelectronic applications. PMID:25765728

  7. High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing.

    PubMed

    Wang, Zongrong; Wang, Shan; Zeng, Jifang; Ren, Xiaochen; Chee, Adrian J Y; Yiu, Billy Y S; Chung, Wai Choi; Yang, Yong; Yu, Alfred C H; Roberts, Robert C; Tsang, Anderson C O; Chow, Kwok Wing; Chan, Paddy K L

    2016-07-01

    A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa(-1) , broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real-time health monitoring, and biomedical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of film thickness on soft magnetic behavior of Fe2CoSi Heusler alloy for spin transfer torque device applications

    NASA Astrophysics Data System (ADS)

    Asvini, V.; Saravanan, G.; Kalaiezhily, R. K.; Raja, M. Manivel; Ravichandran, K.

    2018-04-01

    Fe2CoSi based Heusler alloy thin films were deposited on Si (111) wafer (substrate) of varying thickness using ultra high vacuum DC magnetron sputtering. The structural behavior was observed and found to be hold the L21 structure. The deposited thin films were characterized magnetic properties using vibrating sample magnetometer; the result shows a very high saturated magnetization (Ms), lowest coercivity (Hc), high curie transition temperature (Tc) and low hysteresis loss. Thin film thickness of 75 nm Fe2CoSi sample maintained at substrate temperature 450°C shows the lowest coercivity (Hc=7 Oe). In general, Fe2CoSi Heusler alloys curie transition temperature is very high, due to strong exchange interaction between the Fe and Co atoms. The substrate temperature was kept constant at 450°C for varying thickness (e.g. 5, 20, 50, 75 and 100 nm) of thin film sample. The 75 nm thickness thin film sample shows well crystallanity and good magnetic properties, further squareness ratio in B-H loop increases with the increase in film thickness.

  9. Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Jinyuan; Zhao, Hao; Mu, Xuemei; Chen, Jiayi; Zhang, Peng; Wang, Yaling; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing

    2015-08-01

    This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the maximum energy density of 38.42 W h kg-1 (2.24 mW h cm-3) at a power density of 100 W kg-1 (5.83 mW cm-3), and they maintain 59.52% of the initial value at 10 000 W kg-1 (0.583 W cm-3). In addition, the assembled devices show high cycling stabilities (89.7% after 2000 cycles for asymmetric and 87.2% for symmetric), and a high bending stability (64.74% after 200 bending tests). This ability to obtain high energy densities at high power rates while maintaining high cycling stability demonstrates that this well-designed structure could be a promising electrode material for high-performance supercapacitors.This study reports the preparation of 3D hierarchical carbon nanotube (CNT) @MnO2 core-shell nanostructures under the assistance of polypyrrole (PPy). The as-prepared CNT@PPy@MnO2 core-shell structures show a perfect coating of MnO2 on each CNT and, more importantly, a robust bush-like pseudocapacitive shell to effectively increase the specific surface area and enhance the ion accessibility. As expected, a high specific capacity of 490-530 F g-1 has been achieved from CNT@PPy@MnO2 single electrodes. And about 98.5% of the capacity is retained after 1000 charge/discharge cycles at a current density of 5 A g-1. Furthermore, the assembled asymmetric CNT@PPy@MnO2//AC capacitors show the maximum energy density of 38.42 W h kg-1 (2.24 mW h cm-3) at a power density of 100 W kg-1 (5.83 mW cm-3), and they maintain 59.52% of the initial value at 10 000 W kg-1 (0.583 W cm-3). In addition, the assembled devices show high cycling stabilities (89.7% after 2000 cycles for asymmetric and 87.2% for symmetric), and a high bending stability (64.74% after 200 bending tests). This ability to obtain high energy densities at high power rates while maintaining high cycling stability demonstrates that this well-designed structure could be a promising electrode material for high-performance supercapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03426d

  10. Evolution of structural, magnetic and transport behavior by Pr doping in SrRuO3

    NASA Astrophysics Data System (ADS)

    Gupta, Renu; Pramanik, A. K.

    2018-05-01

    Here we report the evolution of structural, magnetic and transport behavior in perovskite based ruthenates Sr1-xPrxRuO3 (x=0.0 and 0.1). The substitution of Pr on Sr site retains orthorhombic structure while we find the slight change in structural parameters. The SrRuO3 has itinerant ferromagnet (FM) type nature of ordering temperature ˜160 K and below the transition temperature showing large bifurcation between ZFC and FC magnetization. By Pr doping, the magnetic moment decreases with decreasing bifurcation of ZFC and FC. The ZFC data show three distinct peaks (three transition temperature; TM1,TM2 and TM3). The magnetization study of both the samples, at high temperature fitted with modified CWL showing the decreasing value of ordering temperature by Pr doping matches close to TM2. The low-temperature isothermal magnetization M (H) data show that the high field saturation moment has decreased by Pr doping. The Arrott plot gives spontaneous magnetization (Ms) which is also decreased by Pr substitution. Evolution of Rhodes-Wohlfarth ratio value increases, which suggests that FM in this system evolves toward the more itinerant type by Pr doping. The electrical resistivity ρ(T) of both the samples show metallic behavior, in the all temperature range and ρ(T) increases by Pr doping while around below 45 K, the resistivity decreases by Pr doping and this crossing temperature also matches with ZFC data.

  11. The structure of MgO-SiO2 glasses at elevated pressure.

    PubMed

    Wilding, Martin; Guthrie, Malcolm; Kohara, Shinji; Bull, Craig L; Akola, Jaakko; Tucker, Matt G

    2012-06-06

    The magnesium silicate system is an important geophysical analogue and neutron diffraction data from glasses formed in this system may also provide an initial framework for understanding the structure-dependent properties of related liquids that are important during planetary formation. Neutron diffraction data collected in situ for a single composition (38 mol% SiO(2)) magnesium silicate glass sample shows local changes in structure as pressure is increased from ambient conditions to 8.6 GPa at ambient temperature. A method for obtaining the fully corrected, total structure factor, S(Q), has been developed that allows accurate structural characterization as this weakly scattering glass sample is compressed. The measured S(Q) data indicate changes in chemical ordering with pressure and the real-space transforms show an increase in Mg-O coordination number and a distortion of the local environment around magnesium ions. We have used reverse Monte Carlo methods to compare the high pressure and ambient pressure structures and also compare the high pressure form with a more silica-poor glass (Mg(2)SiO(4)) that represents the approach to a more dense, void-free and topologically ordered structure. The Mg-O coordination number increases with pressure and we also find that the degree of continuous connectivity of Si-O bonds increases via a collapse of interstices.

  12. Revealing the synergetic effects in Ni nanoparticle-carbon nanotube hybrids by scanning transmission X-ray microscopy and their application in the hydrolysis of ammonia borane

    NASA Astrophysics Data System (ADS)

    Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong

    2015-05-01

    The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications. Electronic supplementary information (ESI) available: Magnified TEM images, high resolution TEM images and the particle size distributions of the samples, the STXM results of a thick tube at different positions, XPS results, stability test. See DOI: 10.1039/c5nr01168j

  13. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    PubMed Central

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-01-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations. PMID:26267653

  14. Modeling Line Emission from Structures Seen at High Resolution in the Nebulae m1 and M16

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi

    1998-12-01

    Narrow band images of the Crab Nebula supernova remnant and of the Eagle Nebula H II region taken with the Hubble Space Telescope (HST) show the ionization structure of the emitting gas in unprecedented detail because of the high spatial resolution. The physics of the emission processes-shock excited emission and photoionized emission-is well understood. Sophisticated numerical codes are used to model the ionization structure and emission observed in these images. It is found that the thin skin of material around the Crab synchrotron nebula visible in (O III) λ5007 emission is best explained as the cooling region behind a shock driven by the synchrotron nebula into a surrounding remnant of freely expanding ejecta. Shock models, with parameters derived from independently known properties of the Crab, explain the observed spectrum of the skin while photoionization models fail to explain the observed strength of high ionization lines such as C IV λ1549. This result is clear evidence that the synchrotron nebula is interacting with an extended remnant of ejecta, which in turn has significant implications for the structure and evolution of the Crab. At HST resolution, it is seen that low ionization emission, from lines such as (O I) λ6300, is concentrated in sharp structures while high ionization emission (from (O III) λ5007) is much more diffuse. Individual filaments are found to lie along a sequence of ionization structure ranging from features in which all lines are concentrated in the same compact volume through features with low ionization cores surrounded by high ionization envelopes. Photoionization models of cylindrically symmetrical filaments with varying 'core-halo' density profiles can match the observed variation in the filament structure in the Crab. A photoionization model of a uniform low density medium matches the extended diffuse component which dominates the high ionization emission. It is found that detailed knowledge of the filament structures present in an aperture is needed to correctly interpret ground-based spectra of the Crab. The images also show that many filament cores coincide with dust extinction features, which suggest that the dust to gas mass ratio may be up to an order of magnitude higher than is typical in the interstellar medium. Nebula show the interface between the ionized gas and the molecular cloud in tangency against the background of the ionized cavity which constitutes the H II region. A photoionization model using a density profile for the photoevaporative flow that is expected at such an interface is successful at explaining the observed emission profiles of Hα λ6563, (S II) λλ6716,6731, and (O III) λ5007. The ionizing flux is well constrained by the Hα emission and the sulphur abundance is constrained by the peak of the (S II) emission. A grid of models using the same density profiles shows how various emission properties depend on the ionizing continuum shape, ionizing flux and elemental abundances.

  15. The effect of high energy concentration source irradiation on structure and properties of Fe-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Wirginia

    2016-06-01

    Metallic glasses exhibit metastable structure and maintain this relatively stable amorphous state within certain temperature range. High intensity laser beam was used for the surface irradiation of Fe-Co-B-Si-Nb bulk metallic glasses. The variable parameter was laser beam pulse energy. For the analysis of structure and properties of bulk metallic glasses and their surface after laser remelting the X-ray analysis, microscopic observation and test of mechanical properties were carried out. Examination of the nanostructure of amorphous materials obtained by high pressure copper mold casting method and the irradiated with the use of TITAN 80-300 HRTEM was carried out. Nanohardness and reduced Young's modulus of particular amorphous and amorphous-crystalline material zone of the laser beam were examined with the use of Hysitron TI950 Triboindenter nanoindenter and with the use of Berkovich's indenter. The XRD and microscopic analysis showed that the test material is amorphous in its structure before irradiation. Microstructure observation with electron transmission microscopy gave information about alloy crystallization in the irradiated process. Identification of given crystal phases allows to determine the kind of crystal phases created in the first place and also further changes of phase composition of alloy. The main value of the nanohardness of the surface prepared by laser beam has the order of magnitude similar to bulk metallic glasses formed by casting process irrespective of the laser beam energy used. Research results analysis showed that the area between parent material and fusion zone is characterized by extraordinarily interesting structure which is and will be the subject of further analysis in the scope of bulk metallic glasses amorphous structure and high energy concentration source. The main goal of this work is the results' presentation of structure and chosen properties of the selected bulk metallic glasses after casting process and after irradiation process employing the high energy concentration sources.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samoylenko, Vitaliy V., E-mail: samoylenko.vitaliy@mail.ru; Lenivtseva, Olga G., E-mail: lenivtseva-olga@mail.ru; Polyakov, Igor A., E-mail: status9@mail.ru

    In this paper structural investigations and mechanical tests of Ti-Ta-Zr coatings obtained on surfaces of cp-titanium workpieces were carried out. It was found that the coatings had a dendrite structure; investigations at high-power magnifications revealed a platelet structure. An increase of tantalum concentration led to refinement of structural components. The microhardness level of all coatings, excepting a specimen with the maximum tantalum content, was 370 HV. The microhardness of this coating reached 400 HV. The ultimate tensile strength of cladded layers varied from 697 to 947 MPa. Adhesion tests showed that bimetallic composites were characterized by high bond strength of claddedmore » layers to the substrate, which exceeded cp-titanium strength characteristics.« less

  17. Low-frequency noise reduction of lightweight airframe structures

    NASA Technical Reports Server (NTRS)

    Getline, G. L.

    1976-01-01

    The results of an experimental study to determine the noise attenuation characteristics of aircraft type fuselage structural panels were presented. Of particular interest was noise attenuation at low frequencies, below the fundamental resonances of the panels. All panels were flightweight structures for transport type aircraft in the 34,050 to 45,400 kg (75,000 to 100,000 pounds) gross weight range. Test data include the results of vibration and acoustic transmission loss tests on seven types of isotropic and orthotropically stiffened, flat and curved panels. The results show that stiffness controlled acoustically integrated structures can provide very high noise reductions at low frequencies without significantly affecting their high frequency noise reduction capabilities.

  18. Iptycene-based stationary phase with three-dimensional aromatic structure for highly selective separation of H-bonding analytes and aromatic isomers.

    PubMed

    Yang, Xiaohong; Han, Ying; Qi, Meiling; Chen, Chuanfeng

    2016-05-06

    Unique structures and molecular recognition ability endow iptycene derivatives with great potential as stationary phases in chromatography, which, however, has not been explored yet. Herein, we report the first example of utilizing a pentiptycene quinone (PQ) for gas chromatographic (GC) separations. Remarkably, the statically coated capillary column with the stationary phase achieved extremely high column efficiency of 4800 plates/m. It exhibited preferential retention and high resolving capability for H-bonding and aromatic analytes and positional isomers, showing advantages over the ordinary polysiloxane phase. Moreover, the fabricated iptycene column showed excellent separation repeatability with RSD values of 0.02-0.06% for intra-day, 0.20-0.35% for inter-day and 3.1-5.5% for between-column, respectively. In conclusion, iptycene derivatives as a new class of stationary phases show promising future for their use in GC separations. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthesis and physical characterization of γ-Fe2O3 and (α+γ)-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhavani, P.; Reddy, N. Ramamanohar; Reddy, I. Venkata Subba

    2017-01-01

    Magnetic nanoparticles were synthesized at different hydrothermal temperatures (HT; 100, 130, 160 and 190 °C) by using a facile hydrothermal route combined with a subsequent calcination process. The calcined materials were analyzed for phase, microstructure, and magnetic and dielectric properties through different characterization techniques. The structural analyses revealed that the material prepared at a HT of 100 °C and sequentially calcined at 300 °C for 3 h showed a high degree of the maghemite structure. On the other hand calcined materials showed a small additional peak belonging to the hematite structure. FESEM micrographs of the materials calcined at HT, of 100 °C and 190 °C showed spherical-like nanoparticles with diameters in range 30 - 54 nm. Materials prepared at a HT of 160 °C followed by calcination at 300 °C for 3 h exhibited the highest saturation magnetization, Ms = 67 emu/g, with a lower coercivity; all materials were in a single domain state. A high dielectric constant (105.54) was observed for the calcined material that had been prepared at a HT of 130 °C. The dielectric properties of synthesized materials showed an almost frequency-independent behavior.

  20. Characteristics of Eutectic α(Cr,Fe)-(Cr,Fe)23C6 in the Eutectic Fe-Cr-C Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Lai, Hsuan-Han; Hsieh, Chih-Chun; Lin, Chi-Ming; Wu, Weite

    2017-01-01

    A specific eutectic (Cr,Fe)-(Cr,Fe)23C6 structure had been previously reported in the research studies of Fe-Cr-C hardfacing alloys. In this study, a close observation and discussion of the eutectic (Cr,Fe)-(Cr,Fe)23C6 were conducted. The eutectic solidification occurred when the chromium content of the alloy exceeded 35 wt pct. The eutectic structure showed a triaxial radial fishbone structure which was the so called "complex regular structure." Lamellar costa plates showed local asymmetry at two sides of a spine. Individual costae were able to combine as one, and spines showed extra branches. Costae that were nearly parallel to the heat flow direction were longer than those that were vertical to the heat flow direction. The triaxial spines preferred to intersect at 120 deg, while the costae preferred to intersect the spine at 90 deg and 35.26 deg due to the lattice relationships. The solidified metal near the fusion boundary showed an irregular structure instead of a complex regular structure. The reason for the irregular morphology was the high growth rate near the fusion boundary.

  1. High Energy Density in Azobenzene-based Materials for Photo-Thermal Batteries via Controlled Polymer Architecture and Polymer-Solvent Interactions.

    PubMed

    Jeong, Seung Pyo; Renna, Lawrence A; Boyle, Connor J; Kwak, Hyunwook S; Harder, Edward; Damm, Wolfgang; Venkataraman, Dhandapani

    2017-12-19

    Energy densities of ~510 J/g (max: 698 J/g) have been achieved in azobenzene-based syndiotactic-rich poly(methacrylate) polymers. The processing solvent and polymer-solvent interactions are important to achieve morphologically optimal structures for high-energy density materials. This work shows that morphological changes of solid-state syndiotactic polymers, driven by different solvent processings play an important role in controlling the activation energy of Z-E isomerization as well as the shape of the DSC exotherm. Thus, this study shows the crucial role of processing solvents and thin film structure in achieving higher energy densities.

  2. A Cobalt Supramolecular Triple-Stranded Helicate-based Discrete Molecular Cage

    PubMed Central

    Mai, Hien Duy; Kang, Philjae; Kim, Jin Kyung; Yoo, Hyojong

    2017-01-01

    We report a strategy to achieve a discrete cage molecule featuring a high level of structural hierarchy through a multiple-assembly process. A cobalt (Co) supramolecular triple-stranded helicate (Co-TSH)-based discrete molecular cage (1) is successfully synthesized and fully characterized. The solid-state structure of 1 shows that it is composed of six triple-stranded helicates interconnected by four linking cobalt species. This is an unusual example of a highly symmetric cage architecture resulting from the coordination-driven assembly of metallosupramolecular modules. The molecular cage 1 shows much higher CO2 uptake properties and selectivity compared with the separate supramolecular modules (Co-TSH, complex 2) and other molecular platforms. PMID:28262690

  3. The Role of Teak Leaves (Tectona grandis), Rhizobium, and Vesicular-Arbuscular Mycorrhizae on Improving Soil Structure and Soil Nutrition

    NASA Astrophysics Data System (ADS)

    Yuliani; Rahayu, Y. S.

    2018-01-01

    Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.

  4. Understanding the Structure of Amorphous Thin Film Hafnia - Final Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miranda, Andre

    2015-08-27

    Hafnium Oxide (HfO 2) amorphous thin films are being used as gate oxides in transistors because of their high dielectric constant (κ) over Silicon Dioxide. The present study looks to find the atomic structure of HfO 2 thin films which hasn’t been done with the technique of this study. In this study, two HfO 2 samples were studied. One sample was made with thermal atomic layer deposition (ALD) on top of a Chromium and Gold layer on a silicon wafer. The second sample was made with plasma ALD on top of a Chromium and Gold layer on a Silicon wafer.more » Both films were deposited at a thickness of 50nm. To obtain atomic structure information, Grazing Incidence X-ray diffraction (GIXRD) was carried out on the HfO 2 samples. Because of this, absorption, footprint, polarization, and dead time corrections were applied to the scattering intensity data collected. The scattering curves displayed a difference in structure between the ALD processes. The plasma ALD sample showed the broad peak characteristic of an amorphous structure whereas the thermal ALD sample showed an amorphous structure with characteristics of crystalline materials. This appears to suggest that the thermal process results in a mostly amorphous material with crystallites within. Further, the scattering intensity data was used to calculate a pair distribution function (PDF) to show more atomic structure. The PDF showed atom distances in the plasma ALD sample had structure up to 10 Å, while the thermal ALD sample showed the same structure below 10 Å. This structure that shows up below 10 Å matches the bond distances of HfO 2 published in literature. The PDF for the thermal ALD sample also showed peaks up to 20 Å, suggesting repeating atomic spacing outside the HfO 2 molecule in the sample. This appears to suggest that there is some crystalline structure within the thermal ALD sample.« less

  5. Bond-orientational analysis of hard-disk and hard-sphere structures.

    PubMed

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  6. Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.

    2007-02-02

    The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader {pi}* and {sigma}* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) - (HOPG), show double-peak structures on both sides of the {pi}* peak. The lower-energy peak, denoted as the 'pre-peak', in the subtracted spectra and the {pi}*/{sigma}* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore,more » it is concluded that the pre-peak intensity and the {pi}*/{sigma}* ratio reflect the local graphitic structure of carbon black.« less

  7. Soft-sediment deformations (convolute lamination and load structures) in turbidites as indicators of flow reflections against bounding slopes

    NASA Astrophysics Data System (ADS)

    Tinterri, Roberto; Muzzi Magalhaes, Pierre; Tagliaferri, Alessio; Cunha, Rogerio S.; Laporta, Michele

    2015-04-01

    Soft-sediment deformations, such as convolute laminations, load structures and water escapes are very rapid deformations that occur in unconsolidated sediments near the depositional surface during or shortly after deposition and before significant diagenesis. These types of deformations develop when primary stratifications are deformed by a system of driving forces, while the sediment is temporarily in a weakened state due to the action of a deformation mechanism know as liquidization. This deformation occurs if the applied stress exceeds the sediment strength, either through an increase in the applied stress or through a temporary reduction in sediment strength. Liquidization mechanisms can be triggered by several agents, such as seismic shaking, rapid sedimentation with high-fallout rates or cyclic-pressure variations associated with storm waves or breaking waves. Consequently, soft-sediment deformations can be produced by different processes and form ubiquitous sedimentary structures characterizing many sedimentary environments. However, even though these types of structures are relatively well-known in terms of geometry and sedimentary characteristics, many doubts arise when the understanding of deformation and trigger mechanisms is attempted. As stressed also by the recent literature, the main problem lies in the fact that the existing approaches for the identification of triggering agents rely on criteria that are not diagnostic or not applicable to outcrop-based studies, because they are not always based on detailed facies analysis related to a paleoenvironmental-context approach. For this reason, this work discusses the significance of particular types of soft-sediment deformations that are very common in turbidite deposits, namely convolute laminations and load structures, especially on the basis of a deep knowledge of the stratigraphic framework and geological setting in which these structures are inserted. More precisely, detailed facies analyses of the turbidites containing these deformative structures show that they are genetically linked to contained-reflected beds in structurally-confined basins, suggesting a trigger mechanism associated with the cyclic-wave loading produced by flow impacts or reflected bores and internal waves related to ponded turbidity currents. The data that can demonstrate this hypothesis come from the foredeep turbidites of the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (southwestern France), where a basin scale high-resolution stratigraphic framework with bed-by-bed correlations is now available. These data show that the lateral and vertical distribution of convolute laminae and load structures is not random but has an evident depositional logic related to reflection processes against bounding slopes. Therefore, the main objectives of this work are: 1) to show that convolute laminae and load structures are strictly associated with other sedimentary structures that are unequivocally related to reflection and rebound processes of turbidity currents against morphological obstacles; 2) to show that their lateral and vertical distribution increases concomitantly with the number of contained-reflected beds in the proximity of structurally-controlled morphological highs; 3) to show that the increase in contained-reflected beds with convolute laminae is strictly related to the increase in the synsedimentary-structural uplifts producing more pronounced morphologic highs; 4) to discuss the processes that link soft-sediment deformations with cyclic-wave loading related to internal waves and bores produced by reflection processes.

  8. Discordant genetic diversity and geographic patterns between Crassicutis cichlasomae (Digenea: Apocreadiidae) and its cichlid host, "Cichlasoma" urophthalmus (Osteichthyes: Cichlidae), in Middle-America.

    PubMed

    Razo-Mendivil, Ulises; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce

    2013-12-01

    Genetic analyses of hosts and their parasites are key to understand the evolutionary patterns and processes that have shaped host-parasite associations. We evaluated the genetic structure of the digenean Crassicutis cichlasomae and its most common host, the Mayan cichlid "Cichlasoma" urophthalmus, encompassing most of their geographical range in Middle-America (river basins in southeastern Mexico, Belize, and Guatemala together with the Yucatan Peninsula). Genetic diversity and structure analyses were done based on 167 cytochrome c oxidase subunit 1 sequences (330 bp) for C. cichlasomae from 21 populations and 161 cytochrome b sequences (599 bp) for "C." urophthalmus from 26 populations. Analyses performed included phylogenetic tree estimation under Bayesian inference and maximum likelihood analysis, genetic diversity, distance and structure estimates, haplotype networks, and demographic evaluations. Crassicutis cichlasomae showed high genetic diversity values and genetic structuring, corresponding with 4 groups clearly differentiated and highly divergent. Conversely, "C." urophthalmus showed low levels of genetic diversity and genetic differentiation, defined as 2 groups with low divergence and with no correspondence with geographical distribution. Our results show that species of cichlids parasitized by C. cichlasomae other than "C." urophthalmus, along with multiple colonization events and subsequent isolation in different basins, are likely factors that shaped the genetic structure of the parasite. Meanwhile, historical long-distance dispersal and drought periods during the Holocene, with significant population size reductions and fragmentations, are factors that could have shaped the genetic structure of the Mayan cichlid.

  9. Utilization of protein intrinsic disorder knowledge in structural proteomics

    PubMed Central

    Oldfield, Christopher J.; Xue, Bin; Van, Ya-Yue; Ulrich, Eldon L.; Markley, John L.; Dunker, A. Keith; Uversky, Vladimir N.

    2014-01-01

    Intrinsically disordered proteins (IDPs) and proteins with long disordered regions are highly abundant in various proteomes. Despite their lack of well-defined ordered structure, these proteins and regions are frequently involved in crucial biological processes. Although in recent years these proteins have attracted the attention of many researchers, IDPs represent a significant challenge for structural characterization since these proteins can impact many of the processes in the structure determination pipeline. Here we investigate the effects of IDPs on the structure determination process and the utility of disorder prediction in selecting and improving proteins for structural characterization. Examination of the extent of intrinsic disorder in existing crystal structures found that relatively few protein crystal structures contain extensive regions of intrinsic disorder. Although intrinsic disorder is not the only cause of crystallization failures and many structured proteins cannot be crystallized, filtering out highly disordered proteins from structure-determination target lists is still likely to be cost effective. Therefore it is desirable to avoid highly disordered proteins from structure-determination target lists and we show that disorder prediction can be applied effectively to enrich structure determination pipelines with proteins more likely to yield crystal structures. For structural investigation of specific proteins, disorder prediction can be used to improve targets for structure determination. Finally, a framework for considering intrinsic disorder in the structure determination pipeline is proposed. PMID:23232152

  10. Synchrotron X-ray Diffraction and High-Pressure Electrical Resistivity Studies for High-Tc Candidate Nd3.5Sm0.5Ni3O8

    NASA Astrophysics Data System (ADS)

    Uehara, Masatomo; Kobayashi, Kai; Yamamoto, Hiroki; Nakata, Akitoshi; Wakiya, Kazuhei; Umehara, Izuru; Gouchi, Jun; Uwatoko, Yoshiya

    2017-11-01

    Ln4Ni3O8 (Ln = La, Nd, Sm) has attracted much attention as a candidate for high-Tc superconductor due to its close structural and electrical similarities with high-Tc cuprates. However, Ln4Ni3O8 is not a superconductor and shows semiconducting behavior. Our recent work has revealed that Nd3.5Sm0.5Ni3O8 displays metallic behavior down to 20-40 K upon intercalation and subsequent deintercalation treatments with sulfur, followed by a weak semiconducting tendency at lower temperatures. A synchrotron X-ray diffraction experiment suggests that the structural change induced by sulfur treatment can be explained electrostatically by the removal of additional apical oxygen. High-pressure electrical resistivity measurements up to 8 GPa on a metallic sample show the enhancement of the semiconducting tendency at low temperatures, suggesting that the removal of additional apical oxygen is not totally completed under the present conditions of sulfur treatment.

  11. Detecting reactive islands using Lagrangian descriptors and the relevance to transition path sampling.

    PubMed

    Patra, Sarbani; Keshavamurthy, Srihari

    2018-02-14

    It has been known for sometime now that isomerization reactions, classically, are mediated by phase space structures called reactive islands (RI). RIs provide one possible route to correct for the nonstatistical effects in the reaction dynamics. In this work, we map out the reactive islands for the two dimensional Müller-Brown model potential and show that the reactive islands are intimately linked to the issue of rare event sampling. In particular, we establish the sensitivity of the so called committor probabilities, useful quantities in the transition path sampling technique, to the hierarchical RI structures. Mapping out the RI structure for high dimensional systems, however, is a challenging task. Here, we show that the technique of Lagrangian descriptors is able to effectively identify the RI hierarchy in the model system. Based on our results, we suggest that the Lagrangian descriptors can be useful for detecting RIs in high dimensional systems.

  12. Molecular dynamics study about the effect of substrate temperature on a-Si:H structure

    NASA Astrophysics Data System (ADS)

    Luo, Yaorong; Gong, Hongyong; Zhou, Naigen; Huang, Haibin; Zhou, Lang

    2018-01-01

    Molecular dynamics simulation of the microstructure of hydrogenated amorphous silicon (a-Si:H) thin film with different substrate temperatures has been performed based on the Tersoff potential. The results showed that: the silicon thin film maintained amorphous structure in the substrate temperature range from 200 to 1000 K; high substrate temperature could smooth the surface. The first neighbour Voronoi polyhedron was dominated by the tetrahedron. When the substrate temperature increased, the content of tetrahedrons increased due to the transition from pentahedrons and hexahedrons to tetrahedrons. The change of the second neighbour Voronoi polyhedron could be classified into two cases: one case with low medium coordination number decreased as temperature increased, while the other one with high medium coordination number showed an opposite change tendency. It indicated that the local paracrystalline structure arrangement of the second neighbour atoms had been enhanced as substrate temperature rose.

  13. Selective nucleation of iron phthalocyanine crystals on micro-structured copper iodide.

    PubMed

    Rochford, Luke A; Ramadan, Alexandra J; Heutz, Sandrine; Jones, Tim S

    2014-12-14

    Morphological and structural control of organic semiconductors through structural templating is an efficient route by which to tune their physical properties. The preparation and characterisation of iron phthalocyanine (FePc)-copper iodide (CuI) bilayers at elevated substrate temperatures is presented. Thin CuI(111) layers are prepared which are composed of isolated islands rather than continuous films previously employed in device structures. Nucleation in the early stages of FePc growth is observed at the edges of islands rather than on the top (111) faces with the use of field emission scanning electron microscopy (FE-SEM). Structural measurements show two distinct polymorphs of FePc, with CuI islands edges nucleating high aspect ratio FePc crystallites with modified intermolecular spacing. By combining high substrate temperature growth and micro-structuring of the templating CuI(111) layer structural and morphological control of the organic film is demonstrated.

  14. Preparation and Characterization of Organic-Inorganic Hybrid Macrocyclic Compounds: Cyclic Ladder-like Polyphenylsilsesquioxanes.

    PubMed

    Zhang, Wenchao; Wang, Xiaoxia; Wu, Yiwei; Qi, Zhi; Yang, Rongjie

    2018-04-02

    Organic-inorganic hybrid macrocyclic compounds, cyclic polyphenylsilsesquioxanes (cyc-PSQs), have been synthesized through hydrolysis and condensation reactions of phenyltrichlorosilane. Structural characterization has revealed that cyc-PSQs consist of a closed-ring double-chain siloxane inorganic backbone bearing organic phenyl groups. The cyc-PSQ molecules have been simulated and structurally optimized using the Forcite tool as implemented in Materials Studio. Structurally optimized cyc-PSQs are highly symmetrical and regular with high stereoregularity, consistent with the dimensions of their experimentally derived structures. Thermogravimetric analysis showed that these macrocyclic compounds have excellent thermal stability. In addition to these perfectly structured compounds, macrocyclic compounds with the same ring ladder structure but bearing an additional Si-OH group, cyc-PSQs-OH, have also been synthesized. A possible mechanism for the formation of the closed-ring molecular structures of cyc-PSQs and cyc-PSQs-OH is proposed.

  15. Instability-driven frequency decoupling between structure dynamics and wake fluctuations

    NASA Astrophysics Data System (ADS)

    Jin, Yaqing; Kim, Jin-Tae; Chamorro, Leonardo P.

    2018-04-01

    Flow-induced dynamics of flexible structures is, in general, significantly modulated by periodic vortex shedding. Experiments and numerical simulations suggest that the frequencies associated with the dominant motions of structures are highly coupled with those of the wake under low-turbulence uniform flow. Here we present experimental evidence that demonstrates a significant decoupling between the dynamics of simple structures and wake fluctuations for various geometries, Reynolds numbers, and mass ratios. High-resolution particle tracking velocimetry and hot-wire anemometry are used to quantitatively characterize the dynamics of the structures and wake fluctuations; a complementary planar particle image velocimetry measurement is conducted to illustrate distinctive flow patterns. Results show that for structures with directional stiffness, von Kármán vortex shedding might dominate the wake of bodies governed by natural-frequency motion. This phenomenon can be a consequence of Kelvin-Helmholtz instability, where the structural characteristics of the body dominate the oscillations.

  16. High Resolution Crystal Structure of Human β-Glucuronidase Reveals Structural Basis of Lysosome Targeting

    PubMed Central

    Hassan, Md. Imtaiyaz; Waheed, Abdul; Grubb, Jeffery H.; Klei, Herbert E.; Korolev, Sergey; Sly, William S.

    2013-01-01

    Human β-glucuronidase (GUS) cleaves β-D-glucuronic acid residues from the non-reducing termini of glycosaminoglycan and its deficiency leads to mucopolysaccharidosis type VII (MPSVII). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases. The structure revealed several new details including a new glycan chain at Asn272, in addition to that previously observed at Asn173, and coordination of the glycan chain at Asn173 with Lys197 of the lysosomal targeting motif which is essential for phosphotransferase recognition. Analysis of the high resolution structure not only provided new insights into the structural basis for lysosomal targeting but showed significant differences between human GUS, which is medically important in its own right, and E. coli GUS, which can be selectively inhibited in the human gut to prevent prodrug activation and is also widely used as a reporter gene by plant biologists. Despite these differences, both human and E. coli GUS share a high structure homology in all three domains with most of the glycosyl hydrolases, suggesting that they all evolved from a common ancestral gene. PMID:24260279

  17. Resonant tunnelling diode based high speed optoelectronic transmitters

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Rodrigues, G. C.; Al-Khalidi, Abdullah; Figueiredo, José M. L.; Wasige, Edward

    2017-08-01

    Resonant tunneling diode (RTD) integration with photo detector (PD) from epi-layer design shows great potential for combining terahertz (THz) RTD electronic source with high speed optical modulation. With an optimized layer structure, the RTD-PD presented in the paper shows high stationary responsivity of 5 A/W at 1310 nm wavelength. High power microwave/mm-wave RTD-PD optoelectronic oscillators are proposed. The circuitry employs two RTD-PD devices in parallel. The oscillation frequencies range from 20-44 GHz with maximum attainable power about 1 mW at 34/37/44GHz.

  18. Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.

    PubMed

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-08-24

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nitrogen-Superdoped 3D Graphene Networks for High-Performance Supercapacitors.

    PubMed

    Zhang, Weili; Xu, Chuan; Ma, Chaoqun; Li, Guoxian; Wang, Yuzuo; Zhang, Kaiyu; Li, Feng; Liu, Chang; Cheng, Hui-Ming; Du, Youwei; Tang, Nujiang; Ren, Wencai

    2017-09-01

    An N-superdoped 3D graphene network structure with an N-doping level up to 15.8 at% for high-performance supercapacitor is designed and synthesized, in which the graphene foam with high conductivity acts as skeleton and nested with N-superdoped reduced graphene oxide arogels. This material shows a highly conductive interconnected 3D porous structure (3.33 S cm -1 ), large surface area (583 m 2 g -1 ), low internal resistance (0.4 Ω), good wettability, and a great number of active sites. Because of the multiple synergistic effects of these features, the supercapacitors based on this material show a remarkably excellent electrochemical behavior with a high specific capacitance (of up to 380, 332, and 245 F g -1 in alkaline, acidic, and neutral electrolytes measured in three-electrode configuration, respectively, 297 F g -1 in alkaline electrolytes measured in two-electrode configuration), good rate capability, excellent cycling stability (93.5% retention after 4600 cycles), and low internal resistance (0.4 Ω), resulting in high power density with proper high energy density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mars Life? - Microscopic Tube-like Structures

    NASA Image and Video Library

    1996-08-09

    This high-resolution scanning electron microscope image shows an unusual tube-like structural form that is less than 1/100th the width of a human hair in size found in meteorite ALH84001, a meteorite believed to be of Martian origin. http://photojournal.jpl.nasa.gov/catalog/PIA00288

  1. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution

    PubMed Central

    Ma, Yurong; Aichmayer, Barbara; Paris, Oskar; Fratzl, Peter; Meibom, Anders; Metzler, Rebecca A.; Politi, Yael; Addadi, Lia; Gilbert, P. U. P. A.; Weiner, Steve

    2009-01-01

    The sea urchin tooth is a remarkable grinding tool. Even though the tooth is composed almost entirely of calcite, it is used to grind holes into a rocky substrate itself often composed of calcite. Here, we use 3 complementary high-resolution tools to probe aspects of the structure of the grinding tip: X-ray photoelectron emission spectromicroscopy (X-PEEM), X-ray microdiffraction, and NanoSIMS. We confirm that the needles and plates are aligned and show here that even the high Mg polycrystalline matrix constituents are aligned with the other 2 structural elements when imaged at 20-nm resolution. Furthermore, we show that the entire tooth is composed of 2 cooriented polycrystalline blocks that differ in their orientations by only a few degrees. A unique feature of the grinding tip is that the structural elements from each coaligned block interdigitate. This interdigitation may influence the fracture process by creating a corrugated grinding surface. We also show that the overall Mg content of the tooth structural elements increases toward the grinding tip. This probably contributes to the increasing hardness of the tooth from the periphery to the tip. Clearly the formation of the tooth, and the tooth tip in particular, is amazingly well controlled. The improved understanding of these structural features could lead to the design of better mechanical grinding and cutting tools. PMID:19332795

  2. Molecular Cloning, Bioinformatics Analysis and Expression of Insulin-Like Growth Factor 2 from Tianzhu White Yak, Bos grunniens

    PubMed Central

    Zhang, Quanwei; Gong, Jishang; Wang, Xueying; Wu, Xiaohu; Li, Yalan; Ma, Youji; Zhang, Yong; Zhao, Xingxu

    2014-01-01

    The IGF family is essential for normal embryonic and postnatal development and plays important roles in the immune system, myogenesis, bone metabolism and other physiological functions, which makes the study of its structure and biological characteristics important. Tianzhu white yak (Bos grunniens) domesticated under alpine hypoxia environments, is well adapted to survive and grow against severe hypoxia and cold temperatures for extended periods. In this study, a full coding sequence of the IGF2 gene of Tianzhu white yak was amplified by reverse transcription PCR and rapid-amplification of cDNA ends (RACE) for the first time. The cDNA sequence revealed an open reading frame of 450 nucleotides, encoding a protein with 179 amino acids. Its expression in different tissues was also studied by Real time PCR. Phylogenetic tree analysis indicated that yak IGF2 was similar to Bos taurus, and 3D structure showed high similarity with the human IGF2. The putative full CDS of yak IGF2 was amplified by PCR in five tissues, and cDNA sequence analysis showed high homology to bovine IGF2. Moreover the super secondary structure prediction showed a similar 3D structure with human IGF2. Its conservation in sequence and structure has facilitated research on IGF2 and its physiological function in yak. PMID:24394317

  3. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution.

    PubMed

    Ma, Yurong; Aichmayer, Barbara; Paris, Oskar; Fratzl, Peter; Meibom, Anders; Metzler, Rebecca A; Politi, Yael; Addadi, Lia; Gilbert, P U P A; Weiner, Steve

    2009-04-14

    The sea urchin tooth is a remarkable grinding tool. Even though the tooth is composed almost entirely of calcite, it is used to grind holes into a rocky substrate itself often composed of calcite. Here, we use 3 complementary high-resolution tools to probe aspects of the structure of the grinding tip: X-ray photoelectron emission spectromicroscopy (X-PEEM), X-ray microdiffraction, and NanoSIMS. We confirm that the needles and plates are aligned and show here that even the high Mg polycrystalline matrix constituents are aligned with the other 2 structural elements when imaged at 20-nm resolution. Furthermore, we show that the entire tooth is composed of 2 cooriented polycrystalline blocks that differ in their orientations by only a few degrees. A unique feature of the grinding tip is that the structural elements from each coaligned block interdigitate. This interdigitation may influence the fracture process by creating a corrugated grinding surface. We also show that the overall Mg content of the tooth structural elements increases toward the grinding tip. This probably contributes to the increasing hardness of the tooth from the periphery to the tip. Clearly the formation of the tooth, and the tooth tip in particular, is amazingly well controlled. The improved understanding of these structural features could lead to the design of better mechanical grinding and cutting tools.

  4. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity.

    PubMed

    Drury, Crawford; Schopmeyer, Stephanie; Goergen, Elizabeth; Bartels, Erich; Nedimyer, Ken; Johnson, Meaghan; Maxwell, Kerry; Galvan, Victor; Manfrino, Carrie; Lirman, Diego

    2017-08-01

    Threatened Caribbean coral communities can benefit from high-resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, Acropora cervicornis , across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT. Different regions also exhibit up to threefold differences in genetic diversity (He), suggesting targeted management based on the goals and resources of each population is needed. Patterns of genetic diversity have a strong spatial component, and our results show Broward and the Lower Keys are among the most diverse populations in Florida. The genetic diversity of Caribbean staghorn coral is concentrated within populations and within individual reefs (AMOVA), highlighting the complex mosaic of population structure. This variance structure is similar over regional and local scales, which suggests that in situ nurseries are adequately capturing natural patterns of diversity, representing a resource that can replicate the average diversity of wild assemblages, serving to increase intraspecific diversity and potentially leading to improved biodiversity and ecosystem function. Results presented here can be translated into specific goals for the recovery of A. cervicornis , including active focus on low diversity areas, protection of high diversity and connectivity, and practical thresholds for responsible restoration.

  5. Unraveling Deformation Mechanisms in Gradient Structured Metals

    NASA Astrophysics Data System (ADS)

    Moering, Jordan Alexander

    Gradient structures have demonstrated high strength and high ductility, introducing new mechanisms to challenge conventional mechanics. This work develops a method for characterizing the shear strain in gradient structured steel and presents evidence of a texture gradient that develops in Surface Mechanical Attrition Treatment (SMAT). Mechanics underlying some theories of the strengthening mechanisms in gradient structured metals are introduced, followed by the fabrication and testing of gradient structured aluminum rod. The round geometry is intrinsically different from its flat counterparts, which leads to a multiaxial stress state evolving in tension. The aluminum exhibits strengthening beyond rule of mixtures, and texture evolution in the post-mortem sample indicates that out of plane stresses operate within the gradient. Finally, another gradient structured aluminum rod is shown to exhibit higher strength and higher elongation to failure in a variety of sample diameters and processing conditions. The GND density and microstructural evolution showed no significant changes during mechanical testing, and high resolution strain mapping was successfully completed within the core of the material. These discoveries and contributions to the field should help continue unraveling the deformation mechanisms of gradient structured metals.

  6. High-resolution x-ray imaging using a structured scintillator.

    PubMed

    Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan

    2016-02-01

    In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  7. High-resolution x-ray imaging using a structured scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less

  8. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    PubMed

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  9. Flow turbulence topology in regular porous media: From macroscopic to microscopic scale with direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Chu, Xu; Weigand, Bernhard; Vaikuntanathan, Visakh

    2018-06-01

    Microscopic analysis of turbulence topology in a regular porous medium is presented with a series of direct numerical simulation. The regular porous media are comprised of square cylinders in a staggered array. Triply periodic boundary conditions enable efficient investigations in a representative elementary volume. Three flow patterns—channel with sudden contraction, impinging surface, and wake—are observed and studied quantitatively in contrast to the qualitative experimental studies reported in the literature. Among these, shear layers in the channel show the highest turbulence intensity due to a favorable pressure gradient and shed due to an adverse pressure gradient downstream. The turbulent energy budget indicates a strong production rate after the flow contraction and a strong dissipation on both shear and impinging walls. Energy spectra and pre-multiplied spectra detect large scale energetic structures in the shear layer and a breakup of scales in the impinging layer. However, these large scale structures break into less energetic small structures at high Reynolds number conditions. This suggests an absence of coherent structures in densely packed porous media at high Reynolds numbers. Anisotropy analysis with a barycentric map shows that the turbulence in porous media is highly isotropic in the macro-scale, which is not the case in the micro-scale. In the end, proper orthogonal decomposition is employed to distinguish the energy-conserving structures. The results support the pore scale prevalence hypothesis. However, energetic coherent structures are observed in the case with sparsely packed porous media.

  10. A novel structure photonic crystal fiber based on bismuth-oxide for optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Jin, Cang; Yuan, Jinhui; Yu, Chongxiu

    2010-11-01

    The heavy metal oxide glasses containing bismuth such as bismuth sesquioxide show unique high refractive index. In addition, the bismuth-oxide based glass does not include toxic elements such as Pb, As, Se, Te, and exhibits well chemical, mechanical and thermal stability. Hence, it is used to fabricate high nonlinear fiber for nonlinear optical application. Although the bismuth-oxide based high nonlinear fiber can be fusion-spliced to conventional silica fibers and have above advantages, yet it suffers from large group velocity dispersion because of material chromatic dispersion which restricts its utility. In regard to this, the micro-structure was introduced to adjust the dispersion of bismuth-oxide high nonlinear fiber in the 1550nm wave-band. In this paper, a hexagonal solid-core micro-structure is developed to balance its dispersion and nonlinearity. Our simulation and calculation results show that the bismuth-oxide based photonic crystal fiber has near zero dispersion around 1550nm where the optical parametric amplification suitable wavelength is. Its dispersion slop in the communication wavelength range is also relatively flat. Moreover, both nonlinear coefficient and model filed distribution were simulated, respectively.

  11. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    DOE PAGES

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; ...

    2016-03-29

    In this paper, we report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power ofmore » up to 4 MW from a klystron supplied via a TM 01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV=m at a breakdown probability of 1.19 × 10 –1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV=m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV=m at a breakdown probability of 1.09 × 10 –1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.« less

  12. Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.

    PubMed

    Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene

    2015-07-27

    Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.

  13. [The preparation of a new hydroxyapatite and the study on its cytocompatibility].

    PubMed

    Tao, Kai; Mao, Tianqiu; Chen, Fulin; Liu, Xiaoyan

    2006-08-01

    The cuttlebones, harvested from cuttles, undergo the chemical reaction in high temperature and high pressure for a certain time. The products are qualitatively analysed, and spacial structure observation and cytocompatibility are tested. The results show that the chemical component of the cuttlebone is CaCO3 and the crystal type is aragonite. Cuttlebones undergo a hydro-thermal reaction, and thus transform into hydroxyapatite-that is, the cuttlebone-transformed hydroxyapatite(CBHA). The CBHA materials have the interconnected microporous network structures. Under the high magnification, CBHAs appear to have many micro-spheres, thus construct a new self-assembled nano-material system. The marrow stromal osteoblasts can adhere to and proliferate well on the surface of the CBHAs. These results show that CBHAs have good biocompatibility. Therefore, it can be a potential candidate scaffold for bone tissue engineering.

  14. Bright-White Beetle Scales Optimise Multiple Scattering of Light

    NASA Astrophysics Data System (ADS)

    Burresi, Matteo; Cortese, Lorenzo; Pattelli, Lorenzo; Kolle, Mathias; Vukusic, Peter; Wiersma, Diederik S.; Steiner, Ullrich; Vignolini, Silvia

    2014-08-01

    Whiteness arises from diffuse and broadband reflection of light typically achieved through optical scattering in randomly structured media. In contrast to structural colour due to coherent scattering, white appearance generally requires a relatively thick system comprising randomly positioned high refractive-index scattering centres. Here, we show that the exceptionally bright white appearance of Cyphochilus and Lepidiota stigma beetles arises from a remarkably optimised anisotropy of intra-scale chitin networks, which act as a dense scattering media. Using time-resolved measurements, we show that light propagating in the scales of the beetles undergoes pronounced multiple scattering that is associated with the lowest transport mean free path reported to date for low-refractive-index systems. Our light transport investigation unveil high level of optimisation that achieves high-brightness white in a thin low-mass-per-unit-area anisotropic disordered nanostructure.

  15. Asymmetric bias in user guided segmentations of brain structures

    NASA Astrophysics Data System (ADS)

    Styner, Martin; Smith, Rachel G.; Graves, Michael M.; Mosconi, Matthew W.; Peterson, Sarah; White, Scott; Blocher, Joe; El-Sayed, Mohammed; Hazlett, Heather C.

    2007-03-01

    Brain morphometric studies often incorporate comparative asymmetry analyses of left and right hemispheric brain structures. In this work we show evidence that common methods of user guided structural segmentation exhibit strong left-right asymmetric biases and thus fundamentally influence any left-right asymmetry analyses. We studied several structural segmentation methods with varying degree of user interaction from pure manual outlining to nearly fully automatic procedures. The methods were applied to MR images and their corresponding left-right mirrored images from an adult and a pediatric study. Several expert raters performed the segmentations of all structures. The asymmetric segmentation bias is assessed by comparing the left-right volumetric asymmetry in the original and mirrored datasets, as well as by testing each sides volumetric differences to a zero mean standard t-tests. The structural segmentations of caudate, putamen, globus pallidus, amygdala and hippocampus showed a highly significant asymmetric bias using methods with considerable manual outlining or landmark placement. Only the lateral ventricle segmentation revealed no asymmetric bias due to the high degree of automation and a high intensity contrast on its boundary. Our segmentation methods have been adapted in that they are applied to only one of the hemispheres in an image and its left-right mirrored image. Our work suggests that existing studies of hemispheric asymmetry without similar precautions should be interpreted in a new, skeptical light. Evidence of an asymmetric segmentation bias is novel and unknown to the imaging community. This result seems less surprising to the visual perception community and its likely cause is differences in perception of oppositely curved 3D structures.

  16. Highly crystalline films of PCPDTBT with branched side chains by solvent vapor crystallization: influence on opto-electronic properties.

    PubMed

    Fischer, Florian S U; Trefz, Daniel; Back, Justus; Kayunkid, Navaphun; Tornow, Benjamin; Albrecht, Steve; Yager, Kevin G; Singh, Gurpreet; Karim, Alamgir; Neher, Dieter; Brinkmann, Martin; Ludwigs, Sabine

    2015-02-18

    PCPDTBT, a marginally crystallizable polymer, is crystallized into a new crystal structure using solvent-vapor annealing. Highly ordered areas with three different polymer-chain orientations are identified using TEM/ED, GIWAXS, and polarized Raman spectroscopy. The optical and structural properties differ significantly from films prepared by standard device preparation protocols. Bilayer solar cells, however, show similar performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. High-power laser interaction with low-density C–Cu foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, F.; Colvin, J. D.; May, M. J.

    2015-11-15

    We study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.

  18. High-power laser interaction with low-density C–Cu foams

    DOE PAGES

    Pérez, F.; Colvin, J. D.; May, M. J.; ...

    2015-11-19

    Here, we study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.

  19. High-temperature annealing of graphite: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Petersen, Andrew; Gillette, Victor

    2018-05-01

    A modified AIREBO potential was developed to simulate the effects of thermal annealing on the structure and physical properties of damaged graphite. AIREBO parameter modifications were made to reproduce Density Functional Theory interstitial results. These changes to the potential resulted in high-temperature annealing of the model, as measured by stored-energy reduction. These results show some resemblance to experimental high-temperature annealing results, and show promise that annealing effects in graphite are accessible with molecular dynamics and reactive potentials.

  20. Geologic utility of small-scale airphotos

    NASA Technical Reports Server (NTRS)

    Clark, M. M.

    1969-01-01

    The geologic value of small scale airphotos is emphasized by describing the application of high altitude oblique and 1:120,000 to 1:145,000 scale vertical airphotos to several geologic problems in California. These examples show that small-scale airphotos can be of use to geologists in the following ways: (1) high altitude, high oblique airphotos show vast areas in one view; and (2) vertical airphotos offer the most efficient method of discovering the major topographic features and structural and lithologic characteristics of terrain.

  1. Structure-Based Discovery of 4-(6-Methoxy-2-methyl-4-(quinolin-4-yl)-9 H -pyrimido[4,5- b ]indol-7-yl)-3,5-dimethylisoxazole (CD161) as a Potent and Orally Bioavailable BET Bromodomain Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yujun; Bai, Longchuan; Liu, Liu

    We have designed and synthesized 9H-pyrimido[4,5-b]indole-containing compounds to obtain potent and orally bioavailable BET inhibitors. By incorporation of an indole or a quinoline moiety to the 9H-pyrimido[4,5-b]indole core, we identified a series of small molecules showing high binding affinities to BET proteins and low nanomolar potencies in inhibition of cell growth in acute leukemia cell lines. One such compound, 4-(6-methoxy-2-methyl-4-(quinolin-4-yl)-9H-pyrimido[4,5-b]indol-7-yl)-3,5-dimethylisoxazole (31) has excellent microsomal stability and good oral pharmacokinetics in rats and mice. Orally administered, 31 achieves significant antitumor activity in the MV4;11 leukemia and MDA-MB-231 triple-negative breast cancer xenograft models in mice. Determination of the cocrystal structure of 31more » with BRD4 BD2 provides a structural basis for its high binding affinity to BET proteins. Testing its binding affinities against other bromodomain-containing proteins shows that 31 is a highly selective inhibitor of BET proteins. Our data show that 31 is a potent, selective, and orally active BET inhibitor.« less

  2. Two luminescent d10 metal coordination polymers assembled from a semirigid terpyridyl carboxylate ligand with high selective detecting of Cu2+, Cr2O72- and acetone

    NASA Astrophysics Data System (ADS)

    Yuan, Fei; Wang, Ting-Ting; Hu, Huai-Ming; Li, Chuan-Ti; Zhou, Chun-Sheng; Wang, Xiaofang; Xue, Ganglin

    2017-07-01

    Using a carboxylic oligopyridine ligand, 4‧-(4-carboxyphenyl)-4,2‧:6‧,4″- terpyridine (Hcptpy), and imidazole-4,5-dicarboxylic acid (H3idc), two metal(II)-cptpy compounds formulated as [Zn2(cptpy)4]n·nH2O (1), [Zn2(cptpy)2(Hidc)(H2O)2]n·nH2O (2) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Compound 1 shows a 2D +2D →3D supramolecular framework structure generated by two-fold interpenetrating 3-connected 2D framework (2D+2D→2D) with the sql topological net and the Schläfli symbol of {44·62}. Compound 2 displays a 1D ladder chain structure. The luminescent properties of 1 and the ones immersed in various kinds of organic compounds and nitrate@DMF solutions have been investigated. Importantly, 1 shows highly selective and sensitive response to acetone and Cu2+ through luminescence quenching effects, making it a promising luminescent sensor for acetone molecule and Cu2+. Meaningwhile, compound 2 shows highly selective sensitivity for Cr2O72-.

  3. Photonic slab heterostructures based on opals

    NASA Astrophysics Data System (ADS)

    Palacios-Lidon, Elisa; Galisteo-Lopez, Juan F.; Juarez, Beatriz H.; Lopez, Cefe

    2004-09-01

    In this paper the fabrication of photonic slab heterostructures based on artificial opals is presented. The innovated method combines high-quality thin-films growing of opals and silica infiltration by Chemical Vapor Deposition through a multi-step process. By varying structure parameters, such as lattice constant, sample thickness or refractive index, different heterostructures have been obtained. The optical study of these systems, carried out by reflectance and transmittance measurements, shows that the prepared samples are of high quality further confirmed by Scanning Electron Microscopy micrographs. The proposed novel method for sample preparation allows a high control of the involved structure parameters, giving the possibility of tunning their photonic behavior. Special attention in the optical response of these materials has been addressed to the study of planar defects embedded in opals, due to their importance in different photonic fields and future technological applications. Reflectance and transmission measurements show a sharp resonance due to localized states associated with the presence of planar defects. A detailed study of the defect mode position and its dependance on defect thickness and on the surrounding photonic crystal is presented as well as evidence showing the scalability of the problem. Finally, it is also concluded that the proposed method is cheap and versatile allowing the preparation of opal-based complex structures.

  4. Kaolinite flocculation induced by smectite addition - a transmission X-ray microscopic study.

    PubMed

    Zbik, Marek S; Song, Yen-Fang; Frost, Ray L

    2010-09-01

    The influence of smectite addition on kaolinite suspensions in water was investigated by transmission X-ray microscopy (TXM) and Scanning Electron Microscopy (SEM). Sedimentation test screening was also conducted. Micrographs were processed by the STatistic IMage Analysing (STIMAN) program and structural parameters were calculated. From the results of the sedimentation tests important influences of small smectite additions to about 3wt.% on kaolinite suspension flocculation has been found. In order to determine the reason for this smectite impact on kaolinite suspension, macroscopic behaviour micro-structural examination using Transmission X-ray Microscope (TXM) and SEM has been undertaken. TXM & SEM micrographs of freeze-dried kaolinite-smectite suspensions with up to 20% smectite showed a high degree of orientation of the fabric made of highly oriented particles and greatest density when 3wt.% of smectite was added to the 10wt.% dense kaolinite suspension. In contrast, suspensions containing pure kaolinite do not show such platelet mutual orientation but homogenous network of randomly oriented kaolinite platelets. This suggests that in kaolinite-smectite suspensions, smectite forms highly oriented basic framework into which kaolinite platelets may bond in face to face preferential contacts strengthening structure and allowing them to show plastic behaviour which is cause of platelets orientation. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  6. Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States.

    PubMed

    Baker, William L; Williams, Mark A

    2018-03-01

    An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross-validations, and corroborating evidence. These show our method creates accurate reconstructions with low errors. One independent modern test reported high error, but did not replicate our method and made many calculation errors. Using reconstructed parameters of historical fire regimes and forest structure from our validated methods, forests were found to be non-uniform across the 11 landscapes, but grouped together in three geographical areas. Each had a mixture of fire severities, but dominated by low-severity fire and low median tree density in Arizona, mixed-severity fire and intermediate to high median tree density in Oregon-California, and high-severity fire and intermediate median tree density in Colorado. Programs to restore fire and forest structure could benefit from regional frameworks, rather than one size fits all. © 2018 by the Ecological Society of America.

  7. In situ generation of highly dispersed metal nanoparticles on two-dimensional layered SiO2 by topotactic structure conversion and their superior catalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Jia, Da-Shuang; Zhou, Yue; Hao, Jiang; Liang, Yu; Cui, Zhi-Min; Song, Wei-Guo

    2018-03-01

    Metal nanoparticles such as Ag, Cu and Fe are effective catalysts for many reactions, whereas a facile method to prepare metal nanoparticles with high uniformed dispersion is still desirable. Herein, the topotactic structure conversion of layered silicate, RUB-15, was utilized to support metal nanoparticles. Through simple ion-exchange and following calcination step, metal nanoparticles were generated in situ inside the interlayer space of layered silica, and the topotactic structure conversion process assured nano-sized and highly uniformed dispersion of metal nanoparticles. The obtained Ag/SiO2 composite showed superior catalytic activity for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB), with a rate constant as high as 0.0607 s-1 and 0.0778 s-1. The simple and universal synthesis method as well as high activity of the product composite endow the strategy good application prospect.

  8. Effects of the ultra-high pressure on structure and α-glucosidase inhibition of polysaccharide from Astragalus.

    PubMed

    Zhu, Zhen-Yuan; Luo, You; Dong, Guo-Ling; Ren, Yuan-Yuan; Chen, Li-Jing; Guo, Ming-Zhu; Wang, Xiao-Ting; Yang, Xue-Ying; Zhang, Yongmin

    2016-06-01

    A novel homogeneous polysaccharide fraction (APS) was extracted from Astragalus by hot water and purified by Sephadex G-100 and G-75 column. Its molecular weight was 693kDa. APS and APS with ultra-high pressure treatment exhibited significant inhibitory abilities on a-glucosidase, inhibition rate from high to low in order was 400MPa-APS, 300MPa-APS, 500MPa-APS and APS. The inhibition ​percentage of 400MPa-APS (1.5mg/mL) was 49% (max.). This suggested that the inhibitory activity of APS on a-glucosidase was improved by ultra-high pressure treatment. FT-IR, SEM, CD spectra, atomic force microscope and Congo red test analysis of APS and 400MPa-APS showed ultra-high pressure treatment didn't change the preliminary structure but had an effect on its advanced structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. High-pressure Raman study on the superconducting pyrochlore oxide Cd2Re2O7

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Yasuhito; Hasegawa, Takumi; Ogita, Norio; Yamaura, Jun-ichi; Hiroi, Zenji

    2018-05-01

    The superconducting pyrochlore oxide Cd2Re2O7 (Tc = 1 K), which is now considered as a candidate of the spin-orbit-coupled metal, shows an inversion-symmetry-breaking structural transition at Ts1 = 200 K . Ts1 decreases with increasing pressure and disappears at around Pc = 4.2 GPa , where at least four high-pressure phases with tiny structural distortions are suggested by means of powder X-ray diffraction [Yamaura PRB 2017]. We have carried out Raman scattering experiments to investigate changes in the crystal symmetry under high pressures up to 4.8 GPa. A structural transition at 1.9-3.0 GPa and the recovery of inversion symmetry above Pc are observed at 12 K.

  10. Light-Immune pH Sensor with SiC-Based Electrolyte-Insulator-Semiconductor Structure

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Ting; Huang, Chien-Shiang; Chow, Lee; Lan, Jyun-Ming; Yang, Chia-Ming; Chang, Liann-Be; Lai, Chao-Sung

    2013-12-01

    An electrolyte-insulator-semiconductor (EIS) structure with high-band-gap semiconductor of silicon carbide is demonstrated as a pH sensor in this report. Two different sensing membranes, i.e., gadolinium oxide (Gd2O3) and hafnium oxide (HfO2), were investigated. The HfO2 film deposited by atomic layer deposition (ALD) at low temperature shows high pH sensing properties with a sensitivity of 52.35 mV/pH and a low signal of 4.95 mV due to light interference. The EIS structures with silicon carbide can provide better visible light immunity due to its high band gap that allows pH detection in an outdoor environment without degradation of pH sensitivity.

  11. Pattern dependence in high-speed Q-modulated distributed feedback laser.

    PubMed

    Zhu, Hongli; Xia, Yimin; He, Jian-Jun

    2015-05-04

    We investigate the pattern dependence in high speed Q-modulated distributed feedback laser based on its complete physical structure and material properties. The structure parameters of the gain section as well as the modulation and phase sections are all taken into account in the simulations based on an integrated traveling wave model. Using this model, we show that an example Q-modulated DFB laser can achieve an extinction ratio of 6.8dB with a jitter of 4.7ps and a peak intensity fluctuation of less than 15% for 40Gbps RZ modulation signal. The simulation method is proved very useful for the complex laser structure design and high speed performance optimization, as well as for providing physical insight of the operation mechanism.

  12. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.

    PubMed

    Wu, Mingyan; Sabisch, Julian E C; Song, Xiangyun; Minor, Andrew M; Battaglia, Vincent S; Liu, Gao

    2013-01-01

    To address the significant challenges associated with large volume change of micrometer-sized Si particles as high-capacity anode materials for lithium-ion batteries, we demonstrated a simple but effective strategy: using Si nanoparticles as a structural and conductive additive, with micrometer-sized Si as the main lithium-ion storage material. The Si nanoparticles connected into the network structure in situ during the charge process, to provide electronic connectivity and structure stability for the electrode. The resulting electrode showed a high specific capacity of 2500 mAh/g after 30 cycles with high initial Coulombic efficiency (73%) and good rate performance during electrochemical lithiation and delithiation: between 0.01 and 1 V vs Li/Li(+).

  13. Highly structured genetic diversity of the Mycobacterium tuberculosis population in Djibouti.

    PubMed

    Godreuil, S; Renaud, F; Choisy, M; Depina, J J; Garnotel, E; Morillon, M; Van de Perre, P; Bañuls, A L

    2010-07-01

    Djibouti is an East African country with a high tuberculosis incidence. This study was conducted over a 2-month period in Djibouti, during which 62 consecutive patients with pulmonary tuberculosis (TB) were included. Genetic characterization of Mycobacterium tuberculosis, using mycobacterial interspersed repetitive-unit variable-number tandem-repeat typing and spoligotyping, was performed. The genetic and phylogenetic analysis revealed only three major families (Central Asian, East African Indian and T). The high diversity and linkage disequilibrium within each family suggest a long period of clonal evolution. A Bayesian approach shows that the phylogenetic structure observed in our sample of 62 isolates is very likely to be representative of the phylogenetic structure of the M. tuberculosis population in the total number of TB cases.

  14. Linking morphology with activity through the lifetime of pretreated PtNi nanostructured thin film catalysts

    DOE PAGES

    Cullen, David A.; Lopez-Haro, Miguel; Bayle-Guillemaud, Pascale; ...

    2015-04-10

    In this study, the nanoscale morphology of highly active Pt 3Ni 7 nanostructured thin film fuel cell catalysts is linked with catalyst surface area and activity following catalyst pretreatments, conditioning and potential cycling. The significant role of fuel cell conditioning on the structure and composition of these extended surface catalysts is demonstrated by high resolution imaging, elemental mapping and tomography. The dissolution of Ni during fuel cell conditioning leads to highly complex, porous structures which were visualized in 3D by electron tomography. Quantification of the rendered surfaces following catalyst pretreatment, conditioning, and cycling shows the important role pore structure playsmore » in surface area, activity, and durability.« less

  15. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  16. High resolution simulations of energy absorption in dynamically loaded cellular structures

    NASA Astrophysics Data System (ADS)

    Winter, R. E.; Cotton, M.; Harris, E. J.; Eakins, D. E.; McShane, G.

    2017-03-01

    Cellular materials have potential application as absorbers of energy generated by high velocity impact. CTH, a Sandia National Laboratories Code which allows very severe strains to be simulated, has been used to perform very high resolution simulations showing the dynamic crushing of a series of two-dimensional, stainless steel metal structures with varying architectures. The structures are positioned to provide a cushion between a solid stainless steel flyer plate with velocities ranging from 300 to 900 m/s, and an initially stationary stainless steel target. Each of the alternative architectures under consideration was formed by an array of identical cells each of which had a constant volume and a constant density. The resolution of the simulations was maximised by choosing a configuration in which one-dimensional conditions persisted for the full period over which the specimen densified, a condition which is most readily met by impacting high density specimens at high velocity. It was found that the total plastic flow and, therefore, the irreversible energy dissipated in the fully densified energy absorbing cell, increase (a) as the structure becomes more rodlike and less platelike and (b) as the impact velocity increases. Sequential CTH images of the deformation processes show that the flow of the cell material may be broadly divided into macroscopic flow perpendicular to the compression direction and jetting-type processes (microkinetic flow) which tend to predominate in rod and rodlike configurations and also tend to play an increasing role at increased strain rates. A very simple analysis of a configuration in which a solid flyer impacts a solid target provides a baseline against which to compare and explain features seen in the simulations. The work provides a basis for the development of energy absorbing structures for application in the 200-1000 m/s impact regime.

  17. The crystal structure of the catalytic domain of the ser/thr kinase PknA from M. tuberculosis shows an Src-like autoinhibited conformation.

    PubMed

    Wagner, Tristan; Alexandre, Matthieu; Duran, Rosario; Barilone, Nathalie; Wehenkel, Annemarie; Alzari, Pedro M; Bellinzoni, Marco

    2015-05-01

    Signal transduction mediated by Ser/Thr phosphorylation in Mycobacterium tuberculosis has been intensively studied in the last years, as its genome harbors eleven genes coding for eukaryotic-like Ser/Thr kinases. Here we describe the crystal structure and the autophosphorylation sites of the catalytic domain of PknA, one of two protein kinases essential for pathogen's survival. The structure of the ligand-free kinase domain shows an auto-inhibited conformation similar to that observed in human Tyr kinases of the Src-family. These results reinforce the high conservation of structural hallmarks and regulation mechanisms between prokaryotic and eukaryotic protein kinases. © 2015 Wiley Periodicals, Inc.

  18. Tree-shaped fractal meta-surface with left-handed characteristics for absorption application

    NASA Astrophysics Data System (ADS)

    Faruque, M. R. I.; Hasan, M. M.; Islam, M. T.

    2018-02-01

    A tri-band fractal meta-surface absorber composed of metallic branches of a tree connected with a straight metal strip has been presented in this paper for high absorption application. The proposed tree-shaped structure shows resonance in C-, X-, and Ku-bands and left-handed characteristics in 14.15 GHz. The dimension of the tree-shaped meta-surface single unit cell structure is 9 × 9 mm2 and the effective medium ratio is 5.50. In addition, the designed absorber structure shows absorption above 84%, whereas the absorber structure printed on epoxy resin fiber substrate material. The FIT-based CST-MWS has been utilized for the design, simulation, and analysis purposes. Fabrication is also done for the experimental validation.

  19. Numerical simulation studies of nano-scale surface plasmon components: waveguides, splitters, and filters

    NASA Astrophysics Data System (ADS)

    Lin, Xian-Shi; Huang, Xu-Guang

    2008-12-01

    In this paper, we theoretically and numerically demonstrate a two-dimensional Metal-Dielectric-Metal (MDM) waveguide based on finite-difference time-domain simulation of the propagation characteristics of surface plasmon polaritons (SPPs). For practical applications, we propose a plasmonic Y-branch waveguide based on MDM structure for high integration. The simulation results show that the Y-branch waveguide proposed here makes optical splitter with large branching angle (~180 degree) come true. We also introduce a finite array of periodic tooth structure on one surface of the MDM waveguide which is in a similar way as FBGs or Bragg reflectors, potentially as filters for WDM applications. Our results show that the novel structure not only can realize filtering function of wavelength with a high transmittance over 92%, but also with an ultra-compact size in the length of a few hundred nanometers, in comparison with other grating-like SPPs filters. The MDM waveguide splitters and filters could be utilized to achieve ultra-compact photonic filtering devices for high integration in SPPs-based flat metallic surfaces.

  20. Synthesis of chitin nanofibers, MWCNTs and MnO2 nanoflakes 3D porous network flexible gel-film for high supercapacitive performance electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Li, Dagang

    2017-03-01

    As the porous structure and conductivity result in improvement of electrochemical properties, the chitin nanofibers (ChNFs), multi-walled carbon nanotubes (MWCNTs) and MnO2 (manganese dioxide) nanoflakes 3D porous network core-shell structure gel-film was fabricated for flexible free-standing supercapacitor electrodes. The electrodes were characterized by various techniques and the results demonstrate that the as-synthesized ChNFs/MWCNTs/MnO2 gel-film electrodes exhibits excellent supercapacitive behaviours. The ChNFs/MWCNTs/MnO2 gel-film electrode shows a high capacitance of 295.2 mF/cm2 at 0.1 mA/cm2 in 1 M Na2SO4 aqueous electrolyte because of its 3D porous structure. Furthermore, the electrodes also showed surprising cycling stability for 5000 cycles with retention rate up to 157.14% at 1 mA/cm2. The data presents great promise in the application of high-performance flexible supercapacitors with the low cost, light-weight and excellent cycling ability.

  1. Influence of structural features of carrageenan on the formation of polyelectrolyte complexes with chitosan.

    PubMed

    Volod'ko, A V; Davydova, V N; Glazunov, V P; Likhatskaya, G N; Yermak, I M

    2016-03-01

    The polyelectrolyte complexes (PEC) of carrageenans (CG)-κ-, κ/β-, λ-and x-CG with chitosan were obtained. The formation of PEC was detected by Fourier-transform infrared (FTIR) spectroscopy and by centrifugation in a Percoll gradient. The influence of the structural peculiarities of CG on its interaction with chitosan was studied. The results of centrifugation showed that x-CG with a high degree of sulphation (SD) was completely bound to chitosan, unlike low SD κ-CG and κ/β-CG. Binding constant values showed there was a high affinity of CG for chitosan. CG with flexible macromolecule conformation and high SD exhibited the greatest binding affinity for chitosan. The full-atomic 3D-structures of the PEC κ-CG: chitosan in solution have been obtained by the experiments in silico for the first time. The amino groups of chitosan make the largest contribution to the energy of the complex formation by means of hydrogen and ionic bonds. The most probable complexes have stoichiometries of 1:1 and 1:1.5. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates.

    PubMed

    Bhatta, Umananda M; Rath, Ashutosh; Dash, Jatis K; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P V

    2009-11-18

    Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.

  3. Biological and structural analyses of bovine heparin fractions of intermediate and high molecular weight.

    PubMed

    Nogueira, Alexsandro V; Drehmer, Daiana L; Iacomini, Marcello; Sassaki, Guilherme L; Cipriani, Thales R

    2017-02-10

    Low molecular weight heparin, which is generally obtained by chemical and enzymatic depolymerization of unfractionated heparin, has high bioavailability and can be subcutaneously injected. The aim of the present investigation was to fractionate bovine heparin using a physical method (ultrafiltration through a 10kDa cut-off membrane), avoiding structural modifications that can be caused by chemical or enzymatic treatments. Two fractions with different molecular weights were obtained: the first had an intermediate molecular weight (B-IMWH; Mn=9587Da) and the other had a high molecular weight (B-HMWH; 22,396Da). B-IMWH and B-HMWH have anticoagulant activity of 103 and 154IU/mg respectively, which could be inhibited by protamine. Both fractions inhibited α-thrombin and factor Xa in vitro and showed antithrombotic effect in vivo. Moreover, ex vivo aPTT assay demonstrated that B-IMWH is absorbed by subcutaneous route. The results showed that ultrafiltration can be used to obtain two bovine heparin fractions, which differ on their molecular weights, structural components, anticoagulant potency, and administration routes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Phase transformations and indications for acoustic mode softening in Tb-Gd orthophosphate

    DOE PAGES

    Tschauner, Oliver; Ushakov, Sergey V.; Navrotsky, Alexandra; ...

    2016-01-06

    At ambient conditions the anhydrous rare-earth orthophosphates assume either the xenotime (zircon) or the monazite structure, with the latter favored for the heavier rare earths. Tb 0.5Gd 0.5PO 4 assumes the xenotime structure at ambient conditions but is at the border between the xenotime and monazite structures. Here we show that, at high pressure, Tb 0.5Gd 0.5PO 4 does not transform directly to monazite but through an intermediate anhydrite-type structure. We show softening of (c 1133 + c 1313) combined elastic moduli close to the transition from the anhydrite to the monazite structure. Stress response of rare-earth orthophosphate ceramics canmore » be affected by both formation of the anhydrite-type phase and the elastic softening in the vicinity of the monazite-phase. In conclusion, we report the first structural data for an anhydrite-type rare earth orthophosphate.« less

  5. Revised Atomistic Models of the Crystal Structure of C-S-H with high C/S Ratio

    NASA Astrophysics Data System (ADS)

    Kovačević, Goran; Nicoleau, Luc; Nonat, André; Veryazov, Valera

    2016-09-01

    The atomic structure of calcium-silicate-hydrate (C1.67-S-Hx) has been studied. Atomistic C-S-H models suggested in our previous study have been revised in order to perform a direct comparison of energetic stability of the different structures. An extensive set of periodic structures of C-S-H with variation of water content was created, and then optimized using molecular dynamics with reactive force field ReaxFF and quantum chemical semiempirical method PM6. All models show organization of water molecules inside the structure of C-S-H. The new geometries of C-S-H, reported in this paper, show lower relative energy with respect to the geometries from the original definition of C-S-H models. Model that corresponds to calcium enriched tobermorite structure has the lowest relative energy and the density closest to the experimental values.

  6. Paleomagnetic reconstruction of Late Cretaceous structures along the Midelt-Errachidia profile (Morocco). Tectonic implications.

    NASA Astrophysics Data System (ADS)

    Torres López, Sara; José Villalain, Juan; Casas, Antonio; El ouardi, Hmidou; Moussaid, Bennacer; Ruiz-Martínez, Vicente Carlos

    2017-04-01

    Remagnetization data are used in this work to obtain the palinspastic reconstruction at 100 (Ma) of one of the most studied profiles of the Central High Atlas: the Midelt-Errachidia cross-section (Morocco). Previous studies in the area on syn-rift sedimentary rocks of subsiding basins have revealed that the Mesozoic sediments of this region acquired a pervasive remagnetization at the end of the Early Cretaceous. Fifty-eight sites (470 samples) corresponding to black limestones, marly limestones and marls, Early to Middle Jurassic in age, have been studied. Sites are distributed along a 70 km transect cutting across the basin and perpendicular to the main structures. The magnetic properties of samples are very regular showing very high NRM. Thermal and AF demagnetization showed a single stable paleomagnetic component with unblocking temperatures and coercivities spectra of 300-475°C and 20-100 mT respectively. This characteristic remanent magnetization (ChRM) showed systematically normal polarity suggesting a widespread remagnetization. In spite of the good outcrops and the relatively well-constrained structure of the High Atlas, there are many tectonic problems still unsolved, as the controversial existence of intra-Mesozoic deformation episodes. The restoration of paleomagnetic vectors to the remagnetization acquisition stage (100 Ma) allows to determine the dip of the beds during this period and, thereby, to obtain a reconstruction of structures during that time. This reconstruction accounts for the relative contribution of Mesozoic transpressional/transtrenssional movements vs. Cenozoic compression to the present-day dip. The results obtained indicate that these structures have undergone different degrees of pre-late Cretaceous deformation and were re-activated during the Cenozoic compression to finally acquire their present-day geometry.

  7. X-ray structure determination at low resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunger, Axel T., E-mail: brunger@stanford.edu; Department of Molecular and Cellular Physiology, Stanford University; Department of Neurology and Neurological Sciences, Stanford University

    2009-02-01

    Refinement is meaningful even at 4 Å or lower, but with present methodologies it should start from high-resolution crystal structures whenever possible. As an example of structure determination in the 3.5–4.5 Å resolution range, crystal structures of the ATPase p97/VCP, consisting of an N-terminal domain followed by a tandem pair of ATPase domains (D1 and D2), are discussed. The structures were originally solved by molecular replacement with the high-resolution structure of the N-D1 fragment of p97/VCP, whereas the D2 domain was manually built using its homology to the D1 domain as a guide. The structure of the D2 domain alonemore » was subsequently solved at 3 Å resolution. The refined model of D2 and the high-resolution structure of the N-D1 fragment were then used as starting models for re-refinement against the low-resolution diffraction data for full-length p97. The re-refined full-length models showed significant improvement in both secondary structure and R values. The free R values dropped by as much as 5% compared with the original structure refinements, indicating that refinement is meaningful at low resolution and that there is information in the diffraction data even at ∼4 Å resolution that objectively assesses the quality of the model. It is concluded that de novo model building is problematic at low resolution and refinement should start from high-resolution crystal structures whenever possible.« less

  8. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE PAGES

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; ...

    2014-11-20

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  9. High-Throughput Synthesis and Structure of Zeolite ZSM-43 with Two-Directional 8-Ring Channels.

    PubMed

    Willhammar, Tom; Su, Jie; Yun, Yifeng; Zou, Xiaodong; Afeworki, Mobae; Weston, Simon C; Vroman, Hilda B; Lonergan, William W; Strohmaier, Karl G

    2017-08-07

    The aluminosilicate zeolite ZSM-43 (where ZSM = Zeolite Socony Mobil) was first synthesized more than 3 decades ago, but its chemical structure remained unsolved because of its poor crystallinity and small crystal size. Here we present optimization of the ZSM-43 synthesis using a high-throughput approach and subsequent structure determination by the combination of electron crystallographic methods and powder X-ray diffraction. The synthesis required the use of a combination of both inorganic (Cs + and K + ) and organic (choline) structure-directing agents. High-throughput synthesis enabled a screening of the synthesis conditions, which made it possible to optimize the synthesis, despite its complexity, in order to obtain a material with significantly improved crystallinity. When both rotation electron diffraction and high-resolution transmission electron microscopy imaging techniques are applied, the structure of ZSM-43 could be determined. The structure of ZSM-43 is a new zeolite framework type and possesses a unique two-dimensional channel system limited by 8-ring channels. ZSM-43 is stable upon calcination, and sorption measurements show that the material is suitable for adsorption of carbon dioxide as well as methane.

  10. Structure-Guided Functional Characterization of DUF1460 Reveals a Highly Specific NlpC/P60 Amidase Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a novel, highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo-structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predictedmore » in silico based on structural and bioinformatics data, and were subsequently characterized experimentally. Ultimately, further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines a new amidase family.« less

  11. Structure-guided functional characterization of DUF1460 reveals a highly specific NlpC/P60 amidase family.

    PubMed

    Xu, Qingping; Mengin-Lecreulx, Dominique; Patin, Delphine; Grant, Joanna C; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W; Godzik, Adam; Lesley, Scott A; Elsliger, Marc-André; Deacon, Ashley M; Wilson, Ian A

    2014-12-02

    GlcNAc-1,6-anhydro-MurNAc-tetrapeptide is a major peptidoglycan degradation intermediate and a cytotoxin. It is generated by lytic transglycosylases and further degraded and recycled by various enzymes. We have identified and characterized a highly specific N-acetylmuramoyl-L-alanine amidase (AmiA) from Bacteroides uniformis, a member of the DUF1460 protein family, that hydrolyzes GlcNAc-1,6-anhydro-MurNAc-peptide into disaccharide and stem peptide. The high-resolution apo structure at 1.15 Å resolution shows that AmiA is related to NlpC/P60 γ-D-Glu-meso-diaminopimelic acid amidases and shares a common catalytic core and cysteine peptidase-like active site. AmiA has evolved structural adaptations that reconfigure the substrate recognition site. The preferred substrates for AmiA were predicted in silico based on structural and bioinformatics data, and subsequently were characterized experimentally. Further crystal structures of AmiA in complexes with GlcNAc-1,6-anhydro-MurNAc and GlcNAc have enabled us to elucidate substrate recognition and specificity. DUF1460 is highly conserved in structure and defines another amidase family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. X-ray observations of characteristic structures and time variations from the solar corona - Preliminary results from Skylab.

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.; Davis, J. M.; Giacconi, R.; Krieger, A. S.; Silk, J. K.; Timothy, A. F.; Zombeck, M.

    1973-01-01

    Examples taken from the S-054 X-ray telescope observations made during the first Skylab mission show the hot coronal plasma tracing the configuration of the magnetic fields. The high spectral resolution and sensitivity of the instrument has enabled the following two facts to be more firmly established: (1) that the 'quiet homogeneous corona' is in fact highly structured and that the structures observed appear to be the results of dispersed active region magnetic fields; and (2) that numerous bright points are distributed randomly on the disk. Their presence at high latitudes may play a role in solar cycle models. In addition, the capability of Skylab for studying time evolution has enabled the restructuring of coronal features to be seen at times of high activity, indicating a restructuring of the coronal magnetic fields.

  13. Carboxylated hyperbranched poly(glycidol)s for preparation of pH-sensitive liposomes.

    PubMed

    Yuba, Eiji; Harada, Atsushi; Sakanishi, Yuichi; Kono, Kenji

    2011-01-05

    Previous reports by the authors described intracellular delivery using liposomes modified with various carboxylated poly(glycidol) derivatives. These linear polymer-modified liposomes exhibited a pH-dependent membrane fusion behavior in cellular acidic compartments. However, the effect of the backbone structure on membrane fusion activity remains unknown. Therefore, this study specifically investigated the backbone structure to obtain pH-sensitive polymers with much higher fusogenic activity and to reveal the effect of the polymer backbone structure on the interaction with the membrane. Hyperbranched poly(glycidol) (HPG) derivatives were prepared as a new type of pH-sensitive polymer and used for the modification of liposomes. The resultant HPG derivatives exhibited high hydrophobicity and intensive interaction with the membrane concomitantly with the increasing degree of polymerization (DP). Furthermore, HPG derivatives showed a stronger interaction with the membrane than the linear polymers show. Liposomes modified with HPG derivatives of high DP delivered contents into the cytosol of DC2.4 cells, a dendritic cell line, more effectively than the linear polymer-modified liposomes do. Results show that the backbone structure of pH-sensitive polymers affected their pH-sensitivity and interaction with liposomal and cellular membranes. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    NASA Astrophysics Data System (ADS)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  15. AlGaN/GaN High Electron Mobility Transistor Grown and Fabricated on ZrTi Metallic Alloy Buffer Layers

    DOE PAGES

    Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...

    2017-09-26

    AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated for structures grown on ZrTi metallic alloy buffer layers, which provided lattice matching of the in-plane lattice parameter (“a-parameter”) to hexagonal GaN. The quality of the GaN buffer layer and HEMT structure were confirmed with X-ray 2θ and rocking scans as well as cross-section transmission electron microscopy (TEM) images. The X-ray 2θ scans showed full widths at half maximum (FWHM) of 0.06°, 0.05° and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM of the lower section of the HEMT structure containing the GaN buffer layer andmore » the AlN/ZrTi/AlN stack on the Si substrate showed that it was important to grow AlN on the top of ZrTi prior to growing the GaN buffer layer. Finally, the estimated threading dislocation (TD) density in the GaN channel layer of the HEMT structure was in the 10 8 cm -2 range.« less

  16. Synthesis and structural characterization of bulk Sb2Te3 single crystal

    NASA Astrophysics Data System (ADS)

    Sultana, Rabia; Gahtori, Bhasker; Meena, R. S.; Awana, V. P. S.

    2018-05-01

    We report the growth and characterization of bulk Sb2Te3 single crystal synthesized by the self flux method via solid state reaction route from high temperature melt (850˚C) and slow cooling (2˚C/hour) of constituent elements. The single crystal X-ray diffraction pattern showed the 00l alignment and the high crystalline nature of the resultant sample. The rietveld fitted room temperature powder XRD revealed the phase purity and rhombohedral structure of the synthesized crystal. The formation and analysis of unit cell structure further verified the rhombohedral structure composed of three quintuple layers stacked one over the other. The SEM image showed the layered directional growth of the synthesized crystal carried out using the ZEISS-EVOMA-10 scanning electron microscope The electrical resistivity measurement was carried out using the conventional four-probe method on a quantum design Physical Property Measurement System (PPMS). The temperature dependent electrical resistivity plot for studied Sb2Te3 single crystal depicts metallic behaviour in the absence of any applied magnetic field. The synthesis as well as the structural characterization of as grown Sb2Te3 single crystal is reported and discussed in the present letter.

  17. Identifying Novel Molecular Structures for Advanced Melanoma by Ligand-Based Virtual Screening

    PubMed Central

    Wang, Zhao; Lu, Yan; Seibel, William; Miller, Duane D.; Li, Wei

    2009-01-01

    We recently discovered a new class of thiazole analogs that are highly potent against melanoma cells. To expand the structure-activity relationship study and to explore potential new molecular scaffolds, we performed extensive ligand-based virtual screening against a compound library containing 342,910 small molecules. Two different approaches of virtual screening were carried out using the structure of our lead molecule: 1) connectivity-based search using Scitegic Pipeline Pilot from Accelerys and 2) molecular shape similarity search using Schrodinger software. Using a testing compound library, both approaches can rank similar compounds very high and rank dissimilar compounds very low, thus validating our screening methods. Structures identified from these searches were analyzed, and selected compounds were tested in vitro to assess their activity against melanoma cancer cell lines. Several molecules showed good anticancer activity. While none of the identified compounds showed better activity than our lead compound, they provided important insight into structural modifications for our lead compound and also provided novel platforms on which we can optimize new classes of anticancer compounds. One of the newly synthesized analogs based on this virtual screening has improved potency and selectivity against melanoma. PMID:19445498

  18. Biogenic manganese oxide nanoparticle formation by a multimeric multicopper oxidase Mnx.

    PubMed

    Romano, Christine A; Zhou, Mowei; Song, Yang; Wysocki, Vicki H; Dohnalkova, Alice C; Kovarik, Libor; Paša-Tolić, Ljiljana; Tebo, Bradley M

    2017-09-29

    Bacteria that produce Mn oxides are extraordinarily skilled engineers of nanomaterials that contribute significantly to global biogeochemical cycles. Their enzyme-based reaction mechanisms may be genetically tailored for environmental remediation applications or bioenergy production. However, significant challenges exist for structural characterization of the enzymes responsible for biomineralization. The active Mn oxidase in Bacillus sp. PL-12, Mnx, is a complex composed of a multicopper oxidase (MCO), MnxG, and two accessory proteins, MnxE and MnxF. MnxG shares sequence similarity with other, structurally characterized MCOs. MnxE and MnxF have no similarity to any characterized proteins. The ~200 kDa complex has been recalcitrant to crystallization, so its structure is unknown. Here, we show that native mass spectrometry defines the subunit topology and copper binding of Mnx, while high-resolution electron microscopy visualizes the protein and nascent Mn oxide minerals. These data provide critical structural information for understanding Mn biomineralization by such unexplored enzymes.Significant challenges exist for structural characterization of enzymes responsible for biomineralization. Here the authors show that native mass spectrometry and high resolution electron microscopy can define the subunit topology and copper binding of a manganese oxidizing complex, and describe early stage formation of its mineral products.

  19. Theoretical prediction and direct observation of the 9R structure in Ag

    NASA Astrophysics Data System (ADS)

    Ernst, F.; Finnis, M. W.; Hofmann, D.; Muschik, T.; Schönberger, U.; Wolf, U.; Methfessel, M.

    1992-07-01

    Molecular-dynamics simulations of the Σ3<110>(211) twin boundary in Ag predict a thin (1 nm) boundary phase of the 9R (α-Sm) structure. High-resolution electron microscopy shows the presence of the predicted structure. We also calculate the energy ab initio for several hypothetical structures of Cu and Ag. Low energies of the 9R structure and other polytypes, low experimental stacking-fault energies, and the hcp-fcc energy difference are correlated and explained in terms of an effective nearest-neighbor Ising interaction.

  20. A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li

    2018-03-01

    Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.

  1. Low cost, high performance processing of single particle cryo-electron microscopy data in the cloud.

    PubMed

    Cianfrocco, Michael A; Leschziner, Andres E

    2015-05-08

    The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. Calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available 'off-the-shelf' computing environment on Amazon's elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters with 16-480+ CPUs. We tested our computing environment using a publicly available 80S yeast ribosome dataset and estimate that laboratories could determine high-resolution cryo-EM structures for $50 to $1500 per structure within a timeframe comparable to local clusters. Our analysis shows that Amazon's cloud computing environment may offer a viable computing environment for cryo-EM.

  2. Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface.

    PubMed

    He, Meng; Xu, Min; Zhang, Lina

    2013-02-01

    A novel, highly hydrophobic cellulose composite film (RCS) with biodegradability was fabricated via solvent-vaporized controllable crystallization of stearic acid in the porous structure of cellulose films (RC). The interface structure and properties of the composite films were investigated with wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), FT-IR, solid-state (13)C NMR, water uptake, tensile testing, water contact angle, and biodegradation tests. The results indicated that the RCS films exhibited high hydrophobicity (water contact angle achieved to 145°), better mechanical properties in the humid state and lower water uptake ratio than RC. Interestingly, the stearic acid crystallization was induced by the pore wall of the cellulose matrix to form a micronano binary structure, resulting in a rough surface. The rough surface with a hierarchical structure containing micronanospace on the RCS film surface could trap abundant air, leading to the high hydrophobicity. Moreover, the RCS films were flexible, biodegradable, and low-cost, showing potential applications in biodegradable water-proof packaging.

  3. First principles study of LiAlO2: new dense monoclinic phase under high pressure

    NASA Astrophysics Data System (ADS)

    Liu, Guangtao; Liu, Hanyu

    2018-03-01

    In this work, we have systematically explored the crystal structures of LiAlO2 at high pressures using crystal structure prediction method in combination with the density functional theory calculations. Besides the reported α, β, γ, δ and ɛ-phases, here we propose a new monoclinic ζ-LiAlO2 (C2/m) structure, which becomes thermodynamically and dynamically stable above 27 GPa. It is found that the cation coordination number increases from 4 to 6 under compression. Consisting of the compact {LiO6} and {AlO6} octahedrons, the newly-discovered ζ-phase possesses a very high density. Further electronic calculations show that LiAlO2 is still an insulator up to 60 GPa, and its bandgap increases upon compression. The present study advances our understanding on the crystal structures and high-pressure phase transitions of LiAlO2 that may trigger applications in multiple areas of industry and provoke more related basic science research.

  4. High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask.

    PubMed

    Hossain, Md Nazmul; Justice, John; Lovera, Pierre; McCarthy, Brendan; O'Riordan, Alan; Corbett, Brian

    2014-09-05

    Wafer-scale nano-fabrication of silicon nitride (Si x N y ) photonic crystal (PhC) structures on glass (quartz) substrates is demonstrated using a thin (30 nm) chromium (Cr) layer as the hard mask for transferring the electron beam lithography (EBL) defined resist patterns. The use of the thin Cr layer not only solves the charging effect during the EBL on the insulating substrate, but also facilitates high aspect ratio PhCs by acting as a hard mask while deep etching into the Si x N y . A very high aspect ratio of 10:1 on a 60 nm wide grating structure has been achieved while preserving the quality of the flat top of the narrow lines. The presented nano-fabrication method provides PhC structures necessary for a high quality optical response. Finally, we fabricated a refractive index based PhC sensor which shows a sensitivity of 185 nm per RIU.

  5. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries.

    PubMed

    Zhou, Guangmin; Yin, Li-Chang; Wang, Da-Wei; Li, Lu; Pei, Songfeng; Gentle, Ian Ross; Li, Feng; Cheng, Hui-Ming

    2013-06-25

    Graphene-sulfur (G-S) hybrid materials with sulfur nanocrystals anchored on interconnected fibrous graphene are obtained by a facile one-pot strategy using a sulfur/carbon disulfide/alcohol mixed solution. The reduction of graphene oxide and the formation/binding of sulfur nanocrystals were integrated. The G-S hybrids exhibit a highly porous network structure constructed by fibrous graphene, many electrically conducting pathways, and easily tunable sulfur content, which can be cut and pressed into pellets to be directly used as lithium-sulfur battery cathodes without using a metal current-collector, binder, and conductive additive. The porous network and sulfur nanocrystals enable rapid ion transport and short Li(+) diffusion distance, the interconnected fibrous graphene provides highly conductive electron transport pathways, and the oxygen-containing (mainly hydroxyl/epoxide) groups show strong binding with polysulfides, preventing their dissolution into the electrolyte based on first-principles calculations. As a result, the G-S hybrids show a high capacity, an excellent high-rate performance, and a long life over 100 cycles. These results demonstrate the great potential of this unique hybrid structure as cathodes for high-performance lithium-sulfur batteries.

  6. [Chronic periapical periodontitis of left maxillary first premolar with localized mineralized structure at periapical region: a case report].

    PubMed

    Dong, Wei; Li, Ren; Wen, Liming; Qi, Mengchun

    2013-04-01

    Chronic periapical periodontitis is characterized by destruction of periapical tissue and demonstrates translucent feature under X-ray examination. In this article, a localized mineralized structure, which showed high density under X-ray examination, was reported in a patient with chronic periapical periodontitis of left maxillary first premolar. Possible causes of the structure were analyzed and relevant literatures were reviewed.

  7. Steel skin - SMC laminate structures for lightweight automotive manufacturing

    NASA Astrophysics Data System (ADS)

    Quagliato, Luca; Jang, Changsoon; Murugesan, Mohanraj; Kim, Naksoo

    2017-09-01

    In the present research work an innovative material, made of steel skin and sheet molding compound core, is presented and is aimed to be utilized for the production of automotive body frames. For a precise description of the laminate structure, the material properties of all the components, including the adhesive utilized as an interlayer, have been carried out, along with the simple tension test of the composite material. The result have shown that the proposed laminate structure has a specific yield strength 114% higher than 6061 T6 aluminum, 34% higher than 7075 T6 aluminum, 186% higher than AISI 304 stainless steel (30HRC) and 42% than SK5 high-strength steel (52HRC), showing its reliability and convenience for the realization of automotive components. After calibrating the material properties of the laminate structure, and utilizing as reference the simple tension results of the laminate structure, the derived material properties have been utilized for the simulation of the mechanical behavior of an automotive B-pillar. The results have been compared with those of a standard B-pillar made of steel, showing that the MS-SMC laminate structure manifests load and impact carry capacity comparable with those of high strength steel, while granting, at least, an 11% weight reduction.

  8. Analysis of genetic population structure in Acacia caven (Leguminosae, Mimosoideae), comparing one exploratory and two Bayesian-model-based methods.

    PubMed

    Pometti, Carolina L; Bessega, Cecilia F; Saidman, Beatriz O; Vilardi, Juan C

    2014-03-01

    Bayesian clustering as implemented in STRUCTURE or GENELAND software is widely used to form genetic groups of populations or individuals. On the other hand, in order to satisfy the need for less computer-intensive approaches, multivariate analyses are specifically devoted to extracting information from large datasets. In this paper, we report the use of a dataset of AFLP markers belonging to 15 sampling sites of Acacia caven for studying the genetic structure and comparing the consistency of three methods: STRUCTURE, GENELAND and DAPC. Of these methods, DAPC was the fastest one and showed accuracy in inferring the K number of populations (K = 12 using the find.clusters option and K = 15 with a priori information of populations). GENELAND in turn, provides information on the area of membership probabilities for individuals or populations in the space, when coordinates are specified (K = 12). STRUCTURE also inferred the number of K populations and the membership probabilities of individuals based on ancestry, presenting the result K = 11 without prior information of populations and K = 15 using the LOCPRIOR option. Finally, in this work all three methods showed high consistency in estimating the population structure, inferring similar numbers of populations and the membership probabilities of individuals to each group, with a high correlation between each other.

  9. Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry (TBM)

    PubMed Central

    Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J.; Gunter, Jeffrey L.; Carmona, Susanna; Jaeggi, Susanne M.; Thompson, Paul M.

    2016-01-01

    Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. PMID:27477628

  10. Coupling between myosin head conformation and the thick filament backbone structure.

    PubMed

    Hu, Zhongjun; Taylor, Dianne W; Edwards, Robert J; Taylor, Kenneth A

    2017-12-01

    The recent high-resolution structure of the thick filament from Lethocerus asynchronous flight muscle shows aspects of thick filament structure never before revealed that may shed some light on how striated muscles function. The phenomenon of stretch activation underlies the function of asynchronous flight muscle. It is most highly developed in flight muscle, but is also observed in other striated muscles such as cardiac muscle. Although stretch activation is likely to be complex, involving more than a single structural aspect of striated muscle, the thick filament itself, would be a prime site for regulatory function because it must bear all of the tension produced by both its associated myosin motors and any externally applied force. Here we show the first structural evidence that the arrangement of myosin heads within the interacting heads motif is coupled to the structure of the thick filament backbone. We find that a change in helical angle of 0.16° disorders the blocked head preferentially within the Lethocerus interacting heads motif. This observation suggests a mechanism for how tension affects the dynamics of the myosin heads leading to a detailed hypothesis for stretch activation and shortening deactivation, in which the blocked head preferentially binds the thin filament followed by the free head when force production occurs. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: an excellent structure for high-performance flexible solid-state supercapacitors

    PubMed Central

    Hu, Nantao; Zhang, Liling; Yang, Chao; Zhao, Jian; Yang, Zhi; Wei, Hao; Liao, Hanbin; Feng, Zhenxing; Fisher, Adrian; Zhang, Yafei; Xu, Zhichuan J.

    2016-01-01

    Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance of 391 F/cm3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm2, and a competitive volumetric capacitance of 25.6 F/cm3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. This structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices. PMID:26795067

  12. Three-dimensional skeleton networks of graphene wrapped polyaniline nanofibers: An excellent structure for high-performance flexible solid-state supercapacitors

    DOE PAGES

    Hu, Nantao; Zhang, Liling; Yang, Chao; ...

    2016-01-22

    Thin, robust, lightweight, and flexible supercapacitors (SCs) have aroused growing attentions nowadays due to the rapid development of flexible electronics. Graphene-polyaniline (PANI) hybrids are attractive candidates for high performance SCs. In order to utilize them in real devices, it is necessary to improve the capacitance and the structure stability of PANI. Here we report a hierarchical three-dimensional structure, in which all of PANI nanofibers (NFs) are tightly wrapped inside reduced graphene oxide (rGO) nanosheet skeletons, for high-performance flexible SCs. The as-fabricated film electrodes with this unique structure showed a highest gravimetric specific capacitance of 921 F/g and volumetric capacitance ofmore » 391 F/cm 3. The assembled solid-state SCs gave a high specific capacitance of 211 F/g (1 A/g), a high area capacitance of 0.9 F/cm 2, and a competitive volumetric capacitance of 25.6 F/cm 3. The SCs also exhibited outstanding rate capability (~75% retention at 20 A/g) as well as excellent cycling stability (100% retention at 10 A/g for 2000 cycles). Additionally, no structural failure and loss of performance were observed under the bending state. Lastly, this structure design paves a new avenue for engineering rGO/PANI or other similar hybrids for high performance flexible energy storage devices.« less

  13. Boltzmann transport properties of ultra thin-layer of h-CX monolayers

    NASA Astrophysics Data System (ADS)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-04-01

    Structural, electronic and thermoelectric properties of monolayer h-CX (X= Al, As, B, Bi, Ga, In, P, N, Sb and Tl) have been computed using density functional theory (DFT). The structural, electronic band structure, phonon dispersion curves and thermoelectric properties have been investigated. h-CGa and h-CTl show the periodically lattice vibrations and h-CB and h-CIn show small imaginary ZA frequencies. Thermoelectric properties are obtained using BoltzTrap code with the constant relaxation time (τ) approximation such as electronic, thermal and electrical conductivity calculated for various temperatures. The results indicate that h-CGa, h-CIn, h-CTl and h-CAl have direct band gaps with minimum electronic thermal and electrical conductivity while h-CB and h-CN show the high electronic thermal and electrical conductivity with highest cohesive energy.

  14. Numerical simulation of colloidal self-assembly of super-hydrophobic arachnid cerotegument structures.

    PubMed

    Filippov, Alexander É; Wolff, Jonas O; Seiter, Michael; Gorb, Stanislav N

    2017-10-07

    Certain arachnids exhibit complex coatings of their exoskeleton, consisting of globular structures with complex surface features. This, so-called, cerotegument is formed by a multi-component colloidal secretion that self-assembles and cures on the body surface, and leads to high water repellency. Previous ultrastructural studies revealed the involvement of different glandular cells that contribute different components to the secretion mixture, but the overall process of self-assembly into the complex regular structures observed remained highly unclear. Here we study this process from a theoretical point of view, starting from the so-called Tammes-problem. We show that slight changes of simple parameters lead to a variety of morphologies that are highly similar to the ones observed in the species specific cerotegument structures of whip-spiders. These results are not only important for our understanding of the formation of globular hierarchical structures in nature, but also for the fabrication of novel surface coatings by colloidal lithography. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [The relationship between eyeball structure and visual acuity in high myopia].

    PubMed

    Liu, Yi-Chang; Xia, Wen-Tao; Zhu, Guang-You; Zhou, Xing-Tao; Fan, Li-Hua; Liu, Rui-Jue; Chen, Jie-Min

    2010-06-01

    To explore the relationship between eyeball structure and visual acuity in high myopia. Totally, 152 people (283 eyeballs) with different levels of myopia were tested for visual acuity, axial length, and fundus. All cases were classified according to diopter, axial length, and fundus. The relationships between diopter, axial length, fundus and visual acuity were studied. The mathematical models were established for visual acuity and eyeball structure markers. The visual acuity showed a moderate correlation with fundus class, comus, axial length and diopter ([r] > 0.4, P < 0.000 1). The visual acuity in people with the axial length longer than 30.00 mm, diopter above -20.00 D and fundus in 4th class were mostly below 0.5. The mathematical models were established by visual acuity and eyeball structure markers. The visual acuity should decline with axial length extension, diopter deepening and pathological deterioration of fundus. To detect the structure changes by combining different kinds of objective methods can help to assess and to judge the vision in high myopia.

  16. Structural and physical properties of InAlAs quantum dots grown on GaAs

    NASA Astrophysics Data System (ADS)

    Vasile, B. S.; Daly, A. Ben; Craciun, D.; Alexandrou, I.; Lazar, S.; Lemaître, A.; Maaref, M. A.; Iacomi, F.; Craciun, V.

    2018-04-01

    Quantum dots (QDs), which have particular physical properties due to the three dimensions confinement effect, could be used in many advanced optoelectronic applications. We investigated the properties of InAlAs/AlGaAs QDs grown by molecular beam epitaxy on GaAs/Al0.5Ga0.5As layers. The optical properties of QDs were studied by low-temperature photoluminescence (PL). Two bandgap transitions corresponding to the X-Sh and X-Ph energy structure were observed. The QDs structure was investigated using high-resolution X-ray diffraction (HRXRD) and high-resolution transmission electron microscopy (HRTEM). HRXRD investigations showed that the layers grew epitaxially on the substrate, with no relaxation. HRTEM investigations confirmed the epitaxial nature of the grown structures. In addition, it was revealed that the In atoms aggregated in some prismatic regions, forming areas of high In concentration, that were still in perfect registry with the substrate.

  17. An investigation on the effects of phase change material on material components used for high temperature thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Kim, Taeil; Singh, Dileep; Zhao, Weihuan; Yua, Wenhua; France, David M.

    2016-05-01

    The latent heat thermal energy storage (LHTES) systems for concentrated solar power (CSP) plants with advanced power cycle require high temperature phase change materials (PCMs), Graphite foams with high thermal conductivity to enhance the poor thermal conductivity of PCMs. Brazing of the graphite foams to the structural metals of the LHTES system could be a method to assemble the system and a method to protect the structural metals from the molten salts. In the present study, the LHTES prototype capsules using MgCl2-graphite foam composites were assembled by brazing and welding, and tested to investigate the corrosion attack of the PCM salt on the BNi-4 braze. The microstructural analysis showed that the BNi-4 braze alloy can be used not only for the joining of structure alloy to graphite foams but also for the protecting of structure alloy from the corrosion by PCM.

  18. Faunal Drivers of Soil Flux Dynamics via Alterations in Crack Structure

    NASA Astrophysics Data System (ADS)

    DeCarlo, Keita; Caylor, Kelly

    2016-04-01

    Organismal activity, in addition to its role in ecological feedbacks, has the potential to serve as instigators or enhancers of atmospheric and hydrologic processes via alterations in soil structural regimes. We investigated the biomechanical effect of faunal activity on soil carbon dynamics via changes in soil crack structure, focusing on three dryland soil systems: bioturbated, biocompacted and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Results show that faunal influences play a divergent biomechanics role in bulk soil cracking: bioturbation induced by belowground fauna creates "surficial" (shallow, large, well-connected) networks relative to the "systematic" (deep, moderate, poorly connected) networks created by aboveground fauna. The latter also shows a "memory" of past wetting/drying events in the consolidated soil through a crack layering effect. These morphologies further drive differences in soil carbon flux: under dry conditions, bioturbated and control soils show a persistently high and low mean carbon flux, respectively, while biocompacted soils show a large diurnal trend, with daytime lows and nighttime highs comparable to the control and bioturbated soils, respectively. Overall fluxes under wet conditions are considerably higher, but also more variable, though higher mean fluxes are observed in the biocompacted and bioturbated soils. Our results suggest that the increased surface area in the bioturbated soils create enhanced but constant diffusive processes, whereas the increased thermal gradient in the biocompacted soils create novel convective processes that create high fluxes that are diurnal in nature.

  19. Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Dai, Shuge; Xi, Yi; Hu, Chenguo; Yue, Xule; Cheng, Lu; Wang, Guo

    2014-10-01

    KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can shorten the ionic diffusion path and improve the ionic and electronic transport. So KCu7S4 shows good electrochemical property. The paper reports a novel and high performance supercapacitor based on hybrid carbon particles and KCu7S4 (C/KCu7S4) electrode. For the hybrid structure with different proportions of C and KCu7S4, the C/KCu7S4 (1:10) hybrid supercapacitor shows preferable electrochemical performance and large specific capacitance (469 mF cm-2) at high charge-discharge rate (2 mA), still retaining ∼95% of the capacitance over 5000 cycles by charge-discharge process at a fixed current of 10 mA. Three supercapacitor units in series can light 50 light-emitting diodes (LEDs) for 2.5 min, 10 LEDs for 4 min, one LED for 5.5 min. The much-increased capacity, rate capability, and cycling stability may be attributed to the superionic conductive KCu7S4 nanowires and C/KCu7S4 hybrid structure, which improve ionic and electronic transport, enhance the kinetics of redox reactions through the electrode system.

  20. Preparation of Interconnected Biomimetic Poly(vinylidene fluoride-co-chlorotrifluoroethylene) Hydrophobic Membrane by Tuning the Two-Stage Phase Inversion Process.

    PubMed

    Zheng, Libing; Wang, Jun; Wu, Zhenjun; Li, Jie; Zhang, Yong; Yang, Min; Wei, Yuansong

    2016-11-30

    A facile strategy was applied for poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) hydrophobic membrane preparation by tuning the two-stage phase inversion process. The exposure stage was found to benefit the solid-liquid demixing process (gelation/crystallization) induced by the solvent evaporation and the subsequent phase inversion induced by immersion benefit the liquid-liquid demixing. It was confirmed that the electrospun nanostructure-like biomimetic surface and interconnected pore structure can be expected by controlling the exposure duration, and 300 s was considered as the inflection point of exposure duration for PVDF-CTFE membrane through which a tremendous variation would show. The micro/nanohierarchical structure in the membrane surface owing to the crystallization of PVDF-CTFE copolymer was responsible for the improvement of membrane roughness and hydrophobicity. Meanwhile, the interconnected pore structure in both the surface and the cross-section, which were formed because of the crystallization process, offers more mass transfer passages and enhances the permeate flux. The membrane then showed excellent MD performance with high permeate flux, high salt rejection, and relatively high stability during a 48 h continuous DCMD operation, according to the morphology, pore structure, and properties, which can be a substitute for hydrophobic membrane application.

  1. Panmixia and dispersal from the Mediterranean Basin to Macaronesian Islands of a macrolichen species

    PubMed Central

    Alors, David; Grande, Francesco Dal; Cubas, Paloma; Crespo, Ana; Schmitt, Imke; Molina, M. Carmen; Divakar, Pradeep K.

    2017-01-01

    The Mediterranean region, comprising the Mediterranean Basin and the Macaronesian Islands, represents a center of diversification for many organisms. The genetic structure and connectivity of mainland and island microbial populations has been poorly explored, in particular in the case of symbiotic fungi. Here we investigated genetic diversity and spatial structure of the obligate outcrossing lichen-forming fungus Parmelina carporrhizans in the Mediterranean region. Using eight microsatellite and mating-type markers we showed that fungal populations are highly diverse but lack spatial structure. This is likely due to high connectivity and long distance dispersal of fungal spores. Consistent with low levels of linkage disequilibrium and lack of clonality, we detected both mating-type idiomorphs in all populations. Furthermore we showed that the Macaronesian Islands are the result of colonization from the Mediterranean Basin. The unidirectional gene flow, though, seemed not to be sufficient to counterbalance the effects of drift, resulting in comparatively allelic poor peripheral populations. Our study is the first to shed light on the high connectivity and lack of population structure in natural populations of a strictly sexual lichen fungus. Our data further support the view of the Macaronesian Islands as the end of the colonization road for this symbiotic ascomycete. PMID:28102303

  2. Crustal structure of the Southwest Subbasin, South China Sea, from wide-angle seismic tomography and seismic reflection imaging

    NASA Astrophysics Data System (ADS)

    Yu, Zhiteng; Li, Jiabiao; Ding, Weiwei; Zhang, Jie; Ruan, Aiguo; Niu, Xiongwei

    2017-06-01

    The Southwest Subbasin (SWSB) is an abyssal subbasin in the South China Sea (SCS), with many debates on its neotectonic process and crustal structure. Using two-dimensional seismic tomography in the SWSB, we derived a detailed P-wave velocity model of the basin area and the northern margin. The entire profile is approximately 311-km-long and consists of twelve oceanic bottom seismometers (OBSs). The average thickness of the crust beneath the basin is 5.3 km, and the Moho interface is relatively flat (10-12 km). No high velocity bodies are observed, and only two thin high-velocity structures ( 7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. By analyzing the P-wave velocity model, we believe that the crust of the basin is a typical oceanic crust. Combined with the high resolution multi-channel seismic profile (MCS), we conclude that the profile shows asymmetric structural characteristics in the basin area. The continental margin also shows asymmetric crust between the north and south sides, which may be related to the large scale detachment fault that has developed in the southern margin. The magma supply decreased as the expansion of the SWSB from the east to the west.

  3. 6. VIEW SHOWING UPRIGHT OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW SHOWING UPRIGHT OUTLET GATE WHEEL, STEM AND STEM GUIDE, WITH LOG ACCESS STRUCTURE, LOOKING WEST - High Mountain Dams in Upalco Unit, Bluebell Lake Dam, Ashley National Forest, 11.2 miles Northwest of Swift Creek Campground, Mountain Home, Duchesne County, UT

  4. 5. VIEW SHOWING UPRIGHT OUTLET GATE WHEEL, STEM AND STEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW SHOWING UPRIGHT OUTLET GATE WHEEL, STEM AND STEM GUIDE, WITH LOG ACCESS STRUCTURE, LOOKING SOUTHEAST - High Mountain Dams in Upalco Unit, Bluebell Lake Dam, Ashley National Forest, 11.2 miles Northwest of Swift Creek Campground, Mountain Home, Duchesne County, UT

  5. New features in Saturn's atmosphere revealed by high-resolution thermal infrared images

    NASA Technical Reports Server (NTRS)

    Gezari, D. Y.; Mumma, M. J.; Espenak, F.; Deming, D.; Bjoraker, G.; Woods, L.; Folz, W.

    1989-01-01

    Observations of the stratospheric IR emission structure on Saturn are presented. The high-spatial-resolution global images show a variety of new features, including a narrow equatorial belt of enhanced emission at 7.8 micron, a prominent symmetrical north polar hotspot at all three wavelengths, and a midlatitude structure which is asymmetrically brightened at the east limb. The results confirm the polar brightening and reversal in position predicted by recent models for seasonal thermal variations of Saturn's stratosphere.

  6. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure

    NASA Astrophysics Data System (ADS)

    Lu, Bin; Wang, Haitao; Shen, Jun; Yang, Jun; Mao, Hongyan; Xia, Liangping; Zhang, Weiguo; Wang, Guodong; Peng, Xiao-Yu; Wang, Deqiang

    2016-02-01

    We designed a new style of broadband terahertz (THz) polarizer with double-bilayer wire grid structure by fabricating them on both sides of silicon substrate. This THz polarizer shows a high average extinction ratio of 60dB in 0.5 to 2.0 THz frequency range and the maximum of 87 dB at 1.06 THz, which is much higher than that of conventional monolayer wire grid polarizers and single-bilayer wire grid ones.

  7. Balloon-like singlemode-tapered multimode-singlemode fiber structure for refractive index sensing

    NASA Astrophysics Data System (ADS)

    Yang, Biyao; Niu, Yanxiong; Yang, Bowen; Dai, Lingling; Hu, Yanhui; Yin, Yiheng; Ding, Ming

    2017-10-01

    A novel high sensitivity refractive index sensor based on balloon-like singlemode-tapered multimode-singlemode (STMS) fiber structure has been proposed and experimentally demonstrated. Combining the tapering and bending endows the proposed sensor with large evanescent field, resulting in high sensitivity. Experimental results show that the proposed sensor has an average sensitivity of 1104.75 nm/RIU (RI Unit) in the range of 1.33-1.41 and a maximum sensitivity of 3374.50 nm/RIU at RI of 1.41.

  8. Crystal structure of the Msx-1 homeodomain/DNA complex.

    PubMed

    Hovde, S; Abate-Shen, C; Geiger, J H

    2001-10-09

    The Msx-1 homeodomain protein plays a crucial role in craniofacial, limb, and nervous system development. Homeodomain DNA-binding domains are comprised of 60 amino acids that show a high degree of evolutionary conservation. We have determined the structure of the Msx-1 homeodomain complexed to DNA at 2.2 A resolution. The structure has an unusually well-ordered N-terminal arm with a unique trajectory across the minor groove of the DNA. DNA specificity conferred by bases flanking the core TAAT sequence is explained by well ordered water-mediated interactions at Q50. Most interactions seen at the TAAT sequence are typical of the interactions seen in other homeodomain structures. Comparison of the Msx-1-HD structure to all other high resolution HD-DNA complex structures indicate a remarkably well-conserved sphere of hydration between the DNA and protein in these complexes.

  9. Structural control on the deep hydrogeological and geothermal aquifers related to the fractured Campanian-Miocene reservoirs of north-eastern Tunisia foreland constrained by subsurface data

    NASA Astrophysics Data System (ADS)

    Khomsi, Sami; Echihi, Oussema; Slimani, Naji

    2012-03-01

    A set of different data including high resolution seismic sections, petroleum wire-logging well data, borehole piezometry, structural cross-sections and outcrop analysis allowed us to characterise the tectonic framework, and its relationships with the deep aquifers seated in Cretaceous-Miocene deep reservoirs. The structural framework, based on major structures, controls the occurrence of deep aquifers and sub-basin aquifer distributions. Five structural domains can be defined, having different morphostructural characteristics. The northernmost domain lying on the north-south axis and Zaghouan thrust system is a domain of recharge by underflow of the different subsurface reservoirs and aquifers from outcrops of highly fractured reservoirs. On the other hand, the morphostructural configuration controls the piezometry of underground flows in the Plio-Quaternary unconfined aquifer. In the subsurface the Late Cretaceous-Miocene reservoirs are widespread with high thicknesses in many places and high porosities and connectivities especially along major fault corridors and on the crestal parts of major anticlines. Among all reservoirs, the Oligo-Miocene, detritic series are widespread and present high cumulative thicknesses. Subsurface and fieldwork outline the occurrence of 10 fractured sandy reservoirs for these series with packages having high hydrodynamic and petrophysical characteristics. These series show low salinities (maximum 5 g/l) in the northern part of the study area and will constitute an important source of drinkable water for the next generations. A regional structural cross-section is presented, compiled from all the different data sets, allowing us to define the major characteristics of the hydrogeological-hydrogeothermal sub-basins. Eight hydrogeological provinces are defined from north-west to south-east. A major thermal anomaly is clearly identified in the south-eastern part of the study area in Sfax-Sidi Il Itayem. This anomaly is possibly related to major faults pertaining to the Sirt basin and controlled by a deep thermal anomaly. Many exploration targets are identified especially along the Cherichira-Kondar thrust where the Oligocene subcropping reservoirs are well developed. They are highly fractured and show good hydrodynamic characteristics.

  10. NREL Researchers Create New Materials With Unusual Properties | News | NREL

    Science.gov Websites

    show how such new low-density materials can be made - with unique properties remarkably different from compounds with atomic structures that didn't match, the researchers theorized that mixing two different high manganese telluride (MnTe) that have different crystal structures - the approach known as heterostructural

  11. On the Factorial Structure of the SAT and Implications for Next-Generation College Readiness Assessments

    ERIC Educational Resources Information Center

    Wiley, Edward W.; Shavelson, Richard J.; Kurpius, Amy A.

    2014-01-01

    The name "SAT" has become synonymous with college admissions testing; it has been dubbed "the gold standard." Numerous studies on its reliability and predictive validity show that the SAT predicts college performance beyond high school grade point average. Surprisingly, studies of the factorial structure of the current version…

  12. Efficient Tuning of Optical Properties and Morphology of Mesoscopic CdS via a Facile Route

    NASA Astrophysics Data System (ADS)

    Aslam, Samia; Mustafa, Faiza; Jamil, Ayesha; Abbas, Ghazanfar; Raza, Rizwan; Ahmad, Muhammad Ashfaq

    2018-03-01

    A facile and simple synthetic route has been employed to synthesize rod-shaped optically efficient cadmium sulfide (CdS) mesoscopic structures using high concentrations of cetyl trimethyl ammonium bromide (CTAB) as the stabilizing agent. The mesoscopic structures were characterized using x-ray diffaractometer (XRD), scanning electron microscopy, UV-visible, photoluminescence (PL), and Fourier transform and infrared (FTIR) spectroscopy. It was found that, if the concentration of CTAB is significantly higher than its critical micelle concentration, the nucleation of CdS mesoscopic structures resulted in rod-like structures. The size of the mesoscopic structures initially increased and then decreased with band gaps 2.5-2.7 eV. XRD analysis showed that the samples had a pure cubic phase confirming the particle size. The values of Urbach energy for the absorption tail states were determined and found to be in agreement with the single crystal. PL spectra showed sharp green emission peaks in the 530-nm to 560-nm wavelength range. FTIR spectra showed the adsorption mode of CTAB onto the CdS mesoscopic structures. A possible mechanism of formation of rod-shaped CdS mesoscopic structures is also elucidated.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shephard, Jacob J.; Vickers, Martin; Salzmann, Christoph G., E-mail: c.salzmann@ucl.ac.uk

    Low-density amorphous (LDA) ice is involved in critical cosmological processes and has gained prominence as one of the at least two distinct amorphous forms of ice. Despite these accolades, we still have an incomplete understanding of the structural diversity that is encompassed within the LDA state and the dynamic processes that take place upon heating LDA. Heating the high-pressure ice VIII phase at ambient pressure is a remarkable example of temperature-induced amorphisation yielding LDA. We investigate this process in detail using X-ray diffraction and Raman spectroscopy and show that the LDA obtained from ice VIII is structurally different from themore » more “traditional” states of LDA which are approached upon thermal annealing. This new structural relaxation pathway involves an increase of structural order on the intermediate range length scale. In contrast with other LDA materials the local structure is more ordered initially and becomes slightly more disordered upon annealing. We also show that the cascade of phase transitions upon heating ice VIII at ambient pressure includes the formation of ice IX which may be connected with the structural peculiarities of LDA from ice VIII. Overall, this study shows that LDA is a structurally more diverse material than previously appreciated.« less

  14. Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy.

    PubMed

    Fields, Mark; Spencer, Nicholas; Dudhia, Jayesh; McMillan, Paul F

    2017-06-01

    Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple-helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ∼60-80°C for hydrated samples. We report high temperature Raman spectra for freeze-dried cartilage samples that show an increase in laser-excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H 2 O is retained within the freeze-dried tissue. This is confirmed by thermogravimetric analysis that show 5-7 wt% H 2 O remaining within freeze-dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re-hydration following recovery indicate that the capacity of the denatured collagen to re-absorb water is reduced. Our results are important for revealing the presence of bound H 2 O within the collagen component of connective tissue even after freeze-drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure. © 2017 Wiley Periodicals, Inc.

  15. Molecular Cloning and Characterization of cDNA Encoding a Putative Stress-Induced Heat-Shock Protein from Camelus dromedarius

    PubMed Central

    Elrobh, Mohamed S.; Alanazi, Mohammad S.; Khan, Wajahatullah; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Bazzi, Mohammad D.

    2011-01-01

    Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. The complete cDNA sequence of the Arabian camel HSPA6 gene was submitted to NCBI GeneBank (accession number HQ214118.1). The BLAST analysis indicated that C. dromedaries HSPA6 gene nucleotides shared high similarity (77–91%) with heat shock gene nucleotide of other mammals. The deduced 643 amino acid sequences (accession number ADO12067.1) showed that the predicted protein has an estimated molecular weight of 70.5 kDa with a predicted isoelectric point (pI) of 6.0. The comparative analyses of camel HSPA6 protein sequences with other mammalian heat shock proteins (HSPs) showed high identity (80–94%). Predicted camel HSPA6 protein structure using Protein 3D structural analysis high similarities with human and mouse HSPs. Taken together, this study indicates that the cDNA sequences of HSPA6 gene and its amino acid and protein structure from the Arabian camel are highly conserved and have similarities with other mammalian species. PMID:21845074

  16. Cryo-EM near-atomic structure of a dsRNA fungal virus shows ancient structural motifs preserved in the dsRNA viral lineage

    PubMed Central

    Luque, Daniel; Gómez-Blanco, Josué; Garriga, Damiá; Brilot, Axel F.; González, José M.; Havens, Wendy M.; Carrascosa, José L.; Trus, Benes L.; Verdaguer, Nuria; Ghabrial, Said A.; Castón, José R.

    2014-01-01

    Viruses evolve so rapidly that sequence-based comparison is not suitable for detecting relatedness among distant viruses. Structure-based comparisons suggest that evolution led to a small number of viral classes or lineages that can be grouped by capsid protein (CP) folds. Here, we report that the CP structure of the fungal dsRNA Penicillium chrysogenum virus (PcV) shows the progenitor fold of the dsRNA virus lineage and suggests a relationship between lineages. Cryo-EM structure at near-atomic resolution showed that the 982-aa PcV CP is formed by a repeated α-helical core, indicative of gene duplication despite lack of sequence similarity between the two halves. Superimposition of secondary structure elements identified a single “hotspot” at which variation is introduced by insertion of peptide segments. Structural comparison of PcV and other distantly related dsRNA viruses detected preferential insertion sites at which the complexity of the conserved α-helical core, made up of ancestral structural motifs that have acted as a skeleton, might have increased, leading to evolution of the highly varied current structures. Analyses of structural motifs only apparent after systematic structural comparisons indicated that the hallmark fold preserved in the dsRNA virus lineage shares a long (spinal) α-helix tangential to the capsid surface with the head-tailed phage and herpesvirus viral lineage. PMID:24821769

  17. The construction, characterization, Hg(II)-sensing and removal behavior of magnetic core-shell nanospheres loaded with fluorescence "Off-On" probe

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Wei, Xiaoyan; Chen, Jie; Sun, Ping; Ouyang, Yuxia; Fan, Juhong; Liu, Rui

    2014-12-01

    The present paper constructed and discussed core-shell structured nanospheres grafted with rhodamine based probe for Hg(II) sensing and removal. Electron microscopy images, XRD curves, thermogravimetric analysis and N2 adsorption/desorption isotherms were used to identify the core-shell structure. The inner core consisted of superparamagnetic Fe3O4 nanoparticles, which made the nanocomposite magnetically removable. The outer shell was constructed with silica molecular sieve which provided large surface area and ordered tunnels for the sensing probe, accelerating analyte adsorption and transportation. The rhodamine based sensing probe emission increased with the increasing Hg(II) concentration, showing emission "Off-On" effect, which could be explained by the structural transformation from a non-emissive one to a highly emissive one. The influence from various metal ions and pH values was also investigated, which suggested this structural transformation could only be triggered by Hg(II), showing high selectivity and linear response. The Hg(II) sensing nanocomposite could be regenerated after usage. The response time was slightly compromised and could be further improved.

  18. Preparation of γ-LiV2O5 from polyoxovanadate cluster Li7[V15O36(CO3)] as a high-performance cathode material and its reaction mechanism revealed by operando XAFS

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Isobe, Jin; Shimizu, Takeshi; Matsumura, Daiju; Ina, Toshiaki; Yoshikawa, Hirofumi

    2017-08-01

    γ-phase LiV2O5, which shows superior electrochemical performance as cathode material in Li-ion batteries, was prepared by annealing the polyoxovanadate cluster Li7 [V15O36(CO3)]. The reaction mechanism was studied using operando X-ray absorption fine structure (XAFS), powder X-ray diffraction (PXRD), and X-ray photoelectron spectroscopy (XPS) analyses. The X-ray absorption near edge structure (XANES) and XPS results reveal that γ-LiV2O5 undergoes two-electron redox reaction per V2O5 pyramid unit, resulting in a large reversible capacity of 260 Ah/kg. The extended X-ray absorption fine structure (EXAFS) and PXRD analyses also suggest that the V-V distance slightly increases, due to the reduction of V5+ to V4+ during Li ion intercalation as the material structure is maintained. As a result, γ-LixV2O5 shows highly reversible electrochemical reaction with x = 0.1-1.9.

  19. Planar-Structure Perovskite Solar Cells with Efficiency beyond 21.

    PubMed

    Jiang, Qi; Chu, Zema; Wang, Pengyang; Yang, Xiaolei; Liu, Heng; Wang, Ye; Yin, Zhigang; Wu, Jinliang; Zhang, Xingwang; You, Jingbi

    2017-12-01

    Low temperature solution processed planar-structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI 2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI 2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI 2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm 2 ) and 20.1% in large size (1 cm 2 ) with moderate residual PbI 2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar-structure perovskite solar cells, showing the planar-structure perovskite solar cells are very promising. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Structure Evolution and Thermoelectric Properties of Carbonized Polydopamine Thin Films.

    PubMed

    Li, Haoqi; Aulin, Yaroslav V; Frazer, Laszlo; Borguet, Eric; Kakodkar, Rohit; Feser, Joseph; Chen, Yan; An, Ke; Dikin, Dmitriy A; Ren, Fei

    2017-03-01

    Carbonization of nature-inspired polydopamine can yield thin films with high electrical conductivity. Understanding of the structure of carbonized PDA (cPDA) is therefore highly desired. In this study, neutron diffraction, Raman spectroscopy, and other techniques indicate that cPDA samples are mainly amorphous with some short-range ordering and graphite-like structure that emerges with increasing heat treatment temperature. The electrical conductivity and the Seebeck coefficient show different trends with heat treatment temperature, while the thermal conductivity remains insensitive. The largest room-temperature ZT of 2 × 10 -4 was obtained on samples heat-treated at 800 °C, which is higher than that of reduced graphene oxide.

  1. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  2. Three-dimensional distribution of polymorphs and magnesium in a calcified underwater attachment system by diffraction tomography

    PubMed Central

    Leemreize, Hanna; Almer, Jonathan D.; Stock, Stuart R.; Birkedal, Henrik

    2013-01-01

    Biological materials display complicated three-dimensional hierarchical structures. Determining these structures is essential in understanding the link between material design and properties. Herein, we show how diffraction tomography can be used to determine the relative placement of the calcium carbonate polymorphs calcite and aragonite in the highly mineralized holdfast system of the bivalve Anomia simplex. In addition to high fidelity and non-destructive mapping of polymorphs, we use detailed analysis of X-ray diffraction peak positions in reconstructed powder diffraction data to determine the local degree of Mg substitution in the calcite phase. These data show how diffraction tomography can provide detailed multi-length scale information on complex materials in general and of biomineralized tissues in particular. PMID:23804437

  3. Synthesis And Characterization Of Reduced Size Ferrite Reinforced Polymer Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borah, Subasit; Bhattacharyya, Nidhi S.

    2008-04-24

    Small sized Co{sub 1-x}Ni{sub x}Fe{sub 2}O{sub 4} ferrite particles are synthesized by chemical route. The precursor materials are annealed at 400, 600 and 800 C. The crystallographic structure and phases of the samples are characterized by X-ray diffraction (XRD). The annealed ferrite samples crystallized into cubic spinel structure. Transmission Electron Microscopy (TEM) micrographs show that the average particle size of the samples are <20 nm. Particulate magneto-polymer composite materials are fabricated by reinforcing low density polyethylene (LDPE) matrix with the ferrite samples. The B-H loop study conducted at 10 kHz on the toroid shaped composite samples shows reduction in magneticmore » losses with decrease in size of the filler sample. Magnetic losses are detrimental for applications of ferrite at high powers. The reduction in magnetic loss shows a possible application of Co-Ni ferrites at high microwave power levels.« less

  4. Organic content influences sediment microbial fuel cell performance and community structure.

    PubMed

    Zhao, Qing; Li, Ruying; Ji, Min; Ren, Zhiyong Jason

    2016-11-01

    This study constructed sediment microbial fuel cells (SMFCs) with different organic loadings without the amendment of external substrates, and it investigated how such variation affects electricity generation and microbial community structure. Results found sediment characteristics significantly influenced SMFC performance and appropriate organic content is important to maintain stable power outputs. SMFCs with loss of ignition (LOI) of 5% showed the most reliable performance in this study, while high organic content (LOI 10-16%) led to higher but very unstable voltage output because of biogas accumulation and worm activities. SMFCs with low organic content (1-3%) showed low power output. Different bacterial communities were found in SMFCs shown various power generation performance even those with similar organic contents. Thermodesulfovibrionaceae was found closely related to the system startup and Desulfobulbaceae showed great abundance in SMFCs with high power production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Efficient Cache use for Stencil Operations on Structured Discretization Grids

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob F.

    2001-01-01

    We derive tight bounds on the cache misses for evaluation of explicit stencil operators on structured grids. Our lower bound is based on the isoperimetrical property of the discrete octahedron. Our upper bound is based on a good surface to volume ratio of a parallelepiped spanned by a reduced basis of the interference lattice of a grid. Measurements show that our algorithm typically reduces the number of cache misses by a factor of three, relative to a compiler optimized code. We show that stencil calculations on grids whose interference lattice have a short vector feature abnormally high numbers of cache misses. We call such grids unfavorable and suggest to avoid these in computations by appropriate padding. By direct measurements on a MIPS R10000 processor we show a good correlation between abnormally high numbers of cache misses and unfavorable three-dimensional grids.

  6. High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure

    NASA Astrophysics Data System (ADS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Katayama, Y.; Kulikova, L. F.; Lityagina, L. V.; Nikolaev, N. A.

    2014-01-01

    At normal pressure, the As2S3 compound is the most stable equilibrium modification with unique layered structure. The possibility of high-pressure polymorphism of this substance remains questionable. Our research showed that the As2S3 substance was metastable under pressures P > 6 GPa decomposing into two high-pressure phases: As2S3 → AsS2 + AsS. New AsS2 phase can be conserved in the single crystalline form in metastable state at room pressure up to its melting temperature (470 K). This modification has the layered structure with P1211 monoclinic symmetry group; the unit-cell values are a = 7.916(2) Å, b = 9.937(2) Å, c = 7.118(1) Å, β = 106.41° ( Z = 8, density 3.44 g/cm3). Along with the recently studied AsS high-pressure modification, the new AsS2 phase suggests that high pressure polymorphism is a very powerful tool to create new layered-structure phases with "wrong" stoichiometry.

  7. Artificial semiconductor/insulator superlattice channel structure for high-performance oxide thin-film transistors

    PubMed Central

    Ahn, Cheol Hyoun; Senthil, Karuppanan; Cho, Hyung Koun; Lee, Sang Yeol

    2013-01-01

    High-performance thin-film transistors (TFTs) are the fundamental building blocks in realizing the potential applications of the next-generation displays. Atomically controlled superlattice structures are expected to induce advanced electric and optical performance due to two-dimensional electron gas system, resulting in high-electron mobility transistors. Here, we have utilized a semiconductor/insulator superlattice channel structure comprising of ZnO/Al2O3 layers to realize high-performance TFTs. The TFT with ZnO (5 nm)/Al2O3 (3.6 nm) superlattice channel structure exhibited high field effect mobility of 27.8 cm2/Vs, and threshold voltage shift of only < 0.5 V under positive/negative gate bias stress test during 2 hours. These properties showed extremely improved TFT performance, compared to ZnO TFTs. The enhanced field effect mobility and stability obtained for the superlattice TFT devices were explained on the basis of layer-by-layer growth mode, improved crystalline nature of the channel layers, and passivation effect of Al2O3 layers. PMID:24061388

  8. [Study on Abnormal Topological Properties of Structural Brain Networks of Patients with Depression Comorbid with Anxiety].

    PubMed

    Wu, Xiuyong; Wu, Xiaoming; Peng, Hongjun; Ning, Yuping; Wu, Kai

    2016-06-01

    This paper is aimed to analyze the topological properties of structural brain networks in depressive patients with and without anxiety and to explore the neuropath logical mechanisms of depression comorbid with anxiety.Diffusion tensor imaging and deterministic tractography were applied to map the white matter structural networks.We collected 20 depressive patients with anxiety(DPA),18 depressive patients without anxiety(DP),and 28 normal controls(NC)as comparative groups.The global and nodal properties of the structural brain networks in the three groups were analyzed with graph theoretical methods.The result showed that1 the structural brain networks in three groups showed small-world properties and highly connected global hubs predominately from association cortices;2DP group showed lower local efficiency and global efficiency compared to NC group,whereas DPA group showed higher local efficiency and global efficiency compared to NC group;3significant differences of network properties(clustering coefficient,characteristic path lengths,local efficiency,global efficiency)were found between DPA and DP groups;4DP group showed significant changes of nodal efficiency in the brain areas primarily in the temporal lobe and bilateral frontal gyrus,compared to DPA and NC groups.The analysis indicated that the DP and DPA groups showed nodal properties of the structural brain networks,compared to NC group.Moreover,the two diseased groups indicated an opposite trend in the network properties.The results of this study may provide a new imaging index for clinical diagnosis for depression comorbid with anxiety.

  9. Environmentally friendly gamma-MnO2 hexagon-based nanoarchitectures: structural understanding and their energy-saving applications.

    PubMed

    Wu, Changzheng; Xie, Wei; Zhang, Miao; Bai, Liangfei; Yang, Jinlong; Xie, Yi

    2009-01-01

    Although about 200,000 metric tons of gamma-MnO(2) are used annually worldwide for industrial applications, the gamma-MnO(2) structure is still known to possess a highly ambiguous crystal lattice. To better understand the gamma-MnO(2) atomic structure, hexagon-based nanoarchitectures were successfully synthesized and used to elucidate its internal structure for the present work. The structural analysis results, obtained from the hexagon-based nanoarchitectures, clearly show the coexistence of akhtenskite (epsilon-MnO(2)), pyrolusite (beta-MnO(2)), and ramsdellite in the so-called gamma-MnO(2) phase and verified the heterogeneous phase assembly of the gamma-MnO(2) state, which violates the well-known "De Wolff" model and derivative models, but partially accords with Heuer's results. Furthermore, heterogeneous gamma-MnO(2) assembly was found to be a metastable structure under hydrothermal conditions, and the individual components of the heterogeneous gamma-MnO(2) system have structural similarities and a high lattice matches with pyrolusite (beta-MnO(2)). The as-obtained gamma-MnO(2) nanoarchitectures are nontoxic and environmentally friendly, and the application of such nanoarchitectures as support matrices successfully mitigates the common problems for phase-change materials of inorganic salts, such as phase separation and supercooling-effects, thereby showing prospect in energy-saving applications in future "smart-house" systems.

  10. High-temperature structural phase transitions in neighborite: a high-resolution neutron powder diffraction investigation

    NASA Astrophysics Data System (ADS)

    Knight, Kevin S.; Price, G. David; Stuart, John A.; Wood, Ian G.

    2015-01-01

    The nature of the apparently continuous structural phase transition at 1,049 K in the perovskite-structured, MgSiO3 isomorph, neighborite (NaMgF3), from the orthorhombic ( Pbnm) hettotype phase to the cubic () aristotype structure, has been re-investigated using high-resolution, time-of-flight neutron powder diffraction. Using data collected at 1 K intervals close to the nominal phase transition temperature, the temperature dependence of the intensities of superlattice reflections at the M point and the R point of the pseudocubic Brillouin zone indicate the existence of a new intermediate tetragonal phase in space group P4/ mbm, with a narrow phase field extending from ~1,046.5 to ~1,048.5 K, at ambient pressure. Group theoretical analysis shows that the structural transitions identified in this study, Pbnm- P4/ mbm, and P4/ mbm-, are permitted to be second order. The observation of the tetragonal phase resolves the longstanding issue of why the high-temperature phase transition, previously identified as Pbnm-, and which would be expected to be first order under Landau theory, is in fact found to be continuous. Analysis of the pseudocubic shear strain shows it to vary with a critical exponent of 0.5 implying that the phase transition from Pbnm to P4/ mbm is tricritical in character. The large librational modes that exist in the MgF6 octahedron at high temperature, and the use of Gaussian probability density functions to describe atomic displacements, result in apparent bond shortening in the Mg-F distances, making mode amplitude determination an unreliable method for determination of the critical exponent from internal coordinates. Crystal structures are reported for the three phases of NaMgF3 at 1,033 K ( Pbnm), 1,047 K ( P4/ mbm) and 1,049 K ().

  11. Structure and shale gas production patterns from eastern Kentucky field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumaker, R.C.

    Computer-derived subsurface structure, isopach, and gas-flow maps, based on 4000 drillers logs, have been generated for eastern Kentucky under a project sponsored by the Gas Research Institute. Structure maps show low-relief flextures related to basement structure. Some structures have been mapped at the surface, others have not. Highest final open-flow (fof) of shale gas from wells in Martin County follow a structural low between (basement) anticlines. From there, elevated gas flows (fof) extend westward along the Warfield monocline to Floyd County where the high flow (fof) trend extends southward along the Floyd County channel. In Knott County, the number ofmore » wells with high gas flow (fof) decreases abruptly. The center of highest gas flow (fof) in Floyd County spreads eastward to Pike County, forming a triangular shaped area of high production (fof). The center of highest gas flow (fof) is in an area where possible (basement) structure trends intersect and where low-relief surface folds (probably detached structure) were mapped and shown on the 1922 version of the Floyd County structure map. Modern regional maps, based on geophysical logs from widely spaced wells, do not define the low-relief structures that have been useful in predicting gas flow trends. Detailed maps based on drillers logs can be misleading unless carefully edited. Comparative analysis of high gas flows (fof) and 10-year cumulative production figures in a small area confirms that there is a relationship between gas flow (fof) values and long-term cumulative production.« less

  12. Evaluation of variability in high-resolution protein structures by global distance scoring.

    PubMed

    Anzai, Risa; Asami, Yoshiki; Inoue, Waka; Ueno, Hina; Yamada, Koya; Okada, Tetsuji

    2018-01-01

    Systematic analysis of the statistical and dynamical properties of proteins is critical to understanding cellular events. Extraction of biologically relevant information from a set of high-resolution structures is important because it can provide mechanistic details behind the functional properties of protein families, enabling rational comparison between families. Most of the current structural comparisons are pairwise-based, which hampers the global analysis of increasing contents in the Protein Data Bank. Additionally, pairing of protein structures introduces uncertainty with respect to reproducibility because it frequently accompanies other settings for superimposition. This study introduces intramolecular distance scoring for the global analysis of proteins, for each of which at least several high-resolution structures are available. As a pilot study, we have tested 300 human proteins and showed that the method is comprehensively used to overview advances in each protein and protein family at the atomic level. This method, together with the interpretation of the model calculations, provide new criteria for understanding specific structural variation in a protein, enabling global comparison of the variability in proteins from different species.

  13. Gas-phase structural characterization of neuropeptides Y Y1 receptor antagonists using mass spectrometry: Orbitrap vs triple quadrupole.

    PubMed

    Silva, Eduarda M P; Varandas, Pedro A M M; Melo, Tânia; Barros, Cristina; Alencastre, Inês S; Barreiros, Luísa; Domingues, Pedro; Lamghari, Meriem; Domingues, M Rosário M; Segundo, Marcela A

    2018-03-20

    Collision induced dissociation of triple quadrupole mass spectrometer (CID-QqQ) and high-energy collision dissociation (HCD) of Orbitrap were compared for four neuropeptides Y Y1 (NPY Y1) receptor antagonists and showed similar qualitative fragmentation and structural information. Orbitrap high resolution and high mass accuracy HCD fragmentation spectra allowed unambiguous identification of product ions in the range 0.04-4.25 ppm. Orbitrap mass spectrometry showed abundant analyte-specific product ions also observed on CID-QqQ. These results show the suitability of these product ions for use in quantitative analysis by MRM mode. In addition, it was found that all compounds could be determined at levels >1 μg L -1 using the QqQ instrument and that the detection limits for this analyzer ranged from 0.02 to 0.6 μg L -1 . Overall, the results obtained from experiments acquired in QqQ show a good agreement with those acquired from the Orbitrap instrument allowing the use of this relatively inexpensive technique (QqQ) for accurate quantification of these compounds in clinical and academic applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. High Water Tolerance of a Core-Shell-Structured Zeolite for CO2 Adsorptive Separation under Wet Conditions.

    PubMed

    Miyamoto, Manabu; Ono, Shumpei; Kusukami, Kodai; Oumi, Yasunori; Uemiya, Shigeyuki

    2018-06-11

    Dehumidification in CO 2 adsorptive separation processes is an important issue, owing to its high energy consumption. However, available adsorbents such as low-silica zeolites show a significant decrease in CO 2 adsorption capacity when water vapor is present. A core-shell-structured MFI-type zeolite with a hydrophilic ZSM-5 coated with a hydrophobic silicalite-1 shell layer was applied in CO 2 adsorptive separation under wet conditions. This hybrid material demonstrated remarkably high water tolerance with stable CO 2 adsorption performance without additional thermal treatment for regeneration, whereas a significant decrease in the CO 2 adsorption amount because of water vapor was observed on the parent ZSM-5. The core-shell structure of zeolites with high pore volumes, such as LTA or CHA, could also be suitable candidates for high CO 2 adsorption capacity and high water tolerance for practical applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of high-speed homogenization and high-pressure homogenization on structure of tomato residue fibers.

    PubMed

    Hua, Xiao; Xu, Shanan; Wang, Mingming; Chen, Ying; Yang, Hui; Yang, Ruijin

    2017-10-01

    Tomato residue fibers obtained after derosination and deproteinization were processed by high-speed homogenization (HSH) and high-pressure homogenization (HPH), and their effects on fiber structure was investigated, respectively. Characterizations including particle size distribution, SEM, TEM and XRD were performed. HSH could break raw fibers to small particles of around 60μm, while HPH could reshape fibers to build network structure. Microfibrils were released and their nanostructure consisting of elementary fibrils was observed by TEM. XRD patterns indicated both HSH and HPH could hardly alter the nanostructure of the fibers. Physicochemical properties including expansibility, WHC and OHC were determined. Both HSH and HPH could increase the soluble fiber content by about 8%, but HSH-HPH combined processing did not show better result. Acid (4mol/L HCl) was used in replacement of water medium and the acidic degradation of fibers could be promoted by high speed shearing or high pressure processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.

    PubMed

    Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun

    2012-08-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials.

  17. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure

    PubMed Central

    2012-01-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal–semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials. PMID:22853458

  18. Using high pressure processing (HPP) to pretreat sugarcane bagasse.

    PubMed

    Castañón-Rodríguez, J F; Torrestiana-Sánchez, B; Montero-Lagunes, M; Portilla-Arias, J; Ramírez de León, J A; Aguilar-Uscanga, M G

    2013-10-15

    High pressure processing (HPP) technology was used to modify the structural composition of sugarcane bagasse. The effect of pressure (0, 150 and 250 MPa), time (5 and 10 min) and temperature (25 and 50 °C) as well as the addition of phosphoric acid, sulfuric acid and NaOH during the HPP treatment were assessed in terms of compositional analysis of the lignocellulosic fraction, structural changes and crystallinity of the bagasse. The effect of HPP pretreatment on the bagasse structure was also evaluated on the efficiency of the enzymatic hydrolysis of bagasse. Results showed that 68.62 and 45.84% of the hemicellulose fraction was degraded by pretreating at 250 MPa with sulfuric and phosphoric acids, respectively. The removal of lignin (54.10%) was higher with the HPP-NaOH treatment. The compacted lignocellulosic structure of the raw bagasse was modified by the HPP treatments and showed few cracks, tiny holes and some fragments flaked off from the surface. Structural changes were higher at 250 MPa and 50 °C. The X ray diffraction (XRD) patterns of the raw bagasse showed a major diffraction peak of the cellulose crystallographic 2θ planes ranging between 22 and 23°. The distribution of the crystalline structure of cellulose was affected by increasing the pressure level. The HPP treatment combined with NaOH 2% led to the higher glucose yield (25 g/L) compared to the combination of HPP with water and acids (>5 g/L). Results from this work suggest that HPP technology may be used to pretreat sugarcane bagasse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Structural conservation, variability, and immunogenicity of the T6 backbone pilin of serotype M6 Streptococcus pyogenes.

    PubMed

    Young, Paul G; Moreland, Nicole J; Loh, Jacelyn M; Bell, Anita; Atatoa Carr, Polly; Proft, Thomas; Baker, Edward N

    2014-07-01

    Group A streptococcus (GAS; Streptococcus pyogenes) is a Gram-positive human pathogen that causes a broad range of diseases ranging from acute pharyngitis to the poststreptococcal sequelae of acute rheumatic fever. GAS pili are highly diverse, long protein polymers that extend from the cell surface. They have multiple roles in infection and are promising candidates for vaccine development. This study describes the structure of the T6 backbone pilin (BP; Lancefield T-antigen) from the important M6 serotype. The structure reveals a modular arrangement of three tandem immunoglobulin-like domains, two with internal isopeptide bonds. The T6 pilin lysine, essential for polymerization, is located in a novel VAKS motif that is structurally homologous to the canonical YPKN pilin lysine in other three- and four-domain Gram-positive pilins. The T6 structure also highlights a conserved pilin core whose surface is decorated with highly variable loops and extensions. Comparison to other Gram-positive BPs shows that many of the largest variable extensions are found in conserved locations. Studies with sera from patients diagnosed with GAS-associated acute rheumatic fever showed that each of the three T6 domains, and the largest of the variable extensions (V8), are targeted by IgG during infection in vivo. Although the GAS BP show large variations in size and sequence, the modular nature of the pilus proteins revealed by the T6 structure may aid the future design of a pilus-based vaccine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. The paternal ancestry of Uttarakhand does not imitate the classical caste system of India.

    PubMed

    Negi, Neetu; Tamang, Rakesh; Pande, Veena; Sharma, Amrita; Shah, Anish; Reddy, Alla G; Vishnupriya, Satti; Singh, Lalji; Chaubey, Gyaneshwer; Thangaraj, Kumarasamy

    2016-02-01

    Although, there have been rigorous research on the Indian caste system by several disciplines, it is still one of the most controversial socioscientific topic. Previous genetic studies on the subcontinent have supported a classical hierarchal sharing of genetic component by various castes of India. In the present study, we have used high-resolution mtDNA and Y chromosomal markers to characterize the genetic structuring of the Uttarakhand populations in the context of neighboring regions. Furthermore, we have tested whether the genetic structuring of caste populations at different social levels of this region, follow the classical chaturvarna system. Interestingly, we found that this region showed a high level of variation for East Eurasian ancestry in both maternal and paternal lines of descent. Moreover, the intrapopulation comparison showed a high level of heterogeneity, likely because of different caste hierarchy, interpolated on asymmetric admixture of populations inhabiting on both sides of the Himalayas.

  1. High-Mobility, Ultrathin Organic Semiconducting Films Realized by Surface-Mediated Crystallization.

    PubMed

    Vladimirov, I; Kellermeier, M; Geßner, T; Molla, Zarah; Grigorian, S; Pietsch, U; Schaffroth, L S; Kühn, M; May, F; Weitz, R T

    2018-01-10

    The functionality of common organic semiconductor materials is determined by their chemical structure and crystal modification. While the former can be fine-tuned via synthesis, a priori control over the crystal structure has remained elusive. We show that the surface tension is the main driver for the plate-like crystallization of a novel small organic molecule n-type semiconductor at the liquid-air interface. This interface provides an ideal environment for the growth of millimeter-sized semiconductor platelets that are only few nanometers thick and thus highly attractive for application in transistors. On the basis of the novel high-performance perylene diimide, we show in as-grown, only 3 nm thin crystals electron mobilities of above 4 cm 2 /(V s) and excellent bias stress stability. We suggest that the established systematics on solvent parameters can provide the basis of a general framework for a more deterministic crystallization of other small molecules.

  2. The Metallurgy of High Fracture Toughness Aluminum-Based Plate Products for Aircraft Internal Structure

    NASA Astrophysics Data System (ADS)

    Boselli, J.; Bray, G.; Rioja, R. J.; Mooy, D.; Venema, G.; Feyen, G.; Wang, W.

    A significant volume of "thick" aluminum plate products is used in the manufacture of an aircraft's internal structure in applications such as ribs, spars, frames, bulkheads, etc. With the recent launch of more fuel efficient and primarily metallic single aisle aircraft as well as the introduction of composite-intensive twin-aisle aircraft, a number of opportunities exist for upgrading alloys developed more than 30 years ago with a new generation of thick plate products. These include 7xxx aluminum alloys that show significant improvements in both strength and toughness along with Al-Li alloys that show high strength, low density and very high corrosion resistance with significantly improved toughness over previous generation Al-Li. This paper will review these improvements and provide insights into the metallurgy behind better fracture toughness, particularly in the short transverse direction, by considering the impact of composition and processing on quench sensitivity.

  3. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation.

    PubMed

    Ha, S Y; Jung, M N; Park, S H; Ko, H J; Ko, H; Oh, D C; Yao, T; Chang, J H

    2006-11-01

    Well-aligned ZnO nanorods have been achieved using new alloy (AuGe) catalyst. Zn powder was used as a source material and it was transported in a horizontal tube furnace onto an AuGe deposited Si substrates. The structural and optical properties of ZnO nanorods were characterized by scanning electron microscopy, high resolution X-ray diffraction, and photoluminescence. ZnO nanorods grown at 650 degrees C on 53 nm thick AuGe layer show uniform shape with the length of 8 +/- 0.5 microm and the diameter of 150 +/- 5 nm. Also, the tilting angle of ZnO nanorods (+/- 5.5 degrees) is confirmed by HRXRD. High structural quality of the nanorods is conformed by the photoluminescence measurement. All samples show strong UV emission without considerable deep level emission. However, weak deep level emission appears at high (700 degrees C) temperature due to the increase of oxygen desertion.

  4. Rising dough and baking bread at the Australian synchrotron

    NASA Astrophysics Data System (ADS)

    Mayo, S. C.; McCann, T.; Day, L.; Favaro, J.; Tuhumury, H.; Thompson, D.; Maksimenko, A.

    2016-01-01

    Wheat protein quality and the amount of common salt added in dough formulation can have a significant effect on the microstructure and loaf volume of bread. High-speed synchrotron micro-CT provides an ideal tool for observing the three dimensional structure of bread dough in situ during proving (rising) and baking. In this work, the synchrotron micro-CT technique was used to observe the structure and time evolution of doughs made from high and low protein flour and three different salt additives. These experiments showed that, as expected, high protein flour produces a higher volume loaf compared to low protein flour regardless of salt additives. Furthermore the results show that KCl in particular has a very negative effect on dough properties resulting in much reduced porosity. The hundreds of datasets produced and analysed during this experiment also provided a valuable test case for handling large quantities of data using tools on the Australian Synchrotron's MASSIVE cluster.

  5. Influence of xanthan gum on the structural characteristics of myofibrillar proteins treated by high pressure.

    PubMed

    Villamonte, Gina; Jury, Vanessa; Jung, Stéphanie; de Lamballerie, Marie

    2015-03-01

    The effects of xanthan gum on the structural modifications of myofibrillar proteins (0.3 M NaCl, pH 6) induced by high pressure (200, 400, and 600 MPa, 6 min) were investigated. The changes in the secondary and tertiary structures of myofibrillar proteins were analyzed by circular dichroism. The protein denaturation was also evaluated by differential scanning calorimetry. Likewise, the protein surface hydrophobicity and the solubility of myofibrillar proteins were measured. High pressure (600 MPa) induced the loss of α-helix structures and an increase of β-sheet structures. However, the presence of xanthan gum hindered the former mechanism of protein denaturation by high pressure. In fact, changes in the secondary (600 MPa) and the tertiary structure fingerprint of high-pressure-treated myofibrillar proteins (400 to 600 MPa) were observed in the presence of xanthan gum. These modifications were confirmed by the thermal analysis, the thermal transitions of high-pressure (400 to 600 MPa)-treated myofibrillar proteins were modified in systems containing xanthan gum. As consequence, the high-pressure-treated myofibrillar proteins with xanthan gum showed increased solubility from 400 MPa, in contrast to high-pressure treatment (600 MPa) without xanthan gum. Moreover, the surface hydrophobicity of high-pressure-treated myofibrillar proteins was enhanced in the presence of xanthan gum. These effects could be due to the unfolding of myofibrillar proteins at high-pressure levels, which exposed sites that most likely interacted with the anionic polysaccharide. This study suggests that the role of food additives could be considered for the development of meat products produced by high-pressure processing. © 2015 Institute of Food Technologists®

  6. Initial stage corrosion of nanocrystalline copper particles and thin films

    NASA Astrophysics Data System (ADS)

    Tao, Weimin

    1997-12-01

    Corrosion behavior is an important issue in nanocrystalline materials research and development. A very fine grain size is expected to have significant effects on the corrosion resistance of these novel materials. However, both the macroscopic corrosion properties and the corresponding structure evolution during corrosion have not been fully studied. Under such circumstances, conducting fundamental research in this area is important and necessary. In this study, high purity nanocrystalline and coarse-grained copper were selected as our sample material, sodium nitrite aqueous solution at room temperature and air at a high temperature were employed as corrosive environments. The weight loss testing and electrochemical methods were used to obtain the macroscopic corrosion properties, whereas the high resolution transmission electron microscope was employed for the structure analysis. The weight loss tests indicate that the corrosion rate of nanocrystalline copper is about 5 times higher than that of coarse-grained copper at the initial stage of corrosion. The electrochemical measurements show that the corrosion potential of the nanocrystalline copper has a 230 mV negative shift in comparison with that of the coarse-grained copper. The nanocrystalline copper also exhibits a significantly higher exchange current density than the coarse-grained copper. High resolution TEM revealed that the surface structure changes at the initial stage of corrosion. It was found that the first copper oxide layer formed on the surface of nanocrystalline copper thin film contains a large density of high angle grain boundaries, whereas that formed on the surface of coarse-grained copper shows highly oriented oxide nuclei and appears to show a strong tendency for forming low angle grain boundaries. A correlation between the macroscopic corrosion properties and the structure characteristics is proposed for the nanocrystalline copper based on the concept of the "apparent" exchange current density associated with mass transport of ions in the oxide layer. A hypothesis is developed that the high corrosion rate of the nanocrystalline copper is closely associated with the structure of the copper oxide layer. Therefore, a high "apparent" exchange current density for the nanocrystalline copper is associated with the high angle grain boundary structure in the initial oxide layer. Additional structure analysis was also carried out: (a) High resolution TEM imaging has provided a cross sectional view of the epitaxial interface between nanocrystalline copper and copper (I) oxide and explicitly discloses the presence of interface defects such as misfit dislocations. Based on this observation, a mechanism was proposed to explain the Cu/Cusb2O interface misfit accommodation. This appears to be the first time this interface has been directly examined. (b) A nanocrystalline analogue to a cross-section of Gwathmey's copper single crystal sphere was revealed by high resolution TEM imaging. A partially oxidized nanocrystalline copper particle is used to examine the variation of the Cu/Cusb2O orientation relationship with respect to changes in surface orientation. A new orientation relationship, Cu (011) //Cusb2O (11), ˜ Cu(011)//Cusb2O(111), was found for the oxidation of nanocrystalline copper.

  7. Small-Scale Activity Above the Penumbra of a Fast-Rotating Sunspot

    NASA Astrophysics Data System (ADS)

    Bharti, L.; Quintero Noda, C.; Rakesh, S.; Sobha, B.; Pandya, A.; Joshi, C.

    2018-03-01

    High-resolution observations of small-scale activity above the filamentary structure of a fast-rotating sunspot of NOAA Active Region 10930 are presented. The penumbral filament that intrudes into the umbra shows a central dark core and substructures. It almost approached another end of the umbra, like a light bridge. The chromospheric Ca ii H images show many jet-like structures with a bright leading edge above it. These bright jets move across the filament tips and show coordinated up and down motions. Transition region images also show brightening at the same location above the intrusion. Coronal 195 Å images suggest that one end of the bright coronal loop footpoints resides in this structure. The intrusion has opposite polarity with respect to the umbra. Strong downflows are observed at the edges along the length of the intrusion where the opposite-polarity field is enhanced. We also observe a counter-Evershed flow in the filamentary structure that also displays brightening and energy dissipation in the upper atmosphere. This scenario suggests that the jets and brightenings are caused by low-altitude reconnection driven by opposite-polarity fields and convective downflows above such structures.

  8. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene.

    PubMed

    Xie, Xu; Ju, Long; Feng, Xiaofeng; Sun, Yinghui; Zhou, Ruifeng; Liu, Kai; Fan, Shoushan; Li, Qunqing; Jiang, Kaili

    2009-07-01

    We report a simple and effective way of fabricating high-quality carbon nanoscrolls (CNSs), using isopropyl alcohol solution to roll up monolayer graphene predefined on SiO(2)/Si substrates. Transmission electron microscopy studies reveal that the CNS has a tube-like structure with a hollow core surrounded by graphene walls 0.35 nm apart. Raman spectroscopy studies show that the CNS is free of significant defects, and the electronic structure and phonon dispersion are slightly different from those of two-dimensional graphene. Finally, the CNS-based device is fabricated, directly on the SiO(2)/Si substrate. Electrical-transport measurements show that its resistance is weakly gate-dependent but strongly temperature-dependent. In addition, the CNS can sustain a high current density up to 5 x 10(7) A/cm(2), indicating that it is a good candidate for microcircuit interconnects. The controlled fabrication of high-quality CNSs may open up new opportunities for both fundamental and applied research of CNSs.

  9. Three-dimensional printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations

    PubMed Central

    Herberstein, Marie E.

    2017-01-01

    The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired ‘instant’ anchorages of thread- and cable-like structures to a broad bandwidth of substrates. PMID:28228539

  10. Three-dimensional printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations.

    PubMed

    Wolff, Jonas O; Herberstein, Marie E

    2017-02-01

    The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired 'instant' anchorages of thread- and cable-like structures to a broad bandwidth of substrates. © 2017 The Author(s).

  11. Supercritical flow characteristics at abrupt expansion structure

    NASA Astrophysics Data System (ADS)

    Lim, Jia Jun; Puay, How Tion; Zakaria, Nor Azazi

    2017-10-01

    When dealing with the design of a hydraulic structure, lateral expansion is often necessary for flow emerging at high velocity served as a cross-sectional transition. If the abrupt expansion structure is made to diverge rapidly, it will cause the major part of the flow fail to follow the boundaries. If the transition is too gradual, it will result in a waste of structural material. A preliminary study on the flow structure near the expansion and its relationship with flow parameter is carried out in this study. A two-dimensional depth-averaged model is developed to simulate the supercritical flow at the abrupt expansion structure. Constrained Interpolation Profile (CIP) scheme (which is of third order accuracy) is adopted in the numerical model. Results show that the flow structure and flow characteristics at the abrupt expansion can be reproduced numerically. The validation of numerical result is done against analytical studies. The result from numerical simulation showed good agreement with the analytical solution.

  12. Crystal structure of a β-aminopeptidase from an Australian Burkholderia sp.

    PubMed

    John-White, Marietta; Dumsday, Geoff J; Johanesen, Priscilla; Lyras, Dena; Drinkwater, Nyssa; McGowan, Sheena

    2017-07-01

    β-Aminopeptidases are a unique group of enzymes that have the unusual capability to hydrolyze N-terminal β-amino acids from synthetic β-peptides. β-Peptides can form secondary structures mimicking α-peptide-like structures that are resistant to degradation by most known proteases and peptidases. These characteristics of β-peptides give them great potential as peptidomimetics. Here, the X-ray crystal structure of BcA5-BapA, a β-aminopeptidase from a Gram-negative Burkholderia sp. that was isolated from activated sludge from a wastewater-treatment plant in Australia, is reported. The crystal structure of BcA5-BapA was determined to a resolution of 2.0 Å and showed a tetrameric assembly typical of the β-aminopeptidases. Each monomer consists of an α-subunit (residues 1-238) and a β-subunit (residues 239-367). Comparison of the structure of BcA5-BapA with those of other known β-aminopeptidases shows a highly conserved structure and suggests a similar proteolytic mechanism of action.

  13. Microstructure and properties of hard and optically transparent HfO2 films prepared by high-rate reactive high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Patterson, Burkley Delesdernier

    Hafnium Dioxide (HfO2) has an extraordinary high bulk modulus, high hardness, high chemical stability, high melting point and high thermal stability. This material can be used as protective coatings for application involving high temperature environments. HfO2 films were fabricated on Si using high-rate reactive high-power impulse magnetron sputtering (HiPIMS) using different deposition-averaged target power density and voltage pulse durations t1. Five HfO2 films were prepared with (1) t1 = 25 mus, =7.6 Wcm-2 (T25S7), (2) t 1 = 100 mus, =7.2 Wcm-2 (T100S7), (3) t1 = 200 mus, =7.3 Wcm-2 (T200S7), (4) t1 = 200 mus, =18 Wcm-2 (T200S18) and (5) t1 = 200 mus, =54 Wcm-2 (T200S54). Atomic force microscopy (AFM) images of the T200S54, T200S18 and T200S7 films exhibit a coarser granular structure with a similar grain size varying from 25 nm to 120 nm in diameter and an average grain size of ˜70 nm. AFM images of the T25S7 and T100S7 films show smaller granular structures compared to the other three films. Transmission electron microscopy (TEM) studies show that all films are composed of an interlayer next to the Si interface followed by a nano-columnar structure layer. The interlayer structure of the films consists of a population of lower density nanoscale regions. A reduction in t1 and in films T200S54, T200S18, T200S7 and T100S7 caused an increase in the interlayer thickness and a decrease in the width of the nano-columnar structures from ˜46 nm to ˜21 nm. This microstructural change was accompanied by a concomitant change of the grain boundary structure from tight and interlocking in films T200S54 and T200S18, to rough and thicker (˜1 nm) boundaries in films T200S7 and T100S7. Film T25S7 exhibited an entirely different microstructure composed of a multilayered interlayer (˜3 nm) and nano-columnar (˜15 nm) structure. Films prepared with large t1 (200 mus) have a monoclinic HfO 2 structure and that with small t1 (25 mus) an orthorhombic HfO 2 structure. Film prepared with an intermediate t1 value (100 mus) exhibited a mixture of both monoclinic and orthorhombic phases. A high hardness of 17.6-17.0 GPa was shown for films with a monoclinic HfO2 structure. The films exhibited a refractive index of 2.02-2.11 and an extinction coefficient between ≥≤2x10-3 and 0.1x10-3 (both at a wavelength of 550 nm). High optical quality was achieved for films T200S54 and T200S18 owing to the presence of a dense microstructure with sharp and interlocking grain boundaries.

  14. Neurobiological changes of schizotypy: evidence from both volume-based morphometric analysis and resting-state functional connectivity.

    PubMed

    Wang, Yi; Yan, Chao; Yin, Da-zhi; Fan, Ming-xia; Cheung, Eric F C; Pantelis, Christos; Chan, Raymond C K

    2015-03-01

    The current study sought to examine the underlying brain changes in individuals with high schizotypy by integrating networks derived from brain structural and functional imaging. Individuals with high schizotypy (n = 35) and low schizotypy (n = 34) controls were screened using the Schizotypal Personality Questionnaire and underwent brain structural and resting-state functional magnetic resonance imaging on a 3T scanner. Voxel-based morphometric analysis and graph theory-based functional network analysis were conducted. Individuals with high schizotypy showed reduced gray matter (GM) density in the insula and the dorsolateral prefrontal gyrus. The graph theoretical analysis showed that individuals with high schizotypy showed similar global properties in their functional networks as low schizotypy individuals. Several hubs of the functional network were identified in both groups, including the insula, the lingual gyrus, the postcentral gyrus, and the rolandic operculum. More hubs in the frontal lobe and fewer hubs in the occipital lobe were identified in individuals with high schizotypy. By comparing the functional connectivity between clusters with abnormal GM density and the whole brain, individuals with high schizotypy showed weaker functional connectivity between the left insula and the putamen, but stronger connectivity between the cerebellum and the medial frontal gyrus. Taken together, our findings suggest that individuals with high schizotypy present changes in terms of GM and resting-state functional connectivity, especially in the frontal lobe. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures.

    PubMed

    Lee, Hui Sun; Im, Wonpil

    2017-01-01

    Recent advances in high-throughput structure determination and computational protein structure prediction have significantly enriched the universe of protein structure. However, there is still a large gap between the number of available protein structures and that of proteins with annotated function in high accuracy. Computational structure-based protein function prediction has emerged to reduce this knowledge gap. The identification of a ligand binding site and its structure is critical to the determination of a protein's molecular function. We present a computational methodology for predicting small molecule ligand binding site and ligand structure using G-LoSA, our protein local structure alignment and similarity measurement tool. All the computational procedures described here can be easily implemented using G-LoSA Toolkit, a package of standalone software programs and preprocessed PDB structure libraries. G-LoSA and G-LoSA Toolkit are freely available to academic users at http://compbio.lehigh.edu/GLoSA . We also illustrate a case study to show the potential of our template-based approach harnessing G-LoSA for protein function prediction.

  16. Measurement of admixture proportions and description of admixture structure in different US populations

    PubMed Central

    Halder, Indrani; Yang, Bao-Zhu; Kranzler, Henry R.; Stein, Murray B.; Shriver, Mark D.; Gelernter, Joel

    2010-01-01

    Variation in individual admixture proportions leads to heterogeneity within populations. Though novel methods and marker panels have been developed to quantify individual admixture, empirical data describing individual admixture distributions are limited. We investigated variation in individual admixture in four US populations [European American (EA), African American (AA) and Hispanics from Connecticut (EC) and California (WC)] assuming three-way intermixture among Europeans, Africans and Indigenous Americans. Admixture estimates were inferred using a panel of 36 microsatellites and 1 SNP, which have significant allele frequency differences between ancestral populations, and by using both a maximum likelihood (ML) based method and a Bayesian method implemented in the program STRUCTURE. Simulation studies showed that estimates obtained with this marker panel are within 96% of expected values. EAs had the lowest non-European admixture with both methods, but showed greater homogeneity with STRUCTURE than with ML. All other samples showed a high degree of variation in admixture estimates with both methods, were highly concordant and showed evidence of admixture stratification. With both methods, AA subjects had 16% European and <10% Indigenous American admixture on average. EC Hispanics had higher mean African admixture and the WC Hispanics higher mean Indigenous American admixture, possibly reflecting their different continental origins. PMID:19572378

  17. Controlled Synthesis of Ultralong Carbon Nanotubes with Perfect Structures and Extraordinary Properties.

    PubMed

    Zhang, Rufan; Zhang, Yingying; Wei, Fei

    2017-02-21

    Carbon nanotubes (CNTs) have drawn intensive research interest in the past 25 years due to their excellent properties and wide applications. Ultralong CNTs refers to the horizontally aligned CNT arrays which are usually grown on flat substrates, parallel with each other with large intertube distances. They usually have perfect structures, excellent properties, and lengths up to centimeters, even decimeters. Ultralong CNTs are promising candidates as building blocks for transparent displays, nanoelectronics, superstrong tethers, aeronautics and aerospace materials, etc. The controlled synthesis of ultralong CNTs with perfect structures is the key to fully exploit the extraordinary properties of CNTs. CNTs are typical one-dimensional single-crystal nanomaterials. It has always been a great challenge how to grow macroscale single-crystals with no defects. Thus, the synthesis of ultralong CNTs with no defect is of significant importance from both fundamental and industrial aspects. In this Account, we focus on our progress on the controlled synthesis of ultralong CNTs with perfect structures and excellent properties. A deep understanding of the CNT growth mechanism is the first step for the controlled synthesis of ultralong CNTs with high quality. We first introduce the growth mechanism for ultralong CNTs and the main factor affecting their structures. We then discuss the strategies to control the defects in the as-grown ultralong CNTs. With these approaches, ultralong high-quality CNTs with different structures can be obtained. By completely eliminating the factors which may induce defects in the CNT walls, ultralong CNTs with perfect structures can be obtained. Their chiral indices keep unchanged for several centimeters long along the axial direction of the CNTs. The defect-free structures render the ultralong CNTs with excellent electrical, mechanical and thermal properties. The as-grown ultralong CNTs exhibit superhigh mechanical strength (>100 GPa) and their breaking strain (>17.5%) reach the theoretical limits. They also show excellent electrical and thermal properties. In addition, centimeters long CNTs showed macroscale interwall superlubricious properties due to their defect-free structures. Ultralong, defect-free CNTs with controlled structures are highly desirable for many high-end applications. We hope that this Account will shed light on the controlled synthesis of ultralong CNTs with perfect structures and excellent properties. Moreover, the growth mechanism and controlled synthesis of ultralong CNTs with perfect structures also offers a good model for other one-dimensional nanomaterials.

  18. Microreactor Cells for High-Throughput X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beesley, Angela; Tsapatsaris, Nikolaos; Weiher, Norbert

    2007-01-19

    High-throughput experimentation has been applied to X-ray Absorption spectroscopy as a novel route for increasing research productivity in the catalysis community. Suitable instrumentation has been developed for the rapid determination of the local structure in the metal component of precursors for supported catalysts. An automated analytical workflow was implemented that is much faster than traditional individual spectrum analysis. It allows the generation of structural data in quasi-real time. We describe initial results obtained from the automated high throughput (HT) data reduction and analysis of a sample library implemented through the 96 well-plate industrial standard. The results show that a fullymore » automated HT-XAS technology based on existing industry standards is feasible and useful for the rapid elucidation of geometric and electronic structure of materials.« less

  19. Micromirror structured illumination microscope for high-speed in vivo drosophila brain imaging.

    PubMed

    Masson, A; Pedrazzani, M; Benrezzak, S; Tchenio, P; Preat, T; Nutarelli, D

    2014-01-27

    Genetic tools and especially genetically encoded fluorescent reporters have given a special place to optical microscopy in drosophila neurobiology research. In order to monitor neural networks activity, high speed and sensitive techniques, with high spatial resolution are required. Structured illumination microscopies are wide-field approaches with optical sectioning ability. Despite the large progress made with the introduction of the HiLo principle, they did not meet the criteria of speed and/or spatial resolution for drosophila brain imaging. We report on a new implementation that took advantage of micromirror matrix technology to structure the illumination. Thus, we showed that the developed instrument exhibits a spatial resolution close to that of confocal microscopy but it can record physiological responses with a speed improved by more than an order a magnitude.

  20. Continuous Optical 3D Printing of Green Aliphatic Polyurethanes.

    PubMed

    Pyo, Sang-Hyun; Wang, Pengrui; Hwang, Henry H; Zhu, Wei; Warner, John; Chen, Shaochen

    2017-01-11

    Photosensitive diurethanes were prepared from a green chemistry synthesis pathway based on methacrylate-functionalized six-membered cyclic carbonate and biogenic amines. A continuous optical 3D printing method for the diurethanes was developed to create user-defined gradient stiffness and smooth complex surface microstructures in seconds. The green chemistry-derived polyurethane (gPU) showed high optical transparency, and we demonstrate the ability to tune the material stiffness of the printed structure along a gradient by controlling the exposure time and selecting various amine compounds. High-resolution 3D biomimetic structures with smooth curves and complex contours were printed using our gPU. High cell viability (over 95%) was demonstrated during cytocompatibility testing using C3H 10T1/2 cells seeded directly on the printed structures.

  1. High-performance SEGISFET pH Sensor using the structure of double-gate a-IGZO TFTs with engineered gate oxides

    NASA Astrophysics Data System (ADS)

    Pyo, Ju-Young; Cho, Won-Ju

    2017-03-01

    In this paper, we propose a high-performance separative extended gate ion-sensitive field-effect transistor (SEGISFET) that consists of a tin dioxide (SnO2) SEG sensing part and a double-gate structure amorphous indium gallium zinc oxide (a-IGZO) thin-film transistor (TFT) with tantalum pentoxide/silicon dioxide (Ta2O5/SiO2)-engineered top-gate oxide. To increase sensitivity, we maximized the capacitive coupling ratio by applying high-k dielectric at the top-gate oxide layer. As an engineered top-gate oxide, a stack of 25 nm-thick Ta2O5 and 10 nm-thick SiO2 layers was found to simultaneously satisfy a small equivalent oxide thickness (˜17.14 nm), a low leakage current, and a stable interfacial property. The threshold-voltage instability, which is a fundamental issue in a-IGZO TFTs, was improved by low-temperature post-deposition annealing (˜87 °C) using microwave irradiation. The double-gate structure a-IGZO TFTs with engineered top-gate oxide exhibited high mobility, small subthreshold swing, high drive current, and larger on/off current ratio. The a-IGZO SEGISFETs with a dual-gate sensing mode showed a pH sensitivity of 649.04 mV pH-1, which is far beyond the Nernst limit. The non-ideal behavior of ISFETs, hysteresis, and drift effect also improved. These results show that the double-gate structure a-IGZO TFTs with engineered top-gate oxide can be a good candidate for cheap and disposable SEGISFET sensors.

  2. Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata).

    PubMed

    Hazlitt, S L; Sigg, D P; Eldridge, M D B; Goldizen, A W

    2006-09-01

    Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.

  3. Pressure-decoupled magnetic and structural transitions of the parent compound of iron-based 122 superconductors BaFe2As2

    PubMed Central

    Wu, J. J.; Lin, Jung-Fu; Wang, X. C.; Liu, Q. Q.; Zhu, J. L.; Xiao, Y. M.; Chow, P.; Jin, Changqing

    2013-01-01

    The recent discovery of iron ferropnictide superconductors has received intensive concern in connection with magnetically involved superconductors. Prominent features of ferropnictide superconductors are becoming apparent: the parent compounds exhibit an antiferromagnetic ordered spin density wave (SDW) state, the magnetic-phase transition is always accompanied by a crystal structural transition, and superconductivity can be induced by suppressing the SDW phase via either chemical doping or applied external pressure to the parent state. These features generated considerable interest in the interplay between magnetism and structure in chemically doped samples, showing crystal structure transitions always precede or coincide with magnetic transition. Pressure-tuned transition, on the other hand, would be more straightforward to superconducting mechanism studies because there are no disorder effects caused by chemical doping; however, remarkably little is known about the interplay in the parent compounds under controlled pressure due to the experimental challenge of in situ measuring both of magnetic and crystal structure evolution at high pressure and low temperatures. Here we show from combined synchrotron Mössbauer and X-ray diffraction at high pressures that the magnetic ordering surprisingly precedes the structural transition at high pressures in the parent compound BaFe2As2, in sharp contrast to the chemical-doping case. The results can be well understood in terms of the spin fluctuations in the emerging nematic phase before the long-range magnetic order that sheds light on understanding how the parent compound evolves from a SDW state to a superconducting phase, a key scientific inquiry of iron-based superconductors. PMID:24101468

  4. H I Structure and Topology of the Galaxy Revealed by the I-GALFA H I 21-cm Line Survey

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Park, G.; Cho, W.; Gibson, S. J.; Kang, J.; Douglas, K. A.; Peek, J. E. G.; Korpela, E. J.; Heiles, C. E.

    2011-05-01

    The I-GALFA survey mapping all the H I in the inner Galactic disk visible to the Arecibo 305m telescope within 10 degrees of the Galactic plane (longitudes of 32 to 77 degrees at b = 0) completed observations in 2009 September and will soon be made publicly available. The high (3.4 arcmin) resolution and tremendous sensitivity of the survey offer a great opportunity to observe the fine details of H I both in the inner and in the far outer Galaxy. The reduced HI column density maps show that the HI structure is highly filamentary and clumpy, pervaded by shell-like structures, vertical filaments, and small clumps. By inspecting individual maps, we have found 36 shell candidates of angular sizes ranging from 0.4 to 12 degrees, half of which appear to be expanding. In order to characterize the filamentary/clumpy morphology of the HI structure, we have carried out statistical analyses of selected areas representing the spiral arms in the inner and outer Galaxy. Genus statistics that can distinguish the ``meatball'' and ``swiss-cheese'' topologies show that the HI topology is clump-like in most regions. The two-dimensional Fourier analysis further shows the HI structures are filamentary and mainly parallel to the plane in the outer Galaxy. We also examine the level-crossing statistics, the results of which are described in detail in an accompanying poster by Park et al.

  5. Structure and Stoichiometry in Supervalent Doped Li 7La 3 Zr 2O 12

    DOE PAGES

    Mukhopadhyay, Saikat; Thompson, Travis; Sakamoto, Jeff; ...

    2015-04-20

    The oxide garnet material Li 7La 3 Zr 2O 12 shows remarkably high ionic conductivity when doped with supervalent ions that are charge compensated by Li vacancies and is currently one of the best candidates for development of a technologically relevant solid electrolyte. Determination of optimal dopant concentration, however, has remained a persistent problem due to the extreme difficulty of establishing the actual (as compared to nominal) stoichiometry of intentionally doped materials and by the fact that it is still not entirely clear what level of lattice expansion/contraction best promotes. ionic diffusion. By combining careful synthesis, neutron diffraction, high-resolution X-raymore » diffraction (XRD), Raman measurements, and density functional theory calculations, we show that structure and stoichiometry are intimately related such that the former can in many cases be used as a gauge of the latter. We show that different Li-vacancy creating supervalent ions (Al 3+ vs Ta 5+) affect the structure very differently, both in terms of the lattice constant, which is easily measurable, and hi terms of the local structure, which can be difficult or impossible to access experimentally but may have important ramifications for conduction. We carefully correlate the lattice constant to dopant type/concentration via Vegard's law and then further correlate these quantities to relevant local structural parameters. In conclusion, our work opens the possibility of developing a codopant scheme that optimizes the Li vacancy concentration and the lattice size simultaneously.« less

  6. Detecting Multi-scale Structures in Chandra Images of Centaurus A

    NASA Astrophysics Data System (ADS)

    Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.

    1999-12-01

    Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.

  7. Microstructural evolution and micromechanical properties of gamma-irradiated Au ball bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusoff, Wan Yusmawati Wan, E-mail: yusmawati@upnm.edu.my; Ismail, Roslina, E-mail: roslina.ismail@ukm.my; Jalar, Azman, E-mail: azmn@ukm.my

    2014-07-01

    The effect of gamma radiation on the mechanical and structural properties of gold ball bonds was investigated. Gold wires from thermosonic wire bonding were exposed to gamma rays from a Cobalt-60 source at a low dose (5 Gy). The load–depth curve of nanoindentation for the irradiated gold wire bond has an apparent staircase shape during loading compared to the as-received sample. The hardness of the specimens calculated from the nanoindentation shows an increase in value from 0.91 to 1.09 GPa for specimens after exposure. The reduced elastic modulus for irradiated specimens significantly increased as well, with values from 75.18 tomore » 98.55 GPa. The change in intrinsic properties due to gamma radiation was investigated using dual-focused ion beam and high-resolution transmission electron microscope analysis. The dual-focused ion beam and high-resolution transmission electron microscope images confirmed the changes in grain structure and the presence of dislocations. The scanning electron microscope micrographs of focused ion beam cross sections showed that the grain structure of the gold became elongated and smaller after exposure to gamma rays. Meanwhile, high-resolution transmission electron microscopy provided evidence that gamma radiation induced dislocation of the atomic arrangement. - Highlights: • Nanoindentation technique provides a detailed characterisation of Au ball bond. • P–h curve of irradiated Au ball bond shows an apparent pop-in event. • Hardness and reduced modulus increased after exposure. • Elongated and smaller grain structure in irradiated specimens • Prevalent presence of dislocations in the atomic arrangement.« less

  8. Large-scale topology and the default mode network in the mouse connectome

    PubMed Central

    Stafford, James M.; Jarrett, Benjamin R.; Miranda-Dominguez, Oscar; Mills, Brian D.; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P.; Lattal, K. Matthew; Mitchell, Suzanne H.; David, Stephen V.; Fryer, John D.; Nigg, Joel T.; Fair, Damien A.

    2014-01-01

    Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans. PMID:25512496

  9. Design and Application of a High Sensitivity Piezoresistive Pressure Sensor for Low Pressure Conditions

    PubMed Central

    Yu, Huiyang; Huang, Jianqiu

    2015-01-01

    In this paper, a pressure sensor for low pressure detection (0.5 kPa–40 kPa) is proposed. In one structure (No. 1), the silicon membrane is partly etched to form a crossed beam on its top for stress concentration. An aluminum layer is also deposited as part of the beam. Four piezoresistors are fabricated. Two are located at the two ends of the beam. The other two are located at the membrane periphery. Four piezoresistors connect into a Wheatstone bridge. To demonstrate the stress concentrate effect of this structure, two other structures were designed and fabricated. One is a flat membrane structure (No. 2), the other is a structure with the aluminum beam, but without etched silicon (No. 3). The measurement results of these three structures show that the No.1 structure has the highest sensitivity, which is about 3.8 times that of the No. 2 structure and 2.7 times that of the No. 3 structure. They also show that the residual stress in the beam has some backside effect on the sensor performance. PMID:26371001

  10. Structural study of the exopolysaccharide produced by a clinical isolate of Burkholderia cepacia.

    PubMed

    Cescutti, P; Bosco, M; Picotti, F; Impallomeni, G; Leitão, J H; Richau, J A; Sá-Correia, I

    2000-07-14

    The primary structure of the exopolysaccharide produced by a clinical isolate of the bacterium Burkholderia cepacia was studied by means of methylation analysis, selective degradation, NMR spectroscopy, and electrospray mass spectrometry. The resulting data showed that the parent repeating unit of the exopolysaccharide is a highly branched heptasaccharide with the following structure: Two acetyl groups are present per repeating unit, as noncarbohydrate substituents. Copyright 2000 Academic Press.

  11. Nonlinear control of high-frequency phonons in spider silk

    NASA Astrophysics Data System (ADS)

    Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George

    2016-10-01

    Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.

  12. Design and implementation of optical switches based on nonlinear plasmonic ring resonators: Circular, square and octagon

    NASA Astrophysics Data System (ADS)

    Ghadrdan, Majid; Mansouri-Birjandi, Mohammad Ali

    2018-05-01

    In this paper, all-optical plasmonic switches (AOPS) based on various configurations of circular, square and octagon nonlinear plasmonic ring resonators (NPRR) were proposed and numerically investigated. Each of these configurations consisted of two metal-insulator-metal (MIM) waveguides coupled to each other by a ring resonator (RR). Nonlinear Kerr effect was used to show switching performance of the proposed NPRR. The result showed that the octagon switch structure had lower threshold power and higher transmission ratio than square and circular switch structures. The octagon switch structure had a low threshold power equal to 7.77 MW/cm2 and the high transmission ratio of approximately 0.6. Therefore, the octagon switch structure was an appropriate candidate to be applied in optical integration circuits as an AOPS.

  13. HRTEM and neutron diffraction study of Li{sub x}Mo{sub 5}O{sub 17}: From the ribbon (x=5) structure to the rock salt (x=12) structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, O.I.; Caignaert, V.; Raveau, B.

    2011-04-15

    Structure determination of the fully intercalated phase Li{sub 12}Mo{sub 5}O{sub 17} and of the deintercalated oxide Li{sub 5}Mo{sub 5}O{sub 17} has been carried out by electron microscopy and neutron powder diffraction. The reversible topotactic transformation between the ordered rock salt structure of the former and the ribbon structure of the latter (closely related to that of Li{sub 4}Mo{sub 5}O{sub 17}) is explained on the following basis: both structures can be described as strips built up as an assembly of infinite ribbons of MoO{sub 6} octahedra that are five octahedra thick, and that differ by slight displacements of the octahedral ribbons.more » We show that the electrochemical behavior of the Li{sub x}Mo{sub 5}O{sub 17} system is based on two sorts of Li{sup +} sites; those that are located within the strips between the ribbons, and those that are located at the border of the strips. The high rate of Li intercalation in this oxide and its reversibility are discussed in terms of its peculiar structure. -- Graphical abstract: Structure determination of the fully intercalated phase Li{sub 12}Mo{sub 5}O{sub 17} and of the deintercalated oxide Li{sub 5}Mo{sub 5}O{sub 17} has been carried out by electron microscopy and neutron powder diffraction. The reversible topotactic transformation between the ordered rock salt structure of the former and the ribbon structure of the latter is explained on the following basis: both structures can be described as strips built up as an assembly of infinite ribbons of MoO{sub 6} octahedra that are five octahedra thick, and that differ by slight displacements of the octahedral ribbons. We show that the electrochemical behavior of the Li{sub x}Mo{sub 5}O{sub 17} system is based on two sorts of Li{sup +} sites; those that are located within the strips between the ribbons, and those that are located at the border of the strips. The high rate of Li intercalation in this oxide and its reversibility are discussed in terms of its peculiar structure. Research highlights: {yields} Electron microscopy and neutron powder diffraction structure determination {yields} We have explained the reversible topotactic transformation between an ordered rock salt structure and a ribbon structure {yields} We show that the electrochemical behavior of the Li{sub x}Mo{sub 5}O{sub 17} system is based on two sorts of Li{sup +} sites {yields} The high rate of Li intercalation in this oxide and its reversibility are discussed in terms of its peculiar structure.« less

  14. Influence of high-energy milling on structure and microstructure of asbestos-cement materials

    NASA Astrophysics Data System (ADS)

    Iwaszko, Józef; Zawada, Anna; Lubas, Małgorzata

    2018-03-01

    Asbestos-Containing Waste (ACW) in the form of a fragment from an asbestos-cement board was subjected to high-energy milling in a planetary mill at a constant rotational speed of 650 rpm and for variable milling times: 1, 2, and 3 h. The initial and the milled materials were subjected to infrared spectroscopic examination to identify the asbestos variety and to evaluate changes in the structure caused by high-energy milling. FT-IR (Fourier Transform Infrared Spectroscopy) examinations followed optical microscopy and SEM (Scanning Electron Microscopy) studies as well as X-ray analysis of the phase composition. It was found that the asbestos fibres present in the asbestos-cement board were respirable fibres with pathogenic properties. Identifying asbestos using the spectroscopic method showed that chrysotile asbestos was present in the as-received ACW while no characteristics of absorption bands from crocidolite or amosite were found. The results of the spectroscopic examinations were confirmed by the X-ray phase analysis. During SEM investigations of the milled ACW, complete loss of the fibrous structure of chrysotile was observed. The FT-IR examinations of the milled material showed that with an increased milling time, the characteristic absorption bands characteristic for chrysotile diminished and already after 2 h of milling their almost complete decay was observed. Thereby, it was confirmed that high-energy milling results in destruction of the crystalline structure of the asbestos phase. The conducted studies have shown that the treatment of asbestos-cement materials using high-energy milling is an effective method for asbestos disposal, capable of competing with other technologies and solutions. Moreover, FT-IR spectroscopy was found to be useful to identify asbestos phases and to assess changes caused by high-energy milling.

  15. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F.; Su, Wu

    2014-12-01

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c4nr05931j

  16. Electrical and magnetic properties of nano-sized magnesium ferrite

    NASA Astrophysics Data System (ADS)

    T, Smitha; X, Sheena; J, Binu P.; Mohammed, E. M.

    2015-02-01

    Nano-sized magnesium ferrite was synthesized using sol-gel techniques. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. Vibration Sample Magnetometer was used to record the magnetic measurements. XRD analysis reveals the prepared sample is single phasic without any impurity. Particle size calculation shows the average crystallite size of the sample is 19nm. FTIR analysis confirmed spinel structure of the prepared samples. Magnetic measurement study shows that the sample is ferromagnetic with high degree of isotropy. Hysterisis loop was traced at temperatures 100K and 300K. DC electrical resistivity measurements show semiconducting nature of the sample.

  17. Entropy measure of credit risk in highly correlated markets

    NASA Astrophysics Data System (ADS)

    Gottschalk, Sylvia

    2017-07-01

    We compare the single and multi-factor structural models of corporate default by calculating the Jeffreys-Kullback-Leibler divergence between their predicted default probabilities when asset correlations are either high or low. Single-factor structural models assume that the stochastic process driving the value of a firm is independent of that of other companies. A multi-factor structural model, on the contrary, is built on the assumption that a single firm's value follows a stochastic process correlated with that of other companies. Our main results show that the divergence between the two models increases in highly correlated, volatile, and large markets, but that it is closer to zero in small markets, when asset correlations are low and firms are highly leveraged. These findings suggest that during periods of financial instability, when asset volatility and correlations increase, one of the models misreports actual default risk.

  18. New materials drive high-performance aircraft

    NASA Technical Reports Server (NTRS)

    Ruhmann, Douglas C.; Bates, William F., Jr.; Dexter, H. B.; June, Reid B.

    1992-01-01

    This report shows how advanced composite materials and new processing methods are enabling lighter, lower cost aircraft structures. High-temperature polymers research will focus on systems capable of 50,000 to 100,000 hours of operation in the 212-400 F temperature range. Prospective materials being evaluated include high-temperature epoxies, toughened bismaleimides, cyanates, thermoplastics, polyimides and other polymers.

  19. Microscopic and magnetic properties of template assisted electrodeposited iron nanowires

    NASA Astrophysics Data System (ADS)

    Irshad, M. I.; Ahmad, F.; Mohamed, N. M.; Abdullah, M. Z.; Yar, A.

    2015-07-01

    Nanowires of magnetic materials such as Iron, nickel, cobalt, and alloys of them are one of the most widely investigated structures because of their possible applications in high density magnetic recording media, sensor elements, and building blocks in biological transport systems. In this work, Iron nanowires have been prepared by electrodeposition technique using Anodized Aluminium Oxide (AAO) templates. The electrolyte used consisted of FeSO4.6H2O buffered with H3BO3 and acidized by dilute H2SO4. FESEM analysis shows that the asdeposited nanowires are parallel to one another and have high aspect ratio with a reasonably high pore-filing factor. To fabricate the working electrode, a thin film of copper (˜ 220 nm thick) was coated on back side of AAO template by e-beam evaporation system to create electrical contact with the external circuit. The TEM results show that electrodeposited nanowires have diameter around 100 nm and are polycrystalline in structure. Magnetic properties show the existence of anisotropy for in and out of plane configuration. These nanowires have potential applications in magnetic data storage, catalysis and magnetic sensor applications.

  20. Electronic and Interfacial Properties of PD/6H-SiC Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Bansal, Gaurav; Petit, Jeremy B.; Knight, Dak; Liu, Chung-Chiun; Wu, Qinghai

    1996-01-01

    Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature from 100 C to 200 C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at 425 C up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas sensitivity. The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying characteristics are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray Spectrometry studies of the Pd surface after the heating show cluster formation and background regions with grain structure observed in both regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles revealed that the heat treating promoted interdiffusion and reaction between the Pd and SiC dw broadened the interface region. This work shows that Pd/SiC Schottky diodes have significant potential as high temperature gas sensors, but stabilization of the structure is necessary to insure their repeatability in long-term, high temperature applications.

  1. The growth and perfection of β-cyclotetramethylene-tetranitramine (HMX) studied by laboratory and synchrotron X-ray topography

    NASA Astrophysics Data System (ADS)

    Gallagher, H. G.; Sherwood, J. N.; Vrcelj, R. M.

    2017-10-01

    An examination has been made of the defect structure of crystals of the energetic material β-cyclotetramethylene-tetranitramine (HMX) using both Laboratory (Lang method) and Synchrotron (Bragg Reflection and Laue method) techniques. The results of the three methods are compared with particular attention to the influence of potential radiation damage caused to the samples by the latter, more energetic, technique. The comparison shows that both techniques can be confidently used to evaluate the defect structures yielding closely similar results. The results show that, even under the relatively casual preparative methods used (slow evaporation of unstirred solutions at constant temperature), HMX crystals of high perfection can be produced. The crystals show well defined bulk defect structures characteristic of organic materials in general: growth dislocations, twins, growth sector boundaries, growth banding and solvent inclusions. The distribution of the defects in specific samples is correlated with the morphological variation of the grown crystals. The results show promise for the further evaluation and characterisation of the structure and properties of dislocations and other defects and their involvement in mechanical and energetic processes in this material.

  2. High-spin structure, K isomers, and state mixing in the neutron-rich isotopes 173Tm and 175Tm

    NASA Astrophysics Data System (ADS)

    Hughes, R. O.; Lane, G. J.; Dracoulis, G. D.; Byrne, A. P.; Nieminen, P. H.; Watanabe, H.; Carpenter, M. P.; Chowdhury, P.; Janssens, R. V. F.; Kondev, F. G.; Lauritsen, T.; Seweryniak, D.; Zhu, S.

    2012-11-01

    High-spin states in the odd-proton thulium isotopes 173Tm and 175Tm have been studied using deep-inelastic reactions and γ-ray spectroscopy. In 173Tm, the low-lying structure has been confirmed and numerous new states have been identified, including a three-quasiparticle Kπ= 19/2- isomer with a lifetime of τ=360(100) ns at 1906 keV and a five-quasiparticle Kπ=35/2- isomer with a lifetime of τ= 175(40) ns at 4048 keV. The Kπ=35/2- state is interpreted as a t-band configuration that shows anomalously fast decays. In 175Tm, the low-lying structure has been reevaluated, a candidate state for the 9/2-[514] orbital has been identified at 1175 keV, and the 7/2-[523] bandhead has been measured to have a lifetime of τ= 460(50) ns. Newly identified high-K structures in 175Tm include a Kπ=15/2- isomer with a lifetime of τ= 64(3) ns at 947 keV and a Kπ= 23/2+ isomer with a lifetime of τ= 30(20) μs at 1518 keV. The Kπ=15/2- isomer shows relatively enhanced decays to the 7/2-[523] band that can be explained by chance mixing with the 15/2- member of the 7/2- band. Multiquasiparticle calculations have been performed for 173Tm and 175Tm, the results of which compare well with the experimentally observed high-spin states.

  3. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miner, Jacob Carlson; Garcia, Angel Enrique

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less

  4. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    DOE PAGES

    Miner, Jacob Carlson; Garcia, Angel Enrique

    2018-05-29

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1–3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients andmore » Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5–3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.« less

  5. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop

    NASA Astrophysics Data System (ADS)

    Miner, Jacob Carlson; García, Angel Enrique

    2018-06-01

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.

  6. Concentration-dependent and configuration-dependent interactions of monovalent ions with an RNA tetraloop.

    PubMed

    Miner, Jacob Carlson; García, Angel Enrique

    2018-06-14

    Monovalent salt solutions have strongly coupled interactions with biopolymers, from large polyelectrolytes to small RNA oligomers. High salt concentrations have been known to induce transitions in the structure of RNA, producing non-canonical configurations and even driving RNA to precipitate out of solution. Using all-atom molecular dynamics simulations, we model a monovalent salt species (KCL) at high concentrations (0.1-3m) and calculate the equilibrium distributions of water and ions around a small tetraloop-forming RNA oligomer in a variety of structural arrangements: folded A-RNA (canonical) and Z-RNA (non-canonical) tetraloops and unfolded configurations. From these data, we calculate the ion preferential binding coefficients and Donnan coefficients for the RNA oligomer as a function of concentration and structure. We find that cation accumulation is highest around non-canonical Z-RNA configurations at concentrations below 0.5m, while unfolded configurations accumulate the most co-ions in all concentrations. By contrast, canonical A-RNA structures consistently show the lowest accumulations for all ion species. Water distributions vary markedly with RNA configuration but show little dependency on KCL concentration. Based on Donnan coefficient calculations, the net charge of the solution at the surface of the RNA decreases linearly as a function of salt concentration and becomes net-neutral near 2.5-3m KCL for folded configurations, while unfolded configurations still show a positive solution charge. Our findings show that all-atom molecular dynamics can describe the equilibrium distributions of monovalent salt in the presence of small RNA oligomers at KCL concentrations where ion correlation effects become important. Furthermore, these results provide valuable insights into the distributions of water and ions near the RNA oligomer surface as a function of structural configuration.

  7. Discovery of Low-ionization Envelopes in the Planetary Nebula NGC 5189: Spatially-resolved Diagnostics from HST Observations

    NASA Astrophysics Data System (ADS)

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo

    2018-01-01

    The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.

  8. Vibration Damping Analysis of Lightweight Structures in Machine Tools

    PubMed Central

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2017-01-01

    The dynamic behaviour of a machine tool (MT) directly influences the machining performance. The adoption of lightweight structures may reduce the effects of undesired vibrations and increase the workpiece quality. This paper aims to present and compare a set of hybrid materials that may be excellent candidates to fabricate the MT moving parts. The selected materials have high dynamic characteristics and capacity to dampen mechanical vibrations. In this way, starting from the kinematic model of a milling machine, this study evaluates a number of prototypes made of Al foam sandwiches (AFS), Al corrugated sandwiches (ACS) and composite materials reinforced by carbon fibres (CFRP). These prototypes represented the Z-axis ram of a commercial milling machine. The static and dynamical properties have been analysed by using both finite element (FE) simulations and experimental tests. The obtained results show that the proposed structures may be a valid alternative to the conventional materials of MT moving parts, increasing machining performance. In particular, the AFS prototype highlighted a damping ratio that is 20 times greater than a conventional ram (e.g., steel). Its application is particularly suitable to minimize unwanted oscillations during high-speed finishing operations. The results also show that the CFRP structure guarantees high stiffness with a weight reduced by 48.5%, suggesting effective applications in roughing operations, saving MT energy consumption. The ACS structure has a good trade-off between stiffness and damping and may represent a further alternative, if correctly evaluated. PMID:28772653

  9. Automated segmentation of midbrain structures with high iron content.

    PubMed

    Garzón, Benjamín; Sitnikov, Rouslan; Bäckman, Lars; Kalpouzos, Grégoria

    2018-04-15

    The substantia nigra (SN), the subthalamic nucleus (STN), and the red nucleus (RN) are midbrain structures of ample interest in many neuroimaging studies, which may benefit from the availability of automated segmentation methods. The high iron content of these structures awards them high contrast in quantitative susceptibility mapping (QSM) images. We present a novel segmentation method that leverages the information of these images to produce automated segmentations of the SN, STN, and RN. The algorithm builds a map of spatial priors for the structures by non-linearly registering a set of manually-traced training labels to the midbrain. The priors are used to inform a Gaussian mixture model of the image intensities, with smoothness constraints imposed to ensure anatomical plausibility. The method was validated on manual segmentations from a sample of 40 healthy younger and older subjects. Average Dice scores were 0.81 (0.05) for the SN, 0.66 (0.14) for the STN and 0.88 (0.04) for the RN in the left hemisphere, and similar values were obtained for the right hemisphere. In all structures, volumes of manual and automatically obtained segmentations were significantly correlated. The algorithm showed lower accuracy on R 2 * and T 2 -weighted Fluid Attenuated Inversion Recovery (FLAIR) images, which are also sensitive to iron content. To illustrate an application of the method, we show that the automated segmentations were comparable to the manual ones regarding detection of age-related differences to putative iron content. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Selecting an optimal number of binding site waters to improve virtual screening enrichments against the adenosine A2A receptor.

    PubMed

    Lenselink, Eelke B; Beuming, Thijs; Sherman, Woody; van Vlijmen, Herman W T; IJzerman, Adriaan P

    2014-06-23

    A major challenge in structure-based virtual screening (VS) involves the treatment of explicit water molecules during docking in order to improve the enrichment of active compounds over decoys. Here we have investigated this in the context of the adenosine A2A receptor, where water molecules have previously been shown to be important for achieving high enrichment rates with docking, and where the positions of some binding site waters are known from a high-resolution crystal structure. The effect of these waters (both their presence and orientations) on VS enrichment was assessed using a carefully curated set of 299 high affinity A2A antagonists and 17,337 decoys. We show that including certain crystal waters greatly improves VS enrichment and that optimization of water hydrogen positions is needed in order to achieve the best results. We also show that waters derived from a molecular dynamics simulation - without any knowledge of crystallographic waters - can improve enrichments to a similar degree as the crystallographic waters, which makes this strategy applicable to structures without experimental knowledge of water positions. Finally, we used decision trees to select an ensemble of structures with different water molecule positions and orientations that outperforms any single structure with water molecules. The approach presented here is validated against independent test sets of A2A receptor antagonists and decoys from the literature. In general, this water optimization strategy could be applied to any target with waters-mediated protein-ligand interactions.

  11. Study on model design and dynamic similitude relations of vibro-acoustic experiment for elastic cavity

    NASA Astrophysics Data System (ADS)

    Shi, Ao; Lu, Bo; Yang, Dangguo; Wang, Xiansheng; Wu, Junqiang; Zhou, Fangqi

    2018-05-01

    Coupling between aero-acoustic noise and structural vibration under high-speed open cavity flow-induced oscillation may bring about severe random vibration of the structure, and even cause structure to fatigue destruction, which threatens the flight safety. Carrying out the research on vibro-acoustic experiments of scaled down model is an effective means to clarify the effects of high-intensity noise of cavity on structural vibration. Therefore, in allusion to the vibro-acoustic experiments of cavity in wind tunnel, taking typical elastic cavity as the research object, dimensional analysis and finite element method were adopted to establish the similitude relations of structural inherent characteristics and dynamics for distorted model, and verifying the proposed similitude relations by means of experiments and numerical simulation. Research shows that, according to the analysis of scale-down model, the established similitude relations can accurately simulate the structural dynamic characteristics of actual model, which provides theoretic guidance for structural design and vibro-acoustic experiments of scaled down elastic cavity model.

  12. Molecular structure of quinoa starch.

    PubMed

    Li, Guantian; Zhu, Fan

    2017-02-20

    Quinoa starch has very small granules with unique properties. However, the molecular structure of quinoa starch remains largely unknown. In this study, composition and amylopectin molecular structure of 9 quinoa starch samples were characterised by chromatographic techniques. In particular, the amylopectin internal molecular structure, represented by φ, β-limit dextrins (LDs), was explored. Great variations in the composition and molecular structures were recorded among samples. Compared with other amylopectins, quinoa amylopectin showed a high ratio of short chain to long chains (mean:14.6) and a high percentage of fingerprint A-chains (A fp ) (mean:10.4%). The average chain length, external chain length, and internal chain length of quinoa amylopectin were 16.6, 10.6, and 5.00 glucosyl residues, respectively. Pearson correlation and principal component analysis revealed some inherent correlations among structural parameters and a similarity of different samples. Overall, quinoa amylopectins are structurally similar to that from starches with A-type polymorph such as oat and amaranth starches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Landslides Zonation Hazard: relation between geological structures and landslides occurrence in hilly tropical regions of Brazil.

    PubMed

    Cerri, Rodrigo I; Reis, Fábio A G V; Gramani, Marcelo F; Giordano, Lucilia C; Zaine, José Eduardo

    2017-01-01

    This paper presents a new approach of landslides zonation hazard studies, based on an integrated study of structural data along with geomorphological and external factors, in a hilly regions of Brazil, covered by a tropical humid rain-forest, called Serra do Mar. The Serra do Mar consists of a hilly region along the east coast of Brazil, with high slopes and many geological structures in a gneiss - migmatitic terrain. In contrast to traditional approaches, this method proposes that structural data (foliation, fractures and bedding planes) and its relation with the slope geometry, is important to be consider in the landslide zonation hazard, along with declivity, relative relief, soil and rock properties, land use and vegetation cover and hydrogeological and climate factors. Results show that slopes with high hazard have the same dip direction of geological structures. Landslide zonation hazard using structural data contributes to a better understanding of how these structures, preserved in tropical residual soils, influence on slope stability and generates landslides.

  14. Controllable fabrication of Pt nanocatalyst supported on N-doped carbon containing nickel nanoparticles for ethanol oxidation.

    PubMed

    Yu, Jianguo; Dai, Tangming; Cao, Yuechao; Qu, Yuning; Li, Yao; Li, Juan; Zhao, Yongnan; Gao, Haiyan

    2018-08-15

    In this paper, platinum nanoparticles were deposited on a carbon carrier with the partly graphitized carbon and the highly dispersive carbon-coated nickel particles. An efficient electron transfer structure can be fabricated by controlling the contents of the deposited platinum. The high resolution transmission electron microscopy images of Pt 2 /Ni@C N-doped sample prove the electron transfer channel from Pt (1 1 1) crystal planes to graphite (1 0 0) or Ni (1 1 1) crystal planes due to these linked together crystal planes. The Pt 3 /Ni@C N-doped with low Pt contents cannot form the electron transfer structure and the Pt 1 /Ni@C N-doped with high Pt contents show an obvious aggregation of Pt nanoparticles. The electrochemical tests of all the catalysts show that the Pt 2 /Ni@C N-doped sample presents the highest catalytic activity, the strongest CO tolerance and the best catalytic stability. The high performance is attributed to the efficient electronic transport structure of the Pt 2 /Ni@C N-doped sample and the synergistic effect between Pt and Ni nanoparticles. This paper provides a promising method for enhancing the conductivity of electrode material. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Intrinsic Defect Ferromagnetism: The case of Hafnium Oxide

    NASA Astrophysics Data System (ADS)

    Das Pemmaraju, Chaitanya

    2005-03-01

    In view of the recent experimental reports of intrinsic ferromagnetism in Hafnium Oxide (HfO2) thin film systems ootnotetextM. Venkatesan, C. B. Fitzgerald, J. M. D. Coey Nature 430, 630 (2004) Brief Communications, we carried out first principles investigations to look for magnetic structure in HfO2 possibly brought about by the presence of small concentrations of intrinsic point defects. Ab initio electronic structure calculations using Density Functional Theory (DFT) show that isolated cation vacancy sites in HfO2 lead to the formation of high spin defect states which couple ferromagnetically to each other. Interestingly, these high spin states are observed in the low symmetry monoclinic and tetragonal phases while the highly symmetric cubic flourite phase exhibits a non-magnetic ground state. Detailed studies of the electronic structure of cation vacancies in the three crystalline phases of Hafnia show that symmetry leading to orbitally degenerate defect levels is not a pre-requsite for ferromagnetism and that the interplay between Kinetic, Coulomb and Exchange energy together with favourable coupling to the Crystalline environment can lead to high spin ferromagnetic ground states even in extreme low symmetry systems like monoclinic HfO2. These findings open up a much wider class of systems to the possibility of intrinsic defect ferromagnetism.

  16. Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    liu, Huichao; Shi, Ludi; Li, Dongzhi; Yu, Jiali; Zhang, Han-Ming; Ullah, Shahid; Yang, Bo; Li, Cuihua; Zhu, Caizhen; Xu, Jian

    2018-05-01

    The rational structure design and strong interfacial bonding are crucially desired for high performance zinc oxide (ZnO)/carbon composite electrodes. In this context, micro-nano secondary structure design and strong dopamine coating strategies are adopted for the fabrication of flower-like ZnO/carbon (ZnO@C nanoflowers) composite electrodes. The results show the ZnO@C nanoflowers (2-6 μm) are assembled by hierarchical ZnO nanosheets (∼27 nm) and continuous carbon framework. The micro-nano secondary architecture can facilitate the penetration of electrolyte, shorten lithium ions diffusion length, and hinder the aggregation of the nanosheets. Moreover, the strong chemical interaction between ZnO and coating carbon layer via C-Zn bond improves structure stability as well as the electronic conductivity. As a synergistic result, when evaluated as lithium ion batteries (LIBs) anode, the ZnO@C nanoflower electrodes show high reversible capacity of ca. 1200 mA h g-1 at 0.1 A g-1 after 80 cycles. As well as good long-cycling stability (638 and 420 mA h g-1 at 1 and 5 A g-1 after 500 cycles, respectively) and excellent rate capability. Therefore, this rational design of ZnO@C nanoflowers electrode is a promising anode for high-performance LIBs.

  17. Hierarchically assembled NiCo@SiO2@Ag magnetic core-shell microspheres as highly efficient and recyclable 3D SERS substrates.

    PubMed

    Zhang, Maofeng; Zhao, Aiwu; Wang, Dapeng; Sun, Henghui

    2015-01-21

    The hierarchically nanosheet-assembled NiCo@SiO2@Ag (NSA) core-shell microspheres have been synthesized by a layer-by-layer procedure at ambient temperature. The mean particle size of NSA microspheres is about 1.7 μm, which is made up of some nanosheets with an average thickness of ∼20 nm. The outer silver shell surface structures can be controlled well by adjusting the concentration of Ag(+) ions and the reaction times. The obtained NSA 3D micro/nanostructures show a structure enhanced SERS performance, which can be attributed to the special nanoscale configuration with wedge-shaped surface architecture. We find that NSA microspheres with nanosheet-assembled shell structure exhibit the highest enhancement efficiency and high SERS sensitivity to p-ATP and MBA molecules. We show that the detection limits for both p-ATP and MBA of the optimized NSA microsphere substrates can approach 10(-7) M. And the relative standard deviation of the Raman peak maximum is ∼13%, which indicates good uniformity of the substrate. In addition, the magnetic NSA microspheres with high saturation magnetization show a quick magnetic response, good recoverability and recyclability. Therefore, such NSA microspheres may have great practical potential applications in rapid and reproducible trace detection of chemical, biological and environment pollutants with a simple portable Raman instrument.

  18. Structural Basis of the High Affinity Interaction between the Alphavirus Nonstructural Protein-3 (nsP3) and the SH3 Domain of Amphiphysin-2.

    PubMed

    Tossavainen, Helena; Aitio, Olli; Hellman, Maarit; Saksela, Kalle; Permi, Perttu

    2016-07-29

    We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728-1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nm). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Structural, elastic, electronic and dynamical properties of OsB and ReB: Density functional calculations

    NASA Astrophysics Data System (ADS)

    Li, Yanling; Zeng, Zhi; Lin, Haiqing

    2010-06-01

    The structural, elastic, electronic and dynamical properties of ReB and OsB are investigated by first-principles calculations based on density functional theory. It turns out that ReB and OsB are metallic ultra-incompressible solids with small elastic anisotropy and high hardness. The change of c/ a ratio in OsB indicates that there is a structural phase transition at about 31 GPa. Phonon spectra calculations show that both OsB and ReB are stable dynamically and there are abnormal phonon dispersions along special directions in Brillouin zone. OsB and ReB do not show superconductivity due to very weak electron-phonon interactions in them.

  20. Study on structural characteristics of pillared clay modified phosphate fertilizers and its increase efficiency mechanism*

    PubMed Central

    Wu, Ping-xiao; Liao, Zong-wen

    2005-01-01

    Three types of new high-efficiency phosphate fertilizers were made when pillared clays at certain proportions were added into ground phosphate rock. Chemical analyses showed that their soluble phosphorus content decreased more than that of superphosphate. Pot experiment showed that, under equal weights, the new fertilizers increased their efficiency by a large margin over that of superphosphate. Researches on their structures by means of XRD, IR and EPR spectrum revealed that their crystal structures changed considerably, improving their activity and preventing the fixation of available phosphorus in the soil, and consequently, greatly improved the bioavailability and became the main cause of the increase of biomass. PMID:15682504

Top