Lefebvre, Benoit; Batoko, Henri; Duby, Geoffrey; Boutry, Marc
2004-07-01
The structural determinants involved in the targeting of multitransmembrane-span proteins to the plasma membrane (PM) remain poorly understood. The plasma membrane H+ -ATPase (PMA) from Nicotiana plumbaginifolia, a well-characterized 10 transmembrane-span enzyme, was used as a model to identify structural elements essential for targeting to the PM. When PMA2 and PMA4, representatives of the two main PMA subfamilies, were fused to green fluorescent protein (GFP), the chimeras were shown to be still functional and to be correctly and rapidly targeted to the PM in transgenic tobacco. By contrast, chimeric proteins containing various combinations of PMA transmembrane spanning domains accumulated in the Golgi apparatus and not in the PM and displayed slow traffic properties through the secretory pathway. Individual deletion of three of the four cytosolic domains did not prevent PM targeting, but deletion of the large loop or of its nucleotide binding domain resulted in GFP fluorescence accumulating exclusively in the endoplasmic reticulum. The results show that, at least for this polytopic protein, the PM is not the default pathway and that, in contrast with single-pass membrane proteins, cytosolic structural determinants are required for correct targeting.
Lefebvre, Benoit; Batoko, Henri; Duby, Geoffrey; Boutry, Marc
2004-01-01
The structural determinants involved in the targeting of multitransmembrane-span proteins to the plasma membrane (PM) remain poorly understood. The plasma membrane H+-ATPase (PMA) from Nicotiana plumbaginifolia, a well-characterized 10 transmembrane–span enzyme, was used as a model to identify structural elements essential for targeting to the PM. When PMA2 and PMA4, representatives of the two main PMA subfamilies, were fused to green fluorescent protein (GFP), the chimeras were shown to be still functional and to be correctly and rapidly targeted to the PM in transgenic tobacco. By contrast, chimeric proteins containing various combinations of PMA transmembrane spanning domains accumulated in the Golgi apparatus and not in the PM and displayed slow traffic properties through the secretory pathway. Individual deletion of three of the four cytosolic domains did not prevent PM targeting, but deletion of the large loop or of its nucleotide binding domain resulted in GFP fluorescence accumulating exclusively in the endoplasmic reticulum. The results show that, at least for this polytopic protein, the PM is not the default pathway and that, in contrast with single-pass membrane proteins, cytosolic structural determinants are required for correct targeting. PMID:15208389
Nakamura, Hidetoshi; Katayama, Takuya; Okabe, Tomoya; Iwashita, Kazuhiro; Fujii, Wataru; Kitamoto, Katsuhiko; Maruyama, Jun-Ichi
2017-07-11
Numerous strains of Aspergillus oryzae are industrially used for Japanese traditional fermentation and for the production of enzymes and heterologous proteins. In A. oryzae, deletion of the ku70 or ligD genes involved in non-homologous end joining (NHEJ) has allowed high gene targeting efficiency. However, this strategy has been mainly applied under the genetic background of the A. oryzae wild strain RIB40, and it would be laborious to delete the NHEJ genes in many A. oryzae industrial strains, probably due to their low gene targeting efficiency. In the present study, we generated ligD mutants from the A. oryzae industrial strains by employing the CRISPR/Cas9 system, which we previously developed as a genome editing method. Uridine/uracil auxotrophic strains were generated by deletion of the pyrG gene, which was subsequently used as a selective marker. We examined the gene targeting efficiency with the ecdR gene, of which deletion was reported to induce sclerotia formation under the genetic background of the strain RIB40. As expected, the deletion efficiencies were high, around 60~80%, in the ligD mutants of industrial strains. Intriguingly, the effects of the ecdR deletion on sclerotia formation varied depending on the strains, and we found sclerotia-like structures under the background of the industrial strains, which have never been reported to form sclerotia. The present study demonstrates that introducing ligD mutation by genome editing is an effective method allowing high gene targeting efficiency in A. oryzae industrial strains.
2010-01-01
Background The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces. Results Thirty randomly-selected "bald" mutants derived from the wild-type strain all contained gross chromosomal rearrangements of various types. One of the bald mutants, SA1-8, had the same linear chromosomal structure as the high avermectin-producing mutant 76-9. Chromosomes of both strains displayed at least three independent chromosomal rearrangements, including chromosomal arm replacement to form new 88-kb terminal inverted repeats (TIRs), and two major deletions. One of the deletions eliminated the 36-kb central region of the chromosome, but surprisingly did not affect viability of the cells. The other deletion (74-kb) was internal to the right chromosomal arm. The chromosome of another bald mutant, SA1-6, was circularized with deletions at both ends. No obvious homology was found in all fusion sequences. Generational stability analysis showed that the chromosomal structure of SA1-8 and SA1-6 was stable. Conclusions Various chromosomal rearrangements, including chromosomal arm replacement, interstitial deletions and chromosomal circularization, occurred in S. avermitilis by non-homologous recombination. The finding of an inner deletion involving in the central region of S. avermitilis chromosome suggests that the entire Streptomyces chromosome may be the target for rearrangements, which are not limited, as previously reported, to the two chromosomal ends. PMID:20653985
Langston, Lance D; Symington, Lorraine S
2005-06-15
Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.
The effect of amino acid deletions and substitutions in the longest loop of GFP
Flores-Ramírez, Gabriela; Rivera, Manuel; Morales-Pablos, Alfredo; Osuna, Joel; Soberón, Xavier; Gaytán, Paul
2007-01-01
Background The effect of single and multiple amino acid substitutions in the green fluorescent protein (GFP) from Aequorea victoria has been extensively explored, yielding several proteins of diverse spectral properties. However, the role of amino acid deletions in this protein -as with most proteins- is still unknown, due to the technical difficulties involved in generating combinatorial in-phase amino acid deletions on a target region. Results In this study, the region I129-L142 of superglo GFP (sgGFP), corresponding to the longest loop of the protein and located far away from the central chromophore, was subjected to a random amino acid deletion approach, employing an in-house recently developed mutagenesis method termed Codon-Based Random Deletion (COBARDE). Only two mutants out of 16384 possible variant proteins retained fluorescence: sgGFP-Δ I129 and sgGFP-Δ D130. Interestingly, both mutants were thermosensitive and at 30°C sgGFP-Δ D130 was more fluorescent than the parent protein. In contrast with deletions, substitutions of single amino acids from residues F131 to L142 were well tolerated. The substitution analysis revealed a particular importance of residues F131, G135, I137, L138, H140 and L142 for the stability of the protein. Conclusion The behavior of GFP variants with both amino acid deletions and substitutions demonstrate that this loop is playing an important structural role in GFP folding. Some of the amino acids which tolerated any substitution but no deletion are simply acting as "spacers" to localize important residues in the protein structure. PMID:17594481
Olson, Daniel G.; Giannone, Richard J.; Hettich, Robert L.
2013-01-01
The CipA scaffoldin protein plays a key role in the Clostridium thermocellum cellulosome. Previous studies have revealed that mutants deficient in binding or solubilizing cellulose also exhibit reduced expression of CipA. To confirm that CipA is, in fact, necessary for rapid solubilization of crystalline cellulose, the gene was deleted from the chromosome using targeted gene deletion technologies. The CipA deletion mutant exhibited a 100-fold reduction in cellulose solubilization rate, although it was eventually able to solubilize 80% of the 5 g/liter cellulose initially present. The deletion mutant was complemented by a copy of cipA expressed from a replicating plasmid. In this strain, Avicelase activity was restored, although the rate was 2-fold lower than that in the wild type and the duration of the lag phase was increased. The cipA coding sequence is located at the beginning of a gene cluster containing several other genes thought to be responsible for the structural organization of the cellulosome, including olpB, orf2p, and olpA. Tandem mass spectrometry revealed a 10-fold reduction in the expression of olpB, which may explain the lower growth rate. This deletion experiment adds further evidence that CipA plays a key role in cellulose solubilization by C. thermocellum, and it raises interesting questions about the differential roles of the anchor scaffoldin proteins OlpB, Orf2p, and SdbA. PMID:23204466
Cho, Taehong; McQueen, James M
2011-08-01
Two experiments examined whether perceptual recovery from Korean consonant-cluster simplification is based on language-specific phonological knowledge. In tri-consonantal C1C2C3 sequences such as /lkt/ and /lpt/ in Seoul Korean, either C1 or C2 can be completely deleted. Seoul Koreans monitored for C2 targets (/p/ or / k/, deleted or preserved) in the second word of a two-word phrase with an underlying /l/-C2-/t/ sequence. In Experiment 1 the target-bearing words had contextual lexical-semantic support. Listeners recovered deleted targets as fast and as accurately as preserved targets with both Word and Intonational Phrase (IP) boundaries between the two words. In Experiment 2, contexts were low-pass filtered. Listeners were still able to recover deleted targets as well as preserved targets in IP-boundary contexts, but better with physically-present targets than with deleted targets in Word-boundary contexts. This suggests that the benefit of having target acoustic-phonetic information emerges only when higher-order (contextual and phrase-boundary) information is not available. The strikingly efficient recovery of deleted phonemes with neither acoustic-phonetic cues nor contextual support demonstrates that language-specific phonological knowledge, rather than language-universal perceptual processes which rely on fine-grained phonetic details, is employed when the listener perceives the results of a continuous-speech process in which reduction is phonetically complete.
Deletion of a target gene in Indica rice via CRISPR/Cas9.
Wang, Ying; Geng, Lizhao; Yuan, Menglong; Wei, Juan; Jin, Chen; Li, Min; Yu, Kun; Zhang, Ya; Jin, Huaibing; Wang, Eric; Chai, Zhijian; Fu, Xiangdong; Li, Xianggan
2017-08-01
Using CRISPR/Cas9, we successfully deleted large fragments of the yield-related gene DENSE AND ERECT PANICLE1 in Indica rice at relatively high frequency and generated gain-of-function dep1 mutants. CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 is a rapidly developing technology used to produce gene-specific modifications in both mammalian and plant systems. Most CRISPR-induced modifications in plants reported to date have been small insertions or deletions. Few large target gene deletions have thus far been reported, especially for Indica rice. In this study, we designed multiple CRISPR sgRNAs and successfully deleted DNA fragments in the gene DENSE AND ERECT PANICLE1 (DEP1) in the elite Indica rice line IR58025B. We achieved deletion frequencies of up to 21% for a 430 bp target and 9% for a 10 kb target among T0 events. Constructs with four sgRNAs did not generate higher full-length deletion frequencies than constructs with two sgRNAs. The multiple mutagenesis frequency reached 93% for four targets, and the homozygous mutation frequency reached 21% at the T0 stage. Important yield-related trait characteristics, such as dense and erect panicles and reduced plant height, were observed in dep1 homozygous T0 mutant plants produced by CRISPR/Cas9. Therefore, we successfully obtained deletions in DEP1 in the Indica background using the CRISPR/Cas9 editing tool at relatively high frequency.
MicroRNA Dysregulation, Gene Networks, and Risk for Schizophrenia in 22q11.2 Deletion Syndrome
Merico, Daniele; Costain, Gregory; Butcher, Nancy J.; Warnica, William; Ogura, Lucas; Alfred, Simon E.; Brzustowicz, Linda M.; Bassett, Anne S.
2014-01-01
The role of microRNAs (miRNAs) in the etiology of schizophrenia is increasingly recognized. Microdeletions at chromosome 22q11.2 are recurrent structural variants that impart a high risk for schizophrenia and are found in up to 1% of all patients with schizophrenia. The 22q11.2 deletion region overlaps gene DGCR8, encoding a subunit of the miRNA microprocessor complex. We identified miRNAs overlapped by the 22q11.2 microdeletion and for the first time investigated their predicted target genes, and those implicated by DGCR8, to identify targets that may be involved in the risk for schizophrenia. The 22q11.2 region encompasses seven validated or putative miRNA genes. Employing two standard prediction tools, we generated sets of predicted target genes. Functional enrichment profiles of the 22q11.2 region miRNA target genes suggested a role in neuronal processes and broader developmental pathways. We then constructed a protein interaction network of schizophrenia candidate genes and interaction partners relevant to brain function, independent of the 22q11.2 region miRNA mechanisms. We found that the predicted gene targets of the 22q11.2 deletion miRNAs, and targets of the genome-wide miRNAs predicted to be dysregulated by DGCR8 hemizygosity, were significantly represented in this schizophrenia network. The findings provide new insights into the pathway from 22q11.2 deletion to expression of schizophrenia, and suggest that hemizygosity of the 22q11.2 region may have downstream effects implicating genes elsewhere in the genome that are relevant to the general schizophrenia population. These data also provide further support for the notion that robust genetic findings in schizophrenia may converge on a reasonable number of final pathways. PMID:25484875
Genomic deletions created upon LINE-1 retrotransposition.
Gilbert, Nicolas; Lutz-Prigge, Sheila; Moran, John V
2002-08-09
LINE-1 (L1) retrotransposition continues to impact the human genome, yet little is known about how L1 integrates into DNA. Here, we developed a plasmid-based rescue system and have used it to recover 37 new L1 retrotransposition events from cultured human cells. Sequencing of the insertions revealed the usual L1 structural hallmarks; however, in four instances, retrotransposition generated large target site deletions. Remarkably, three of those resulted in the formation of chimeric L1s, containing the 5' end of an endogenous L1 fused precisely to our engineered L1. Thus, our data demonstrate multiple pathways for L1 integration in cultured cells, and show that L1 is not simply an insertional mutagen, but that its retrotransposition can result in significant deletions of genomic sequence.
Wang, Qi; Heizer, Esley; Rosa, Bruce A.; Wildman, Scott A.; Janetka, James W.; Mitreva, Makedonka
2016-01-01
Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3,000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite’s protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented that illustrate the close proximity of the indel to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. The study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. PMID:26829384
Wang, Qi; Heizer, Esley; Rosa, Bruce A; Wildman, Scott A; Janetka, James W; Mitreva, Makedonka
2016-04-01
Insertions and deletions (indels) are important sequence variants that are considered as phylogenetic markers that reflect evolutionary adaptations in different species. In an effort to systematically study indels specific to the phylum Nematoda and their structural impact on the proteins bearing them, we examined over 340,000 polypeptides from 21 nematode species spanning the phylum, compared them to non-nematodes and identified indels unique to nematode proteins in more than 3000 protein families. Examination of the amino acid composition revealed uneven usage of amino acids for insertions and deletions. The amino acid composition and cost, along with the secondary structure constitution of the indels, were analyzed in the context of their biological pathway associations. Species-specific indels could enable indel-based targeting for drug design in pathogens/parasites. Therefore, we screened the spatial locations of the indels in the parasite's protein 3D structures, determined the location of the indel and identified potential unique drug targeting sites. These indels could be confirmed by RNA-Seq data. Examples are presented illustrating the close proximity of some indels to established small-molecule binding pockets that can potentially facilitate selective targeting to the parasites and bypassing their host, thus reducing or eliminating the toxicity of the potential drugs. This study presents an approach for understanding the adaptation of pathogens/parasites at a molecular level, and outlines a strategy to identify such nematode-selective targets that remain essential to the organism. With further experimental characterization and validation, it opens a possible channel for the development of novel treatments with high target specificity, addressing both host toxicity and resistance concerns. Copyright © 2016 Elsevier B.V. All rights reserved.
Thallas‐Bonke, Vicki; Jha, Jay C.; Gray, Stephen P.; Barit, David; Haller, Hermann; Schmidt, Harald H.H.W.; Coughlan, Melinda T.; Cooper, Mark E.; Forbes, Josephine M.; Jandeleit‐Dahm, Karin A.M.
2014-01-01
Abstract Current treatments for diabetic nephropathy (DN) only result in slowing its progression, thus highlighting a need to identify novel targets. Increased production of reactive oxygen species (ROS) is considered a key downstream pathway of end‐organ injury with increasing data implicating both mitochondrial and cytosolic sources of ROS. The enzyme, NADPH oxidase, generates ROS in the kidney and has been implicated in the activation of protein kinase C (PKC), in the pathogenesis of DN, but the link between PKC and Nox‐derived ROS has not been evaluated in detail in vivo. In this study, global deletion of a NADPH‐oxidase isoform, Nox4, was examined in mice with streptozotocin‐induced diabetes (C57Bl6/J) in order to evaluate the effects of Nox4 deletion, not only on renal structure and function but also on the PKC pathway and downstream events. Nox4 deletion attenuated diabetes‐associated increases in albuminuria, glomerulosclerosis, and extracellular matrix accumulation. Lack of Nox4 resulted in a decrease in diabetes‐induced renal cortical ROS derived from the mitochondria and the cytosol, urinary isoprostanes, and PKC activity. Immunostaining of renal cortex revealed that major isoforms of PKC, PKC‐α and PKC‐β1, were increased with diabetes and normalized by Nox4 deletion. Downregulation of the PKC pathway was observed in tandem with reduced expression of vascular endothelial growth factor (VEGF), transforming growth factor (TGF)‐β1 and restoration of the podocyte slit pore protein nephrin. This study suggests that deletion of Nox4 may alleviate renal injury via PKC‐dependent mechanisms, further strengthening the view that Nox4 is a suitable target for renoprotection in diabetes. PMID:25367693
Yang, Ying-Jie; Wang, Ye; Li, Zhi-Feng; Gong, Ya; Zhang, Peng; Hu, Wen-Chao; Sheng, Duo-Hong; Li, Yue-Zhong
2017-08-16
The CRISPR/Cas9 system is a powerful tool for genome editing, in which the sgRNA binds and guides the Cas9 protein for the sequence-specific cleavage. The protocol is employable in different organisms, but is often limited by cell damage due to the endonuclease activity of the introduced Cas9 and the potential off-target DNA cleavage from incorrect guide by the 20 nt spacer. In this study, after resolving some critical limits, we have established an efficient CRISPR/Cas9 system for the deletion of large genome fragments related to the biosynthesis of secondary metabolites in Myxococcus xanthus cells. We revealed that the high expression of a codon-optimized cas9 gene in M. xanthus was cytotoxic, and developed a temporally high expression strategy to reduce the cell damage from high expressions of Cas9. We optimized the deletion protocol by using the tRNA-sgRNA-tRNA chimeric structure to ensure correct sgRNA sequence. We found that, in addition to the position-dependent nucleotide preference, the free energy of a 20 nt spacer was a key factor for the deletion efficiency. By using the developed protocol, we achieved the CRISPR/Cas9-induced deletion of large biosynthetic gene clusters for secondary metabolites in M. xanthus DK1622 and its epothilone-producing mutant. The findings and the proposals described in this paper were suggested to be workable in other organisms, for example, other Gram negative bacteria with high GC content.
Xian, Jian; Aitchison, Alan; Bobrow, Linda; Corbett, Gerard; Pannell, Richard; Rabbitts, Terence; Rabbitts, Pamela
2004-09-15
The DUTT1 gene is located on human chromosome 3, band p12, within a region of nested homozygous deletions in breast and lung tumors. It is therefore a candidate tumor suppressor gene in humans and is the homologue (ROBO1) of the Drosophila axonal guidance receptor gene, Roundabout. We have shown previously that mice with a targeted homozygous deletion within the Dutt1/Robo1 gene generally die at birth due to incomplete lung development: survivors die within the first year of life with epithelial bronchial hyperplasia as a common feature. Because Dutt1/Robo1 heterozygous mice develop normally, we have determined their tumor susceptibility. Mice with a targeted deletion within one Dutt1/Robo1 allele spontaneously develop lymphomas and carcinomas in their second year of life with a 3-fold increase in incidence compared with controls: invasive lung adenocarcinomas are by far the predominant carcinoma. In addition to the mutant allele, loss of heterozygosity analysis indicates that these tumors retain the structurally normal allele but with substantial methylation of the gene's promoter. Substantial reduction of Dutt1/Robo1 protein expression in tumors is observed by Western blotting and immunohistochemistry. This suggests that Dutt1/Robo1 is a classic tumor suppressor gene requiring inactivation of both alleles to elicit tumorigenesis in these mice.
Large Genomic Fragment Deletions and Insertions in Mouse Using CRISPR/Cas9
Satheka, Achim Cchitvsanzwhoh; Togo, Jacques; An, Yao; Humphrey, Mabwi; Ban, Luying; Ji, Yan; Jin, Honghong; Feng, Xuechao; Zheng, Yaowu
2015-01-01
ZFN, TALENs and CRISPR/Cas9 system have been used to generate point mutations and large fragment deletions and insertions in genomic modifications. CRISPR/Cas9 system is the most flexible and fast developing technology that has been extensively used to make mutations in all kinds of organisms. However, the most mutations reported up to date are small insertions and deletions. In this report, CRISPR/Cas9 system was used to make large DNA fragment deletions and insertions, including entire Dip2a gene deletion, about 65kb in size, and β-galactosidase (lacZ) reporter gene insertion of larger than 5kb in mouse. About 11.8% (11/93) are positive for 65kb deletion from transfected and diluted ES clones. High targeting efficiencies in ES cells were also achieved with G418 selection, 46.2% (12/26) and 73.1% (19/26) for left and right arms respectively. Targeted large fragment deletion efficiency is about 21.4% of live pups or 6.0% of injected embryos. Targeted insertion of lacZ reporter with NEO cassette showed 27.1% (13/48) of targeting rate by ES cell transfection and 11.1% (2/18) by direct zygote injection. The procedures have bypassed in vitro transcription by directly co-injection of zygotes or co-transfection of embryonic stem cells with circular plasmid DNA. The methods are technically easy, time saving, and cost effective in generating mouse models and will certainly facilitate gene function studies. PMID:25803037
Quarterman, Josh; Kim, Soo Rin; Kim, Pan-Jun; Jin, Yong-Su
2015-01-20
In order to determine beneficial gene deletions for ethanol production by the yeast Saccharomyces cerevisiae, we performed an in silico gene deletion experiment based on a genome-scale metabolic model. Genes coding for two oxidative phosphorylation reactions (cytochrome c oxidase and ubiquinol cytochrome c reductase) were identified by the model-based simulation as potential deletion targets for enhancing ethanol production and maintaining acceptable overall growth rate in oxygen-limited conditions. Since the two target enzymes are composed of multiple subunits, we conducted a genetic screening study to evaluate the in silico results and compare the effect of deleting various portions of the respiratory enzyme complexes. Over two-thirds of the knockout mutants identified by the in silico study did exhibit experimental behavior in qualitative agreement with model predictions, but the exceptions illustrate the limitation of using a purely stoichiometric model-based approach. Furthermore, there was a substantial quantitative variation in phenotype among the various respiration-deficient mutants that were screened in this study, and three genes encoding respiratory enzyme subunits were identified as the best knockout targets for improving hexose fermentation in microaerobic conditions. Specifically, deletion of either COX9 or QCR9 resulted in higher ethanol production rates than the parental strain by 37% and 27%, respectively, with slight growth disadvantages. Also, deletion of QCR6 led to improved ethanol production rate by 24% with no growth disadvantage. The beneficial effects of these gene deletions were consistently demonstrated in different strain backgrounds and with four common hexoses. The combination of stoichiometric modeling and genetic screening using a systematic knockout collection was useful for narrowing a large set of gene targets and identifying targets of interest. Copyright © 2014 Elsevier B.V. All rights reserved.
Targeted Gene Deletion in Cordyceps militaris Using the Split-Marker Approach.
Lou, HaiWei; Ye, ZhiWei; Yun, Fan; Lin, JunFang; Guo, LiQiong; Chen, BaiXiong; Mu, ZhiXian
2018-05-01
The macrofungus Cordyceps militaris contains many kinds of bioactive ingredients that are regulated by functional genes, but the functions of many genes in C. militaris are still unknown. In this study, to improve the frequency of homologous integration, a genetic transformation system based on a split-marker approach was developed for the first time in C. militaris to knock out a gene encoding a terpenoid synthase (Tns). The linear and split-marker deletion cassettes were constructed and introduced into C. militaris protoplasts by PEG-mediated transformation. The transformation of split-marker fragments resulted in a higher efficiency of targeted gene disruption than the transformation of linear deletion cassettes did. The color phenotype of the Tns gene deletion mutants was different from that of wild-type C. militaris. Moreover, a PEG-mediated protoplast transformation system was established, and stable genetic transformants were obtained. This method of targeted gene deletion represents an important tool for investigating the role of C. militaris genes.
The dimerization domain in DapE enzymes is required for catalysis.
Nocek, Boguslaw; Starus, Anna; Makowska-Grzyska, Magdalena; Gutierrez, Blanca; Sanchez, Stephen; Jedrzejczak, Robert; Mack, Jamey C; Olsen, Kenneth W; Joachimiak, Andrzej; Holz, Richard C
2014-01-01
The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.
Scala, Valeria; Grottoli, Alessandro; Aiese Cigliano, Riccardo; Anzar, Irantzu; Beccaccioli, Marzia; Fanelli, Corrado; Dall'Asta, Chiara; Battilani, Paola; Reverberi, Massimo; Sanseverino, Walter
2017-05-31
Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1 , in F. verticillioides . A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1 -deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1 -mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome.
Scala, Valeria; Grottoli, Alessandro; Aiese Cigliano, Riccardo; Anzar, Irantzu; Beccaccioli, Marzia; Fanelli, Corrado; Dall’Asta, Chiara; Battilani, Paola; Reverberi, Massimo; Sanseverino, Walter
2017-01-01
Fusarium verticillioides causes ear rot disease in maize and its contamination with fumonisins, mycotoxins harmful for humans and livestock. Lipids, and their oxidized forms, may drive the fate of this disease. In a previous study, we have explored the role of oxylipins in this interaction by deleting by standard transformation procedures a linoleate diol synthase-coding gene, lds1, in F. verticillioides. A profound phenotypic diversity in the mutants generated has prompted us to investigate more deeply the whole genome of two lds1-deleted strains. Bioinformatics analyses pinpoint significant differences in the genome sequences emerged between the wild type and the lds1-mutants further than those trivially attributable to the deletion of the lds1 locus, such as single nucleotide polymorphisms, small deletion/insertion polymorphisms and structural variations. Results suggest that the effect of a (theoretically) punctual transformation event might have enhanced the natural mechanisms of genomic variability and that transformation practices, commonly used in the reverse genetics of fungi, may potentially be responsible for unexpected, stochastic and henceforth off-target rearrangements throughout the genome. PMID:28561789
Generation of Tandem Direct Duplications by Reversed-Ends Transposition of Maize Ac Elements
Peterson, Thomas
2013-01-01
Tandem direct duplications are a common feature of the genomes of eukaryotes ranging from yeast to human, where they comprise a significant fraction of copy number variations. The prevailing model for the formation of tandem direct duplications is non-allelic homologous recombination (NAHR). Here we report the isolation of a series of duplications and reciprocal deletions isolated de novo from a maize allele containing two Class II Ac/Ds transposons. The duplication/deletion structures suggest that they were generated by alternative transposition reactions involving the termini of two nearby transposable elements. The deletion/duplication breakpoint junctions contain 8 bp target site duplications characteristic of Ac/Ds transposition events, confirming their formation directly by an alternative transposition mechanism. Tandem direct duplications and reciprocal deletions were generated at a relatively high frequency (∼0.5 to 1%) in the materials examined here in which transposons are positioned nearby each other in appropriate orientation; frequencies would likely be much lower in other genotypes. To test whether this mechanism may have contributed to maize genome evolution, we analyzed sequences flanking Ac/Ds and other hAT family transposons and identified three small tandem direct duplications with the structural features predicted by the alternative transposition mechanism. Together these results show that some class II transposons are capable of directly inducing tandem sequence duplications, and that this activity has contributed to the evolution of the maize genome. PMID:23966872
Wolfs, Jason M; Hamilton, Thomas A; Lant, Jeremy T; Laforet, Marcon; Zhang, Jenny; Salemi, Louisa M; Gloor, Gregory B; Schild-Poulter, Caroline; Edgell, David R
2016-12-27
The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts. Here, we develop a strategy to escape this cycle and bias events toward defined length deletions by creating an RNA-guided dual active site nuclease that generates two noncompatible DNA breaks at a target site, effectively deleting the majority of the target site such that it cannot be regenerated. The TevCas9 nuclease, a fusion of the I-TevI nuclease domain to Cas9, functions robustly in HEK293 cells and generates 33- to 36-bp deletions at frequencies up to 40%. Deep sequencing revealed minimal processing of TevCas9 products, consistent with protection of the DNA ends from exonucleolytic degradation and repair by the c-NHEJ pathway. Directed evolution experiments identified I-TevI variants with broadened targeting range, making TevCas9 an easy-to-use reagent. Our results highlight how the sequence-tolerant cleavage properties of the I-TevI homing endonuclease can be harnessed to enhance Cas9 applications, circumventing the cleavage and ligation cycle and biasing genome-editing events toward defined length deletions.
Targeted Deletion of miR-132/-212 Impairs Memory and Alters the Hippocampal Transcriptome
ERIC Educational Resources Information Center
Hansen, Katelin F.; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H.; Loeser, Jacob; Hesse, Andrea M.; Page, Chloe E.; Pelz, Carl; Arthur, J. Simon C.; Impey, Soren; Obrietan, Karl
2016-01-01
miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each…
Manning-Krieg, U C; Henríquez, R; Cammas, F; Graff, P; Gavériaux, S; Movva, N R
1994-09-19
A novel protein, belonging to the yeast family of FKBPs (FK-binding proteins), FKBP-70, was isolated from Saccharomyces cerevisiae by its interaction with the immunosuppressive agent FK-520. Its structural gene, FPR3, was cloned and the protein expressed and purified from Escherichia coli. This third member of the FKBP family in yeast is homologous to the other FKBPs at its carboxy terminus, showing conserved ligand binding and proline isomerase regions. It is, however, a longer acidic protein with several potential nuclear targeting sequences and a region of homology to nucleolins. Yeast strains deleted for FPR3, as well as a triple deletion mutant of this family of genes, FPR1, FPR2 and FPR3, are viable under normal conditions of growth, indicating that the FPR genes are not essential for life.
Kristensen, Tatjana P; Maria Cherian, Reeja; Gray, Fiona C; MacNeill, Stuart A
2014-01-01
The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies.
miR-11 regulates pupal size of Drosophila melanogaster via directly targeting Ras85D.
Li, Yao; Li, Shengjie; Jin, Ping; Chen, Liming; Ma, Fei
2017-01-01
MicroRNAs play diverse roles in various physiological processes during Drosophila development. In the present study, we reported that miR-11 regulates pupal size during Drosophila metamorphosis via targeting Ras85D with the following evidences: pupal size was increased in the miR-11 deletion mutant; restoration of miR-11 in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant; ectopic expression of miR-11 in brain insulin-producing cells (IPCs) and whole body shows consistent alteration of pupal size; Dilps and Ras85D expressions were negatively regulated by miR-11 in vivo; miR-11 targets Ras85D through directly binding to Ras85D 3'-untranslated region in vitro; removal of one copy of Ras85D in the miR-11 deletion mutant rescued the increased pupal size phenotype observed in the miR-11 deletion mutant. Thus, our current work provides a novel mechanism of pupal size determination by microRNAs during Drosophila melanogaster metamorphosis. Copyright © 2017 the American Physiological Society.
Porwollik, Steffen; Santiviago, Carlos A; Cheng, Pui; Long, Fred; Desai, Prerak; Fredlund, Jennifer; Srikumar, Shabarinath; Silva, Cecilia A; Chu, Weiping; Chen, Xin; Canals, Rocío; Reynolds, M Megan; Bogomolnaya, Lydia; Shields, Christine; Cui, Ping; Guo, Jinbai; Zheng, Yi; Endicott-Yazdani, Tiana; Yang, Hee-Jeong; Maple, Aimee; Ragoza, Yury; Blondel, Carlos J; Valenzuela, Camila; Andrews-Polymenis, Helene; McClelland, Michael
2014-01-01
We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections. The MGD collections contain mutants bearing deletions of contiguous regions of three or more genes and include (3), 198 mutants spanning 2543 genes replaced by a KanR cassette (MGD-K), and (4), 251 mutants spanning 2799 genes replaced by a CamR cassette (MGD-C). Overall, 3476 genes were deleted in at least one MGD collection. The collections with different antibiotic markers permit construction of all viable combinations of mutants in the same background. Together, the libraries allow hierarchical screening of MGDs for different phenotypic followed by screening of SGDs within the target MGD regions. The mutants of these collections are stored at BEI Resources (www.beiresources.org) and publicly available.
Zhu, Meiqin; Yu, Jian; Zhou, Changlin; Fang, Hongqing
2016-01-01
Red-based recombineering has been widely used in Escherichia coli genome modification through electroporating PCR fragments into electrocompetent cells to replace target sequences. Some mutations in the PCR fragments may be brought into the homologous regions near the target. To solve this problem in markeless gene deletion we developed a novel method characterized with two-step recombination and a donor plasmid. First, generated by PCR a linear DNA cassette which comprises a I-Sec I site-containing marker gene and homologous arms was electroporated into cells for marker-substitution deletion of the target sequence. Second, after a donor plasmid carrying the I-Sec I site-containing fusion homologous arm was chemically transformed into the marker-containing cells, the fusion arms and the marker was simultaneously cleaved by I-Sec I endonuclease and the marker-free deletion was stimulated by double-strand break-mediated intermolecular recombination. Eleven nonessential regions in E. coli DH1 genome were sequentially deleted by our method, resulting in a 10.59% reduced genome size. These precise deletions were also verified by PCR sequencing and genome resequencing. Though no change in the growth rate on the minimal medium, we found the genome-reduced strains have some alteration in the acid resistance and for the synthesis of lycopene.
Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.
Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning
Craig...
Chemical-Space-Based de Novo Design Method To Generate Drug-Like Molecules.
Takeda, Shunichi; Kaneko, Hiromasa; Funatsu, Kimito
2016-10-24
To discover drug compounds in chemical space containing an enormous number of compounds, a structure generator is required to produce virtual drug-like chemical structures. The de novo design algorithm for exploring chemical space (DAECS) visualizes the activity distribution on a two-dimensional plane corresponding to chemical space and generates structures in a target area on a plane selected by the user. In this study, we modify the DAECS to enable the user to select a target area to consider properties other than activity and improve the diversity of the generated structures by visualizing the drug-likeness distribution and the activity distribution, generating structures by substructure-based structural changes, including addition, deletion, and substitution of substructures, as well as the slight structural changes used in the DAECS. Through case studies using ligand data for the human adrenergic alpha2A receptor and the human histamine H1 receptor, the modified DAECS can generate high diversity drug-like structures, and the usefulness of the modification of the DAECS is verified.
USDA-ARS?s Scientific Manuscript database
Increasing availability of genomic data and sophistication of analytical methodology in fungi has elevated the need for functional genomics tools in these organisms. Gene deletion is a critical tool for functional analysis. The targeted deletion of genes requires both a suitable method for the trans...
Meurs, Kathryn M; Stern, Josh A; Reina-Doreste, Yamir; Maran, Brian A; Chdid, Lhoucine; Lahmers, Sunshine; Keene, Bruce W; Mealey, Katrina L
2015-09-01
β-Adrenergic receptor antagonists are widely utilized for the management of cardiac diseases in dogs. We have recently identified two deletion polymorphisms in the canine adrenoreceptor 1 (ADRB1) gene.We hypothesized that canine ADRB1 deletions would alter the structure of the protein, as well as the heart rate response to the β-adrenergic receptor antagonist, atenolol. The objectives of this study were to predict the impact of these deletions on the predicted structure of the protein and on the heart rate response to atenolol in a population of healthy adult dogs. Eighteen apparently healthy, mature dogs with (11) and without (seven) ADRB1 deletions were evaluated. The heart rate of the dogs was evaluated with a baseline ambulatory ECG before and 14-21 days after atenolol therapy (1 mg/kg orally q12 h). Minimum, average, and maximum heart rates were compared between groups of dogs (deletions, controls) using an unpaired t-test and within each group of dogs using a paired t-test. The protein structure of ADRB1 was predicted by computer modeling. Deletions were predicted to alter the structure of the ADRB1 protein. The heart rates of the dogs with deletions were lower than those of the control dogs (the average heart rates were significantly lower). ADRB1 deletions appear to have structural and functional consequences. Individual genome-based treatment recommendations could impact the management of dogs with heart disease.
Li, Haonan; Jin, Peng; Hao, Qian; Zhu, Wei; Chen, Xia; Wang, Ping
2017-11-01
Waardenburg syndrome (WS) is a rare autosomal dominant disorder associated with pigmentation abnormalities and sensorineural hearing loss. In this study, we investigated the genetic cause of WSII in a patient and evaluated the reliability of the targeted next-generation exome sequencing method for the genetic diagnosis of WS. Clinical evaluations were conducted on the patient and targeted next-generation sequencing (NGS) was used to identify the candidate genes responsible for WSII. Multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative polymerase chain reaction (qPCR) were performed to confirm the targeted NGS results. Targeted NGS detected the entire deletion of the coding sequence (CDS) of the SOX10 gene in the WSII patient. MLPA results indicated that all exons of the SOX10 heterozygous deletion were detected; no aberrant copy number in the PAX3 and microphthalmia-associated transcription factor (MITF) genes was found. Real-time qPCR results identified the mutation as a de novo heterozygous deletion. This is the first report of using a targeted NGS method for WS candidate gene sequencing; its accuracy was verified by using the MLPA and qPCR methods. Our research provides a valuable method for the genetic diagnosis of WS.
Suppression of retroviral MA deletions by the amino-terminal membrane-binding domain of p60src.
Wills, J W; Craven, R C; Weldon, R A; Nelle, T D; Erdie, C R
1991-01-01
The molecular mechanism by which retroviral Gag proteins are directed to the plasma membrane for the formation of particles (budding) is unknown, but it is widely believed that the MA domain, located at the amino terminus, plays a critical role. Consistent with this idea, we found that small deletions in this segment of the Rous sarcoma virus Gag protein completely blocked particle formation. The mutant proteins appear to have suffered only localized structural damage since they could be rescued (i.e., packaged into particles) when coexpressed with Gag proteins that are competent for particle formation. To our surprise, the effects of the MA deletions could be completely suppressed by fusing as few as seven residues of the myristylated amino terminus of the oncoprotein p60src to the beginning of the mutant Gag proteins. Particles produced by the chimeras were of the same density as the wild type. Two myristylated peptides having sequences distinct from that of p60src were entirely unable to suppress MA deletions, indicating that myristate alone is not a sufficient membrane targeting signal. We hypothesize that the amino terminus of p60src suppresses the effects of MA deletions by diverting the Rous sarcoma virus Gag protein from its normal site of assembly to the Src receptor for particle formation. Images PMID:1710290
Bender, M A; Byron, Rachel; Ragoczy, Tobias; Telling, Agnes; Bulger, Michael; Groudine, Mark
2006-08-15
The locus control region (LCR) was thought to be necessary and sufficient for establishing and maintaining an open beta-globin locus chromatin domain in the repressive environment of the developing erythrocyte. However, deletion of the LCR from the endogenous locus had no significant effect on chromatin structure and did not silence transcription. Thus, the cis-regulatory elements that confer the open domain remain unidentified. The conserved DNaseI hypersensitivity sites (HSs) HS-62.5 and 3'HS1 that flank the locus, and the region upstream of the LCR have been implicated in globin gene regulation. The flanking HSs bind CCCTC binding factor (CTCF) and are thought to interact with the LCR to form a "chromatin hub" involved in beta-globin gene activation. Hispanic thalassemia, a deletion of the LCR and 27 kb upstream, leads to heterochromatinization and silencing of the locus. Thus, the region upstream of the LCR deleted in Hispanic thalassemia (upstream Hispanic region [UHR]) may be required for expression. To determine the importance of the UHR and flanking HSs for beta-globin expression, we generated and analyzed mice with targeted deletions of these elements. We demonstrate deletion of these regions alone, and in combination, do not affect transcription, bringing into question current models for the regulation of the beta-globin locus.
1992-01-01
To elucidate the structural basis for membrane attachment of the alpha subunit of the stimulatory G protein (Gs alpha), mutant Gs alpha cDNAs with deletions of amino acid residues in the amino and/or carboxy termini were transiently expressed in COS-7 cells. The particulate and soluble fractions prepared from these cells were analyzed by immunoblot using peptide specific antibodies to monitor distribution of the expressed proteins. Transfection of mutant forms of Gs alpha with either 26 amino terminal residues deleted (delta 3-28) or with 59 amino terminal residues deleted (delta 1-59) resulted in immunoreactive proteins which localized primarily to the particulate fraction. Similarly, mutants with 10 (delta 385-394), 32 (delta 353-384), or 42 (delta 353-394) amino acid residues deleted from the carboxy terminus also localized to the particulate fraction, as did a mutant form of Gs alpha lacking amino acid residues at both the amino and carboxy termini (delta 3-28)/(delta 353-384). Mutant and wild type forms of Gs alpha demonstrated a similar degree of tightness in their binding to membranes as demonstrated by treatment with 2.5 M NaCl or 6 M urea, but some mutant forms were relatively resistant compared with wild type Gs alpha to solubilization by 15 mM NaOH or 1% sodium cholate. We conclude that: (a) deletion of significant portions of the amino and/or carboxyl terminus of Gs alpha is still compatible with protein expression; (b) deletion of these regions is insufficient to cause cytosolic localization of the expressed protein. The basis of Gs alpha membrane targeting remains to be elucidated. PMID:1400589
Ogawa, Masahiro; Koyama, Yasuji
2012-01-01
Loop-out-type recombination is a type of intrachromosomal recombination followed by the excision of a chromosomal region. The detailed mechanism underlying this recombination and the genes involved in loop-out recombination remain unknown. In the present study, we investigated the functions of ku70, ligD, rad52, rad54, and rdh54 in the construction of large chromosomal deletions via loop-out recombination and the effect of the position of the targeted chromosomal region on the efficiency of loop-out recombination in Aspergillus oryzae. The efficiency of generation of large chromosomal deletions in the near-telomeric region of chromosome 3, including the aflatoxin gene cluster, was compared with that in the near-centromeric region of chromosome 8, including the tannase gene. In the Δku70 and Δku70-rdh54 strains, only precise loop-out recombination occurred in the near-telomeric region. In contrast, in the ΔligD, Δku70-rad52, and Δku70-rad54 strains, unintended chromosomal deletions by illegitimate loop-out recombination occurred in the near-telomeric region. In addition, large chromosomal deletions via loop-out recombination were efficiently achieved in the near-telomeric region, but barely achieved in the near-centromeric region, in the Δku70 strain. Induction of DNA double-strand breaks by I-SceI endonuclease facilitated large chromosomal deletions in the near-centromeric region. These results indicate that ligD, rad52, and rad54 play a role in the generation of large chromosomal deletions via precise loop-out-type recombination in the near-telomeric region and that loop-out recombination between distant sites is restricted in the near-centromeric region by chromosomal structure. PMID:22286092
Cui, Yubao; Yu, Lili
2016-12-01
The clustered regularly-interspaced short palindromic repeats (CRISPR) structural family functions as an acquired immune system in prokaryotes. Gene editing techniques have co-opted CRISPR and the associated Cas nucleases to allow for the precise genetic modification of human cells, zebrafish, mice, and other eukaryotes. Indeed, this approach has been used to induce a variety of modifications including directed insertion/deletion (InDel) of bases, gene knock-in, introduction of mutations in both alleles of a target gene, and deletion of small DNA fragments. Thus, CRISPR technology offers a precise molecular tool for directed genome modification with a range of potential applications; further, its high mutation efficiency, simple process, and low cost provide additional advantages over prior editing techniques. This paper will provide an overview of the basic structure and function of the CRISPR gene editing system as well as current and potential applications to research on parasites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zou, Junhui; Pan, Yung-Wei; Wang, Zhenshan; Chang, Shih-Yu; Wang, Wenbin; Wang, Xin; Tournier, Cathy; Storm, Daniel R.; Xia, Zhengui
2012-01-01
ERK5 MAP kinase is highly expressed in the developing nervous system and has been implicated in promoting the survival of immature neurons in culture. However, its role in the development and function of the mammalian nervous system has not been established in vivo. Here, we report that conditional deletion of the erk5 gene in mouse neural stem cells during development reduces the number of GABAergic interneurons in the main olfactory bulb (OB). Our data suggest that this is due to a decrease in proliferation and an increase in apoptosis in the subventricular zone (SVZ) and rostral migratory stream (RMS) of ERK5 mutant mice. Interestingly, ERK5 mutant mice have smaller OB and are impaired in odor discrimination between structurally similar odorants. We conclude that ERK5 is a novel signaling pathway regulating developmental OB neurogenesis and olfactory behavior. PMID:22442076
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpino, James A. J.; Rizkallah, Pierre J., E-mail: rizkallahp@cardiff.ac.uk; Jones, D. Dafydd, E-mail: rizkallahp@cardiff.ac.uk
2014-08-01
The beneficial engineered single-amino-acid deletion variants EGFP{sup D190Δ} and EGFP{sup A227Δ} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190Δ} containing amore » deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227Δ} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.« less
Identification of Genes Related to Fungicide Resistance in Fusarium fujikuroi
Choi, Younghae; Jung, Boknam; Li, Taiying
2017-01-01
We identified two genes related to fungicide resistance in Fusarium fujikuroi through random mutagenesis. Targeted gene deletions showed that survival factor 1 deletion resulted in higher sensitivity to fungicides, while deletion of the gene encoding F-box/WD-repeat protein increased resistance, suggesting that the genes affect fungicide resistance in different ways. PMID:28781543
Houghton, Joanna; Davis, Elaine O.
2012-01-01
Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood. Mycobacterium tuberculosis ThyX is thought to be essential and a potential drug target. We therefore analysed M. tuberculosis thyA and thyX expression levels, their essentiality and roles in pathogenesis. We show that both thyA and thyX are expressed in vitro, and that this expression significantly increased within murine macrophages. Under all conditions tested, thyA expression exceeded that of thyX. Mutational studies show that M. tuberculosis thyX is essential, confirming that the enzyme is a plausible drug target. The requirement for M. tuberculosis thyX in the presence of thyA implies that the essential function of ThyX is something other than dTMP synthase. We successfully deleted thyA from the M. tuberculosis genome, and this deletion conferred an in vitro growth defect that was not observed in vivo. Presumably ThyX performs TS activity within M. tuberculosis ΔthyA at a sufficient rate in vivo for normal growth, but the rate in vitro is less than optimal. We also demonstrate that thyA deletion confers M. tuberculosis p-aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively. PMID:22034487
Fivian-Hughes, Amanda S; Houghton, Joanna; Davis, Elaine O
2012-02-01
Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood. Mycobacterium tuberculosis ThyX is thought to be essential and a potential drug target. We therefore analysed M. tuberculosis thyA and thyX expression levels, their essentiality and roles in pathogenesis. We show that both thyA and thyX are expressed in vitro, and that this expression significantly increased within murine macrophages. Under all conditions tested, thyA expression exceeded that of thyX. Mutational studies show that M. tuberculosis thyX is essential, confirming that the enzyme is a plausible drug target. The requirement for M. tuberculosis thyX in the presence of thyA implies that the essential function of ThyX is something other than dTM synthesis [corrected].We successfully deleted thyA from the M. tuberculosis genome, and this deletion conferred an in vitro growth defect that was not observed in vivo. Presumably ThyX performs TS activity within M. tuberculosis ΔthyA at a sufficient rate in vivo for normal growth, but the rate in vitro is less than optimal. We also demonstrate that thyA deletion confers M. tuberculosis p-aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively.
Kristensen, Tatjana P.; Maria Cherian, Reeja; Gray, Fiona C.; MacNeill, Stuart A.
2014-01-01
The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies. PMID:24723920
Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Tongqing; Doria-Rose, Nicole A.; Cheng, Cheng
While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralizationmore » character). To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID50) proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.« less
Restricted pleiotropy facilitates mutational erosion of major life-history traits.
Marek, Agnieszka; Korona, Ryszard
2013-11-01
Radical shifts to new natural and human made niches can make some functions unneeded and thus exposed to genetic degeneration. Here we ask not about highly specialized and rarely used functions but those relating to major life-history traits, rate of growth, and resistance to prolonged starvation. We found that in yeast each of the two traits was visibly impaired by at least several hundred individual gene deletions. There were relatively few deletions affecting negatively both traits and likely none harming one but improving the other. Functional profiles of gene deletions affecting either growth or survival were strikingly different: the first related chiefly to synthesis of macromolecules whereas the second to maintenance and recycling of cellular structures. The observed pattern of gene indispensability corresponds to that of gene induction, providing a rather rare example of agreement between the results of deletion and expression studies. We conclude that transitions to new environments in which the ability to grow at possibly fastest rate or survive under very long starvation become practically unnecessary can result in rapid erosion of these vital functions because they are coded by many genes constituting large mutational targets and because restricted pleiotropy is unlikely to constrain this process. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Zouheir Habbal, Mohammad; Bou-Assi, Tarek; Zhu, Jun; Owen, Renius; Chehab, Farid F
2014-01-01
Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD). Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb), one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin.
Habbal, Mohammad Zouheir; Bou-Assi, Tarek; Zhu, Jun; Owen, Renius; Chehab, Farid F.
2014-01-01
Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD). Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5–16 Mb), one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband’s phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin. PMID:25233259
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-22
...-13-0027] Potato Research and Promotion Plan; Amend the Administrative Committee Structure and Delete... (Board) and deletes the Board's mailing address from the Potato Research and Promotion Plan. The Plan is... FURTHER INFORMATION CONTACT: Patricia A. Petrella, Marketing Specialist, Promotion and Economics Division...
Mizutani, Osamu; Arazoe, Takayuki; Toshida, Kenji; Hayashi, Risa; Ohsato, Shuichi; Sakuma, Tetsushi; Yamamoto, Takashi; Kuwata, Shigeru; Yamada, Osamu
2017-03-01
Transcription activator-like effector nucleases (TALENs), which can generate DNA double-strand breaks at specific sites in the desired genome locus, have been used in many organisms as a tool for genome editing. In Aspergilli, including Aspergillus oryzae, however, the use of TALENs has not been validated. In this study, we performed genome editing of A. oryzae wild-type strain via error of nonhomologous end-joining (NHEJ) repair by transient expression of high-efficiency Platinum-Fungal TALENs (PtFg TALENs). Targeted mutations were observed as various mutation patterns. In particular, approximately half of the PtFg TALEN-mediated deletion mutants had deletions larger than 1 kb in the TALEN-targeting region. We also conducted PtFg TALEN-based genome editing in A. oryzae ligD disruptant (ΔligD) lacking the ligD gene involved in the final step of the NHEJ repair and found that mutations were still obtained as well as wild-type. In this case, the ratio of the large deletions reduced compared to PtFg TALEN-based genome editing in the wild-type. In conclusion, we demonstrate that PtFg TALENs are sufficiently functional to cause genome editing via error of NHEJ in A. oryzae. In addition, we reveal that genome editing using TALENs in A. oryzae tends to cause large deletions at the target region, which were partly suppressed by deletion of ligD. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Engineering antigens for in situ erythrocyte binding induces T-cell deletion.
Kontos, Stephan; Kourtis, Iraklis C; Dane, Karen Y; Hubbell, Jeffrey A
2013-01-02
Antigens derived from apoptotic cell debris can drive clonal T-cell deletion or anergy, and antigens chemically coupled ex vivo to apoptotic cell surfaces have been shown correspondingly to induce tolerance on infusion. Reasoning that a large number of erythrocytes become apoptotic (eryptotic) and are cleared each day, we engineered two different antigen constructs to target the antigen to erythrocyte cell surfaces after i.v. injection, one using a conjugate with an erythrocyte-binding peptide and another using a fusion with an antibody fragment, both targeting the erythrocyte-specific cell surface marker glycophorin A. Here, we show that erythrocyte-binding antigen is collected much more efficiently than free antigen by splenic and hepatic immune cell populations and hepatocytes, and that it induces antigen-specific deletional responses in CD4(+) and CD8(+) T cells. We further validated T-cell deletion driven by erythrocyte-binding antigens using a transgenic islet β cell-reactive CD4(+) T-cell adoptive transfer model of autoimmune type 1 diabetes: Treatment with the peptide antigen fused to an erythrocyte-binding antibody fragment completely prevented diabetes onset induced by the activated, autoreactive CD4(+) T cells. Thus, we report a translatable modular biomolecular approach with which to engineer antigens for targeted binding to erythrocyte cell surfaces to induce antigen-specific CD4(+) and CD8(+) T-cell deletion toward exogenous antigens and autoantigens.
SAD-A kinase controls islet β-cell size and function as a mediator of mTORC1 signaling
Nie, Jia; Liu, Xiaolei; Lilley, Brendan N.; Zhang, Hai; Pan, Y. Albert; Kimball, Scot R.; Zhang, Jun; Zhang, Weiping; Wang, Li; Jefferson, Leonard S.; Sanes, Joshua R.; Han, Xiao; Shi, Yuguang
2013-01-01
The mammalian target of rapamycin (mTOR) plays an important role in controlling islet β-cell function. However, the underlying molecular mechanisms remain poorly elucidated. Synapses of amphids defective kinase-A (SAD-A) is a 5′ adenosine monophosphate-activated protein kinase-related protein kinase that is exclusively expressed in pancreas and brain. In this study, we investigated a role of the kinase in regulating pancreatic β-cell morphology and function as a mediator of mTOR complex 1 (mTORC1) signaling. We show that global SAD-A deletion leads to defective glucose-stimulated insulin secretion and petite islets, which are reminiscent of the defects in mice with global deletion of ribosomal protein S6 kinase 1, a downstream target of mTORC1. Consistent with these findings, selective deletion of SAD-A in pancreas decreased islet β-cell size, whereas SAD-A overexpression significantly increased the size of mouse insulinomas cell lines β-cells. In direct support of SAD-A as a unique mediator of mTORC1 signaling in islet β-cells, we demonstrate that glucose dramatically stimulated SAD-A protein translation in isolated mouse islets, which was potently inhibited by rapamycin, an inhibitor of mTORC1. Moreover, the 5′-untranslated region of SAD-A mRNA is highly structured and requires mTORC1 signaling for its translation initiation. Together, these findings identified SAD-A as a unique pancreas-specific effector protein of mTORC1 signaling. PMID:23922392
SAD-A kinase controls islet β-cell size and function as a mediator of mTORC1 signaling.
Nie, Jia; Liu, Xiaolei; Lilley, Brendan N; Zhang, Hai; Pan, Y Albert; Kimball, Scot R; Zhang, Jun; Zhang, Weiping; Wang, Li; Jefferson, Leonard S; Sanes, Joshua R; Han, Xiao; Shi, Yuguang
2013-08-20
The mammalian target of rapamycin (mTOR) plays an important role in controlling islet β-cell function. However, the underlying molecular mechanisms remain poorly elucidated. Synapses of amphids defective kinase-A (SAD-A) is a 5' adenosine monophosphate-activated protein kinase-related protein kinase that is exclusively expressed in pancreas and brain. In this study, we investigated a role of the kinase in regulating pancreatic β-cell morphology and function as a mediator of mTOR complex 1 (mTORC1) signaling. We show that global SAD-A deletion leads to defective glucose-stimulated insulin secretion and petite islets, which are reminiscent of the defects in mice with global deletion of ribosomal protein S6 kinase 1, a downstream target of mTORC1. Consistent with these findings, selective deletion of SAD-A in pancreas decreased islet β-cell size, whereas SAD-A overexpression significantly increased the size of mouse insulinomas cell lines β-cells. In direct support of SAD-A as a unique mediator of mTORC1 signaling in islet β-cells, we demonstrate that glucose dramatically stimulated SAD-A protein translation in isolated mouse islets, which was potently inhibited by rapamycin, an inhibitor of mTORC1. Moreover, the 5'-untranslated region of SAD-A mRNA is highly structured and requires mTORC1 signaling for its translation initiation. Together, these findings identified SAD-A as a unique pancreas-specific effector protein of mTORC1 signaling.
Unthan, Simon; Baumgart, Meike; Radek, Andreas; Herbst, Marius; Siebert, Daniel; Brühl, Natalie; Bartsch, Anna; Bott, Michael; Wiechert, Wolfgang; Marin, Kay; Hans, Stephan; Krämer, Reinhard; Seibold, Gerd; Frunzke, Julia; Kalinowski, Jörn; Rückert, Christian; Wendisch, Volker F; Noack, Stephan
2015-02-01
For synthetic biology applications, a robust structural basis is required, which can be constructed either from scratch or in a top-down approach starting from any existing organism. In this study, we initiated the top-down construction of a chassis organism from Corynebacterium glutamicum ATCC 13032, aiming for the relevant gene set to maintain its fast growth on defined medium. We evaluated each native gene for its essentiality considering expression levels, phylogenetic conservation, and knockout data. Based on this classification, we determined 41 gene clusters ranging from 3.7 to 49.7 kbp as target sites for deletion. 36 deletions were successful and 10 genome-reduced strains showed impaired growth rates, indicating that genes were hit, which are relevant to maintain biological fitness at wild-type level. In contrast, 26 deleted clusters were found to include exclusively irrelevant genes for growth on defined medium. A combinatory deletion of all irrelevant gene clusters would, in a prophage-free strain, decrease the size of the native genome by about 722 kbp (22%) to 2561 kbp. Finally, five combinatory deletions of irrelevant gene clusters were investigated. The study introduces the novel concept of relevant genes and demonstrates general strategies to construct a chassis suitable for biotechnological application. © 2014 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs Licence, which permits use and distribution in any medium, provided the original work is properly cited, the use is non- commercial and no modifications or adaptations are made.
Demidov, German; Simakova, Tamara; Vnuchkova, Julia; Bragin, Anton
2016-10-22
Multiplex polymerase chain reaction (PCR) is a common enrichment technique for targeted massive parallel sequencing (MPS) protocols. MPS is widely used in biomedical research and clinical diagnostics as the fast and accurate tool for the detection of short genetic variations. However, identification of larger variations such as structure variants and copy number variations (CNV) is still being a challenge for targeted MPS. Some approaches and tools for structural variants detection were proposed, but they have limitations and often require datasets of certain type, size and expected number of amplicons affected by CNVs. In the paper, we describe novel algorithm for high-resolution germinal CNV detection in the PCR-enriched targeted sequencing data and present accompanying tool. We have developed a machine learning algorithm for the detection of large duplications and deletions in the targeted sequencing data generated with PCR-based enrichment step. We have performed verification studies and established the algorithm's sensitivity and specificity. We have compared developed tool with other available methods applicable for the described data and revealed its higher performance. We showed that our method has high specificity and sensitivity for high-resolution copy number detection in targeted sequencing data using large cohort of samples.
Wu, Meilin; Liu, Clifford Z.; Joiner, William J.
2016-01-01
Ly6 proteins are endogenous prototoxins found in most animals. They show striking structural and functional parallels to snake α-neurotoxins, including regulation of ion channels and cholinergic signaling. However, the structural contributions of Ly6 proteins to regulation of effector molecules is poorly understood. This question is particularly relevant to the Ly6 protein QUIVER/SLEEPLESS (QVR/SSS), which has previously been shown to suppress excitability and synaptic transmission by upregulating potassium (K) channels and downregulating nicotinic acetylcholine receptors (nAChRs) in wake-promoting neurons to facilitate sleep in Drosophila. Using deletion mutagenesis, co-immunoprecipitations, ion flux assays, surface labeling and confocal microscopy, we demonstrate that only loop 2 is required for many of the previously described properties of SSS in transfected cells, including interactions with K channels and nAChRs. Collectively our data suggest that QVR/SSS, and by extension perhaps other Ly6 proteins, target effector molecules using limited protein motifs. Mapping these motifs may be useful in rational design of drugs that mimic or suppress Ly6-effector interactions to modulate nervous system function. PMID:26828958
Arpino, James A J; Reddington, Samuel C; Halliwell, Lisa M; Rizkallah, Pierre J; Jones, D Dafydd
2014-06-10
Altering a protein's backbone through amino acid deletion is a common evolutionary mutational mechanism, but is generally ignored during protein engineering primarily because its effect on the folding-structure-function relationship is difficult to predict. Using directed evolution, enhanced green fluorescent protein (EGFP) was observed to tolerate residue deletion across the breadth of the protein, particularly within short and long loops, helical elements, and at the termini of strands. A variant with G4 removed from a helix (EGFP(G4Δ)) conferred significantly higher cellular fluorescence. Folding analysis revealed that EGFP(G4Δ) retained more structure upon unfolding and refolded with almost 100% efficiency but at the expense of thermodynamic stability. The EGFP(G4Δ) structure revealed that G4 deletion caused a beneficial helical registry shift resulting in a new polar interaction network, which potentially stabilizes a cis proline peptide bond and links secondary structure elements. Thus, deletion mutations and registry shifts can enhance proteins through structural rearrangements not possible by substitution mutations alone. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.
Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A
1996-11-01
Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and efficient means for determining frequency and progression of oncogenetic events in prostate cancer.
Hay, Elizabeth Anne; Khalaf, Abdulla Razak; Marini, Pietro; Brown, Andrew; Heath, Karyn; Sheppard, Darrin; MacKenzie, Alasdair
2017-08-01
We have successfully used comparative genomics to identify putative regulatory elements within the human genome that contribute to the tissue specific expression of neuropeptides such as galanin and receptors such as CB1. However, a previous inability to rapidly delete these elements from the mouse genome has prevented optimal assessment of their function in-vivo. This has been solved using CAS9/CRISPR genome editing technology which uses a bacterial endonuclease called CAS9 that, in combination with specifically designed guide RNA (gRNA) molecules, cuts specific regions of the mouse genome. However, reports of "off target" effects, whereby the CAS9 endonuclease is able to cut sites other than those targeted, limits the appeal of this technology. We used cytoplasmic microinjection of gRNA and CAS9 mRNA into 1-cell mouse embryos to rapidly generate enhancer knockout mouse lines. The current study describes our analysis of the genomes of these enhancer knockout lines to detect possible off-target effects. Bioinformatic analysis was used to identify the most likely putative off-target sites and to design PCR primers that would amplify these sequences from genomic DNA of founder enhancer deletion mouse lines. Amplified DNA was then sequenced and blasted against the mouse genome sequence to detect off-target effects. Using this approach we were unable to detect any evidence of off-target effects in the genomes of three founder lines using any of the four gRNAs used in the analysis. This study suggests that the problem of off-target effects in transgenic mice have been exaggerated and that CAS9/CRISPR represents a highly effective and accurate method of deleting putative neuropeptide gene enhancer sequences from the mouse genome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Thalamic reticular impairment underlies attention deficit in Ptchd1(Y/-) mice.
Wells, Michael F; Wimmer, Ralf D; Schmitt, L Ian; Feng, Guoping; Halassa, Michael M
2016-04-07
Developmental disabilities, including attention-deficit hyperactivity disorder (ADHD), intellectual disability (ID), and autism spectrum disorders (ASD), affect one in six children in the USA. Recently, gene mutations in patched domain containing 1 (PTCHD1) have been found in ~1% of patients with ID and ASD. Individuals with PTCHD1 deletion show symptoms of ADHD, sleep disruption, hypotonia, aggression, ASD, and ID. Although PTCHD1 is probably critical for normal development, the connection between its deletion and the ensuing behavioural defects is poorly understood. Here we report that during early post-natal development, mouse Ptchd1 is selectively expressed in the thalamic reticular nucleus (TRN), a group of GABAergic neurons that regulate thalamocortical transmission, sleep rhythms, and attention. Ptchd1 deletion attenuates TRN activity through mechanisms involving small conductance calcium-dependent potassium currents (SK). TRN-restricted deletion of Ptchd1 leads to attention deficits and hyperactivity, both of which are rescued by pharmacological augmentation of SK channel activity. Global Ptchd1 deletion recapitulates learning impairment, hyper-aggression, and motor defects, all of which are insensitive to SK pharmacological targeting and not found in the TRN-restricted deletion mouse. This study maps clinically relevant behavioural phenotypes onto TRN dysfunction in a human disease model, while also identifying molecular and circuit targets for intervention.
Genomic interval engineering of mice identified a novel modulator of triglyceride production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y.; Jong, M.C.; Frazer, K.A.
1999-10-01
To accelerate the biological annotation of novel genes discovered in sequenced of mammalian genomes, we are creating large deletions in the mouse genome targeted to include clusters of such genes. Here we describe the targeted deletion of a 450 kb region on mouse chromosome 11 which, based on computational analysis of the deleted murine sequences and human 5q orthologous sequences, codes for nine putative genes. Mice homozygous for the deletion had a variety of abnormalities including severe hypertriglyceridemia, hepatic and cardiac enlargement, growth retardation and premature mortality. Analysis of triglyceride metabolism in these animals demonstrated a several-fold increase in hepaticmore » very-low density lipoprotein (VLDL) triglyceride secretion, the most prevalent mechanism responsible for hypertriglyceridemia in humans. A series of mouse BAC and human YAC transgenes covering different intervals of the 450 kb deleted region were assessed for their ability to complement the deletion induced abnormalities. These studies revealed that OCTN2, a gene recently shown to play a role in carnitine transport, was able to correct the triglyceride abnormalities. The discovery of this previously unappreciated relationship between OCTN2, carnitine and hepatic triglyceride production is of particular importance due to the clinical consequence of hypertriglyceridemia and the paucity of genes known to modulate triglyceride secretion.« less
ATM is required for SOD2 expression and homeostasis within the mammary gland.
Dyer, Lisa M; Kepple, Jessica D; Ai, Lingbao; Kim, Wan-Ju; Stanton, Virginia L; Reinhard, Mary K; Backman, Lindsey R F; Streitfeld, W Scott; Babu, Nivetha Ramesh; Treiber, Nicolai; Scharffetter-Kochanek, Karin; McKinnon, Peter J; Brown, Kevin D
2017-12-01
ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed Atm Δ/Δ ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in Atm Δ/Δ dams. We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.
Fang, Xiangdong; Xiang, Ping; Yin, Wenxuan; Stamatoyannopoulos, George; Li, Qiliang
2007-01-05
High-level transcription of the globin genes requires the enhancement by a distant element, the locus control region (LCR). Such long-range regulation in vivo involves spatial interaction between transcriptional elements, with intervening chromatin looping out. It has been proposed that the clustering of the HS sites of the LCR, the active globin genes, as well as the remote 5' hypersensitive sites (HSs) (HS-60/-62 in mouse, HS-110 in human) and 3'HS1 forms a specific spatial chromatin structure, termed active chromatin hub (ACH). Here we report the effects of the HS3 deletions of the LCR on the spatial chromatin structure of the beta-globin locus as revealed by the chromatin conformation capture (3C) technology. The small HS3 core deletion (0.23 kb), but not the large HS3 deletion (2.3 kb), disrupted the spatial interactions among all the HS sites of the LCR, the beta-globin gene and 3'HS1. We have previously demonstrated that the large HS3 deletion barely impairs the structure of the LCR holocomplex, while the structure is significantly disrupted by the HS3 core deletion. Taken together, these results suggest that the formation of the ACH is dependent on a largely intact LCR structure. We propose that the ACH indeed is an extension of the LCR holocomplex.
Rudhe, Charlotta; Clifton, Rachel; Whelan, James; Glaser, Elzbieta
2002-12-06
Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.
Becker muscular dystrophy severity is linked to the structure of dystrophin.
Nicolas, Aurélie; Raguénès-Nicol, Céline; Ben Yaou, Rabah; Ameziane-Le Hir, Sarah; Chéron, Angélique; Vié, Véronique; Claustres, Mireille; Leturcq, France; Delalande, Olivier; Hubert, Jean-François; Tuffery-Giraud, Sylvie; Giudice, Emmanuel; Le Rumeur, Elisabeth
2015-03-01
In-frame exon deletions of the Duchenne muscular dystrophy (DMD) gene produce internally truncated proteins that typically lead to Becker muscular dystrophy (BMD), a milder allelic disorder of DMD. We hypothesized that differences in the structure of mutant dystrophin may be responsible for the clinical heterogeneity observed in Becker patients and we studied four prevalent in-frame exon deletions, i.e. Δ45-47, Δ45-48, Δ45-49 and Δ45-51. Molecular homology modelling revealed that the proteins corresponding to deletions Δ45-48 and Δ45-51 displayed a similar structure (hybrid repeat) than the wild-type dystrophin, whereas deletions Δ45-47 and Δ45-49 lead to proteins with an unrelated structure (fractional repeat). All four proteins in vitro expressed in a fragment encoding repeats 16-21 were folded in α-helices and remained highly stable. Refolding dynamics were slowed and molecular surface hydrophobicity were higher in fractional repeat containing Δ45-47 and Δ45-49 deletions compared with hybrid repeat containing Δ45-48 and Δ45-51 deletions. By retrospectively collecting data for a series of French BMD patients, we showed that the age of dilated cardiomyopathy (DCM) onset was delayed by 11 and 14 years in Δ45-48 and Δ45-49 compared with Δ45-47 patients, respectively. A clear trend toward earlier wheelchair dependency (minimum of 11 years) was also observed in Δ45-47 and Δ45-49 patients compared with Δ45-48 patients. Muscle dystrophin levels were moderately reduced in most patients without clear correlation with the deletion type. Disease progression in BMD patients appears to be dependent on the deletion itself and associated with a specific structure of dystrophin at the deletion site. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in
Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of thismore » domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm interacts with NP via its N-terminal unfolded region and the NSm–NP complex could in turn interact with the ER membrane via the C-terminal coiled coil domain of NSm to form vesicles that are targeted to PD and there by assist the cell to cell movement of the viral genome complex. - Highlights: • GBNV NSm localizes to plasmodesmata via the C-terminal coiled coil domain. • GBNV NSm interacts with endoplasmic reticulum network and remodels it to vesicles. • The C-terminal coiled domain alone is responsible for vesicle formation. • The N-terminal unfolded region of NSm is involved in the re-localization of NP to PD.« less
PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation.
Hou, Sheng-Qi; Ouyang, Meng; Brandmaier, Andrew; Hao, Hongbo; Shen, Wen H
2017-10-01
Faithful DNA replication and accurate chromosome segregation are the key machineries of genetic transmission. Disruption of these processes represents a hallmark of cancer and often results from loss of tumor suppressors. PTEN is an important tumor suppressor that is frequently mutated or deleted in human cancer. Loss of PTEN has been associated with aneuploidy and poor prognosis in cancer patients. In mice, Pten deletion or mutation drives genomic instability and tumor development. PTEN deficiency induces DNA replication stress, confers stress tolerance, and disrupts mitotic spindle architecture, leading to accumulation of structural and numerical chromosome instability. Therefore, PTEN guards the genome by controlling multiple processes of chromosome inheritance. Here, we summarize current understanding of the PTEN function in promoting high-fidelity transmission of genetic information. We also discuss the PTEN pathways of genome maintenance and highlight potential targets for cancer treatment. © 2017 WILEY Periodicals, Inc.
Kochneva, G V; Kolosova, I V; Lupan, T A; Sivolobova, G F; Iudin, P V; Grazhdantseva, A A; Riabchikova, E I; Kandrina, N Iu; Shchelkunov, S N
2009-01-01
Mousepox (ectromelia) virus genome contains four genes encoding for kelch-like proteins EVM018, EVM027, EVM150 and EVM167. A complete set of insertion plasmids was constructed to allow the production of recombinant ectromelia viruses with targeted deletions of one to four genes of kelch family both individually (single mutants) and in different combinations (double, triple and quadruple mutants). It was shown that deletion of any of the three genes EVMO18, EVM027 or EVM167 resulted in reduction of 50% lethal dose (LD50) by five and more orders in outbred white mice infected intraperitoneally. Deletion of mousepox kelch-gene EVM150 did not influence the virus virulence. Two or more kelch-genes deletion also resulted in high level of attenuation, which could evidently be due to the lack of three genes EVM167, EVM018 and/or EVM027 identified as virulence factors. The local inflammatory process on the model of intradermal injection of mouse ear pinnae (vasodilatation level, hyperemia, cutaneous edema, arterial thrombosis) was significantly more intensive for wild type virus and virulent mutant deltaEVM150 in comparison with avirulent mutant AEVM167.
He, Wenyin; Sun, Xiaofang; Liu, Lian; Li, Man; Jin, Hua; Wang, Wei-Hua
2014-01-01
Chromosomal anomalies in human embryos produced by in vitro fertilization are very common, which include numerical (aneuploidy) and structural (deletion, duplication or others) anomalies. Our previous study indicated that chromosomal deletion(s) is the most common structural anomaly accounting for approximately 8% of euploid blastocysts. It is still unknown if these deletions in human euploid blastocysts have clinical significance. In this study, we analyzed 15 previously diagnosed euploid blastocysts that had chromosomal deletion(s) using Agilent oligonucleotide DNA microarray platform and localized the gene location in each deletion. Then, we used OMIM gene map and phenotype database to investigate if these deletions are related with some important genes that cause genetic diseases, especially developmental delay or intellectual disability. As results, we found that the detectable chromosomal deletion size with Agilent microarray is above 2.38 Mb, while the deletions observed in human blastocysts are between 11.6 to 103 Mb. With OMIM gene map and phenotype database information, we found that deletions can result in loss of 81-464 genes. Out of these genes, 34-149 genes are related with known genetic problems. Furthermore, we found that 5 out of 15 samples lost genes in the deleted region, which were related to developmental delay and/or intellectual disability. In conclusion, our data indicates that all human euploid blastocysts with chromosomal deletion(s) are abnormal and transfer of these embryos may cause birth defects and/or developmental and intellectual disabilities. Therefore, the embryos with chromosomal deletion revealed by DNA microarray should not be transferred to the patients, or further gene map and/or phenotype seeking is necessary before making a final decision.
Simon, Tony J
2008-01-01
In this article, I present an updated account that attempts to explain, in cognitive processing and neural terms, the nonverbal intellectual impairments experienced by most children with deletions of chromosome 22q11.2. Specifically, I propose that this genetic syndrome leads to early developmental changes in the structure and function of clearly delineated neural circuits for basic spatiotemporal cognition. This dysfunction then cascades into impairments in basic magnitude and then numerical processes, because of the central role that representations of space and time play in their construction. I propose that this takes the form of "spatiotemporal hypergranularity"; the increase in grain size and thus reduced resolution of mental representations of spatial and temporal information. The result is that spatiotemporal processes develop atypically and thereby produce the characteristic impairments in nonverbal cognitive domains that are a hallmark feature of chromosome 22q11.2 deletion syndrome. If this hypothesis driven account is supported by future research, the results will create a neurocognitive explanation of spatiotemporal and numerical impairments in the syndrome that is specific enough to be directly translated into the development of targeted therapeutic interventions.
Xu, Zixiang; Zheng, Ping; Sun, Jibin; Ma, Yanhe
2013-01-01
Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP) based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT) method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective. PMID:24348984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.M.; Saxena, A.; Mok, H. Y.-K.
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein ({Delta}PilS), which makes the pilus, was determined at 1.9 {angstrom} resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of {Delta}PilS and a target CFTR peptide, determined at 1.8 {angstrom}, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
Intramolecular transposition by a synthetic IS50 (Tn5) derivative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomcsanyi, T.; Phadnis, S.H.; Berg, D.E.
1990-11-01
We report the formation of deletions and inversions by intramolecular transposition of Tn5-derived mobile elements. The synthetic transposons used contained the IS50 O and I end segments and the transposase gene, a contraselectable gene encoding sucrose sensitivity (sacB), antibiotic resistance genes, and a plasmid replication origin. Both deletions and inversions were associated with loss of a 300-bp segment that is designated the vector because it is outside of the transposon. Deletions were severalfold more frequent than inversions, perhaps reflecting constraints on DNA twisting or abortive transposition. Restriction and DNA sequence analyses showed that both types of rearrangements extended from onemore » transposon end to many different sites in target DNA. In the case of inversions, transposition generated 9-bp direct repeats of target sequences.« less
Insertion and deletion polymorphisms of the ancient AluS family in the human genome.
Kryatova, Maria S; Steranka, Jared P; Burns, Kathleen H; Payer, Lindsay M
2017-01-01
Polymorphic Alu elements account for 17% of structural variants in the human genome. The majority of these belong to the youngest AluY subfamilies, and most structural variant discovery efforts have focused on identifying Alu polymorphisms from these currently retrotranspositionally active subfamilies. In this report we analyze polymorphisms from the evolutionarily older AluS subfamily, whose peak activity was tens of millions of years ago. We annotate the AluS polymorphisms, assess their likely mechanism of origin, and evaluate their contribution to structural variation in the human genome. Of 52 previously reported polymorphic AluS elements ascertained for this study, 48 were confirmed to belong to the AluS subfamily using high stringency subfamily classification criteria. Of these, the majority (77%, 37/48) appear to be deletion polymorphisms. Two polymorphic AluS elements (4%) have features of non-classical Alu insertions and one polymorphic AluS element (2%) likely inserted by a mechanism involving internal priming. Seven AluS polymorphisms (15%) appear to have arisen by the classical target-primed reverse transcription (TPRT) retrotransposition mechanism. These seven TPRT products are 3' intact with 3' poly-A tails, and are flanked by target site duplications; L1 ORF2p endonuclease cleavage sites were also observed, providing additional evidence that these are L1 ORF2p endonuclease-mediated TPRT insertions. Further sequence analysis showed strong conservation of both the RNA polymerase III promoter and SRP9/14 binding sites, important for mediating transcription and interaction with retrotransposition machinery, respectively. This conservation of functional features implies that some of these are fairly recent insertions since they have not diverged significantly from their respective retrotranspositionally competent source elements. Of the polymorphic AluS elements evaluated in this report, 15% (7/48) have features consistent with TPRT-mediated insertion, thus suggesting that some AluS elements have been more active recently than previously thought, or that fixation of AluS insertion alleles remains incomplete. These data expand the potential significance of polymorphic AluS elements in contributing to structural variation in the human genome. Future discovery efforts focusing on polymorphic AluS elements are likely to identify more such polymorphisms, and approaches tailored to identify deletion alleles may be warranted.
Arranz-Nicolás, Javier; Ogando, Jesús; Soutar, Denise; Arcos-Pérez, Raquel; Meraviglia-Crivelli, Daniel; Mañes, Santos; Mérida, Isabel; Ávila-Flores, Antonia
2018-06-01
The arsenal of cancer therapies has evolved to target T lymphocytes and restore their capacity to destroy tumor cells. T cells rely on diacylglycerol (DAG) to carry out their functions. DAG availability and signaling are regulated by the enzymes diacylglycerol kinase (DGK) α and ζ, whose excess function drives T cells into hyporesponsive states. Targeting DGKα is a promising strategy for coping with cancer; its blockade could reinstate T-cell attack on tumors while limiting tumor growth, due to positive DGKα functions in several oncogenic pathways. Here, we made a side-by-side comparison of the effects of commercial pharmacological DGK inhibitors on T-cell responses with those promoted by DGKα and DGKζ genetic deletion or silencing. We show the specificity for DGKα of DGK inhibitors I and II and the structurally similar compound ritanserin. Inhibitor treatment promoted Ras/ERK (extracellular signal-regulated kinase) signaling and AP-1 (Activator protein-1) transcription, facilitated DGKα membrane localization, reduced the requirement for costimulation, and cooperated with enhanced activation following DGKζ silencing/deletion. DGKiII and ritanserin had similar effects on TCR proximal signaling, but ritanserin counteracted long-term T-cell activation, an effect that was potentiated in DGKα -/- cells. In contrast with enhanced activation triggered by pharmacological inhibition, DGKα silencing/genetic deletion led to impaired Lck (lymphocyte-specific protein tyrosine kinase) activation and limited costimulation responses. Our results demonstrate that pharmacological inhibition of DGKα downstream of the TCR provides a gain-of-function effect that amplifies the DAG-dependent signaling cascade, an ability that could be exploited therapeutically to reinvigorate T cells to attack tumors.
15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia.
Ulfarsson, M O; Walters, G B; Gustafsson, O; Steinberg, S; Silva, A; Doyle, O M; Brammer, M; Gudbjartsson, D F; Arnarsdottir, S; Jonsdottir, G A; Gisladottir, R S; Bjornsdottir, G; Helgason, H; Ellingsen, L M; Halldorsson, J G; Saemundsen, E; Stefansdottir, B; Jonsson, L; Eiriksdottir, V K; Eiriksdottir, G R; Johannesdottir, G H; Unnsteinsdottir, U; Jonsdottir, B; Magnusdottir, B B; Sulem, P; Thorsteinsdottir, U; Sigurdsson, E; Brandeis, D; Meyer-Lindenberg, A; Stefansson, H; Stefansson, K
2017-04-25
Several copy number variants have been associated with neuropsychiatric disorders and these variants have been shown to also influence cognitive abilities in carriers unaffected by psychiatric disorders. Previously, we associated the 15q11.2(BP1-BP2) deletion with specific learning disabilities and a larger corpus callosum. Here we investigate, in a much larger sample, the effect of the 15q11.2(BP1-BP2) deletion on cognitive, structural and functional correlates of dyslexia and dyscalculia. We report that the deletion confers greatest risk of the combined phenotype of dyslexia and dyscalculia. We also show that the deletion associates with a smaller left fusiform gyrus. Moreover, tailored functional magnetic resonance imaging experiments using phonological lexical decision and multiplication verification tasks demonstrate altered activation in the left fusiform and the left angular gyri in carriers. Thus, by using convergent evidence from neuropsychological testing, and structural and functional neuroimaging, we show that the 15q11.2(BP1-BP2) deletion affects cognitive, structural and functional correlates of both dyslexia and dyscalculia.
15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia
Ulfarsson, M O; Walters, G B; Gustafsson, O; Steinberg, S; Silva, A; Doyle, O M; Brammer, M; Gudbjartsson, D F; Arnarsdottir, S; Jonsdottir, G A; Gisladottir, R S; Bjornsdottir, G; Helgason, H; Ellingsen, L M; Halldorsson, J G; Saemundsen, E; Stefansdottir, B; Jonsson, L; Eiriksdottir, V K; Eiriksdottir, G R; Johannesdottir, G H; Unnsteinsdottir, U; Jonsdottir, B; Magnusdottir, B B; Sulem, P; Thorsteinsdottir, U; Sigurdsson, E; Brandeis, D; Meyer-Lindenberg, A; Stefansson, H; Stefansson, K
2017-01-01
Several copy number variants have been associated with neuropsychiatric disorders and these variants have been shown to also influence cognitive abilities in carriers unaffected by psychiatric disorders. Previously, we associated the 15q11.2(BP1–BP2) deletion with specific learning disabilities and a larger corpus callosum. Here we investigate, in a much larger sample, the effect of the 15q11.2(BP1–BP2) deletion on cognitive, structural and functional correlates of dyslexia and dyscalculia. We report that the deletion confers greatest risk of the combined phenotype of dyslexia and dyscalculia. We also show that the deletion associates with a smaller left fusiform gyrus. Moreover, tailored functional magnetic resonance imaging experiments using phonological lexical decision and multiplication verification tasks demonstrate altered activation in the left fusiform and the left angular gyri in carriers. Thus, by using convergent evidence from neuropsychological testing, and structural and functional neuroimaging, we show that the 15q11.2(BP1–BP2) deletion affects cognitive, structural and functional correlates of both dyslexia and dyscalculia. PMID:28440815
Design and Evaluation of Perceptual-based Object Group Selection Techniques
NASA Astrophysics Data System (ADS)
Dehmeshki, Hoda
Selecting groups of objects is a frequent task in graphical user interfaces. It is required prior to many standard operations such as deletion, movement, or modification. Conventional selection techniques are lasso, rectangle selection, and the selection and de-selection of items through the use of modifier keys. These techniques may become time-consuming and error-prone when target objects are densely distributed or when the distances between target objects are large. Perceptual-based selection techniques can considerably improve selection tasks when targets have a perceptual structure, for example when arranged along a line. Current methods to detect such groups use ad hoc grouping algorithms that are not based on results from perception science. Moreover, these techniques do not allow selecting groups with arbitrary arrangements or permit modifying a selection. This dissertation presents two domain-independent perceptual-based systems that address these issues. Based on established group detection models from perception research, the proposed systems detect perceptual groups formed by the Gestalt principles of good continuation and proximity. The new systems provide gesture-based or click-based interaction techniques for selecting groups with curvilinear or arbitrary structures as well as clusters. Moreover, the gesture-based system is adapted for the graph domain to facilitate path selection. This dissertation includes several user studies that show the proposed systems outperform conventional selection techniques when targets form salient perceptual groups and are still competitive when targets are semi-structured.
Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S
2017-03-31
The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.
Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells.
Byrne, Susan M; Ortiz, Luis; Mali, Prashant; Aach, John; Church, George M
2015-02-18
Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient 'knock-in' targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Detection of 1p36 deletion by clinical exome-first diagnostic approach.
Watanabe, Miki; Hayabuchi, Yasunobu; Ono, Akemi; Naruto, Takuya; Horikawa, Hideaki; Kohmoto, Tomohiro; Masuda, Kiyoshi; Nakagawa, Ryuji; Ito, Hiromichi; Kagami, Shoji; Imoto, Issei
2016-01-01
Although chromosome 1p36 deletion syndrome is considered clinically recognizable based on characteristic features, the clinical manifestations of patients during infancy are often not consistent with those observed later in life. We report a 4-month-old girl who showed multiple congenital anomalies and developmental delay, but no clinical signs of syndromic disease caused by a terminal deletion in 1p36.32-p36.33 that was first identified by targeted-exome sequencing for molecular diagnosis.
Detection of 1p36 deletion by clinical exome-first diagnostic approach
Watanabe, Miki; Hayabuchi, Yasunobu; Ono, Akemi; Naruto, Takuya; Horikawa, Hideaki; Kohmoto, Tomohiro; Masuda, Kiyoshi; Nakagawa, Ryuji; Ito, Hiromichi; Kagami, Shoji; Imoto, Issei
2016-01-01
Although chromosome 1p36 deletion syndrome is considered clinically recognizable based on characteristic features, the clinical manifestations of patients during infancy are often not consistent with those observed later in life. We report a 4-month-old girl who showed multiple congenital anomalies and developmental delay, but no clinical signs of syndromic disease caused by a terminal deletion in 1p36.32-p36.33 that was first identified by targeted-exome sequencing for molecular diagnosis. PMID:28428889
Biswal, Jitendra K; Subramaniam, Saravanan; Ranjan, Rajeev; Sharma, Gaurav K; Misri, Jyoti; Pattnaik, Bramhadev
2015-11-01
Foot-and-mouth disease (FMD) is a highly contagious, economically important disease of transboundary importance. Regular vaccination with chemically inactivated FMD vaccine is the major means of controlling the disease in endemic countries like India. However, the traditional inactivated vaccines may sometimes contain traces of FMD viral (FMDV) non-structural protein (NSP), therefore, interfering with the NSP-based serological discrimination between infected and vaccinated animals. The availability of marker vaccine for differentiating FMD infected from vaccinated animals (DIVA) would be crucial for the control and subsequent eradication of FMD in India. In this study, we constructed a negative marker FMDV serotype O virus (vaccine strain O IND R2/1975), containing dual deletions of amino acid residues 93-143 and 10-37 in the non-structural proteins 3A and 3B, respectively through reverse genetics approach. The negative marker virus exhibited similar growth kinetics and plaque morphology in cell culture as compared to the wild type virus. In addition, we also developed and evaluated an indirect ELISA (I-ELISA) targeted to the deleted 3AB NSP region (truncated 3AB) which could be used as a companion differential diagnostic assay. The diagnostic sensitivity and specificity of the truncated 3AB I-ELISA were found to be 95.5% and 96%, respectively. The results from this study suggest that the availability negative marker virus and companion diagnostic assay could open a promising new avenue for the application of DIVA compatible marker vaccine for the control of FMD in India. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.; Saxena, A; Mok, H
2009-01-01
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (PilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of PilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.; Saxena, A; Mok, H
2009-01-01
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (PilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of PilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
Yamamoto, Keisuke; Hara, Kiyotaka Y; Morita, Toshihiko; Nishimura, Akira; Sasaki, Daisuke; Ishii, Jun; Ogino, Chiaki; Kizaki, Noriyuki; Kondo, Akihiko
2016-09-13
Red yeast, Xanthophyllomyces dendrorhous is the only yeast known to produce astaxanthin, an anti-oxidant isoprenoid (carotenoid) widely used in the aquaculture, food, pharmaceutical and cosmetic industries. The potential of this microorganism as a platform cell factory for isoprenoid production has been recognized because of high flux through its native terpene pathway. Recently, we developed a multiple gene expression system in X. dendrorhous and enhanced the mevalonate synthetic pathway to increase astaxanthin production. In contrast, the mevalonate synthetic pathway is suppressed by ergosterol through feedback inhibition. Therefore, releasing the mevalonate synthetic pathway from this inhibition through the deletion of genes involved in ergosterol synthesis is a promising strategy to improve isoprenoid production. An efficient method for deleting diploid genes in X. dendrorhous, however, has not yet been developed. Xanthophyllomyces dendrorhous was cultivated under gradually increasing concentrations of antibiotics following the introduction of antibiotic resistant genes to be replaced with target genes. Using this method, double CYP61 genes encoding C-22 sterol desaturases relating to ergosterol biosynthesis were deleted sequentially. This double CYP61 deleted strain showed decreased ergosterol biosynthesis compared with the parental strain and single CYP61 disrupted strain. Additionally, this double deletion of CYP61 genes showed increased astaxanthin production compared with the parental strain and the single CYP61 knockout strain. Finally, astaxanthin production was enhanced by 1.4-fold compared with the parental strain, although astaxanthin production was not affected in the single CYP61 knockout strain. In this study, we developed a system to completely delete target diploid genes in X. dendrorhous. Using this method, we deleted diploid CYP61 genes involved in the synthesis of ergosterol that inhibits the pathway for mevalonate, which is a common substrate for isoprenoid biosynthesis. The resulting decrease in ergosterol biosynthesis increased astaxanthin production. The efficient method for deleting diploid genes developed in this study has the potential to improve industrial production of various isoprenoids in X. dendrorhous.
p53 Specifically Binds Triplex DNA In Vitro and in Cells
Brázdová, Marie; Tichý, Vlastimil; Helma, Robert; Bažantová, Pavla; Polášková, Alena; Krejčí, Aneta; Petr, Marek; Navrátilová, Lucie; Tichá, Olga; Nejedlý, Karel; Bennink, Martin L.; Subramaniam, Vinod; Bábková, Zuzana; Martínek, Tomáš; Lexa, Matej; Adámik, Matej
2016-01-01
Triplex DNA is implicated in a wide range of biological activities, including regulation of gene expression and genomic instability leading to cancer. The tumor suppressor p53 is a central regulator of cell fate in response to different type of insults. Sequence and structure specific modes of DNA recognition are core attributes of the p53 protein. The focus of this work is the structure-specific binding of p53 to DNA containing triplex-forming sequences in vitro and in cells and the effect on p53-driven transcription. This is the first DNA binding study of full-length p53 and its deletion variants to both intermolecular and intramolecular T.A.T triplexes. We demonstrate that the interaction of p53 with intermolecular T.A.T triplex is comparable to the recognition of CTG-hairpin non-B DNA structure. Using deletion mutants we determined the C-terminal DNA binding domain of p53 to be crucial for triplex recognition. Furthermore, strong p53 recognition of intramolecular T.A.T triplexes (H-DNA), stabilized by negative superhelicity in plasmid DNA, was detected by competition and immunoprecipitation experiments, and visualized by AFM. Moreover, chromatin immunoprecipitation revealed p53 binding T.A.T forming sequence in vivo. Enhanced reporter transactivation by p53 on insertion of triplex forming sequence into plasmid with p53 consensus sequence was observed by luciferase reporter assays. In-silico scan of human regulatory regions for the simultaneous presence of both consensus sequence and T.A.T motifs identified a set of candidate p53 target genes and p53-dependent activation of several of them (ABCG5, ENOX1, INSR, MCC, NFAT5) was confirmed by RT-qPCR. Our results show that T.A.T triplex comprises a new class of p53 binding sites targeted by p53 in a DNA structure-dependent mode in vitro and in cells. The contribution of p53 DNA structure-dependent binding to the regulation of transcription is discussed. PMID:27907175
Carlin, Dan; Golden, Judith P.; Monk, Kelly R.
2018-01-01
Abstract The mechanistic target of rapamycin complex 1 (mTORC1) is known to regulate cellular growth pathways, and its genetic activation is sufficient to enhance regenerative axon growth following injury to the central or peripheral nervous systems. However, excess mTORC1 activation may promote innervation defects, and mTORC1 activity mediates injury-induced hypersensitivity, reducing enthusiasm for the pathway as a therapeutic target. While mTORC1 activity is required for full expression of some pain modalities, the effects of pathway activation on nociceptor phenotypes and sensory behaviors are currently unknown. To address this, we genetically activated mTORC1 in mouse peripheral sensory neurons by conditional deletion of its negative regulator Tuberous Sclerosis Complex 2 (Tsc2). Consistent with the well-known role of mTORC1 in regulating cell size, soma size and axon diameter of C-nociceptors were increased in Tsc2-deleted mice. Glabrous skin and spinal cord innervation by C-fiber neurons were also disrupted. Transcriptional profiling of nociceptors enriched by fluorescence-associated cell sorting (FACS) revealed downregulation of multiple classes of ion channels as well as reduced expression of markers for peptidergic nociceptors in Tsc2-deleted mice. In addition to these changes in innervation and gene expression, Tsc2-deleted mice exhibited reduced noxious heat sensitivity and decreased injury-induced cold hypersensitivity, but normal baseline sensitivity to cold and mechanical stimuli. Together, these data show that excess mTORC1 activity in sensory neurons produces changes in gene expression, neuron morphology and sensory behavior. PMID:29766046
Trinh, T. Q.; Sinden, R. R.
1993-01-01
We describe a system to measure the frequency of both deletions and duplications between direct repeats. Short 17- and 18-bp palindromic and nonpalindromic DNA sequences were cloned into the EcoRI site within the chloramphenicol acetyltransferase gene of plasmids pBR325 and pJT7. This creates an insert between direct repeated EcoRI sites and results in a chloramphenicol-sensitive phenotype. Selection for chloramphenicol resistance was utilized to select chloramphenicol resistant revertants that included those with precise deletion of the insert from plasmid pBR325 and duplication of the insert in plasmid pJT7. The frequency of deletion or duplication varied more than 500-fold depending on the sequence of the short sequence inserted into the EcoRI site. For the nonpalindromic inserts, multiple internal direct repeats and the length of the direct repeats appear to influence the frequency of deletion. Certain palindromic DNA sequences with the potential to form DNA hairpin structures that might stabilize the misalignment of direct repeats had a high frequency of deletion. Other DNA sequences with the potential to form structures that might destabilize misalignment of direct repeats had a very low frequency of deletion. Duplication mutations occurred at the highest frequency when the DNA between the direct repeats contained no direct or inverted repeats. The presence of inverted repeats dramatically reduced the frequency of duplications. The results support the slippage-misalignment model, suggesting that misalignment occurring during DNA replication leads to deletion and duplication mutations. The results also support the idea that the formation of DNA secondary structures during DNA replication can facilitate and direct specific mutagenic events. PMID:8325478
Structural insights into drug development strategy targeting EGFR T790M/C797S.
Zhu, Su-Jie; Zhao, Peng; Yang, Jiao; Ma, Rui; Yan, Xiao-E; Yang, Sheng-Yong; Yang, Jing-Wen; Yun, Cai-Hong
2018-03-02
Treatment of non-small-cell lung cancers (NSCLCs) harboring primary EGFR oncogenic mutations such as L858R and exon 19 deletion delE746_A750 (Del-19) using gefitinib/erlotinib ultimately fails due to the emergence of T790M mutation. Though WZ4002/CO-1686/AZD9291 are effective in overcoming EGFR T790M by targeting Cys797 via covalent bonding, their efficacy is again limited due to the emergence of C797S mutation. New agents effectively inhibiting EGFR T790M without covalent linkage through Cys 797 may solve this problem. We presented here crystal structures of EGFR activating/drug-resistant mutants in complex with a panel of reversible inhibitors along with mutagenesis and enzyme kinetic data. These data revealed a previously un-described hydrophobic clamp structure in the EGFR kinase which may be exploited to facilitate development of next generation drugs targeting EGFR T790M with or without concomitant C797S. Interestingly, mutations in the hydrophobic clamp that hinder drug binding often also weaken ATP binding and/or abolish kinase activity, thus do not readily result in resistance to the drugs.
Hillmann, Falk; Bagramyan, Karine; Straßburger, Maria; Heinekamp, Thorsten; Hong, Teresa B; Bzymek, Krzysztof P; Williams, John C; Brakhage, Axel A; Kalkum, Markus
2016-09-14
Invasive aspergillosis and other fungal infections occur in immunocompromised individuals, including patients who received blood-building stem cell transplants, patients with chronic granulomatous disease (CGD), and others. Production of reactive oxygen species (ROS) by immune cells, which incidentally is defective in CGD patients, is considered to be a fundamental process in inflammation and antifungal immune response. Here we show that the peroxiredoxin Asp f3 of Aspergillus fumigatus inactivates ROS. We report the crystal structure and the catalytic mechanism of Asp f3, a two-cysteine type peroxiredoxin. The latter exhibits a thioredoxin fold and a homodimeric structure with two intermolecular disulfide bonds in its oxidized state. Replacement of the Asp f3 cysteines with serine residues retained its dimeric structure, but diminished Asp f3's peroxidase activity, and extended the alpha-helix with the former peroxidatic cysteine residue C61 by six residues. The asp f3 deletion mutant was sensitive to ROS, and this phenotype was rescued by ectopic expression of Asp f3. Furthermore, we showed that deletion of asp f3 rendered A. fumigatus avirulent in a mouse model of pulmonary aspergillosis. The conserved expression of Asp f3 homologs in medically relevant molds and yeasts prompts future evaluation of Asp f3 as a potential therapeutic target.
Sonnewald, Uwe
2011-01-01
Many plant viruses encode for specialized movement proteins (MP) to facilitate passage of viral material to and through plasmodesmata (PD). To analyze intracellular trafficking of potato leaf roll virus (PLRV) movement protein (MP17) we performed GFP fusion experiments with distinct deletion variants of MP17. These studies revealed that the C-terminus of MP17 is essential but not sufficient for PD targeting. Interestingly, fusion of GFP to three C-terminal MP17 deletion variants resulted in the accumulation of GFP in chloroplasts. This indicates that MP17 harbors hidden plastid targeting sequences. Previous studies showed that posttranslational protein phosphorylation influences PD targeting of MP and virus spread. Analysis of MP17-derived phospho-peptides by mass spectrometry revealed four phosphorylated serine residues (S71, S79, S137, and S140). Site-directed mutagenesis of S71/S79 and S137/S140 showed that the C-terminal serine residues S137/S140 are dispensable for PD targeting. However, exchange of S71/S79 to A71/A79 abolished PD targeting of the mutated MP17 protein. To mimic phosphorylation of S71/S79 both amino acids were substituted by aspartic acid. The resulting D71/D79 variant of MP17 was efficiently targeted to PD. Further deletion analysis showed that PD targeting of MP17 is dependent on the C-terminus, phosphorylation of S71 and/or S79 and a N-terminal domain. PMID:22645527
Contribution of the mu loop to the structure and function of rat glutathione transferase M1-1
Hearne, Jennifer L.; Colman, Roberta F.
2006-01-01
The “mu loop,” an 11-residue loop spanning amino acid residues 33–43, is a characteristic structural feature of the mu class of glutathione transferases. To assess the contribution of the mu loop to the structure and function of rat GST M1-1, amino acid residues 35–44 (35GDAPDYDRSQ44) were excised by deletion mutagenesis, resulting in the “Deletion Enzyme.” Kinetic studies reveal that the Km values of the Deletion Enzyme are markedly increased compared with those of the wild-type enzyme: 32-fold for 1-chloro-2,4-dinitrobenzene, 99-fold for glutathione, and 880-fold for monobromobimane, while the Vmax value for each substrate is increased only modestly. Results from experiments probing the structure of the Deletion Enzyme, in comparison with that of the wild-type enzyme, suggest that the secondary and quaternary structures have not been appreciably perturbed. Thermostability studies indicate that the Deletion Enzyme is as stable as the wild-type enzyme at 4°C and 10°C, but it rapidly loses activity at 25°C, unlike the wild-type enzyme. In the temperature range of 4°C through 25°C, the loss of activity of the Deletion Enzyme is not the result of a change in its structure, as determined by circular dichroism spectroscopy and sedimentation equilibrium centrifugation. Collectively, these results indicate that the mu loop is not essential for GST M1-1 to maintain its structure nor is it required for the enzyme to retain some catalytic activity. However, it is an important determinant of the enzyme's affinity for its substrates. PMID:16672236
Dequard-Chablat, Michelle; Allandt, Cynthia
2002-08-01
In the filamentous fungus Podospora anserina, two degenerative processes which result in growth arrest are associated with mitochondrial genome (mitochondrial DNA [mtDNA]) instability. Senescence is correlated with mtDNA rearrangements and amplification of specific regions (senDNAs). Premature death syndrome is characterized by the accumulation of specific mtDNA deletions. This accumulation is due to indirect effects of the AS1-4 mutation, which alters a cytosolic ribosomal protein gene. The mthmg1 gene has been identified as a double-copy suppressor of premature death. It greatly delays premature death and the accumulation of deletions when it is present in two copies in an ASI-4 context. The duplication of mthmg1 has no significant effect on the wild-type life span or on senDNA patterns. In anAS1+ context, deletion of the mthmg1 gene alters germination, growth, and fertility and reduces the life span. The deltamthmg1 senescent strains display a particular senDNA pattern. This deletion is lethal in an AS1-4 context. According to its physical properties (very basic protein with putative mitochondrial targeting sequence and HMG-type DNA-binding domains) and the cellular localization of an mtHMG1-green fluorescent protein fusion, mtHMG1 appears to be a mitochondrial protein possibly associated with mtDNA. It is noteworthy that it is the first example of a protein combining the two DNA-binding domains, AT-hook motif and HMG-1 boxes. It may be involved in the stability and/or transmission of the mitochondrial genome. To date, no structural homologues have been found in other organisms. However, mtHMG1 displays functional similarities with the Saccharomyces cerevisiae mitochondrial HMG-box protein Abf2.
Carrell, Samuel T.; Carrell, Ellie M.; Auerbach, David; Pandey, Sanjay K.; Bennett, C. Frank; Dirksen, Robert T.; Thornton, Charles A.
2016-01-01
Myotonic dystrophy type 1 (DM1) is a genetic disorder in which dominant-active DM protein kinase (DMPK) transcripts accumulate in nuclear foci, leading to abnormal regulation of RNA processing. A leading approach to treat DM1 uses DMPK-targeting antisense oligonucleotides (ASOs) to reduce levels of toxic RNA. However, basal levels of DMPK protein are reduced by half in DM1 patients. This raises concern that intolerance for further DMPK loss may limit ASO therapy, especially since mice with Dmpk gene deletion reportedly show cardiac defects and skeletal myopathy. We re-examined cardiac and muscle function in mice with Dmpk gene deletion, and studied post-maturity knockdown using Dmpk-targeting ASOs in mice with heterozygous deletion. Contrary to previous reports, we found no effect of Dmpk gene deletion on cardiac or muscle function, when studied on two genetic backgrounds. In heterozygous knockouts, the administration of ASOs reduced Dmpk expression in cardiac and skeletal muscle by > 90%, yet survival, electrocardiogram intervals, cardiac ejection fraction and muscle strength remained normal. The imposition of cardiac stress by pressure overload, or muscle stress by myotonia, did not unmask a requirement for DMPK. Our results support the feasibility and safety of using ASOs for post-transcriptional silencing of DMPK in muscle and heart. PMID:27522499
Glial pannexin1 contributes to tactile hypersensitivity in a mouse model of orofacial pain
Hanstein, Regina; Hanani, Menachem; Scemes, Eliana; Spray, David C.
2016-01-01
Drug studies in animal models have implicated pannexin1 (Panx1) in various types of pain, including trigeminal hypersensitivity, neuropathic pain and migraine. However, the tested drugs have limited specificity and efficacy so that direct evidence for Panx1 contribution to pain has been lacking. We here show that tactile hypersensitivity is markedly attenuated by deletion of Panx1 in a mouse model of chronic orofacial pain; in this model, trigeminal ganglion Panx1 expression and function are markedly enhanced. Targeted deletion of Panx1 in GFAP-positive glia or in neurons revealed distinct effects. Panx1 deletion in GFAP-positive glia cells prevented hypersensitivity completely, whereas deletion of neuronal Panx1 reduced baseline sensitivity and the duration of hypersensitivity. In trigeminal ganglia with genetically encoded Ca2+ indicator in GFAP-positive glia or in neurons, both cell populations were found to be hyperactive and hyper-responsive to ATP. These novel findings reveal unique roles for GFAP-positive glial and neuronal Panx1 and describe new chronic pain targets for cell-type specific intervention in this often intractable disease. PMID:27910899
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pallan, Pradeep S.; Marshall, William S.; Harp, Joel
To understand the role of structural elements of RNA pseudoknots in controlling the extent of -1-type ribosomal frameshifting, we determined the crystal structure of a high-efficiency frameshifting mutant of the pseudoknot from potato leaf roll virus (PLRV). Correlations of the structure with available in vitro frameshifting data for PLRV pseudoknot mutants implicate sequence and length of a stem-loop linker as modulators of frameshifting efficiency. Although the sequences and overall structures of the RNA pseudoknots from PLRV and beet western yellow virus (BWYV) are similar, nucleotide deletions in the linker and adjacent minor groove loop abolish frameshifting only with the latter.more » Conversely, mutant PLRV pseudoknots with up to four nucleotides deleted in this region exhibit nearly wild-type frameshifting efficiencies. The crystal structure helps rationalize the different tolerances for deletions in the PLRV and BWYV RNAs, and we have used it to build a three-dimensional model of the PRLV pseudoknot with a four-nucleotide deletion. The resulting structure defines a minimal RNA pseudoknot motif composed of 22 nucleotides capable of stimulating -1-type ribosomal frameshifts.« less
Matsudate, Yoshihiro; Naruto, Takuya; Hayashi, Yumiko; Minami, Mitsuyoshi; Tohyama, Mikiko; Yokota, Kenji; Yamada, Daisuke; Imoto, Issei; Kubo, Yoshiaki
2017-06-01
Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder mainly caused by heterozygous mutations of PTCH1. In addition to characteristic clinical features, detection of a mutation in causative genes is reliable for the diagnosis of NBCCS; however, no mutations have been identified in some patients using conventional methods. To improve the method for the molecular diagnosis of NBCCS. We performed targeted exome sequencing (TES) analysis using a multi-gene panel, including PTCH1, PTCH2, SUFU, and other sonic hedgehog signaling pathway-related genes, based on next-generation sequencing (NGS) technology in 8 cases in whom possible causative mutations were not detected by previously performed conventional analysis and 2 recent cases of NBCCS. Subsequent analysis of gross deletion within or around PTCH1 detected by TES was performed using chromosomal microarray (CMA). Through TES analysis, specific single nucleotide variants or small indels of PTCH1 causing inferred amino acid changes were identified in 2 novel cases and 2 undiagnosed cases, whereas gross deletions within or around PTCH1, which are validated by CMA, were found in 3 undiagnosed cases. However, no mutations were detected even by TES in 3 cases. Among 3 cases with gross deletions of PTCH1, deletions containing the entire PTCH1 and additional neighboring genes were detected in 2 cases, one of which exhibited atypical clinical features, such as severe mental retardation, likely associated with genes located within the 4.3Mb deleted region, especially. TES-based simultaneous evaluation of sequences and copy number status in all targeted coding exons by NGS is likely to be more useful for the molecular diagnosis of NBCCS than conventional methods. CMA is recommended as a subsequent analysis for validation and detailed mapping of deleted regions, which may explain the atypical clinical features of NBCCS cases. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Torres, Jaume; Surya, Wahyu; Li, Yan; Liu, Ding Xiang
2015-01-01
Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity. PMID:26053927
Basak, Papri; Maitra-Majee, Susmita; Das, Jayanta Kumar; Mukherjee, Abhishek; Ghosh Dastidar, Shubhra; Pal Choudhury, Pabitra
2017-01-01
A molecular evolutionary analysis of a well conserved protein helps to determine the essential amino acids in the core catalytic region. Based on the chemical properties of amino acid residues, phylogenetic analysis of a total of 172 homologous sequences of a highly conserved enzyme, L-myo-inositol 1-phosphate synthase or MIPS from evolutionarily diverse organisms was performed. This study revealed the presence of six phylogenetically conserved blocks, out of which four embrace the catalytic core of the functional protein. Further, specific amino acid modifications targeting the lysine residues, known to be important for MIPS catalysis, were performed at the catalytic site of a MIPS from monocotyledonous model plant, Oryza sativa (OsMIPS1). Following this study, OsMIPS mutants with deletion or replacement of lysine residues in the conserved blocks were made. Based on the enzyme kinetics performed on the deletion/replacement mutants, phylogenetic and structural comparison with the already established crystal structures from non-plant sources, an evolutionarily conserved peptide stretch was identified at the active pocket which contains the two most important lysine residues essential for catalytic activity. PMID:28950028
Cooper, Tara E.; Krause, David J.
2013-01-01
Sulfolobus species have become the model organisms for studying the unique biology of the crenarchaeal division of the archaeal domain. In particular, Sulfolobus islandicus provides a powerful opportunity to explore natural variation via experimental functional genomics. To support these efforts, we further expanded genetic tools for S. islandicus by developing a stringent positive selection for agmatine prototrophs in strains in which the argD gene, encoding arginine decarboxylase, has been deleted. Strains with deletions in argD were shown to be auxotrophic for agmatine even in nutrient-rich medium, but growth could be restored by either supplementation of exogenous agmatine or reintroduction of a functional copy of the argD gene from S. solfataricus P2 into the ΔargD host. Using this stringent selection, a robust targeted gene knockout system was established via an improved next generation of the MID (marker insertion and unmarked target gene deletion) method. Application of this novel system was validated by targeted knockout of the upsEF genes involved in UV-inducible cell aggregation formation. PMID:23835176
Jeong, Hae Min; Kim, Ryong Nam; Kwon, Mi Jeong; Oh, Ensel; Han, Jinil; Lee, Se Kyung; Choi, Jong-Sun; Park, Sara; Nam, Seok Jin; Gong, Gyung Yup; Nam, Jin Wu; Choi, Doo Ho; Lee, Hannah; Nam, Byung-Ho; Choi, Yoon-La; Shin, Young Kee
2017-01-01
Triple-negative breast cancer is characterized by the absence of estrogen and progesterone receptors and human epidermal growth factor receptor 2, and is associated with a poorer outcome than other subtypes of breast cancer. Moreover, there are no accurate prognostic genes or effective therapeutic targets, thereby necessitating continued intensive investigation. This study analyzed the genetic mutation landscape in 70 patients with triple-negative breast cancer by targeted exome sequencing of tumor and matched normal samples. Sequencing showed that more than 50% of these patients had deleterious mutations and homozygous deletions of DNA repair genes, such as ATM, BRCA1, BRCA2, WRN, and CHEK2. These findings suggested that a large number of patients with triple-negative breast cancer have impaired DNA repair function and that therefore a poly ADP-ribose polymerase inhibitor may be an effective drug in the treatment of this disease. Notably, homozygous deletion of three genes, EPHA5, MITF, and ACSL3, was significantly associated with an increased risk of recurrence or distant metastasis in adjuvant chemotherapy-treated patients. PMID:28977883
Abo, Ryan P; Ducar, Matthew; Garcia, Elizabeth P; Thorner, Aaron R; Rojas-Rudilla, Vanesa; Lin, Ling; Sholl, Lynette M; Hahn, William C; Meyerson, Matthew; Lindeman, Neal I; Van Hummelen, Paul; MacConaill, Laura E
2015-02-18
Genomic structural variation (SV), a common hallmark of cancer, has important predictive and therapeutic implications. However, accurately detecting SV using high-throughput sequencing data remains challenging, especially for 'targeted' resequencing efforts. This is critically important in the clinical setting where targeted resequencing is frequently being applied to rapidly assess clinically actionable mutations in tumor biopsies in a cost-effective manner. We present BreaKmer, a novel approach that uses a 'kmer' strategy to assemble misaligned sequence reads for predicting insertions, deletions, inversions, tandem duplications and translocations at base-pair resolution in targeted resequencing data. Variants are predicted by realigning an assembled consensus sequence created from sequence reads that were abnormally aligned to the reference genome. Using targeted resequencing data from tumor specimens with orthogonally validated SV, non-tumor samples and whole-genome sequencing data, BreaKmer had a 97.4% overall sensitivity for known events and predicted 17 positively validated, novel variants. Relative to four publically available algorithms, BreaKmer detected SV with increased sensitivity and limited calls in non-tumor samples, key features for variant analysis of tumor specimens in both the clinical and research settings. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
CRISPR-based screening of genomic island excision events in bacteria.
Selle, Kurt; Klaenhammer, Todd R; Barrangou, Rodolphe
2015-06-30
Genomic analysis of Streptococcus thermophilus revealed that mobile genetic elements (MGEs) likely contributed to gene acquisition and loss during evolutionary adaptation to milk. Clustered regularly interspaced short palindromic repeats-CRISPR-associated genes (CRISPR-Cas), the adaptive immune system in bacteria, limits genetic diversity by targeting MGEs including bacteriophages, transposons, and plasmids. CRISPR-Cas systems are widespread in streptococci, suggesting that the interplay between CRISPR-Cas systems and MGEs is one of the driving forces governing genome homeostasis in this genus. To investigate the genetic outcomes resulting from CRISPR-Cas targeting of integrated MGEs, in silico prediction revealed four genomic islands without essential genes in lengths from 8 to 102 kbp, totaling 7% of the genome. In this study, the endogenous CRISPR3 type II system was programmed to target the four islands independently through plasmid-based expression of engineered CRISPR arrays. Targeting lacZ within the largest 102-kbp genomic island was lethal to wild-type cells and resulted in a reduction of up to 2.5-log in the surviving population. Genotyping of Lac(-) survivors revealed variable deletion events between the flanking insertion-sequence elements, all resulting in elimination of the Lac-encoding island. Chimeric insertion sequence footprints were observed at the deletion junctions after targeting all of the four genomic islands, suggesting a common mechanism of deletion via recombination between flanking insertion sequences. These results established that self-targeting CRISPR-Cas systems may direct significant evolution of bacterial genomes on a population level, influencing genome homeostasis and remodeling.
Gray, Phillip N.; Vuong, Huy; Tsai, Pei; Lu, Hsaio-Mei; Mu, Wenbo; Hsuan, Vickie; Hoo, Jayne; Shah, Swati; Uyeda, Lisa; Fox, Susanne; Patel, Harshil; Janicek, Mike; Brown, Sandra; Dobrea, Lavinia; Wagman, Lawrence; Plimack, Elizabeth; Mehra, Ranee; Golemis, Erica A.; Bilusic, Marijo; Zibelman, Matthew; Elliott, Aaron
2016-01-01
The development of targeted therapies for both germline and somatic DNA mutations has increased the need for molecular profiling assays to determine the mutational status of specific genes. Moreover, the potential of off-label prescription of targeted therapies favors classifying tumors based on DNA alterations rather than traditional tissue pathology. Here we describe the analytical validation of a custom probe-based NGS tumor panel, TumorNext, which can detect single nucleotide variants, small insertions and deletions in 142 genes that are frequently mutated in somatic and/or germline cancers. TumorNext also detects gene fusions and structural variants, such as tandem duplications and inversions, in 15 frequently disrupted oncogenes and tumor suppressors. The assay uses a matched control and custom bioinformatics pipeline to differentiate between somatic and germline mutations, allowing precise variant classification. We tested 170 previously characterized samples, of which > 95% were formalin-fixed paraffin embedded tissue from 8 different cancer types, and highlight examples where lack of germline status may have led to the inappropriate prescription of therapy. We also describe the validation of the Affymetrix OncoScan platform, an array technology for high resolution copy number variant detection for use in parallel with the NGS panel that can detect single copy amplifications and hemizygous deletions. We analyzed 80 previously characterized formalin-fixed paraffin-embedded specimens and provide examples of hemizygous deletion detection in samples with known pathogenic germline mutations. Thus, the TumorNext combined approach of NGS and OncoScan potentially allows for the identification of the “second hit” in hereditary cancer patients. PMID:27626691
Bedore, Jake; Sha, Wei; McCann, Matthew R; Liu, Shangxi; Leask, Andrew; Séguin, Cheryle A
2013-10-01
Currently, our ability to treat intervertebral disc (IVD) degeneration is hampered by an incomplete understanding of disc development and aging. The specific function of matricellular proteins, including CCN2, during these processes remains an enigma. The aim of this study was to determine the tissue-specific localization of CCN proteins and to characterize their role in IVD tissues during embryonic development and age-related degeneration by using a mouse model of notochord-specific CCN2 deletion. Expression of CCN proteins was assessed in IVD tissues from wild-type mice beginning on embryonic day 15.5 to 17 months of age. Given the enrichment of CCN2 in notochord-derived tissues, we generated notochord-specific CCN2-null mice to assess the impact on the IVD structure and extracellular matrix composition. Using a combination of histologic evaluation and magnetic resonance imaging (MRI), IVD health was assessed. Loss of the CCN2 gene in notochord-derived cells disrupted the formation of IVDs in embryonic and newborn mice, resulting in decreased levels of aggrecan and type II collagen and concomitantly increased levels of type I collagen within the nucleus pulposus. CCN2-knockout mice also had altered expression of CCN1 (Cyr61) and CCN3 (Nov). Mirroring its role during early development, notochord-specific CCN2 deletion accelerated age-associated degeneration of IVDs. Using a notochord-specific gene targeting strategy, this study demonstrates that CCN2 expression by nucleus pulposus cells is essential to the regulation of IVD development and age-associated tissue maintenance. The ability of CCN2 to regulate the composition of the intervertebral disc suggests that it may represent an intriguing clinical target for the treatment of disc degeneration. Copyright © 2013 by the American College of Rheumatology.
Guo, Xingyi; Shi, Jiajun; Cai, Qiuyin; Shu, Xiao-Ou; He, Jing; Wen, Wanqing; Allen, Jamie; Pharoah, Paul; Dunning, Alison; Hunter, David J; Kraft, Peter; Easton, Douglas F; Zheng, Wei; Long, Jirong
2018-03-01
Functional disruptions of susceptibility genes by large genomic structure variant (SV) deletions in germlines are known to be associated with cancer risk. However, few studies have been conducted to systematically search for SV deletions in breast cancer susceptibility genes. We analysed deep (> 30x) whole-genome sequencing (WGS) data generated in blood samples from 128 breast cancer patients of Asian and European descent with either a strong family history of breast cancer or early cancer onset disease. To identify SV deletions in known or suspected breast cancer susceptibility genes, we used multiple SV calling tools including Genome STRiP, Delly, Manta, BreakDancer and Pindel. SV deletions were detected by at least three of these bioinformatics tools in five genes. Specifically, we identified heterozygous deletions covering a fraction of the coding regions of BRCA1 (with approximately 80kb in two patients), and TP53 genes (with ∼1.6 kb in two patients), and of intronic regions (∼1 kb) of the PALB2 (one patient), PTEN (three patients) and RAD51C genes (one patient). We confirmed the presence of these deletions using real-time quantitative PCR (qPCR). Our study identified novel SV deletions in breast cancer susceptibility genes and the identification of such SV deletions may improve clinical testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Chun-Jun; Yeh, Hsu-Hua; Chiang, Yi Ming
2013-04-15
Abstract Epipolythiodioxopiperazines (ETPs) are a class of fungal secondary metabolites derived from cyclic peptides. Acetylaranotin belongs to one structural subgroup of ETPs characterized by the presence of a seven-membered dihydrooxepine ring. Defining the genes involved in acetylaranotin biosynthesis should provide a means to increase production of these compounds and facilitate the engineering of second-generation molecules. The filamentous fungus Aspergillus terreus produces acetylaranotin and related natural products. Using targeted gene deletions, we have identified a cluster of 9 genes including one nonribosomal peptide synthase gene, ataP, that is required for acetylaranotin biosynthesis. Chemical analysis of the wild type and mutant strainsmore » enabled us to isolate seventeen natural products that are either intermediates in the normal biosynthetic pathway or shunt products that are produced when the pathway is interrupted through mutation. Nine of the compounds identified in this study are novel natural products. Our data allow us to propose a complete biosynthetic pathway for acetylaranotin and related natural products.« less
Dahlhoff, Maik; Schäfer, Matthias; Wolf, Eckhard; Schneider, Marlon R
2013-02-15
The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.
Nardilysin regulates inflammation, metaplasia, and tumors in murine stomach.
Kimura, Yuto; Ikuta, Kozo; Kimura, Takeshi; Chiba, Tsutomu; Oshima, Hiroko; Oshima, Masanobu; Nishi, Eiichiro; Seno, Hiroshi
2017-02-23
Chronic inflammation contributes to a wide variety of human disorders. In the stomach, longstanding gastritis often results in structural alterations in the gastric mucosa, including metaplastic changes and gastric cancers. Therefore, it is important to elucidate factors that are involved in gastric inflammation. Nardilysin (N-arginine dibasic convertase; Nrdc) is a metalloendopeptidase of the M16 family that promotes ectodomain shedding of the precursor forms of various growth factors and cytokines by enhancing the protease activities of a disintegrin and metalloproteinase (ADAM) proteins. Here, we have demonstrated that Nrdc crucially regulates gastric inflammation caused by Helicobacter felis infection or forced expression of prostaglandin E 2 in K19-C2mE mice. Metaplastic changes following gastric inflammation were suppressed by the deletion of Nrdc. Furthremore, the deletion of Nrdc significantly suppressed N-methyl-N-nitrosourea (MNU)-induced gastric tumorigenesis in the murine stomach. These data may lead to a global therapeutic approach against various gastric disorders by targeting Nrdc.
Cardiac fibroblast GSK-3β regulates ventricular remodeling and dysfunction in ischemic heart
Lal, Hind; Ahmad, Firdos; Zhou, Jibin; Yu, Justine E.; Vagnozzi, Ronald J.; Guo, Yuanjun; Yu, Daohai; Tsai, Emily J.; Woodgett, James; Gao, Erhe; Force, Thomas
2014-01-01
Background Myocardial infarction-induced remodeling includes chamber dilatation, contractile dysfunction, and fibrosis. Of these, fibrosis is the least understood. Following MI, activated cardiac fibroblasts (CFs) deposit extracellular matrix. Current therapies to prevent fibrosis are inadequate and new molecular targets are needed. Methods and Results Herein we report that GSK-3β is phosphorylated (inhibited) in fibrotic tissues from ischemic human and mouse heart. Using two fibroblast-specific GSK-3β knockout mouse models, we show that deletion of GSK-3β in CFs leads to fibrogenesis, left ventricular dysfunction and excessive scarring in the ischemic heart. Deletion of GSK-3β induces a pro-fibrotic myofibroblast phenotype in isolated CFs, in post-MI hearts, and in MEFs deleted for GSK-3β. Mechanistically, GSK-3β inhibits pro-fibrotic TGF-β1-SMAD-3 signaling via interactions with SMAD-3. Moreover, deletion of GSK-3β resulted in the suppression of SMAD-3 transcriptional activity. This pathway is central to the pathology since a small molecule inhibitor of SMAD-3 largely prevented fibrosis and limited LV remodeling. Conclusion These studies support targeting GSK-3β in myocardial fibrotic disorders and establish critical roles of CFs in remodeling and ventricular dysfunction. PMID:24899689
Osimertinib making a breakthrough in lung cancer targeted therapy
Zhang, Haijun
2016-01-01
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the evidence-based first-line treatment for advanced non-small-cell lung cancer that harbors sensitizing EGFR mutations (EGFRm+) such as exon 19 deletions and L858R substitutions in exon 21. However, acquired resistance to EGFR TKIs is mostly driven by a second-site EGFR T790M mutation, which negates their inhibitory activity. Osimertinib (AZD9291, Tagrisso™), an oral, third-generation EGFR TKI, has been designed to target the EGFR T790M mutation, while sparing wild-type EGFR. In this up-to-date review, focus is not only on the structure, mechanisms, and pharmacokinetics of osimertinib but also on summarizing clinical trials and making recommendations of osimertinib for patients with non-small-cell lung cancer. PMID:27660466
A validated approach for modeling collapse of steel structures
NASA Astrophysics Data System (ADS)
Saykin, Vitaliy Victorovich
A civil engineering structure is faced with many hazardous conditions such as blasts, earthquakes, hurricanes, tornadoes, floods, and fires during its lifetime. Even though structures are designed for credible events that can happen during a lifetime of the structure, extreme events do happen and cause catastrophic failures. Understanding the causes and effects of structural collapse is now at the core of critical areas of national need. One factor that makes studying structural collapse difficult is the lack of full-scale structural collapse experimental test results against which researchers could validate their proposed collapse modeling approaches. The goal of this work is the creation of an element deletion strategy based on fracture models for use in validated prediction of collapse of steel structures. The current work reviews the state-of-the-art of finite element deletion strategies for use in collapse modeling of structures. It is shown that current approaches to element deletion in collapse modeling do not take into account stress triaxiality in vulnerable areas of the structure, which is important for proper fracture and element deletion modeling. The report then reviews triaxiality and its role in fracture prediction. It is shown that fracture in ductile materials is a function of triaxiality. It is also shown that, depending on the triaxiality range, different fracture mechanisms are active and should be accounted for. An approach using semi-empirical fracture models as a function of triaxiality are employed. The models to determine fracture initiation, softening and subsequent finite element deletion are outlined. This procedure allows for stress-displacement softening at an integration point of a finite element in order to subsequently remove the element. This approach avoids abrupt changes in the stress that would create dynamic instabilities, thus making the results more reliable and accurate. The calibration and validation of these models are shown. The calibration is performed using a particle swarm optimization algorithm to establish accurate parameters when calibrated to circumferentially notched tensile coupons. It is shown that consistent, accurate predictions are attained using the chosen models. The variation of triaxiality in steel material during plastic hardening and softening is reported. The range of triaxiality in steel structures undergoing collapse is investigated in detail and the accuracy of the chosen finite element deletion approaches is discussed. This is done through validation of different structural components and structural frames undergoing severe fracture and collapse.
Kim, Min Jung; Chia, Ian V.; Costantini, Frank
2008-01-01
Axin is a scaffold protein for the β-catenin destruction complex, and a negative regulator of canonical Wnt signaling. Previous studies implicated the six C-terminal amino acids (C6 motif) in the ability of Axin to activate c-Jun N-terminal kinase, and identified them as a SUMOylation target. Deletion of the C6 motif of mouse Axin in vivo reduced the steady-state protein level, which caused embryonic lethality. Here, we report that this deletion (Axin-ΔC6) causes a reduced half-life in mouse embryonic fibroblasts and an increased susceptibility to ubiquitination in HEK 293T cells. We confirmed the C6 motif as a SUMOylation target in vitro, and found that mutating the C-terminal SUMOylation target residues increased the susceptibility of Axin to polyubiquitination and reduced its steady-state level. Heterologous SUMOylation target sites could replace C6 in providing this protective effect. These findings suggest that SUMOylation of the C6 motif may prevent polyubiquitination, thus increasing the stability of Axin. Although C6 deletion also caused increased association of Axin with Dvl-1, this interaction was not altered by mutating the lysine residues in C6, nor could heterologous SUMOylation motifs replace the C6 motif in this assay. Therefore, some other specific property of the C6 motif seems to reduce the interaction of Axin with Dvl-1.—Kim, M. J., Chia, I. V., Costantini, F. SUMOylation target sites at the C terminus protect Axin from ubiquitination and confer protein stability. PMID:18632848
Aubrey, Wayne; Riley, Michael C; Young, Michael; King, Ross D; Oliver, Stephen G; Clare, Amanda
2015-01-01
Many advances in synthetic biology require the removal of a large number of genomic elements from a genome. Most existing deletion methods leave behind markers, and as there are a limited number of markers, such methods can only be applied a fixed number of times. Deletion methods that recycle markers generally are either imprecise (remove untargeted sequences), or leave scar sequences which can cause genome instability and rearrangements. No existing marker recycling method is automation-friendly. We have developed a novel openly available deletion tool that consists of: 1) a method for deleting genomic elements that can be repeatedly used without limit, is precise, scar-free, and suitable for automation; and 2) software to design the method's primers. Our tool is sequence agnostic and could be used to delete large numbers of coding sequences, promoter regions, transcription factor binding sites, terminators, etc in a single genome. We have validated our tool on the deletion of non-essential open reading frames (ORFs) from S. cerevisiae. The tool is applicable to arbitrary genomes, and we provide primer sequences for the deletion of: 90% of the ORFs from the S. cerevisiae genome, 88% of the ORFs from S. pombe genome, and 85% of the ORFs from the L. lactis genome.
Aubrey, Wayne; Riley, Michael C.; Young, Michael; King, Ross D.; Oliver, Stephen G.; Clare, Amanda
2015-01-01
Many advances in synthetic biology require the removal of a large number of genomic elements from a genome. Most existing deletion methods leave behind markers, and as there are a limited number of markers, such methods can only be applied a fixed number of times. Deletion methods that recycle markers generally are either imprecise (remove untargeted sequences), or leave scar sequences which can cause genome instability and rearrangements. No existing marker recycling method is automation-friendly. We have developed a novel openly available deletion tool that consists of: 1) a method for deleting genomic elements that can be repeatedly used without limit, is precise, scar-free, and suitable for automation; and 2) software to design the method’s primers. Our tool is sequence agnostic and could be used to delete large numbers of coding sequences, promoter regions, transcription factor binding sites, terminators, etc in a single genome. We have validated our tool on the deletion of non-essential open reading frames (ORFs) from S. cerevisiae. The tool is applicable to arbitrary genomes, and we provide primer sequences for the deletion of: 90% of the ORFs from the S. cerevisiae genome, 88% of the ORFs from S. pombe genome, and 85% of the ORFs from the L. lactis genome. PMID:26630677
Venturi, Veronica; Little, Richard; Bircham, Peter W; Rodigheri Brito, Juliana; Atkinson, Paul H; Maass, David R; Teesdale-Spittle, Paul H
2018-02-19
The translation initiation machinery is emerging as an important target for therapeutic intervention, with potential in the treatment of cancer, viral infections, and muscle wasting. Amongst the targets for pharmacological control of translation initiation is the eukaryotic initiation factor 4A (eIF4A), an RNA helicase that is essential for cap-dependent translation initiation. We set out to explore the system-wide impact of a reduction of functional eIF4A. To this end, we investigated the effect of deletion of TIF1, one of the duplicate genes that produce eIF4A in yeast, through synthetic genetic array interactions and system-wide changes in GFP-tagged protein abundances. We show that there is a biological response to deletion of the TIF1 gene that extends through the proteostasis network. Effects of the deletion are apparent in processes as distributed as chromatin remodelling, ribosome biogenesis, amino acid metabolism, and protein trafficking. The results from this study identify protein complexes and pathways that will make ideal targets for combination therapies with eIF4A inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.
Case-Deletion Diagnostics for Nonlinear Structural Equation Models
ERIC Educational Resources Information Center
Lee, Sik-Yum; Lu, Bin
2003-01-01
In this article, a case-deletion procedure is proposed to detect influential observations in a nonlinear structural equation model. The key idea is to develop the diagnostic measures based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. An one-step pseudo approximation is proposed to reduce the…
Large-scale deletions of the ABCA1 gene in patients with hypoalphalipoproteinemia.
Dron, Jacqueline S; Wang, Jian; Berberich, Amanda J; Iacocca, Michael A; Cao, Henian; Yang, Ping; Knoll, Joan; Tremblay, Karine; Brisson, Diane; Netzer, Christian; Gouni-Berthold, Ioanna; Gaudet, Daniel; Hegele, Robert A
2018-06-04
Copy-number variations (CNVs) have been studied in the context of familial hypercholesterolemia but have not yet been evaluated in patients with extremes of high-density lipoprotein (HDL) cholesterol levels. We evaluated targeted next-generation sequencing data from patients with very low HDL cholesterol (i.e. hypoalphalipoproteinemia) using the VarSeq-CNV caller algorithm to screen for CNVs disrupting the ABCA1, LCAT or APOA1 genes. In four individuals, we found three unique deletions in ABCA1: a heterozygous deletion of exon 4, a heterozygous deletion spanning exons 8 to 31, and a heterozygous deletion of the entire ABCA1 gene. Breakpoints were identified using Sanger sequencing, and the full-gene deletion was also confirmed using exome sequencing and the Affymetrix CytoScanTM HD Array. Before now, large-scale deletions in candidate HDL genes have not been associated with hypoalphalipoproteinemia; our findings indicate that CNVs in ABCA1 may be a previously unappreciated genetic determinant of low HDL cholesterol levels. By coupling bioinformatic analyses with next-generation sequencing data, we can successfully assess the spectrum of genetic determinants of many dyslipidemias, now including hypoalphalipoproteinemia. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Germ-Line Recombination Activity of the Widely Used hGFAP-Cre and Nestin-Cre Transgenes
Zhang, Jiong; Dublin, Pavel; Griemsmann, Stephanie; Klein, Alexandra; Brehm, Ralph; Bedner, Peter; Fleischmann, Bernd K.; Steinhäuser, Christian; Theis, Martin
2013-01-01
Herein we demonstrate with PCR, immunodetection and reporter gene approaches that the widely used human Glial Fibrillary Acidic Protein (hGFAP)-Cre transgene exhibits spontaneous germ-line recombination activity in leading to deletion in brain, heart and tail tissue with high frequency. The ectopic activity of hGFAP-Cre requires a rigorous control. We likewise observed that a second widely used nestin-Cre transgene shows germ-line deletion. Here we describe procedures to identify mice with germ-line recombination mediated by the hGFAP-Cre and nestin-Cre transgenes. Such control is essential to avoid pleiotropic effects due to germ-line deletion of loxP-flanked target genes and to maintain the CNS-restricted deletion status in transgenic mouse colonies. PMID:24349371
ERIC Educational Resources Information Center
Cho, Taehong; McQueen, James M.
2011-01-01
Two experiments examined whether perceptual recovery from Korean consonant-cluster simplification is based on language-specific phonological knowledge. In tri-consonantal C1C2C3 sequences such as /lkt/ and /lpt/ in Seoul Korean, either C1 or C2 can be completely deleted. Seoul Koreans monitored for C2 targets (/p/ or /k/, deleted or preserved) in…
2001-07-01
mismatch repair gene Pms2 reduces the number of intestinal tumors as compared to mice with targeted deletion of this gene [27]. In contrast, deletion of the...Liskay. 1998. Enhanced intestinal adenomatous polyp formation in Pms2 "/;Min mice. Cancer Res. 58:1087-1089. 19 Weber et al. 28. Wilson, C.L., K.J
A Functional Element Necessary for Fetal Hemoglobin Silencing
Sankaran, Vijay G.; Xu, Jian; Byron, Rachel; Greisman, Harvey A.; Fisher, Chris; Weatherall, David J.; Sabath, Daniel E.; Groudine, Mark; Orkin, Stuart H.; Premawardhena, Anuja; Bender, M.A.
2011-01-01
BACKGROUND An improved understanding of the regulation of the fetal hemoglobin genes holds promise for the development of targeted therapeutic approaches for fetal hemoglobin induction in the β-hemoglobinopathies. Although recent studies have uncovered trans-acting factors necessary for this regulation, limited insight has been gained into the cis-regulatory elements involved. METHODS We identified three families with unusual patterns of hemoglobin expression, suggestive of deletions in the locus of the β-globin gene (β-globin locus). We performed array comparative genomic hybridization to map these deletions and confirmed breakpoints by means of polymerase-chain-reaction assays and DNA sequencing. We compared these deletions, along with previously mapped deletions, and studied the trans-acting factors binding to these sites in the β-globin locus by using chromatin immunoprecipitation. RESULTS We found a new (δβ)0-thalassemia deletion and a rare hereditary persistence of fetal hemoglobin deletion with identical downstream breakpoints. Comparison of the two deletions resulted in the identification of a small intergenic region required for γ-globin (fetal hemoglobin) gene silencing. We mapped a Kurdish β0-thalassemia deletion, which retains the required intergenic region, deletes other surrounding sequences, and maintains fetal hemoglobin silencing. By comparing these deletions and other previously mapped deletions, we elucidated a 3.5-kb intergenic region near the 5′ end of the δ-globin gene that is necessary for γ-globin silencing. We found that a critical fetal hemoglobin silencing factor, BCL11A, and its partners bind within this region in the chromatin of adult erythroid cells. CONCLUSIONS By studying three families with unusual deletions in the β-globin locus, we identified an intergenic region near the δ-globin gene that is necessary for fetal hemoglobin silencing. (Funded by the National Institutes of Health and others.) PMID:21879898
Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan
2008-01-01
Background Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. Results As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. Conclusion We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s). PMID:19055778
Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan
2008-12-03
Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, approximately 4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s).
Wei, Na; Xu, Haiqing; Kim, Soo Rin
2013-01-01
Accumulation of xylitol in xylose fermentation with engineered Saccharomyces cerevisiae presents a major problem that hampers economically feasible production of biofuels from cellulosic plant biomass. In particular, substantial production of xylitol due to unbalanced redox cofactor usage by xylose reductase (XR) and xylitol dehydrogenase (XDH) leads to low yields of ethanol. While previous research focused on manipulating intracellular enzymatic reactions to improve xylose metabolism, this study demonstrated a new strategy to reduce xylitol formation and increase carbon flux toward target products by controlling the process of xylitol secretion. Using xylitol-producing S. cerevisiae strains expressing XR only, we determined the role of aquaglyceroporin Fps1p in xylitol export by characterizing extracellular and intracellular xylitol. In addition, when FPS1 was deleted in a poorly xylose-fermenting strain with unbalanced XR and XDH activities, the xylitol yield was decreased by 71% and the ethanol yield was substantially increased by nearly four times. Experiments with our optimized xylose-fermenting strain also showed that FPS1 deletion reduced xylitol production by 21% to 30% and increased ethanol yields by 3% to 10% under various fermentation conditions. Deletion of FPS1 decreased the xylose consumption rate under anaerobic conditions, but the effect was not significant in fermentation at high cell density. Deletion of FPS1 resulted in higher intracellular xylitol concentrations but did not significantly change the intracellular NAD+/NADH ratio in xylose-fermenting strains. The results demonstrate that Fps1p is involved in xylitol export in S. cerevisiae and present a new gene deletion target, FPS1, and a mechanism different from those previously reported to engineer yeast for improved xylose fermentation. PMID:23475614
Deletion of alpha-synuclein decreases impulsivity in mice.
Peña-Oliver, Y; Buchman, V L; Dalley, J W; Robbins, T W; Schumann, G; Ripley, T L; King, S L; Stephens, D N
2012-03-01
The presynaptic protein alpha-synuclein, associated with Parkinson's Disease (PD), plays a role in dopaminergic neurotransmission and is implicated in impulse control disorders (ICDs) such as drug addiction. In this study we investigated a potential causal relationship between alpha-synuclein and impulsivity, by evaluating differences in motor impulsivity in the 5-choice serial reaction time task (5-CSRTT) in strains of mice that differ in the expression of the alpha-synuclein gene. C57BL/6JOlaHsd mice differ from their C57BL/6J ancestors in possessing a chromosomal deletion resulting in the loss of two genes, snca, encoding alpha-synuclein, and mmrn1, encoding multimerin-1. C57BL/6J mice displayed higher impulsivity (more premature responding) than C57BL/6JOlaHsd mice when the pre-stimulus waiting interval was increased in the 5-CSRTT. In order to ensure that the reduced impulsivity was indeed related to snca, and not adjacent gene deletion, wild type (WT) and mice with targeted deletion of alpha-synuclein (KO) were tested in the 5-CSRTT. Similarly, WT mice were more impulsive than mice with targeted deletion of alpha-synuclein. Interrogation of our ongoing analysis of impulsivity in BXD recombinant inbred mouse lines revealed an association of impulsive responding with levels of alpha-synuclein expression in hippocampus. Expression of beta- and gamma-synuclein, members of the synuclein family that may substitute for alpha-synuclein following its deletion, revealed no differential compensations among the mouse strains. These findings suggest that alpha-synuclein may contribute to impulsivity and potentially, to ICDs which arise in some PD patients treated with dopaminergic medication. © 2011 The Authors. Genes, Brain and Behavior © 2011 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
Wang, Jing; Wang, Xingliang; Lansdell, Stuart J; Zhang, Jianheng; Millar, Neil S; Wu, Yidong
2016-04-01
Spinosad is a macrocyclic lactone insecticide that acts primarily at the nicotinic acetylcholine receptors (nAChRs) of target insects. Here we describe evidence that high levels of resistance to spinosad in the diamondback moth (Plutella xylostella) are associated with a three amino acid (3-aa) deletion in the fourth transmembrane domain (TM4) of the nAChR α6 subunit (Pxα6). Following laboratory selection with spinosad, the SZ-SpinR strain of P. xylostella exhibited 940-fold resistance to spinosad. In addition, the selected insect population had 1060-fold cross-resistance to spinetoram but, in contrast, no cross-resistance to abamectin was observed. Genetic analysis indicates that spinosad resistance in SZ-SpinR is inherited as a recessive and autosomal trait, and that the 3-aa deletion (IIA) in TM4 of Pxα6 is tightly linked to spinosad resistance. Because of well-established difficulties in functional expression of cloned insect nAChRs, the analogous resistance-associated deletion mutation was introduced into a prototype nAChR (the cloned human α7 subunit). Two-electrode voltage-clamp recording with wild-type and mutated nAChRs expressed in Xenopus laevis oocytes indicated that the mutation causes a complete loss of agonist activation. In addition, radioligand binding studies indicated that the 3-aa deletion resulted in significantly lower-affinity binding of the extracellular neurotransmitter-binding site. These findings are consistent with the 3-amino acid (IIA) deletion within the transmembrane domain of Pxα6 being responsible for target-site resistance to spinosad in the SZ-SpinR strain of P. xylostella. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Wang, Jing; Wang, Xingliang; Lansdell, Stuart J.; Zhang, Jianheng; Millar, Neil S.; Wu, Yidong
2016-01-01
Spinosad is a macrocyclic lactone insecticide that acts primarily at the nicotinic acetylcholine receptors (nAChRs) of target insects. Here we describe evidence that high levels of resistance to spinosad in the diamondback moth (Plutella xylostella) are associated with a three amino acid (3-aa) deletion in the fourth transmembrane domain (TM4) of the nAChR α6 subunit (Pxα6). Following laboratory selection with spinosad, the SZ-SpinR strain of P. xylostella exhibited 940-fold resistance to spinosad. In addition, the selected insect population had 1060-fold cross-resistance to spinetoram but, in contrast, no cross-resistance to abamectin was observed. Genetic analysis indicates that spinosad resistance in SZ-SpinR is inherited as a recessive and autosomal trait, and that the 3-aa deletion (IIA) in TM4 of Pxα6 is tightly linked to spinosad resistance. Because of well-established difficulties in functional expression of cloned insect nAChRs, the analogous resistance-associated deletion mutation was introduced into a prototype nAChR (the cloned human α7 subunit). Two-electrode voltage-clamp recording with wild-type and mutated nAChRs expressed in Xenopus laevis oocytes indicated that the mutation causes a complete loss of agonist activation. In addition, radioligand binding studies indicated that the 3-aa deletion resulted in significantly lower-affinity binding of the extracellular neurotransmitter-binding site. These findings are consistent with the 3-amino acid (IIA) deletion within the transmembrane domain of Pxα6 being responsible for target-site resistance to spinosad in the SZ-SpinR strain of P. xylostella. PMID:26855198
Mechanisms of formation and accumulation of mitochondrial DNA deletions in aging neurons.
Fukui, Hirokazu; Moraes, Carlos T
2009-03-15
Age-dependent accumulation of partially deleted mitochondrial DNA (DeltamtDNA) has been suggested to contribute to aging and the development of age-associated diseases including Parkinson's disease. However, the molecular mechanisms underlying the generation and accumulation of DeltamtDNA have not been addressed in vivo. In this study, we have developed a mouse model expressing an inducible mitochondria-targeted restriction endonuclease (PstI). Using this system, we could trigger mtDNA double-strand breaks (DSBs) in adult neurons. We found that this transient event leads to the generation of a family of DeltamtDNA with features that closely resemble naturally-occurring mtDNA deletions. The formation of these deleted species is likely to be mediated by yet uncharacterized DNA repairing machineries that participate in homologous recombination and non-homologous end-joining. Furthermore, we obtained in vivo evidence that DeltamtDNAs with larger deletions accumulate faster than those with smaller deletions, implying a replicative advantage of smaller mtDNAs. These findings identify DSB, DNA repair systems and replicative advantage as likely mechanisms underlying the generation and age-associated accumulation of DeltamtDNA in mammalian neurons.
Genetically Validated Drug Targets in Leishmania: Current Knowledge and Future Prospects.
Jones, Nathaniel G; Catta-Preta, Carolina M C; Lima, Ana Paula C A; Mottram, Jeremy C
2018-04-13
There has been a very limited number of high-throughput screening campaigns carried out with Leishmania drug targets. In part, this is due to the small number of suitable target genes that have been shown by genetic or chemical methods to be essential for the parasite. In this perspective, we discuss the state of genetic target validation in the field of Leishmania research and review the 200 Leishmania genes and 36 Trypanosoma cruzi genes for which gene deletion attempts have been made since the first published case in 1990. We define a quality score for the different genetic deletion techniques that can be used to identify potential drug targets. We also discuss how the advances in genome-scale gene disruption techniques have been used to assist target-based and phenotypic-based drug development in other parasitic protozoa and why Leishmania has lacked a similar approach so far. The prospects for this scale of work are considered in the context of the application of CRISPR/Cas9 gene editing as a useful tool in Leishmania.
MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes
Sachdeva, Mohit; Mito, Jeffrey K.; Lee, Chang-Lung; Zhang, Minsi; Li, Zhizhong; Dodd, Rebecca D.; Cason, David; Luo, Lixia; Ma, Yan; Van Mater, David; Gladdy, Rebecca; Lev, Dina C.; Cardona, Diana M.; Kirsch, David G.
2014-01-01
Metastasis causes most cancer deaths, but is incompletely understood. MicroRNAs can regulate metastasis, but it is not known whether a single miRNA can regulate metastasis in primary cancer models in vivo. We compared the expression of miRNAs in metastatic and nonmetastatic primary mouse sarcomas and found that microRNA-182 (miR-182) was markedly overexpressed in some tumors that metastasized to the lungs. By utilizing genetically engineered mice with either deletion of or overexpression of miR-182 in primary sarcomas, we discovered that deletion of miR-182 substantially decreased, while overexpression of miR-182 considerably increased, the rate of lung metastasis after amputation of the tumor-bearing limb. Additionally, deletion of miR-182 decreased circulating tumor cells (CTCs), while overexpression of miR-182 increased CTCs, suggesting that miR-182 regulates intravasation of cancer cells into the circulation. We identified 4 miR-182 targets that inhibit either the migration of tumor cells or the degradation of the extracellular matrix. Notably, restoration of any of these targets in isolation did not alter the metastatic potential of sarcoma cells injected orthotopically, but the simultaneous restoration of all 4 targets together substantially decreased the number of metastases. These results demonstrate that a single miRNA can regulate metastasis of primary tumors in vivo by coordinated regulation of multiple genes. PMID:25180607
Gaidamakov, Sergei; Maximova, Olga A.; Chon, Hyongi; Blewett, Nathan H.; Wang, Hongsheng; Crawford, Amanda K.; Day, Amanda; Tulchin, Natalie; Crouch, Robert J.; Morse, Herbert C.; Blitzer, Robert D.
2014-01-01
La antigen (Sjögren's syndrome antigen B) is a phosphoprotein associated with nascent precursor tRNAs and other RNAs, and it is targeted by autoantibodies in patients with Sjögren's syndrome, systemic lupus erythematosus, and neonatal lupus. Increased levels of La are associated with leukemias and other cancers, and various viruses usurp La to promote their replication. Yeast cells (Saccharomyces cerevisiae and Schizosaccharomyces pombe) genetically depleted of La grow and proliferate, whereas deletion from mice causes early embryonic lethality, raising the question of whether La is required by mammalian cells generally or only to surpass a developmental stage. We developed a conditional La allele and used it in mice that express Cre recombinase in either B cell progenitors or the forebrain. B cell Mb1Cre La-deleted mice produce no B cells. Consistent with αCamKII Cre, which induces deletion in hippocampal CA1 cells in the third postnatal week and later throughout the neocortex, brains develop normally in La-deleted mice until ∼5 weeks and then lose a large amount of forebrain cells and mass, with evidence of altered pre-tRNA processing. The data indicate that La is required not only in proliferating cells but also in nondividing postmitotic cells. Thus, La is essential in different cell types and required for normal development of various tissue types. PMID:24190965
Kaufman, Adam C.; Herber, Charlotte S.; Haas, Laura T.; Robinson, Sophie; Lee, Michael K.
2017-01-01
Biochemical and genetic evidence implicate soluble oligomeric amyloid-β (Aβo) in triggering Alzheimer's disease (AD) pathophysiology. Moreover, constitutive deletion of the Aβo-binding cellular prion protein (PrPC) prevents development of memory deficits in APPswe/PS1ΔE9 mice, a model of familial AD. Here, we define the role of PrPC to rescue or halt established AD endophenotypes in a therapeutic disease-modifying time window after symptom onset. Deletion of Prnp at either 12 or 16 months of age fully reverses hippocampal synapse loss and completely rescues preexisting behavioral deficits by 17 months. In contrast, but consistent with a neuronal function for Aβo/PrPC signaling, plaque density, microgliosis, and astrocytosis are not altered. Degeneration of catecholaminergic neurons remains unchanged by PrPC reduction after disease onset. These results define the potential of targeting PrPC as a disease-modifying therapy for certain AD-related phenotypes after disease onset. SIGNIFICANCE STATEMENT The study presented here further elucidates our understanding of the soluble oligomeric amyloid-β–Aβo-binding cellular prion protein (PrPC) signaling pathway in a familial form of Alzheimer's disease (AD) by implicating PrPC as a potential therapeutic target for AD. In particular, genetic deletion of Prnp rescued several familial AD (FAD)-associated phenotypes after disease onset in a mouse model of FAD. This study underscores the therapeutic potential of PrPC deletion given that patients already present symptoms at the time of diagnosis. PMID:28842420
Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS
Schneider, Rebekka K.; Ademà, Vera; Heckl, Dirk; Järås, Marcus; Mallo, Mar; Lord, Allegra M.; Chu, Lisa P.; McConkey, Marie E.; Kramann, Rafael; Mullally, Ann; Bejar, Rafael; Solé, Francesc; Ebert, Benjamin L.
2014-01-01
Summary The Casein kinase 1A1 gene (CSNK1A1) is a putative tumor suppressor gene located in the common deleted region for del(5q) myelodysplastic syndrome (MDS). We generated a murine model with conditional inactivation of Csnk1a1 and found that Csnk1a1 haploinsufficiency induces hematopoietic stem cell expansion and a competitive repopulation advantage whereas homozygous deletion induces hematopoietic stem cell failure. Based on this finding, we found that heterozygous inactivation of Csnk1a1 sensitizes cells to a CSNK1 inhibitor relative to cells with two intact alleles. In addition, we identified recurrent somatic mutations in CSNK1A1 on the non-deleted allele of patients with del(5q) MDS. These studies demonstrate that CSNK1A1 plays a central role in the biology of del(5q) MDS and is a promising therapeutic target. PMID:25242043
Bedore, Jake; Martyn, Amanda C; Li, Anson K C; Dolinar, Eric A; McDonald, Ian S; Coupland, Stuart G; Prado, Vania F; Prado, Marco A; Hill, Kathleen A
2015-01-01
Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT) in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina. A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5) deletion of VAChT (VAChTSix3-Cre-flox/flox) and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP) amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses. This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.
Noel, Sanjeev; Arend, Lois J; Bandapalle, Samatha; Reddy, Sekhar P; Rabb, Hamid
2016-08-02
Transcription factor Nrf2 protects from experimental acute kidney injury (AKI) and is promising to limit progression in human chronic kidney disease (CKD) by upregulating multiple antioxidant genes. We recently demonstrated that deletion of Keap1, the endogenous inhibitor of Nrf2, in T lymphocytes significantly protects from AKI. In this study, we investigated the effect of Keap1 deletion on Nrf2 mediated antioxidant response in the renal tubular epithelial cells. We deleted Keap1 exon 2 and 3 in the renal tubular epithelial cells by crossing Ksp-Cre mice with Keap1 floxed (Keap1 (f/f)) mice. Deletion of Keap1 gene in the kidney epithelial cells of Ksp-Keap1 (-/-) mice and its effect on Nrf2 target gene expression was performed using PCR and real-time PCR respectively. Histological evaluation was performed on H&E stained sections. Complete blood count, serum and urine analysis were performed to assess systemic effects of defective kidney development. Student's T test was used to determine statistical difference between the groups. Ksp-Cre resulted in the deletion of Keap1 exon 2 and 3 and subsequent upregulation of Nrf2 target genes, Nqo1, Gclm and Gclc in the kidney epithelial cells of Ksp-Keap1 (-/-) mice at baseline. Renal epithelial cell specific deletion of Keap1 in Ksp-Keap1 (-/-) mice caused marked renal pelvic expansion and significant compression of medullary parenchyma consistent with hydronephrosis in both (3 month-old) males and females. Kidneys from 6 month-old Ksp-Keap1 (-/-) mice showed progressive hydronephrosis. Hematological, biochemical and urinary analysis showed significantly higher red blood cell count (p = 0.04), hemoglobin (p = 0.01), hematocrit (p = 0.02), mean cell volume (p = 0.02) and mean cell hemoglobin concentration (p = 0.003) in Ksp-Keap1 (-/-) mice in comparison to Keap1 (f/f) mice. These unexpected findings demonstrate that Keap1 deletion in renal tubular epithelial cells results in an abnormal kidney development consistent with hydronephrosis and reveals a novel Keap1 mediated signaling pathway in renal development.
Detection limit of intragenic deletions with targeted array comparative genomic hybridization
2013-01-01
Background Pathogenic mutations range from single nucleotide changes to deletions or duplications that encompass a single exon to several genes. The use of gene-centric high-density array comparative genomic hybridization (aCGH) has revolutionized the detection of intragenic copy number variations. We implemented an exon-centric design of high-resolution aCGH to detect single- and multi-exon deletions and duplications in a large set of genes using the OGT 60 K and 180 K arrays. Here we describe the molecular characterization and breakpoint mapping of deletions at the smaller end of the detectable range in several genes using aCGH. Results The method initially implemented to detect single to multiple exon deletions, was able to detect deletions much smaller than anticipated. The selected deletions we describe vary in size, ranging from over 2 kb to as small as 12 base pairs. The smallest of these deletions are only detectable after careful manual review during data analysis. Suspected deletions smaller than the detection size for which the method was optimized, were rigorously followed up and confirmed with PCR-based investigations to uncover the true detection size limit of intragenic deletions with this technology. False-positive deletion calls often demonstrated single nucleotide changes or an insertion causing lower hybridization of probes demonstrating the sensitivity of aCGH. Conclusions With optimizing aCGH design and careful review process, aCGH can uncover intragenic deletions as small as dozen bases. These data provide insight that will help optimize probe coverage in array design and illustrate the true assay sensitivity. Mapping of the breakpoints confirms smaller deletions and contributes to the understanding of the mechanism behind these events. Our knowledge of the mutation spectra of several genes can be expected to change as previously unrecognized intragenic deletions are uncovered. PMID:24304607
Lopez-Sanchez, Maria-José; Sauvage, Elisabeth; Da Cunha, Violette; Clermont, Dominique; Ratsima Hariniaina, Elisoa; Gonzalez-Zorn, Bruno; Poyart, Claire; Rosinski-Chupin, Isabelle; Glaser, Philippe
2012-09-01
Clustered regularly interspaced short palindromic repeats (CRISPR) confer immunity against mobile genetic elements (MGEs) in prokaryotes. Streptococcus agalactiae, a leading cause of neonatal infections contains in its genome two CRISPR/Cas systems. We show that type 1-C CRISPR2 is present in few strains but type 2-A CRISPR1 is ubiquitous. Comparative sequence analysis of the CRISPR1 spacer content of 351 S. agalactiae strains revealed that it is extremely diverse due to the acquisition of new spacers, spacer duplications and spacer deletions that witness the dynamics of this system. The spacer content profile mirrors the S. agalactiae population structure. Transfer of a conjugative transposon targeted by CRISPR1 selected for spacer rearrangements, suggesting that deletions and duplications pre-exist in the population. The comparison of protospacers located within MGE or the core genome and protospacer-associated motif-shuffling demonstrated that the GG motif is sufficient to discriminate self and non-self and for spacer selection and integration. Strikingly more than 40% of the 949 different CRISPR1 spacers identified target MGEs found in S. agalactiae genomes. We thus propose that the S. agalactiae type II-A CRISPR1/Cas system modulates the cohabitation of the species with its mobilome, as such contributing to the diversity of MGEs in the population. © 2012 Blackwell Publishing Ltd.
Moorthy, Sakthi D.; Davidson, Scott; Shchuka, Virlana M.; Singh, Gurdeep; Malek-Gilani, Nakisa; Langroudi, Lida; Martchenko, Alexandre; So, Vincent; Macpherson, Neil N.; Mitchell, Jennifer A.
2017-01-01
Transcriptional enhancers are critical for maintaining cell-type–specific gene expression and driving cell fate changes during development. Highly transcribed genes are often associated with a cluster of individual enhancers such as those found in locus control regions. Recently, these have been termed stretch enhancers or super-enhancers, which have been predicted to regulate critical cell identity genes. We employed a CRISPR/Cas9-mediated deletion approach to study the function of several enhancer clusters (ECs) and isolated enhancers in mouse embryonic stem (ES) cells. Our results reveal that the effect of deleting ECs, also classified as ES cell super-enhancers, is highly variable, resulting in target gene expression reductions ranging from 12% to as much as 92%. Partial deletions of these ECs which removed only one enhancer or a subcluster of enhancers revealed partially redundant control of the regulated gene by multiple enhancers within the larger cluster. Many highly transcribed genes in ES cells are not associated with a super-enhancer; furthermore, super-enhancer predictions ignore 81% of the potentially active regulatory elements predicted by cobinding of five or more pluripotency-associated transcription factors. Deletion of these additional enhancer regions revealed their robust regulatory role in gene transcription. In addition, select super-enhancers and enhancers were identified that regulated clusters of paralogous genes. We conclude that, whereas robust transcriptional output can be achieved by an isolated enhancer, clusters of enhancers acting on a common target gene act in a partially redundant manner to fine tune transcriptional output of their target genes. PMID:27895109
Serrano, Amaya; Williams, Trevor; Simón, Oihane; López-Ferber, Miguel; Caballero, Primitivo
2013-01-01
A natural Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) isolate from Florida shares a strikingly similar genotypic composition to that of a natural Spodoptera frugiperda MNPV (SfMNPV) isolate from Nicaragua. Both isolates comprise a high proportion of large-deletion genotypes that lack genes that are essential for viral replication or transmission. To determine the likely origins of such genotypically similar population structures, we performed genomic and functional analyses of these genotypes. The homology of nucleotides in the deleted regions was as high as 79%, similar to those of other colinear genomic regions, although some SfMNPV genes were not present in SeMNPV. In addition, no potential consensus sequences were shared between the deletion flanking sequences. These results indicate an evolutionary mechanism that independently generates and sustains deletion mutants within each virus population. Functional analyses using different proportions of complete and deletion genotypes were performed with the two viruses in mixtures of occlusion bodies (OBs) or co-occluded virions. Ratios greater than 3:1 of complete/deletion genotypes resulted in reduced pathogenicity (expressed as median lethal dose), but there were no significant changes in the speed of kill. In contrast, OB yields increased only in the 1:1 mixture. The three phenotypic traits analyzed provide a broader picture of the functional significance of the most extensively deleted SeMNPV genotype and contribute toward the elucidation of the role of such mutants in baculovirus populations. PMID:23204420
ERIC Educational Resources Information Center
Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.
2012-01-01
In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…
New traits in crops produced by genome editing techniques based on deletions.
van de Wiel, C C M; Schaart, J G; Lotz, L A P; Smulders, M J M
2017-01-01
One of the most promising New Plant Breeding Techniques is genome editing (also called gene editing) with the help of a programmable site-directed nuclease (SDN). In this review, we focus on SDN-1, which is the generation of small deletions or insertions (indels) at a precisely defined location in the genome with zinc finger nucleases (ZFN), TALENs, or CRISPR-Cas9. The programmable nuclease is used to induce a double-strand break in the DNA, while the repair is left to the plant cell itself, and mistakes are introduced, while the cell is repairing the double-strand break using the relatively error-prone NHEJ pathway. From a biological point of view, it could be considered as a form of targeted mutagenesis. We first discuss improvements and new technical variants for SDN-1, in particular employing CRISPR-Cas, and subsequently explore the effectiveness of targeted deletions that eliminate the function of a gene, as an approach to generate novel traits useful for improving agricultural sustainability, including disease resistances. We compare them with examples of deletions that resulted in novel functionality as known from crop domestication and classical mutation breeding (both using radiation and chemical mutagens). Finally, we touch upon regulatory and access and benefit sharing issues regarding the plants produced.
[Chromosomal large fragment deletion induced by CRISPR/Cas9 gene editing system].
Cheng, L H; Liu, Y; Niu, T
2017-05-14
Objective: Using CRISPR-Cas9 gene editing technology to achieve a number of genes co-deletion on the same chromosome. Methods: CRISPR-Cas9 lentiviral plasmid that could induce deletion of Aloxe3-Alox12b-Alox8 cluster genes located on mouse 11B3 chromosome was constructed via molecular clone. HEK293T cells were transfected to package lentivirus of CRISPR or Cas9 cDNA, then mouse NIH3T3 cells were infected by lentivirus and genomic DNA of these cells was extracted. The deleted fragment was amplified by PCR, TA clone, Sanger sequencing and other techniques were used to confirm the deletion of Aloxe3-Alox12b-Alox8 cluster genes. Results: The CRISPR-Cas9 lentiviral plasmid, which could induce deletion of Aloxe3-Alox12b-Alox8 cluster genes, was successfully constructed. Deletion of target chromosome fragment (Aloxe3-Alox12b-Alox8 cluster genes) was verified by PCR. The deletion of Aloxe3-Alox12b-Alox8 cluster genes was affirmed by TA clone, Sanger sequencing, and the breakpoint junctions of the CRISPR-Cas9 system mediate cutting events were accurately recombined, insertion mutation did not occur between two cleavage sites at all. Conclusion: Large fragment deletion of Aloxe3-Alox12b-Alox8 cluster genes located on mouse chromosome 11B3 was successfully induced by CRISPR-Cas9 gene editing system.
Targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae.
Takahashi, Tadashi; Sato, Atsushi; Ogawa, Masahiro; Hanya, Yoshiki; Oguma, Tetsuya
2014-08-01
We describe here the first successful construction of a targeted tandem duplication of a large chromosomal segment in Aspergillus oryzae. The targeted tandem chromosomal duplication was achieved by using strains that had a 5'-deleted pyrG upstream of the region targeted for tandem chromosomal duplication and a 3'-deleted pyrG downstream of the target region. Consequently,strains bearing a 210-kb targeted tandem chromosomal duplication near the centromeric region of chromosome 8 and strains bearing a targeted tandem chromosomal duplication of a 700-kb region of chromosome 2 were successfully constructed. The strains bearing the tandem chromosomal duplication were efficiently obtained from the regenerated protoplast of the parental strains. However, the generation of the chromosomal duplication did not depend on the introduction of double-stranded breaks(DSBs) by I-SceI. The chromosomal duplications of these strains were stably maintained after five generations of culture under nonselective conditions. The strains bearing the tandem chromosomal duplication in the 700-kb region of chromosome 2 showed highly increased protease activity in solid-state culture, indicating that the duplication of large chromosomal segments could be a useful new breeding technology and gene analysis method.
Targeted gene deletion of miRNAs in mice by TALEN system.
Takada, Shuji; Sato, Tempei; Ito, Yoshiaki; Yamashita, Satoshi; Kato, Tomoko; Kawasumi, Miyuri; Kanai-Azuma, Masami; Igarashi, Arisa; Kato, Tomomi; Tamano, Moe; Asahara, Hiroshi
2013-01-01
Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A) tail worked better than that of with poly(A) tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.
Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells.
Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc
2016-01-01
Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arachea, B.T.; Liu, X.; Pavlovsky, A.G.
2010-08-13
The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a critical transformation that produces the first branch-point intermediate in an essential microbial amino-acid biosynthetic pathway. The first structure of an ASADH isolated from a fungal species (Candida albicans) has been determined as a complex with its pyridine nucleotide cofactor. This enzyme is a functional dimer, with a similar overall fold and domain organization to the structurally characterized bacterial ASADHs. However, there are differences in the secondary-structural elements and in cofactor binding that are likely to cause the lower catalytic efficiency of this fungal enzyme. Alterations in the dimer interface, through deletion ofmore » a helical subdomain and replacement of amino acids that participate in a hydrogen-bonding network, interrupt the intersubunit-communication channels required to support an alternating-site catalytic mechanism. The detailed functional information derived from this new structure will allow an assessment of ASADH as a possible target for antifungal drug development.« less
Engineering strategy of yeast metabolism for higher alcohol production.
Matsuda, Fumio; Furusawa, Chikara; Kondo, Takashi; Ishii, Jun; Shimizu, Hiroshi; Kondo, Akihiko
2011-09-08
While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols.
Jiang, Qian; Meng, Xing; Meng, Lingwei; Chang, Nannan; Xiong, Jingwei; Cao, Huiqing; Liang, Zicai
2014-01-01
MicroRNA knockout by genome editing technologies is promising. In order to extend the application of the technology and to investigate the function of a specific miRNA, we used CRISPR/Cas9 to deplete human miR-93 from a cluster by targeting its 5' region in HeLa cells. Various small indels were induced in the targeted region containing the Drosha processing site and seed sequences. Interestingly, we found that even a single nucleotide deletion led to complete knockout of the target miRNA with high specificity. Functional knockout was confirmed by phenotype analysis. Furthermore, de novo microRNAs were not found by RNA-seq. Nevertheless, expression of the pri-microRNAs was increased. When combined with structural analysis, the data indicated that biogenesis was impaired. Altogether, we showed that small indels in the 5' region of a microRNA result in sequence depletion as well as Drosha processing retard.
Circularized Chromosome with a Large Palindromic Structure in Streptomyces griseus Mutants
Uchida, Tetsuya; Ishihara, Naoto; Zenitani, Hiroyuki; Hiratsu, Keiichiro; Kinashi, Haruyasu
2004-01-01
Streptomyces linear chromosomes display various types of rearrangements after telomere deletion, including circularization, arm replacement, and amplification. We analyzed the new chromosomal deletion mutants Streptomyces griseus 301-22-L and 301-22-M. In these mutants, chromosomal arm replacement resulted in long terminal inverted repeats (TIRs) at both ends; different sizes were deleted again and recombined inside the TIRs, resulting in a circular chromosome with an extremely large palindrome. Short palindromic sequences were found in parent strain 2247, and these sequences might have played a role in the formation of this unique structure. Dynamic structural changes of Streptomyces linear chromosomes shown by this and previous studies revealed extraordinary strategies of members of this genus to keep a functional chromosome, even if it is linear or circular. PMID:15150216
Ousterout, David G; Kabadi, Ami M; Thakore, Pratiksha I; Perez-Pinera, Pablo; Brown, Matthew T; Majoros, William H; Reddy, Timothy E; Gersbach, Charles A
2015-01-01
Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons. PMID:25492562
Deletion mapping of the Aequorea victoria green fluorescent protein.
Dopf, J; Horiagon, T M
1996-01-01
Aequorea victoria green fluorescent protein (GFP) is a promising fluorescent marker which is active in a diverse array of prokaryotic and eukaryotic organisms. A key feature underlying the versatility of GFP is its capacity to undergo heterocyclic chromophore formation by cyclization of a tripeptide present in its primary sequence and thereby acquiring fluorescent activity in a variety of intracellular environments. In order to define further the primary structure requirements for chromophore formation and fluorescence in GFP, a series of N- and C-terminal GFP deletion variant expression vectors were created using the polymerase chain reaction. Scanning spectrofluorometric analyses of crude soluble protein extracts derived from eleven GFP expression constructs revealed that amino acid (aa) residues 2-232, of a total of 238 aa in the native protein, were required for the characteristic emission and absorption spectra of native GFP. Heterocyclic chromophore formation was assayed by comparing the absorption spectrum of GFP deletion variants over the 300-500-nm range to the absorption spectra of full-length GFP and GFP deletion variants missing the chromophore substrate domain from the primary sequence. GFP deletion variants lacking fluorescent activity showed no evidence of heterocyclic ring structure formation when the soluble extracts of their bacterial expression hosts were studied at pH 7.9. These observations suggest that the primary structure requirements for the fluorescent activity of GFP are relatively extensive and are compatible with the view that much of the primary structure serves an autocatalytic function.
Activating HER2 mutations in HER2 gene amplification negative breast cancer
Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.
2012-01-01
Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880
Papaemmanuil, Elli; Rapado, Inmaculada; Li, Yilong; Potter, Nicola E; Wedge, David C; Tubio, Jose; Alexandrov, Ludmil B; Van Loo, Peter; Cooke, Susanna L; Marshall, John; Martincorena, Inigo; Hinton, Jonathan; Gundem, Gunes; van Delft, Frederik W; Nik-Zainal, Serena; Jones, David R; Ramakrishna, Manasa; Titley, Ian; Stebbings, Lucy; Leroy, Catherine; Menzies, Andrew; Gamble, John; Robinson, Ben; Mudie, Laura; Raine, Keiran; O’Meara, Sarah; Teague, Jon W; Butler, Adam P; Cazzaniga, Giovanni; Biondi, Andrea; Zuna, Jan; Kempski, Helena; Muschen, Markus; Ford, Anthony M; Stratton, Michael R; Greaves, Mel; Campbell, Peter J
2014-01-01
The ETV6-RUNX1 fusion gene, found in 25% of childhood acute lymphoblastic leukemia (ALL), is acquired in utero but requires additional somatic mutations for overt leukemia. We used exome and low-coverage whole-genome sequencing to characterize secondary events associated with leukemic transformation. RAG-mediated deletions emerge as the dominant mutational process, characterized by recombination signal sequence motifs near the breakpoints; incorporation of non-templated sequence at the junction; ~30-fold enrichment at promoters and enhancers of genes actively transcribed in B-cell development and an unexpectedly high ratio of recurrent to non-recurrent structural variants. Single cell tracking shows that this mechanism is active throughout leukemic evolution with evidence of localized clustering and re-iterated deletions. Integration of point mutation and rearrangement data identifies ATF7IP and MGA as two new tumor suppressor genes in ALL. Thus, a remarkably parsimonious mutational process transforms ETV6-RUNX1 lymphoblasts, targeting the promoters, enhancers and first exons of genes that normally regulate B-cell differentiation. PMID:24413735
Chronic lymphocytic leukemia-associated chromosomal abnormalities and miRNA deregulation.
Kiefer, Yvonne; Schulte, Christoph; Tiemann, Markus; Bullerdiek, Joern
2012-01-01
Chronic lymphocytic leukemia is the most common leukemia in adults. By cytogenetic investigations major subgroups of the disease can be identified that reflect different routes of tumor development. Of these chromosomal deviations, trisomy 12 and deletions of parts of either the long arm of chromosome 13, the long arm of chromosome 11, or the short arm of chromosome 17 are most commonly detected. In some of these aberrations the molecular target has been identified as eg, ataxia telangiectasia mutated (ATM) in case of deletions of chromosomal region 11q22~23 and the genes encoding microRNAs miR-15a/16-1 as likely targets of deletions of chromosomal band 13q14.3. Of note, these aberrations do not characterize independent subgroups but often coexist within the metaphases of one tumor. Generally, complex aberrations are associated with a worse prognosis than simple karyotypic alterations. Due to smaller sizes of the missing segment the detection of recurrent deletions is not always possible by means of classical cytogenetics but requires more advanced techniques as in particular fluorescence in situ hybridization (FISH). Nevertheless, at this time it is not recommended to replace classical cytogenetics by FISH because this would miss additional information given by complex or secondary karyotypic alterations. However, the results of cytogenetic analyses allow the stratification of prognostic and predictive groups of the disease. Of these, the group characterized by deletions involving TP53 is clinically most relevant. In the future refined methods as eg, array-based comparative genomic hybridization will supplement the existing techniques to characterize CLL.
Huang, Ping; Tong, Dongdong; Sun, Jing; Li, Qing; Zhang, Fenghe
2017-10-01
To investigate the importance of the p75 neurotrophin receptor (p75 NTR ) in human tongue squamous carcinoma cells, we exploited the CRISPR/Cas9 technology to establish a p75 NTR -knockout SCC-9 cell line and to explore the effect on biological functions. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease (Cas9) system was used to generate genomic deletion mutants of p75 NTR in the tongue squamous carcinoma cell lines SCC-9. Single-guide RNA (sgRNA) sequences were designed to target the p75 NTR genomic sequence and were cloned into plasmid pGK1.1. The linearized vector was electroporated into SCC-9 cells and p75 NTR deletion was confirmed using Cruiser™ enzyme digestion and PCR amplification. SCC-9 clones with successful deletion of p75 NTR were identified and verified by sequencing and selected for functional testing in cell proliferation, invasion, migration, and colony-forming assays. Compared with control cells, p75 NTR -knockout SCC-9 cells showed significantly diminished abilities to proliferate, invade, migrate, and form colonies, indicating a reduction in pro-tumorigenic behavior. These data demonstrate, first, that the CRISPR/Cas9 system is a simplified method for generating p75 NTR knockouts with relatively high efficiency, and second, that deletion of p75 NTR suppresses several tumor-promoting properties of SCC-9 cells, suggesting that p75 NTR is a potential target for the development of novel therapies for tongue cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
B cells expressing the transcription factor T-bet drive lupus-like autoimmunity
Rubtsov, Anatoly V.; Thurman, Joshua M.; Mennona, Johanna M.; Kappler, John W.; Marrack, Philippa
2017-01-01
B cells contribute to multiple aspects of autoimmune disorders and may play a role in triggering disease. Thus, targeting B cells may be a promising strategy for treating autoimmune disorders. Better understanding of the B cell subsets that are responsible for the development of autoimmunity will be critical for developing efficient therapies. Here we have reported that B cells expressing the transcription factor T-bet promote the rapid appearance of autoantibodies and germinal centers in spontaneous murine models of systemic lupus erythematosus (SLE). Conditional deletion of T-bet from B cells impaired the formation of germinal centers and mitigated the development of kidney damage and rapid mortality in SLE mice. B cell–specific deletion of T-bet was also associated with lower activation of both B cells and T cells. Taken together, our results suggest that targeting T-bet–expressing B cells may be a potential target for therapy for autoimmune diseases. PMID:28240602
MeCP2 co-ordinates liver lipid metabolism with the NCoR1/HDAC3 corepressor complex
Kyle, Stephanie M.; Saha, Pradip K.; Brown, Hannah M.; Chan, Lawrence C.; Justice, Monica J.
2016-01-01
Rett syndrome (RTT; OMIM 312750), a progressive neurological disorder, is caused by mutations in methyl-CpG-binding protein 2 (MECP2; OMIM 300005), a ubiquitously expressed factor. A genetic suppressor screen designed to identify therapeutic targets surprisingly revealed that downregulation of the cholesterol biosynthesis pathway improves neurological phenotypes in Mecp2 mutant mice. Here, we show that MeCP2 plays a direct role in regulating lipid metabolism. Mecp2 deletion in mice results in a host of severe metabolic defects caused by lipid accumulation, including insulin resistance, fatty liver, perturbed energy utilization, and adipose inflammation by macrophage infiltration. We show that MeCP2 regulates lipid homeostasis by anchoring the repressor complex containing NCoR1 and HDAC3 to its lipogenesis targets in hepatocytes. Consistently, we find that liver targeted deletion of Mecp2 causes fatty liver disease and dyslipidemia similar to HDAC3 liver-specific deletion. These findings position MeCP2 as a novel component in metabolic homeostasis. Rett syndrome patients also show signs of peripheral dyslipidemia; thus, together these data suggest that RTT should be classified as a neurological disorder with systemic metabolic components. We previously showed that treatment of Mecp2 mice with statin drugs alleviated motor symptoms and improved health and longevity. Lipid metabolism is a highly treatable target; therefore, our results shed light on new metabolic pathways for treatment of Rett syndrome. PMID:27288453
Problem-Solving Test: Conditional Gene Targeting Using the Cre/loxP Recombination System
ERIC Educational Resources Information Center
Szeberényi, József
2013-01-01
Terms to be familiar with before you start to solve the test: gene targeting, knock-out mutation, bacteriophage, complementary base-pairing, homologous recombination, deletion, transgenic organisms, promoter, polyadenylation element, transgene, DNA replication, RNA polymerase, Shine-Dalgarno sequence, restriction endonuclease, polymerase chain…
The Evolution and Functional Impact of Human Deletion Variants Shared with Archaic Hominin Genomes
Lin, Yen-Lung; Pavlidis, Pavlos; Karakoc, Emre; Ajay, Jerry; Gokcumen, Omer
2015-01-01
Allele sharing between modern and archaic hominin genomes has been variously interpreted to have originated from ancestral genetic structure or through non-African introgression from archaic hominins. However, evolution of polymorphic human deletions that are shared with archaic hominin genomes has yet to be studied. We identified 427 polymorphic human deletions that are shared with archaic hominin genomes, approximately 87% of which originated before the Human–Neandertal divergence (ancient) and only approximately 9% of which have been introgressed from Neandertals (introgressed). Recurrence, incomplete lineage sorting between human and chimp lineages, and hominid-specific insertions constitute the remaining approximately 4% of allele sharing between humans and archaic hominins. We observed that ancient deletions correspond to more than 13% of all common (>5% allele frequency) deletion variation among modern humans. Our analyses indicate that the genomic landscapes of both ancient and introgressed deletion variants were primarily shaped by purifying selection, eliminating large and exonic variants. We found 17 exonic deletions that are shared with archaic hominin genomes, including those leading to three fusion transcripts. The affected genes are involved in metabolism of external and internal compounds, growth and sperm formation, as well as susceptibility to psoriasis and Crohn’s disease. Our analyses suggest that these “exonic” deletion variants have evolved through different adaptive forces, including balancing and population-specific positive selection. Our findings reveal that genomic structural variants that are shared between humans and archaic hominin genomes are common among modern humans and can influence biomedically and evolutionarily important phenotypes. PMID:25556237
ERIC Educational Resources Information Center
Kollara, Lakshmi; Schenck, Graham; Jaskolka, Michael; Perry, Jamie L.
2017-01-01
Purpose: To date, no studies have imaged the velopharynx in children with 22q11.2 deletion syndrome (22q11.2 DS) without the use of sedation. Dysmorphology in velopharyngeal structures has been shown to have significant negative implications on speech among these individuals. This single case study was designed to assess the feasibility of a…
Sugahara, Daisuke; Kaji, Hiroyuki; Sugihara, Kazushi; Asano, Masahide; Narimatsu, Hisashi
2012-01-01
Model organisms containing deletion or mutation in a glycosyltransferase-gene exhibit various physiological abnormalities, suggesting that specific glycan motifs on certain proteins play important roles in vivo. Identification of the target proteins of glycosyltransferase isozymes is the key to understand the roles of glycans. Here, we demonstrated the proteome-scale identification of the target proteins specific for a glycosyltransferase isozyme, β1,4-galactosyltransferase-I (β4GalT-I). Although β4GalT-I is the most characterized glycosyltransferase, its distinctive contribution to β1,4-galactosylation has been hardly described so far. We identified a large number of candidates for the target proteins specific to β4GalT-I by comparative analysis of β4GalT-I-deleted and wild-type mice using the LC/MS-based technique with the isotope-coded glycosylation site-specific tagging (IGOT) of lectin-captured N-glycopeptides. Our approach to identify the target proteins in a proteome-scale offers common features and trends in the target proteins, which facilitate understanding of the mechanism that controls assembly of a particular glycan motif on specific proteins. PMID:23002422
VIP Gene Deletion in Mice Causes Cardiomyopathy Associated with Upregulation of Heart Failure Genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szema, Anthony M.; Hamidi, Sayyed A.; Smith, S. David
2013-05-20
Vasoactive Intestinal Peptide (VIP), a pulmonary vasodilator and inhibitor of vascular smooth muscle proliferation, is absent in pulmonary arteries of patients with idiopathic pulmonary arterial hypertension (PAH). We previously determined that targeted deletion of the VIP gene in mice leads to PAH with pulmonary vascular remodeling and right ventricular (RV) dilatation. Whether the left ventricle is also affected by VIP gene deletion is unknown. In the current study, we examined if VIP knockout mice (VIP-/-) develop both right (RV) and left ventricular (LV) cardiomyopathy, manifested by LV dilatation and systolic dysfunction, as well as overexpression of genes conducive to heartmore » failure.« less
Guan, Jing; Wang, Wanying
2017-01-01
ABSTRACT CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show that chromosomal targeting by the Staphylococcus aureus type III-A CRISPR-Cas system can drive large-scale genome deletion and alteration within integrated staphylococcal cassette chromosome mec (SCCmec). The targeting activity of the CRISPR-Cas system is associated with the complementarity between crRNAs and protospacers, and 10- to 13-nucleotide truncations of spacers partially block CRISPR attack and more than 13-nucleotide truncation can fully abolish targeting, suggesting that a minimal length is required to license cleavage. Avoiding base pairings in the upstream region of protospacers is also necessary for CRISPR targeting. Successive trinucleotide complementarity between the 5′ tag of crRNAs and protospacers can disrupt targeting. Our findings reveal that type III-A CRISPR-Cas systems can modulate bacterial genome stability and may serve as a high-efficiency tool for deleting resistance or virulence genes in bacteria. IMPORTANCE Staphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCCmec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive trinucleotide pairings between a selected target and the 5′ tag of crRNA can block targeting. These findings add to our understanding of the molecular mechanisms of the type III-A CRISPR-Cas system and provide a novel strategy for the exploitation of engineered CRISPR immunity against integrated MGEs in bacteria for clinical and industrial applications. PMID:29152580
Guan, Jing; Wang, Wanying; Sun, Baolin
2017-01-01
CRISPR-Cas (clustered regularly interspaced short palindromic repeat [CRISPR]-CRISPR-associated protein [Cas]) systems can provide protection against invading genetic elements by using CRISPR RNAs (crRNAs) as a guide to locate and degrade the target DNA. CRISPR-Cas systems have been classified into two classes and five types according to the content of cas genes. Previous studies have indicated that CRISPR-Cas systems can avoid viral infection and block plasmid transfer. Here we show that chromosomal targeting by the Staphylococcus aureus type III-A CRISPR-Cas system can drive large-scale genome deletion and alteration within integrated staphylococcal cassette chromosome mec (SCC mec ). The targeting activity of the CRISPR-Cas system is associated with the complementarity between crRNAs and protospacers, and 10- to 13-nucleotide truncations of spacers partially block CRISPR attack and more than 13-nucleotide truncation can fully abolish targeting, suggesting that a minimal length is required to license cleavage. Avoiding base pairings in the upstream region of protospacers is also necessary for CRISPR targeting. Successive trinucleotide complementarity between the 5' tag of crRNAs and protospacers can disrupt targeting. Our findings reveal that type III-A CRISPR-Cas systems can modulate bacterial genome stability and may serve as a high-efficiency tool for deleting resistance or virulence genes in bacteria. IMPORTANCE Staphylococcus aureus is a pathogen that can cause a wide range of infections in humans. Studies have suggested that CRISPR-Cas systems can drive the loss of integrated mobile genetic elements (MGEs) by chromosomal targeting. Here we demonstrate that CRISPR-mediated cleavage contributes to the partial deletion of integrated SCC mec in methicillin-resistant S. aureus (MRSA), which provides a strategy for the treatment of MRSA infections. The spacer within artificial CRISPR arrays should contain more than 25 nucleotides for immunity, and consecutive trinucleotide pairings between a selected target and the 5' tag of crRNA can block targeting. These findings add to our understanding of the molecular mechanisms of the type III-A CRISPR-Cas system and provide a novel strategy for the exploitation of engineered CRISPR immunity against integrated MGEs in bacteria for clinical and industrial applications.
Opposing Brain Differences in 16p11.2 Deletion and Duplication Carriers
Qureshi, Abid Y.; Mueller, Sophia; Snyder, Abraham Z.; Mukherjee, Pratik; Berman, Jeffrey I.; Roberts, Timothy P.L.; Nagarajan, Srikantan S.; Spiro, John E.; Chung, Wendy K.; Sherr, Elliott H.
2014-01-01
Deletions and duplications of the recurrent ∼600 kb chromosomal BP4–BP5 region of 16p11.2 are associated with a broad variety of neurodevelopmental outcomes including autism spectrum disorder. A clue to the pathogenesis of the copy number variant (CNV)'s effect on the brain is that the deletion is associated with a head size increase, whereas the duplication is associated with a decrease. Here we analyzed brain structure in a clinically ascertained group of human deletion (N = 25) and duplication (N = 17) carriers from the Simons Variation in Individuals Project compared with age-matched controls (N = 29 and 33, respectively). Multiple brain measures showed increased size in deletion carriers and reduced size in duplication carriers. The effects spanned global measures of intracranial volume, brain size, compartmental measures of gray matter and white matter, subcortical structures, and the cerebellum. Quantitatively, the largest effect was on the thalamus, but the collective results suggest a pervasive rather than a selective effect on the brain. Detailed analysis of cortical gray matter revealed that cortical surface area displays a strong dose-dependent effect of CNV (deletion > control > duplication), whereas average cortical thickness is less affected. These results suggest that the CNV may exert its opposing influences through mechanisms that influence early stages of embryonic brain development. PMID:25143601
Newer cytotoxic agents: attacking cancer broadly.
Teicher, Beverly A
2008-03-15
The plasticity and instability of the cancer genome is impressive and is characterized by gene amplifications and deletions, rearrangements, and many silent and active mutations. Although targeted therapeutics have had effect in some diseases, there remains a large role for new cytotoxic agents that have the potential to be broadly active across multiple cancers. Platinum-based regimens are the basis for treatment of several common tumors. Satraplatin and picoplatin are newer platinum complexes that form bulkier lesions in DNA than their forerunners. Microtubules are a key target for anticancer agents. Vinca alkaloid and similar compounds fragment these critical structures, whereas taxanes stabilize them. Vinflunine is a new fluorinated Vinca alkaloid derivative with vascular disrupting effects, as well as antitumor effects. Epothilones are a new class of microtubule stabilizers. Mitosis has been targeted directly and indirectly by many anticancer agents. The aurora kinases are new targets in this class. Inhibitors of aurora kinases are likely to be cytotoxic. Finally, protein regulation is essential for cellular integrity. With the approval of bortezomib (Velcade, PS-341), the proteosome, a master protein regulator, has been validated as an anticancer target. The five articles in this issue of CCR Focus present the current status of these next generation cytotoxic agents.
Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly
2013-01-01
We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587
Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo; Xu, Ge-Zhi
2017-01-01
Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. We identified two novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype-phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling.
Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M.; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo
2017-01-01
Purpose Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. Methods To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Results Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. Conclusions We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype–phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling. PMID:28867931
Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N
2003-09-01
Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.
Generating Bona Fide Mammalian Prions with Internal Deletions.
Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Chapuis, Jérôme; Ciric, Danica; Igel-Egalon, Angelique; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel
2016-08-01
Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative disorders. Other aggregation-prone proteins appear to have a prion-like mode of expansion in brains, such as in Alzheimer's or Parkinson's diseases. To date, the resolution of prion structure remains elusive. Thus, to genetically define the landscape of regions critical for prion conversion, we tested the effect of short deletions. We found that, surprisingly, removal of a portion of PrP, the C terminus of alpha-helix H2, did not hamper prion formation but generated infectious agents with an internal deletion that showed characteristics essentially similar to those of original infecting strains. Thus, we demonstrate that completeness of the residues inside prions is not necessary for maintaining infectivity and the main strain-specific information, while reporting one of the few if not the only bona fide prions with an internal deletion. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Generating Bona Fide Mammalian Prions with Internal Deletions
Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Chapuis, Jérôme; Ciric, Danica; Igel-Egalon, Angelique; Laude, Hubert; Béringue, Vincent; Rezaei, Human
2016-01-01
ABSTRACT Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. IMPORTANCE Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative disorders. Other aggregation-prone proteins appear to have a prion-like mode of expansion in brains, such as in Alzheimer's or Parkinson's diseases. To date, the resolution of prion structure remains elusive. Thus, to genetically define the landscape of regions critical for prion conversion, we tested the effect of short deletions. We found that, surprisingly, removal of a portion of PrP, the C terminus of alpha-helix H2, did not hamper prion formation but generated infectious agents with an internal deletion that showed characteristics essentially similar to those of original infecting strains. Thus, we demonstrate that completeness of the residues inside prions is not necessary for maintaining infectivity and the main strain-specific information, while reporting one of the few if not the only bona fide prions with an internal deletion. PMID:27226369
Nakamura, Akinori; Fueki, Noboru; Shiba, Naoko; Motoki, Hirohiko; Miyazaki, Daigo; Nishizawa, Hitomi; Echigoya, Yusuke; Yokota, Toshifumi; Aoki, Yoshitsugu; Takeda, Shin'ichi
2016-07-01
Few cases of dystrophinopathy show an asymptomatic phenotype with mutations in the 5' (exons 3-7) hot spot in the Duchenne muscular dystrophy (DMD) gene. Our patient showed increased serum creatine kinase levels at 12 years of age. A muscle biopsy at 15 years of age led to a diagnosis of Becker muscular dystrophy. The patient showed a slight decrease in cardiac function at the age of 21 years and was administered a β-blocker, but there was no muscle involvement even at the age of 27 years. A deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene was detected, and dystrophin protein expression was ∼15% that of control level. We propose that in-frame deletion of exons 3-9 may produce a functional protein, and that multiexon skipping therapy targeting these exons may be feasible for severe dystrophic patients with a mutation in the 5' hot spot of the DMD gene.
diCenzo, George C; Finan, Turlough M
2018-01-01
The rate at which all genes within a bacterial genome can be identified far exceeds the ability to characterize these genes. To assist in associating genes with cellular functions, a large-scale bacterial genome deletion approach can be employed to rapidly screen tens to thousands of genes for desired phenotypes. Here, we provide a detailed protocol for the generation of deletions of large segments of bacterial genomes that relies on the activity of a site-specific recombinase. In this procedure, two recombinase recognition target sequences are introduced into known positions of a bacterial genome through single cross-over plasmid integration. Subsequent expression of the site-specific recombinase mediates recombination between the two target sequences, resulting in the excision of the intervening region and its loss from the genome. We further illustrate how this deletion system can be readily adapted to function as a large-scale in vivo cloning procedure, in which the region excised from the genome is captured as a replicative plasmid. We next provide a procedure for the metabolic analysis of bacterial large-scale genome deletion mutants using the Biolog Phenotype MicroArray™ system. Finally, a pipeline is described, and a sample Matlab script is provided, for the integration of the obtained data with a draft metabolic reconstruction for the refinement of the reactions and gene-protein-reaction relationships in a metabolic reconstruction.
Lange, Alexander W.; Sridharan, Anusha; Xu, Yan; Stripp, Barry R.; Perl, Anne-Karina; Whitsett, Jeffrey A.
2015-01-01
The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. PMID:25480985
Bornert, Olivier; Kühl, Tobias; Bremer, Jeroen; van den Akker, Peter C; Pasmooij, Anna MG; Nyström, Alexander
2016-01-01
Genetically evoked deficiency of collagen VII causes dystrophic epidermolysis bullosa (DEB)—a debilitating disease characterized by chronic skin fragility and progressive fibrosis. Removal of exons carrying frame-disrupting mutations can reinstate protein expression in genetic diseases. The therapeutic potential of this approach is critically dependent on gene, protein, and disease intrinsic factors. Naturally occurring exon skipping in COL7A1, translating collagen VII, suggests that skipping of exons containing disease-causing mutations may be feasible for the treatment of DEB. However, despite a primarily in-frame arrangement of exons in the COL7A1 gene, no general conclusion of the aptitude of exon skipping for DEB can be drawn, since regulation of collagen VII functionality is complex involving folding, intra- and intermolecular interactions. To directly address this, we deleted two conceptually important exons located at both ends of COL7A1, exon 13, containing recurrent mutations, and exon 105, predicted to impact folding. The resulting recombinantly expressed proteins showed conserved functionality in biochemical and in vitro assays. Injected into DEB mice, the proteins promoted skin stability. By demonstrating functionality of internally deleted collagen VII variants, our study provides support of targeted exon deletion or skipping as a potential therapy to treat a large number of individuals with DEB. PMID:27157667
Liu, Xin; Han, Qi; Xu, Jianhong; Wang, Jian; Shi, Jianrong
2015-11-10
In this study, we characterized FgIlv2 and FgIlv6, the catalytic and regulatory subunits of acetohydroxyacid synthase (AHAS) from the important wheat head scab fungus Fusarium graminearum. AHAS catalyzes the first common step in the parallel pathways toward branched-chain amino acids (BCAAs: isoleucine, leucine, valine) and is the inhibitory target of several commercialized herbicides. Both FgILV2 and FgILV6 deletion mutants were BCAA-auxotrophic and showed reduced aerial hyphal growth and red pigmentation when cultured on PDA plates. Conidial formation was completely blocked in the FgILV2 deletion mutant ΔFgIlv2-4 and significantly reduced in the FgILV6 deletion mutant ΔFgIlv6-12. The auxotrophs of ΔFgIlv2-4 and ΔFgIlv6-12 could be restored by exogenous addition of BCAAs but relied on the designated nitrogen source the medium contained. Deletion of FgILV2 or FgILV6 also leads to hypersensitivity to various cellular stresses and reduced deoxynivalenol production. ΔFgIlv2-4 lost virulence completely on flowering wheat heads, whereas ΔFgIlv6-12 could cause scab symptoms in the inoculated spikelet but lost its aggressiveness. Taken together, our study implies the potential value of antifungals targeting both FgIlv2 and FgIlv6 in F. graminearum.
Lee, Jinwoo; Jefcoate, Colin
2017-01-01
Recent advances in fluorescence microscopy, coupled with CRISPR/Cas9 gene editing technology, provide opportunities for understanding gene regulation at the single-cell level. The application of direct imaging shown here provides an in situ side-by-side comparison of CRISPR/Cas9-edited cells and adjacent unedited cells. We apply this methodology to the steroidogenic acute regulatory protein (StAR) gene in Y-1 adrenal cells and MA-10 testis cells. StAR is a gatekeeper protein that controls the access of cholesterol from the cytoplasm to the inner mitochondria. The loss of this mitochondrial cholesterol transfer mediator rapidly increases lipid droplets in cells, as seen in StAR−/− mice. Here, we describe a dual CRISPR/Cas9 strategy marked by GFP/mCherry expression that deletes StAR activity within 12 h. We used single-molecule fluorescence in situ hybridization (sm-FISH) imaging to directly monitor the time course of gene editing in single cells. We achieved StAR gene deletion at high efficiency dual gRNA targeting to the proximal promoter and exon 2. Seventy percent of transfected cells showed a slow DNA deletion as measured by PCR, and loss of Br-cAMP stimulated transcription. This DNA deletion was seen by sm-FISH in both loci of individual cells relative to non-target Cyp11a1 and StAR exon 7. sm-FISH also distinguishes two effects on stimulated StAR expression without this deletion. Br-cAMP stimulation of primary and spliced StAR RNA at the gene loci were removed within 4 h in this dual CRISPR/Cas9 strategy before any effect on cytoplasmic mRNA and protein occurred. StAR mRNA disappeared between 12 and 24 h in parallel with this deletion, while cholesterol ester droplets increased fourfold. These alternative changes match distinct StAR expression processes. This dual gRNA and sm-FISH approach to CRISPR/Cas9 editing facilitates rapid testing of editing strategies and immediate assessment of single-cell adaptation responses without the perturbation of clonal expansion procedures. PMID:29118738
Bile system morphogenesis defects and liver dysfunction upon targeted deletion of HNF1beta.
Coffinier, Catherine; Gresh, Lionel; Fiette, Laurence; Tronche, François; Schütz, Günther; Babinet, Charles; Pontoglio, Marco; Yaniv, Moshe; Barra, Jacqueline
2002-04-01
The inactivation of the Hnf1beta gene identified an essential role in epithelial differentiation of the visceral endoderm and resulted in early embryonic death. In the present study, we have specifically inactivated this gene in hepatocytes and bile duct cells using the Cre/loxP system. Mutant animals exhibited severe jaundice caused by abnormalities of the gallbladder and intrahepatic bile ducts (IHBD). The paucity of small IHBD was linked to a failure in the organization of duct structures during liver organogenesis, suggesting an essential function of Hnf1b in bile duct morphogenesis. Mutant mice also lacked interlobular arteries. As HNF1beta is not expressed in these cells, it further emphasizes the link between arterial and biliary formation. Hepatocyte metabolism was also affected and we identified hepatocyte-specific HNF1beta target genes involved in bile acids sensing and in fatty acid oxidation.
NASA Astrophysics Data System (ADS)
Pei, Zheng; Shi, Guoli; Kondo, Saki; Ito, Masahiko; Maekawa, Aya; Suzuki, Mariko; Saito, Izumu; Suzuki, Tetsuro; Kanegae, Yumi
2013-12-01
First-generation adenovirus vectors (FG AdVs) expressing short-hairpin RNA (shRNA) effectively downregulate the expressions of target genes. However, this vector, in fact, expresses not only the transgene product, but also virus-associated RNAs (VA RNAs) that disturb cellular RNAi machinery. We have established a production method for VA-deleted AdVs lacking expression of VA RNAs. Here, we showed that the highest shRNA activity was obtained when the shRNA was inserted not at the popularly used E1 site, but at the E4 site. We then compared the activities of shRNAs against hepatitis C virus (HCV) expressed from VA-deleted AdVs or conventional AdVs. The VA-deleted AdVs inhibited HCV production much more efficiently. Therefore, VA-deleted AdVs were more effective than the currently used AdVs for shRNA downregulation, probably because of the lack of competition between VA RNAs and the shRNAs. These VA-deleted AdVs might enable more effective gene therapies for chronic hepatitis C.
NASA Astrophysics Data System (ADS)
Borghei, Yasaman-Sadat; Hosseini, Morteza; Ganjali, Mohammad Reza
2018-01-01
Here we describe a label-free detection strategy for large deletion mutation in breast cancer (BC) related gene BRCA1 based on a DNA-silver nanocluster (NC) fluorescence upon recognition-induced hybridization. The specific hybridization of DNA templated silver NCs fluorescent probe to target DNAs can act as effective templates for enhancement of AgNCs fluorescence, which can be used to distinguish the deletion of BRCA1 due to different fluorescence intensities. Under the optimal conditions, the fluorescence intensity of the DNA-AgNCs at emission peaks around 440 nm (upon excitation at 350 nm) increased with the increasing deletion type within a dynamic range from 1.0 × 10-10 to 2.4 × 10-6 M with a detection limit (LOD) of 6.4 × 10-11 M. In this sensing system, the normal type shows no significant fluorescence; on the other hand, the deletion type emits higher fluorescence than normal type. Using this nanobiosensor, we successfully determined mutation using the non-amplified genomic DNAs that were isolated from the BC cell line.
Lee, Sook-Jeong; Lee, Minho; Nam, Miyoung; Lee, Sol; Choi, Jian; Lee, Hye-Jin; Kim, Dong-Uk; Hoe, Kwang-Lae
2018-01-01
Abstract To identify target genes against silver nanoparticles (AgNPs), we screened a genome-wide gene deletion library of 4843 fission yeast heterozygous mutants covering 96% of all protein encoding genes. A total of 33 targets were identified by a microarray and subsequent individual confirmation. The target pattern of AgNPs was more similar to those of AgNO3 and H2O2, followed by Cd and As. The toxic effect of AgNPs on fission yeast was attributed to the intracellular uptake of AgNPs, followed by the subsequent release of Ag+, leading to the generation of reactive oxygen species (ROS). Next, we focused on the top 10 sensitive targets for further studies. As described previously, 7 nonessential targets were associated with detoxification of ROS, because their heterozygous mutants showed elevated ROS levels. Three novel essential targets were related to folate metabolism or cellular component organization, resulting in cell cycle arrest and no induction in the transcriptional level of antioxidant enzymes such as Sod1 and Gpx1 when 1 of the 2 copies was deleted. Intriguingly, met9 played a key role in combating AgNP-induced ROS generation via NADPH production and was also conserved in a human cell line. PMID:29294138
Lindner, Scott E.; Sartain, Mark J.; Hayes, Kiera; Harupa, Anke; Moritz, Robert L.; Kappe, Stefan H. I.; Vaughan, Ashley M.
2014-01-01
SUMMARY Malaria parasites scavenge nutrients from their host but also harbor enzymatic pathways for de novo macromolecule synthesis. One such pathway is apicoplast-targeted type II fatty acid synthesis, which is essential for late liver stage development in rodent malaria. It is likely that fatty acids synthesized in the apicoplast are ultimately incorporated into membrane phospholipids necessary for exoerythrocytic merozoite formation. We hypothesized that these synthesized fatty acids are being utilized for apicoplast-targeted phosphatidic acid synthesis, the phospholipid precursor. Phosphatidic acid is typically synthesized in a three-step reaction utilizing three enzymes: glycerol 3-phosphate dehydrogenase, glycerol 3-phosphate acyltransferase and lysophosphatidic acid acyltransferase. The Plasmodium genome is predicted to harbor genes for both apicoplast- and cytosol/endoplasmic reticulum-targeted phosphatidic synthesis. Our research shows that apicoplast-targeted P. yoelii glycerol 3-phosphate dehydrogenase and glycerol 3-phosphate acyltransferase are expressed only during liver stage development and deletion of the encoding genes resulted in late liver stage growth arrest and lack of merozoite differentiation. However, the predicted apicoplast-targeted lysophosphatidic acid acyltransferase gene was refractory to deletion and was expressed solely in the endoplasmic reticulum throughout the parasite lifecycle. Our results suggest that P. yoelii has an incomplete apicoplast-targeted phosphatidic acid synthesis pathway that is essential for liver stage maturation. PMID:24330260
Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system
Chen, Xiugui; Lu, Xuke; Shu, Na; Wang, Shuai; Wang, Junjuan; Wang, Delong; Guo, Lixue; Ye, Wuwei
2017-01-01
The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system has been widely used for genome editing in various plants because of its simplicity, high efficiency and design flexibility. However, to our knowledge, there is no report on the application of CRISPR/Cas9-mediated targeted mutagenesis in cotton. Here, we report the genome editing and targeted mutagenesis in upland cotton (Gossypium hirsutum L., hereafter cotton) using the CRISPR/Cas9 system. We designed two guide RNAs to target distinct sites of the cotton Cloroplastos alterados 1 (GhCLA1) and vacuolar H+-pyrophosphatase (GhVP) genes. Mutations in these two genes were detected in cotton protoplasts. Most of the mutations were nucleotide substitutions, with one nucleotide insertion and one substitution found in GhCLA1 and one deletion found in GhVP in cotton protoplasts. Subsequently, the two vectors were transformed into cotton shoot apexes through Agrobacterium-mediated transformation, resulting in efficient target gene editing. Most of the mutations were nucleotide deletions, and the mutation efficiencies were 47.6–81.8% in transgenic cotton plants. Evaluation using restriction-enzyme-PCR assay and sequence analysis detected no off-target mutations. Our results indicated that the CRISPR/Cas9 system was an efficient and specific tool for targeted mutagenesis of the cotton genome. PMID:28287154
Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system.
Chen, Xiugui; Lu, Xuke; Shu, Na; Wang, Shuai; Wang, Junjuan; Wang, Delong; Guo, Lixue; Ye, Wuwei
2017-03-13
The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system has been widely used for genome editing in various plants because of its simplicity, high efficiency and design flexibility. However, to our knowledge, there is no report on the application of CRISPR/Cas9-mediated targeted mutagenesis in cotton. Here, we report the genome editing and targeted mutagenesis in upland cotton (Gossypium hirsutum L., hereafter cotton) using the CRISPR/Cas9 system. We designed two guide RNAs to target distinct sites of the cotton Cloroplastos alterados 1 (GhCLA1) and vacuolar H + -pyrophosphatase (GhVP) genes. Mutations in these two genes were detected in cotton protoplasts. Most of the mutations were nucleotide substitutions, with one nucleotide insertion and one substitution found in GhCLA1 and one deletion found in GhVP in cotton protoplasts. Subsequently, the two vectors were transformed into cotton shoot apexes through Agrobacterium-mediated transformation, resulting in efficient target gene editing. Most of the mutations were nucleotide deletions, and the mutation efficiencies were 47.6-81.8% in transgenic cotton plants. Evaluation using restriction-enzyme-PCR assay and sequence analysis detected no off-target mutations. Our results indicated that the CRISPR/Cas9 system was an efficient and specific tool for targeted mutagenesis of the cotton genome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Saikat; Shi, Heliang; Habte, Habtom H.
The C-terminal alpha-helix of gp41 membrane-proximal external region (MPER; {sup 671}NWFDITNWLWYIK{sup 683}) encompassing 4E10/10E8 epitopes is an attractive target for HIV-1 vaccine development. We previously reported that gp41-HR1-54Q, a trimeric protein comprised of the MPER in the context of a stable six-helix bundle (6HB), induced strong immune responses against the helix, but antibodies were directed primarily against the non-neutralizing face of the helix. To better target 4E10/10E8 epitopes, we generated four putative fusion intermediates by introducing double point mutations or deletions in the heptad repeat region 1 (HR1) that destabilize 6HB in varying degrees. One variant, HR1-∆10-54K, elicited antibodies inmore » rabbits that targeted W672, I675 and L679, which are critical for 4E10/10E8 recognition. Overall, the results demonstrated that altering structural parameters of 6HB can influence immunogenic properties of the MPER and antibody targeting. Further exploration of this strategy could allow development of immunogens that could lead to induction of 4E10/10E8-like antibodies. - Highlights: • Four gp41 MPER-based immunogens that resemble fusion intermediates were generated. • C-terminal region of MPER that contains 4E10/10E8 epitopes was highly immunogenic. • Altering 6HB structure can influence immunogenic properties of the MPER. • Induced antibodies targeted multiple residues critical for 4E10/10E8 binding. • Development of immunogens based on fusion intermediates is a promising strategy.« less
The eukaryotic signal sequence, YGRL, targets the chlamydial inclusion
Kabeiseman, Emily J.; Cichos, Kyle H.; Moore, Elizabeth R.
2014-01-01
Understanding how host proteins are targeted to pathogen-specified organelles, like the chlamydial inclusion, is fundamentally important to understanding the biogenesis of these unique subcellular compartments and how they maintain autonomy within the cell. Syntaxin 6, which localizes to the chlamydial inclusion, contains an YGRL signal sequence. The YGRL functions to return syntaxin 6 to the trans-Golgi from the plasma membrane, and deletion of the YGRL signal sequence from syntaxin 6 also prevents the protein from localizing to the chlamydial inclusion. YGRL is one of three YXXL (YGRL, YQRL, and YKGL) signal sequences which target proteins to the trans-Golgi. We designed various constructs of eukaryotic proteins to test the specificity and propensity of YXXL sequences to target the inclusion. The YGRL signal sequence redirects proteins (e.g., Tgn38, furin, syntaxin 4) that normally do not localize to the chlamydial inclusion. Further, the requirement of the YGRL signal sequence for syntaxin 6 localization to inclusions formed by different species of Chlamydia is conserved. These data indicate that there is an inherent property of the chlamydial inclusion, which allows it to recognize the YGRL signal sequence. To examine whether this “inherent property” was protein or lipid in nature, we asked if deletion of the YGRL signal sequence from syntaxin 6 altered the ability of the protein to interact with proteins or lipids. Deletion or alteration of the YGRL from syntaxin 6 does not appreciably impact syntaxin 6-protein interactions, but does decrease syntaxin 6-lipid interactions. Intriguingly, data also demonstrate that YKGL or YQRL can successfully substitute for YGRL in localization of syntaxin 6 to the chlamydial inclusion. Importantly and for the first time, we are establishing that a eukaryotic signal sequence targets the chlamydial inclusion. PMID:25309881
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Sangjo; Lee, Minho; Chang, Hyeshik
Highlights: •The first compendium of chemical-genetic profiles form fission yeast was generated. •The first HTS of drug mode-of-action in fission yeast was performed. •The first comparative chemical genetic analysis between two yeasts was conducted. -- Abstract: Genome-wide chemical genetic profiles in Saccharomyces cerevisiae since the budding yeast deletion library construction have been successfully used to reveal unknown mode-of-actions of drugs. Here, we introduce comparative approach to infer drug target proteins more accurately using two compendiums of chemical-genetic profiles from the budding yeast S. cerevisiae and the fission yeast Schizosaccharomyces pombe. For the first time, we established DNA-chip based growth defectmore » measurement of genome-wide deletion strains of S. pombe, and then applied 47 drugs to the pooled heterozygous deletion strains to generate chemical-genetic profiles in S. pombe. In our approach, putative drug targets were inferred from strains hypersensitive to given drugs by analyzing S. pombe and S. cerevisiae compendiums. Notably, many evidences in the literature revealed that the inferred target genes of fungicide and bactericide identified by such comparative approach are in fact the direct targets. Furthermore, by filtering out the genes with no essentiality, the multi-drug sensitivity genes, and the genes with less eukaryotic conservation, we created a set of drug target gene candidates that are expected to be directly affected by a given drug in human cells. Our study demonstrated that it is highly beneficial to construct the multiple compendiums of chemical genetic profiles using many different species. The fission yeast chemical-genetic compendium is available at (http://pombe.kaist.ac.kr/compendium)« less
Potential complications when developing gene deletion clones in Xylella fastidiosa.
Johnson, Kameka L; Cursino, Luciana; Athinuwat, Dusit; Burr, Thomas J; Mowery, Patricia
2015-04-16
The Gram-negative xylem-limited bacterium, Xylella fastidiosa, is an important plant pathogen that infects a number of high value crops. The Temecula 1 strain infects grapevines and induces Pierce's disease, which causes symptoms such as scorching on leaves, cluster collapse, and eventual plant death. In order to understand the pathogenesis of X. fastidiosa, researchers routinely perform gene deletion studies and select mutants via antibiotic markers. Site-directed pilJ mutant of X. fastidiosa were generated and selected on antibiotic media. Mutant cultures were assessed by PCR to determine if they were composed of purely transformant cells or included mixtures of non-transformants cells. Then pure pilJ mutant and wildtype cells were mixed in PD2 medium and following incubation and exposure to kanamycin were assessed by PCR for presence of mutant and wildtype populations. We have discovered that when creating clones of targeted mutants of X. fastidiosa Temecula 1 with selection on antibiotic plates, X. fastidiosa lacking the gene deletion often persist in association with targeted mutant cells. We believe this phenomenon is due to spontaneous antibiotic resistance and/or X. fastidiosa characteristically forming aggregates that can be comprised of transformed and non-transformed cells. A combined population was confirmed by PCR, which showed that targeted mutant clones were mixed with non-transformed cells. After repeated transfer and storage the non-transformed cells became the dominant clone present. We have discovered that special precautions are warranted when developing a targeted gene mutation in X. fastidiosa because colonies that arise following transformation and selection are often comprised of transformed and non-transformed cells. Following transfer and storage the cells can consist primarily of the non-transformed strain. As a result, careful monitoring of targeted mutant strains must be performed to avoid mixed populations and confounding results.
Zou, Qian; Zhan, Ping; Lv, Tangfeng; Song, Yong
2015-12-01
BIM deletion polymorphism is a germline that might lead to little or no BH3 expression, which affects epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) related apoptosis. Recent studies show that BIM deletion polymorphism might be a critical factor leading to the resistance of EGFR-TKIs in EGFR mutation-positive non-small cell lung cancer (NSCLC) patients. Thus, a meta-analysis was conducted by combing seven original eligible studies including 778 NSCLC patients to investigate a steady and reliable conclusion. Our study indicated that BIM deletion polymorphism was significantly associated with the poor objective response rate (ORR) of EGFR-TKIs in EGFR-mutated NSCLC patients [odds ratios (OR) =0.55, 95% confidence interval (CI), 0.33-0.92]. And disease control rate (DCR) in EGFR-mutate NSCLC patients treated with EGFR-TKIs was significantly decreased in patients with BIM deletion polymorphism (OR=0.55, 95% CI, 0.27-1.12). Moreover, the progression-free survival (PFS) of patients with BIM deletion polymorphism is shorter. These findings suggested that BIM deletion polymorphism might be a genetic cause of intrinsic resistance to TKI therapy and it could be emerged as an independent predictor to identify patients who would benefit from TKI targeted therapy in EGFR-mutated NSCLC.
Dostie, Josée; Lemire, Edmond; Bouchard, Philippe; Field, Michael; Jones, Kristie; Lorenz, Birgit; Menten, Björn; Buysse, Karen; Pattyn, Filip; Friedli, Marc; Ucla, Catherine; Rossier, Colette; Wyss, Carine; Speleman, Frank; De Paepe, Anne; Dekker, Job; Antonarakis, Stylianos E.; De Baere, Elfride
2009-01-01
To date, the contribution of disrupted potentially cis-regulatory conserved non-coding sequences (CNCs) to human disease is most likely underestimated, as no systematic screens for putative deleterious variations in CNCs have been conducted. As a model for monogenic disease we studied the involvement of genetic changes of CNCs in the cis-regulatory domain of FOXL2 in blepharophimosis syndrome (BPES). Fifty-seven molecularly unsolved BPES patients underwent high-resolution copy number screening and targeted sequencing of CNCs. Apart from three larger distant deletions, a de novo deletion as small as 7.4 kb was found at 283 kb 5′ to FOXL2. The deletion appeared to be triggered by an H-DNA-induced double-stranded break (DSB). In addition, it disrupts a novel long non-coding RNA (ncRNA) PISRT1 and 8 CNCs. The regulatory potential of the deleted CNCs was substantiated by in vitro luciferase assays. Interestingly, Chromosome Conformation Capture (3C) of a 625 kb region surrounding FOXL2 in expressing cellular systems revealed physical interactions of three upstream fragments and the FOXL2 core promoter. Importantly, one of these contains the 7.4 kb deleted fragment. Overall, this study revealed the smallest distant deletion causing monogenic disease and impacts upon the concept of mutation screening in human disease and developmental disorders in particular. PMID:19543368
Glaser-Schmitt, Amanda; Duchen, Pablo; Parsch, John
2016-01-01
Insertions and deletions (indels) are a major source of genetic variation within species and may result in functional changes to coding or regulatory sequences. In this study we report that an indel polymorphism in the 3’ untranslated region (UTR) of the metallothionein gene MtnA is associated with gene expression variation in natural populations of Drosophila melanogaster. A derived allele of MtnA with a 49-bp deletion in the 3' UTR segregates at high frequency in populations outside of sub-Saharan Africa. The frequency of the deletion increases with latitude across multiple continents and approaches 100% in northern Europe. Flies with the deletion have more than 4-fold higher MtnA expression than flies with the ancestral sequence. Using reporter gene constructs in transgenic flies, we show that the 3' UTR deletion significantly contributes to the observed expression difference. Population genetic analyses uncovered signatures of a selective sweep in the MtnA region within populations from northern Europe. We also find that the 3’ UTR deletion is associated with increased oxidative stress tolerance. These results suggest that the 3' UTR deletion has been a target of selection for its ability to confer increased levels of MtnA expression in northern European populations, likely due to a local adaptive advantage of increased oxidative stress tolerance. PMID:27120580
Kirchner, Thomas W; Niehaus, Markus; Debener, Thomas; Schenk, Manfred K; Herde, Marco
2017-01-01
A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which do not require germline transmission.
Deletions of fetal and adult muscle cDNA in Duchenne and Becker muscular dystrophy patients.
Cross, G S; Speer, A; Rosenthal, A; Forrest, S M; Smith, T J; Edwards, Y; Flint, T; Hill, D; Davies, K E
1987-01-01
We have isolated a cDNA molecule from a human adult muscle cDNA library which is deleted in several Duchenne muscular dystrophy patients. Patient deletions have been used to map the exons across the Xp21 region of the short arm of the X chromosome. We demonstrate that a very mildly affected 61 year old patient is deleted for at least nine exons of the adult cDNA. We find no evidence for differential exon usage between adult and fetal muscle in this region of the gene. There must therefore be less essential domains of the protein structure which can be removed without complete loss of function. The sequence of 2.0 kb of the adult cDNA shows no homology to any previously described protein listed in the data banks although sequence comparison at the amino acid level suggests that the protein has a structure not dissimilar to rod structures of cytoskeletal proteins such as lamin and myosin. There are single nucleotide differences in the DNA sequence between the adult and fetal cDNAs which result in amino acid changes but none that would be predicted to change the structure of the protein dramatically. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 7. PMID:3428261
Activity and structure of human acetyl-CoA carboxylase targeted by a specific inhibitor.
Jang, SoRi; Gornicki, Piotr; Marjanovic, Jasmina; Bass, Ethan; Lurcotta, Toni; Rodriguez, Pedro; Austin, Jotham; Haselkorn, Robert
2018-05-17
We have studied a series of human acetyl CoA-carboxylase (ACC) 1 and ACC2 proteins with deletions and/or Ser to Ala substitutions of the known phosphorylation sites. In vitro dephosphorylation/phosphorylation experiments reveal a substantial level of phosphorylation of human ACCs produced in insect cells. Our results are consistent with AMPK phosphorylation of Ser 29, Ser 80 , Ser 1,201 and Ser 1,216 . Phosphorylation of the N-terminal regulatory domain decreases ACC1 activity, while phosphorylation of residues in the ACC central domain has no effect. Inhibition of the activity by phosphorylation is significantly more profound at citrate concentrations below 2 mM. Furthermore, deletion of the N-terminal domain facilitates structural changes induced by citrate, including conversion of ACC dimers to linear polymers. We have also identified ACC2 amino acid mutations affecting specific inhibition of the isozyme by compound CD-017-0191. They form two clusters separated by 60-90 Å: one located in the vicinity of the BC active site and the other one in the vicinity of the ACC1 phosphorylation sites in the central domain, suggesting a contribution of the interface of two ACC dimers in the polymer to the inhibitor binding site. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shomrat, R.; Gluck, E.; Legum, C.
1994-02-15
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and themore » remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.« less
Activating HER2 mutations in HER2 gene amplification negative breast cancer.
Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J
2013-02-01
Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.
Lynx1 Limits Dendritic Spine Turnover in the Adult Visual Cortex
Sajo, Mari
2016-01-01
Dendritic spine turnover becomes limited in the adult cerebral cortex. Identification of specific aspects of spine dynamics that can be unmasked in adulthood and its regulatory molecular mechanisms could provide novel therapeutic targets for inducing plasticity at both the functional and structural levels for robust recovery from brain disorders and injuries in adults. Lynx1, an endogenous inhibitor of nicotinic acetylcholine receptors, was previously shown to increase its expression in adulthood and thus to limit functional ocular dominance plasticity in adult primary visual cortex (V1). However, the role of this “brake” on spine dynamics is not known. We examined the contribution of Lynx1 on dendritic spine turnover before and after monocular deprivation (MD) in adult V1 with chronic in vivo imaging using two-photon microscopy and determined the spine turnover rate of apical dendrites of layer 5 (L5) and L2/3 pyramidal neurons in adult V1 of Lynx1 knock-out (KO) mice. We found that the deletion of Lynx1 doubled the baseline spine turnover rate, suggesting that the spine dynamics in the adult cortex is actively limited by the presence of Lynx1. After MD, adult Lynx1-KO mice selectively exhibit higher rate of spine loss with no difference in gain rate in L5 neurons compared with control wild-type counterparts, revealing a key signature of spine dynamics associated with robust functional plasticity in adult V1. Overall, Lynx1 could be a promising therapeutic target to induce not only functional, but also structural plasticity at the level of spine dynamics in the adult brain. SIGNIFICANCE STATEMENT Dendritic spine turnover becomes limited in the adult cortex. In mouse visual cortex, a premier model of experience-dependent plasticity, we found that the deletion of Lynx1, a nicotinic “brake” for functional plasticity, doubled the baseline spine turnover in adulthood, suggesting that the spine dynamics in the adult cortex is actively limited by Lynx1. After visual deprivation, spine loss, but not gain rate, remains higher in adult Lynx1 knock-out mice than in control wild-type mice, revealing a key signature of spine dynamics associated with robust functional plasticity. Lynx1 would be a promising target to induce not only functional, but also structural plasticity at the level of spine dynamics in adulthood. PMID:27605620
A nanocompartment system (Synthosome) designed for biotechnological applications.
Nallani, Madhavan; Benito, Samantha; Onaca, Ozana; Graff, Alexandra; Lindemann, Marcus; Winterhalter, Mathias; Meier, Wolfgang; Schwaneberg, Ulrich
2006-05-03
A nanocompartment system based on two deletion mutants of the large channel protein FhuA (FhuA Delta1-129; FhuA Delta1-160) and an ABA triblock copolymer (PMOXA-PDMS-PMOXA) has been developed for putative biotechnological applications. FhuA is ideally suited for applications in biotechnology due to its monomeric structure, large pore diameter (39-46 A elliptical cross-section) that ensures rapid compound flux, and solved crystallographic structure. Two areas of application were targeted as proof of principle: (A) selective product recovery in nanocompartments and (B) enzymatic conversion in nanocompartments. Selective recovery of negatively charged compounds has been achieved on the example of sulforhodamine B by using positively charged polylysine molecules as trap inside the nanocompartment. Conversion in nanocompartments has been achieved by 3,3',5,5'-tetramethylbenzidine oxidation employing horseradish peroxidase (HRP).
Transgenic mice in developmental toxicology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woychik, R.P.
1992-12-31
Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areasmore » of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.« less
Transgenic mice in developmental toxicology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woychik, R.P.
1992-01-01
Advances in molecular biology and embryology are being utilized for the generation of transgenic mice, animals that contain specific additions, deletions, or modifications of genes or sequences in their DNA. Mouse embryonic stem cells and homologous recombination procedures have made it possible to target specific DNA structural alterations to highly localized region in the host chromosomes. The majority of the DNA structural rearrangements in transgenic mice can be passed through the germ line and used to establish new genetic traits in the carrier animals. Since the use of transgenic mice is having such an enormous impact on so many areasmore » of mammalian biological research, including developmental toxicology, the objective of this review is to briefly describe the fundamental methodologies for generating transgenic mice and to describe one particular application that has direct relevance to the field of genetic toxicology.« less
Singh, Rashmi Bhat; Amare Kadam, Pratibha S
2013-10-01
To investigate the most recurrent deletion loci on 3p12-p26 by deletion mapping studies by PCR-LOH and BAC array-FISH in sporadic conventional renal cell carcinoma (cRCC) and further, to evaluate the their clinicopathologic significance in cRCC. Comparative allelotyping studies in cRCC and major epithelial carcinomas (MEC) such as lung, breast, and bladder tumors were also carried out to investigate the specificity of the targeted loci in cRCC. A total of 40 c-RCC patients were enrolled in this study, categorized in to 2 groups: group I comprises of patients of stages I and II and group II includes patients at stages III and IV. Loss of heterozygosity (LOH) studies were performed by PCR using 15 microsatellite markers of region 3p12-p26 on paired normal-tumor tissues. The recurrent LOH loci found in 27 cRCC tumors were further validated by BAC array-FISH using 23 serially mapped BAC clones. Simultaneously, the allelic deletion status of fragile histidine triad (FHIT) gene was studied by FISH in cRCC and major epithelial carcinoma (MEC) tumors. The numerical aberrations of chromosome 3 were also studied using the centromere enumeration probe (CEP) probe for chromosome 3 to validate the observed allelic losses by BAC array-FISH in cRCC as well as MECs. Our study revealed 3 affected regions of LOH on 3p in cRCC: 3p12.2-p14.1, 3p14.2-p21.1, and 3p24.2-p26.1 in both group I (stages I and II) and group II (stage III and IV). Comparative allelotyping studies revealed that except for LOH loci D3S2406 (20%), D3S1766 (14%), and D3S1560 (20%), remaining affected loci revealed retention of heterozygosity (ROH) in breast carcinomas. Lung and bladder tumors revealed ROH at all affected LOH loci. FISH with FHIT gene probe revealed deletions in cRCC (88%), breast (30%), and lung tumors (10%). FHIT gene deletions frequency was almost equal in both groups I and II (>70%), whereas a locus 3p13 (D3S2454) revealed the highest LOH in group II (83%) patients in comparison to group I (16%). BAC array-FISH studies in cRCC identified 15 recurrent deletion loci at crucial regions, 3p12.2, 3p14.2, 3p21.3, and 3p24.2-p26 with long continuous deletion of 3p14.1-p26.1 exclusively in patients of stages III and IV. Validation of LOH loci in breast carcinomas by BAC array-FISH with BAC clones mapped at these loci revealed comparatively lower deletion frequency for RP11-59E22 (3p12.2) (30%), RP11-759B7(3p21.1) (12%), and RP11-57D6 (3p25.2, proximal to VHL) (15%) than cRCC. Molecular cytogenetic studies by BAC array-FISH was found to be more sensitive over LOH. Deletion patterns on 3p explored that deletion of FHIT and flanking loci may occur as an initiating event followed by deletions at 3p12.2, 3p21.31-3p21.32, and 3p24.2-3p26.1 in the initial stage of development of disease, while continuous large deletions of 3p21.3-3p26.1 and 3p14.1-3p26.1 occur as progressive deletion due to genetic instability. Lack of VHL along with flanking loci in 50% cRCC patients that included both groups I and II supported the hypothesis of both VHL dependent and VHL independent pathways in cRCC tumorigenesis. Comparative allelotyping studies in cRCC and MECs indicated association of specific targeted loci including VHL in cRCC. Further expansion of these studies with characterization of the genes at targeted loci and correlation with clinical outcome will explore the prognostic significance and also provide an insight into the mechanisms of tumor suppressive pathways in genitourinary cancers such as CRCC. Copyright © 2013 Elsevier Inc. All rights reserved.
DNA Secondary Structure at Chromosomal Fragile Sites in Human Disease
Thys, Ryan G; Lehman, Christine E; Pierce, Levi C. T; Wang, Yuh-Hwa
2015-01-01
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease. PMID:25937814
Genome engineering using a synthetic gene circuit in Bacillus subtilis.
Jeong, Da-Eun; Park, Seung-Hwan; Pan, Jae-Gu; Kim, Eui-Joong; Choi, Soo-Keun
2015-03-31
Genome engineering without leaving foreign DNA behind requires an efficient counter-selectable marker system. Here, we developed a genome engineering method in Bacillus subtilis using a synthetic gene circuit as a counter-selectable marker system. The system contained two repressible promoters (B. subtilis xylA (Pxyl) and spac (Pspac)) and two repressor genes (lacI and xylR). Pxyl-lacI was integrated into the B. subtilis genome with a target gene containing a desired mutation. The xylR and Pspac-chloramphenicol resistant genes (cat) were located on a helper plasmid. In the presence of xylose, repression of XylR by xylose induced LacI expression, the LacIs repressed the Pspac promoter and the cells become chloramphenicol sensitive. Thus, to survive in the presence of chloramphenicol, the cell must delete Pxyl-lacI by recombination between the wild-type and mutated target genes. The recombination leads to mutation of the target gene. The remaining helper plasmid was removed easily under the chloramphenicol absent condition. In this study, we showed base insertion, deletion and point mutation of the B. subtilis genome without leaving any foreign DNA behind. Additionally, we successfully deleted a 2-kb gene (amyE) and a 38-kb operon (ppsABCDE). This method will be useful to construct designer Bacillus strains for various industrial applications. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Trujillano, D; Ramos, M D; González, J; Tornador, C; Sotillo, F; Escaramis, G; Ossowski, S; Armengol, L; Casals, T; Estivill, X
2013-07-01
Here we have developed a novel and much more efficient strategy for the complete molecular characterisation of the cystic fibrosis (CF) transmembrane regulator (CFTR) gene, based on multiplexed targeted resequencing. We have tested this approach in a cohort of 92 samples with previously characterised CFTR mutations and polymorphisms. After enrichment of the pooled barcoded DNA libraries with a custom NimbleGen SeqCap EZ Choice array (Roche) and sequencing with a HiSeq2000 (Illumina) sequencer, we applied several bioinformatics tools to call mutations and polymorphisms in CFTR. The combination of several bioinformatics tools allowed us to detect all known pathogenic variants (point mutations, short insertions/deletions, and large genomic rearrangements) and polymorphisms (including the poly-T and poly-thymidine-guanine polymorphic tracts) in the 92 samples. In addition, we report the precise characterisation of the breakpoints of seven genomic rearrangements in CFTR, including those of a novel deletion of exon 22 and a complex 85 kb inversion which includes two large deletions affecting exons 4-8 and 12-21, respectively. This work is a proof-of-principle that targeted resequencing is an accurate and cost-effective approach for the genetic testing of CF and CFTR-related disorders (ie, male infertility) amenable to the routine clinical practice, and ready to substitute classical molecular methods in medical genetics.
Angeloni, Debora; ter Elst, Arja; Wei, Ming Hui; van der Veen, Anneke Y; Braga, Eleonora A; Klimov, Eugene A; Timmer, Tineke; Korobeinikova, Luba; Lerman, Michael I; Buys, Charles H C M
2006-07-01
Homozygous deletions or loss of heterozygosity (LOH) at human chromosome band 3p12 are consistent features of lung and other malignancies, suggesting the presence of a tumor suppressor gene(s) (TSG) at this location. Only one gene has been cloned thus far from the overlapping region deleted in lung and breast cancer cell lines U2020, NCI H2198, and HCC38. It is DUTT1 (Deleted in U Twenty Twenty), also known as ROBO1, FLJ21882, and SAX3, according to HUGO. DUTT1, the human ortholog of the fly gene ROBO, has homology with NCAM proteins. Extensive analyses of DUTT1 in lung cancer have not revealed any mutations, suggesting that another gene(s) at this location could be of importance in lung cancer initiation and progression. Here, we report the discovery of a new, small, homozygous deletion in the small cell lung cancer (SCLC) cell line GLC20, nested in the overlapping, critical region. The deletion was delineated using several polymorphic markers and three overlapping P1 phage clones. Fiber-FISH experiments revealed the deletion was approximately 130 kb. Comparative genomic sequence analysis uncovered short sequence elements highly conserved among mammalian genomes and the chicken genome. The discovery of two EST clusters within the deleted region led to the isolation of two noncoding RNA (ncRNA) genes. These were subsequently found differentially expressed in various tumors when compared to their normal tissues. The ncRNA and other highly conserved sequence elements in the deleted region may represent miRNA targets of importance in cancer initiation or progression. Published 2006 Wiley-Liss, Inc.
Kohmoto, Tomohiro; Naruto, Takuya; Watanabe, Miki; Fujita, Yuji; Ujiro, Sae; Okamoto, Nana; Horikawa, Hideaki; Masuda, Kiyoshi; Imoto, Issei
2017-04-01
Mesomelia-synostoses syndrome (MSS) is a rare, autosomal-dominant, syndromal osteochondrodysplasia characterized by mesomelic limb shortening, acral synostoses, and multiple congenital malformations due to a non-recurrent deletion at 8q13 that always encompasses two coding-genes, SULF1 and SLCO5A1. To date, five unrelated patients have been reported worldwide, and MMS was previously proposed to not be a genomic disorder associated with deletions recurring from non-allelic homologous recombination (NAHR) in at least two analyzed cases. We conducted targeted gene panel sequencing and subsequent array-based copy number analysis in an 11-year-old undiagnosed Japanese female patient with multiple congenital anomalies that included mesomelic limb shortening and detected a novel 590 Kb deletion at 8q13 encompassing the same gene set as reported previously, resulting in the diagnosis of MSS. Breakpoint sequences of the deleted region in our case demonstrated the first LINE-1s (L1s)-mediated unequal NAHR event utilizing two distant L1 elements as homology substrates in this disease, which may represent a novel causative mechanism of the 8q13 deletion, expanding the range of mechanisms involved in the chromosomal rearrangements responsible for MSS. © 2017 Wiley Periodicals, Inc.
Exome-first approach identified a novel gloss deletion associated with Lowe syndrome.
Watanabe, Miki; Nakagawa, Ryuji; Kohmoto, Tomohiro; Naruto, Takuya; Suga, Ken-Ichi; Goji, Aya; Horikawa, Hideaki; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei
2016-01-01
Lowe syndrome (LS) is an X-linked disorder affecting the eyes, nervous system and kidneys, typically caused by missense or nonsense/frameshift OCRL mutations. We report a 6-month-old male clinically suspected to have LS, but without the Fanconi-type renal dysfunction. Using a targeted-exome sequencing-first approach, LS was diagnosed by the identification of a deletion involving 1.7 Mb at Xq25-q26.1, encompassing the entire OCRL gene and neighboring loci.
Exome-first approach identified a novel gloss deletion associated with Lowe syndrome
Watanabe, Miki; Nakagawa, Ryuji; Kohmoto, Tomohiro; Naruto, Takuya; Suga, Ken-ichi; Goji, Aya; Horikawa, Hideaki; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei
2016-01-01
Lowe syndrome (LS) is an X-linked disorder affecting the eyes, nervous system and kidneys, typically caused by missense or nonsense/frameshift OCRL mutations. We report a 6-month-old male clinically suspected to have LS, but without the Fanconi-type renal dysfunction. Using a targeted-exome sequencing-first approach, LS was diagnosed by the identification of a deletion involving 1.7 Mb at Xq25-q26.1, encompassing the entire OCRL gene and neighboring loci. PMID:27867521
CRISPR-mediated direct mutation of cancer genes in the mouse liver
Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S.; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G.; Zhang, Feng; Anderson, Daniel G.; Sharp, Phillip A.; Jacks, Tyler
2014-01-01
The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem (ES) cells1. Here we describe a new method of cancer model generation using the CRISPR/Cas system in vivo in wild-type mice. We have used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs)2–4 to the liver and directly target the tumor suppressor genes Pten5 and p536, alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology7, 8. Simultaneous targeting of Pten and p53 induced liver tumors that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumor tissue revealed insertion or deletion (indel) mutations of the tumor suppressor genes, including bi-allelic mutations of both Pten and p53 in tumors. Furthermore, co-injection of Cas9 plasmids harboring sgRNAs targeting the β-Catenin gene (Ctnnb1) and a single-stranded DNA (ssDNA) oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-Catenin. This study demonstrates the feasibility of direct mutation of tumor suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics. PMID:25119044
CRISPR-mediated direct mutation of cancer genes in the mouse liver.
Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G; Zhang, Feng; Anderson, Daniel G; Sharp, Phillip A; Jacks, Tyler
2014-10-16
The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the β-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.
A resource of vectors and ES cells for targeted deletion of microRNAs in mice
Prosser, Haydn M.; Koike-Yusa, Hiroko; Cooper, James D.; Law, Frances C.; Bradley, Allan
2011-01-01
The 21-23 nucleotide single-stranded RNAs classified as microRNAs (miRNA) perform fundamental roles in a wide range of cellular and developmental processes. miRNAs regulate protein expression through sequence-specific base pairing with target messenger RNAs (mRNA) reducing both their stability and the process of protein translation1, 2. At least 30% of protein coding genes appear to be conserved targets for miRNAs1. In contrast to the protein coding genes3, 4, no public resource of miRNA mouse mutant alleles exists. We have generated a library of highly germ-line transmissible C57BL/6N mouse mutant embryonic stem (ES) cells with targeted deletions for the majority of miRNA genes currently annotated within the miRBase registry5. These alleles have been designed to be highly adaptable research tools that can be efficiently altered to create reporter, conditional and other allelic variants. This ES cell resource can be searched electronically and is available from ES cell repositories for distribution to the scientific community6. PMID:21822254
Kilo-sequencing: an ordered strategy for rapid DNA sequence data acquisition.
Barnes, W M; Bevan, M
1983-01-01
A strategy for rapid DNA sequence acquisition in an ordered, nonrandom manner, while retaining all of the conveniences of the dideoxy method with M13 transducing phage DNA template, is described. Target DNA 3 to 14 kb in size can be stably carried by our M13 vectors. Suitable targets are stretches of DNA which lack an enzyme recognition site which is unique on our cloning vectors and adjacent to the sequencing primer; current sites that are so useful when lacking are Pst, Xba, HindIII, BglII, EcoRI. By an in vitro procedure, we cut RF DNA once randomly and once specifically, to create thousands of deletions which start at the unique restriction site adjacent to the dideoxy sequencing primer and extend various distances across the target DNA. Phage carrying a desired size of deletions, whose DNA as template will give rise to DNA sequence data in a desired location along the target DNA, may be purified by electrophoresis alive on agarose gels. Phage running in the same location on the agarose gel thus conveniently give rise to nucleotide sequence data from the same kilobase of target DNA. Images PMID:6298723
Seligmann, Hervé
2016-01-01
In mitochondria, secondary structures punctuate post-transcriptional RNA processing. Recently described transcripts match the human mitogenome after systematic deletions of every 4th, respectively every 4th and 5th nucleotides, called delRNAs. Here I explore predicted stem-loop hairpin formation by delRNAs, and their associations with delRNA transcription and detected peptides matching their translation. Despite missing 25, respectively 40% of the nucleotides in the original sequence, del-transformed sequences form significantly more secondary structures than corresponding randomly shuffled sequences, indicating biological function, independently of, and in combination with, previously detected delRNA and thereof translated peptides. Self-hybridization decreases delRNA abundances, indicating downregulation. Systematic deletions of the human mitogenome reveal new, unsuspected coding and structural informations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Opposing brain differences in 16p11.2 deletion and duplication carriers.
Qureshi, Abid Y; Mueller, Sophia; Snyder, Abraham Z; Mukherjee, Pratik; Berman, Jeffrey I; Roberts, Timothy P L; Nagarajan, Srikantan S; Spiro, John E; Chung, Wendy K; Sherr, Elliott H; Buckner, Randy L
2014-08-20
Deletions and duplications of the recurrent ~600 kb chromosomal BP4-BP5 region of 16p11.2 are associated with a broad variety of neurodevelopmental outcomes including autism spectrum disorder. A clue to the pathogenesis of the copy number variant (CNV)'s effect on the brain is that the deletion is associated with a head size increase, whereas the duplication is associated with a decrease. Here we analyzed brain structure in a clinically ascertained group of human deletion (N = 25) and duplication (N = 17) carriers from the Simons Variation in Individuals Project compared with age-matched controls (N = 29 and 33, respectively). Multiple brain measures showed increased size in deletion carriers and reduced size in duplication carriers. The effects spanned global measures of intracranial volume, brain size, compartmental measures of gray matter and white matter, subcortical structures, and the cerebellum. Quantitatively, the largest effect was on the thalamus, but the collective results suggest a pervasive rather than a selective effect on the brain. Detailed analysis of cortical gray matter revealed that cortical surface area displays a strong dose-dependent effect of CNV (deletion > control > duplication), whereas average cortical thickness is less affected. These results suggest that the CNV may exert its opposing influences through mechanisms that influence early stages of embryonic brain development. Copyright © 2014 the authors 0270-6474/14/3411199-13$15.00/0.
Fang, Xiangdong; Sun, Jin; Xiang, Ping; Yu, Man; Navas, Patrick A; Peterson, Kenneth R; Stamatoyannopoulos, George; Li, Qiliang
2005-08-01
Deletion of the 234-bp core element of the DNase I hypersensitive site 3 (5'HS3) of the locus control region (LCR) in the context of a human beta-globin locus yeast artificial chromosome (beta-YAC) results in profound effects on globin gene expression in transgenic mice. In contrast, deletion of a 2.3-kb 5'HS3 region, which includes the 234-bp core sequence, has a much milder phenotype. Here we report the effects of these deletions on chromatin structure in the beta-globin locus of adult erythroblasts. The 234-bp 5'HS3 deletion abolished histone acetylation throughout the beta-globin locus; recruitment of RNA polymerase II (pol II) to the LCR and beta-globin gene promoter was reduced to a basal level; and formation of all the 5' DNase I hypersensitive sites of the LCR was disrupted. The 2.3-kb 5'HS3 deletion mildly reduced the level of histone acetylation but did not change the profile across the whole locus; the 5' DNase I hypersensitive sites of the LCR were formed, but to a lesser extent; and recruitment of pol II was reduced, but only marginally. These data support the hypothesis that the LCR forms a specific chromatin structure and acts as a single entity. Based on these results we elaborate on a model of LCR chromatin architecture which accommodates the distinct phenotypes of the 5'HS3 and HS3 core deletions.
Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, Takashi; Suzuki, Shunji; Kanno, Motoko
2006-06-10
Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, amore » cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25.« less
Role of the Dc domain of the bacterial hook protein FlgE in hook assembly and function
Moriya, Nao; Minamino, Tohru; Ferris, Hedda U.; Morimoto, Yusuke V.; Ashihara, Masamichi; Kato, Takayuki; Namba, Keiichi
2013-01-01
The bacterial flagellar hook acts as a universal joint to smoothly transmit torque produced by the motor to the filament. The hook protein FlgE assembles into a 55 nm tubular structure with the help of the hook cap (FlgD). FlgE consists of four domains, D0, Dc, D1 and D2, arranged from the inner to the outer part of the tubular structure of the hook. The Dc domain contributes to the structural stability of the hook, but it is unclear how this Dc domain is responsible for the universal joint mechanism. Here, we carried out a deletion analysis of the FlgE Dc domain. FlgEΔ4/5 with deletion of residues 30 to 49 was not secreted into the culture media. FlgEΔ5 and FlgEΔ6 with deletions of residues 40 to 49 and 50 to 59, respectively, still formed hooks, allowing the export apparatus to export the hook-filament junction proteins FlgK and FlgL and flagellin FliC. However, these deletions inhibited the replacement of the FlgD hook cap by FlgK at the hook tip, thereby abolishing filament formation. Deletion of residues 50 to 59 significantly affected hook morphology. These results suggest that the Dc domain is responsible not only for hook assembly but also for FlgE export, the interaction with FlgK, and the polymorphic supercoiling mechanism of the hook. PMID:27493542
Barrick, Doug
2011-01-01
Mapping the stability distributions of proteins in their native folded states provides a critical link between structure, thermodynamics, and function. Linear repeat proteins have proven more amenable to this kind of mapping than globular proteins. C-terminal deletion studies of YopM, a large, linear leucine-rich repeat (LRR) protein, show that stability is distributed quite heterogeneously, yet a high level of cooperativity is maintained [1]. Key components of this distribution are three interfaces that strongly stabilize adjacent sequences, thereby maintaining structural integrity and promoting cooperativity. To better understand the distribution of interaction energy around these critical interfaces, we studied internal (rather than terminal) deletions of three LRRs in this region, including one of these stabilizing interfaces. Contrary to our expectation that deletion of structured repeats should be destabilizing, we find that internal deletion of folded repeats can actually stabilize the native state, suggesting that these repeats are destabilizing, although paradoxically, they are folded in the native state. We identified two residues within this destabilizing segment that deviate from the consensus sequence at a position that normally forms a stacked leucine ladder in the hydrophobic core. Replacement of these nonconsensus residues with leucine is stabilizing. This stability enhancement can be reproduced in the context of nonnative interfaces, but it requires an extended hydrophobic core. Our results demonstrate that different LRRs vary widely in their contribution to stability, and that this variation is context-dependent. These two factors are likely to determine the types of rearrangements that lead to folded, functional proteins, and in turn, are likely to restrict the pathways available for the evolution of linear repeat proteins. PMID:21764506
Li, Qiuhong; Chang, Leifu; Aibara, Shintaro; Yang, Jing; Zhang, Ziguo; Barford, David
2016-09-20
The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric cullin-RING E3 ubiquitin ligase that orchestrates cell-cycle progression by targeting cell-cycle regulatory proteins for destruction via the ubiquitin proteasome system. The APC/C assembly comprises two scaffolding subcomplexes: the platform and the TPR lobe that together coordinate the juxtaposition of the catalytic and substrate-recognition modules. The platform comprises APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of Apc1 as an APC/C scaffolding subunit has been characterized, its specific functions in contributing toward APC/C catalytic activity are not fully understood. Here, we report the crystal structure of the N-terminal domain of human Apc1 (Apc1N) determined at 2.2-Å resolution and provide an atomic-resolution description of the architecture of its WD40 (WD40 repeat) domain (Apc1(WD40)). To understand how Apc1(WD40) contributes to APC/C activity, a mutant form of the APC/C with Apc1(WD40) deleted was generated and evaluated biochemically and structurally. We found that the deletion of Apc1(WD40) abolished the UbcH10-dependent ubiquitination of APC/C substrates without impairing the Ube2S-dependent ubiquitin chain elongation activity. A cryo-EM structure of an APC/C-Cdh1 complex with Apc1(WD40) deleted showed that the mutant APC/C is locked into an inactive conformation in which the UbcH10-binding site of the catalytic module is inaccessible. Additionally, an EM density for Apc15 is not visible. Our data show that Apc1(WD40) is required to mediate the coactivator-induced conformational change of the APC/C that is responsible for stimulating APC/C catalytic activity by promoting UbcH10 binding. In contrast, Ube2S activity toward APC/C substrates is not dependent on the initiation-competent conformation of the APC/C.
Li, Qiuhong; Chang, Leifu; Aibara, Shintaro; Yang, Jing; Zhang, Ziguo; Barford, David
2016-01-01
The anaphase-promoting complex/cyclosome (APC/C) is a large multimeric cullin–RING E3 ubiquitin ligase that orchestrates cell-cycle progression by targeting cell-cycle regulatory proteins for destruction via the ubiquitin proteasome system. The APC/C assembly comprises two scaffolding subcomplexes: the platform and the TPR lobe that together coordinate the juxtaposition of the catalytic and substrate-recognition modules. The platform comprises APC/C subunits Apc1, Apc4, Apc5, and Apc15. Although the role of Apc1 as an APC/C scaffolding subunit has been characterized, its specific functions in contributing toward APC/C catalytic activity are not fully understood. Here, we report the crystal structure of the N-terminal domain of human Apc1 (Apc1N) determined at 2.2-Å resolution and provide an atomic-resolution description of the architecture of its WD40 (WD40 repeat) domain (Apc1WD40). To understand how Apc1WD40 contributes to APC/C activity, a mutant form of the APC/C with Apc1WD40 deleted was generated and evaluated biochemically and structurally. We found that the deletion of Apc1WD40 abolished the UbcH10-dependent ubiquitination of APC/C substrates without impairing the Ube2S-dependent ubiquitin chain elongation activity. A cryo-EM structure of an APC/C–Cdh1 complex with Apc1WD40 deleted showed that the mutant APC/C is locked into an inactive conformation in which the UbcH10-binding site of the catalytic module is inaccessible. Additionally, an EM density for Apc15 is not visible. Our data show that Apc1WD40 is required to mediate the coactivator-induced conformational change of the APC/C that is responsible for stimulating APC/C catalytic activity by promoting UbcH10 binding. In contrast, Ube2S activity toward APC/C substrates is not dependent on the initiation-competent conformation of the APC/C. PMID:27601667
Jiao, Jing; Ishikawa, Tomo-o; Dumlao, Darren S.; Norris, Paul C.; Magyar, Clara E.; Mikulec, Carol; Catapang, Art; Dennis, Edward A.; Fischer, Susan M.; Herschman, Harvey R.
2014-01-01
Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX2) plays a critical role in DMBA/TPA-induced skin tumor induction. While many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell-type specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared to littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2 expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell-type specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biological responses. PMID:25063587
A new deletion refines the boundaries of the murine Prader–Willi syndrome imprinting center
DuBose, Amanda J.; Smith, Emily Y.; Yang, Thomas P.; Johnstone, Karen A.; Resnick, James L.
2011-01-01
The human chromosomal 15q11–15q13 region is subject to both maternal and paternal genomic imprinting. Absence of paternal gene expression from this region results in Prader–Willi syndrome (PWS), while absence of maternal gene expression leads to Angelman syndrome. Transcription of paternally expressed genes in the region depends upon an imprinting center termed the PWS-IC. Imprinting defects in PWS can be caused by microdeletions and the smallest commonly deleted region indicates that the PWS-IC lies within a region of 4.3 kb. The function and location of the PWS-IC is evolutionarily conserved, but delineation of the PWS-IC in mouse has proven difficult. The first targeted mutation of the PWS-IC, a deletion of 35 kb spanning Snrpn exon 1, exhibited a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally showed a complete loss of paternal gene expression and died neonatally. A reported deletion of 4.8 kb showed only a reduction in paternal gene expression and incomplete penetrance of neonatal lethality, suggesting that some PWS-IC function had been retained. Here, we report that a 6 kb deletion spanning Snrpn exon 1 exhibits a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally lack detectable expression of all PWS genes and paternal silencing of Ube3a, exhibit maternal DNA methylation imprints at Ndn and Mkrn3 and suffer failure to thrive leading to a fully penetrant neonatal lethality. PMID:21659337
A new deletion refines the boundaries of the murine Prader-Willi syndrome imprinting center.
Dubose, Amanda J; Smith, Emily Y; Yang, Thomas P; Johnstone, Karen A; Resnick, James L
2011-09-01
The human chromosomal 15q11-15q13 region is subject to both maternal and paternal genomic imprinting. Absence of paternal gene expression from this region results in Prader-Willi syndrome (PWS), while absence of maternal gene expression leads to Angelman syndrome. Transcription of paternally expressed genes in the region depends upon an imprinting center termed the PWS-IC. Imprinting defects in PWS can be caused by microdeletions and the smallest commonly deleted region indicates that the PWS-IC lies within a region of 4.3 kb. The function and location of the PWS-IC is evolutionarily conserved, but delineation of the PWS-IC in mouse has proven difficult. The first targeted mutation of the PWS-IC, a deletion of 35 kb spanning Snrpn exon 1, exhibited a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally showed a complete loss of paternal gene expression and died neonatally. A reported deletion of 4.8 kb showed only a reduction in paternal gene expression and incomplete penetrance of neonatal lethality, suggesting that some PWS-IC function had been retained. Here, we report that a 6 kb deletion spanning Snrpn exon 1 exhibits a complete PWS-IC deletion phenotype. Pups inheriting this mutation paternally lack detectable expression of all PWS genes and paternal silencing of Ube3a, exhibit maternal DNA methylation imprints at Ndn and Mkrn3 and suffer failure to thrive leading to a fully penetrant neonatal lethality.
In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target.
Manguso, Robert T; Pope, Hans W; Zimmer, Margaret D; Brown, Flavian D; Yates, Kathleen B; Miller, Brian C; Collins, Natalie B; Bi, Kevin; LaFleur, Martin W; Juneja, Vikram R; Weiss, Sarah A; Lo, Jennifer; Fisher, David E; Miao, Diana; Van Allen, Eliezer; Root, David E; Sharpe, Arlene H; Doench, John G; Haining, W Nicholas
2017-07-27
Immunotherapy with PD-1 checkpoint blockade is effective in only a minority of patients with cancer, suggesting that additional treatment strategies are needed. Here we use a pooled in vivo genetic screening approach using CRISPR-Cas9 genome editing in transplantable tumours in mice treated with immunotherapy to discover previously undescribed immunotherapy targets. We tested 2,368 genes expressed by melanoma cells to identify those that synergize with or cause resistance to checkpoint blockade. We recovered the known immune evasion molecules PD-L1 and CD47, and confirmed that defects in interferon-γ signalling caused resistance to immunotherapy. Tumours were sensitized to immunotherapy by deletion of genes involved in several diverse pathways, including NF-κB signalling, antigen presentation and the unfolded protein response. In addition, deletion of the protein tyrosine phosphatase PTPN2 in tumour cells increased the efficacy of immunotherapy by enhancing interferon-γ-mediated effects on antigen presentation and growth suppression. In vivo genetic screens in tumour models can identify new immunotherapy targets in unanticipated pathways.
Wiedmann, Mareike M; Aibara, Shintaro; Spring, David R; Stewart, Murray; Brenton, James D
2016-09-01
The transcription factor hepatocyte nuclear factor 1β (HNF1β) is ubiquitously overexpressed in ovarian clear cell carcinoma (CCC) and is a potential therapeutic target. To explore potential approaches that block HNF1β transcription we have identified and characterised extensively the nuclear localisation signal (NLS) for HNF1β and its interactions with the nuclear protein import receptor, Importin-α. Pull-down assays demonstrated that the DNA binding domain of HNF1β interacted with a spectrum of Importin-α isoforms and deletion constructs tagged with eGFP confirmed that the HNF1β (229)KKMRRNR(235) sequence was essential for nuclear localisation. We further characterised the interaction between the NLS and Importin-α using complementary biophysical techniques and have determined the 2.4Å resolution crystal structure of the HNF1β NLS peptide bound to Importin-α. The functional, biochemical, and structural characterisation of the nuclear localisation signal present on HNF1β and its interaction with the nuclear import protein Importin-α provide the basis for the development of compounds targeting transcription factor HNF1β via its nuclear import pathway. Copyright © 2016. Published by Elsevier Inc.
Early-onset seizures due to mosaic exonic deletions of CDKL5 in a male and two females.
Bartnik, Magdalena; Derwińska, Katarzyna; Gos, Monika; Obersztyn, Ewa; Kołodziejska, Katarzyna E; Erez, Ayelet; Szpecht-Potocka, Agnieszka; Fang, Ping; Terczyńska, Iwona; Mierzewska, Hanna; Lohr, Naomi J; Bellus, Gary A; Reimschisel, Tyler; Bocian, Ewa; Mazurczak, Tadeusz; Cheung, Sau Wai; Stankiewicz, Paweł
2011-05-01
Mutations in the CDKL5 gene have been associated with an X-linked dominant early infantile epileptic encephalopathy-2. The clinical presentation is usually of severe encephalopathy with refractory seizures and Rett syndrome (RTT)-like phenotype. We attempted to assess the role of mosaic intragenic copy number variation in CDKL5. We have used comparative genomic hybridization with a custom-designed clinical oligonucleotide array targeting exons of selected disease and candidate genes, including CDKL5. We have identified mosaic exonic deletions of CDKL5 in one male and two females with developmental delay and medically intractable seizures. These three mosaic changes represent 60% of all deletions detected in 12,000 patients analyzed by array comparative genomic hybridization and involving the exonic portion of CDKL5. We report the first case of an exonic deletion of CDKL5 in a male and emphasize the importance of underappreciated mosaic exonic copy number variation in patients with early-onset seizures and RTT-like features of both genders.
McCormick, Mark A.; Delaney, Joe R.; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; Shemorry, Anna; Sim, Sylvia; Chou, Annie Chia-Zong; Ahmed, Umema; Carr, Daniel; Murakami, Christopher J.; Schleit, Jennifer; Sutphin, George L.; Wasko, Brian M.; Bennett, Christopher F.; Wang, Adrienne M.; Olsen, Brady; Beyer, Richard P.; Bammler, Theodor K.; Prunkard, Donna; Johnson, Simon C.; Pennypacker, Juniper K.; An, Elroy; Anies, Arieanna; Castanza, Anthony S.; Choi, Eunice; Dang, Nick; Enerio, Shiena; Fletcher, Marissa; Fox, Lindsay; Goswami, Sarani; Higgins, Sean A.; Holmberg, Molly A.; Hu, Di; Hui, Jessica; Jelic, Monika; Jeong, Ki-Soo; Johnston, Elijah; Kerr, Emily O.; Kim, Jin; Kim, Diana; Kirkland, Katie; Klum, Shannon; Kotireddy, Soumya; Liao, Eric; Lim, Michael; Lin, Michael S.; Lo, Winston C.; Lockshon, Dan; Miller, Hillary A.; Moller, Richard M.; Muller, Brian; Oakes, Jonathan; Pak, Diana N.; Peng, Zhao Jun; Pham, Kim M.; Pollard, Tom G.; Pradeep, Prarthana; Pruett, Dillon; Rai, Dilreet; Robison, Brett; Rodriguez, Ariana A.; Ros, Bopharoth; Sage, Michael; Singh, Manpreet K.; Smith, Erica D.; Snead, Katie; Solanky, Amrita; Spector, Benjamin L.; Steffen, Kristan K.; Tchao, Bie Nga; Ting, Marc K.; Wende, Helen Vander; Wang, Dennis; Welton, K. Linnea; Westman, Eric A.; Brem, Rachel B.; Liu, Xin-guang; Suh, Yousin; Zhou, Zhongjun; Kaeberlein, Matt; Kennedy, Brian K.
2015-01-01
SUMMARY Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome comparison demonstrated a significant conservation in longevity pathways between yeast and C. elegans. Among the mechanisms of aging identified, deletion of tRNA exporter LOS1 robustly extended lifespan. Dietary restriction (DR) and inhibition of mechanistic Target of Rapamycin (mTOR) exclude Los1 from the nucleus in a Rad53-dependent manner. Moreover, lifespan extension from deletion of LOS1 is non-additive with DR or mTOR inhibition, and results in Gcn4 transcription factor activation. Thus, the DNA damage response and mTOR converge on Los1-mediated nuclear tRNA export to regulate Gcn4 activity and aging. PMID:26456335
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, S.; Bolin, R.; Drabkin, H.A.
1995-01-01
Somatic deletions of chromosome 3p occur at high frequencies in cancers of kidney, breast, cervix, head and neck, nasopharynx, and lung. The frequency of 3p deletion in lung cancer approaches 100% among small cell lesions and 70 to 80% in non-small cell lesions. This evidence strongly implies that one or more tumor suppressor genes of potentially widespread significance reside within the deleted region(s). Precise definition of the deleted target region(s) has been difficult due to the extensive area(s) lost and use of markers with low informativeness. However, improved definition remains essential to permit isolation of putative tumor suppressor genes frommore » 3p. The identification of several small, homozygous 3p deletions in lung cancer cell lines has provided a critical resource that will assist this search. The U2020 cell line contains a small homozygous deletion that maps to a very proximal region of 3p and includes the marker D3S3. We previously identified a subset of DNA markers located within the deleted region and determined their relative order by pulsed-field gel mapping studies. In the present report, we describe the development of YAC contigs that span the majority of the deleted region and link up to flanking markers on both sides. The centromere proximal portion of the contig crosses the breakpoint from an X;3 translocation located within 3p12 providing both location and orientation to the map. PCR-based (CA){sub n} microsatellite polymorphisms have been localized within and flanking the deletion region. These markers should greatly facilitate loss-of-heterozygosity studies of this region in human cancer. The contig provides a direct means for isolation of putative tumor suppressor genes from this segment of 3p. 51 refs., 3 figs., 3 tabs.« less
Wu, Yao; Du, Jie; Xu, Guoqiang; Jiang, Linghuo
2016-05-01
Saccharomyces cerevisiae is the most widely used fermentation organism for ethanol production. However, the gene expression regulatory networks behind the ethanol fermentation are still not fully understood. Using a static fermentation model, we examined the ethanol yields on biomass of deletion mutants for 77 yeast genes encoding nonessential transcription factors, and found that deletion mutants for ACE2 and SWI5 showed dramatically increased ethanol yields. Overexpression of ACE2 or SWI5 in wild type cells reduced their ethanol yields. Furthermore, among the 34 target genes regulated by Ace2 and Swi5, deletion of CTS1,RPS4a,SIC1,EGT2,DSE2, or SCP160 led to increased ethanol yields, with the former two showing higher effects. Overexpression of CTS1 or RPS4a in both ace2/ace2 and swi5/swi5 mutants reduced their ethanol yields. In contrast, deletion of MCR1 or HO significantly decreased ethanol yields, with the former one showing the highest effect. Therefore, Ace2 and Swi5 are two negative regulators of ethanol yield during static fermentation of yeast cells, and both CTS1 and RPS4a are major effectors mediating these two transcription factors in regulating ethanol production. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system.
Peng, Feng; Wang, Xinyue; Sun, Yang; Dong, Guibin; Yang, Yankun; Liu, Xiuxia; Bai, Zhonghu
2017-11-14
Corynebacterium glutamicum (C. glutamicum) has traditionally been used as a microbial cell factory for the industrial production of many amino acids and other industrially important commodities. C. glutamicum has recently been established as a host for recombinant protein expression; however, some intrinsic disadvantages could be improved by genetic modification. Gene editing techniques, such as deletion, insertion, or replacement, are important tools for modifying chromosomes. In this research, we report a CRISPR/Cas9 system in C. glutamicum for rapid and efficient genome editing, including gene deletion and insertion. The system consists of two plasmids: one containing a target-specific guide RNA and a homologous sequence to a target gene, the other expressing Cas9 protein. With high efficiency (up to 100%), this system was used to disrupt the porB, mepA, clpX and Ncgl0911 genes, which affect the ability to express proteins. The porB- and mepA-deletion strains had enhanced expression of green fluorescent protein, compared with the wild-type stain. This system can also be used to engineer point mutations and gene insertions. In this study, we adapted the CRISPR/Cas9 system from S. pyogens to gene deletion, point mutations and insertion in C. glutamicum. Compared with published genome modification methods, methods based on the CRISPR/Cas9 system can rapidly and efficiently achieve genome editing. Our research provides a powerful tool for facilitating the study of gene function, metabolic pathways, and enhanced productivity in C. glutamicum.
Lange, Alexander W; Sridharan, Anusha; Xu, Yan; Stripp, Barry R; Perl, Anne-Karina; Whitsett, Jeffrey A
2015-02-01
The Hippo/Yap pathway is a well-conserved signaling cascade that regulates cell proliferation and differentiation to control organ size and stem/progenitor cell behavior. Following airway injury, Yap was dynamically regulated in regenerating airway epithelial cells. To determine the role of Hippo signaling in the lung, the mammalian Hippo kinases, Mst1 and Mst2, were deleted in epithelial cells of the embryonic and mature mouse lung. Mst1/2 deletion in the fetal lung enhanced proliferation and inhibited sacculation and epithelial cell differentiation. The transcriptional inhibition of cell proliferation and activation of differentiation during normal perinatal lung maturation were inversely regulated following embryonic Mst1/2 deletion. Ablation of Mst1/2 from bronchiolar epithelial cells in the adult lung caused airway hyperplasia and altered differentiation. Inhibitory Yap phosphorylation was decreased and Yap nuclear localization and transcriptional targets were increased after Mst1/2 deletion, consistent with canonical Hippo/Yap signaling. YAP potentiated cell proliferation and inhibited differentiation of human bronchial epithelial cells in vitro. Loss of Mst1/2 and expression of YAP regulated transcriptional targets controlling cell proliferation and differentiation, including Ajuba LIM protein. Ajuba was required for the effects of YAP on cell proliferation in vitro. Hippo/Yap signaling regulates Ajuba and controls proliferation and differentiation of lung epithelial progenitor cells. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.
Onsongo, Getiria; Baughn, Linda B; Bower, Matthew; Henzler, Christine; Schomaker, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat
2016-11-01
Simultaneous detection of small copy number variations (CNVs) (<0.5 kb) and single-nucleotide variants in clinically significant genes is of great interest for clinical laboratories. The analytical variability in next-generation sequencing (NGS) and artifacts in coverage data because of issues with mappability along with lack of robust bioinformatics tools for CNV detection have limited the utility of targeted NGS data to identify CNVs. We describe the development and implementation of a bioinformatics algorithm, copy number variation-random forest (CNV-RF), that incorporates a machine learning component to identify CNVs from targeted NGS data. Using CNV-RF, we identified 12 of 13 deletions in samples with known CNVs, two cases with duplications, and identified novel deletions in 22 additional cases. Furthermore, no CNVs were identified among 60 genes in 14 cases with normal copy number and no CNVs were identified in another 104 patients with clinical suspicion of CNVs. All positive deletions and duplications were confirmed using a quantitative PCR method. CNV-RF also detected heterozygous deletions and duplications with a specificity of 50% across 4813 genes. The ability of CNV-RF to detect clinically relevant CNVs with a high degree of sensitivity along with confirmation using a low-cost quantitative PCR method provides a framework for providing comprehensive NGS-based CNV/single-nucleotide variant detection in a clinical molecular diagnostics laboratory. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Ronin, Céline; Costa, David Mendes; Tavares, Joana; Faria, Joana; Ciesielski, Fabrice; Ciapetti, Paola; Smith, Terry K; MacDougall, Jane; Cordeiro-da-Silva, Anabela; Pemberton, Iain K
2018-01-01
The de novo crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSir2rp1) has been solved at 1.99Å in complex with an acetyl-lysine peptide substrate. The structure is broadly commensurate with Hst2/SIRT2 proteins of yeast and human origin, reproducing many of the structural features common to these sirtuin deacetylases, including the characteristic small zinc-binding domain, and the larger Rossmann-fold domain involved in NAD+-binding interactions. The two domains are linked via a cofactor binding loop ordered in open conformation. The peptide substrate binds to the LiSir2rp1 protein via a cleft formed between the small and large domains, with the acetyl-lysine side chain inserting further into the resultant hydrophobic tunnel. Crystals were obtained only with recombinant LiSir2rp1 possessing an extensive internal deletion of a proteolytically-sensitive region unique to the sirtuins of kinetoplastid origin. Deletion of 51 internal amino acids (P253-E303) from LiSir2rp1 did not appear to alter peptide substrate interactions in deacetylation assays, but was indispensable to obtain crystals. Removal of this potentially flexible region, that otherwise extends from the classical structural elements of the Rossmann-fold, specifically the β8-β9 connector, appears to result in lower accumulation of the protein when expressed from episomal vectors in L. infantum SIR2rp1 single knockout promastigotes. The biological function of the large serine-rich insertion in kinetoplastid/trypanosomatid sirtuins, highlighted as a disordered region with strong potential for post-translational modification, remains unknown but may confer additional cellular functions that are distinct from their human counterparts. These unique molecular features, along with the resolution of the first kinetoplastid sirtuin deacetylase structure, present novel opportunities for drug design against a protein target previously established as essential to parasite survival and proliferation.
Abi-Ghanem, Josephine; Chusainow, Janet; Karimova, Madina; Spiegel, Christopher; Hofmann-Sieber, Helga; Hauber, Joachim; Buchholz, Frank; Pisabarro, M. Teresa
2013-01-01
Site-specific recombinases (SSRs) can perform DNA rearrangements, including deletions, inversions and translocations when their naive target sequences are placed strategically into the genome of an organism. Hence, in order to employ SSRs in heterologous hosts, their target sites have to be introduced into the genome of an organism before the enzyme can be practically employed. Engineered SSRs hold great promise for biotechnology and advanced biomedical applications, as they promise to extend the usefulness of SSRs to allow efficient and specific recombination of pre-existing, natural genomic sequences. However, the generation of enzymes with desired properties remains challenging. Here, we use substrate-linked directed evolution in combination with molecular modeling to rationally engineer an efficient and specific recombinase (sTre) that readily and specifically recombines a sequence present in the HIV-1 genome. We elucidate the role of key residues implicated in the molecular recognition mechanism and we present a rationale for sTre’s enhanced specificity. Combining evolutionary and rational approaches should help in accelerating the generation of enzymes with desired properties for use in biotechnology and biomedicine. PMID:23275541
Lindner, Scott E; Sartain, Mark J; Hayes, Kiera; Harupa, Anke; Moritz, Robert L; Kappe, Stefan H I; Vaughan, Ashley M
2014-02-01
Malaria parasites scavenge nutrients from their host but also harbour enzymatic pathways for de novo macromolecule synthesis. One such pathway is apicoplast-targeted type II fatty acid synthesis, which is essential for late liver-stage development in rodent malaria. It is likely that fatty acids synthesized in the apicoplast are ultimately incorporated into membrane phospholipids necessary for exoerythrocytic merozoite formation. We hypothesized that these synthesized fatty acids are being utilized for apicoplast-targeted phosphatidic acid synthesis, the phospholipid precursor. Phosphatidic acid is typically synthesized in a three-step reaction utilizing three enzymes: glycerol 3-phosphate dehydrogenase, glycerol 3-phosphate acyltransferase and lysophosphatidic acid acyltransferase. The Plasmodium genome is predicted to harbour genes for both apicoplast- and cytosol/endoplasmic reticulum-targeted phosphatidic acid synthesis. Our research shows that apicoplast-targeted Plasmodium yoelii glycerol 3-phosphate dehydrogenase and glycerol 3-phosphate acyltransferase are expressed only during liver-stage development and deletion of the encoding genes resulted in late liver-stage growth arrest and lack of merozoite differentiation. However, the predicted apicoplast-targeted lysophosphatidic acid acyltransferase gene was refractory to deletion and was expressed solely in the endoplasmic reticulum throughout the parasite life cycle. Our results suggest that P. yoelii has an incomplete apicoplast-targeted phosphatidic acid synthesis pathway that is essential for liver-stage maturation. © 2013 John Wiley & Sons Ltd.
CTCF genetic alterations in endometrial carcinoma are pro-tumorigenic
Marshall, A D; Bailey, C G; Champ, K; Vellozzi, M; O'Young, P; Metierre, C; Feng, Y; Thoeng, A; Richards, A M; Schmitz, U; Biro, M; Jayasinghe, R; Ding, L; Anderson, L; Mardis, E R; Rasko, J E J
2017-01-01
CTCF is a haploinsufficient tumour suppressor gene with diverse normal functions in genome structure and gene regulation. However the mechanism by which CTCF haploinsufficiency contributes to cancer development is not well understood. CTCF is frequently mutated in endometrial cancer. Here we show that most CTCF mutations effectively result in CTCF haploinsufficiency through nonsense-mediated decay of mutant transcripts, or loss-of-function missense mutation. Conversely, we identified a recurrent CTCF mutation K365T, which alters a DNA binding residue, and acts as a gain-of-function mutation enhancing cell survival. CTCF genetic deletion occurs predominantly in poor prognosis serous subtype tumours, and this genetic deletion is associated with poor overall survival. In addition, we have shown that CTCF haploinsufficiency also occurs in poor prognosis endometrial clear cell carcinomas and has some association with endometrial cancer relapse and metastasis. Using shRNA targeting CTCF to recapitulate CTCF haploinsufficiency, we have identified a novel role for CTCF in the regulation of cellular polarity of endometrial glandular epithelium. Overall, we have identified two novel pro-tumorigenic roles (promoting cell survival and altering cell polarity) for genetic alterations of CTCF in endometrial cancer. PMID:28319062
Ajore, Ram; Raiser, David; McConkey, Marie; Jöud, Magnus; Boidol, Bernd; Mar, Brenton; Saksena, Gordon; Weinstock, David M; Armstrong, Scott; Ellis, Steven R; Ebert, Benjamin L; Nilsson, Björn
2017-04-01
Heterozygous inactivating mutations in ribosomal protein genes (RPGs) are associated with hematopoietic and developmental abnormalities, activation of p53, and altered risk of cancer in humans and model organisms. Here we performed a large-scale analysis of cancer genome data to examine the frequency and selective pressure of RPG lesions across human cancers. We found that hemizygous RPG deletions are common, occurring in about 43% of 10,744 cancer specimens and cell lines. Consistent with p53-dependent negative selection, such lesions are underrepresented in TP53 -intact tumors ( P ≪ 10 -10 ), and shRNA-mediated knockdown of RPGs activated p53 in TP53 -wild-type cells. In contrast, we did not see negative selection of RPG deletions in TP53 -mutant tumors. RPGs are conserved with respect to homozygous deletions, and shRNA screening data from 174 cell lines demonstrate that further suppression of hemizygously deleted RPGs inhibits cell growth. Our results establish RPG haploinsufficiency as a strikingly common vulnerability of human cancers that associates with TP53 mutations and could be targetable therapeutically. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.
Deletion of a Single-Copy Trna Affects Microtubule Function in Saccharomyces Cerevisiae
Reijo, R. A.; Cho, D. S.; Huffaker, T. C.
1993-01-01
rts1-1 was identified as an extragenic suppressor of tub2-104, a cold-sensitive allele of the sole gene encoding β-tubulin in the yeast, Saccharomyces cerevisiae. In addition, rts1-1 cells are heat sensitive and resistant to the microtubule-destabilizing drug, benomyl. The rts1-1 mutation is a deletion of approximately 5 kb of genomic DNA on chromosome X that includes one open reading frame and three tRNA genes. Dissection of this region shows that heat sensitivity is due to deletion of the open reading frame (HIT1). Suppression and benomyl resistance are caused by deletion of the gene encoding a tRNA(AGG)(Arg) (HSX1). Northern analysis of rts1-1 cells indicates that HSX1 is the only gene encoding this tRNA. Deletion of HSX1 does not suppress the tub2-104 mutation by misreading at the AGG codons in TUB2. It also does not suppress by interfering with the protein arginylation that targets certain proteins for degradation. These results leave open the prospect that this tRNA(AGG)(Arg) plays a novel role in the cell. PMID:8307335
Loss of ATRX Does Not Confer Susceptibility to Osteoarthritis
Solomon, Lauren A.; Russell, Bailey A.; Makar, David; Bérubé, Nathalie G.; Beier, Frank
2013-01-01
The chromatin remodelling protein ATRX is associated with the rare genetic disorder ATR-X syndrome. This syndrome includes developmental delay, cognitive impairment, and a variety of skeletal deformities. ATRX plays a role in several basic chromatin-mediated cellular events including DNA replication, telomere stability, gene transcription, and chromosome congression and cohesion during cell division. We have used a loss-of-function approach to directly investigate the role of Atrx in the adult skeleton in three different models of selective Atrx loss. We specifically targeted deletion of Atrx to the forelimb mesenchyme, to cartilage and to bone-forming osteoblasts. We previously demonstrated that loss of ATRX in forelimb mesenchyme causes brachydactyly while deletion in chondrocytes had minimal effects during development. We now show that targeted deletion of Atrx in osteoblasts causes minor dwarfism but does not recapitulate most of the skeletal phenotypes seen in ATR-X syndrome patients. In adult mice from all three models, we find that joints lacking Atrx are not more susceptible to osteoarthritis, as determined by OARSI scoring and immunohistochemistry. These results indicate that while ATRX plays limited roles during early stages of skeletal development, deficiency of the protein in adult tissues does not confer susceptibility to osteoarthritis. PMID:24386478
TSC1 regulates the balance between effector and regulatory T cells.
Park, Yoon; Jin, Hyung-Seung; Lopez, Justine; Elly, Chris; Kim, Gisen; Murai, Masako; Kronenberg, Mitchell; Liu, Yun-Cai
2013-12-01
Mammalian target of rapamycin (mTOR) plays a crucial role in the control of T cell fate determination; however, the precise regulatory mechanism of the mTOR pathway is not fully understood. We found that T cell-specific deletion of the gene encoding tuberous sclerosis 1 (TSC1), an upstream negative regulator of mTOR, resulted in augmented Th1 and Th17 differentiation and led to severe intestinal inflammation in a colitis model. Conditional Tsc1 deletion in Tregs impaired their suppressive activity and expression of the Treg marker Foxp3 and resulted in increased IL-17 production under inflammatory conditions. A fate-mapping study revealed that Tsc1-null Tregs that lost Foxp3 expression gained a stronger effector-like phenotype compared with Tsc1-/- Foxp3+ Tregs. Elevated IL-17 production in Tsc1-/- Treg cells was reversed by in vivo knockdown of the mTOR target S6K1. Moreover, IL-17 production was enhanced by Treg-specific double deletion of Tsc1 and Foxo3a. Collectively, these studies suggest that TSC1 acts as an important checkpoint for maintaining immune homeostasis by regulating cell fate determination.
Ríos, Gabino; Naranjo, Miguel A; Iglesias, Domingo J; Ruiz-Rivero, Omar; Geraud, Marion; Usach, Antonio; Talón, Manuel
2008-01-01
Background Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Results Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. Conclusion In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in this species were higher with Populus trichocarpa than with the phylogenetically closer Arabidopsis thaliana. This work corroborates the potential of Citrus genomic resources to assist mutagenesis-based approaches for functional genetics, structural studies and comparative genomics, and hence to facilitate citrus variety improvement. PMID:18691431
Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila
Saveliev, Sergei V.; Cox, Michael M.
2001-01-01
DNA sequences (IES elements) eliminated from the developing macronucleus in the ciliate Tetrahymena thermophila are released as linear fragments, which have now been detected and isolated. A PCR-mediated examination of fragment end structures reveals three types of strand scission events, reflecting three steps in the deletion process. New evidence is provided for two steps proposed previously: an initiating double-stranded cleavage, and strand transfer to create a branched deletion intermediate. The fragment ends provide evidence for a previously uncharacterized third step: the branched DNA strand is cleaved at one of several defined sites located within 15–16 nucleotides of the IES boundary, liberating the deleted DNA in a linear form. PMID:11406601
Product analysis illuminates the final steps of IES deletion in Tetrahymena thermophila.
Saveliev, S V; Cox, M M
2001-06-15
DNA sequences (IES elements) eliminated from the developing macronucleus in the ciliate Tetrahymena thermophila are released as linear fragments, which have now been detected and isolated. A PCR-mediated examination of fragment end structures reveals three types of strand scission events, reflecting three steps in the deletion process. New evidence is provided for two steps proposed previously: an initiating double-stranded cleavage, and strand transfer to create a branched deletion intermediate. The fragment ends provide evidence for a previously uncharacterized third step: the branched DNA strand is cleaved at one of several defined sites located within 15-16 nucleotides of the IES boundary, liberating the deleted DNA in a linear form.
Lim, HooiCheng; Yu, Chun-Ying; Jou, Tzuu-Shuh
2017-11-01
Establishment of apical-basal polarity, through correct targeting of polarity determinants to distinct domains of the plasma membrane, is a fundamental process for the development of functioning epithelial tubules. Here we report that galectin (Gal)-8 regulates apical-basal polarity of Madin-Darby canine kidney (MDCK) cells via apical targeting of 135-kDa glycoprotein (Gp135). Gal-8 interacts with newly synthesized Gp135 in a glycan-dependent manner. Gal-8 knockdown induces aberrant lumens at the lateral domain and mistargeting of Gp135 to this structure, thus disrupting the kidney epithelial polarity of MDCK cells, which organize lumens at the apical surface. The O -glycosylation deletion mutant of Gp135 phenocopies the effect of Gal-8 knockdown, which suggests that Gal-8 is the decoding machinery for the apical sorting signals of Gp135 residing at its O -glycosylation-rich region. Collectively, our results reveal a new role of Gal-8 in the development of luminal organs by regulating targeting of apical polarity protein Gp135.-Lim, H., Yu, C.-Y., Jou, T.-S. Galectin-8 regulates targeting of Gp135/podocalyxin and lumen formation at the apical surface of renal epithelial cells. © FASEB.
Jiao, Jing; Ishikawa, Tomo-O; Dumlao, Darren S; Norris, Paul C; Magyar, Clara E; Mikulec, Carol; Catapang, Art; Dennis, Edward A; Fischer, Susan M; Herschman, Harvey R
2014-11-01
Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX-2) plays a critical role in DMBA/TPA-induced skin tumor induction. Although many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell type-specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared with littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2-expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell type-specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biologic responses. Cox-2 gene deletion demonstrates that intrinsic COX-2 expression in initiated keratinocytes is a principal driver of skin carcinogenesis; lipidomic analysis identifies likely prostanoid effectors. ©2014 American Association for Cancer Research.
Maïonchi-Pino, Norbert; de Cara, Bruno; Ecalle, Jean; Magnan, Annie
2012-04-01
In this study, the authors queried whether French-speaking children with dyslexia were sensitive to consonant sonority and position within syllable boundaries to influence a phonological syllable-based segmentation in silent reading. Participants included 15 French-speaking children with dyslexia, compared with 30 chronological age-matched and reading level-matched controls. Children were tested with an audiovisual recognition task. A target pseudoword (TOLPUDE) was simultaneously presented visually and auditorily and then was compared with a printed test pseudoword that either was identical or differed after the coda deletion (TOPUDE) or the onset deletion (TOLUDE). The intervocalic consonant sequences had either a sonorant coda-sonorant onset (TOR.LADE), sonorant coda-obstruent onset (TOL.PUDE), obstruent coda-sonorant onset (DOT.LIRE), or obstruent coda-obstruent onset (BIC.TADE) sonority profile. All children processed identity better than they processed deletion, especially with the optimal sonorant coda-obstruent onset sonority profile. However, children preserved syllabification (coda deletion; TO.PUDE) rather than resyllabification (onset deletion; TO.LUDE) with intervocalic consonant sequence reductions, especially when sonorant codas were deleted but the optimal intersyllable contact was respected. It was surprising to find that although children with dyslexia generally exhibit phonological and acoustic-phonetic impairments (voicing), they showed sensitivity to the optimal sonority profile and a preference for preserved syllabification. The authors proposed a sonority-modulated explanation to account for phonological syllable-based processing. Educational implications are discussed.
Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Igel-Egalon, Angelique; Barbereau, Clément; Chapuis, Jérôme; Ciric, Danica; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel
2017-01-01
ABSTRACT Mapping out regions of PrP influencing prion conversion remains a challenging issue complicated by the lack of prion structure. The portion of PrP associated with infectivity contains the α-helical domain of the correctly folded protein and turns into a β-sheet-rich insoluble core in prions. Deletions performed so far inside this segment essentially prevented the conversion. Recently we found that deletion of the last C-terminal residues of the helix H2 was fully compatible with prion conversion in the RK13-ovPrP cell culture model, using 3 different infecting strains. This was in agreement with preservation of the overall PrPC structure even after removal of up to one-third of this helix. Prions with internal deletion were infectious for cells and mice expressing the wild-type PrP and they retained prion strain-specific characteristics. We thus identified a piece of the prion domain that is neither necessary for the conformational transition of PrPC nor for the formation of a stable prion structure. PMID:28281924
Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Igel-Egalon, Angelique; Barbereau, Clément; Chapuis, Jérôme; Ciric, Danica; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel
2017-01-02
Mapping out regions of PrP influencing prion conversion remains a challenging issue complicated by the lack of prion structure. The portion of PrP associated with infectivity contains the α-helical domain of the correctly folded protein and turns into a β-sheet-rich insoluble core in prions. Deletions performed so far inside this segment essentially prevented the conversion. Recently we found that deletion of the last C-terminal residues of the helix H2 was fully compatible with prion conversion in the RK13-ovPrP cell culture model, using 3 different infecting strains. This was in agreement with preservation of the overall PrP C structure even after removal of up to one-third of this helix. Prions with internal deletion were infectious for cells and mice expressing the wild-type PrP and they retained prion strain-specific characteristics. We thus identified a piece of the prion domain that is neither necessary for the conformational transition of PrP C nor for the formation of a stable prion structure.
Zurawski, S M; Zurawski, G
1988-01-01
We have analyzed structure--function relationships of the protein hormone murine interleukin 2 by fine structural deletion mapping. A total of 130 deletion mutant proteins, together with some substitution and insertion mutant proteins, was expressed in Escherichia coli and analyzed for their ability to sustain the proliferation of a cloned murine T cell line. This analysis has permitted a functional map of the protein to be drawn and classifies five segments of the protein, which together contain 48% of the sequence, as unessential to the biological activity of the protein. A further 26% of the protein is classified as important, but not crucial, for the activity. Three regions, consisting of amino acids 32-35, 66-77 and 119-141 contain the remaining 26% of the protein and are critical to the biological activity of the protein. The functional map is discussed in the context of the possible role of the identified critical regions in the structure of the hormone and its binding to the interleukin 2 receptor complex. Images PMID:3261239
Shen, Jie; Li, Jia; Wang, Baoli; Jin, Hongting; Wang, Meina; Zhang, Yejia; Yang, Yunzhi; Im, Hee-Jeong; O'Keefe, Regis; Chen, Di
2013-12-01
While transforming growth factor β (TGFβ) signaling plays a critical role in chondrocyte metabolism, the TGFβ signaling pathways and target genes involved in cartilage homeostasis and the development of osteoarthritis (OA) remain unclear. Using an in vitro cell culture method and an in vivo mouse genetic approach, we undertook this study to investigate TGFβ signaling in chondrocytes and to determine whether Mmp13 and Adamts5 are critical downstream target genes of TGFβ signaling. TGFβ receptor type II (TGFβRII)-conditional knockout (KO) (TGFβRII(Col2ER)) mice were generated by breeding TGFβRII(flox/flox) mice with Col2-CreER-transgenic mice. Histologic, histomorphometric, and gene expression analyses were performed. In vitro TGFβ signaling studies were performed using chondrogenic rat chondrosarcoma cells. To determine whether Mmp13 and Adamts5 are critical downstream target genes of TGFβ signaling, TGFβRII/matrix metalloproteinase 13 (MMP-13)- and TGFβRII/ADAMTS-5-double-KO mice were generated and analyzed. Inhibition of TGFβ signaling (deletion of the Tgfbr2 gene in chondrocytes) resulted in up-regulation of Runx2, Mmp13, and Adamts5 expression in articular cartilage tissue and progressive OA development in TGFβRII(Col2ER) mice. Deletion of the Mmp13 or Adamts5 gene significantly ameliorated the OA-like phenotype induced by the loss of TGFβ signaling. Treatment of TGFβRII(Col2ER) mice with an MMP-13 inhibitor also slowed OA progression. Mmp13 and Adamts5 are critical downstream target genes involved in the TGFβ signaling pathway during the development of OA. Copyright © 2013 by the American College of Rheumatology.
Shvarev, Yuri; Berner, Jonas; Bilkei-Gorzo, Andras; Lagercrantz, Hugo; Wickström, Ronny
2010-01-01
Search for physiological mechanisms which could antagonize the opioid-induced respiratory depression is of important clinical value. In this study, we investigated the acute effects of morphine on respiratory activity in genetically modified newborn (P2) mice with target deletion of the (Tac1 -/-) gene lacking substance P (SP) and neurokinin A (NKA). In vivo, as shown with whole-body flow barometric plethysmography technique, morphine induced significantly attenuated minute ventilation during intermittent hypoxia in control animals. In contrast, knockout mice revealed significant increase in minute ventilation. In vitro, in brainstem preparation, knockout mice demonstrated greater changes in burst frequency during intermittent anoxia challenge. The data suggest that hereditary deficiency in tachykinins, SP and NKA results in more robust hypoxic response in newborn Tac1-/- mice during respiratory depression induced by morphine.
The discovery of cancer dependencies has the potential to inform therapeutic strategies and to identify putative drug targets. Integrating data from comprehensive genomic profiling of cancer cell lines and from functional characterization of cancer cell dependencies, we discovered that loss of the enzyme methylthioadenosine phosphorylase (MTAP) confers a selective dependence on protein arginine methyltransferase 5 (PRMT5) and its binding partner WDR77. MTAP is frequently lost due to its proximity to the commonly deleted tumor suppressor gene, CDKN2A.
Genetic alteration profiling of patients with resected squamous cell lung carcinomas
Zhang, Ningning; Lin, Dongmei; Wu, Di; Zhu, Xinxin; Song, Wenya; Shi, Yuankai
2016-01-01
In this study, we analyzed the genetic profiles of squamous cell lung carcinoma (SqCLC) to identify potential therapeutic targets. Approximately 2,800 COSMIC mutations from 50 genes were determined by next-generation sequencing. Amplification/deletion of SOX2, CDKN2A, PTEN, FGFR1, EGFR, CCND1, HER2 and PDGFRA were detected by FISH and expression of VEGFR2, PD-L1 and PTEN were examined by IHC. One hundred and fifty-seven samples of SqCLC were collected. Somatic mutations was identified in 73.9% of cases, with TP53 (56.1%), CDKN2A (8.9%), PIK3CA (8.9%), KRAS (4.5%) and EGFR (3.2%). Gene copy number alterations were identified in 75.8% of cases, including SOX2 amplification (31.2%), CDKN2A deletion (21.7%), PTEN deletion (16.6%), FGFR1 amplification (15.9%), EGFR amplification (14.0%), CCND1 amplification (14.0%), HER2 amplification (9.6%) and PDGFRA amplification (7.6%). Positive expression of VEGFR2 and PD-L1 and loss of PTEN expression were observed in 80.5%, 47.2%, and 42.7% of cases, respectively. Multivariate analysis showed that positive expression of PD-L1 was an independent favorable prognostic factor for DFS (HR = 0.610; P = 0.044). In conclusion, nearly all (93.6%) SqCLC cases harbored at least one potential druggable target. The findings of this study could facilitate the identification of therapeutic target candidates for precision medicine of SqCLC. PMID:27145277
Rictor/mammalian target of rapamycin complex 2 promotes macrophage activation and kidney fibrosis.
Ren, Jiafa; Li, Jianzhong; Feng, Ye; Shu, Bingyan; Gui, Yuan; Wei, Wei; He, Weichun; Yang, Junwei; Dai, Chunsun
2017-08-01
Mammalian target of rapamycin (mTOR) signalling controls many essential cellular functions. However, the role of Rictor/mTOR complex 2 (mTORC2) in regulating macrophage activation and kidney fibrosis remains largely unknown. We report here that Rictor/mTORC2 was activated in macrophages from the fibrotic kidneys of mice. Ablation of Rictor in macrophages reduced kidney fibrosis, inflammatory cell accumulation, macrophage proliferation and polarization after unilateral ureter obstruction or ischaemia/reperfusion injury. In bone marrow-derived macrophages (BMMs), deletion of Rictor or blockade of protein kinase Cα inhibited cell migration. Additionally, deletion of Rictor or blockade of Akt abolished interleukin-4-stimulated or transforming growth factor (TGF)-β1-stimulated macrophage M2 polarization. Furthermore, deletion of Rictor downregulated TGF-β1-stimulated upregulation of multiple profibrotic cytokines, including platelet-derived growth factor, vascular endothelial growth factor and connective tissue growth factor, in BMMs. Conditioned medium from TGF-β1-pretreated Rictor -/- macrophages stimulated fibroblast activation less efficiently than that from TGF-β1-pretreated Rictor +/+ macrophages. These results demonstrate that Rictor/mTORC2 signalling can promote macrophage activation and kidney fibrosis. Targeting this signalling pathway in macrophages may shine light on ways to protect against kidney fibrosis in patients with chronic kidney diseases. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Riva, Paola; Corrado, Lucia; Natacci, Federica; Castorina, Pierangela; Wu, Bai-Li; Schneider, Gretchen H.; Clementi, Maurizio; Tenconi, Romano; Korf, Bruce R.; Larizza, Lidia
2000-01-01
Summary Two familial and seven sporadic patients with neurofibromatosis 1—who showed dysmorphism, learning disabilities/mental retardation, and additional signs and carried deletions of the NF1 gene—were investigated by use of a two-step FISH approach to characterize the deletions. With FISH of YAC clones belonging to a 7-Mb 17q11.2 contig, we estimated the extension of all of the deletions and identified the genomic regions harboring the breakpoints. Mosaicism accounted for the mild phenotype in two patients. In subsequent FISH experiments, performed with locus-specific probes generated from the same YACs by means of a novel procedure, we identified the smallest region of overlapping (SRO), mapped the deletion breakpoints, and identified the genes that map to each deletion interval. From centromere to telomere, the ∼0.8-Mb SRO includes sequence-tagged site 64381, the SUPT6H gene (encoding a transcription factor involved in chromatin structure), and NF1. Extending telomerically from the SRO, two additional genes—BLMH, encoding a hydrolase involved in bleomycin resistance, and ACCN1, encoding an amiloride-sensitive cation channel expressed in the CNS—were located in the deleted intervals of seven and three patients, respectively. An apparently common centromeric deletion breakpoint was shared by all of the patients, whereas a different telomeric breakpoint defined a deletion interval of 0.8–3 Mb. There was no apparent correlation between the extent of the deletion and the phenotype. This characterization of gross NF1 deletions provides the premise for addressing correctly any genotype-phenotype correlation in the subset of patients with NF1 deletions. PMID:10631140
Geometric figure–ground cues override standard depth from accretion-deletion
Tanrıkulu, Ömer Dağlar; Froyen, Vicky; Feldman, Jacob; Singh, Manish
2016-01-01
Accretion-deletion is widely considered a decisive cue to surface depth ordering, with the accreting or deleting surface interpreted as behind an adjoining surface. However, Froyen, Feldman, and Singh (2013) have shown that when accretion-deletion occurs on both sides of a contour, accreting-deleting regions can also be perceived as in front and as self-occluding due to rotation in three dimensions. In this study we ask whether geometric figure–ground cues can override the traditional “depth from accretion-deletion” interpretation even when accretion-deletion takes place only on one side of a contour. We used two tasks: a relative-depth task (front/back), and a motion-classification task (translation/rotation). We conducted two experiments, in which texture in only one set of alternating regions was moving; the other set was static. Contrary to the traditional interpretation of accretion-deletion, the moving convex and symmetric regions were perceived as figural and rotating in three dimensions in roughly half of the trials. In the second experiment, giving different motion directions to the moving regions (thereby weakening motion-based grouping) further weakened the traditional accretion-deletion interpretation. Our results show that the standard “depth from accretion-deletion” interpretation is overridden by static geometric cues to figure–ground. Overall, the results demonstrate a rich interaction between accretion-deletion, figure–ground, and structure from motion that is not captured by existing models of depth from motion. PMID:26982528
Li, Wanlong; Huang, Li; Gill, Bikram S.
2008-01-01
Polyploidy is known to induce numerous genetic and epigenetic changes but little is known about their physiological bases. In wheat, grain texture is mainly determined by the Hardness (Ha) locus consisting of genes Puroindoline a (Pina) and b (Pinb). These genes are conserved in diploid progenitors but were deleted from the A and B genomes of tetraploid Triticum turgidum (AB). We now report the recurrent deletions of Pina-Pinb in other lineages of polyploid wheat. We analyzed the Ha haplotype structure in 90 diploid and 300 polyploid accessions of Triticum and Aegilops spp. Pin genes were conserved in all diploid species and deletion haplotypes were detected in all polyploid Triticum and most of the polyploid Aegilops spp. Two Pina-Pinb deletion haplotypes were found in hexaploid wheat (Triticum aestivum; ABD). Pina and Pinb were eliminated from the G genome, but maintained in the A genome of tetraploid Triticum timopheevii (AG). Subsequently, Pina and Pinb were deleted from the A genome but retained in the Am genome of hexaploid Triticum zhukovskyi (AmAG). Comparison of deletion breakpoints demonstrated that the Pina-Pinb deletion occurred independently and recurrently in the four polyploid wheat species. The implications of Pina-Pinb deletions for polyploid-driven evolution of gene and genome and its possible physiological significance are discussed. PMID:18024553
Hoover, T. A.; Culp, D. W.; Vodkin, M. H.; Williams, J. C.; Thompson, H. A.
2002-01-01
After repeated passages through embyronated eggs, the Nine Mile strain of Coxiella burnetii exhibits antigenic variation, a loss of virulence characteristics, and transition to a truncated lipopolysaccharide (LPS) structure. In two independently derived strains, Nine Mile phase II and RSA 514, these phenotypic changes were accompanied by a large chromosomal deletion (M. H. Vodkin and J. C. Williams, J. Gen. Microbiol. 132:2587-2594, 1986). In the work reported here, additional screening of a cosmid bank prepared from the wild-type strain was used to map the deletion termini of both mutant strains and to accumulate all the segments of DNA that comprise the two deletions. The corresponding DNAs were then sequenced and annotated. The Nine Mile phase II deletion was completely nested within the deletion of the RSA 514 strain. Basic alignment and homology studies indicated that a large group of LPS biosynthetic genes, arranged in an apparent O-antigen cluster, was deleted in both variants. Database homologies identified, in particular, mannose pathway genes and genes encoding sugar methylases and nucleotide sugar epimerase-dehydratase proteins. Candidate genes for addition of sugar units to the core oligosaccharide for synthesis of the rare sugar 6-deoxy-3-C-methylgulose (virenose) were identified in the deleted region. Repeats, redundancies, paralogous genes, and two regions with reduced G+C contents were found within the deletions. PMID:12438347
Panzenboeck, Adelheid; Winter, Max P; Schubert, Uwe; Voswinckel, Robert; Frey, Maria K; Jakowitsch, Johannes; Alimohammadi, Arman; Hobohm, Lukas; Mangold, Andreas; Bergmeister, Helga; Sibilia, Maria; Wagner, Erwin F; Mayer, Eckhard; Klepetko, Walter; Hoelzenbein, Thomas J; Preissner, Klaus T; Lang, Irene M
2015-01-01
Objective Restoration of patency is a natural target of vascular remodeling following venous thrombosis that involves vascular endothelial cells and smooth muscle cells as well as leukocytes. Acute pulmonary emboli usually resolve within six months. However, in some instances, thrombi transform into fibrous vascular obstructions, resulting in occlusion of the deep veins, or in chronic thromboembolic pulmonary hypertension (CTEPH). We proposed that dysregulated thrombus angiogenesis may contribute to thrombus persistence. Approach and Results Mice with an endothelial-cell-specific conditional deletion of vascular endothelial growth factor receptor 2/kinase insert domain protein receptor (VEGF-R2/Kdr) were utilized in a model of stagnant flow venous thrombosis closely resembling human deep vein thrombosis. Biochemical and functional analyses were performed on pulmonary endarterectomy specimens from patients with CTEPH, a human model of non-resolving venous thromboembolism. Endothelial cell-specific deletion of Kdr and subsequent ablation of thrombus vascularization delayed thrombus resolution. In accordance with these findings, organized human CTEPH thrombi were largely devoid of vascular structures. Several vessel-specific genes such as KDR, vascular endothelial cadherin and podoplanin were expressed at lower levels in white CTEPH thrombi than in organizing deep vein thrombi and organizing thrombi from aortic aneurysms. In addition, red CTEPH thrombi attenuated the angiogenic response induced by VEGF. Conclusions In the present work, we propose a mechanism of thrombus non-resolution demonstrating that endothelial cell-specific deletion of Kdr abates thrombus vessel formation, misguiding thrombus resolution. Medical conditions associated with the development of CTEPH may be compromising early thrombus angiogenesis. PMID:24526692
Sadsad, Rosemarie; Martinez, Elena; Jelfs, Peter; Hill-Cawthorne, Grant A.; Gilbert, Gwendolyn L.; Marais, Ben J.; Sintchenko, Vitali
2016-01-01
Background Improved tuberculosis control and the need to contain the spread of drug-resistant strains provide a strong rationale for exploring tuberculosis transmission dynamics at the population level. Whole-genome sequencing provides optimal strain resolution, facilitating detailed mapping of potential transmission pathways. Methods We sequenced 22 isolates from a Mycobacterium tuberculosis cluster in New South Wales, Australia, identified during routine 24-locus mycobacterial interspersed repetitive unit typing. Following high-depth paired-end sequencing using the Illumina HiSeq 2000 platform, two independent pipelines were employed for analysis, both employing read mapping onto reference genomes as well as de novo assembly, to control biases in variant detection. In addition to single-nucleotide polymorphisms, the analyses also sought to identify insertions, deletions and structural variants. Results Isolates were highly similar, with a distance of 13 variants between the most distant members of the cluster. The most sensitive analysis classified the 22 isolates into 18 groups. Four of the isolates did not appear to share a recent common ancestor with the largest clade; another four isolates had an uncertain ancestral relationship with the largest clade. Conclusion Whole genome sequencing, with analysis of single-nucleotide polymorphisms, insertions, deletions, structural variants and subpopulations, enabled the highest possible level of discrimination between cluster members, clarifying likely transmission pathways and exposing the complexity of strain origin. The analysis provides a basis for targeted public health intervention and enhanced classification of future isolates linked to the cluster. PMID:26938641
Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.
Abdallah, Joseph F; Okoth, Sheila Akinyi; Fontecha, Gustavo A; Torres, Rosa Elena Mejia; Banegas, Engels I; Matute, María Luisa; Bucheli, Sandra Tamara Mancero; Goldman, Ira F; de Oliveira, Alexandre Macedo; Barnwell, John W; Udhayakumar, Venkatachalam
2015-01-21
Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites. Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection. It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other. The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however continued monitoring of parasite population will be useful to detect any parasites with deletions of pfhrp2.
McKiernan, C J; Friedlander, M
1999-12-31
The retinal rod Na(+)/Ca(2+),K(+) exchanger (RodX) is a polytopic membrane protein found in photoreceptor outer segments where it is the principal extruder of Ca(2+) ions during light adaptation. We have examined the role of the N-terminal 65 amino acids in targeting, translocation, and integration of the RodX using an in vitro translation/translocation system. cDNAs encoding human RodX and bovine RodX through the first transmembrane domain were correctly targeted and integrated into microsomal membranes; deletion of the N-terminal 65 amino acids (aa) resulted in a translation product that was not targeted or integrated. Deletion of the first 65 aa had no effect on membrane targeting of full-length RodX, but the N-terminal hydrophilic domain no longer translocated. Chimeric constructs encoding the first 65 aa of bovine RodX fused to globin were translocated across microsomal membranes, demonstrating that the sequence could function heterologously. Studies of fresh bovine retinal extracts demonstrated that the first 65 aa are present in the native protein. These data demonstrate that the first 65 aa of RodX constitute an uncleaved signal sequence required for the efficient membrane targeting and proper membrane integration of RodX.
QR in Child Grammar: Evidence from Antecedent-Contained Deletion
ERIC Educational Resources Information Center
Syrett, Kristen; Lidz, Jeffrey
2009-01-01
We show that 4-year-olds assign the correct interpretation to antecedent-contained deletion (ACD) sentences because they have the correct representation of these structures. This representation involves Quantifier Raising (QR) of a Quantificational Noun Phrase (QNP) that must move out of the site of the verb phrase in which it is contained to…
Vercoe, Reuben B.; Chang, James T.; Dy, Ron L.; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S.; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R.; Fineran, Peter C.
2013-01-01
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas–mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA–targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity. PMID:23637624
Vercoe, Reuben B; Chang, James T; Dy, Ron L; Taylor, Corinda; Gristwood, Tamzin; Clulow, James S; Richter, Corinna; Przybilski, Rita; Pitman, Andrew R; Fineran, Peter C
2013-04-01
In prokaryotes, clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated (Cas) proteins constitute a defence system against bacteriophages and plasmids. CRISPR/Cas systems acquire short spacer sequences from foreign genetic elements and incorporate these into their CRISPR arrays, generating a memory of past invaders. Defence is provided by short non-coding RNAs that guide Cas proteins to cleave complementary nucleic acids. While most spacers are acquired from phages and plasmids, there are examples of spacers that match genes elsewhere in the host bacterial chromosome. In Pectobacterium atrosepticum the type I-F CRISPR/Cas system has acquired a self-complementary spacer that perfectly matches a protospacer target in a horizontally acquired island (HAI2) involved in plant pathogenicity. Given the paucity of experimental data about CRISPR/Cas-mediated chromosomal targeting, we examined this process by developing a tightly controlled system. Chromosomal targeting was highly toxic via targeting of DNA and resulted in growth inhibition and cellular filamentation. The toxic phenotype was avoided by mutations in the cas operon, the CRISPR repeats, the protospacer target, and protospacer-adjacent motif (PAM) beside the target. Indeed, the natural self-targeting spacer was non-toxic due to a single nucleotide mutation adjacent to the target in the PAM sequence. Furthermore, we show that chromosomal targeting can result in large-scale genomic alterations, including the remodelling or deletion of entire pre-existing pathogenicity islands. These features can be engineered for the targeted deletion of large regions of bacterial chromosomes. In conclusion, in DNA-targeting CRISPR/Cas systems, chromosomal interference is deleterious by causing DNA damage and providing a strong selective pressure for genome alterations, which may have consequences for bacterial evolution and pathogenicity.
Dual role of Brg chromatin remodeling factor in Sonic hedgehog signaling during neural development.
Zhan, Xiaoming; Shi, Xuanming; Zhang, Zilai; Chen, Yu; Wu, Jiang I
2011-08-02
Sonic hedgehog (Shh) signaling plays diverse roles during animal development and adult tissue homeostasis through differential regulation of Gli family transcription factors. Dysregulated Shh signaling activities have been linked to birth defects and tumorigenesis. Here we report that Brg, an ATP-dependent chromatin remodeling factor, has dual functions in regulating Shh target gene expression. Using a Brg conditional deletion in Shh-responding neural progenitors and fibroblasts, we demonstrate that Brg is required both for repression of the basal expression and for the activation of signal-induced transcription of Shh target genes. In developing telencephalons deficient for Brg, Shh target genes were derepressed, whereas Brg-deleted cerebellar granule neuron precursors failed to respond to Shh to increase their proliferation. The repressor function of Brg was mediated through Gli3 and both the repressor and activator functions of Brg appeared to be independent of its ATPase activity. Furthermore, Brg facilitates Gli coactivator histone deacetylase (HDAC) binding to the regulatory regions of Shh target genes, providing a possible mechanism for its positive role in Shh signaling. Our results thus reveal that a complex chromatin regulation mechanism underlies the precise transcription outcomes of Shh signaling and its diverse roles during development.
Exploiting the CRISPR/Cas9 System for Targeted Genome Mutagenesis in Petunia.
Zhang, Bin; Yang, Xia; Yang, Chunping; Li, Mingyang; Guo, Yulong
2016-02-03
Recently, CRISPR/Cas9 technology has emerged as a powerful approach for targeted genome modification in eukaryotic organisms from yeast to human cell lines. Its successful application in several plant species promises enormous potential for basic and applied plant research. However, extensive studies are still needed to assess this system in other important plant species, to broaden its fields of application and to improve methods. Here we showed that the CRISPR/Cas9 system is efficient in petunia (Petunia hybrid), an important ornamental plant and a model for comparative research. When PDS was used as target gene, transgenic shoot lines with albino phenotype accounted for 55.6%-87.5% of the total regenerated T0 Basta-resistant lines. A homozygous deletion close to 1 kb in length can be readily generated and identified in the first generation. A sequential transformation strategy--introducing Cas9 and sgRNA expression cassettes sequentially into petunia--can be used to make targeted mutations with short indels or chromosomal fragment deletions. Our results present a new plant species amenable to CRIPR/Cas9 technology and provide an alternative procedure for its exploitation.
Exploiting the CRISPR/Cas9 System for Targeted Genome Mutagenesis in Petunia
Zhang, Bin; Yang, Xia; Yang, Chunping; Li, Mingyang; Guo, Yulong
2016-01-01
Recently, CRISPR/Cas9 technology has emerged as a powerful approach for targeted genome modification in eukaryotic organisms from yeast to human cell lines. Its successful application in several plant species promises enormous potential for basic and applied plant research. However, extensive studies are still needed to assess this system in other important plant species, to broaden its fields of application and to improve methods. Here we showed that the CRISPR/Cas9 system is efficient in petunia (Petunia hybrid), an important ornamental plant and a model for comparative research. When PDS was used as target gene, transgenic shoot lines with albino phenotype accounted for 55.6%–87.5% of the total regenerated T0 Basta-resistant lines. A homozygous deletion close to 1 kb in length can be readily generated and identified in the first generation. A sequential transformation strategy—introducing Cas9 and sgRNA expression cassettes sequentially into petunia—can be used to make targeted mutations with short indels or chromosomal fragment deletions. Our results present a new plant species amenable to CRIPR/Cas9 technology and provide an alternative procedure for its exploitation. PMID:26837606
Zhang, Bo; Zhang, Lin; Dai, Ruixue; Yu, Meiying; Zhao, Guoping; Ding, Xiaoming
2013-01-01
Streptomyces bacteria are known for producing important natural compounds by secondary metabolism, especially antibiotics with novel biological activities. Functional studies of antibiotic-biosynthesizing gene clusters are generally through homologous genomic recombination by gene-targeting vectors. Here, we present a rapid and efficient method for construction of gene-targeting vectors. This approach is based on Streptomyces phage φBT1 integrase-mediated multisite in vitro site-specific recombination. Four 'entry clones' were assembled into a circular plasmid to generate the destination gene-targeting vector by a one-step reaction. The four 'entry clones' contained two clones of the upstream and downstream flanks of the target gene, a selectable marker and an E. coli-Streptomyces shuttle vector. After targeted modification of the genome, the selectable markers were removed by φC31 integrase-mediated in vivo site-specific recombination between pre-placed attB and attP sites. Using this method, part of the calcium-dependent antibiotic (CDA) and actinorhodin (Act) biosynthetic gene clusters were deleted, and the rrdA encoding RrdA, a negative regulator of Red production, was also deleted. The final prodiginine production of the engineered strain was over five times that of the wild-type strain. This straightforward φBT1 and φC31 integrase-based strategy provides an alternative approach for rapid gene-targeting vector construction and marker removal in streptomycetes.
Saveliev, S V; Cox, M M
1996-01-01
We provide a molecular description of key intermediates in the deletion of two internal eliminated sequences (IES elements), the M and R regions, during macronuclear development in Tetrahymena thermophila. Using a variety of PCR-based methods in vivo, double-strand breaks are detected that are generated by hydrolytic cleavage and correspond closely to the observed chromosomal junctions left behind in the macronuclei. The breaks exhibit a temporal and structural relationship to the deletion reaction that provides strong evidence that they are intermediates in the deletion pathway. Breaks in the individual strands are staggered by 4 bp, producing a four nucleotide 5' extension. Evidence is presented that breaks do not occur simultaneously at both ends. The results are most consistent with a deletion mechanism featuring initiation by double-strand cleavage at one end of the deleted element, followed by transesterification to generate the macronuclear junction on one DNA strand. An adenosine residue is found at all the nucleophilic 3' ends used in the postulated transesterification step. Evidence for the transesterification step is provided by detection of a 3' hydroxyl that would be liberated by such a step at a deletion boundary where no other DNA strand ends are detected. Images PMID:8654384
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuki, Yuko; Oral Pathology, Graduate School of Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549; Sakamoto, Kei
CCN3/NOV activates the Notch signal through the carboxyl terminal cysteine-rich (CT) domain. CCN3 transfection to Kusa-A1 inhibited osteogenic differentiation and cell proliferation, which is accompanied by upregulation of Hes/Hey, Notch downstream targets, and p21, a CDK inhibitor. Upregulation of Hes/Hey and p21 was abrogated by the deletion of CT domain. Anti-proliferative activity of CCN3 was also abrogated by CT domain deletion whereas anti-osteogenic activity was not completely abrogated. We found that CT domain-deleted CCN3 still possesses antagonistic effect on BMP-2. These results suggest that CCN3 employs Notch and BMP pathways in anti-osteogenic activity while it inhibits cell proliferation uniquely bymore » Notch/p21 pathway.« less
Progressive sutural cataract associated with a BFSP2 mutation in a Chinese family.
Zhang, Lu; Gao, Linghan; Li, Zhijian; Qin, Wei; Gao, Weiqi; Cui, Xiaobo; Feng, Guoyin; Fu, Songbin; He, Lin; Liu, Ping
2006-12-20
To identify the mutation underlying the segregation of progressive sutural congenital cataracts in a four-generation Chinese pedigree. Genomic DNA was extracted from the peripheral blood samples of members of the pedigree. A genome-wide scan was performed using microsatellite markers spaced at about 10 cM intervals. Linkage analysis was carried out using a Linkage software package. Ten additional microsatellite markers for the positive region were selected for precise targeting, and haplotype data were processed using Cyrillic software to define the region of the disease gene. Mutation detection was carried out by sequencing candidate genes. Significant evidence of linkage was obtained at marker D3S1279 (LOD score [Z] =2.32, recombination fraction [theta]=0.0). Precise targeting and haplotype analysis traced the disease gene to a 38.6 cM region bounded by D3S1267 and D3S1614 at 3q21.1- q26.2 near BFSP2, which encodes a lens-specific beaded filament protein. Sequencing results revealed a 3-bp deletion of nucleotides 696-698 (GAA) in exon 3 of BFSP2, which is predicted to cause an in-frame deletion of glutamic acid residue 233 from the polypeptide encoded by the mutant gene. This deletion was seen neither in any unaffected member of the family nor in 50 unrelated control individuals. We observed progressive isolated sutural cataract associated with a deletion mutation of the BFSP2 gene in a Chinese pedigree. It highlights the physiological importance of the beaded filament protein and supports the role of BFSP2 in human cataract formation.
The GSK-3 family as therapeutic target for myocardial diseases
Lal, Hind; Ahmad, Firdos; Woodgett, James; Force, Thomas
2014-01-01
GSK-3 is one of the very few signaling molecules that regulate a truly astonishing number of critical intracellular signaling pathways. It has been implicated in a number of diseases including heart failure, bipolar disorder, diabetes, Alzheimer’s disease, aging, inflammation and cancer. Furthermore, a recent clinical trial has validated the feasibility of targeting GSK-3 with small molecule inhibitors for human diseases. In the current review we will focus on its expanding role in the heart, concentrating primarily on recent studies that have employed cardiomyocyte- and fibroblast-specific conditional gene deletion in mouse models. We will highlight the role of the GSK-3 isoforms in various pathological conditions including myocardial aging, ischemic injury, myocardial fibrosis and cardiomyocyte proliferation. We will discuss our recent findings that deletion of GSK-3α specifically in cardiomyocytes attenuates ventricular remodeling and cardiac dysfunction post-MI by limiting scar expansion and promoting cardiomyocyte proliferation. The recent emergence of GSK-3β as a regulator of myocardial fibrosis will also be discussed. We will review our very recent findings that specific deletion of GSK-3β in cardiac fibroblasts leads to fibrogenesis, left ventricular dysfunction and excessive scarring in the ischemic heart. Finally, we will examine the underlying mechanisms that drive the aberrant myocardial fibrosis in the models in which GSK-3β is specifically deleted in cardiac fibroblasts. We will summarize these recent results and offer explanations, whenever possible, and hypotheses when not. For these studies we will rely heavily on our models and those of others to reconcile some of the apparent inconsistencies in the literature. PMID:25552693
Metabolic Dysfunction Consistent with Premature Aging Results from Deletion of Pim Kinases
Din, Shabana; Konstandin, Mathias H; Johnson, Bevan; Emathinger, Jacqueline; Völkers, Mirko; Toko, Haruhiro; Collins, Brett; Ormachea, Lucy; Samse, Kaitlen; Kubli, Dieter A; De La Torre, Andrea; Kraft, Andrew S; Gustafsson, Asa B; Kelly, Daniel P; Sussman, Mark A
2014-01-01
Rationale The senescent cardiac phenotype is accompanied by changes in mitochondrial function and biogenesis causing impairment in energy provision. The relationship between myocardial senescence and Pim kinases deserves attention since Pim-1 kinase is cardioprotective, in part, by preservation of mitochondrial integrity. Study of the pathological effects resulting from genetic deletion of all Pim kinase family members could provide important insight regarding cardiac mitochondrial biology and the aging phenotype. Objective Demonstrate myocardial senescence is promoted by loss of Pim leading to premature aging and aberrant mitochondrial function. Methods and Results Cardiac myocyte senescence was evident at three months of age in Pim Triple KnockOut (PTKO) mice, where all three isoforms of Pim kinase family members are genetically deleted. Cellular hypertrophic remodeling and fetal gene program activation was followed by heart failure at six months in PTKO mice. Metabolic dysfunction is an underlying cause of cardiac senescence and instigates a decline in cardiac function. Altered mitochondrial morphology is evident consequential to Pim deletion together with decreased ATP levels and increased phosphorylated AMPK, exposing an energy deficiency in PTKO mice. Expression of the genes encoding master regulators of mitochondrial biogenesis, PPARγ coactivator-1 (PGC-1) α and β were diminished in PTKO hearts, as were downstream targets included in mitochondrial energy transduction, including fatty acid oxidation. Reversal of the dysregulated metabolic phenotype was observed by overexpressing c-Myc, a downstream target of Pim kinases. Conclusion Pim kinases prevent premature cardiac aging and maintain a healthy pool of functional mitochondria leading to efficient cellular energetics. PMID:24916111
Chen, Letian; Wang, Fengpin; Wang, Xiaoyu; Liu, Yao-Guang
2013-01-01
Functional genomics requires vector construction for protein expression and functional characterization of target genes; therefore, a simple, flexible and low-cost molecular manipulation strategy will be highly advantageous for genomics approaches. Here, we describe a Ω-PCR strategy that enables multiple types of sequence modification, including precise insertion, deletion and substitution, in any position of a circular plasmid. Ω-PCR is based on an overlap extension site-directed mutagenesis technique, and is named for its characteristic Ω-shaped secondary structure during PCR. Ω-PCR can be performed either in two steps, or in one tube in combination with exonuclease I treatment. These strategies have wide applications for protein engineering, gene function analysis and in vitro gene splicing. PMID:23335613
Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961-2009.
Abernathy, Emily; Chen, Min-hsin; Bera, Jayati; Shrivastava, Susmita; Kirkness, Ewen; Zheng, Qi; Bellini, William; Icenogle, Joseph
2013-01-25
Rubella virus is the causative agent of rubella, a mild rash illness, and a potent teratogenic agent when contracted by a pregnant woman. Global rubella control programs target the reduction and elimination of congenital rubella syndrome. Phylogenetic analysis of partial sequences of rubella viruses has contributed to virus surveillance efforts and played an important role in demonstrating that indigenous rubella viruses have been eliminated in the United States. Sixteen wild-type rubella viruses were chosen for whole genome sequencing. All 16 viruses were collected in the United States from 1961 to 2009 and are from 8 of the 13 known rubella genotypes. Phylogenetic analysis of 30 whole genome sequences produced a maximum likelihood tree giving high bootstrap values for all genotypes except provisional genotype 1a. Comparison of the 16 new complete sequences and 14 previously sequenced wild-type viruses found regions with clusters of variable amino acids. The 5' 250 nucleotides of the genome are more conserved than any other part of the genome. Genotype specific deletions in the untranslated region between the non-structural and structural open reading frames were observed for genotypes 2B and genotype 1G. No evidence was seen for recombination events among the 30 viruses. The analysis presented here is consistent with previous reports on the genetic characterization of rubella virus genomes. Conserved and variable regions were identified and additional evidence for genotype specific nucleotide deletions in the intergenic region was found. Phylogenetic analysis confirmed genotype groupings originally based on structural protein coding region sequences, which provides support for the WHO nomenclature for genetic characterization of wild-type rubella viruses.
Bashatwah, Rasha M; Khanfar, Mohammad A; Bardaweel, Sanaa K
2018-05-08
Inorganic polyphosphate (polyP) is present in all living forms of life. Studied mainly in prokaryotes, polyP and its associated enzymes are vital in diverse metabolic activities, in some structural functions, and most importantly in stress responses. Bacterial species, including many pathogens, encode a homolog of a major polyP synthesis enzyme, Poly Phosphate Kinase (PPK) with 2 different genes coding for PPK1 and PPK2. Genetic deletion of the ppk1 gene leads to reduced polyP levels and the consequent loss of virulence and stress adaptation responses. This far, no PPK1 homolog has been identified in higher-order eukaryotes, and, therefore, PPK1 represents a novel target for chemotherapy. The aim of the current study is to investigate PPK1 from Escherichia coli with comprehensive understanding of the enzyme's structure and binding sites, which were used to design pharmacophores and screen a library of compounds for potential discovery of selective PPK1 inhibitors. Verification of the resultant inhibitors activities was conducted using a combination of mutagenic and chemical biological approaches. The metabolic phenotypic maps of the wild type E. coli (WT) and ppk1 knockout mutant were generated and compared with the metabolic map of the chemically inhibited WT. In addition, biofilm formation ability was measured in WT, ppk1 knockout mutant, and the chemically inhibited WT. The results demonstrated that chemical inhibition of PPK1, with the designed inhibitors, was equivalent to gene deletion in altering specific metabolic pathways, changing the metabolic fingerprint, and suppressing the ability of E. coli to form a biofilm. Copyright © 2018 John Wiley & Sons, Ltd.
Shimizu, Kenji; Wakui, Keiko; Kosho, Tomoki; Okamoto, Nobuhiko; Mizuno, Seiji; Itomi, Kazuya; Hattori, Shigeto; Nishio, Kimio; Samura, Osamu; Kobayashi, Yoshiyuki; Kako, Yuko; Arai, Takashi; Tsutomu, Oh-ishi; Kawame, Hiroshi; Narumi, Yoko; Ohashi, Hirofumi; Fukushima, Yoshimitsu
2014-03-01
Wolf-Hirschhorn syndrome (WHS) is a contiguous gene deletion syndrome of the distal 4p chromosome, characterized by craniofacial features, growth impairment, intellectual disability, and seizures. Although genotype-phenotype correlation studies have previously been published, several important issues remain to be elucidated including seizure severity. We present detailed clinical and molecular-cytogenetic findings from a microarray and fluorescence in situ hybridization (FISH)-based genotype-phenotype analysis of 22 Japanese WHS patients, the first large non-Western series. 4p deletions were terminal in 20 patients and interstitial in two, with deletion sizes ranging from 2.06 to 29.42 Mb. The new Wolf-Hirschhorn syndrome critical region (WHSCR2) was deleted in all cases, and duplication of other chromosomal regions occurred in four. Complex mosaicism was identified in two cases: two different 4p terminal deletions; a simple 4p terminal deletion and an unbalanced translocation with the same 4p breakpoint. Seizures began in infancy in 33% (2/6) of cases with small (<6 Mb) deletions and in 86% (12/14) of cases with larger deletions (>6 Mb). Status epilepticus occurred in 17% (1/6) with small deletions and in 87% (13/15) with larger deletions. Renal hypoplasia or dysplasia and structural ocular anomalies were more prevalent in those with larger deletions. A new susceptible region for seizure occurrence is suggested between 0.76 and 1.3 Mb from 4 pter, encompassing CTBP1 and CPLX1, and distal to the previously-supposed candidate gene LETM1. The usefulness of bromide therapy for seizures and additional clinical features including hypercholesterolemia are also described. © 2013 Wiley Periodicals, Inc.
Zhang, Xinxin; Ma, Dehua; Zou, Wei; Ding, Yibing; Zhu, Chengchu; Min, Haiyan; Zhang, Bin; Wang, Wei; Chen, Baofu; Ye, Minhua; Cai, Minghui; Pan, Yanqing; Cao, Lei; Wan, Yueming; Jin, Yu; Gao, Qian; Yi, Long
2016-05-27
Primary spontaneous pneumothorax (PSP) or pulmonary cysts is one of the manifestations of Birt-Hogg-Dube syndrome (BHDS) that is caused by heterozygous mutations in FLCN gene. Most of the mutations are SNVs and small indels, and there are also approximately 10 % large intragenic deletions and duplications of the mutations. These molecular findings are generally obtained by disparate methods including Sanger sequencing and Multiple Ligation-dependent Probe Amplification in the clinical laboratory. In addition, as a genetically heterogeneous disorder, PSP may be caused by mutations in multiple genes include FBN1, COL3A1, CBS, SERPINA1 and TSC1/TSC2 genes. For differential diagnosis, these genes should also be screened which makes the diagnostic procedure more time-consuming and labor-intensive. Forty PSP patients were divided into 2 groups. Nineteen patients with different pathogenic mutations of FLCN previously identified by conventional Sanger sequencing and MLPA were included in test group, 21 random PSP patients without any genetic screening were included in blinded sample group. 7 PSP genes including FLCN, FBN1, COL3A1, CBS, SERPINA1 and TSC1/TSC2 were designed and enriched by Haloplex system, sequenced on a Miseq platform and analyzed in the 40 patients to evaluate the performance of the targeted-NGS method. We demonstrated that the full spectrum of genes associated with pneumothorax including FLCN gene mutations can be identified simultaneously in multiplexed sequence data. Noteworthy, by our in-house copy number analysis of the sequence data, we could not only detect intragenic deletions, but also determine approximate deletion junctions simultaneously. NGS based Haloplex target enrichment technology is proved to be a rapid and cost-effective screening strategy for the comprehensive molecular diagnosis of BHDS in PSP patients, as it can replace Sanger sequencing and MLPA by simultaneously detecting exonic and intronic SNVs, small indels, large intragenic deletions and determining deletion junctions in PSP-related genes.
Yoshikawa, Yoshie; Emi, Mitsuru; Hashimoto-Tamaoki, Tomoko; Ohmuraya, Masaki; Sato, Ayuko; Tsujimura, Tohru; Hasegawa, Seiki; Nakano, Takashi; Nasu, Masaki; Pastorino, Sandra; Szymiczek, Agata; Bononi, Angela; Tanji, Mika; Pagano, Ian; Gaudino, Giovanni; Napolitano, Andrea; Goparaju, Chandra; Pass, Harvey I; Yang, Haining; Carbone, Michele
2016-11-22
We used a custom-made comparative genomic hybridization array (aCGH; average probe interval 254 bp) to screen 33 malignant mesothelioma (MM) biopsies for somatic copy number loss throughout the 3p21 region (10.7 Mb) that harbors 251 genes, including BRCA1 (breast cancer 1)-associated protein 1 (BAP1), the most commonly mutated gene in MM. We identified frequent minute biallelic deletions (<3 kb) in 46 of 251 genes: four were cancer-associated genes: SETD2 (SET domain-containing protein 2) (7 of 33), BAP1 (8 of 33), PBRM1 (polybromo 1) (3 of 33), and SMARCC1 (switch/sucrose nonfermentable- SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily c, member 1) (2 of 33). These four genes were further investigated by targeted next-generation sequencing (tNGS), which revealed sequence-level mutations causing biallelic inactivation. Combined high-density aCGH and tNGS revealed biallelic gene inactivation in SETD2 (9 of 33, 27%), BAP1 (16 of 33, 48%), PBRM1 (5 of 33, 15%), and SMARCC1 (2 of 33, 6%). The incidence of genetic alterations detected is much higher than reported in the literature because minute deletions are not detected by NGS or commercial aCGH. Many of these minute deletions were not contiguous, but rather alternated with segments showing oscillating copy number changes along the 3p21 region. In summary, we found that in MM: (i) multiple minute simultaneous biallelic deletions are frequent in chromosome 3p21, where they occur as distinct events involving multiple genes; (ii) in addition to BAP1, mutations of SETD2, PBRM1, and SMARCC1 are frequent in MM; and (iii) our results suggest that high-density aCGH combined with tNGS provides a more precise estimate of the frequency and types of genes inactivated in human cancer than approaches based exclusively on NGS strategy.
Jimenez-Sandoval, Pedro; Vique-Sanchez, Jose Luis; Hidalgo, Marisol López; Velazquez-Juarez, Gilberto; Diaz-Quezada, Corina; Arroyo-Navarro, Luis Fernando; Moran, Gabriela Montero; Fattori, Juliana; Jessica Diaz-Salazar, A; Rudiño-Pinera, Enrique; Sotelo-Mundo, Rogerio; Figueira, Ana Carolina Migliorini; Lara-Gonzalez, Samuel; Benítez-Cardoza, Claudia G; Brieba, Luis G
2017-11-01
The protozoan parasite Trichomonas vaginalis contains two nearly identical triosephosphate isomerases (TvTIMs) that dissociate into stable monomers and dimerize upon substrate binding. Herein, we compare the role of the "ball and socket" and loop 3 interactions in substrate assisted dimer assembly in both TvTIMs. We found that point mutants at the "ball" are only 39 and 29-fold less catalytically active than their corresponding wild-type counterparts, whereas Δloop 3 deletions are 1502 and 9400-fold less active. Point and deletion mutants dissociate into stable monomers. However, point mutants assemble as catalytic competent dimers upon binding of the transition state substrate analog PGH, whereas loop 3 deletions remain monomeric. A comparison between crystal structures of point and loop 3 deletion monomeric mutants illustrates that the catalytic residues in point mutants and wild-type TvTIMs are maintained in the same orientation, whereas the catalytic residues in deletion mutants show an increase in thermal mobility and present structural disorder that may hamper their catalytic role. The high enzymatic activity present in monomeric point mutants correlates with the formation of dimeric TvTIMs upon substrate binding. In contrast, the low activity and lack of dimer assembly in deletion mutants suggests a role of loop 3 in promoting the formation of the active site as well as dimer assembly. Our results suggest that in TvTIMs the active site is assembled during dimerization and that the integrity of loop 3 and ball and socket residues is crucial to stabilize the dimer. Copyright © 2017 Elsevier B.V. All rights reserved.
Stage specific requirement of platelet-derived growth factor receptor-α in embryonic development.
Qian, Chen; Wong, Carol Wing Yan; Wu, Zhongluan; He, Qiuming; Xia, Huimin; Tam, Paul Kwong Hang; Wong, Kenneth Kak Yuen; Lui, Vincent Chi Hang
2017-01-01
Platelet-derived growth factor receptor alpha (PDGFRα) is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures. To address the temporal requirement of Pdgfra in embryonic development. We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies. Current study showed that (i) conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5) resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii) the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives. Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a) the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b) if mutations / sequence variations of these regulatory elements cause these anomalies.
Genomic anatomy of the Tyrp1 (brown) deletion complex
Smyth, Ian M.; Wilming, Laurens; Lee, Angela W.; Taylor, Martin S.; Gautier, Phillipe; Barlow, Karen; Wallis, Justine; Martin, Sancha; Glithero, Rebecca; Phillimore, Ben; Pelan, Sarah; Andrew, Rob; Holt, Karen; Taylor, Ruth; McLaren, Stuart; Burton, John; Bailey, Jonathon; Sims, Sarah; Squares, Jan; Plumb, Bob; Joy, Ann; Gibson, Richard; Gilbert, James; Hart, Elizabeth; Laird, Gavin; Loveland, Jane; Mudge, Jonathan; Steward, Charlie; Swarbreck, David; Harrow, Jennifer; North, Philip; Leaves, Nicholas; Greystrong, John; Coppola, Maria; Manjunath, Shilpa; Campbell, Mark; Smith, Mark; Strachan, Gregory; Tofts, Calli; Boal, Esther; Cobley, Victoria; Hunter, Giselle; Kimberley, Christopher; Thomas, Daniel; Cave-Berry, Lee; Weston, Paul; Botcherby, Marc R. M.; White, Sharon; Edgar, Ruth; Cross, Sally H.; Irvani, Marjan; Hummerich, Holger; Simpson, Eleanor H.; Johnson, Dabney; Hunsicker, Patricia R.; Little, Peter F. R.; Hubbard, Tim; Campbell, R. Duncan; Rogers, Jane; Jackson, Ian J.
2006-01-01
Chromosome deletions in the mouse have proven invaluable in the dissection of gene function. The brown deletion complex comprises >28 independent genome rearrangements, which have been used to identify several functional loci on chromosome 4 required for normal embryonic and postnatal development. We have constructed a 172-bacterial artificial chromosome contig that spans this 22-megabase (Mb) interval and have produced a contiguous, finished, and manually annotated sequence from these clones. The deletion complex is strikingly gene-poor, containing only 52 protein-coding genes (of which only 39 are supported by human homologues) and has several further notable genomic features, including several segments of >1 Mb, apparently devoid of a coding sequence. We have used sequence polymorphisms to finely map the deletion breakpoints and identify strong candidate genes for the known phenotypes that map to this region, including three lethal loci (l4Rn1, l4Rn2, and l4Rn3) and the fitness mutant brown-associated fitness (baf). We have also characterized misexpression of the basonuclin homologue, Bnc2, associated with the inversion-mediated coat color mutant white-based brown (Bw). This study provides a molecular insight into the basis of several characterized mouse mutants, which will allow further dissection of this region by targeted or chemical mutagenesis. PMID:16505357
Role of fibroblast growth factor receptor signaling in kidney development.
Bates, Carlton M
2007-03-01
Fibroblast growth factor receptors (Fgfrs) are expressed in the ureteric bud and metanephric mesenchyme of the developing kidney. Furthermore, in vitro and in vivo studies have shown that exogenous fibroblast growth factors (Fgfs) increase growth and maturation of the metanephric mesenchyme and ureteric bud. Deletion of fgf7, fgf10, and fgfr2IIIb (the receptor isoform that binds Fgf7 and Fgf10) in mice lead to smaller kidneys with fewer collecting ducts and nephrons. Overexpression of a dominant negative receptor isoform in transgenic mice has revealed more striking defects including renal aplasia or severe dysplasia. Moreover, deletion of many fgf ligands and receptors in mice results in early embryonic lethality, making it difficult to determine their roles in kidney development. Recently, conditional targeting approaches revealed that deletion of fgf8 from the metanephric mesenchyme interrupts nephron formation. Furthermore, deletion of fgfr2 from the ureteric bud resulted in both ureteric bud branching and stromal mesenchymal patterning defects. Deletion of both fgfr1 and fgfr2 in the metanephric mesenchyme resulted in renal aplasia, characterized by defects in metanephric mesenchyme formation and initial ureteric bud elongation and branching. Thus, Fgfr signaling is critical for growth and patterning of all renal lineages at early and later stages of kidney development.
Fazli, Mustafa; Harrison, Joe J; Gambino, Michela; Givskov, Michael; Tolker-Nielsen, Tim
2015-06-01
Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Fazli, Mustafa; Harrison, Joe J.; Gambino, Michela; Givskov, Michael
2015-01-01
Burkholderia cenocepacia is an emerging opportunistic pathogen causing life-threatening infections in immunocompromised individuals and in patients with cystic fibrosis, which are often difficult, if not impossible, to treat. Understanding the genetic basis of virulence in this emerging pathogen is important for the development of novel treatment regimes. Generation of deletion mutations in genes predicted to encode virulence determinants is fundamental to investigating the mechanisms of pathogenesis. However, there is a lack of appropriate selectable and counterselectable markers for use in B. cenocepacia, making its genetic manipulation problematic. Here we describe a Gateway-compatible allelic exchange system based on the counterselectable pheS gene and the I-SceI homing endonuclease. This system provides efficiency in cloning homology regions of target genes and allows the generation of precise and unmarked gene deletions in B. cenocepacia. As a proof of concept, we demonstrate its utility by deleting the Bcam1349 gene, encoding a cyclic di-GMP (c-di-GMP)-responsive regulator protein important for biofilm formation. PMID:25795676
McCormick, Mark A; Delaney, Joe R; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; Shemorry, Anna; Sim, Sylvia; Chou, Annie Chia-Zong; Ahmed, Umema; Carr, Daniel; Murakami, Christopher J; Schleit, Jennifer; Sutphin, George L; Wasko, Brian M; Bennett, Christopher F; Wang, Adrienne M; Olsen, Brady; Beyer, Richard P; Bammler, Theodor K; Prunkard, Donna; Johnson, Simon C; Pennypacker, Juniper K; An, Elroy; Anies, Arieanna; Castanza, Anthony S; Choi, Eunice; Dang, Nick; Enerio, Shiena; Fletcher, Marissa; Fox, Lindsay; Goswami, Sarani; Higgins, Sean A; Holmberg, Molly A; Hu, Di; Hui, Jessica; Jelic, Monika; Jeong, Ki-Soo; Johnston, Elijah; Kerr, Emily O; Kim, Jin; Kim, Diana; Kirkland, Katie; Klum, Shannon; Kotireddy, Soumya; Liao, Eric; Lim, Michael; Lin, Michael S; Lo, Winston C; Lockshon, Dan; Miller, Hillary A; Moller, Richard M; Muller, Brian; Oakes, Jonathan; Pak, Diana N; Peng, Zhao Jun; Pham, Kim M; Pollard, Tom G; Pradeep, Prarthana; Pruett, Dillon; Rai, Dilreet; Robison, Brett; Rodriguez, Ariana A; Ros, Bopharoth; Sage, Michael; Singh, Manpreet K; Smith, Erica D; Snead, Katie; Solanky, Amrita; Spector, Benjamin L; Steffen, Kristan K; Tchao, Bie Nga; Ting, Marc K; Vander Wende, Helen; Wang, Dennis; Welton, K Linnea; Westman, Eric A; Brem, Rachel B; Liu, Xin-Guang; Suh, Yousin; Zhou, Zhongjun; Kaeberlein, Matt; Kennedy, Brian K
2015-11-03
Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome comparison demonstrated a significant conservation in longevity pathways between yeast and C. elegans. Among the mechanisms of aging identified, deletion of tRNA exporter LOS1 robustly extended lifespan. Dietary restriction (DR) and inhibition of mechanistic Target of Rapamycin (mTOR) exclude Los1 from the nucleus in a Rad53-dependent manner. Moreover, lifespan extension from deletion of LOS1 is nonadditive with DR or mTOR inhibition, and results in Gcn4 transcription factor activation. Thus, the DNA damage response and mTOR converge on Los1-mediated nuclear tRNA export to regulate Gcn4 activity and aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Anthony, Karen; Cirak, Sebahattin; Torelli, Silvia; Tasca, Giorgio; Feng, Lucy; Arechavala-Gomeza, Virginia; Armaroli, Annarita; Guglieri, Michela; Straathof, Chiara S; Verschuuren, Jan J; Aartsma-Rus, Annemieke; Helderman-van den Enden, Paula; Bushby, Katherine; Straub, Volker; Sewry, Caroline; Ferlini, Alessandra; Ricci, Enzo; Morgan, Jennifer E; Muntoni, Francesco
2011-12-01
Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), β-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative study on both dystrophin and dystrophin-associated protein expression in patients with Becker muscular dystrophy with deletions relevant for on-going exon skipping trials in Duchenne muscular dystrophy. Taken together, our results indicate that all varieties of internally deleted dystrophin assessed in this study have the functional capability to provide a substantial clinical benefit to patients with Duchenne muscular dystrophy.
Anthony, Karen; Cirak, Sebahattin; Torelli, Silvia; Tasca, Giorgio; Feng, Lucy; Arechavala-Gomeza, Virginia; Armaroli, Annarita; Guglieri, Michela; Straathof, Chiara S.; Verschuuren, Jan J.; Aartsma-Rus, Annemieke; Helderman-van den Enden, Paula; Bushby, Katherine; Straub, Volker; Sewry, Caroline; Ferlini, Alessandra; Ricci, Enzo; Morgan, Jennifer E.
2011-01-01
Duchenne muscular dystrophy is caused by mutations in the DMD gene that disrupt the open reading frame and prevent the full translation of its protein product, dystrophin. Restoration of the open reading frame and dystrophin production can be achieved by exon skipping using antisense oligonucleotides targeted to splicing elements. This approach aims to transform the Duchenne muscular dystrophy phenotype to that of the milder disorder, Becker muscular dystrophy, typically caused by in-frame dystrophin deletions that allow the production of an internally deleted but partially functional dystrophin. There is ongoing debate regarding the functional properties of the different internally deleted dystrophins produced by exon skipping for different mutations; more insight would be valuable to improve and better predict the outcome of exon skipping clinical trials. To this end, we have characterized the clinical phenotype of 17 patients with Becker muscular dystrophy harbouring in-frame deletions relevant to on-going or planned exon skipping clinical trials for Duchenne muscular dystrophy and correlated it to the levels of dystrophin, and dystrophin-associated protein expression. The cohort of 17 patients, selected exclusively on the basis of their genotype, included 4 asymptomatic, 12 mild and 1 severe patient. All patients had dystrophin levels of >40% of control and significantly higher dystrophin (P = 0.013), β-dystroglycan (P = 0.025) and neuronal nitric oxide synthase (P = 0.034) expression was observed in asymptomatic individuals versus symptomatic patients with Becker muscular dystrophy. Furthermore, grouping the patients by deletion, patients with Becker muscular dystrophy with deletions with an end-point of exon 51 (the skipping of which could rescue the largest group of Duchenne muscular dystrophy deletions) showed significantly higher dystrophin levels (P = 0.034) than those with deletions ending with exon 53. This is the first quantitative study on both dystrophin and dystrophin-associated protein expression in patients with Becker muscular dystrophy with deletions relevant for on-going exon skipping trials in Duchenne muscular dystrophy. Taken together, our results indicate that all varieties of internally deleted dystrophin assessed in this study have the functional capability to provide a substantial clinical benefit to patients with Duchenne muscular dystrophy. PMID:22102647
Hsing, Michael; Cherkasov, Artem
2008-06-25
Insertions and deletions (indels) represent a common type of sequence variations, which are less studied and pose many important biological questions. Recent research has shown that the presence of sizable indels in protein sequences may be indicative of protein essentiality and their role in protein interaction networks. Examples of utilization of indels for structure-based drug design have also been recently demonstrated. Nonetheless many structural and functional characteristics of indels remain less researched or unknown. We have created a web-based resource, Indel PDB, representing a structural database of insertions/deletions identified from the sequence alignments of highly similar proteins found in the Protein Data Bank (PDB). Indel PDB utilized large amounts of available structural information to characterize 1-, 2- and 3-dimensional features of indel sites. Indel PDB contains 117,266 non-redundant indel sites extracted from 11,294 indel-containing proteins. Unlike loop databases, Indel PDB features more indel sequences with secondary structures including alpha-helices and beta-sheets in addition to loops. The insertion fragments have been characterized by their sequences, lengths, locations, secondary structure composition, solvent accessibility, protein domain association and three dimensional structures. By utilizing the data available in Indel PDB, we have studied and presented here several sequence and structural features of indels. We anticipate that Indel PDB will not only enable future functional studies of indels, but will also assist protein modeling efforts and identification of indel-directed drug binding sites.
Haarmann, Thomas; Lorenz, Nicole; Tudzynski, Paul
2008-01-01
The ergot fungus Claviceps purpurea uses mainly the nonhomologous-end-joining (NHEJ) system for integration of exogenous DNA, leading to a low frequency of homologous integration (1-2%). To improve gene targeting efficiency we deleted the C. purpurea ku70 gene in two different strains: the pathogenic strain 20.1 and the apathogenic, ergot alkaloid producing strain P1. The mutants were not impaired in vegetative and pathogenic development nor alkaloid production. Gene targeting efficiency was significantly increased (50-60%) in the Deltaku70 mutants. The P1 Deltaku70 strain (producing ergotamine and ergocryptine) was used for targeted deletion of lpsA1, one of the two trimodular NRPS genes present in the alkaloid gene cluster, encoding D-lysergyl peptide synthetases involved in formation of the tripeptide moiety of ergopeptines. Mutants lacking the lpsA1 gene were shown to be incapable of producing ergotamine but were still able to produce ergocryptine, proving that LpsA1 is involved in ergotamine biosynthesis.
High-LET Patterns of DSBs in DNA Loops, the HPRT Gene and Phosphorylation Foci
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.
2007-01-01
We present new results obtained with our model based on the track structure and chromatin geometry that predicts the DSB spatial and genomic distributions in a cell nucleus with the full genome represented. The model generates stochastic patterns of DSBs in the physical space of the nucleus filled with the realistic configuration of human chromosomes. The model was re-used to find the distribution of DSBs in a physical volume corresponding to a visible phosphorylation focus believed to be associated with a DSB. The data shows whether there must more than one DSB per foci due to finite size of the visible focus, even if a single DSB is radiochemically responsible for the phosphorylation of DNA in its vicinity. The same model can predict patterns of closely located DSBs in a given gene, or in a DNA loop, one of the large-scale chromatin structures. We demonstrated for the example of the HPRT gene, how different sorts of radiation lead to proximity effect in DSB locations, which is important for modeling gene deletions. The spectrum of intron deletions and total gene deletions was simulated for the HPRT gene. The same proximity effect of DSBs in a loop can hinder DSB restitutions, as parts of the loop between DSBs is deleted with a higher likelihood. The distributions of DSBs and deletions of DNA in a loop are presented.
mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation
Matthews, Mary P.; Martin, Sally K.; Xie, Jianling; Ooi, Soo Siang; Walkley, Carl R.; Codrington, John D.; Ruegg, Markus A.; Hall, Michael N.; Proud, Christopher G.; Gronthos, Stan; Zannettino, Andrew C. W.
2017-01-01
ABSTRACT The mammalian target of rapamycin complex 1 (mTORC1) is activated by extracellular factors that control bone accrual. However, the direct role of this complex in osteoblast biology remains to be determined. To investigate this question, we disrupted mTORC1 function in preosteoblasts by targeted deletion of Raptor (Rptor) in Osterix-expressing cells. Deletion of Rptor resulted in reduced limb length that was associated with smaller epiphyseal growth plates in the postnatal skeleton. Rptor deletion caused a marked reduction in pre- and postnatal bone accrual, which was evident in skeletal elements derived from both intramembranous and endochondrial ossification. The decrease in bone accrual, as well as the associated increase in skeletal fragility, was due to a reduction in osteoblast function. In vitro, osteoblasts derived from knockout mice display a reduced osteogenic potential, and an assessment of bone-developmental markers in Rptor knockout osteoblasts revealed a transcriptional profile consistent with an immature osteoblast phenotype suggesting that osteoblast differentiation was stalled early in osteogenesis. Metabolic labeling and an assessment of cell size of Rptor knockout osteoblasts revealed a significant decrease in protein synthesis, a major driver of cell growth. These findings demonstrate that mTORC1 plays an important role in skeletal development by regulating mRNA translation during preosteoblast differentiation. PMID:28069737
Shinohara, Masakazu; Ar Rochmah, Mawaddah; Nakanishi, Kenta; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Bouike, Yoshihiro; Nishio, Hisahide
2017-09-07
Spinal muscular atrophy (SMA) is a frequent autosomal recessive disorder, characterized by lower motor neuron loss in the spinal cord. More than 95% of SMA patients show homozygous survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique. However, non-specific amplification products were observed with mCOP-PCR, which might lead to erroneous interpretation of the screening results. To establish an improved version of the mCOP-PCR screening system without non-specific amplification. DNA samples were assayed using a new version of the mCOP-PCR screening system. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The new mCOP-PCR method contained a targeted pre-amplification step of the region, including an SMN1-specific nucleotide, prior to the mCOP-PCR step. mCOP-PCR products were electrophoresed on agarose gels. No non-specific amplification products were detected in electrophoresis gels with the new mCOP-PCR screening system. An additional targeted pre-amplification step eliminated non-specific amplification from mCOP-PCR screening.
Are Age-Related Differences Uniform Across Different Inhibitory Functions?
Vadaga, Kiran K; Blair, Mervin; Li, Karen Z H
2016-07-01
In the current experiment, we examined the relative age-sensitivity of 3 inhibitory functions: access, deletion, and restraint by taking into consideration their underlying control processes: proactive and reactive control. The 3 inhibitory functions were measured using a sequential flanker task. Young (age: 18-35, n = 24) and older adults (age: 60-75, n = 25) first memorized a series of 8 animal words in a fixed order. In the test phase, these stimuli were presented randomly either singly or with flankers and participants responded "yes" or "no" based on the prelearned sequence. In the access trials, flankers were either ahead of the current target or unrelated. In the deletion trials, flankers were previous target items. In the restraint trials, the flanker cues (XXXX) prompted the participants to withhold responses occasionally. Unflanked trials served as the baseline condition. Age-related differences in the magnitude of inhibition effects were largest in restraint, followed by deletion. No age-related differences were observed in access. Our findings suggest that the magnitude of age-related differences in inhibitory functions is contingent on the degree of proactive control recruited by a given inhibitory function. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Versatile Cas9-Driven Subpopulation Selection Toolbox for Lactococcus lactis.
van der Els, Simon; James, Jennelle K; Kleerebezem, Michiel; Bron, Peter A
2018-04-15
CRISPR-Cas9 technology has been exploited for the removal or replacement of genetic elements in a wide range of prokaryotes and eukaryotes. Here, we describe the extension of the Cas9 application toolbox to the industrially important dairy species Lactococcus lactis The Cas9 expression vector pLABTarget, encoding the Streptocccus pyogenes Cas9 under the control of a constitutive promoter, was constructed, allowing plug and play introduction of short guide RNA (sgRNA) sequences to target specific genetic loci. Introduction of a pepN -targeting derivative of pLABTarget into L. lactis strain MG1363 led to a strong reduction in the number of transformants obtained, which did not occur in a pepN deletion derivative of the same strain, demonstrating the specificity and lethality of the Cas9-mediated double-strand breaks in the lactococcal chromosome. Moreover, the same pLABTarget derivative allowed the selection of a pepN deletion subpopulation from its corresponding single-crossover plasmid integrant precursor, accelerating the construction and selection of gene-specific deletion derivatives in L. lactis Finally, pLABTarget, which contained sgRNAs designed to target mobile genetic elements, allowed the effective curing of plasmids, prophages, and integrative conjugative elements (ICEs). These results establish that pLABTarget enables the effective exploitation of Cas9 targeting in L. lactis , while the broad-host-range vector used suggests that this toolbox could readily be expanded to other Gram-positive bacteria. IMPORTANCE Mobile genetic elements in Lactococcus lactis and other lactic acid bacteria (LAB) play an important role in dairy fermentation, having both positive and detrimental effects during the production of fermented dairy products. The pLABTarget vector offers an efficient cloning platform for Cas9 application in lactic acid bacteria. Targeting Cas9 toward mobile genetic elements enabled their effective curing, which is of particular interest in the context of potentially problematic prophages present in a strain. Moreover, Cas9 targeting of other mobile genetic elements enables the deciphering of their contribution to dairy fermentation processes and further establishment of their importance for product characteristics. Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshcheryakov, Vladimir A.; Kitao, Akio; Core Research for Evolutionary Science and Technology, Tokyo 113-0032
2013-05-01
Crystal structures of the cytoplasmic domain of FlhB from S. typhimurium and A. aeolicus were solved at 2.45 and 2.55 Å resolution, respectively. The deletion of a short loop in the cytoplasmic domain of Salmonella FlhB completely abolishes secretion by the type III secretion system. A molecular-dynamics simulation shows that the deletion of the loop affects the flexibility of a linker between the transmembrane and cytoplasmic domains of FlhB. The membrane protein FlhB is a highly conserved component of the flagellar secretion system. It is composed of an N-terminal transmembrane domain and a C-terminal cytoplasmic domain (FlhB{sub C}). Here, themore » crystal structures of FlhB{sub C} from Salmonella typhimurium and Aquifex aeolicus are described at 2.45 and 2.55 Å resolution, respectively. These flagellar FlhB{sub C} structures are similar to those of paralogues from the needle type III secretion system, with the major difference being in a linker that connects the transmembrane and cytoplasmic domains of FlhB. It was found that deletion of a short flexible loop in a globular part of Salmonella FlhB{sub C} leads to complete inhibition of secretion by the flagellar secretion system. Molecular-dynamics calculations demonstrate that the linker region is the most flexible part of FlhB{sub C} and that the deletion of the loop reduces this flexibility. These results are in good agreement with previous studies showing the importance of the linker in the function of FlhB and provide new insight into the relationship between the different parts of the FlhB{sub C} molecule.« less
Sorting cancer karyotypes using double-cut-and-joins, duplications and deletions.
Zeira, Ron; Shamir, Ron
2018-05-03
Problems of genome rearrangement are central in both evolution and cancer research. Most genome rearrangement models assume that the genome contains a single copy of each gene and the only changes in the genome are structural, i.e., reordering of segments. In contrast, tumor genomes also undergo numerical changes such as deletions and duplications, and thus the number of copies of genes varies. Dealing with unequal gene content is a very challenging task, addressed by few algorithms to date. More realistic models are needed to help trace genome evolution during tumorigenesis. Here we present a model for the evolution of genomes with multiple gene copies using the operation types double-cut-and-joins, duplications and deletions. The events supported by the model are reversals, translocations, tandem duplications, segmental deletions, and chromosomal amplifications and deletions, covering most types of structural and numerical changes observed in tumor samples. Our goal is to find a series of operations of minimum length that transform one karyotype into the other. We show that the problem is NP-hard and give an integer linear programming formulation that solves the problem exactly under some mild assumptions. We test our method on simulated genomes and on ovarian cancer genomes. Our study advances the state of the art in two ways: It allows a broader set of operations than extant models, thus being more realistic, and it is the first study attempting to reconstruct the full sequence of structural and numerical events during cancer evolution. Code and data are available in https://github.com/Shamir-Lab/Sorting-Cancer-Karyotypes. ronzeira@post.tau.ac.il, rshamir@tau.ac.il. Supplementary data are available at Bioinformatics online.
Gaudet, Andrew D; Mandrekar-Colucci, Shweta; Hall, Jodie C E; Sweet, David R; Schmitt, Philipp J; Xu, Xinyang; Guan, Zhen; Mo, Xiaokui; Guerau-de-Arellano, Mireia; Popovich, Phillip G
2016-08-10
Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155-5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers, including inflammation. Here, new data show that deleting microRNA-155 (miR-155) affects both mechanisms and improves repair and functional recovery after SCI. Macrophages lacking miR-155 have altered inflammatory capacity, which enhances neuron survival and axon growth of cocultured neurons. In addition, independent of macrophages, adult miR-155 KO neurons show enhanced spontaneous axon growth. Using either spinal cord dorsal column crush or contusion injury models, miR-155 deletion improves indices of repair and recovery. Therefore, miR-155 has a dual role in regulating spinal cord repair and may be a novel therapeutic target for SCI and other CNS pathologies. Copyright © 2016 the authors 0270-6474/16/368516-17$15.00/0.
Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo.
Phesse, T J; Myant, K B; Cole, A M; Ridgway, R A; Pearson, H; Muncan, V; van den Brink, G R; Vousden, K H; Sears, R; Vassilev, L T; Clarke, A R; Sansom, O J
2014-06-01
Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.
A novel dNTP-limited PCR and HRM assay to detect Williams-Beuren syndrome.
Zhang, Lichen; Zhang, Xiaoqing; You, Guoling; Yu, Yongguo; Fu, Qihua
2018-06-01
Williams-Beuren syndrome (WBS) is caused by a microdeletion of chromosome arm 7q11.23. A rapid and inexpensive genotyping method to detect microdeletion on 7q11.23 needs to be developed for the diagnosis of WBS. This study describes the development of a new type of molecular diagnosis method to detect microdeletion on 7q11.23 based upon high-resolution melting (HRM). Four genes on 7q11.23 were selected as the target genes for the deletion genotyping. dNTP-limited duplex PCR was used to amplify the reference gene, CFTR, and one of the four genes respectively on 7q11.23. An HRM assay was performed on the PCR products, and the height ratio of the negative derivative peaks between the target gene and reference gene was employed to analyze the copy number variation of the target region. A new genotyping method for detecting 7q11.23 deletion was developed based upon dNTP-limited PCR and HRM, which cost only 96 min. Samples from 15 WBS patients and 12 healthy individuals were genotyped by this method in a blinded fashion, and the sensitivity and specificity was 100% (95% CI, 0.80-1, and 95% CI, 0.75-1, respectively) which was proved by CytoScan HD array. The HRM assay we developed is an rapid, inexpensive, and highly accurate method for genotyping 7q11.23 deletion. It is potentially useful in the clinical diagnosis of WBS. Copyright © 2018 Elsevier B.V. All rights reserved.
Nuzzo, F; Paraboschi, E M; Straniero, L; Pavlova, A; Duga, S; Castoldi, E
2015-01-01
Factor V (FV) deficiency is a rare autosomal recessive bleeding disorder caused by mutations in the F5 gene. FV-deficient patients in whom no mutation or only one mutation is found may harbour large gene rearrangements, which are not detected by conventional mutation screening strategies. The aim of this study was to develop and validate a multiplex ligation-dependent probe amplification (MLPA) assay for the detection of large deletions and duplications in the F5 gene. Twenty-two MLPA probes targeting 19 of the 25 exons and the upstream and downstream regions of the F5 gene were designed and tested in 10 normal controls, a patient with a known heterozygous deletion of F5 exons 1-7 (positive control) and 14 genetically unexplained FV-deficient patients. MLPA results were confirmed by digital PCR on a QuantStudio(™) 3D Digital PCR System. The F5-specific probes yielded a reproducible peak profile in normal controls, correctly detected the known deletion in the positive control and suggested the presence of a novel deletion of exons 9-10 in a patient with undetectable FV levels and only one identified mutation. Follow-up by chip-based digital PCR, long-range PCR and direct sequencing confirmed that this patient carried a heterozygous F5 deletion of 1823 bp extending from intron 8 to intron 10. Bioinformatics sequence analysis pinpointed repetitive elements that might have originated the deletion. In conclusion, we have developed and validated an MLPA assay for the detection of gross F5 gene rearrangements. This assay may represent a valuable tool for the molecular diagnosis of FV deficiency. © 2014 John Wiley & Sons Ltd.
Ahmad, Rahimah; Saleem, Mohamed; Aloysious, Nisha Sabrina; Yelumalai, Punithawathy; Mohamed, Nurul; Hassan, Syahzuwan
2013-01-01
Alpha thalassaemia is highly prevalent in the plural society of Malaysia and is a public health problem. Haematological and molecular data from 5016 unrelated patients referred from various hospitals to the Institute for Medical Research for α thalassaemia screening from 2007 to 2010 were retrieved. The aims of this retrospective analysis were to describe the distribution of various alpha thalassaemia alleles in different ethnic groups, along with their genotypic interactions, and to illustrate the haematological changes associated with each phenotype. Amongst the patients, 51.2% (n = 2567) were diagnosed with α thalassaemia. Of the 13 α thalassaemia determinants screened, eight different deletions and mutations were demonstrated: three double gene deletions, – – SEA, – – THAI, ––FIL; two single-gene deletions, α–3.7 and – α4.2; and three non-deletion mutations, Cd59G > A (haemoglobin [Hb] Adana), Cd125T > C (Hb Quong Sze) and Cd142 (Hb Constant Spring). A high incidence of α–3.7 deletion was observed in Malays, Indians, Sabahans, Sarawakians and Orang Asli people. However, the – – SEA deletion was the most common cause of alpha thalassaemia in Chinese, followed by the α–3.7 deletion. As many as 27 genotypic interactions showed 1023 α thalassaemia silent carriers, 196 homozygous α+ thalassaemia traits, 973 heterozygous α0 thalassaemia carriers and 375 patients with Hb H disease. Statistical analysis showed a significant difference in the distribution of α thalassaemia determinants amongst the various ethnic groups. Hence, the heterogeneous distribution of common determinants indicated that the introduction of an ethnicity-targeted hierarchical α thalassaemia screening approach in this multi-ethnic Malaysian population would be effective. PMID:24025420
Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN.
Romero, Manuel; Silistre, Hazel; Lovelock, Laura; Wright, Victoria J; Chan, Kok-Gan; Hong, Kar-Wai; Williams, Paul; Cámara, Miguel; Heeb, Stephan
2018-04-30
Pseudomonads typically carry multiple non-identical alleles of the post-transcriptional regulator rsmA. In Pseudomonas aeruginosa, RsmN is notable in that its structural rearrangement confers distinct and overlapping functions with RsmA. However, little is known about the specificities of RsmN for its target RNAs and overall impact on the biology of this pathogen. We purified and mapped 503 transcripts directly bound by RsmN in P. aeruginosa. About 200 of the mRNAs identified encode proteins of demonstrated function including some determining acute and chronic virulence traits. For example, RsmN reduces biofilm development both directly and indirectly via multiple pathways, involving control of Pel exopolysaccharide biosynthesis and c-di-GMP levels. The RsmN targets identified are also shared with RsmA, although deletion of rsmN generally results in less pronounced phenotypes than those observed for ΔrsmA or ΔrsmArsmNind mutants, probably as a consequence of different binding affinities. Targets newly identified for the Rsm system include the small non-coding RNA CrcZ involved in carbon catabolite repression, for which differential binding of RsmN and RsmA to specific CrcZ regions is demonstrated. The results presented here provide new insights into the intricacy of riboregulatory networks involving multiple but distinct RsmA homologues.
Auditing hierarchical cycles to locate other inconsistencies in the UMLS.
Halper, Michael; Morrey, C Paul; Chen, Yan; Elhanan, Gai; Hripcsak, George; Perl, Yehoshua
2011-01-01
A cycle in the parent relationship hierarchy of the UMLS is a configuration that effectively makes some concept(s) an ancestor of itself. Such a structural inconsistency can easily be found automatically. A previous strategy for disconnecting cycles is to break them with the deletion of one or more parent relationships-irrespective of the correctness of the deleted relationships. A methodology is introduced for auditing of cycles that seeks to discover and delete erroneous relationships only. Cycles involving three concepts are the primary consideration. Hypotheses about the high probability of locating an erroneous parent relationship in a cycle are proposed and confirmed with statistical confidence and lend credence to the auditing approach. A cycle may serve as an indicator of other non-structural inconsistencies that are otherwise difficult to detect automatically. An extensive auditing example shows how a cycle can indicate further inconsistencies.
Auditing Hierarchical Cycles to Locate Other Inconsistencies in the UMLS
Halper, Michael; Morrey, C. Paul; Chen, Yan; Elhanan, Gai; Hripcsak, George; Perl, Yehoshua
2011-01-01
A cycle in the parent relationship hierarchy of the UMLS is a configuration that effectively makes some concept(s) an ancestor of itself. Such a structural inconsistency can easily be found automatically. A previous strategy for disconnecting cycles is to break them with the deletion of one or more parent relationships—irrespective of the correctness of the deleted relationships. A methodology is introduced for auditing of cycles that seeks to discover and delete erroneous relationships only. Cycles involving three concepts are the primary consideration. Hypotheses about the high probability of locating an erroneous parent relationship in a cycle are proposed and confirmed with statistical confidence and lend credence to the auditing approach. A cycle may serve as an indicator of other non-structural inconsistencies that are otherwise difficult to detect automatically. An extensive auditing example shows how a cycle can indicate further inconsistencies. PMID:22195107
Salmas, Ramin Ekhteiari; Yurtsever, Mine; Durdagi, Serdar
2015-08-24
Chemokine receptor 5 (CCR5) belongs to G protein coupled receptors (GPCRs) and plays an important role in treatment of human immunodeficiency virus (HIV) infection since HIV uses CCR5 protein as a co-receptor. Recently, the crystal structure of CCR5-bound complex with an approved anti-retroviral drug (maroviroc) was resolved. During the crystallization procedure, amino acid residues (i.e., Cys224, Arg225, Asn226 and Glu227) at the third intra-cellular loop were replaced by the rubredoxin for stability reasons. In the current study, we aimed to understand the impact of the incorporated rubredoxin on the conformations of TM domains of the target protein. For this reason, rubredoxin was deleted from the crystal structure and the missing amino acids were engineered. The resultant structure was subjected to long (μs) molecular dynamics (MD) simulations to shed light into the inhibitory mechanism. The derived model structure displayed a significant deviation in the cytoplasmic domain of TM5 and IC3 in the absence of rubredoxin. The principal component analyses (PCA) and MD trajectory analyses revealed important structural and dynamical differences at apo and holo forms of the CCR5.
48 CFR 52.219-18 - Notification of Competition Limited to Eligible 8(a) Concerns.
Code of Federal Regulations, 2010 CFR
2010-10-01
... conformance with the Business Activity Targets set forth in its approved business plan or any remedial action... business manufacturers or processors in the Federal market in accordance with 19.502-2(c), delete...
Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite
Kenthirapalan, Sanketha; Waters, Andrew P.; Matuschewski, Kai; Kooij, Taco W. A.
2016-01-01
Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of 35 orphan transport proteins of Plasmodium berghei during its life cycle in mice and Anopheles mosquitoes. Six genes, including four candidate aminophospholipid transporters, are refractory to gene deletion, indicative of essential functions. We generate and phenotypically characterize 29 mutant strains with deletions of individual transporter genes. Whereas seven genes appear to be dispensable under the experimental conditions tested, deletion of any of the 22 other genes leads to specific defects in life cycle progression in vivo and/or host transition. Our study provides growing support for a potential link between heavy metal homeostasis and host switching and reveals potential targets for rational design of new intervention strategies against malaria. PMID:26796412
Garuti, R; Lelli, N; Barozzini, M; Tiozzo, R; Ghisellini, M; Simone, M L; Li Volti, S; Garozzo, R; Mollica, F; Vergoni, W; Bertolini, S; Calandra, S
1996-03-01
In the present study we report two novel partial deletions of the LDL-R gene. The first (FH Siracusa), found in an FH-heterozygote, consists of a 20 kb deletion spanning from the 5' flanking region to the intron 2 of the LDL-receptor gene. The elimination of the promoter and the first two exons prevents the transcription of the deleted allele, as shown by Northern blot analysis of LDL-R mRNA isolated from the proband's fibroblasts. The second deletion (FH Reggio Emilia), which eliminates 11 nucleotides of exon 10, was also found in an FH heterozygote. The characterization of this deletion was made possible by a combination of techniques such as single strand conformation polymorphism (SSCP) analysis, direct sequence of exon 10 and cloning of the normal and deleted exon 10 from the proband's DNA. The 11 nt deletion occurs in a region of exon 10 which contains three triplets (CTG) and two four-nucleotides (CTGG) direct repeats. This structural feature might render this region more susceptible to a slipped mispairing during DNA duplication. Since this deletion causes a shift of the BamHI site at the 5' end of exon 10, a method has been devised for its rapid screening which is based on the PCR amplification of exon 10 followed by BamHI digestion. FH Reggio Emilia deletion produces a shift in the reading frame downstream from Lys458, leading to a sequence of 51 novel amino acids before the occurrence of a premature stop codon (truncated receptor). However, since RT-PCR failed to demonstrate the presence of the mutant LDL-R mRNA in proband fibroblasts, it is likely that the amount of truncated receptor produced in these cells is negligible.
Calounova, Gabriela; Hedvicakova, Petra; Silhanova, Eva; Kreckova, Gabriela; Sedlacek, Zdenek
2008-08-01
Prader-Willi syndrome (PWS) is caused by the disturbed expression of genes from the imprinted region of 15q11-q13, but the specific contributions of individual genes remain unknown. Most paternal PWS deletions are bracketed by recurrent breakpoints BP1 or BP2 and BP3. Atypical deletions are very rare. In the present work, we describe the molecular analysis of two patients with atypical deletions using microsatellite analysis, methylation-specific MLPA, and microarray CGH. A deletion of about 2 Mb in Patient 1 started at BP2 and ended in the middle of the typically deleted region within the UBE3A gene. The deletion in Patient 2 started 1.3 Mb distal from BP2 within the C15ORF2 gene, extended over 9.5 Mb, and ended within the AVEN gene in proximal 15q14. In Patient 1 both deletion breakpoints involved repetitive regions, which precluded cloning of the junction and pointed to non-allelic homologous recombination as a possible mechanism of this rearrangement. The breakpoints in Patient 2 were sequenced, and their structure suggested non-homologous end joining as the most likely cause of this deletion. The phenotype of both patients did not depart significantly from the typical clinical picture of PWS, although some symptoms in Patient 2 were also reminiscent of the phenotype of individuals with the recently described 15q13.3 microdeletion syndrome. Our findings support previous observations of relatively mild phenotypic effects resulting from deletions that extend distally from the PWS region and observations of the modest effects of different types of genetic defects on the spectrum and severity of symptoms in PWS. Copyright 2008 Wiley-Liss, Inc.
Targeted genome editing in a quail cell line using a customized CRISPR/Cas9 system.
Ahn, Jinsoo; Lee, Joonbum; Park, Ju Yeon; Oh, Keon Bong; Hwang, Seongsoo; Lee, Chang-Won; Lee, Kichoon
2017-05-01
Soon after RNA-guided Cas9 (CRISPR-associated protein 9) endonuclease opened a new era of targeted genome editing, the CRISPR/Cas9 platform began to be extensively used to modify genes in various types of cells and organisms. However, successful CRISPR/Cas9-mediated insertion/deletion (indel) mutation remains to be demonstrated in avian cell lines. The objective of this study was to design a poultry-specific CRISPR/Cas9 system to efficiently introduce targeted deletion mutation in chromosomes of the quail muscle clone 7 (QM7) cell line using a customized quail CRISPR vector. In this study, two avian-specific promoters, quail 7SK (q7SK) promoter and CBh promoter, the hybrid form of cytomegalovirus and chicken β-actin promoters, were cloned into a CRISPR vector for the expression of guide RNA and Cas9 protein, respectively. Then, guide RNA, which was designed to target 20-base pair (bp) nucleotides in the quail melanophilin (MLPH) locus, was ligated to the modified CRISPR vector and transfected to QM7 cells. Our results showed multiple indel mutations in the quail MLPH locus in nearly half of the alleles being tested, suggesting the high efficiency of the system for targeted gene modification. The new CRISPR vector developed from this study has the potential application to generate knockout avian cell lines and knockout poultry. © 2016 Poultry Science Association Inc.
Dissection of combinatorial control by the Met4 transcriptional complex.
Lee, Traci A; Jorgensen, Paul; Bognar, Andrew L; Peyraud, Caroline; Thomas, Dominique; Tyers, Mike
2010-02-01
Met4 is the transcriptional activator of the sulfur metabolic network in Saccharomyces cerevisiae. Lacking DNA-binding ability, Met4 must interact with proteins called Met4 cofactors to target promoters for transcription. Two types of DNA-binding cofactors (Cbf1 and Met31/Met32) recruit Met4 to promoters and one cofactor (Met28) stabilizes the DNA-bound Met4 complexes. To dissect this combinatorial system, we systematically deleted each category of cofactor(s) and analyzed Met4-activated transcription on a genome-wide scale. We defined a core regulon for Met4, consisting of 45 target genes. Deletion of both Met31 and Met32 eliminated activation of the core regulon, whereas loss of Met28 or Cbf1 interfered with only a subset of targets that map to distinct sectors of the sulfur metabolic network. These transcriptional dependencies roughly correlated with the presence of Cbf1 promoter motifs. Quantitative analysis of in vivo promoter binding properties indicated varying levels of cooperativity and interdependency exists between members of this combinatorial system. Cbf1 was the only cofactor to remain fully bound to target promoters under all conditions, whereas other factors exhibited different degrees of regulated binding in a promoter-specific fashion. Taken together, Met4 cofactors use a variety of mechanisms to allow differential transcription of target genes in response to various cues.
Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes.
Lee, Wonsik; Do, Truc; Zhang, Ge; Kahne, Daniel; Meredith, Timothy C; Walker, Suzanne
2018-06-08
Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.
Nicholson, Matthew J.; Eaton, Carla J.; Stärkel, Cornelia; Tapper, Brian A.; Cox, Murray P.; Scott, Barry
2015-01-01
The penitremane and janthitremane families of indole-diterpenes are abundant natural products synthesized by Penicillium crustosum and P. janthinellum. Using a combination of PCR, cosmid library screening, and Illumina sequencing we have identified gene clusters encoding enzymes for the synthesis of these compounds. Targeted deletion of penP in P. crustosum abolished the synthesis of penitrems A, B, D, E, and F, and led to accumulation of paspaline, a key intermediate for paxilline biosynthesis in P. paxilli. Similarly, deletion of janP and janD in P. janthinellum abolished the synthesis of prenyl-elaborated indole-diterpenes, and led to accumulation in the latter of 13-desoxypaxilline, a key intermediate for the synthesis of the structurally related aflatremanes synthesized by Aspergillus flavus. This study helps resolve the genetic basis for the complexity of indole-diterpene natural products found within the Penicillium and Aspergillus species. All indole-diterpene gene clusters identified to date have a core set of genes for the synthesis of paspaline and a suite of genes encoding multi-functional cytochrome P450 monooxygenases, FAD dependent monooxygenases, and prenyl transferases that catalyse various regio- and stereo- specific oxidations that give rise to the diversity of indole-diterpene products synthesized by this group of fungi. PMID:26213965
Chen, Yuting; Lu, Wenqing; Gao, Na; Long, Yi; Shao, Yanjiao; Liu, Meizhen; Chen, Huaqing; Ye, Shixin; Ma, Xueyun; Liu, Mingyao; Li, Dali
2017-02-01
The laboratory rat is a valuable mammalian model organism for basic research and drug discovery. Here we demonstrate an efficient methodology by applying transcription activator-like effector nucleases (TALENs) technology to generate Leptin receptor (Lepr) knockout rats on the Sprague Dawley (SD) genetic background. Through direct injection of in vitro transcribed mRNA of TALEN pairs into SD rat zygotes, somatic mutations were induced in two of three resulting pups. One of the founders carrying bi-allelic mutation exhibited early onset of obesity and infertility. The other founder carried a chimeric mutation which was efficiently transmitted to the progenies. Through phenotyping of the resulting three lines of rats bearing distinct mutations in the Lepr locus, we found that the strains with a frame-shifted or premature stop codon mutation led to obesity and metabolic disorders. However, no obvious defect was observed in a strain with an in-frame 57 bp deletion in the extracellular domain of Lepr. This suggests the deleted amino acids do not significantly affect Lepr structure and function. This is the first report of generating the Lepr mutant obese rat model in SD strain through a reverse genetic approach. This suggests that TALEN is an efficient and powerful gene editing technology for the generation of disease models.
Pandit, Shatakshi; Dalal, Vikram; Mishra, Girish
2018-07-01
Phosphatidic acid (PA) is an important lipid signaling molecule which interacts with Arabidopsis thaliana Sphingosine kinase1 (AtSPHK1) during several abiotic stresses particularly drought stress as a result of Abscisic acid (ABA) signaling in guard cells. PA molecules respond by generating lipid signal and/or by binding and translocating target proteins to membrane. However, site of interaction and role of PA binding to AtSPHK1 is not clear yet. Owing to the importance of AtSPHK1 during stress signaling it is imperative to decipher the site of PA interaction with AtSPHK1. To identify the PA binding region of AtSPHK1, various deletion fragments from N-terminal and C-terminal region were prepared. Results from protein lipid overlay assay using various truncated proteins of AtSPHK1 suggested the involvement of N-terminal region, between 110 and 205 amino acids, in binding with PA. In-silico analyses performed to build homologous structure of AtSPHK1 revealed that PA docking occurs in the hydrophobic cavity of DAG-Kinase domain. Deletion of amino acids 182 VSGDGI 187 perturbed PA-AtSPHK1 binding, indicating an essential role of these six amino acids in PA-AtSPHK1 binding. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Patchev, Alexandre V; Fischer, Dieter; Wolf, Siegmund S; Herkenham, Miles; Götz, Franziska; Gehin, Martine; Chambon, Pierre; Patchev, Vladimir K; Almeida, Osborne F X
2007-01-01
The transcription-intermediary-factor-2 (TIF-2) is a coactivator of the glucocorticoid receptor (GR), and its disruption would be expected to influence glucocorticoid-mediated control of the hypothalamo-pituitary-adrenal (HPA) axis. Here, we show that its targeted deletion in mice is associated with altered expression of several glucocorticoid-dependent components of HPA regulation (e.g., corticotropin-releasing hormone, vasopressin, ACTH, glucocorticoid receptors), suggestive of hyperactivity under basal conditions. At the same time, TIF-2(-/-) mice display significantly lower basal corticosterone levels and a sluggish and blunted initial secretory response to brief emotional and prolonged physical stress. Subsequent analysis revealed this discrepancy to result from pronounced aberrations in the structure and function of the adrenal gland, including the cytoarchitectural organization of the zona fasciculata and basal and stress-induced expression of key elements of steroid hormone synthesis, such as the steroidogenic acute regulatory (StAR) protein and 3beta-hydroxysteroid dehydrogenase (3beta-HSD). In addition, altered expression levels of two nuclear receptors, DAX-1 and steroidogenic factor 1 (SF-1), in the adrenal cortex strengthen the view that TIF-2 deletion disrupts adrenocortical development and steroid biosynthesis. Thus, hyperactivity of the hypothalamo-pituitary unit is ascribed to insidious adrenal insufficiency and impaired glucocorticoid feedback.
Zankov, Dimitar P.; Shimizu, Akio; Tanaka-Okamoto, Miki; Miyoshi, Jun; Ogita, Hisakazu
2017-01-01
Adhesive intercellular connections at cardiomyocyte intercalated disks (IDs) support contractile force and maintain structural integrity of the heart muscle. Disturbances of the proteins at IDs deteriorate cardiac function and morphology. An adaptor protein afadin, one of the components of adherens junctions, is expressed ubiquitously including IDs. At present, the precise role of afadin in cardiac physiology or disease is unknown. To explore this, we generated conditional knockout (cKO) mice with cardiomyocyte-targeted deletion of afadin. Afadin cKO mice were born according to the expected Mendelian ratio and have no detectable changes in cardiac phenotype. On the other hand, chronic pressure overload induced by transverse aortic constriction (TAC) caused systolic dysfunction, enhanced fibrogenesis and apoptosis in afadin cKO mice. Afadin deletion increased macrophage infiltration and monocyte chemoattractant protein-1 expression, and suppressed transforming growth factor (TGF) β receptor signaling early after TAC procedure. Afadin also associated with TGFβ receptor I at IDs. Pharmacological antagonist of TGFβ receptor I (SB431542) augmented mononuclear infiltration and fibrosis in the hearts of TAC-operated control mice. In conclusion, afadin is a critical molecule for cardiac protection against chronic pressure overload. The beneficial effects are likely to be a result from modulation of TGFβ receptor signaling pathways by afadin. PMID:28045017
A neural-network-based approach to the double traveling salesman problem.
Plebe, Alessio; Anile, Angelo Marcello
2002-02-01
The double traveling salesman problem is a variation of the basic traveling salesman problem where targets can be reached by two salespersons operating in parallel. The real problem addressed by this work concerns the optimization of the harvest sequence for the two independent arms of a fruit-harvesting robot. This application poses further constraints, like a collision-avoidance function. The proposed solution is based on a self-organizing map structure, initialized with as many artificial neurons as the number of targets to be reached. One of the key components of the process is the combination of competitive relaxation with a mechanism for deleting and creating artificial neurons. Moreover, in the competitive relaxation process, information about the trajectory connecting the neurons is combined with the distance of neurons from the target. This strategy prevents tangles in the trajectory and collisions between the two tours. Results of tests indicate that the proposed approach is efficient and reliable for harvest sequence planning. Moreover, the enhancements added to the pure self-organizing map concept are of wider importance, as proved by a traveling salesman problem version of the program, simplified from the double version for comparison.
Sun, Daqiang; Ching, Christopher R K; Lin, Amy; Forsyth, Jennifer K; Kushan, Leila; Vajdi, Ariana; Jalbrzikowski, Maria; Hansen, Laura; Villalon-Reina, Julio E; Qu, Xiaoping; Jonas, Rachel K; van Amelsvoort, Therese; Bakker, Geor; Kates, Wendy R; Antshel, Kevin M; Fremont, Wanda; Campbell, Linda E; McCabe, Kathryn L; Daly, Eileen; Gudbrandsen, Maria; Murphy, Clodagh M; Murphy, Declan; Craig, Michael; Vorstman, Jacob; Fiksinski, Ania; Koops, Sanne; Ruparel, Kosha; Roalf, David R; Gur, Raquel E; Schmitt, J Eric; Simon, Tony J; Goodrich-Hunsaker, Naomi J; Durdle, Courtney A; Bassett, Anne S; Chow, Eva W C; Butcher, Nancy J; Vila-Rodriguez, Fidel; Doherty, Joanne; Cunningham, Adam; van den Bree, Marianne B M; Linden, David E J; Moss, Hayley; Owen, Michael J; Murphy, Kieran C; McDonald-McGinn, Donna M; Emanuel, Beverly; van Erp, Theo G M; Turner, Jessica A; Thompson, Paul M; Bearden, Carrie E
2018-06-13
The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. The imaging data were collected from 10 centers worldwide, including 474 subjects with 22q11DS (age = 18.2 ± 8.6; 46.9% female) and 315 typically developing, matched controls (age = 18.0 ± 9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen's d = 0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d = -1.01/-1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3 Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of schizophrenia.
Liu, Ruijie; Correll, Robert N.; Davis, Jennifer; Vagnozzi, Ronald J.; York, Allen J.; Sargent, Michelle A.; Nairn, Angus C.; Molkentin, Jeffery D.
2015-01-01
There are 3 protein phosphatase 1 (PP1) catalytic isoforms (α, β and γ) encoded within the mammalian genome. These 3 gene products share ~90% amino acid homology within their catalytic domains but each has unique N- and C-termini that likely underlie distinctive subcellular localization or functionality. In this study, we assessed the effect associated with loss of each PP1 isoform in the heart using a conditional Cre-loxP targeting approach in mice. Ppp1ca-loxP, Ppp1cb-loxP and Ppp1cc-oxP alleles were crossed with either an Nkx2.5-Cre knock-in containing allele for early embryonic deletion or a tamoxifen inducible α-myosin heavy chain (αMHC)-MerCreMer transgene for adult and cardiac-specific deletion. We determined that while deletion of Ppp1ca (PP1α) or Ppp1cc (PP1γ) had little effect on the whole heart, deletion of Ppp1cb (PP1β) resulted in concentric remodeling of the heart, interstitial fibrosis and contractile dysregulation, using either the embryonic or adult-specific Cre-expressing alleles. However, myocytes isolated from Ppp1cb deleted hearts surprisingly showed enhanced contractility. Mechanistically we found that deletion of any of the 3 PP1 gene-encoding isoforms had no effect on phosphorylation of phospholamban, nor were Ca2+ handling dynamics altered in adult myocytes from Ppp1cb deleted hearts. However, loss of Ppp1cb from the heart, but not Ppp1ca or Ppp1cc, resulted in elevated phosphorylation of myofilament proteins such as myosin light chain 2 and cardiac myosin binding protein C, consistent with an enriched localization profile of this isoform to the sarcomeres. These results suggest a unique functional role for the PP1β isoform in affecting cardiac contractile function. PMID:26334248
Genetic Drivers of Kidney Defects in the DiGeorge Syndrome.
Lopez-Rivera, Esther; Liu, Yangfan P; Verbitsky, Miguel; Anderson, Blair R; Capone, Valentina P; Otto, Edgar A; Yan, Zhonghai; Mitrotti, Adele; Martino, Jeremiah; Steers, Nicholas J; Fasel, David A; Vukojevic, Katarina; Deng, Rong; Racedo, Silvia E; Liu, Qingxue; Werth, Max; Westland, Rik; Vivante, Asaf; Makar, Gabriel S; Bodria, Monica; Sampson, Matthew G; Gillies, Christopher E; Vega-Warner, Virginia; Maiorana, Mariarosa; Petrey, Donald S; Honig, Barry; Lozanovski, Vladimir J; Salomon, Rémi; Heidet, Laurence; Carpentier, Wassila; Gaillard, Dominique; Carrea, Alba; Gesualdo, Loreto; Cusi, Daniele; Izzi, Claudia; Scolari, Francesco; van Wijk, Joanna A E; Arapovic, Adela; Saraga-Babic, Mirna; Saraga, Marijan; Kunac, Nenad; Samii, Ali; McDonald-McGinn, Donna M; Crowley, Terrence B; Zackai, Elaine H; Drozdz, Dorota; Miklaszewska, Monika; Tkaczyk, Marcin; Sikora, Przemyslaw; Szczepanska, Maria; Mizerska-Wasiak, Malgorzata; Krzemien, Grazyna; Szmigielska, Agnieszka; Zaniew, Marcin; Darlow, John M; Puri, Prem; Barton, David; Casolari, Emilio; Furth, Susan L; Warady, Bradley A; Gucev, Zoran; Hakonarson, Hakon; Flogelova, Hana; Tasic, Velibor; Latos-Bielenska, Anna; Materna-Kiryluk, Anna; Allegri, Landino; Wong, Craig S; Drummond, Iain A; D'Agati, Vivette; Imamoto, Akira; Barasch, Jonathan M; Hildebrandt, Friedhelm; Kiryluk, Krzysztof; Lifton, Richard P; Morrow, Bernice E; Jeanpierre, Cecile; Papaioannou, Virginia E; Ghiggeri, Gian Marco; Gharavi, Ali G; Katsanis, Nicholas; Sanna-Cherchi, Simone
2017-02-23
The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10 -14 ). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.).
Mignot, Cyril; Lambert, Laetitia; Pasquier, Laurent; Bienvenu, Thierry; Delahaye-Duriez, Andrée; Keren, Boris; Lefranc, Jérémie; Saunier, Aline; Allou, Lila; Roth, Virginie; Valduga, Mylène; Moustaïne, Aissa; Auvin, Stéphane; Barrey, Catherine; Chantot-Bastaraud, Sandra; Lebrun, Nicolas; Moutard, Marie-Laure; Nougues, Marie-Christine; Vermersch, Anne-Isabelle; Héron, Bénédicte; Pipiras, Eva; Héron, Delphine; Olivier-Faivre, Laurence; Guéant, Jean-Louis; Jonveaux, Philippe; Philippe, Christophe
2015-01-01
Homozygous mutations in WWOX were reported in eight individuals of two families with autosomal recessive spinocerebellar ataxia type 12 and in two siblings with infantile epileptic encephalopathy (IEE), including one who deceased prior to DNA sampling. By combining array comparative genomic hybridisation, targeted Sanger sequencing and next generation sequencing, we identified five further patients from four families with IEE due to biallelic alterations of WWOX. We identified eight deleterious WWOX alleles consisting in four deletions, a four base-pair frameshifting deletion, one missense and two nonsense mutations. Genotype-phenotype correlation emerges from the seven reported families. The phenotype in four patients carrying two predicted null alleles was characterised by (1) little if any psychomotor acquisitions, poor spontaneous motility and absent eye contact from birth, (2) pharmacoresistant epilepsy starting in the 1st weeks of life, (3) possible retinal degeneration, acquired microcephaly and premature death. This contrasted with the less severe autosomal recessive spinocerebellar ataxia type 12 phenotype due to hypomorphic alleles. In line with this correlation, the phenotype in two siblings carrying a null allele and a missense mutation was intermediate. Our results obtained by a combination of different molecular techniques undoubtedly incriminate WWOX as a gene for recessive IEE and illustrate the usefulness of high throughput data mining for the identification of genes for rare autosomal recessive disorders. The structure of the WWOX locus encompassing the FRA16D fragile site might explain why constitutive deletions are recurrently reported in genetic databases, suggesting that WWOX-related encephalopathies, although likely rare, may not be exceptional. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Sommer, J M; Nguyen, T T; Wang, C C
1994-08-15
Import of proteins into the glycosomes of T. brucei resembles the peroxisomal protein import in that C-terminal SKL-like tripeptide sequences can function as targeting signals. Many of the glycosomal proteins do not, however, possess such C-terminal tripeptide signals. Among these, phosphoenolpyruvate carboxykinase (PEPCK (ATP)) was thought to be targeted to the glycosomes by an N-terminal or an internal targeting signal. A limited similarity to the N-terminal targeting signal of rat peroxisomal thiolase exists at the N-terminus of T. brucei PEPCK. However, we found that this peroxisomal targeting signal does not function for glycosomal protein import in T. brucei. Further studies of the PEPCK gene revealed that the C-terminus of the predicted protein does not correspond to the previously deduced protein sequence of 472 amino acids due to a -1 frame shift error in the original DNA sequence. Readjusting the reading frame of the sequence results in a predicted protein of 525 amino acids in length ending in a tripeptide serine-arginine-leucine (SRL), which is a potential targeting signal for import into the glycosomes. A fusion protein of firefly luciferase, without its own C-terminal SKL targeting signal, and T. brucei PEPCK is efficiently imported into the glycosomes when expressed in procyclic trypanosomes. Deletion of the C-terminal SRL tripeptide or the last 29 amino acids of PEPCK reduced the import only by about 50%, while a deletion of the last 47 amino acids completely abolished the import. These results suggest that T. brucei PEPCK may contain a second, internal glycosomal targeting signal upstream of the C-terminal SRL sequence.
Sangiuolo, Federica; Scaldaferri, Maria Lucia; Filareto, Antonio; Spitalieri, Paola; Guerra, Lorenzo; Favia, Maria; Caroppo, Rosa; Mango, Ruggiero; Bruscia, Emanuela; Gruenert, Dieter C; Casavola, Valeria; De Felici, Massimo; Novelli, Giuseppe
2008-01-01
Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.
Velopharyngeal Anatomy in 22q11.2 Deletion Syndrome: A Three-Dimensional Cephalometric Analysis
Ruotolo, Rachel A.; Veitia, Nestor A.; Corbin, Aaron; McDonough, Joseph; Solot, Cynthia B.; McDonald-McGinn, Donna; Zackai, Elaine H.; Emanuel, Beverly S.; Cnaan, Avital; LaRossa, Don; Arens, Raanan; Kirschner, Richard E.
2010-01-01
Objective 22q11.2 deletion syndrome is the most common genetic cause of velopharyngeal dysfunction (VPD). Magnetic resonance imaging (MRI) is a promising method for noninvasive, three-dimensional (3D) assessment of velopharyngeal (VP) anatomy. The purpose of this study was to assess VP structure in patients with 22q11.2 deletion syndrome by using 3D MRI analysis. Design This was a retrospective analysis of magnetic resonance images obtained in patients with VPD associated with a 22q11.2 deletion compared with a normal control group. Setting This study was conducted at The Children’s Hospital of Philadelphia, a pediatric tertiary care center. Patients, Participants The study group consisted of 5 children between the ages of 2.9 and 7.9 years, with 22q11.2 deletion syndrome confirmed by fluorescence in situ hybridization analysis. All had VPD confirmed by nasendoscopy or videofluoroscopy. The control population consisted of 123 unaffected patients who underwent MRI for reasons other than VP assessment. Interventions Axial and sagittal T1- and T2-weighted magnetic resonance images with 3-mm slice thickness were obtained from the orbit to the larynx in all patients by using a 1.5T Siemens Visions system. Outcome Measures Linear, angular, and volumetric measurements of VP structures were obtained from the magnetic resonance images with VIDA image- processing software. Results The study group demonstrated greater anterior and posterior cranial base and atlanto-dental angles. They also demonstrated greater pharyngeal cavity volume and width and lesser tonsillar and adenoid volumes. Conclusion Patients with a 22q11.2 deletion demonstrate significant alterations in VP anatomy that may contribute to VPD. PMID:16854203
Cell wall structure suitable for surface display of proteins in Saccharomyces cerevisiae.
Matsuoka, Hiroyuki; Hashimoto, Kazuya; Saijo, Aki; Takada, Yuki; Kondo, Akihiko; Ueda, Mitsuyoshi; Ooshima, Hiroshi; Tachibana, Taro; Azuma, Masayuki
2014-02-01
A display system for adding new protein functions to the cell surfaces of microorganisms has been developed, and applications of the system to various fields have been proposed. With the aim of constructing a cell surface environment suitable for protein display in Saccharomyces cerevisiae, the cell surface structures of cell wall mutants were investigated. Four cell wall mutant strains were selected by analyses using a GFP display system via a GPI anchor. β-Glucosidase and endoglucanase II were displayed on the cell surface in the four mutants, and their activities were evaluated. mnn2 deletion strain exhibited the highest activity for both the enzymes. In particular, endoglucanase II activity using carboxymethylcellulose as a substrate in the mutant strain was 1.9-fold higher than that of the wild-type strain. In addition, the activity of endoglucanase II released from the mnn2 deletion strain by Zymolyase 20T treatment was higher than that from the wild-type strain. The results of green fluorescent protein (GFP) and endoglucanase displays suggest that the amounts of enzyme displayed on the cell surface were increased by the mnn2 deletion. The enzyme activity of the mnn2 deletion strain was compared with that of the wild-type strain. The relative value (mnn2 deletion mutant/wild-type strain) of endoglucanase II activity using carboxymethylcellulose as a substrate was higher than that of β-glucosidase activity using p-nitrophenyl-β-glucopyranoside as a substrate, suggesting that the cell surface environment of the mnn2 deletion strain facilitates the binding of high-molecular-weight substrates to the active sites of the displayed enzymes. Copyright © 2014 John Wiley & Sons, Ltd.
Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.
2014-01-01
Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669
Clinical detection of deletion structural variants in whole-genome sequences
Noll, Aaron C; Miller, Neil A; Smith, Laurie D; Yoo, Byunggil; Fiedler, Stephanie; Cooley, Linda D; Willig, Laurel K; Petrikin, Josh E; Cakici, Julie; Lesko, John; Newton, Angela; Detherage, Kali; Thiffault, Isabelle; Saunders, Carol J; Farrow, Emily G; Kingsmore, Stephen F
2016-01-01
Optimal management of acutely ill infants with monogenetic diseases requires rapid identification of causative haplotypes. Whole-genome sequencing (WGS) has been shown to identify pathogenic nucleotide variants in such infants. Deletion structural variants (DSVs, >50 nt) are implicated in many genetic diseases, and tools have been designed to identify DSVs using short-read WGS. Optimisation and integration of these tools into a WGS pipeline could improve diagnostic sensitivity and specificity of WGS. In addition, it may improve turnaround time when compared with current CNV assays, enhancing utility in acute settings. Here we describe DSV detection methods for use in WGS for rapid diagnosis in acutely ill infants: SKALD (Screening Konsensus and Annotation of Large Deletions) combines calls from two tools (Breakdancer and GenomeStrip) with calibrated filters and clinical interpretation rules. In four WGS runs, the average analytic precision (positive predictive value) of SKALD was 78%, and recall (sensitivity) was 27%, when compared with validated reference DSV calls. When retrospectively applied to a cohort of 36 families with acutely ill infants SKALD identified causative DSVs in two. The first was heterozygous deletion of exons 1–3 of MMP21 in trans with a heterozygous frame-shift deletion in two siblings with transposition of the great arteries and heterotaxy. In a newborn female with dysmorphic features, ventricular septal defect and persistent pulmonary hypertension, SKALD identified the breakpoints of a heterozygous, de novo 1p36.32p36.13 deletion. In summary, consensus DSV calling, implemented in an 8-h computational pipeline with parameterised filtering, has the potential to increase the diagnostic yield of WGS in acutely ill neonates and discover novel disease genes. PMID:29263817
Lopez-Moya, Federico; Kowbel, David; Nueda, Ma José; Palma-Guerrero, Javier; Glass, N. Louise; Lopez-Llorca, Luis Vicente
2016-01-01
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed, NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement and NCU04537 a MFS monosaccharide transporter related with assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca2+ in presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as antifungal. PMID:26694141
Molinier-Frenkel, Valérie; Gahery-Segard, Hanne; Mehtali, Majid; Le Boulaire, Christophe; Ribault, Sébastien; Boulanger, Pierre; Tursz, Thomas; Guillet, Jean-Gérard; Farace, Françoise
2000-01-01
We previously demonstrated that a single injection of 109 PFU of recombinant adenovirus into patients induces strong vector-specific immune responses (H. Gahéry-Ségard, V. Molinier-Frenkel, C. Le Boulaire, P. Saulnier, P. Opolon, R. Lengagne, E. Gautier, A. Le Cesne, L. Zitvogel, A. Venet, C. Schatz, M. Courtney, T. Le Chevalier, T. Tursz, J.-G. Guillet, and F. Farace, J. Clin. Investig. 100:2218–2226, 1997). In the present study we analyzed the mechanism of vector recognition by cytotoxic T lymphocytes (CTL). CD8+ CTL lines were derived from two patients and maintained in long-term cultures. Target cell infections with E1-deleted and E1-plus E2-deleted adenoviruses, as well as transcription-blocking experiments with actinomycin D, revealed that host T-cell recognition did not require viral gene transcription. Target cells treated with brefeldin A were not lysed, indicating that viral input protein-derived peptides are associated with HLA class I molecules. Using recombinant capsid component-loaded targets, we observed that the three major proteins could be recognized. These results raise the question of the use of multideleted adenoviruses for gene therapy in the quest to diminish antivector CTL responses. PMID:10906225
Suppression of intestinal tumorigenesis in Apc mutant mice upon Musashi-1 deletion.
Wolfe, Andy R; Ernlund, Amanda; McGuinness, William; Lehmann, Carl; Carl, Kaitlyn; Balmaceda, Nicole; Neufeld, Kristi L
2017-02-15
Therapeutic strategies based on a specific oncogenic target are better justified when elimination of that particular oncogene reduces tumorigenesis in a model organism. One such oncogene, Musashi-1 ( Msi-1 ), regulates translation of target mRNAs and is implicated in promoting tumorigenesis in the colon and other tissues. Msi-1 targets include the tumor suppressor adenomatous polyposis coli ( Apc ), a Wnt pathway antagonist lost in ∼80% of all colorectal cancers. Cell culture experiments have established that Msi-1 is a Wnt target, thus positioning Msi-1 and Apc as mutual antagonists in a mutually repressive feedback loop. Here, we report that intestines from mice lacking Msi-1 display aberrant Apc and Msi-1 mutually repressive feedback, reduced Wnt and Notch signaling, decreased proliferation, and changes in stem cell populations, features predicted to suppress tumorigenesis. Indeed, mice with germline Apc mutations ( Apc Min ) or with the Apc 1322T truncation mutation have a dramatic reduction in intestinal polyp number when Msi-1 is deleted. Taken together, these results provide genetic evidence that Msi-1 contributes to intestinal tumorigenesis driven by Apc loss, and validate the pursuit of Msi-1 inhibitors as chemo-prevention agents to reduce tumor burden. © 2017. Published by The Company of Biologists Ltd.
Kay, Chris; Collins, Jennifer A; Skotte, Niels H; Southwell, Amber L; Warby, Simon C; Caron, Nicholas S; Doty, Crystal N; Nguyen, Betty; Griguoli, Annamaria; Ross, Colin J; Squitieri, Ferdinando; Hayden, Michael R
2015-01-01
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in the Huntingtin gene (HTT). Heterozygous polymorphisms in cis with the mutation allow for allele-specific suppression of the pathogenic HTT transcript as a therapeutic strategy. To prioritize target selection, precise heterozygosity estimates are needed across diverse HD patient populations. Here we present the first comprehensive investigation of all common target alleles across the HTT gene, using 738 reference haplotypes from the 1000 Genomes Project and 2364 haplotypes from HD patients and relatives in Canada, Sweden, France, and Italy. The most common HD haplotypes (A1, A2, and A3a) define mutually exclusive sets of polymorphisms for allele-specific therapy in the greatest number of patients. Across all four populations, a maximum of 80% are treatable using these three target haplotypes. We identify a novel deletion found exclusively on the A1 haplotype, enabling potent and selective silencing of mutant HTT in approximately 40% of the patients. Antisense oligonucleotides complementary to the deletion reduce mutant A1 HTT mRNA by 78% in patient cells while sparing wild-type HTT expression. By suppressing specific haplotypes on which expanded CAG occurs, we demonstrate a rational approach to the development of allele-specific therapy for a monogenic disorder. PMID:26201449
Genome Engineering in Bacillus anthracis Using Cre Recombinase
Pomerantsev, Andrei P.; Sitaraman, Ramakrishnan; Galloway, Craig R.; Kivovich, Violetta; Leppla, Stephen H.
2006-01-01
Genome engineering is a powerful method for the study of bacterial virulence. With the availability of the complete genomic sequence of Bacillus anthracis, it is now possible to inactivate or delete selected genes of interest. However, many current methods for disrupting or deleting more than one gene require use of multiple antibiotic resistance determinants. In this report we used an approach that temporarily inserts an antibiotic resistance marker into a selected region of the genome and subsequently removes it, leaving the target region (a single gene or a larger genomic segment) permanently mutated. For this purpose, a spectinomycin resistance cassette flanked by bacteriophage P1 loxP sites oriented as direct repeats was inserted within a selected gene. After identification of strains having the spectinomycin cassette inserted by a double-crossover event, a thermo-sensitive plasmid expressing Cre recombinase was introduced at the permissive temperature. Cre recombinase action at the loxP sites excised the spectinomycin marker, leaving a single loxP site within the targeted gene or genomic segment. The Cre-expressing plasmid was then removed by growth at the restrictive temperature. The procedure could then be repeated to mutate additional genes. In this way, we sequentially mutated two pairs of genes: pepM and spo0A, and mcrB and mrr. Furthermore, loxP sites introduced at distant genes could be recombined by Cre recombinase to cause deletion of large intervening regions. In this way, we deleted the capBCAD region of the pXO2 plasmid and the entire 30 kb of chromosomal DNA between the mcrB and mrr genes, and in the latter case we found that the 32 intervening open reading frames were not essential to growth. PMID:16369025
Gillmore, Julian D; Hutchinson, Winston L; Herbert, Jeff; Bybee, Alison; Mitchell, Daniel A; Hasserjian, Robert P; Yamamura, Ken-Ichi; Suzuki, Misao; Sabin, Caroline A; Pepys, Mark B
2004-01-01
Human serum amyloid P component (SAP) binds avidly to DNA, chromatin and apoptotic cells in vitro and in vivo. 129\\Sv × C57BL\\6 mice with targeted deletion of the SAP gene spontaneously develop antinuclear autoantibodies and immune complex glomerulonephritis. SAP-deficient animals, created by backcrossing the 129\\Sv SAP gene deletion into pure line C57BL\\6 mice and studied here for the first time, also spontaneously developed broad spectrum antinuclear autoimmunity and proliferative immune complex glomerulonephritis but without proteinuria, renal failure, or increased morbidity or mortality. Mice hemizygous for the SAP gene deletion had an intermediate autoimmune phenotype. Injected apoptotic cells and isolated chromatin were more immunogenic in SAP–\\– mice than in wild-type mice. In contrast, SAP-deficient pure line 129\\Sv mice did not produce significant autoantibodies either spontaneously or when immunized with extrinsic chromatin or apoptotic cells, indicating that loss of tolerance is markedly strain dependent. However, SAP deficiency in C57BL\\6 mice only marginally affected plasma clearance of exogenous chromatin and had no effect on distribution of exogenous nucleosomes between the liver and kidneys, which were the only tissue sites of catabolism. Furthermore, transgenic expression of human SAP in the C57BL\\6 SAP knockout mice did not abrogate the autoimmune phenotype. This may reflect the different binding affinities of mouse and human SAP for nuclear autoantigens and\\or the heterologous nature of transgenic human SAP in the mouse. Alternatively, the autoimmunity may be independent of SAP deficiency and caused by expression of 129\\Sv chromosome 1 genes in the C57BL\\6 background. PMID:15147569
Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade.
Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu
2016-01-01
Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named 'beige' or 'brite' adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders.
El-Turk, Farah; Cascella, Michele; Ouertatani-Sakouhi, Hajer; Narayanan, Raghavendran Lakshmi; Leng, Lin; Bucala, Richard; Hweckstetter, Markus; Rothlisberger, Ursula; Lashuel, Hilal A.
2013-01-01
Macrophage migration inhibitory factor (MIF) is a multifunctional protein and a major mediator of innate immunity. Although X-ray crystallography revealed that MIF exists as a homotrimer, its oligomerization state in vivo as well as the factors governing its oligomerization and stability remain poorly understood. The C-terminal region of MIF is highly conserved and participates in several intramolecular interactions that suggest a role in modulating the stability and biochemical activity of MIF. To determine the importance of these interactions, point mutations (A48P, L46A), insertions (P107) at the monomer-monomer interfaces, and C-terminal deletion (Δ110-114NSTFA and Δ105–114NVGWNNSTFA) variants were designed and their structural properties, thermodynamic stability, oligomerization state, catalytic activity and receptor binding were characterized using a battery of biophysical methods. The C-terminal deletion mutants ΔC5 huMIF1-109 and ΔC10 huMIF1-104 were enzymatically inactive and thermodynamically less stable than wild type MIF. Analytical ultracentrifugation studies demonstrate that both C-terminal mutants sediment as trimers and exhibit similar binding to CD74 as the wild type protein. Disrupting the conformation of the C-terminal region 105–114 and increasing its conformational flexibility through the insertion of a proline residue at position 107 was sufficient to reproduce the structural, biochemical and thermodynamic properties of the deletion mutants. P107 MIF forms an enzymatically inactive trimer and exhibits reduced thermodynamic stability relative to the wild type protein. To provide a rationale for the changes induced by these mutations at the molecular level, we also performed molecular dynamics simulations on these mutants in comparison to the wild type MIF. Together, our studies demonstrate that inter-subunit interactions involving the C-terminal region 105–114, including a salt-bridge interaction between Arg73 of one monomer and the carboxy terminus of a neighbouring monomer, play critical roles in modulating tertiary structure stabilization, enzymatic activity, and thermodynamic stability of MIF, but not its oligomerization state and receptor binding properties. Our results suggest that targeting the C-terminal region could provide new strategies for allosteric modulation of MIF enzymatic activity and the development of novel inhibitors of MIF tautomerase activity. PMID:18795803
Detection of multiple airborne targets from multisensor data
NASA Astrophysics Data System (ADS)
Foltz, Mark A.; Srivastava, Anuj; Miller, Michael I.; Grenander, Ulf
1995-08-01
Previously we presented a jump-diffusion based random sampling algorithm for generating conditional mean estimates of scene representations for the tracking and recongition of maneuvering airborne targets. These representations include target positions and orientations along their trajectories and the target type associated with each trajectory. Taking a Bayesian approach, a posterior measure is defined on the parameter space by combining sensor models with a sophisticated prior based on nonlinear airplane dynamics. The jump-diffusion algorithm constructs a Markov process which visits the elements of the parameter space with frequencies proportional to the posterior probability. It consititutes both the infinitesimal, local search via a sample path continuous diffusion transform and the larger, global steps through discrete jump moves. The jump moves involve the addition and deletion of elements from the scene configuration or changes in the target type assoviated with each target trajectory. One such move results in target detection by the addition of a track seed to the inference set. This provides initial track data for the tracking/recognition algorithm to estimate linear graph structures representing tracks using the other jump moves and the diffusion process, as described in our earlier work. Target detection ideally involves a continuous research over a continuum of the observation space. In this work we conclude that for practical implemenations the search space must be discretized with lattice granularity comparable to sensor resolution, and discuss how fast Fourier transforms are utilized for efficient calcuation of sufficient statistics given our array models. Some results are also presented from our implementation on a networked system including a massively parallel machine architecture and a silicon graphics onyx workstation.
Antibody distance from the cell membrane regulates antibody effector mechanisms
Cleary, Kirstie L.S.; Chan, H.T. Claude; James, Sonja; Glennie, Martin J.; Cragg, Mark S.
2017-01-01
Immunotherapy using monoclonal antibodies (mAb) such as rituximab is an established means of treating haematological malignancies. Antibodies can elicit a number of mechanisms to delete target cells, including complement dependent cytotoxicity (CDC), antibody dependent cellular cytotoxicity (ADCC) and antibody dependent cellular phagocytosis (ADCP). The inherent properties of the target molecule help define which of these mechanisms are more important for efficacy. However, why mAb binding to different epitopes within the same target elicits different levels of therapeutic activity, is often unclear. To specifically address whether distance from the target cell membrane influences the aforementioned effector mechanisms, a panel of fusion proteins consisting of a CD20 or CD52 epitope attached to various CD137 scaffold molecules were generated. The CD137 scaffold was modified through the removal or addition of cysteine-rich extracellular domains, to produce a panel of chimeric molecules which held the target epitope at different distances along the protein. It was shown that CDC and ADCC favoured a membrane proximal epitope, whilst ADCP favoured an epitope positioned further away. These findings were then confirmed using reagents targeting the membrane proximal or distal domains of CD137 itself before investigating these properties in vivo where a clear difference in the splenic clearance of transfected tumour cells was observed. Together, this work demonstrates how altering the position of the antibody epitope is able to change the effector mechanisms engaged and facilitates the selection of mAbs designed to delete target cells through specific effector mechanisms and provide more effective therapeutic agents. PMID:28404636
2014-01-01
Background Inclusion bodies (IBs) were generally considered to be inactive protein deposits and did not hold any attractive values in biotechnological applications. Recently, some IBs of recombinant proteins were confirmed to show their functional properties such as enzyme activities, fluorescence, etc. Such biologically active IBs are not commonly formed, but they have great potentials in the fields of biocatalysis, material science and nanotechnology. Results In this study, we characterized the IBs of DL4, a deletion variant of green fluorescent protein which forms active intracellular aggregates. The DL4 proteins expressed in Escherichia coli were exclusively deposited to IBs, and the IBs were estimated to be mostly composed of active proteins. The spectral properties and quantum yield of the DL4 variant in the active IBs were almost same with those of its native protein. Refolding and stability studies revealed that the deletion mutation in DL4 didn’t affect the folding efficiency of the protein, but destabilized its structure. Analyses specific for amyloid-like structures informed that the inner architecture of DL4 IBs might be amorphous rather than well-organized. The diameter of fluorescent DL4 IBs could be decreased up to 100–200 nm by reducing the expression time of the protein in vivo. Conclusions To our knowledge, DL4 is the first GFP variant that folds correctly but aggregates exclusively in vivo without any self-aggregating/assembling tags. The fluorescent DL4 IBs have potentials to be used as fluorescent biomaterials. This study also suggests that biologically active IBs can be achieved through engineering a target protein itself. PMID:24885571
Yi, James J.; Weinberger, Ronnie; Moore, Tyler M.; Calkins, Monica E.; Guri, Yael; McDonald-McGinn, Donna M.; Zackai, Elaine H.; Emanuel, Beverly S.; Gur, Raquel E.; Gothelf, Doron; Gur, Ruben C.
2016-01-01
Increasingly, the effects of copy number variation (CNV) in the genome on brain function and behaviors are recognized as means to elucidate pathophysiology of psychiatric disorders. Such studies require large samples and we characterized the neurocognitive profile of two cohorts of individuals with 22q11.2 deletion syndrome (22q11DS), the most common CNV associated with schizophrenia, in an effort to harmonize phenotyping in multi-site global collaborations. The Penn Computerized Neurocognitive Battery (PCNB) was administered to individuals with 22q11DS in Philadelphia (PHL; n=155, aged 12–40) and Tel Aviv (TLV; n=59, aged 12–36). We examined effect sizes of performance differences between the cohorts and confirmed the factor structure of PCNB performance efficiency in the combined sample based on data from a large comparison community sample. The cohorts performed comparably with notable deficits in executive function, episodic memory and social cognition domains that were previously associated with abnormal neuroimaging findings in 22q11DS. In mixed model analysis, while there was a main effect for site for accuracy (number of correct response) and speed (time to correct response) independently, there were no main site effects for standardized efficiency (average of accuracy and speed). The fit of a structural model was excellent indicating that PCNB tests were related to the targeted cognitive domains. Thus, our results provide preliminary support for the use of the PCNB as an efficient tool for neurocognitive assessment in international 22q11DS collaborations. PMID:27200494
Erdemir, Aysegul; Mutlu, Ozal
2017-06-01
Lactate dehydrogenase (LDH) is an important metabolic enzyme in glycolysis and it has been considered as the main energy source in many organisms including apicomplexan parasites. Differences at the active site loop of the host and parasite LDH's makes this enzyme an attractive target for drug inhibitors. In this study, five amino acid insertions in the active site pocket of Theileria annulata LDH (TaLDH) were deleted by PCR-based site-directed mutagenesis, expression and activity analysis of mutant and wild type TaLDH enzymes were performed. Removal of the insertion at the active site loop caused production of an inactive enzyme. Furthermore, structures of wild and mutant enzymes were predicted by comparative modeling and the importance of the insertions at the active site loop were also assigned by molecular docking and dynamics simulations in order to evaluate essential role of this loop for the enzymatic activity. Pentapeptide insertion removal resulted in loss of LDH activity due to deletion of Trp96 and conformational change of Arg98 because of loop instability. Analysis of wild type and mutant enzymes with comparative molecular dynamics simulations showed that the fluctuations of the loop residues increase in mutant enzyme. Together with in silico studies, in vitro results revealed that active site loop has a vital role in the enzyme activity and our findings promise hope for the further drug design studies against theileriosis and other apicomplexan parasite diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Yi, James J; Weinberger, Ronnie; Moore, Tyler M; Calkins, Monica E; Guri, Yael; McDonald-McGinn, Donna M; Zackai, Elaine H; Emanuel, Beverly S; Gur, Raquel E; Gothelf, Doron; Gur, Ruben C
2016-07-01
Increasingly, the effects of copy number variation (CNV) in the genome on brain function and behaviors are recognized as means to elucidate pathophysiology of psychiatric disorders. Such studies require large samples and we characterized the neurocognitive profile of two cohorts of individuals with 22q11.2 deletion syndrome (22q11DS), the most common CNV associated with schizophrenia, in an effort to harmonize phenotyping in multi-site global collaborations. The Penn Computerized Neurocognitive Battery (PCNB) was administered to individuals with 22q11DS in Philadelphia (PHL; n=155, aged 12-40) and Tel Aviv (TLV; n=59, aged 12-36). We examined effect sizes of performance differences between the cohorts and confirmed the factor structure of PCNB performance efficiency in the combined sample based on data from a large comparison community sample. The cohorts performed comparably with notable deficits in executive function, episodic memory and social cognition domains that were previously associated with abnormal neuroimaging findings in 22q11DS. In mixed model analysis, while there was a main effect for site for accuracy (number of correct response) and speed (time to correct response) independently, there were no main site effects for standardized efficiency (average of accuracy and speed). The fit of a structural model was excellent indicating that PCNB tests were related to the targeted cognitive domains. Thus, our results provide preliminary support for the use of the PCNB as an efficient tool for neurocognitive assessment in international 22q11DS collaborations. Copyright © 2016 Elsevier Inc. All rights reserved.
The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome)
Phelan, K.; McDermid, H.E.
2012-01-01
The 22q13.3 deletion syndrome, also known as Phelan-McDermid syndrome, is a contiguous gene disorder resulting from deletion of the distal long arm of chromosome 22. In addition to normal growth and a constellation of minor dysmorphic features, this syndrome is characterized by neurological deficits which include global developmental delay, moderate to severe intellectual impairment, absent or severely delayed speech, and neonatal hypotonia. In addition, more than 50% of patients show autism or autistic-like behavior, and therefore it can be classified as a syndromic form of autism spectrum disorders (ASD). The differential diagnosis includes Angelman syndrome, velocardiofacial syndrome, fragile X syndrome, and FG syndrome. Over 600 cases of 22q13.3 deletion syndrome have been documented. Most are terminal deletions of ∼100 kb to >9 Mb, resulting from simple deletions, ring chromosomes, and unbalanced translocations. Almost all of these deletions include the gene SHANK3 which encodes a scaffold protein in the postsynaptic densities of excitatory synapses, connecting membrane-bound receptors to the actin cytoskeleton. Two mouse knockout models and cell culture experiments show that SHANK3 is involved in the structure and function of synapses and support the hypothesis that the majority of 22q13.3 deletion syndrome neurological defects are due to haploinsufficiency of SHANK3, although other genes in the region may also play a role in the syndrome. The molecular connection to ASD suggests that potential future treatments may involve modulation of metabotropic glutamate receptors. PMID:22670140
Son, Minky; Bang, Woo Young; Park, Chanin; Lee, Yuno; Kwon, Seul Gi; Kim, Sam Woong; Kim, Chul Wook; Lee, Keun Woo
2014-01-01
Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C-terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT) were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily.
Park, Chanin; Lee, Yuno; Kwon, Seul Gi; Kim, Sam Woong; Kim, Chul Wook; Lee, Keun Woo
2014-01-01
Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C- terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT) were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily. PMID:24646606
Kiviranta, Riku; Yamana, Kei; Saito, Hiroaki; Ho, Daniel K.; Laine, Julius; Tarkkonen, Kati; Nieminen-Pihala, Vappu; Hesse, Eric; Correa, Diego; Määttä, Jorma; Tessarollo, Lino; Rosen, Evan D.; Horne, William C.; Jenkins, Nancy A.; Copeland, Neal G.; Warming, Soren
2013-01-01
Bone homeostasis is maintained by the coupled actions of hematopoietic bone-resorbing osteoclasts (OCs) and mesenchymal bone-forming osteoblasts (OBs). Here we identify early B cell factor 1 (Ebf1) and the transcriptional coregulator Zfp521 as components of the machinery that regulates bone homeostasis through coordinated effects in both lineages. Deletion of Zfp521 in OBs led to impaired bone formation and increased OB-dependent osteoclastogenesis (OC-genesis), and deletion in hematopoietic cells revealed a strong cell-autonomous role for Zfp521 in OC progenitors. In adult mice, the effects of Zfp521 were largely caused by repression of Ebf1, and the bone phenotype of Zfp521+/− mice was rescued in Zfp521+/−:Ebf1+/− mice. Zfp521 interacted with Ebf1 and repressed its transcriptional activity. Accordingly, deletion of Zfp521 led to increased Ebf1 activity in OBs and OCs. In vivo, Ebf1 overexpression in OBs resulted in suppressed bone formation, similar to the phenotype seen after OB-targeted deletion of Zfp521. Conversely, Ebf1 deletion led to cell-autonomous defects in both OB-dependent and cell-intrinsic OC-genesis, a phenotype opposite to that of the Zfp521 knockout. Thus, we have identified the interplay between Zfp521 and Ebf1 as a novel rheostat for bone homeostasis. PMID:23569325
Uterine Deletion of Gp130 or Stat3 Shows Implantation Failure with Increased Estrogenic Responses
Sun, Xiaofei; Bartos, Amanda; Whitsett, Jeffrey A.
2013-01-01
Leukemia inhibitory factor (LIF), a downstream target of estrogen, is essential for implantation in mice. LIF function is thought to be mediated by its binding to LIF receptor (LIFR) and recruitment of coreceptor GP130 (glycoprotein 130), and this receptor complex then activates signal transducer and activator of transcription (STAT)1/3. However, the importance of LIFR and GP130 acting via STAT3 in implantation remains uncertain, because constitutive inactivation of Lifr, Gp130, or Stat3 shows embryonic lethality in mice. To address this issue, we generated mice with conditional deletion of uterine Gp130 or Stat3 and show that both GP130 and STAT3 are critical for uterine receptivity and implantation. Implantation failure in these deleted mice is associated with higher uterine estrogenic responses prior to the time of implantation. These heightened estrogenic responses are not due to changes in ovarian hormone levels or expression of their nuclear receptors. In the deleted mice, estrogen-responsive gene, Lactoferrin (Ltf), and Mucin 1 protein, were up-regulated in the uterus. In addition, progesterone-responsive genes, Hoxa10 and Indian hedgehog (Ihh), were markedly down-regulated in STAT3-inactivated uteri. These changes in uteri of deleted mice were reflected by the failure of differentiation of the luminal epithelium, which is essential for blastocyst attachment. PMID:23885093
Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo
2016-01-01
Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin. To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas. PMID:27506937
Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo
2016-09-06
Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin.To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas.
Yamanaka, Tomoyuki; Tosaki, Asako; Kurosawa, Masaru; Akimoto, Kazunori; Hirose, Tomonori; Ohno, Shigeo; Hattori, Nobutaka; Nukina, Nobuyuki
2013-01-01
Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS). Recent studies have established the significance of atypical protein kinase C (aPKC) and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation. PMID:24391875
Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo
Abdel-Wahab, Omar; Gao, Jie; Adli, Mazhar; Dey, Anwesha; Trimarchi, Thomas; Chung, Young Rock; Kuscu, Cem; Hricik, Todd; Ndiaye-Lobry, Delphine; LaFave, Lindsay M.; Koche, Richard; Shih, Alan H.; Guryanova, Olga A.; Kim, Eunhee; Li, Sheng; Pandey, Suveg; Shin, Joseph Y.; Telis, Leon; Liu, Jinfeng; Bhatt, Parva K.; Monette, Sebastien; Zhao, Xinyang; Mason, Christopher E.; Park, Christopher Y.; Bernstein, Bradley E.
2013-01-01
Somatic Addition of Sex Combs Like 1 (ASXL1) mutations occur in 10–30% of patients with myeloid malignancies, most commonly in myelodysplastic syndromes (MDSs), and are associated with adverse outcome. Germline ASXL1 mutations occur in patients with Bohring-Opitz syndrome. Here, we show that constitutive loss of Asxl1 results in developmental abnormalities, including anophthalmia, microcephaly, cleft palates, and mandibular malformations. In contrast, hematopoietic-specific deletion of Asxl1 results in progressive, multilineage cytopenias and dysplasia in the context of increased numbers of hematopoietic stem/progenitor cells, characteristic features of human MDS. Serial transplantation of Asxl1-null hematopoietic cells results in a lethal myeloid disorder at a shorter latency than primary Asxl1 knockout (KO) mice. Asxl1 deletion reduces hematopoietic stem cell self-renewal, which is restored by concomitant deletion of Tet2, a gene commonly co-mutated with ASXL1 in MDS patients. Moreover, compound Asxl1/Tet2 deletion results in an MDS phenotype with hastened death compared with single-gene KO mice. Asxl1 loss results in a global reduction of H3K27 trimethylation and dysregulated expression of known regulators of hematopoiesis. RNA-Seq/ChIP-Seq analyses of Asxl1 in hematopoietic cells identify a subset of differentially expressed genes as direct targets of Asxl1. These findings underscore the importance of Asxl1 in Polycomb group function, development, and hematopoiesis. PMID:24218140
Hernández-Rivas, Jesús María
2018-01-01
The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease. PMID:29642462
Montaño, Adrián; Forero-Castro, Maribel; Marchena-Mendoza, Darnel; Benito, Rocío; Hernández-Rivas, Jesús María
2018-04-07
The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hua; Chen, Li-Mei; Carney, Paul J.
2012-02-21
Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avianmore » receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.« less
Bacolla, Albino; Tainer, John A; Vasquez, Karen M; Cooper, David N
2016-07-08
Gross chromosomal rearrangements (including translocations, deletions, insertions and duplications) are a hallmark of cancer genomes and often create oncogenic fusion genes. An obligate step in the generation of such gross rearrangements is the formation of DNA double-strand breaks (DSBs). Since the genomic distribution of rearrangement breakpoints is non-random, intrinsic cellular factors may predispose certain genomic regions to breakage. Notably, certain DNA sequences with the potential to fold into secondary structures [potential non-B DNA structures (PONDS); e.g. triplexes, quadruplexes, hairpin/cruciforms, Z-DNA and single-stranded looped-out structures with implications in DNA replication and transcription] can stimulate the formation of DNA DSBs. Here, we tested the postulate that these DNA sequences might be found at, or in close proximity to, rearrangement breakpoints. By analyzing the distribution of PONDS-forming sequences within ±500 bases of 19 947 translocation and 46 365 sequence-characterized deletion breakpoints in cancer genomes, we find significant association between PONDS-forming repeats and cancer breakpoints. Specifically, (AT)n, (GAA)n and (GAAA)n constitute the most frequent repeats at translocation breakpoints, whereas A-tracts occur preferentially at deletion breakpoints. Translocation breakpoints near PONDS-forming repeats also recur in different individuals and patient tumor samples. Hence, PONDS-forming sequences represent an intrinsic risk factor for genomic rearrangements in cancer genomes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mittal, Nimisha; Muthuswami, Rohini
2017-01-01
Background Leishmania donovani, a protozoan parasite is the major causative agent of visceral leishmaniasis. Increased toxicity and resistance to the existing repertoire of drugs has been reported. Hence, an urgent need exists for identifying newer drugs and drug targets. Previous reports have shown sirtuins (Silent Information Regulator) from kinetoplastids as promising drug targets. Leishmania species code for three SIR2 (Silent Information Regulator) related proteins. Here, we for the first time report the functional characterization of SIR2 related protein 2 (SIR2RP2) of L. donovani. Methodology Recombinant L. donovani SIR2RP2 was expressed in E. coli and purified. The enzymatic functions of SIR2RP2 were determined. The subcellular localization of LdSIR2RP2 was done by constructing C-terminal GFP-tagged full-length LdSIR2RP2. Deletion mutants of LdSIR2RP2 were generated in Leishmania by double targeted gene replacement methodology. These null mutants were tested for their proliferation, virulence, cell cycle defects, mitochondrial functioning and sensitivity to known SIR2 inhibitors. Conclusion Our data suggests that LdSIR2RP2 possesses NAD+-dependent ADP-ribosyltransferase activity. However, NAD+-dependent deacetylase and desuccinylase activities were not detected. The protein localises to the mitochondrion of the promastigotes. Gene deletion studies showed that ΔLdSIR2RP2 null mutants had restrictive growth phenotype associated with accumulation of cells in the G2/M phase and compromised mitochondrial functioning. The null mutants had attenuated infectivity. Deletion of LdSIR2RP2 resulted in increased sensitivity of the parasites to the known SIR2 inhibitors. The sirtuin inhibitors inhibited the ADP-ribosyltransferase activity of recombinant LdSIR2RP2. In conclusion, sirtuins could be used as potential new drug targets for visceral leishmaniasis. PMID:28493888
1978-04-15
12. (Part 2 of 2) 70 B1 Calculate Revised I! Allocation Error [: Estimates For Each Attribute Category] Skip Change of tltipliers - No _ D-Do For All A...passing Onl to tilt next target , thlt current Value Of the target weight is revised . Altecr every two to four targets , the Laigrange multipliers art...delete a weapon, a new set of variables is delivered by WADOUT, and STALL uses this revised in- formation to decide whether more weapons should be added
Acquisition of Nominal Morphophonological Alternations in Russian
ERIC Educational Resources Information Center
Tomas, Ekaterina; van de Vijver, Ruben; Demuth, Katherine; Petocz, Peter
2017-01-01
Morphophonological alternations can make target-like production of grammatical morphemes challenging due to changes in form depending on the phonological environment. This article explores the acquisition of morphophonological alternations involving the interacting patterns of vowel deletion and stress shift in Russian-speaking children (aged…
Trehalose-related gene deletions in Fusarium verticillioides
USDA-ARS?s Scientific Manuscript database
Fusarium verticillioides is a widespread corn pathogen that causes root, stalk, and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Our goal is to assess the feasibility of exploiting trehalose metabolism as a target for F. verticillioide...
Trehalose-related Gene Deletions in Fusarium verticillioides
USDA-ARS?s Scientific Manuscript database
Fusarium verticillioides is a widespread corn pathogen that causes root, stalk and ear rot and produces fumonisins, toxic secondary metabolites associated with disease in livestock and humans. Our goal is to assess the feasibility of exploiting trehalose metabolism as a target for F. verticillioides...
Deletion of BMAL1 in Smooth Muscle Cells Protects Mice From Abdominal Aortic Aneurysms.
Lutshumba, Jenny; Liu, Shu; Zhong, Yu; Hou, Tianfei; Daugherty, Alan; Lu, Hong; Guo, Zhenheng; Gong, Ming C
2018-05-01
Abdominal aortic aneurysm (AAA) has high mortality rate when ruptured, but currently, there is no proven pharmacological therapy for AAA because of our poor understanding of its pathogenesis. The current study explored a novel role of smooth muscle cell (SMC) BMAL1 (brain and muscle Arnt-like protein-1)-a transcription factor known to regulate circadian rhythm-in AAA development. SMC-selective deletion of BMAL1 potently protected mice from AAA induced by (1) MR (mineralocorticoid receptor) agonist deoxycorticosterone acetate or aldosterone plus high salt intake and (2) angiotensin II infusion in hypercholesterolemia mice. Aortic BMAL1 was upregulated by deoxycorticosterone acetate-salt, and deletion of BMAL1 in SMCs selectively upregulated TIMP4 (tissue inhibitor of metalloproteinase 4) and suppressed deoxycorticosterone acetate-salt-induced MMP (matrix metalloproteinase) activation and elastin breakages. Moreover, BMAL1 bound to the Timp4 promoter and suppressed Timp4 transcription. These results reveal an important, but previously unexplored, role of SMC BMAL1 in AAA. Moreover, these results identify TIMP4 as a novel target of BMAL1, which may mediate the AAA protective effect of SMC BMAL1 deletion. © 2018 American Heart Association, Inc.
Valkenburg, Kenneth C; Hostetter, Galen; Williams, Bart O
2015-10-01
A clinical need to better categorize patients with prostate cancer exists. The Wnt/β-catenin signaling pathway plays important roles in human prostate cancer progression. Deletion of the endogenous Wnt antagonist adenomatous polyposis coli (Apc) in mice causes high grade prostate intraepithelial neoplasia, widely thought to be the precursor to prostate cancer. However, no metastasis occurrs in this model. New mouse models are needed to determine molecular causes of tumorigenesis, progression, and metastasis. To determine whether the overexpression of the prostate oncogene Hepsin could cause prostate cancer progression, we crossed a prostate-specific Hepsin overexpression model to a prostate-specific Apc-deletion model and classified the observed phenotype. When Apc was deleted and Hepsin overexpressed concurrently, mice displayed invasive carcinoma, with loss of membrane characteristics and increase of fibrosis. These tumors had both luminal and basaloid characteristics. Though no metastasis was observed, there was evidence of adenomas and lung necrosis, inflammation, and chronic hemorrhage. This work indicates that the Wnt/β-catenin pathway and the Hepsin pathway act in concert to promote prostate cancer progression. Both of these pathways are up-regulated in human prostate cancer and could represent chemotherapeutic targets. © 2015 Wiley Periodicals, Inc.
Maguire, Meghan; Larsen, Michele Campaigne; Foong, Yee Hoon; Tanumihardjo, Sherry; Jefcoate, Colin R.
2018-01-01
Cyp1b1 deletion and gestational vitamin A deficiency (GVAD) redirect adult liver gene expression. A matched sufficient pre- and post-natal diet, which has high carbohydrate and normal iron content (LF12), increased inflammatory gene expression markers in adult livers that were suppressed by GVAD and Cyp1b1 deletion. At birth on the LF12 diet, Cyp1b1 deletion and GVAD each suppress liver expression of the iron suppressor, hepcidin (Hepc), while increasing stellate cell activation markers and suppressing post-natal increases in lipogenesis. Hepc was less suppressed in Cyp1b1−/− pups with a standard breeder diet, but was restored by iron supplementation of the LF12 diet. Conclusions The LF12 diet delivered low post-natal iron and attenuated Hepc. Hepc decreases in Cyp1b1−/− and GVAD mice resulted in stellate activation and lipogenesis suppression. Endothelial BMP6, a Hepc stimulant, is a potential coordinator and Cyp1b1 target. These neonatal changes in Cyp1b1−/− mice link to diminished adult obesity and liver inflammation. PMID:28583802
Zhang, Jun; Li, Shihe; Fischer, Reinhard; Xiang, Xin
2003-01-01
The mechanism(s) by which microtubule plus-end tracking proteins are targeted is unknown. In the filamentous fungus Aspergillus nidulans, both cytoplasmic dynein and NUDF, the homolog of the LIS1 protein, localize to microtubule plus ends as comet-like structures. Herein, we show that NUDM, the p150 subunit of dynactin, also forms dynamic comet-like structures at microtubule plus ends. By examining proteins tagged with green fluorescent protein in different loss-of-function mutants, we demonstrate that dynactin and cytoplasmic dynein require each other for microtubule plus-end accumulation, and the presence of cytoplasmic dynein is also important for NUDF's plus-end accumulation. Interestingly, deletion of NUDF increases the overall accumulation of dynein and dynactin at plus ends, suggesting that NUDF may facilitate minus-end–directed dynein movement. Finally, we demonstrate that a conventional kinesin, KINA, is required for the microtubule plus-end accumulation of cytoplasmic dynein and dynactin, but not of NUDF. PMID:12686603
A Roadmap for Functional Structural Variants in the Soybean Genome
Anderson, Justin E.; Kantar, Michael B.; Kono, Thomas Y.; Fu, Fengli; Stec, Adrian O.; Song, Qijian; Cregan, Perry B.; Specht, James E.; Diers, Brian W.; Cannon, Steven B.; McHale, Leah K.; Stupar, Robert M.
2014-01-01
Gene structural variation (SV) has recently emerged as a key genetic mechanism underlying several important phenotypic traits in crop species. We screened a panel of 41 soybean (Glycine max) accessions serving as parents in a soybean nested association mapping population for deletions and duplications in more than 53,000 gene models. Array hybridization and whole genome resequencing methods were used as complementary technologies to identify SV in 1528 genes, or approximately 2.8%, of the soybean gene models. Although SV occurs throughout the genome, SV enrichment was noted in families of biotic defense response genes. Among accessions, SV was nearly eightfold less frequent for gene models that have retained paralogs since the last whole genome duplication event, compared with genes that have not retained paralogs. Increases in gene copy number, similar to that described at the Rhg1 resistance locus, account for approximately one-fourth of the genic SV events. This assessment of soybean SV occurrence presents a target list of genes potentially responsible for rapidly evolving and/or adaptive traits. PMID:24855315
Tropomodulin isoforms regulate thin filament pointed-end capping and skeletal muscle physiology
Gokhin, David S.; Lewis, Raymond A.; McKeown, Caroline R.; Nowak, Roberta B.; Kim, Nancy E.; Littlefield, Ryan S.; Lieber, Richard L.
2010-01-01
During myofibril assembly, thin filament lengths are precisely specified to optimize skeletal muscle function. Tropomodulins (Tmods) are capping proteins that specify thin filament lengths by controlling actin dynamics at pointed ends. In this study, we use a genetic targeting approach to explore the effects of deleting Tmod1 from skeletal muscle. Myofibril assembly, skeletal muscle structure, and thin filament lengths are normal in the absence of Tmod1. Tmod4 localizes to thin filament pointed ends in Tmod1-null embryonic muscle, whereas both Tmod3 and -4 localize to pointed ends in Tmod1-null adult muscle. Substitution by Tmod3 and -4 occurs despite their weaker interactions with striated muscle tropomyosins. However, the absence of Tmod1 results in depressed isometric stress production during muscle contraction, systemic locomotor deficits, and a shift to a faster fiber type distribution. Thus, Tmod3 and -4 compensate for the absence of Tmod1 structurally but not functionally. We conclude that Tmod1 is a novel regulator of skeletal muscle physiology. PMID:20368620
Combined pituitary hormone deficiency due to gross deletions in the POU1F1 (PIT-1) and PROP1 genes.
Bertko, Eleonore; Klammt, Jürgen; Dusatkova, Petra; Bahceci, Mithat; Gonc, Nazli; Ten Have, Louise; Kandemir, Nurgun; Mansmann, Georg; Obermannova, Barbora; Oostdijk, Wilma; Pfäffle, Heike; Rockstroh-Lippold, Denise; Schlicke, Marina; Tuzcu, Alpaslan Kemal; Pfäffle, Roland
2017-08-01
Pituitary development depends on a complex cascade of interacting transcription factors and signaling molecules. Lesions in this cascade lead to isolated or combined pituitary hormone deficiency (CPHD). The aim of this study was to identify copy number variants (CNVs) in genes known to cause CPHD and to determine their structure. We analyzed 70 CPHD patients from 64 families. Deletions were found in three Turkish families and one family from northern Iraq. In one family we identified a 4.96 kb deletion that comprises the first two exons of POU1F1. In three families a homozygous 15.9 kb deletion including complete PROP1 was discovered. Breakpoints map within highly homologous AluY sequences. Haplotype analysis revealed a shared haplotype of 350 kb among PROP1 deletion carriers. For the first time we were able to assign the boundaries of a previously reported PROP1 deletion. This gross deletion shows strong evidence to originate from a common ancestor in patients with Kurdish descent. No CNVs within LHX3, LHX4, HESX1, GH1 and GHRHR were found. Our data prove multiplex ligation-dependent probe amplification to be a valuable tool for the detection of CNVs as cause of pituitary insufficiencies and should be considered as an analytical method particularly in Kurdish patients.
Combined pituitary hormone deficiency due to gross deletions in the POU1F1 (PIT-1) and PROP1 genes
Bertko, Eleonore; Klammt, Jürgen; Dusatkova, Petra; Bahceci, Mithat; Gonc, Nazli; ten Have, Louise; Kandemir, Nurgun; Mansmann, Georg; Obermannova, Barbora; Oostdijk, Wilma; Pfäffle, Heike; Rockstroh-Lippold, Denise; Schlicke, Marina; Tuzcu, Alpaslan Kemal; Pfäffle, Roland
2017-01-01
Pituitary development depends on a complex cascade of interacting transcription factors and signaling molecules. Lesions in this cascade lead to isolated or combined pituitary hormone deficiency (CPHD). The aim of this study was to identify copy number variants (CNVs) in genes known to cause CPHD and to determine their structure. We analyzed 70 CPHD patients from 64 families. Deletions were found in three Turkish families and one family from northern Iraq. In one family we identified a 4.96 kb deletion that comprises the first two exons of POU1F1. In three families a homozygous 15.9 kb deletion including complete PROP1 was discovered. Breakpoints map within highly homologous AluY sequences. Haplotype analysis revealed a shared haplotype of 350 kb among PROP1 deletion carriers. For the first time we were able to assign the boundaries of a previously reported PROP1 deletion. This gross deletion shows strong evidence to originate from a common ancestor in patients with Kurdish descent. No CNVs within LHX3, LHX4, HESX1, GH1 and GHRHR were found. Our data prove multiplex ligation-dependent probe amplification to be a valuable tool for the detection of CNVs as cause of pituitary insufficiencies and should be considered as an analytical method particularly in Kurdish patients. PMID:28356564
Mieher, Joshua L; Larson, Matthew R; Schormann, Norbert; Purushotham, Sangeetha; Wu, Ren; Rajashankar, Kanagalaghatta R; Wu, Hui; Deivanayagam, Champion
2018-07-01
The high-resolution structure of glucan binding protein C (GbpC) at 1.14 Å, a sucrose-dependent virulence factor of the dental caries pathogen Streptococcus mutans , has been determined. GbpC shares not only structural similarities with the V regions of AgI/II and SspB but also functional adherence to salivary agglutinin (SAG) and its scavenger receptor cysteine-rich domains (SRCRs). This is not only a newly identified function for GbpC but also an additional fail-safe binding mechanism for S. mutans Despite the structural similarities with S. mutans antigen I/II (AgI/II) and SspB of Streptococcus gordonii , GbpC remains unique among these surface proteins in its propensity to adhere to dextran/glucans. The complex crystal structure of GbpC with dextrose (β-d-glucose; Protein Data Bank ligand BGC) highlights exclusive structural features that facilitate this interaction with dextran. Targeted deletion mutant studies on GbpC's divergent loop region in the vicinity of a highly conserved calcium binding site confirm its role in biofilm formation. Finally, we present a model for adherence to dextran. The structure of GbpC highlights how artfully microbes have engineered the lectin-like folds to broaden their functional adherence repertoire. Copyright © 2018 American Society for Microbiology.
c-Jun N-terminal kinase 3 (JNK3) Mediates Paraquat- and Rotenone-Induced Dopaminergic Neuron Death
Choi, Won Seok; Abel, Glen; Klintworth, Heather; Flavell, Richard A.; Xia, Zhengui
2011-01-01
Mechanistic studies underlying dopaminergic neuron death may identify new drug targets for the treatment of Parkinson disease (PD). Epidemiological studies have linked pesticide exposure to increased risk for sporadic PD. Here, we investigated the role of c-Jun N-terminal kinase 3 (JNK3), a neural-specific JNK isoform, in dopaminergic neuron death induced by the pesticides rotenone and paraquat. The role of JNK3 was evaluated using RNA silencing and gene deletion to block JNK3 signaling. Using an antibody that recognizes all isoforms of activated JNKs, we found that paraquat and rotenone stimulate JNK phosphorylation in primary cultured dopaminergic neurons. In cultured neurons transfected with Jnk3-specific siRNA and in neurons from Jnk3−/− mice, JNK phosphorylation was nearly abolished, suggesting that JNK3 is the main JNK isoform activated in dopaminergic neurons by these pesticides. Paraquat- and rotenone-induced death of dopaminergic neurons was also significantly reduced by Jnk3 siRNA or Jnk3 gene deletion and deletion of the Jnk3 gene completely attenuated paraquat-induced dopaminergic neuron death and motor-deficits in vivo. Our data identify JNK3 as a common and critical mediator of dopaminergic neuron death induced by paraquat and rotenone, suggesting that it is a potential drug target for PD treatment. PMID:20418776
Smad4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors
Kalra, Sean; Cleaver, Timothy G.; Merrick, Daniel; Wang, Xiao-Jing; Malkoski, Stephen P.
2015-01-01
Non-small cell lung cancer (NSCLC) is a common malignancy with a poor prognosis. Despite progress targeting oncogenic drivers, there are no therapies targeting tumor suppressor loss. Smad4 is an established tumor suppressor in pancreatic and colon cancer, however, the consequences of Smad4 loss in lung cancer are largely unknown. We evaluated Smad4 expression in human NSCLC samples and examined Smad4 alterations in large NSCLC datasets and found that reduced Smad4 expression is common in human NSCLC and occurs through a variety of mechanisms including mutation, homozygous deletion, and heterozygous loss. We modeled Smad4 loss in lung cancer by deleting Smad4 in airway epithelial cells and found that Smad4 deletion both initiates and promotes lung tumor development. Interestingly, both Smad4−/− mouse tumors and human NSCLC samples with reduced Smad4 expression demonstrated increased DNA damage while Smad4 knockdown in lung cancer cells reduced DNA repair and increased apoptosis after DNA damage. In addition, Smad4 deficient NSCLC cells demonstrated increased sensitivity to both chemotherapeutics that inhibit DNA topoisomerase and drugs that block double strand DNA break repair by non-homologous end joining. In sum, these studies establish Smad4 as a lung tumor suppressor and suggest that the defective DNA repair phenotype of Smad4 deficient tumors can be exploited by specific therapeutic strategies. PMID:25893305
Cuscó, Ivon; Corominas, Roser; Bayés, Mònica; Flores, Raquel; Rivera-Brugués, Núria; Campuzano, Victoria; Pérez-Jurado, Luis A.
2008-01-01
Large copy number variants (CNVs) have been recently found as structural polymorphisms of the human genome of still unknown biological significance. CNVs are significantly enriched in regions with segmental duplications or low-copy repeats (LCRs). Williams-Beuren syndrome (WBS) is a neurodevelopmental disorder caused by a heterozygous deletion of contiguous genes at 7q11.23 mediated by nonallelic homologous recombination (NAHR) between large flanking LCRs and facilitated by a structural variant of the region, a ∼2-Mb paracentric inversion present in 20%–25% of WBS-transmitting progenitors. We now report that eight out of 180 (4.44%) WBS-transmitting progenitors are carriers of a CNV, displaying a chromosome with large deletion of LCRs. The prevalence of this CNV among control individuals and non-transmitting progenitors is much lower (1%, n = 600), thus indicating that it is a predisposing factor for the WBS deletion (odds ratio 4.6-fold, P = 0.002). LCR duplications were found in 2.22% of WBS-transmitting progenitors but also in 1.16% of controls, which implies a non–statistically significant increase in WBS-transmitting progenitors. We have characterized the organization and breakpoints of these CNVs, encompassing ∼100–300 kb of genomic DNA and containing several pseudogenes but no functional genes. Additional structural variants of the region have also been defined, all generated by NAHR between different blocks of segmental duplications. Our data further illustrate the highly dynamic structure of regions rich in segmental duplications, such as the WBS locus, and indicate that large CNVs can act as susceptibility alleles for disease-associated genomic rearrangements in the progeny. PMID:18292220
Peter, Beate; Lancaster, Hope; Vose, Caitlin; Fares, Amna; Schrauwen, Isabelle; Huentelman, Matthew
2017-10-01
Interstitial and terminal 6q25 deletions are associated with developmental delays, hypotonia, eye pathologies, craniofacial dysmorphologies, and structural brain anomalies. In most cases, speech and language deficits are not described in detail. We report on a case (Patient 1, age 7 years) with a de novo 6q25.3-qter deletion, 11.1 Mb long and encompassing 108 genes, and a case (Patient 2, age 5 years) with an inherited interstitial 6q25.3 deletion, located within Patient 1's deletion region and 403 kb long, the smallest 6q25 deletion reported to date. Both children have hypotonia, motor speech disorders, and expressive language delays. Patient 1's speech was characterized by childhood apraxia of speech (CAS) and dysarthria. Other findings include developmental delay, ataxic cerebral palsy, optic nerve dysplagia, and atypical brain morphologies regarding the corpus callosum and gyration patterns, a clinical profile that closely matches a previously reported case with a nearly identical deletion. Patient 2 had speech characterized by CAS and typical nonverbal processing abilities. His father, a carrier, had typical speech and language but showed difficulties with complex motor speech and hand motor tasks, similar to other adults with residual signs of CAS. The small deletion in this family contains the IGF2R-AIRN-SLC22A2-SLC22A3 gene cluster, which is associated with imprinting and maternal-specific expression of Igf2R, Slc22a2, and Slc22a3 in mice, whereas imprinting in humans is a polymorphic trait. The shared phenotypes in the two patients might be associated with the deletion of the gene cluster. © 2017 Wiley Periodicals, Inc.
Gao, Z J; Jiang, Q; Cheng, D Z; Yan, X X; Chen, Q; Xu, K M
2016-10-02
Objective: To evaluate the application of single nucleotide polymorphism (SNP)-microarray and target gene sequencing technology in the clinical molecular genetic diagnosis of unexplained intellectual disability(ID) or developmental delay (DD). Method: Patients with ID or DD were recruited in the Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics between September 2015 and February 2016. The intellectual assessment of the patients was performed using 0-6-year-old pediatric examination table of neuropsychological development or Wechsler intelligence scale (>6 years). Patients with a DQ less than 49 or IQ less than 51 were included in this study. The patients were scanned by SNP-array for detection of genomic copy number variations (CNV), and the revealed genomic imbalance was confirmed by quantitative real time-PCR. Candidate gene mutation screening was carried out by target gene sequencing technology.Causal mutations or likely pathogenic variants were verified by polymerase chain reaction and direct sequencing. Result: There were 15 children with ID or DD enrolled, 9 males and 6 females. The age of these patients was 7 months-16 years and 9 months. SNP-array revealed that two of the 15 patients had genomic CNV. Both CNV were de novo micro deletions, one involved 11q24.1q25 and the other micro deletion located on 21q22.2q22.3. Both micro deletions were proved to have a clinical significance due to their association with ID, brain DD, unusual faces etc. by querying Decipher database. Thirteen patients with negative findings in SNP-array were consequently examined with target gene sequencing technology, genotype-phenotype correlation analysis and genetic analysis. Five patients were diagnosed with monogenic disorder, two were diagnosed with suspected genetic disorder and six were still negative. Conclusion: Sequential use of SNP-array and target gene sequencing technology can significantly increase the molecular genetic etiologic diagnosis rate of the patients with unexplained ID or DD. Combined use of these technologies can serve as a useful examinational method in assisting differential diagnosis of children with unexplained ID or DD.
Razmara, Ehsan; Bitarafan, Fatemeh; Esmaeilzadeh-Gharehdaghi, Elika; Almadani, Navid; Garshasbi, Masoud
2018-03-01
Targeted next-generation sequencing (NGS) provides a consequential opportunity to elucidate genetic factors in known diseases, particularly in profoundly heterogeneous disorders such as non-syndromic hearing loss (NSHL). Hearing impairments could be classified into syndromic and non-syndromic types. This study intended to assess the significance of mutations in these genes to the autosomal recessive/dominant non-syndromic genetic load among Iranian families. Two families were involved in this research and two patients were examined by targeted next-generation sequencing. Here we report two novel mutations in the MYO7A and EYA1 genes in two patients detected by targeted NGS. They were confirmed by Sanger sequencing and quantitative real-time PCR techniques. In this investigation, we identified a novel mutation in MYO7A , c.3751G>C, p.A1251P, along with another previously identified mutation (c.1708C>T) in one of the cases. This mutation is located in the MYTH4 protein domain which is a pivotal domain for the myosin function. Another finding in this research was a novel de-novo deletion which deletes the entire EYA1 coding region (EX1-18 DEL). Mutations in EYA1 gene have been found in branchiootorenal (BOR) syndrome. Interestingly the patient with EYA1 deletion did not show any other additional clinical implications apart from HL. This finding might argue for the sole involvement of EYA1 function in the mechanism of hearing. This investigation exhibited that the novel mutations in MYO7A , c.3751G>C, p.A1251P, and EYA1 , EX1-18 DEL, were associated with NSHL. Our research increased the mutation spectrum of hearing loss in the Iranian population.
Splicing-Related Features of Introns Serve to Propel Evolution
Luo, Yuping; Li, Chun; Gong, Xi; Wang, Yanlu; Zhang, Kunshan; Cui, Yaru; Sun, Yi Eve; Li, Siguang
2013-01-01
The role of spliceosomal intronic structures played in evolution has only begun to be elucidated. Comparative genomic analyses of fungal snoRNA sequences, which are often contained within introns and/or exons, revealed that about one-third of snoRNA-associated introns in three major snoRNA gene clusters manifested polymorphisms, likely resulting from intron loss and gain events during fungi evolution. Genomic deletions can clearly be observed as one mechanism underlying intron and exon loss, as well as generation of complex introns where several introns lie in juxtaposition without intercalating exons. Strikingly, by tracking conserved snoRNAs in introns, we found that some introns had moved from one position to another by excision from donor sites and insertion into target sties elsewhere in the genome without needing transposon structures. This study revealed the origin of many newly gained introns. Moreover, our analyses suggested that intron-containing sequences were more prone to sustainable structural changes than DNA sequences without introns due to intron's ability to jump within the genome via unknown mechanisms. We propose that splicing-related structural features of introns serve as an additional motor to propel evolution. PMID:23516505
Targeting skeletal endothelium to ameliorate bone loss.
Xu, Ren; Yallowitz, Alisha; Qin, An; Wu, Zhuhao; Shin, Dong Yeon; Kim, Jung-Min; Debnath, Shawon; Ji, Gang; Bostrom, Mathias P; Yang, Xu; Zhang, Chao; Dong, Han; Kermani, Pouneh; Lalani, Sarfaraz; Li, Na; Liu, Yifang; Poulos, Michael G; Wach, Amanda; Zhang, Yi; Inoue, Kazuki; Di Lorenzo, Annarita; Zhao, Baohong; Butler, Jason M; Shim, Jae-Hyuck; Glimcher, Laurie H; Greenblatt, Matthew B
2018-06-01
Recent studies have identified a specialized subset of CD31 hi endomucin hi (CD31 hi EMCN hi ) vascular endothelium that positively regulates bone formation. However, it remains unclear how CD31 hi EMCN hi endothelium levels are coupled to anabolic bone formation. Mice with an osteoblast-specific deletion of Shn3, which have markedly elevated bone formation, demonstrated an increase in CD31 hi EMCN hi endothelium. Transcriptomic analysis identified SLIT3 as an osteoblast-derived, SHN3-regulated proangiogenic factor. Genetic deletion of Slit3 reduced skeletal CD31 hi EMCN hi endothelium, resulted in low bone mass because of impaired bone formation and partially reversed the high bone mass phenotype of Shn3 -/- mice. This coupling between osteoblasts and CD31 hi EMCN hi endothelium is essential for bone healing, as shown by defective fracture repair in SLIT3-mutant mice and enhanced fracture repair in SHN3-mutant mice. Finally, administration of recombinant SLIT3 both enhanced bone fracture healing and counteracted bone loss in a mouse model of postmenopausal osteoporosis. Thus, drugs that target the SLIT3 pathway may represent a new approach for vascular-targeted osteoanabolic therapy to treat bone loss.
Internal deletion of BCOR reveals a tumor suppressor function for BCOR in T lymphocyte malignancies
Tanaka, Tomoyuki; Nakajima-Takagi, Yaeko; Tara, Shiro; Saraya, Atsunori; Koide, Shuhei; Si, Sha; Manabe, Ichiro; Sanada, Masashi; Nakayama, Manabu; Masuko, Masayoshi; Sone, Hirohito
2017-01-01
Recurrent inactivating mutations have been identified in various hematological malignancies in the X-linked BCOR gene encoding BCL6 corepressor (BCOR); however, its tumor suppressor function remains largely uncharacterized. We generated mice missing Bcor exon 4, expressing a variant BCOR lacking the BCL6-binding domain. Although the deletion of exon 4 in male mice (BcorΔE4/y) compromised the repopulating capacity of hematopoietic stem cells, BcorΔE4/y thymocytes had augmented proliferative capacity in culture and showed a strong propensity to induce acute T-cell lymphoblastic leukemia (T-ALL), mostly in a Notch-dependent manner. Myc, one of the critical NOTCH1 targets in T-ALL, was highly up-regulated in BcorΔE4/y T-ALL cells. Chromatin immunoprecipitation/DNA sequencing analysis revealed that BCOR was recruited to the Myc promoter and restrained its activation in thymocytes. BCOR also targeted other NOTCH1 targets and potentially antagonized their transcriptional activation. Bcl6-deficient thymocytes behaved in a manner similar to BcorΔE4/y thymocytes. Our results provide the first evidence of a tumor suppressor role for BCOR in the pathogenesis of T lymphocyte malignancies. PMID:28827447
Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A
Baucheron, Sylvie; Monchaux, Isabelle; Le Hello, Simon; Weill, François-Xavier; Cloeckaert, Axel
2014-01-01
Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e., in gyrA, gyrB, or parC) correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications. PMID:24478769
Notch3 drives development and progression of cholangiocarcinoma
Guest, Rachel V.; Dwyer, Benjamin J.; Kendall, Timothy J.; Man, Tak-Yung; Minnis-Lyons, Sarah E.; Lu, Wei-Yu; Robson, Andrew J.; Gonzalez, Sofia Ferreira; Raven, Alexander; Wojtacha, Davina; Morton, Jennifer P.; Komuta, Mina; Roskams, Tania; Wigmore, Stephen J.; Sansom, Owen J.; Forbes, Stuart J.
2016-01-01
The prognosis of cholangiocarcinoma (CC) is dismal. Notch has been identified as a potential driver; forced exogenous overexpression of Notch1 in hepatocytes results in the formation of biliary tumors. In human disease, however, it is unknown which components of the endogenously signaling pathway are required for tumorigenesis, how these orchestrate cancer, and how they can be targeted for therapy. Here we characterize Notch in human-resected CC, a toxin-driven model in rats, and a transgenic mouse model in which p53 deletion is targeted to biliary epithelia and CC induced using the hepatocarcinogen thioacetamide. We find that across species, the atypical receptor NOTCH3 is differentially overexpressed; it is progressively up-regulated with disease development and promotes tumor cell survival via activation of PI3k-Akt. We use genetic KO studies to show that tumor growth significantly attenuates after Notch3 deletion and demonstrate signaling occurs via a noncanonical pathway independent of the mediator of classical Notch, Recombinant Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). These data present an opportunity in this aggressive cancer to selectively target Notch, bypassing toxicities known to be RBPJ dependent. PMID:27791012
De Cinque, Marianna; Palumbo, Orazio; Mazzucco, Ermelinda; Simone, Antonella; Palumbo, Pietro; Ciavatta, Renata; Maria, Giuliana; Ferese, Rosangela; Gambardella, Stefano; Angiolillo, Antonella; Carella, Massimo; Garofalo, Silvio
2017-01-01
Terminal deletion of chromosome 6q is a rare chromosomal abnormality associated with variable phenotype spectrum. Although intellectual disability, facial dysmorphism, seizures and brain abnormalities are typical features of this syndrome, genotype–phenotype correlation needs to be better understood. We report the case of a 6-year-old Caucasian boy with a clinical diagnosis of intellectual disability, delayed language development and dyspraxia who carries an approximately 8 Mb de novo heterozygous microdeletion in the 6q26-q27 locus identified by karyotype and defined by high-resolution SNP-array analysis. This patient has no significant structural brain or other organ malformation, and he shows a very mild phenotype compared to similar 6q26-qter deletion. The patient phenotype also suggests that a dyspraxia susceptibility gene is located among the deleted genes. PMID:29270193
Daniil, Georgios; Zannis, Vassilis I; Chroni, Angeliki
2013-01-01
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69-99% of control by double deletion mutants apoA-I[Δ(1-41)Δ(185-243)] and apoA-I[Δ(1-59)Δ(185-243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185-243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.
Hannes, Femke; Van Houdt, Jeroen; Quarrell, Oliver W; Poot, Martin; Hochstenbach, Ron; Fryns, Jean-Pierre; Vermeesch, Joris R
2010-12-01
Constitutional developmental disorders are frequently caused by terminal chromosomal deletions. The mechanisms and/or architectural features that might underlie those chromosome breakages remain largely unexplored. Because telomeres are the vital DNA protein complexes stabilizing linear chromosomes against chromosome degradation, fusion, and incomplete replication, those terminal-deleted chromosomes acquired new telomeres either by telomere healing or by telomere capture. To unravel the mechanisms leading to chromosomal breakage and healing, we sequenced nine chromosome 4p terminal deletion boundaries. A computational analysis of the breakpoint flanking region, including 12 previously published pure terminal breakage sites, was performed in order to identify architectural features that might be involved in this process. All terminal 4p truncations were likely stabilized by telomerase-mediated telomere healing. In the majority of breakpoints multiple genetic elements have a potential to induce secondary structures and an enrichment in replication stalling site motifs were identified. These findings suggest DNA replication stalling-induced chromosome breakage during early development is the first mechanistic step leading toward terminal deletion syndromes. © 2010 Wiley-Liss, Inc.
Akinyi, Sheila; Hayden, Tonya; Gamboa, Dionicia; Torres, Katherine; Bendezu, Jorge; Abdallah, Joseph F.; Griffing, Sean M.; Quezada, Wilmer Marquiño; Arrospide, Nancy; De Oliveira, Alexandre Macedo; Lucas, Carmen; Magill, Alan J.; Bacon, David J.; Barnwell, John W.; Udhayakumar, Venkatachalam
2013-01-01
The majority of malaria rapid diagnostic tests (RDTs) detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2), encoded by the pfhrp2 gene. Recently, P. falciparum isolates from Peru were found to lack pfhrp2 leading to false-negative RDT results. We hypothesized that pfhrp2-deleted parasites in Peru derived from a single genetic event. We evaluated the parasite population structure and pfhrp2 haplotype of samples collected between 1998 and 2005 using seven neutral and seven chromosome 8 microsatellite markers, respectively. Five distinct pfhrp2 haplotypes, corresponding to five neutral microsatellite-based clonal lineages, were detected in 1998-2001; pfhrp2 deletions occurred within four haplotypes. In 2003-2005, outcrossing among the parasite lineages resulted in eight population clusters that inherited the five pfhrp2 haplotypes seen previously and a new haplotype; pfhrp2 deletions occurred within four of these haplotypes. These findings indicate that the genetic origin of pfhrp2 deletion in Peru was not a single event, but likely occurred multiple times. PMID:24077522
Wang, Jianye; Huang, Yu; Zhou, Mingxu; Zhu, Guoqiang
2016-09-01
Genomic information about Muscovy duck parvovirus is still limited. In this study, the genome of the pathogenic MDPV strain YY was sequenced. The full-length genome of YY is 5075 nucleotides (nt) long, 57 nt shorter than that of strain FM. Sequence alignment indicates that the 5' and 3' inverted terminal repeats (ITR) of strain YY contain a 14-nucleotide-pair deletion in the stem of the palindromic hairpin structure in comparison to strain FM and FZ91-30. The deleted region contains one "E-box" site and one repeated motif with the sequence "TTCCGGT" or "ACCGGAA". Phylogenetic trees constructed based the protein coding genes concordantly showed that YY, together with nine other MDPV isolates from various places, clustered in a separate branch, distinct from the branch formed by goose parvovirus (GPV) strains. These results demonstrate that, despite the distinctive deletion, the YY strain still belongs to the classical MDPV group. Moreover, the deletion of ITR may contribute to the genome evolution of MDPV under immunization pressure.
Disrupting Reconsolidation: Pharmacological and Behavioral Manipulations
ERIC Educational Resources Information Center
Soeter, Marieke; Kindt, Merel
2011-01-01
We previously demonstrated that disrupting reconsolidation by pharmacological manipulations "deleted" the emotional expression of a fear memory in humans. If we are to target reconsolidation in patients with anxiety disorders, the disruption of reconsolidation should produce content-limited modifications. At the same time, the fear-erasing effects…
USDA-ARS?s Scientific Manuscript database
Deletions within the 3A coding region of foot-and-mouth disease virus (FMDV) are associated with decreased virulence in cattle; however, the mechanisms are unknown. We compared experimental infection of cattle with virulent FMDV O1Campos (O1Ca) and a mutant derivative (O1Ca-delta3A) lacking residues...
A CRISPR Cas9-based gene drive platform for genetic interaction analysis in Candida albicans
Shapiro, Rebecca S.; Chavez, Alejandro; Porter, Caroline B. M.; Hamblin, Meagan; Kaas, Christian S.; DiCarlo, James E.; Zeng, Guisheng; Xu, Xiaoli; Revtovich, Alexey V.; Kirienko, Natalia V.; Wang, Yue; Church, George M.; Collins, James J.
2018-01-01
Candida albicans is the leading cause of fungal infections; yet, complex genetic interaction analysis remains cumbersome in this diploid pathogen. Here, we developed a CRISPR-Cas9-based ‘gene drive array’ (GDA) platform to facilitate efficient genetic analysis in C. albicans. In our system, a modified DNA donor molecule acts as a selfish genetic element, replaces the targeted site, and propagates to replace additional wild-type loci. Using mating-competent C. albicans haploids, each carrying a different gene drive disabling a gene of interest, we are able to create diploid strains that are homozygous double-deletion mutants. We generate double-gene deletion libraries to demonstrate this technology, targeting antifungal efflux and biofilm adhesion factors. We screen these libraries to identify virulence regulators and determine how genetic networks shift under diverse conditions. This platform transforms our ability to perform genetic interaction analysis in C. albicans and is readily extended to other fungal pathogens. PMID:29062088
Tan, Qian; Awano, Naoki; Inouye, Masayori
2011-01-01
Toxin-antitoxin (TA) systems of free-living bacteria have recently demonstrated that these toxins inhibit cell growth by targeting essential functions of cellular metabolism. Here we show that YeeV toxin inhibits cell division, leads to a change in morphology and lysis of Escherichia coli cells. YeeV interacts with two essential cytoskeleton proteins, FtsZ and MreB. Purified YeeV inhibits both the GTPase activity and the GTP-dependent polymerization of FtsZ. YeeV also inhibits ATP-dependent polymerization of MreB. Truncated C-terminal deletions of YeeV result in elongation of cells, and a deletion of the first 15 amino acids from the N-terminus of YeeV caused lemon-shaped cell formation. The YeeV toxin is distinct from other well-studied toxins: it directs the binding of two cytoskeletal proteins and inhibits FtsZ and MreB simultaneously. © 2010 Blackwell Publishing Ltd.
Nardilysin controls intestinal tumorigenesis through HDAC1/p53-dependent transcriptional regulation.
Kanda, Keitaro; Sakamoto, Jiro; Matsumoto, Yoshihide; Ikuta, Kozo; Goto, Norihiro; Morita, Yusuke; Ohno, Mikiko; Nishi, Kiyoto; Eto, Koji; Kimura, Yuto; Nakanishi, Yuki; Ikegami, Kanako; Yoshikawa, Takaaki; Fukuda, Akihisa; Kawada, Kenji; Sakai, Yoshiharu; Ito, Akihiro; Yoshida, Minoru; Kimura, Takeshi; Chiba, Tsutomu; Nishi, Eiichiro; Seno, Hiroshi
2018-04-19
Colon cancer is a complex disease affected by a combination of genetic and epigenetic factors. Here we demonstrate that nardilysin (N-arginine dibasic convertase; NRDC), a metalloendopeptidase of the M16 family, regulates intestinal tumorigenesis via its nuclear functions. NRDC is highly expressed in human colorectal cancers. Deletion of the Nrdc gene in ApcMin mice crucially suppressed intestinal tumor development. In ApcMin mice, epithelial cell-specific deletion of Nrdc recapitulated the tumor suppression observed in Nrdc-null mice. Moreover, epithelial cell-specific overexpression of Nrdc significantly enhanced tumor formation in ApcMin mice. Notably, epithelial NRDC controlled cell apoptosis in a gene dosage-dependent manner. In human colon cancer cells, nuclear NRDC directly associated with HDAC1, and controlled both acetylation and stabilization of p53, with alterations of p53 target apoptotic factors. These findings demonstrate that NRDC is critically involved in intestinal tumorigenesis through its epigenetic regulatory function, and targeting NRDC may lead to a novel prevention or therapeutic strategy against colon cancer.
Attout, Lucie; Noël, Marie-Pascale; Rousselle, Laurence
2018-04-11
Recent models of visuospatial (VSSP) short-term memory postulate the existence of two dissociable mechanisms depending on whether VSSP information is presented simultaneously or sequentially. However, they do not specify to what extent VSSP short-term memory is under the influence of general VSSP processing. This issue was examined in people with 22q11.2 deletion syndrome, a genetic condition involving a VSSP deficit. The configuration of VSSP information was manipulated (structured vs. unstructured) to explore the impact of arrangement on VSSP short-term memory. Two presentation modes were used to see whether the VSSP arrangement has the same impact on simultaneous and sequential short-term memory. Compared to children matched on chronological age, children with 22q11.2 deletion syndrome showed impaired performance only for structured arrangement, regardless of the presentation mode, suggesting an influence of VSSP processing on VSSP short-term memory abilities. A revised cognitive architecture for a model of VSSP short-term memory is proposed.
Precise detection of chromosomal translocation or inversion breakpoints by whole-genome sequencing.
Suzuki, Toshifumi; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Miyake, Noriko; Saitsu, Hirotomo; Takeda, Satoru; Matsumoto, Naomichi
2014-12-01
Structural variations (SVs), including translocations, inversions, deletions and duplications, are potentially associated with Mendelian diseases and contiguous gene syndromes. Determination of SV-related breakpoints at the nucleotide level is important to reveal the genetic causes for diseases. Whole-genome sequencing (WGS) by next-generation sequencers is expected to determine structural abnormalities more directly and efficiently than conventional methods. In this study, 14 SVs (9 balanced translocations, 1 inversion and 4 microdeletions) in 9 patients were analyzed by WGS with a shallow (5 × ) to moderate read coverage (20 × ). Among 28 breakpoints (as each SV has two breakpoints), 19 SV breakpoints had been determined previously at the nucleotide level by any other methods and 9 were uncharacterized. BreakDancer and Integrative Genomics Viewer determined 20 breakpoints (16 translocation, 2 inversion and 2 deletion breakpoints), but did not detect 8 breakpoints (2 translocation and 6 deletion breakpoints). These data indicate the efficacy of WGS for the precise determination of translocation and inversion breakpoints.
The PPARγ2 A/B-Domain Plays a Gene-Specific Role in Transactivation and Cofactor Recruitment
Bugge, Anne; Grøntved, Lars; Aagaard, Mads M.; Borup, Rehannah; Mandrup, Susanne
2009-01-01
We have previously shown that adenoviral expression of peroxisome proliferator-activated receptors (PPARs) leads to rapid establishment of transcriptionally active complexes and activation of target gene expression within 5–8 h after transduction. Here we have used the adenoviral delivery system combined with expression array analysis to identify novel putative PPARγ target genes in murine fibroblasts and to determine the role of the A/B-domain in PPARγ-mediated transactivation of genomic target genes. Of the 257 genes found to be induced by PPARγ2 expression, only 25 displayed A/B-domain dependency, i.e. significantly reduced induction in the cells expressing the truncated PPARγ lacking the A/B-domain (PPARγCDE). Nine of the 25 A/B-domain-dependent genes were involved in lipid storage, and in line with this, triglyceride accumulation was considerably decreased in the cells expressing PPARγCDE compared with cells expressing full-length PPARγ2. Using chromatin immunoprecipitation, we demonstrate that PPARγ binding to genomic target sites and recruitment of the mediator component TRAP220/MED1/PBP/DRIP205 is not affected by the deletion of the A/B-domain. By contrast, the PPARγ-mediated cAMP response element-binding protein (CREB)-binding protein (CBP) and p300 recruitment to A/B-domain-dependent target genes is compromised by deletion of the A/B-domain. These results indicate that the A/B-domain of PPARγ2 is specifically involved in the recruitment or stabilization of CBP- and p300-containing cofactor complexes to a subset of target genes. PMID:19282365
A Numbers Game: Ribosome Densities, Bacterial Growth, and Antibiotic-Mediated Stasis and Death
McCall, Ingrid C.; Perrot, Véronique; Weiss, Howard; Ovesepian, Armen; Baquero, Fernando
2017-01-01
ABSTRACT We postulate that the inhibition of growth and low rates of mortality of bacteria exposed to ribosome-binding antibiotics deemed bacteriostatic can be attributed almost uniquely to these drugs reducing the number of ribosomes contributing to protein synthesis, i.e., the number of effective ribosomes. We tested this hypothesis with Escherichia coli K-12 MG1655 and constructs that had been deleted for 1 to 6 of the 7 rRNA (rrn) operons. In the absence of antibiotics, constructs with fewer rrn operons have lower maximum growth rates and longer lag phases than those with more ribosomal operons. In the presence of the ribosome-binding “bacteriostatic” antibiotics tetracycline, chloramphenicol, and azithromycin, E. coli strains with 1 and 2 rrn operons are killed at a substantially higher rate than those with more rrn operons. This increase in the susceptibility of E. coli with fewer rrn operons to killing by ribosome-targeting bacteriostatic antibiotics is not reflected in their greater sensitivity to killing by the bactericidal antibiotic ciprofloxacin, which does not target ribosomes, but also to killing by gentamicin, which does. Finally, when such strains are exposed to these ribosome-targeting bacteriostatic antibiotics, the time before these bacteria start to grow again when the drugs are removed, referred to as the post-antibiotic effect (PAE), is markedly greater for constructs with fewer rrn operons than for those with more rrn operons. We interpret the results of these other experiments reported here as support for the hypothesis that the reduction in the effective number of ribosomes due to binding to these structures provides a sufficient explanation for the action of bacteriostatic antibiotics that target these structures. PMID:28174311
Barkan, A; Mertz, J E
1981-02-01
The nucleotide sequences of 10 viable yet partially defective deletion mutants of simian virus 40 were determined. The deletions mapped within, and, in many cases, 5' to, the predominant leader sequence of the late viral mRNA's. They ranged from 74 to 187 nucleotide pairs in length. Six of the mutants had lost the sequence that corresponds to the "cap" site (5' terminus) of the most abundant class of 16S mRNA's. One of these mutants had a deletion that extended 103 nucleotide pairs into the region preceding this primary cap site and, therefore, was missing many secondary cap sites as well. A seventh mutant lacked the entire major 16S leader sequence except for the first six nucleotides at its 5' end and the last nine at its 3' end. Although these mutants differed in the size and position of their deletions, we were unable to discover any simple correlations between their growth characteristics and their DNA sequences. This finding indicates that the secondary structures of the RNA transcripts may play a more important role than the exact nucleotide sequence of the RNAs in determining how they function within the cell.
Lebel, Michel
2002-01-01
Werner syndrome (WS) is a rare autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases, including cancers. Accumulating evidence indicates that the WS gene product is involved in resolving aberrant DNA structures that may arise during the process of DNA replication and/or transcription. To estimate the frequency of DNA deletions directly in the skin of mouse embryos, mice with a deletion of part of the murine WRN helicase domain were created. These mutant mice were then crossed to the pink-eyed unstable animals, which have a 70 kb internal duplication at the pink-eyed dilution (p) gene. This report indicates that the frequency of deletion of the duplicated sequence at the p locus is elevated in mice with a mutation in the WRN allele when compared with wild-type mice. In addition, the inhibitor of topoisomerase I camptothecin also increases the frequency of deletion at the p locus. This frequency is even more elevated in WRN mutant mice treated with camptothecin. In contrast, while the inhibition of poly(ADP-ribose) polymerase (PARP) activity by 3-aminobenzamide increases the frequency of DNA deletion, mutant WRN mice are not significantly more sensitive to the inhibition of PARP activity than wild-type animals.
The effects of splicing variant of PXR PAR-2 on CYP3A4 and MDR1 mRNA expressions.
Liu, Yan; Ji, Wei; Yin, You; Fan, Lan; Zhang, Jian; Yun, Huang; Wang, Nianci; Li, Qing; Wei, Zhang; Ouyang, Dongshen; Zhou, Hong-Hao
2009-05-01
PAR-2(SV1), a splicing variant of PXR, has similar activity as PXR wild type. Currently, a 6bp-deletion variant ((-133)GAGAAG(-128)) in promoter region of PAR-2(SV1) was reported, which could diminish the hPAR-2 promote activity in HepG2 cells. The distribution and functions of 6bp-deletion in Chinese were investigated. The PXR genotype was analyzed from 56 liver samples and 177 blood samples. Then the mRNA expression of PAR-2(SV1), total PXR, CYP3A4 and MDR1 were quantitatively analyzed by real-time PCR. The allelic frequencies of 6bp-deletion were 22.4%, 38.4% and 23.7%, in blood of Chinese healthy (n=177), hepatic carcinoma samples (n=33) and calculus of bile duct ones (n=23) respectively. PAR-2(SV1) transcript represented approximately 15.3% of the total PXR transcripts in all liver samples. The 6bp-deletion cut down PAR-2(SV1) mRNA and total PXR mRNA transcriptional expression, and then led to down regulations of MDR1 and CYP3A4. PAR-2(SV1) plays an important role in total PXR mRNA expression. The 6bp-deletion affects the PAR-2(SV1) expression greatly, and then contributes to the adjustment of expression and function of total PXR. Thus it leads to the changed target gene expressions, which may partly explain interindividual variations in CYP3A4 and MDR1. And these phenomena suggest that individuals with 6bp-deletion are prone to carcinoma when exposed to toxicity.
Cong, Xiaofei; Doering, Jonathan; Mazala, Davi A G; Chin, Eva R; Grange, Robert W; Jiang, Honglin
2016-01-01
The SH3 and cysteine-rich domain 3 (Stac3) gene is specifically expressed in the skeletal muscle. Stac3 knockout mice die perinatally. In this study, we determined the potential role of Stac3 in postnatal skeletal muscle growth, fiber composition, and contraction by generating conditional Stac3 knockout mice. We disrupted the Stac3 gene in 4-week-old male mice using the Flp-FRT and tamoxifen-inducible Cre-loxP systems. RT-qPCR and western blotting analyses of the limb muscles of target mice indicated that nearly all Stac3 mRNA and more than 70 % of STAC3 protein were deleted 4 weeks after tamoxifen injection. Postnatal Stac3 deletion inhibited body and limb muscle mass gains. Histological staining and gene expression analyses revealed that postnatal Stac3 deletion decreased the size of myofibers and increased the percentage of myofibers containing centralized nuclei, with no effect on the total myofiber number. Grip strength and grip time tests indicated that postnatal Stac3 deletion decreased limb muscle strength in mice. Muscle contractile tests revealed that postnatal Stac3 deletion reduced electrostimulation-induced but not the ryanodine receptor agonist caffeine-induced maximal force output in the limb muscles. Calcium imaging analysis of single flexor digitorum brevis myofibers indicated that postnatal Stac3 deletion reduced electrostimulation- but not caffeine-induced calcium release from the sarcoplasmic reticulum. This study demonstrates that STAC3 is important to myofiber hypertrophy, myofiber-type composition, contraction, and excitation-induced calcium release from the sarcoplasmic reticulum in the postnatal skeletal muscle.
Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee
2011-11-01
Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.
Simple Method for Markerless Gene Deletion in Multidrug-Resistant Acinetobacter baumannii
Oh, Man Hwan; Lee, Je Chul; Kim, Jungmin
2015-01-01
The traditional markerless gene deletion technique based on overlap extension PCR has been used for generating gene deletions in multidrug-resistant Acinetobacter baumannii. However, the method is time-consuming because it requires restriction digestion of the PCR products in DNA cloning and the construction of new vectors containing a suitable antibiotic resistance cassette for the selection of A. baumannii merodiploids. Moreover, the availability of restriction sites and the selection of recombinant bacteria harboring the desired chimeric plasmid are limited, making the construction of a chimeric plasmid more difficult. We describe a rapid and easy cloning method for markerless gene deletion in A. baumannii, which has no limitation in the availability of restriction sites and allows for easy selection of the clones carrying the desired chimeric plasmid. Notably, it is not necessary to construct new vectors in our method. This method utilizes direct cloning of blunt-end DNA fragments, in which upstream and downstream regions of the target gene are fused with an antibiotic resistance cassette via overlap extension PCR and are inserted into a blunt-end suicide vector developed for blunt-end cloning. Importantly, the antibiotic resistance cassette is placed outside the downstream region in order to enable easy selection of the recombinants carrying the desired plasmid, to eliminate the antibiotic resistance cassette via homologous recombination, and to avoid the necessity of constructing new vectors. This strategy was successfully applied to functional analysis of the genes associated with iron acquisition by A. baumannii ATCC 19606 and to ompA gene deletion in other A. baumannii strains. Consequently, the proposed method is invaluable for markerless gene deletion in multidrug-resistant A. baumannii. PMID:25746991
Ramocki, Melissa B.; Bartnik, Magdalena; Szafranski, Przemyslaw; Kołodziejska, Katarzyna E.; Xia, Zhilian; Bravo, Jaclyn; Miller, G. Steve; Rodriguez, Diana L.; Williams, Charles A.; Bader, Patricia I.; Szczepanik, Elżbieta; Mazurczak, Tomasz; Antczak-Marach, Dorota; Coldwell, James G.; Akman, Cigdem I.; McAlmon, Karen; Cohen, Melinda P.; McGrath, James; Roeder, Elizabeth; Mueller, Jennifer; Kang, Sung-Hae L.; Bacino, Carlos A.; Patel, Ankita; Bocian, Ewa; Shaw, Chad A.; Cheung, Sau Wai; Mazurczak, Tadeusz; Stankiewicz, Paweł
2010-01-01
We report 26 individuals from ten unrelated families who exhibit variable expression and/or incomplete penetrance of epilepsy, learning difficulties, intellectual disabilities, and/or neurobehavioral abnormalities as a result of a heterozygous microdeletion distally adjacent to the Williams-Beuren syndrome region on chromosome 7q11.23. In six families with a common recurrent ∼1.2 Mb deletion that includes the Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) genes and that is flanked by large complex low-copy repeats, we identified sites for nonallelic homologous recombination in two patients. There were no cases of this ∼1.2 Mb distal 7q11.23 deletion copy number variant identified in over 20,000 control samples surveyed. Three individuals with smaller, nonrecurrent deletions (∼180–500 kb) that include HIP1 but not YWHAG suggest that deletion of HIP1 is sufficient to cause neurological disease. Mice with targeted mutation in the Hip1 gene (Hip1−/−) develop a neurological phenotype characterized by failure to thrive, tremor, and gait ataxia. Overall, our data characterize a neurodevelopmental and epilepsy syndrome that is likely caused by recurrent and nonrecurrent deletions, including HIP1. These data do not exclude the possibility that YWHAG loss of function is also sufficient to cause neurological phenotypes. Based on the current knowledge of Hip1 protein function and its proposed role in AMPA and NMDA ionotropic glutamate receptor trafficking, we believe that HIP1 haploinsufficiency in humans will be amenable to rational drug design for improved seizure control and cognitive and behavioral function. PMID:21109226
Ramocki, Melissa B; Bartnik, Magdalena; Szafranski, Przemyslaw; Kołodziejska, Katarzyna E; Xia, Zhilian; Bravo, Jaclyn; Miller, G Steve; Rodriguez, Diana L; Williams, Charles A; Bader, Patricia I; Szczepanik, Elżbieta; Mazurczak, Tomasz; Antczak-Marach, Dorota; Coldwell, James G; Akman, Cigdem I; McAlmon, Karen; Cohen, Melinda P; McGrath, James; Roeder, Elizabeth; Mueller, Jennifer; Kang, Sung-Hae L; Bacino, Carlos A; Patel, Ankita; Bocian, Ewa; Shaw, Chad A; Cheung, Sau Wai; Mazurczak, Tadeusz; Stankiewicz, Paweł
2010-12-10
We report 26 individuals from ten unrelated families who exhibit variable expression and/or incomplete penetrance of epilepsy, learning difficulties, intellectual disabilities, and/or neurobehavioral abnormalities as a result of a heterozygous microdeletion distally adjacent to the Williams-Beuren syndrome region on chromosome 7q11.23. In six families with a common recurrent ∼1.2 Mb deletion that includes the Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) genes and that is flanked by large complex low-copy repeats, we identified sites for nonallelic homologous recombination in two patients. There were no cases of this ∼1.2 Mb distal 7q11.23 deletion copy number variant identified in over 20,000 control samples surveyed. Three individuals with smaller, nonrecurrent deletions (∼180-500 kb) that include HIP1 but not YWHAG suggest that deletion of HIP1 is sufficient to cause neurological disease. Mice with targeted mutation in the Hip1 gene (Hip1⁻(/)⁻) develop a neurological phenotype characterized by failure to thrive, tremor, and gait ataxia. Overall, our data characterize a neurodevelopmental and epilepsy syndrome that is likely caused by recurrent and nonrecurrent deletions, including HIP1. These data do not exclude the possibility that YWHAG loss of function is also sufficient to cause neurological phenotypes. Based on the current knowledge of Hip1 protein function and its proposed role in AMPA and NMDA ionotropic glutamate receptor trafficking, we believe that HIP1 haploinsufficiency in humans will be amenable to rational drug design for improved seizure control and cognitive and behavioral function. Copyright © 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Wiktorowicz, Tatiana; Kinter, Jochen; Kobuke, Kazuhiro; Campbell, Kevin P; Sinnreich, Michael
2015-01-01
Mouse models of dysferlinopathies are valuable tools with which to investigate the pathomechanisms underlying these diseases and to test novel therapeutic strategies. One such mouse model is the Dysf (tm1Kcam) strain, which was generated using a targeting vector to replace a 12-kb region of the dysferlin gene and which features a progressive muscular dystrophy. A prerequisite for successful animal studies using genetic mouse models is an accurate genotyping protocol. Unfortunately, the lack of robustness of currently available genotyping protocols for the Dysf (tm1Kcam) mouse has prevented efficient colony management. Initial attempts to improve the genotyping protocol based on the published genomic structure failed. These difficulties led us to analyze the targeted locus of the dysferlin gene of the Dysf (tm1Kcam) mouse in greater detail. In this study we resequenced and analyzed the targeted locus of the Dysf (tm1Kcam) mouse and developed a novel PCR protocol for genotyping. We found that instead of a deletion, the dysferlin locus in the Dysf (tm1Kcam) mouse carries a targeted insertion. This genetic characterization enabled us to establish a reliable method for genotyping of the Dysf (tm1Kcam) mouse, and thus has made efficient colony management possible. Our work will make the Dysf (tm1Kcam) mouse model more attractive for animal studies of dysferlinopathies.
Revathidevi, Sundaramoorthy; Manikandan, Mayakannan; Rao, Arunagiri Kuha Deva Magendhra; Vinothkumar, Vilvanathan; Arunkumar, Ganesan; Rajkumar, Kottayasamy Seenivasagam; Ramani, Rajendran; Rajaraman, Ramamurthy; Ajay, Chandrasekar; Munirajan, Arasambattu Kannan
2016-09-01
Breast cancer and cervical cancer are the leading causes of death in women worldwide as well as in India, whilst oral cancer is the top most common cancer among Asian especially in Indian men in terms of both incidence and mortality rate. Genetic factors determining the predisposition to cancer are being explored to identify the signature genetic variations associated with these cancers. Recently, a germline deletion polymorphism in APOBEC3 gene cluster which completely deletes APOBEC3B coding region has been studied for its association with cancer risk. We screened the germline deletion polymorphism in 409 cancer patients (224 breast cancer, 88 cervical cancer and 97 oral cancer samples), 478 controls and 239 cervical cancer tissue DNAs of South Indian origin. The results suggest that the APOBEC3A/3B deletion polymorphism is not significantly associated with cancer risk in our study population (OR 0.739, 95 % CI, p value 0.91457). Considering the viral restriction property of APOBEC3s, we also screened cervical cancer tissue DNAs for the human papilloma virus infection. We observed a gradual increase in the frequency of HPV16 infection from AA/BB cases (66.86 %) to AA/-- cases (71.43) which signifies the impact of this deletion polymorphism in HPV infection. In addition, we performed in silico analysis to understand the effect of this polymorphism on miRNA regulation of the APOBEC3A/3B fusion transcript. Only 8 APOBEC3B targeting miRNAs were observed to regulate the fusion transcript of which miR-34b-3p and miR-138-5p were found to be frequently downregulated in cancers suggesting miRNA-mediated deregulation of APOBEC3A expression in cancer patients harbouring this particular deletion polymorphism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie
With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication bymore » processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Moya, Federico; Kowbel, David; Nueda, Ma Jose
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. In this paper, we have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding amore » class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca 2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca 2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Finally, our results are of paramount importance for developing chitosan as an antifungal.« less
Lopez-Moya, Federico; Kowbel, David; Nueda, Ma Jose; ...
2015-12-01
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. In this paper, we have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding amore » class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca 2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca 2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Finally, our results are of paramount importance for developing chitosan as an antifungal.« less
The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus.
Caballero, Carlos J; Menendez-Gil, Pilar; Catalan-Moreno, Arancha; Vergara-Irigaray, Marta; García, Begoña; Segura, Víctor; Irurzun, Naiara; Villanueva, Maite; Ruiz de Los Mozos, Igor; Solano, Cristina; Lasa, Iñigo; Toledo-Arana, Alejandro
2018-02-16
RNA-binding proteins (RBPs) are essential to fine-tune gene expression. RBPs containing the cold-shock domain are RNA chaperones that have been extensively studied. However, the RNA targets and specific functions for many of them remain elusive. Here, combining comparative proteomics and RBP-immunoprecipitation-microarray profiling, we have determined the regulon of the RNA chaperone CspA of Staphylococcus aureus. Functional analysis revealed that proteins involved in carbohydrate and ribonucleotide metabolism, stress response and virulence gene expression were affected by cspA deletion. Stress-associated phenotypes such as increased bacterial aggregation and diminished resistance to oxidative-stress stood out. Integration of the proteome and targetome showed that CspA post-transcriptionally modulates both positively and negatively the expression of its targets, denoting additional functions to the previously proposed translation enhancement. One of these repressed targets was its own mRNA, indicating the presence of a negative post-transcriptional feedback loop. CspA bound the 5'UTR of its own mRNA disrupting a hairpin, which was previously described as an RNase III target. Thus, deletion of the cspA 5'UTR abrogated mRNA processing and auto-regulation. We propose that CspA interacts through a U-rich motif, which is located at the RNase III cleavage site, portraying CspA as a putative RNase III-antagonist.
Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome.
Hansen, Katelin F; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H; Loeser, Jacob; Hesse, Andrea M; Page, Chloe E; Pelz, Carl; Arthur, J Simon C; Impey, Soren; Obrietan, Karl
2016-02-01
miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders. © 2016 Hansen et al.; Published by Cold Spring Harbor Laboratory Press.
Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome
Hansen, Katelin F.; Sakamoto, Kensuke; Aten, Sydney; Snider, Kaitlin H.; Loeser, Jacob; Hesse, Andrea M.; Page, Chloe E.; Pelz, Carl; Arthur, J. Simon C.; Impey, Soren
2016-01-01
miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders. PMID:26773099
Secretome Analysis Defines the Major Role of SecDF in Staphylococcus aureus Virulence
Quiblier, Chantal; Seidl, Kati; Roschitzki, Bernd; Zinkernagel, Annelies S.; Berger-Bächi, Brigitte; Senn, Maria M.
2013-01-01
The Sec pathway plays a prominent role in protein export and membrane insertion, including the secretion of major bacterial virulence determinants. The accessory Sec constituent SecDF has been proposed to contribute to protein export. Deletion of Staphylococcus aureus secDF has previously been shown to reduce resistance, to alter cell separation, and to change the expression of certain virulence factors. To analyse the impact of the secDF deletion in S. aureus on protein secretion, a quantitative secretome analysis was performed. Numerous Sec signal containing proteins involved in virulence were found to be decreased in the supernatant of the secDF mutant. However, two Sec-dependent hydrolases were increased in comparison to the wild type, suggesting additional indirect, regulatory effects to occur upon deletion of secDF. Adhesion, invasion, and cytotoxicity of the secDF mutant were reduced in human umbilical vein endothelial cells. Virulence was significantly reduced using a Galleria mellonella insect model. Altogether, SecDF is a promising therapeutic target for controlling S. aureus infections. PMID:23658837
What is the best frontline therapy for patients with CLL and 17p deletion?
Badoux, Xavier C; Keating, Michael J; Wierda, William G
2011-03-01
Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease with significant variation in disease progression, response to therapy, and survival outcome. Deletions of 17p or mutations of TP53 have been identified as one of the poorest prognostic factors, being predictive of short time for disease progression, lack of response to therapy, short response duration, and short overall survival. The treatment of patients with CLL has improved significantly with the development of chemoimmunotherapy, but this benefit was not pronounced in patients with 17p deletion. We compare various treatment strategies used in these patients, including FCR-like chemoimmunotherapy, alemtuzumab, other antibody combinations, or novel targeted therapies with promising results. Allogeneic stem cell transplantation offers the possibility for long-term disease control in these patients and should be considered early in younger, transplant-eligible patients. The current state of therapy is far from optimal and resources should be applied to studying therapeutic options for patients who have CLL with loss of p53 function.
Ola, Roxana; Dubrac, Alexandre; Han, Jinah; Zhang, Feng; Fang, Jennifer S; Larrivée, Bruno; Lee, Monica; Urarte, Ana A; Kraehling, Jan R; Genet, Gael; Hirschi, Karen K; Sessa, William C; Canals, Francesc V; Graupera, Mariona; Yan, Minhong; Young, Lawrence H; Oh, Paul S; Eichmann, Anne
2016-11-29
Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.
Rag Deletion in Peripheral T Cells Blocks TCR Revision
Hale, J. Scott; Ames, Kristina T.; Boursalian, Tamar E.; Fink, Pamela J.
2010-01-01
Mature CD4+Vβ5+ T cells that recognize a peripherally expressed endogenous superantigen are tolerized either by deletion or T cell receptor (TCR) revision. In Vβ5 transgenic mice, this latter tolerance pathway results in the appearance of CD4+Vβ5−TCRβ+ T cells, coinciding with Rag1, Rag2, and TdT expression and the accumulation of Vβ-DJβ recombination intermediates in peripheral CD4+ T cells. Because post-thymic RAG-dependent TCR rearrangement has remained controversial, we sought to definitively determine whether TCR revision is an extrathymic process that occurs in mature peripheral T cells. We now show that Rag deletion in post-positive selection T cells in Vβ5 transgenic mice blocks TCR revision in vivo, and that mature peripheral T cells sorted to remove cells bearing endogenous TCRβ chains can express newly generated TCRβ molecules in adoptive hosts. These findings unambiguously demonstrate post-thymic, RAG-dependent TCR rearrangement and define TCR revision as a tolerance pathway that targets mature peripheral CD4+ T cells. PMID:20435935
Cutting Edge: Rag deletion in peripheral T cells blocks TCR revision.
Hale, J Scott; Ames, Kristina T; Boursalian, Tamar E; Fink, Pamela J
2010-06-01
Mature CD4(+)Vbeta5(+) T cells that recognize a peripherally expressed endogenous superantigen are tolerized either by deletion or TCR revision. In Vbeta5 transgenic mice, this latter tolerance pathway results in the appearance of CD4(+)Vbeta5(-)TCRbeta(+) T cells, coinciding with Rag1, Rag2, and TdT expression and the accumulation of V(beta)-DJ(beta) recombination intermediates in peripheral CD4(+) T cells. Because postthymic RAG-dependent TCR rearrangement has remained controversial, we sought to definitively determine whether TCR revision is an extrathymic process that occurs in mature peripheral T cells. We show in this study that Rag deletion in post-positive selection T cells in Vbeta5 transgenic mice blocks TCR revision in vivo and that mature peripheral T cells sorted to remove cells bearing endogenous TCRbeta-chains can express newly generated TCRbeta molecules in adoptive hosts. These findings unambiguously demonstrate postthymic, RAG-dependent TCR rearrangement and define TCR revision as a tolerance pathway that targets mature peripheral CD4(+) T cells.
Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone
2009-09-04
Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPIImore » expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.« less
Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts.
Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone; Huai, Jisen; Mandal, Pankaj Kumar; Niedermann, Gabriele
2009-09-04
Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPII expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.
Iyer, Chitra C; McGovern, Vicki L; Wise, Dawnne O; Glass, David J; Burghes, Arthur H M
2014-05-01
Spinal muscular atrophy (SMA) is an autosomal recessive disease causing degeneration of lower motor neurons and muscle atrophy. One therapeutic avenue for SMA is targeting signaling pathways in muscle to ameliorate atrophy. Muscle Atrophy F-box, MAFbx, and Muscle RING Finger 1, MuRF1, are muscle-specific ubiquitin ligases upregulated in skeletal and cardiac muscle during atrophy. Homozygous knock-out of MAFbx or MuRF1 causes muscle sparing in adult mice subjected to atrophy by denervation. We wished to determine whether blockage of the major muscle atrophy pathways by deletion of MAFbx or MuRF1 in a mouse model of SMA would improve the phenotype. Deletion of MAFbx in the Δ7 SMA mouse model had no effect on the weight and the survival of the mice while deletion of MuRF1 was deleterious. MAFbx(-/-)-SMA mice showed a significant alteration in fiber size distribution tending towards larger fibers. In skeletal and cardiac tissue MAFbx and MuRF1 transcripts were upregulated whereas MuRF2 and MuRF3 levels were unchanged in Δ7 SMA mice. We conclude that deletion of the muscle ubiquitin ligases does not improve the phenotype of a Δ7 SMA mouse. Furthermore, it seems unlikely that the beneficial effect of HDAC inhibitors is mediated through inhibition of MAFbx and MuRF1. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Lili; Wang, Zhan; Zhou, Yubai; Zhang, Fang; Shen, Sisi; Li, Zelin; Zeng, Yi
2015-09-01
For rapid and accurate screening of recombinant modified vaccinia virus Ankara (rMVA) that satisfied the quality standards of clinical trials, a novel shuttle vector that can delete the marker gene automatically during virus propagation was construted: pZL-EGFP. To construct the pZL-EGFP, the original shuttle vector pSC11 was modified by replacing the LacZ marker gene with enhanced green fluorescent protein (EGFP) and then inserting homologous sequences of TKL into the flank regions of EGFP. Baby hamster kidney (BHK)-21 cells were cotransfected with pZL-EGFP and MVA, and underwent ten passages and one plaque screening to obtain the EGFP-free rMVA carrying the exogenous gene. Resulting rMVA was tested by polymerase chain reaction and western blotting to verify pZL-EGFP function. A novel shuttle vector pZL-EGFP containing an EGFP marker gene which could be deleted automatically was constructed. This gene deletion had no effect on the activities of rMVA, and the exogenous gene could be expressed stably. These results suggest that rMVA can be packaged efficiently by homologous recombination between pZL-EGFP and MVA in BHK-21 cells, and that the carried EGFP gene can be removed automatically by intramolecular homologous recombination during virus passage. Meanwhile, the gene deletion had no influence on the activities of rMVA and the expression of exogenous target gene. This study lays a solid foundation for the future research.
A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice1[OPEN
Cermak, Tomas; Sugimoto, Kazuhiko; Saika, Hiroaki; Mori, Akiko; Osakabe, Keishi; Hamada, Masao; Katayose, Yuichi; Voytas, Daniel F.
2016-01-01
We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing. PMID:26668331
Moriceau, Lucille; Jomat, Lucile; Bressanelli, Stéphane; Alcaide-Loridan, Catherine; Jupin, Isabelle
2017-01-01
Turnip yellow mosaic virus (TYMV) is a positive-strand RNA virus infecting plants. The TYMV 140K replication protein is a key organizer of viral replication complex (VRC) assembly, being responsible for recruitment of the viral polymerase and for targeting the VRCs to the chloroplast envelope where viral replication takes place. However, the structural requirements determining the subcellular localization and membrane association of this essential viral protein have not yet been defined. In this study, we investigated determinants for the in vivo chloroplast targeting of the TYMV 140K replication protein. Subcellular localization studies of deletion mutants identified a 41-residue internal sequence as the chloroplast targeting domain (CTD) of TYMV 140K; this sequence is sufficient to target GFP to the chloroplast envelope. The CTD appears to be located in the C-terminal extension of the methyltransferase domain—a region shared by 140K and its mature cleavage product 98K, which behaves as an integral membrane protein during infection. We predicted the CTD to fold into two amphipathic α-helices—a folding that was confirmed in vitro by circular dichroism spectroscopy analyses of a synthetic peptide. The importance for subcellular localization of the integrity of these amphipathic helices, and the function of 140K/98K, was demonstrated by performing amino acid substitutions that affected chloroplast targeting, membrane association and viral replication. These results establish a short internal α-helical peptide as an unusual signal for targeting proteins to the chloroplast envelope membrane, and provide new insights into membrane targeting of viral replication proteins—a universal feature of positive-strand RNA viruses. PMID:29312393
Liu, Yanhong; Yoo, Brian B.; Hwang, Cheng-An; Suo, Yujuan; Sheen, Shiowshuh; Khosravi, Parvaneh; Huang, Lihan
2017-01-01
Listeria monocytogenes is a foodborne pathogen that causes listeriosis, which is a major public health concern due to the high fatality rate. LMOf2365_0442, 0443, and 0444 encode for fructose-specific EIIABC components of phosphotransferase transport system (PTS) permease that is responsible for sugar transport. In previous studies, in-frame deletion mutants of a putative fructose-specific PTS permease (LMOf2365_0442, 0443, and 0444) were constructed and analyzed. However, the virulence potential of these deletion mutants has not been studied. In this study, two in vitro methods were used to analyze the virulence potential of these L. monocytogenes deletion mutants. First, invasion assays were used to measure the invasion efficiencies to host cells using the human HT-29 cell line. Second, plaque forming assays were used to measure cell-to-cell spread in host cells. Our results showed that the deletion mutant ΔLMOf2365_0442 had reduced invasion and cell-to-cell spread efficiencies in human cell line compared to the parental strain LMOf2365, indicating that LMOf2365_0442 encoding for a fructose specific PTS permease IIA may be required for virulence in L. monocytogenes strain F2365. In addition, the gene expression levels of 15 virulence and stress-related genes were analyzed in the stationary phase cells of the deletion mutants using RT-PCR assays. Virulence-related gene expression levels were elevated in the deletion mutants ΔLMOf2365_0442-0444 compared to the wild type parental strain LMOf2365, indicating the down-regulation of virulence genes by this PTS permease in L. monocytogenes. Finally, stress-related gene clpC expression levels were also increased in all of the deletion mutants, suggesting the involvement of this PTS permease in stress response. Furthermore, these deletion mutants displayed the same pressure tolerance and the same capacity for biofilm formation compared to the wild-type parental strain LMOf2365. In summary, our findings suggest that the LMOf2365_0442 gene can be used as a potential target to develop inhibitors for new therapeutic and pathogen control strategies for public health. PMID:28900418
ERIC Educational Resources Information Center
Giersch, Anne; Glaser, Bronwyn; Pasca, Catherine; Chabloz, Mélanie; Debbané, Martin; Eliez, Stephan
2014-01-01
Individuals with 22q11.2 deletion syndrome (22q11.2DS) are impaired at exploring visual information in space; however, not much is known about visual form discrimination in the syndrome. Thirty-five individuals with 22q11.2DS and 41 controls completed a form discrimination task with global forms made up of local elements. Affected individuals…
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; George, K.; Cucinotta, Francis A.
2011-01-01
We have developed a model that can simulate different types of radiation induced chromosomal aberrations (CA's) and can provide predictions on the frequency and size of chromosomes with terminal deletions. Chromosomes with terminal deletions lack telomeres and this can elicit sister chromatid unions and the prolonged breakage/fusion/bridge (B/F/B) cycles that have been observed in mammalian tumors. The loss of a single telomere has been shown to cause extensive genomic instability through the B/F/B cycle process. Our model uses a stochastic process of DNA broken end joining, in which a realistic spectrum of CA's is created from improperly joined DNA free ends formed by DNA double strand breaks (DSBs). The distribution of the DNA free ends is given by a mechanistic model that takes into account the chromatin structure and track structure for high-LET radiation. The model allows for DSB clustering from high-LET radiation and simulates the formation of CA's in stages that correspond to the actual time after radiation exposure. The time scale for CA formation is derived from experimental data on DSB repair kinetics. At any given time a nucleus may have intact chromosomes, CA's, and/or unrepaired fragments, some of which are defined as terminal deletions, if they are capped by one telomere. The model produces a spectrum of terminal deletions with their corresponding probabilities and size distributions for different heavy ions exposures for the first division after exposure. This data provides valuable information because there is limited experimental data available in the literature on the on the actual size of terminal deletions. We compare our model output to the available experimental data and make a reasonable extrapolation on the number of chromosomes lacking telomeres in human lymphocytes exposed to heavy ions. This model generates data which may lead to predictions on the rate of genomic instability in cells after exposure to high charge and energy nuclei affecting astronauts during space missions.
Jha, Jay C.; Gray, Stephen P.; Barit, David; Okabe, Jun; El-Osta, Assam; Namikoshi, Tamehachi; Thallas-Bonke, Vicki; Wingler, Kirstin; Szyndralewiez, Cedric; Heitz, Freddy; Touyz, Rhian M.; Cooper, Mark E.; Schmidt, Harald H.H.W.
2014-01-01
Diabetic nephropathy may occur, in part, as a result of intrarenal oxidative stress. NADPH oxidases comprise the only known dedicated reactive oxygen species (ROS)–forming enzyme family. In the rodent kidney, three isoforms of the catalytic subunit of NADPH oxidase are expressed (Nox1, Nox2, and Nox4). Here we show that Nox4 is the main source of renal ROS in a mouse model of diabetic nephropathy induced by streptozotocin administration in ApoE−/− mice. Deletion of Nox4, but not of Nox1, resulted in renal protection from glomerular injury as evidenced by attenuated albuminuria, preserved structure, reduced glomerular accumulation of extracellular matrix proteins, attenuated glomerular macrophage infiltration, and reduced renal expression of monocyte chemoattractant protein-1 and NF-κB in streptozotocin-induced diabetic ApoE−/− mice. Importantly, administration of the most specific Nox1/4 inhibitor, GKT137831, replicated these renoprotective effects of Nox4 deletion. In human podocytes, silencing of the Nox4 gene resulted in reduced production of ROS and downregulation of proinflammatory and profibrotic markers that are implicated in diabetic nephropathy. Collectively, these results identify Nox4 as a key source of ROS responsible for kidney injury in diabetes and provide proof of principle for an innovative small molecule approach to treat and/or prevent chronic kidney failure. PMID:24511132
Halloum, Iman; Carrère-Kremer, Séverine; Blaise, Mickael; Viljoen, Albertus; Bernut, Audrey; Le Moigne, Vincent; Vilchèze, Catherine; Guérardel, Yann; Lutfalla, Georges; Herrmann, Jean-Louis; Jacobs, William R.; Kremer, Laurent
2016-01-01
Mycobacterium abscessus (Mabs) is a rapidly growing Mycobacterium and an emerging pathogen in humans. Transitioning from a smooth (S) high-glycopeptidolipid (GPL) producer to a rough (R) low-GPL producer is associated with increased virulence in zebrafish, which involves the formation of massive serpentine cords, abscesses, and rapid larval death. Generating a cord-deficient Mabs mutant would allow us to address the contribution of cording in the physiopathological signs of the R variant. Herein, a deletion mutant of MAB_4780, encoding a dehydratase, distinct from the β-hydroxyacyl-ACP dehydratase HadABC complex, was constructed in the R morphotype. This mutant exhibited an alteration of the mycolic acid composition and a pronounced defect in cording. This correlated with an extremely attenuated phenotype not only in wild-type but also in immunocompromised zebrafish embryos lacking either macrophages or neutrophils. The abolition of granuloma formation in embryos infected with the dehydratase mutant was associated with a failure to replicate in macrophages, presumably due to limited inhibition of the phagolysosomal fusion. Overall, these results indicate that MAB_4780 is required for Mabs to successfully establish acute and lethal infections. Therefore, targeting MAB_4780 may represent an attractive antivirulence strategy to control Mabs infections, refractory to most standard chemotherapeutic interventions. The combination of a dehydratase assay with a high-resolution crystal structure of MAB_4780 opens the way to identify such specific inhibitors. PMID:27385830
Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes
Pieper, Andrew A.; Brat, Daniel J.; Krug, David K.; Watkins, Crystal C.; Gupta, Alok; Blackshaw, Seth; Verma, Ajay; Wang, Zhao-Qi; Snyder, Solomon H.
1999-01-01
Streptozotocin (STZ) selectively destroys insulin-producing beta islet cells of the pancreas providing a model of type I diabetes. Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme whose overactivation by DNA strand breaks depletes its substrate NAD+ and then ATP, leading to cellular death from energy depletion. We demonstrate DNA damage and a major activation of PARP in pancreatic islets of STZ-treated mice. These mice display a 500% increase in blood glucose and major pancreatic islet damage. In mice with homozygous targeted deletion of PARP (PARP −/−), blood glucose and pancreatic islet structure are normal, indicating virtually total protection from STZ diabetes. Partial protection occurs in PARP +/− animals. Thus, PARP activation may participate in the pathophysiology of type I diabetes, for which PARP inhibitors might afford therapeutic benefit. PMID:10077636
Eltit, Jose M; Franzini-Armstrong, Clara; Perez, Claudio F
2014-12-26
The β1a subunit is a cytoplasmic component of the dihydropyridine receptor (DHPR) complex that plays an essential role in skeletal muscle excitation-contraction (EC) coupling. Here we investigate the role of the C-terminal end of this auxiliary subunit in the functional and structural communication between the DHPR and the Ca(2+) release channel (RyR1). Progressive truncation of the β1a C terminus showed that deletion of amino acid residues Gln(489) to Trp(503) resulted in a loss of depolarization-induced Ca(2+) release, a severe reduction of L-type Ca(2+) currents, and a lack of tetrad formation as evaluated by freeze-fracture analysis. However, deletion of this domain did not affect expression/targeting or density (Qmax) of the DHPR-α1S subunit to the plasma membrane. Within this motif, triple alanine substitution of residues Leu(496), Leu(500), and Trp(503), which are thought to mediate direct β1a-RyR1 interactions, weakened EC coupling but did not replicate the truncated phenotype. Therefore, these data demonstrate that an amino acid segment encompassing sequence (489)QVQVLTSLRRNLSFW(503) of β1a contains critical determinant(s) for the physical link of DHPR and RyR1, further confirming a direct correspondence between DHPR positioning and DHPR/RyR functional interactions. In addition, our data strongly suggest that the motif Leu(496)-Leu(500)-Trp(503) within the β1a C-terminal tail plays a nonessential role in the bidirectional DHPR/RyR1 signaling that supports skeletal-type EC coupling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Loss of Akap1 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Heart Failure.
Schiattarella, Gabriele G; Boccella, Nicola; Paolillo, Roberta; Cattaneo, Fabio; Trimarco, Valentina; Franzone, Anna; D'Apice, Stefania; Giugliano, Giuseppe; Rinaldi, Laura; Borzacchiello, Domenica; Gentile, Alessandra; Lombardi, Assunta; Feliciello, Antonio; Esposito, Giovanni; Perrino, Cinzia
2018-01-01
Left ventricular hypertrophy (LVH) is a major contributor to the development of heart failure (HF). Alterations in cyclic adenosine monophosphate (cAMP)-dependent signaling pathways participate in cardiomyocyte hypertrophy and mitochondrial dysfunction occurring in LVH and HF. cAMP signals are received and integrated by a family of cAMP-dependent protein kinase A (PKA) anchor proteins (AKAPs), tethering PKA to discrete cellular locations. AKAPs encoded by the Akap1 gene (mitoAKAPs) promote PKA mitochondrial targeting, regulating mitochondrial structure and function, reactive oxygen species production, and cell survival. To determine the role of mitoAKAPs in LVH development, in the present investigation, mice with global genetic deletion of Akap1 ( Akap1 -/- ), Akap1 heterozygous ( Akap1 +/- ), and their wild-type ( wt ) littermates underwent transverse aortic constriction (TAC) or SHAM procedure for 1 week. In wt mice, pressure overload induced the downregulation of AKAP121, the major cardiac mitoAKAP. Compared to wt, Akap1 -/- mice did not display basal alterations in cardiac structure or function and cardiomyocyte size or fibrosis. However, loss of Akap1 exacerbated LVH and cardiomyocyte hypertrophy induced by pressure overload and accelerated the progression toward HF in TAC mice, and these changes were not observed upon prevention of AKAP121 degradation in seven in absentia homolog 2 ( Siah2 ) knockout mice ( Siah2 -/- ). Loss of Akap1 was also associated to a significant increase in cardiac apoptosis as well as lack of activation of Akt signaling after pressure overload. Taken together, these results demonstrate that in vivo genetic deletion of Akap1 enhances LVH development and accelerates pressure overload-induced cardiac dysfunction, pointing at Akap1 as a novel repressor of pathological LVH. These results confirm and extend the important role of mitoAKAPs in cardiac response to stress.
Vinayagam, Arunachalam; Gibson, Travis E.; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László
2016-01-01
The protein–protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as “indispensable,” “neutral,” or “dispensable,” which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network’s control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets. PMID:27091990
de Jong, Arjan S; Wessels, Els; Dijkman, Henri B P M; Galama, Jochem M D; Melchers, Willem J G; Willems, Peter H G M; van Kuppeveld, Frank J M
2003-01-10
The 2B protein of enterovirus is responsible for the alterations in the permeability of secretory membranes and the plasma membrane in infected cells. The structural requirements for the membrane association and the subcellular localization of this essential virus protein, however, have not been defined. Here, we provide evidence that the 2B protein is an integral membrane protein in vivo that is predominantly localized at the Golgi complex upon individual expression. Addition of organelle-specific targeting signals to the 2B protein revealed that the Golgi localization is an absolute prerequisite for the ability of the protein to modify plasma membrane permeability. Expression of deletion mutants and heterologous proteins containing specific domains of the 2B protein demonstrated that each of the two hydrophobic regions could mediate membrane binding individually. However, the presence of both hydrophobic regions was required for the correct membrane association, efficient Golgi targeting, and the membrane-permeabilizing activity of the 2B protein, suggesting that the two hydrophobic regions are cooperatively involved in the formation of a membrane-integral complex. The formation of membrane-integral pores by the 2B protein in the Golgi complex and the possible mechanism by which a Golgi-localized virus protein modifies plasma membrane permeability are discussed.
Vengalil, Seena; Preethish-Kumar, Veeramani; Polavarapu, Kiran; Mahadevappa, Manjunath; Sekar, Deepha; Purushottam, Meera; Thomas, Priya Treesa; Nashi, Saraswathi; Nalini, Atchayaram
2017-01-01
Studies of cases of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) confirmed by multiplex ligation-dependent probe amplification (MLPA) have determined the clinical characteristics, genotype, and relations between the reading frame and phenotype for different countries. This is the first such study from India. A retrospective genotype-phenotype analysis of 317 MLPA-confirmed patients with DMD or BMD who visited the neuromuscular clinic of a quaternary referral center in southern India. The 317 patients comprised 279 cases of DMD (88%), 32 of BMD (10.1%), and 6 of intermediate phenotype (1.9%). Deletions accounted for 91.8% of cases, with duplications causing the remaining 8.2%. There were 254 cases of DMD (91%) with deletions and 25 (9%) due to duplications, and 31 cases (96.8%) of BMD with deletions and 1 (3.2%) due to duplication. All six cases of intermediate type were due to deletions. The most-common mutation was a single-exon deletion. Deletions of six or fewer exons constituted 68.8% of cases. The deletion of exon 50 was the most common. The reading-frame rule held in 90% of DMD and 94% of BMD cases. A tendency toward a lower IQ and earlier wheelchair dependence was observed with distal exon deletions, though a significant correlation was not found. The reading-frame rule held in 90% to 94% of children, which is consistent with reports from other parts of the world. However, testing by MLPA is a limitation, and advanced sequencing methods including analysis of the structure of mutant dystrophin is needed for more-accurate assessments of the genotype-phenotype correlation.
Tani, Motohiro; Toume, Moeko
2015-12-01
In the yeast Saccharomyces cerevisiae, complex sphingolipids have three types of polar head group and five types of ceramide; however, the physiological significance of the structural diversity is not fully understood. Here, we report that deletion of vacuolar H+-ATPase (V-ATPase) in yeast causes dramatic alteration of the complex sphingolipid composition, which includes decreases in hydroxylation at the C-4 position of long-chain bases and the C-2 position of fatty acids in the ceramide moiety, decreases in inositol phosphorylceramide (IPC) levels, and increases in mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP)2C] levels. V-ATPase-deleted cells exhibited slow growth at pH 7.2, whereas the increase in MIPC levels was significantly enhanced when V-ATPase-deleted cells were incubated at pH 7.2. The protein expression levels of MIPC and M(IP)2C synthases were significantly increased in V-ATPase-deleted cells incubated at pH 7.2. Loss of MIPC synthesis or an increase in the hydroxylation level of the ceramide moiety of sphingolipids on overexpression of Scs7 and Sur2 sphingolipid hydroxylases enhanced the growth defect of V-ATPase-deleted cells at pH 7.2. On the contrary, the growth rate of V-ATPase-deleted cells was moderately increased on the deletion of SCS7 and SUR2. In addition, supersensitivities to Ca2+, Zn2+ and H2O2, which are typical phenotypes of V-ATPase-deleted cells, were enhanced by the loss of MIPC synthesis. These results indicate the possibility that alteration of the complex sphingolipid composition is an adaptation mechanism for a defect of V-ATPase.
Ghrelin and leptin interplay in prevention of testicular damage due to cryptochidism
USDA-ARS?s Scientific Manuscript database
Ghrelin, the endogenous ligand to the growth hormone secretagogue receptor (ghsr), is centrally implicated in body weight homeostasis. A novel murine model for ghrelin and its physiologic antagonist, leptin, was developed at this institution. Mice with a deletion of ghsr (ghsr -/-) or a targeted dis...
Flanagan, Sheila; Goswami, Usha
2018-03-01
Recent models of the neural encoding of speech suggest a core role for amplitude modulation (AM) structure, particularly regarding AM phase alignment. Accordingly, speech tasks that measure linguistic development in children may exhibit systematic properties regarding AM structure. Here, the acoustic structure of spoken items in child phonological and morphological tasks, phoneme deletion and plural elicitation, was investigated. The phase synchronisation index (PSI), reflecting the degree of phase alignment between pairs of AMs, was computed for 3 AM bands (delta, theta, beta/low gamma; 0.9-2.5 Hz, 2.5-12 Hz, 12-40 Hz, respectively), for five spectral bands covering 100-7250 Hz. For phoneme deletion, data from 94 child participants with and without dyslexia was used to relate AM structure to behavioural performance. Results revealed that a significant change in magnitude of the phase synchronisation index (ΔPSI) of slower AMs (delta-theta) systematically accompanied both phoneme deletion and plural elicitation. Further, children with dyslexia made more linguistic errors as the delta-theta ΔPSI increased. Accordingly, ΔPSI between slower temporal modulations in the speech signal systematically distinguished test items from accurate responses and predicted task performance. This may suggest that sensitivity to slower AM information in speech is a core aspect of phonological and morphological development.
FOXP2 gene deletion and infant feeding difficulties: a case report.
Zimmerman, Emily; Maron, Jill L
2016-01-01
Forkhead box protein P2 (FOXP2) is a well-studied gene known to play an essential role in normal speech development. Deletions in the gene have been shown to result in developmental speech disorders and regulatory disruption of downstream gene targets associated with common forms of language impairments. Despite similarities in motor planning and execution between speech development and oral feeding competence, there have been no reports to date linking deletions within the FOXP2 gene to oral feeding impairments in the newborn. The patient was a nondysmorphic, appropriately and symmetrically grown male infant born at 35-wk gestational age. He had a prolonged neonatal intensive care unit stay because of persistent oral feeding incoordination requiring gastrostomy tube placement. Cardiac and neurological imagings were within normal limits. A microarray analysis found an ∼9-kb loss within chromosome band 7q3.1 that contains exon 2 of FOXP2, demonstrating a single copy of this region instead of the normal two copies per diploid gene. This case study expands our current understanding of the role FOXP2 exerts on motor planning and coordination necessary for both oral feeding success and speech-language development. This case report has important consequences for future diagnosis and treatment for infants with FOXP2 deletions, mutations, and varying levels of gene expression.
Collins, Colin C; Volik, Stanislav V; Lapuk, Anna V; Wang, Yuwei; Gout, Peter W; Wu, Chunxiao; Xue, Hui; Cheng, Hongwei; Haegert, Anne; Bell, Robert H; Brahmbhatt, Sonal; Anderson, Shawn; Fazli, Ladan; Hurtado-Coll, Antonio; Rubin, Mark A.; Demichelis, Francesca; Beltran, Himisha; Hirst, Martin; Marra, Marco; Maher, Christopher A.; Chinnaiyan, Arul M.; Gleave, Martin; Bertino, Joseph R.; Lubin, Martin; Wang, Yuzhuo
2013-01-01
Castrate resistant prostate cancer (CRPC) and neuroendocrine carcinoma of the prostate are invariably fatal diseases for which only palliative therapies exist. As part of a prostate tumour sequencing program, a patient tumour was analyzed using Illumina genome sequencing and a matched renal capsule tumour xenograft was generated. Both tumour and xenograft had a homozygous 9p21 deletion spanning the MTAP, CDKN2 and ARF genes. It is rare for this deletion to occur in primary prostate tumours yet approximately 10% express decreased levels of MTAP mRNA. Decreased MTAP expression is a prognosticator for poor outcome. Moreover, it appears that this deletion is more common in CRPC than in primary prostate cancer. We show for the first time that treatment with methylthioadenosine and high dose 6-thioguanine causes marked inhibition of a patient derived neuroendocrine xenograft growth while protecting the host from 6-thioguanine toxicity. This therapeutic approach can be applied to other MTAP-deficient human cancers since deletion or hypermethylation of the MTAP gene occurs in a broad spectrum of tumours at high frequency. The combination of genome sequencing and patient-derived xenografts can identify candidate therapeutic agents and evaluate them for personalized oncology. PMID:22252602
Role of fibroblast growth factor receptor signaling in kidney development.
Bates, Carlton M
2011-09-01
Fibroblast growth factor receptors (Fgfrs) are expressed throughout the developing kidney. Several early studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB). Transgenic mice that over-express a dominant negative receptor isoform develop renal aplasia/severe dysplasia, confirming the importance of Fgfrs in renal development. Furthermore, global deletion of Fgf7, Fgf10, and Fgfr2IIIb (isoform that binds Fgf7 and Fgf10) in mice leads to small kidneys with fewer collecting ducts and nephrons. Deletion of Fgfrl1, a receptor lacking intracellular signaling domains, causes severe renal dysgenesis. Conditional targeting of Fgf8 from the MM interrupts nephron formation. Deletion of Fgfr2 from the UB results in severe ureteric branching and stromal mesenchymal defects, although loss of Frs2α (major signaling adapter for Fgfrs) in the UB causes only mild renal hypoplasia. Deletion of both Fgfr1 and Fgfr2 in the MM results in renal aplasia with defects in MM formation and initial UB elongation and branching. Loss of Fgfr2 in the MM leads to many renal and urinary tract anomalies as well as vesicoureteral reflux. Thus, Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.
Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan
2015-01-01
T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
... surface media (soil, surface water, sediment) and structures (both former structures that have been... . SUPPLEMENTARY INFORMATION: The portion of the site to be deleted from the NPL is the surface media (soil...
2012-01-01
Background Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides protection against COS-induced cell membrane permeability and damage. We found that the ARL1 COS-resistant over-expression strain was as sensitive to Amphotericin B, Fluconazole and Terbinafine as the wild type cells and that when COS and Fluconazole are used in combination they act in a synergistic fashion. The gene targets of COS identified in this study indicate that COS’s mechanism of action is different from other commonly studied fungicides that target membranes, suggesting that COS may be an effective fungicide for drug-resistant fungal pathogens. PMID:22727066
Chemical genomic profiling via barcode sequencing to predict compound mode of action
Piotrowski, Jeff S.; Simpkins, Scott W.; Li, Sheena C.; Deshpande, Raamesh; McIlwain, Sean; Ong, Irene; Myers, Chad L.; Boone, Charlie; Andersen, Raymond J.
2015-01-01
Summary Chemical genomics is an unbiased, whole-cell approach to characterizing novel compounds to determine mode of action and cellular target. Our version of this technique is built upon barcoded deletion mutants of Saccharomyces cerevisiae and has been adapted to a high-throughput methodology using next-generation sequencing. Here we describe the steps to generate a chemical genomic profile from a compound of interest, and how to use this information to predict molecular mechanism and targets of bioactive compounds. PMID:25618354
PCR-based detection of a rare linear DNA in cell culture.
Saveliev, Sergei V.
2002-11-11
The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 10(7) or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials.
PCR-based detection of a rare linear DNA in cell culture
2002-01-01
The described method allows for detection of rare linear DNA fragments generated during genomic deletions. The predicted limit of the detection is one DNA molecule per 107 or more cells. The method is based on anchor PCR and involves gel separation of the linear DNA fragment and chromosomal DNA before amplification. The detailed chemical structure of the ends of the linear DNA can be defined with the use of additional PCR-based protocols. The method was applied to study the short-lived linear DNA generated during programmed genomic deletions in a ciliate. It can be useful in studies of spontaneous DNA deletions in cell culture or for tracking intracellular modifications at the ends of transfected DNA during gene therapy trials. PMID:12734566
Toyota, S; Hirosawa, S; Aoki, N
1994-02-01
Alpha 2-plasmin inhibitor (alpha 2PI) deficiency Okinawa results from defective secretion of the inhibitor from the liver and appears to be a direct consequence of the deletion of Glu137 in the amino acid sequence of alpha 2PI. To examine the effects of replacing the amino acid occupying position 137 or deleting its neighboring amino acid on alpha 2PI secretion, we used oligonucleotide-directed mutagenesis of alpha 2PI cDNA to change the codon specifying Glu137 or delete a codon specifying its neighboring amino acid. The effects were determined by pulse-chase experiments and by enzyme-linked immunosorbent assay of media from transiently transfected COS-7 cells. Replacement of Glu137 with an amino acid other than Cys had little effect on alpha 2PI secretion. In contrast, deletion of an amino acid in a region spanning a sequence of less than 30 amino acids including positions 127 and 137 severely impaired the secretion. The results suggest that structural integrity of the region, rather than its component amino acids, is important for the intracellular transport and secretion of alpha 2PI.
Mandl, C W; Holzmann, H; Meixner, T; Rauscher, S; Stadler, P F; Allison, S L; Heinz, F X
1998-03-01
The flavivirus genome is a positive-strand RNA molecule containing a single long open reading frame flanked by noncoding regions (NCR) that mediate crucial processes of the viral life cycle. The 3' NCR of tick-borne encephalitis (TBE) virus can be divided into a variable region that is highly heterogeneous in length among strains of TBE virus and in certain cases includes an internal poly(A) tract and a 3'-terminal conserved core element that is believed to fold as a whole into a well-defined secondary structure. We have now investigated the genetic stability of the TBE virus 3' NCR and its influence on viral growth properties and virulence. We observed spontaneous deletions in the variable region during growth of TBE virus in cell culture and in mice. These deletions varied in size and location but always included the internal poly(A) element of the TBE virus 3' NCR and never extended into the conserved 3'-terminal core element. Subsequently, we constructed specific deletion mutants by using infectious cDNA clones with the entire variable region and increasing segments of the core element removed. A virus mutant lacking the entire variable region was indistinguishable from wild-type virus with respect to cell culture growth properties and virulence in the mouse model. In contrast, even small extensions of the deletion into the core element led to significant biological effects. Deletions extending to nucleotides 10826, 10847, and 10870 caused distinct attenuation in mice without measurable reduction of cell culture growth properties, which, however, were significantly restricted when the deletion was extended to nucleotide 10919. An even larger deletion (to nucleotide 10994) abolished viral viability. In spite of their high degree of attenuation, these mutants efficiently induced protective immune responses even at low inoculation doses. Thus, 3'-NCR deletions represent a useful technique for achieving stable attenuation of flaviviruses that can be included in the rational design of novel flavivirus live vaccines.
NBCe1 expression is required for normal renal ammonia metabolism
Handlogten, Mary E.; Osis, Gunars; Lee, Hyun-Wook; Romero, Michael F.; Verlander, Jill W.
2015-01-01
The mechanisms regulating proximal tubule ammonia metabolism are incompletely understood. The present study addressed the role of the proximal tubule basolateral electrogenic Na+-coupled bicarbonate cotransporter (NBCe1; Slc4a4) in renal ammonia metabolism. We used mice with heterozygous and homozygous NBCe1 gene deletion and compared these mice with their wild-type littermates. Because homozygous NBCe1 gene deletion causes 100% mortality before day 25, we studied mice at day 8 (±1 day). Both heterozygous and homozygous gene deletion caused a gene dose-related decrease in serum bicarbonate. The ability to lower urinary pH was intact, and even accentuated, with NBCe1 deletion. However, in contrast to the well-known effect of metabolic acidosis to increase urinary ammonia excretion, NBCe1 deletion caused a gene dose-related decrease in ammonia excretion. There was no identifiable change in proximal tubule structure by light microscopy. Examination of proteins involved in renal ammonia metabolism showed decreased expression of phosphate-dependent glutaminase and phosphoenolpyruvate carboxykinase, key enzymes in proximal tubule ammonia generation, and increased expression of glutamine synthetase, which recycles intrarenal ammonia and regenerates glutamine. Expression of key proteins involved in ammonia transport outside of the proximal tubule (rhesus B glycoprotein and rhesus C glycoprotein) was not significantly changed by NBCe1 deletion. We conclude from these findings that NBCe1 expression is necessary for normal proximal tubule ammonia metabolism. PMID:26224717
Yamaguchi, Kiyoshi; Nagayama, Satoshi; Shimizu, Eigo; Komura, Mitsuhiro; Yamaguchi, Rui; Shibuya, Tetsuo; Arai, Masami; Hatakeyama, Seira; Ikenoue, Tsuneo; Ueno, Masashi; Miyano, Satoru; Imoto, Seiya; Furukawa, Yoichi
2016-05-24
Germline mutations in the tumor suppressor gene APC are associated with familial adenomatous polyposis (FAP). Here we applied whole-genome sequencing (WGS) to the DNA of a sporadic FAP patient in which we did not find any pathological APC mutations by direct sequencing. WGS identified a promoter deletion of approximately 10 kb encompassing promoter 1B and exon1B of APC. Additional allele-specific expression analysis by deep cDNA sequencing revealed that the deletion reduced the expression of the mutated APC allele to as low as 11.2% in the total APC transcripts, suggesting that the residual mutant transcripts were driven by other promoter(s). Furthermore, cap analysis of gene expression (CAGE) demonstrated that the deleted promoter 1B region is responsible for the great majority of APC transcription in many tissues except the brain. The deletion decreased the transcripts of APC-1B to 39-45% in the patient compared to the healthy controls, but it did not decrease those of APC-1A. Different deletions including promoter 1B have been reported in FAP patients. Taken together, our results strengthen the evidence that analysis of structural variations in promoter 1B should be considered for the FAP patients whose pathological mutations are not identified by conventional direct sequencing.
Cell-type-specific roles for COX-2 in UVB-induced skin cancer
Herschman, Harvey
2014-01-01
In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2 flox/flox mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2 flox/flox;K14Cre + mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2 flox/flox;K14Cre + papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2 flox/flox; LysMCre + myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. PMID:24469308
Cell-type-specific roles for COX-2 in UVB-induced skin cancer.
Jiao, Jing; Mikulec, Carol; Ishikawa, Tomo-o; Magyar, Clara; Dumlao, Darren S; Dennis, Edward A; Fischer, Susan M; Herschman, Harvey
2014-06-01
In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2(flox/flox) mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2(flox/flox);K14Cre(+) mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2(flox/flox);K14Cre(+) papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2(flox/flox); LysMCre(+) myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants.
Williams, Lindsey N; Marjavaara, Lisette; Knowels, Gary M; Schultz, Eric M; Fox, Edward J; Chabes, Andrei; Herr, Alan J
2015-05-12
Mutator phenotypes create genetic diversity that fuels tumor evolution. DNA polymerase (Pol) ε mediates leading strand DNA replication. Proofreading defects in this enzyme drive a number of human malignancies. Here, using budding yeast, we show that mutator variants of Pol ε depend on damage uninducible (Dun)1, an S-phase checkpoint kinase that maintains dNTP levels during a normal cell cycle and up-regulates dNTP synthesis upon checkpoint activation. Deletion of DUN1 (dun1Δ) suppresses the mutator phenotype of pol2-4 (encoding Pol ε proofreading deficiency) and is synthetically lethal with pol2-M644G (encoding altered Pol ε base selectivity). Although pol2-4 cells cycle normally, pol2-M644G cells progress slowly through S-phase. The pol2-M644G cells tolerate deletions of mediator of the replication checkpoint (MRC) 1 (mrc1Δ) and radiation sensitive (Rad) 9 (rad9Δ), which encode mediators of checkpoint responses to replication stress and DNA damage, respectively. The pol2-M644G mutator phenotype is partially suppressed by mrc1Δ but not rad9Δ; neither deletion suppresses the pol2-4 mutator phenotype. Thus, checkpoint activation augments the Dun1 effect on replication fidelity but is not required for it. Deletions of genes encoding key Dun1 targets that negatively regulate dNTP synthesis, suppress the dun1Δ pol2-M644G synthetic lethality and restore the mutator phenotype of pol2-4 in dun1Δ cells. DUN1 pol2-M644G cells have constitutively high dNTP levels, consistent with checkpoint activation. In contrast, pol2-4 and POL2 cells have similar dNTP levels, which decline in the absence of Dun1 and rise in the absence of the negative regulators of dNTP synthesis. Thus, dNTP pool levels correlate with Pol ε mutator severity, suggesting that treatments targeting dNTP pools could modulate mutator phenotypes for therapy.
Tanwar, Pradeep S; Kaneko-Tarui, Tomoko; Zhang, Lihua; Tanaka, Yoshihiro; Crum, Christopher P; Teixeira, Jose M
2012-01-01
Germline mutations of the Liver Kinase b1 (LKB1/STK11) tumor suppressor gene have been linked to Peutz-Jeghers Syndrome (PJS), an autosomal-dominant, cancer-prone disorder in which patients develop neoplasms in several organs, including the oviduct, ovary, and cervix. We have conditionally deleted Lkb1 in Müllerian duct mesenchyme-derived cells of the female reproductive tract and observed expansion of the stromal compartment and hyperplasia and/or neoplasia of adjacent epithelial cells throughout the reproductive tract with paratubal cysts and adenomyomas in oviducts and, eventually, endometrial cancer. Examination of the proliferation marker phospho-histone H3 and mammalian Target Of Rapamycin Complex 1 (mTORC1) pathway members revealed increased proliferation and mTORC1 activation in stromal cells of both the oviduct and uterus. Treatment with rapamycin, an inhibitor of mTORC1 activity, decreased tumor burden in adult Lkb1 mutant mice. Deletion of the genes for Tuberous Sclerosis 1 (Tsc1) or Tsc2, regulators of mTORC1 that are downstream of LKB1 signaling, in the oviductal and uterine stroma phenocopies some of the defects observed in Lkb1 mutant mice, confirming that dysregulated mTORC1 activation in the Lkb1-deleted stroma contributes to the phenotype. Loss of PTEN, an upstream regulator of mTORC1 signaling, along with Lkb1 deletion significantly increased tumor burden in uteri and induced tumorigenesis in the cervix and vagina. These studies show that LKB1/TSC1/TSC2/mTORC1 signaling in mesenchymal cells is important for the maintenance of epithelial integrity and suppression of carcinogenesis in adjacent epithelial cells. Because similar changes in the stromal population are also observed in human oviductal/ovarian adenoma and endometrial adenocarcinoma patients, we predict that dysregulated mTORC1 activity by upstream mechanisms similar to those described in these model systems contributes to the pathogenesis of these human diseases.
Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis.
Chan, Lap Kwan; Gerstenlauer, Melanie; Konukiewitz, Björn; Steiger, Katja; Weichert, Wilko; Wirth, Thomas; Maier, Harald Jakob
2017-11-01
Inhibitory κB kinase (IKK)/nuclear factor κB (NF-κB) signalling has been implicated in the pathogenesis of pancreatitis, but its precise function has remained controversial. Here, we analyse the contribution of IKK/NF-κB signalling in epithelial cells to the pathogenesis of pancreatitis by targeting the IKK subunit NF-κB essential modulator (NEMO) (IKKγ), which is essential for canonical NF-κB activation. Mice with a targeted deletion of NEMO in the pancreas were subjected to caerulein pancreatitis. Pancreata were examined at several time points and analysed for inflammation, fibrosis, cell death, cell proliferation, as well as cellular differentiation. Human samples were used to corroborate findings established in mice. In acute pancreatitis, NEMO deletion in the pancreatic parenchyma resulted in minor changes during the early phase but led to the persistence of inflammatory and fibrotic foci in the recovery phase. In chronic pancreatitis, NEMO deletion aggravated inflammation and fibrosis, inhibited compensatory acinar cell proliferation, and enhanced acinar atrophy and acinar-ductal metaplasia. Gene expression analysis revealed sustained activation of profibrogenic genes and the CXCL12/CXCR4 axis in the absence of epithelial NEMO. In human chronic pancreatitis samples, the CXCL12/CXCR4 axis was activated as well, with CXCR4 expression correlating with the degree of fibrosis. The aggravating effects of NEMO deletion were attenuated by the administration of the CXCR4 antagonist AMD3100. Our results suggest that NEMO in epithelial cells exerts a protective effect during pancreatitis by limiting inflammation and fibrosis and improving acinar cell regeneration. The CXCL12/CXCR4 axis is an important mediator of that effect and may also be of importance in human chronic pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Zhang, LiHua; Tanaka, Yoshihiro; Crum, Christopher P.; Teixeira, Jose M.
2012-01-01
Germline mutations of the Liver Kinase b1 (LKB1/STK11) tumor suppressor gene have been linked to Peutz-Jeghers Syndrome (PJS), an autosomal-dominant, cancer-prone disorder in which patients develop neoplasms in several organs, including the oviduct, ovary, and cervix. We have conditionally deleted Lkb1 in Müllerian duct mesenchyme-derived cells of the female reproductive tract and observed expansion of the stromal compartment and hyperplasia and/or neoplasia of adjacent epithelial cells throughout the reproductive tract with paratubal cysts and adenomyomas in oviducts and, eventually, endometrial cancer. Examination of the proliferation marker phospho-histone H3 and mammalian Target Of Rapamycin Complex 1 (mTORC1) pathway members revealed increased proliferation and mTORC1 activation in stromal cells of both the oviduct and uterus. Treatment with rapamycin, an inhibitor of mTORC1 activity, decreased tumor burden in adult Lkb1 mutant mice. Deletion of the genes for Tuberous Sclerosis 1 (Tsc1) or Tsc2, regulators of mTORC1 that are downstream of LKB1 signaling, in the oviductal and uterine stroma phenocopies some of the defects observed in Lkb1 mutant mice, confirming that dysregulated mTORC1 activation in the Lkb1-deleted stroma contributes to the phenotype. Loss of PTEN, an upstream regulator of mTORC1 signaling, along with Lkb1 deletion significantly increased tumor burden in uteri and induced tumorigenesis in the cervix and vagina. These studies show that LKB1/TSC1/TSC2/mTORC1 signaling in mesenchymal cells is important for the maintenance of epithelial integrity and suppression of carcinogenesis in adjacent epithelial cells. Because similar changes in the stromal population are also observed in human oviductal/ovarian adenoma and endometrial adenocarcinoma patients, we predict that dysregulated mTORC1 activity by upstream mechanisms similar to those described in these model systems contributes to the pathogenesis of these human diseases. PMID:22916036
Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Nakanishi, Kenta; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Lai, Poh San; Takeshima, Yasuhiro; Takeuchi, Atsuko; Bouike, Yoshihiro; Okamoto, Maya; Nishio, Hisahide; Shinohara, Masakazu
2017-10-01
Spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by mutations in SMN1. More than 95% of SMA patients carry homozygous SMN1 deletion. SMA is the leading genetic cause of infant death, and has been considered an incurable disease. However, a recent clinical trial with an antisense oligonucleotide drug has shown encouraging clinical efficacy. Thus, early and accurate detection of SMN1 deletion may improve prognosis of many infantile SMA patients. A total of 88 DNA samples (37 SMA patients, 12 carriers and 39 controls) from dried blood spots (DBS) on filter paper were analyzed. All participants had previously been screened for SMN genes by PCR restriction fragment length polymorphism (PCR-RFLP) using DNA extracted from freshly collected blood. DNA was extracted from DBS that had been stored at room temperature (20-25°C) for 1week to 5years. To ensure sufficient quality and quantity of DNA samples, target sequences were pre-amplified by conventional PCR. Real-time modified competitive oligonucleotide priming-PCR (mCOP-PCR) with the pre-amplified PCR products was performed for the gene-specific amplification of SMN1 and SMN2 exon 7. Compared with PCR-RFLP using DNA from freshly collected blood, results from real-time mCOP-PCR using DBS-DNA for detection of SMN1 exon 7 deletion showed a sensitivity of 1.00 (CI [0.87, 1.00])] and specificity of 1.00 (CI [0.90, 1.00]), respectively. We combined DNA extraction from DBS on filter paper, pre-amplification of target DNA, and real-time mCOP-PCR to specifically detect SMN1 and SMN2 genes, thereby establishing a rapid, accurate, and high-throughput system for detecting SMN1-deletion with practical applications for newborn screening. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Cartwright, Elizabeth J; Neyses, Ludwig
2010-01-01
The array of contraceptives currently available is clearly inadequate and does not meet consumer demands since it is estimated that up to a quarter of all pregnancies worldwide are unintended. There is, therefore, an overwhelming global need to develop new effective, safe, ideally non-hormonal contraceptives for both male and female use. The contraceptive field, unlike other areas such as cancer, has a dearth of new targets. We have addressed this issue and propose that isoform 4 of the plasma membrane calcium ATPase is a potentially exciting novel target for fertility control. The plasma membrane calcium ATPase is a ubiquitously expressed calcium pump whose primary function in the majority of cells is to extrude calcium to the extracellular milieu. Two isoforms of this gene family, PMCA1 and PMCA4, are expressed in spermatozoa, with PMCA4 being the predominant isoform. Although this gene is ubiquitously expressed, its function is highly tissue-specific. Genetic deletion of PMCA4, in PMCA4 knockout mice, led to 100% infertility specifically in the male mutant mice due to a selective defect in sperm motility. It is important to note that the gene deletion did not affect normal mating characteristics in these mice. This phenotype was mimicked in wild-type sperm treated with the non-specific PMCA inhibitor 5-(and 6-) carboxyeosin diacetate succinimidyl ester; a proof-of-principle that inhibition of PMCA4 has potential importance in the control of fertility. This review outlines the potential for PMCA4 to be a novel target for fertility control by acting to inhibit sperm motility. It will outline the characteristics that make this target drugable and will describe methodologies to identify and validate novel inhibitors of this target.
Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G
2016-11-01
Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.
The Role of Molecular Diagnostics in the Management of Patients with Gliomas.
Wirsching, Hans-Georg; Weller, Michael
2016-10-01
The revised World Health Organization (WHO) classification of tumors of the central nervous system of 2016 combines biology-driven molecular marker diagnostics with classical histological cancer diagnosis. Reclassification of gliomas by molecular similarity beyond histological boundaries improves outcome prediction and will increasingly guide treatment decisions. This change in paradigms implies more personalized and eventually more efficient therapeutic approaches, but the era of molecular targeted therapies for gliomas is yet at its onset. Promising results of molecularly targeted therapies in genetically less complex gliomas with circumscribed growth such as subependymal giant cell astrocytoma or pilocytic astrocytoma support further development of molecularly targeted therapies. In diffuse gliomas, several molecular markers that predict benefit from alkylating agent chemotherapy have been identified in recent years. For example, co-deletion of chromosome arms 1p and 19q predicts benefit from polychemotherapy with procarbazine, CCNU (lomustine), and vincristine (PCV) in patients with anaplastic oligodendroglioma, and the presence of 1p/19q co-deletion was integrated as a defining feature of oligodendroglial tumors in the revised WHO classification. However, the tremendous increase in knowledge of molecular drivers of diffuse gliomas on genomic, epigenetic, and gene expression levels has not yet translated into effective molecular targeted therapies. Multiple reasons account for the failure of early clinical trials of molecularly targeted therapies in diffuse gliomas, including the lack of molecular entry controls as well as pharmacokinetic and pharmacodynamics issues, but the key challenge of specifically targeting the molecular backbone of diffuse gliomas is probably extensive clonal heterogeneity. A more profound understanding of clonal selection, alternative activation of oncogenic signaling pathways, and genomic instability is warranted to identify effective combination treatments and ultimately improve survival.
Zinc finger nuclease: a new approach for excising HIV-1 proviral DNA from infected human T cells.
Qu, Xiying; Wang, Pengfei; Ding, Donglin; Wang, Xiaohui; Zhang, Gongmin; Zhou, Xin; Liu, Lin; Zhu, Xiaoli; Zeng, Hanxian; Zhu, Huanzhang
2014-09-01
A major reason that Acquired Immune Deficiency Syndrome (AIDS) cannot be completely cured is the human immunodeficiency virus 1 (HIV-1) provirus integrated into the human genome. Though existing therapies can inhibit replication of HIV-1, they cannot eradicate it. A molecular therapy gains popularity due to its specifically targeting to HIV-1 infected cells and effectively removing the HIV-1, regardless of viral genes being active or dormant. Now, we propose a new method which can excellently delete the HIV provirus from the infected human T cell genome. First, we designed zinc-finger nucleases (ZFNs) that target a sequence within the long terminal repeat (LTR) U3 region that is highly conserved in whole clade. Then, we screened out one pair of ZFN and named it as ZFN-U3. We discovered that ZFN-U3 can exactly target and eliminate the full-length HIV-1 proviral DNA after the infected human cell lines treated with it, and the frequency of its excision was about 30 % without cytotoxicity. These results prove that ZFN-U3 can efficiently excise integrated HIV-1 from the human genome in infected cells. This method to delete full length HIV-1 in human genome can therefore provide a novel approach to cure HIV-infected individuals in the future.
Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy.
Geng, Jie-Jie; Tang, Juan; Yang, Xiang-Min; Chen, Ruo; Zhang, Yang; Zhang, Kui; Miao, Jin-Lin; Chen, Zhi-Nan; Zhu, Ping
2017-06-01
CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative) and fully committed DP (double positive) cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy. Copyright © 2017. Published by Elsevier B.V.
Clinical comparison of overlapping deletions of 19p13.3.
Risheg, Hiba; Pasion, Romela; Sacharow, Stephanie; Proud, Virginia; Immken, LaDonna; Schwartz, Stuart; Tepperberg, Jim H; Papenhausen, Peter; Tan, Tiong Y; Andrieux, Joris; Plessis, Ghislaine; Amor, David J; Keitges, Elisabeth A
2013-05-01
We present three patients with overlapping interstitial deletions of 19p13.3 identified by high resolution SNP microarray analysis. All three had a similar phenotype characterized by intellectual disability or developmental delay, structural heart abnormalities, large head relative to height and weight or macrocephaly, and minor facial anomalies. Deletion sizes ranged from 792 Kb to 1.0 Mb and included a common region arr [hg19] 19p13.3 (3,814,392-4,136,989), containing eight genes: ZFR2, ATCAY, NMRK2, DAPK3, EEF2, PIAS4, ZBTB7A, MAP2K2, and two non-coding RNA's MIR637 and SNORDU37. The patient phenotypes were compared with three previous single patient reports with similar interstitial 19p13.3 deletions and six additional patients from the DECIPHER and ISCA databases to determine if a common haploinsufficient phenotype for the region can be established. Copyright © 2013 Wiley Periodicals, Inc.
Winchester, L; Newbury, D F; Monaco, A P; Ragoussis, J
2008-01-01
Copy Number Variants (CNV) and other submicroscopic structural changes are now recognised to be widespread across the human genome. We show that SNP data generated for association study can be utilised for the identification of deletion CNVs. During analysis of data for an SNP association study for Specific Language Impairment (SLI) a deletion was identified. SLI adversely affects the language development of children in the absence of any obvious cause. Previous studies have found linkage to a region on chromosome 16. The deletion was located in a known fragile site FRA16D in intron 5-6 of the WWOX gene (also known as FOR). Changes in the FRA16D site have been previously linked to cancer and are often characterised in cell lines. A long-range PCR assay was used to confirm the existence of the deletion. We also show the breakpoint identification and large-scale characterisation of this CNV in a normal human sample set. Copyright 2009 S. Karger AG, Basel.
Kim, Yun-Hee; Kim, Kyung Tae; Lee, Sang-Jin; Hong, Seung-Hee; Moon, Ju Young; Yoon, Eun Kyung; Kim, Sukyoung; Kim, Eun Ok; Kang, Se Hun; Kim, Seok Ki; Choi, Sun Il; Goh, Sung Ho; Kim, Daehong; Lee, Seong-Wook; Ju, Mi Ha; Jeong, Jin Sook; Kim, In-Hoo
2016-01-01
Trans-splicing ribozyme enables to sense and reprogram target RNA into therapeutic transgene and thereby becomes a good sensing device for detection of cancer cells, judging from transgene expression. Previously we proposed PEPCK-Rz-HSVtk (PRT), hTERT targeting trans-splicing ribozyme (Rz) driven by liver-specific promoter phosphoenolpyruvate carboxykinase (PEPCK) with downstream suicide gene, herpes simplex virus thymidine kinase (HSVtk) for hepatocellular carcinoma (HCC) gene therapy. Here, we describe success of a re-engineered adenoviral vector harboring PRT in obtaining greater antitumor activity with less off-target effect for clinical application as a theranostics. We introduced liver-selective apolipoprotein E (ApoE) enhancer to the distal region of PRT unit to augment activity and liver selectivity of PEPCK promoter, and achieved better transduction into liver cancer cells by replacement of serotype 35 fiber knob on additional E4orf1-4 deletion of E1&E3-deleted serotype 5 back bone. We demonstrated that our refined adenovirus harboring PEPCK/ApoE-Rz-HSVtk (Ad-PRT-E) achieved great anti-tumor efficacy and improved ability to specifically target HCC without damaging normal hepatocytes. We also showed noninvasive imaging modalities were successfully employed to monitor both how well a therapeutic gene (HSVtk) was expressed inside tumor and how effectively a gene therapy took an action in terms of tumor growth. Collectively, this study suggests that the advanced therapeutic adenoviruses Ad-PRT-E and its image-aided evaluation system may lead to the powerful strategy for successful clinical translation and the development of clinical protocols for HCC therapy.
Cheng, Chun-Pei; Lan, Kuo-Lun; Liu, Wen-Chun; Chang, Ting-Tsung; Tseng, Vincent S
2016-12-01
Hepatitis B viral (HBV) infection is strongly associated with an increased risk of liver diseases like cirrhosis or hepatocellular carcinoma (HCC). Many lines of evidence suggest that deletions occurring in HBV genomic DNA are highly associated with the activity of HBV via the interplay between aberrant viral proteins release and human immune system. Deletions finding on the HBV whole genome sequences is thus a very important issue though there exist underlying the challenges in mining such big and complex biological data. Although some next generation sequencing (NGS) tools are recently designed for identifying structural variations such as insertions or deletions, their validity is generally committed to human sequences study. This design may not be suitable for viruses due to different species. We propose a graphics processing unit (GPU)-based data mining method called DeF-GPU to efficiently and precisely identify HBV deletions from large NGS data, which generally contain millions of reads. To fit the single instruction multiple data instructions, sequencing reads are referred to as multiple data and the deletion finding procedure is referred to as a single instruction. We use Compute Unified Device Architecture (CUDA) to parallelize the procedures, and further validate DeF-GPU on 5 synthetic and 1 real datasets. Our results suggest that DeF-GPU outperforms the existing commonly-used method Pindel and is able to exactly identify the deletions of our ground truth in few seconds. The source code and other related materials are available at https://sourceforge.net/projects/defgpu/. Copyright © 2016 Elsevier Inc. All rights reserved.
A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family
NASA Astrophysics Data System (ADS)
Zhang, Liping; Shi, Wei; Song, Liming; Zhang, Xiao; Cheng, Lulu; Wang, Yanfang; Ge, Xianglian; Li, Wei; Zhang, Wei; Min, Qingjie; Jin, Zi-Bing; Qu, Jia; Gu, Feng
2014-11-01
Autosomal dominant optic atrophy (ADOA) is the most frequent form of hereditary optic neuropathy and occurs due to the degeneration of the retinal ganglion cells. To identify the genetic defect in a family with putative ADOA, we performed capture next generation sequencing (CNGS) to screen known retinal disease genes. However, six exons failed to be sequenced by CNGS in optic atrophy 1 gene (OPA1). Sequencing of those exons identified a 4 bp deletion mutation (c.2983-1_2985del) in OPA1. Furthermore, we sequenced the transcripts of OPA1 from the patient skin fibroblasts and found there is six-nucleotide deletion (c.2984-c.2989, AGAAAG). Quantitative-PCR and Western blotting showed that OPA1 mRNA and its protein expression have no obvious difference between patient skin fibroblast and control. The analysis of protein structure by molecular modeling suggests that the mutation may change the structure of OPA1 by formation of an alpha helix protruding into an existing pocket. Taken together, we identified an OPA1 mutation in a family with ADOA by filling the missing CNGS data. We also showed that this mutation affects the structural intactness of OPA1. It provides molecular insights for clinical genetic diagnosis and treatment of optic atrophy.
A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family.
Zhang, Liping; Shi, Wei; Song, Liming; Zhang, Xiao; Cheng, Lulu; Wang, Yanfang; Ge, Xianglian; Li, Wei; Zhang, Wei; Min, Qingjie; Jin, Zi-Bing; Qu, Jia; Gu, Feng
2014-11-06
Autosomal dominant optic atrophy (ADOA) is the most frequent form of hereditary optic neuropathy and occurs due to the degeneration of the retinal ganglion cells. To identify the genetic defect in a family with putative ADOA, we performed capture next generation sequencing (CNGS) to screen known retinal disease genes. However, six exons failed to be sequenced by CNGS in optic atrophy 1 gene (OPA1). Sequencing of those exons identified a 4 bp deletion mutation (c.2983-1_2985del) in OPA1. Furthermore, we sequenced the transcripts of OPA1 from the patient skin fibroblasts and found there is six-nucleotide deletion (c.2984-c.2989, AGAAAG). Quantitative-PCR and Western blotting showed that OPA1 mRNA and its protein expression have no obvious difference between patient skin fibroblast and control. The analysis of protein structure by molecular modeling suggests that the mutation may change the structure of OPA1 by formation of an alpha helix protruding into an existing pocket. Taken together, we identified an OPA1 mutation in a family with ADOA by filling the missing CNGS data. We also showed that this mutation affects the structural intactness of OPA1. It provides molecular insights for clinical genetic diagnosis and treatment of optic atrophy.
Coppin, Evelyne; Berteaux-Lecellier, Véronique; Bidard, Frédérique; Brun, Sylvain; Ruprich-Robert, Gwenaël; Espagne, Eric; Aït-Benkhali, Jinane; Goarin, Anne; Nesseir, Audrey; Planamente, Sara; Debuchy, Robert; Silar, Philippe
2012-01-01
Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures.
Coppin, Evelyne; Berteaux-Lecellier, Véronique; Bidard, Frédérique; Brun, Sylvain; Ruprich-Robert, Gwenaël; Espagne, Eric; Aït-Benkhali, Jinane; Goarin, Anne; Nesseir, Audrey; Planamente, Sara; Debuchy, Robert; Silar, Philippe
2012-01-01
Higher fungi, which comprise ascomycetes and basidiomycetes, play major roles in the biosphere. Their evolutionary success may be due to the extended dikaryotic stage of their life cycle, which is the basis for their scientific name: the Dikarya. Dikaryosis is maintained by similar structures, the clamp in basidiomycetes and the crozier in ascomycetes. Homeodomain transcription factors are required for clamp formation in all basidiomycetes studied. We identified all the homeobox genes in the filamentous ascomycete fungus Podospora anserina and constructed deletion mutants for each of these genes and for a number of gene combinations. Croziers developed normally in these mutants, including those with up to six deleted homeogenes. However, some mutants had defects in maturation of the fruiting body, an effect that could be rescued by providing wild-type maternal hyphae. Analysis of mutants deficient in multiple homeogenes revealed interactions between the genes, suggesting that they operate as a complex network. Similar to their role in animals and plants, homeodomain transcription factors in ascomycetes are involved in shaping multicellular structures. PMID:22662159
Rheb1 promotes tumor progression through mTORC1 in MLL-AF9-initiated murine acute myeloid leukemia.
Gao, Yanan; Gao, Juan; Li, Minghao; Zheng, Yawei; Wang, Yajie; Zhang, Hongyan; Wang, Weili; Chu, Yajing; Wang, Xiaomin; Xu, Mingjiang; Cheng, Tao; Ju, Zhenyu; Yuan, Weiping
2016-04-12
The constitutive hyper-activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways has frequently been associated with acute myeloid leukemia (AML). While many inhibitors targeting these pathways have been developed, the anti-leukemic effect was not as robust as expected. As part of the molecular link between PI3K/Akt and mTOR kinase, the role of Rheb1 in AML remains unexplored. Our study aims to explore the role of Rheb1 in AML and estimate whether Rheb1 could be a potential target of AML treatment. The expressions of Rheb1 and other indicated genes were analyzed using real-time PCR. AML mouse model was established by retrovirus transduction. Leukemia cell properties and related signaling pathways were dissected by in vitro and in vivo studies. The transcriptional changes were analyzed via gene chip analysis. Molecular reagents including mTOR inhibitor and mTOR activator were used to evaluate the function of related signaling pathway in the mouse model. We observed that Rheb1 is overexpressed in AML patients and the change of Rheb1 level in AML patients is associated with their median survival. Using a Rheb1-deficient MLL-AF9 murine AML model, we revealed that Rheb1 deletion prolonged the survival of AML mice by weakening LSC function. In addition, Rheb1 deletion arrested cell cycle progression and enhanced apoptosis of AML cells. Furthermore, while Rheb1 deletion reduced mTORC1 activity in AML cells, additional rapamycin treatment further decreased mTORC1 activity and increased the apoptosis of Rheb1 (Δ/Δ) AML cells. The mTOR activator 3BDO partially rescued mTORC1 signaling and inhibited apoptosis in Rheb1 (Δ/Δ) AML cells. Our data suggest that Rheb1 promotes AML progression through mTORC1 signaling pathway and combinational drug treatments targeting Rheb1 and mTOR might have a better therapeutic effect on leukemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rydzak, Thomas; Garcia, David; Stevenson, David M.
Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. And while recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H 2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in C. thermocellum. Deletion of glnA reduced levels of secretedmore » valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine and α-ketoglutarate levels indicative of nitrogen-rich conditions. Here, we propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine/α-ketoglutarate levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.« less
Rydzak, Thomas; Garcia, David; Stevenson, David M; Sladek, Margaret; Klingeman, Dawn M; Holwerda, Evert K; Amador-Noguez, Daniel; Brown, Steven D; Guss, Adam M
2017-05-01
Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. While recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H 2 ), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To investigate approaches to decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in an essentially wild type strain of C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine levels indicative of nitrogen-rich conditions. We propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum. Copyright © 2017. Published by Elsevier Inc.
Herrgård, Markus J.
2014-01-01
High-cell-density fermentation for industrial production of chemicals can impose numerous stresses on cells due to high substrate, product, and by-product concentrations; high osmolarity; reactive oxygen species; and elevated temperatures. There is a need to develop platform strains of industrial microorganisms that are more tolerant toward these typical processing conditions. In this study, the growth of six industrially relevant strains of Escherichia coli was characterized under eight stress conditions representative of fed-batch fermentation, and strains W and BL21(DE3) were selected as platforms for transposon (Tn) mutagenesis due to favorable resistance characteristics. Selection experiments, followed by either targeted or genome-wide next-generation-sequencing-based Tn insertion site determination, were performed to identify mutants with improved growth properties under a subset of three stress conditions and two combinations of individual stresses. A subset of the identified loss-of-function mutants were selected for a combinatorial approach, where strains with combinations of two and three gene deletions were systematically constructed and tested for single and multistress resistance. These approaches allowed identification of (i) strain-background-specific stress resistance phenotypes, (ii) novel gene deletion mutants in E. coli that confer single and multistress resistance in a strain-background-dependent manner, and (iii) synergistic effects of multiple gene deletions that confer improved resistance over single deletions. The results of this study underscore the suboptimality and strain-specific variability of the genetic network regulating growth under stressful conditions and suggest that further exploration of the combinatorial gene deletion space in multiple strain backgrounds is needed for optimizing strains for microbial bioprocessing applications. PMID:25085490
Mullegama, Sureni V.; Alaimo, Joseph T.; Chen, Li; Elsea, Sarah H.
2015-01-01
Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention. PMID:25853262
"Double-hit" chronic lymphocytic leukemia: An aggressive subgroup with 17p deletion and 8q24 gain.
Chapiro, Elise; Lesty, Claude; Gabillaud, Clémentine; Durot, Eric; Bouzy, Simon; Armand, Marine; Le Garff-Tavernier, Magali; Bougacha, Nadia; Struski, Stéphanie; Bidet, Audrey; Laharanne, Elodie; Barin, Carole; Veronese, Lauren; Prié, Nolwen; Eclache, Virginie; Gaillard, Baptiste; Michaux, Lucienne; Lefebvre, Christine; Gaillard, Jean-Baptiste; Terré, Christine; Penther, Dominique; Bastard, Christian; Nadal, Nathalie; Fert-Ferrer, Sandra; Auger, Nathalie; Godon, Catherine; Sutton, Laurent; Tournilhac, Olivier; Susin, Santos A; Nguyen-Khac, Florence
2018-03-01
Chronic lymphocytic leukemia (CLL) with 17p deletion (17p-) is associated with a lack of response to standard treatment and thus the worst possible clinical outcome. Various chromosomal abnormalities (including unbalanced translocations, deletions, ring chromosomes and isochromosomes) result in the loss of 17p and one copy of the TP53 gene. The objective of the present study was to determine whether the type of chromosomal abnormality leading to 17p- and the additional aberrations influenced the prognosis in a series of 195 patients with 17p-CLL. Loss of 17p resulted primarily from an unbalanced translocation (70%) with several chromosome partners (the most frequent being chromosome 18q), followed by deletion 17p (23%), monosomy 17 (8%), isochromosome 17q [i(17q)] (5%) and a ring chromosome 17 (2%). In a univariate analysis, monosomy 17, a highly complex karyotype (≥5 abnormalities), and 8q24 gain were associated with poor treatment-free survival, and i(17q) (P = .04), unbalanced translocations (P = .03) and 8q24 gain (P = .001) were significantly associated with poor overall survival. In a multivariate analysis, 8q24 gain remained a significant predictor of poor overall survival. We conclude that 17p deletion and 8q24 gain have a synergistic impact on outcome, and so patients with this "double-hit" CLL have a particularly poor prognosis. Systematic, targeting screening for 8q24 gain should therefore be considered in cases of 17p- CLL. © 2017 Wiley Periodicals, Inc.
Analysis of and Feedback on Phonetic Features in Pronunciation Training with a Virtual Teacher
ERIC Educational Resources Information Center
Engwall, Olov
2012-01-01
Pronunciation errors may be caused by several different deviations from the target, such as voicing, intonation, insertions or deletions of segments, or that the articulators are placed incorrectly. Computer-animated pronunciation teachers could potentially provide important assistance on correcting all these types of deviations, but they have an…
Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases
Krishnakumar, Radha; Grose, Carissa; Haft, Daniel H.; Zaveri, Jayshree; Alperovich, Nina; Gibson, Daniel G.; Merryman, Chuck; Glass, John I.
2014-01-01
Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination. Because of the versatility and high-efficiency of the Cre-lox system, this method can be used in any organism where this system is functional as well as adapted to use with other highly precise genome engineering systems. Compared to present-day iterative approaches in genome engineering, we anticipate this method will greatly speed up the creation of reduced, modularized and optimized genomes through the integration of deletion analyses data, transcriptomics, synthetic biology and site-specific recombination. PMID:24914053
The Epstein-Barr Virus Regulome in Lymphoblastoid Cells.
Jiang, Sizun; Zhou, Hufeng; Liang, Jun; Gerdt, Catherine; Wang, Chong; Ke, Liangru; Schmidt, Stefanie C S; Narita, Yohei; Ma, Yijie; Wang, Shuangqi; Colson, Tyler; Gewurz, Benjamin; Li, Guoliang; Kieff, Elliott; Zhao, Bo
2017-10-11
Epstein-Barr virus (EBV) transforms B cells to continuously proliferating lymphoblastoid cell lines (LCLs), which represent an experimental model for EBV-associated cancers. EBV nuclear antigens (EBNAs) and LMP1 are EBV transcriptional regulators that are essential for LCL establishment, proliferation, and survival. Starting with the 3D genome organization map of LCL, we constructed a comprehensive EBV regulome encompassing 1,992 viral/cellular genes and enhancers. Approximately 30% of genes essential for LCL growth were linked to EBV enhancers. Deleting EBNA2 sites significantly reduced their target gene expression. Additional EBV super-enhancer (ESE) targets included MCL1, IRF4, and EBF. MYC ESE looping to the transcriptional stat site of MYC was dependent on EBNAs. Deleting MYC ESEs greatly reduced MYC expression and LCL growth. EBNA3A/3C altered CDKN2A/B spatial organization to suppress senescence. EZH2 inhibition decreased the looping at the CDKN2A/B loci and reduced LCL growth. This study provides a comprehensive view of the spatial organization of chromatin during EBV-driven cellular transformation. Copyright © 2017 Elsevier Inc. All rights reserved.
Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone
Cheng, Wing Yin; Huynh, HoangDinh; Chen, Peiwen; Peña-Llopis, Samuel; Wan, Yihong
2016-01-01
Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI: http://dx.doi.org/10.7554/eLife.18501.001 PMID:27692066
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Jing; Beijing Key Laboratory for Protein Therapeutics, Beijing 100084; Chen Xi
2008-11-07
The human monoclonal antibody 4E10 against the membrane-proximal external region (MPER) of HIV-1 gp41 demonstrates broad neutralizing activity across various strains, and makes its epitope an attractive target for HIV-1 vaccine development. Although the contiguous epitope of 4E10 has been identified, attempts to re-elicit 4E10-like antibodies have failed, possibly due to the lack of proper conformation of the 4E10 epitope. Here we used pIg-tail expression system to construct a panel of eukaryotic cell-surface expression plasmids encoding the extracellular domain of gp41 with deletion of fusion peptide and/or introduction of L568P mutation that may disrupt the gp41 six-helix bundle core conformationmore » as DNA vaccines for immunization of mice. We found that these changes resulted in significant increase of the antigenicity and immunogenicity of 4E10 epitope. This information is thus useful for rational design of vaccines targeting the HIV-1 gp41 MPER.« less
Mehta, Arnav; Zhao, Jimmy L.; Sinha, Nikita; Marinov, Georgi K.; Mann, Mati; Kowalczyk, Monika S.; Galimidi, Rachel P.; Du, Xiaomi; Erikci, Erdem; Regev, Aviv; Chowdhury, Kamal; Baltimore, David
2015-01-01
Summary MicroRNAs are critical post-transcriptional regulators of hematopoietic cell-fate decisions, though little remains known about their role in aging hematopoietic stem cells (HSCs). We found that the microRNA-212/132 cluster (Mirc19) is enriched in HSCs and is up-regulated during aging. Both over-expression and deletion of microRNAs in this cluster leads to inappropriate hematopoiesis with age. Enforced expression of miR-132 in the bone marrow of mice led to rapid HSC cycling and depletion. A genetic deletion of Mirc19 in mice resulted in HSCs that had altered cycling, function, and survival in response to growth factor starvation. We found that miR-132 exerted its effect on aging HSCs by targeting the transcription factor FOXO3, a known aging associated gene. Our data demonstrates that Mirc19 plays a role in maintaining balanced hematopoietic output by buffering FOXO3 expression. We have thus identified it as a potential target that may play a role in age-related hematopoietic defects. PMID:26084022
Murphy, Melissa M; Lindsey Burrell, T; Cubells, Joseph F; España, Roberto Antonio; Gambello, Michael J; Goines, Katrina C B; Klaiman, Cheryl; Li, Longchuan; Novacek, Derek M; Papetti, Ava; Sanchez Russo, Rossana Lucia; Saulnier, Celine A; Shultz, Sarah; Walker, Elaine; Mulle, Jennifer Gladys
2018-06-08
3q29 deletion syndrome is caused by a recurrent hemizygous 1.6 Mb deletion on the long arm of chromosome 3. The syndrome is rare (1 in 30,000 individuals) and is associated with mild to moderate intellectual disability, increased risk for autism and anxiety, and a 40-fold increased risk for schizophrenia, along with a host of physical manifestations. However, the disorder is poorly characterized, the range of manifestations is not well described, and the underlying molecular mechanism is not understood. We designed the Emory 3q29 Project to document the range of neurodevelopmental and psychiatric manifestations associated with 3q29 deletion syndrome. We will also create a biobank of samples from our 3q29 deletion carriers for mechanistic studies, which will be a publicly-available resource for qualified investigators. The ultimate goals of our study are three-fold: first, to improve management and treatment of 3q29 deletion syndrome. Second, to uncover the molecular mechanism of the disorder. Third, to enable cross-disorder comparison with other rare genetic syndromes associated with neuropsychiatric phenotypes. We will ascertain study subjects, age 6 and older, from our existing registry ( 3q29deletion.org ). Participants and their families will travel to Atlanta, GA for phenotypic assessments, with particular emphasis on evaluation of anxiety, cognitive ability, autism symptomatology, and risk for psychosis via prodromal symptoms and syndromes. Evaluations will be performed using standardized instruments. Structural, diffusion, and resting-state functional MRI data will be collected from eligible study participants. We will also collect blood from the 3q29 deletion carrier and participating family members, to be banked at the NIMH Repository and Genomics Resource (NRGR). The study of 3q29 deletion has the potential to transform our understanding of complex disease. Study of individuals with the deletion may provide insights into long term care and management of the disorder. Our project describes the protocol for a prospective study of the behavioral and clinical phenotype associated with 3q29 deletion syndrome. The paradigm described here could easily be adapted to study additional CNV or single gene disorders with high risk for neuropsychiatric phenotypes, and/or transferred to other study sites, providing a means for data harmonization and cross-disorder analysis.
Neurocognitive profile in psychotic versus nonpsychotic individuals with 22q11.2 deletion syndrome.
Weinberger, Ronnie; Yi, James; Calkins, Monica; Guri, Yael; McDonald-McGinn, Donna M; Emanuel, Beverly S; Zackai, Elaine H; Ruparel, Kosha; Carmel, Miri; Michaelovsky, Elena; Weizman, Abraham; Gur, Ruben C; Gur, Raquel E; Gothelf, Doron
2016-10-01
The 22q11.2 deletion syndrome (22q11DS) is associated with increased rates of psychotic disorders and cognitive deficits, but large scale studies are needed to elucidate their interaction. The objective of this two-center study was to identify the neurocognitive phenotype of individuals with 22q11DS and psychotic disorders. We hypothesized that psychotic 22q11DS individuals compared to nonpsychotic deleted individuals would have more severe neurocognitive deficits, especially in executive function and social cognition. These deficits would be present when compared to IQ- matched individuals with Williams Syndrome (WS). Three groups were ascertained from the Tel Aviv and Philadelphia centers: 22q11DS individuals with a psychotic disorder (n=31), nonpsychotic 22q11DS (n=86) and typically-developing controls (TD, n=828). In Tel Aviv a group of individuals with WS (n=18) matched in IQ to the 22q11DS psychotic group was also included. The Penn Computerized Neurocognitive Battery (CNB) was used to assess a wide-range of cognitive functions and all patients underwent structured psychiatric evaluations. 22q11DS individuals performed poorly on all CNB domains compared to TD. Participants with 22q11DS and psychosis, compared to nonpsychotic 22q11DS, had more severe deficits in global neurocognitive performance (GNP), executive function, social cognition and episodic memory domains. The primary deficits were also significant when comparing the Tel Aviv 22q11DS psychotic group to IQ-matched individuals with WS. In conclusion, 22q11DS individuals with a psychotic disorder have specific neurocognitive deficits that are reliably identified cross nationality using the CNB. These cognitive dysfunctions should be further studied as potential endophenotypes of psychosis in 22q11DS and as targets for intervention. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Genetic Drivers of Kidney Defects in the DiGeorge Syndrome
Lopez-Rivera, E.; Liu, Y.P.; Verbitsky, M.; Anderson, B.R.; Capone, V.P.; Otto, E.A.; Yan, Z.; Mitrotti, A.; Martino, J.; Steers, N.J.; Fasel, D.A.; Vukojevic, K.; Deng, R.; Racedo, S.E.; Liu, Q.; Werth, M.; Westland, R.; Vivante, A.; Makar, G.S.; Bodria, M.; Sampson, M.G.; Gillies, C.E.; Vega-Warner, V.; Maiorana, M.; Petrey, D.S.; Honig, B.; Lozanovski, V.J.; Salomon, R.; Heidet, L.; Carpentier, W.; Gaillard, D.; Carrea, A.; Gesualdo, L.; Cusi, D.; Izzi, C.; Scolari, F.; van Wijk, J.A.E.; Arapovic, A.; Saraga-Babic, M.; Saraga, M.; Kunac, N.; Samii, A.; McDonald-McGinn, D.M.; Crowley, T.B.; Zackai, E.H.; Drozdz, D.; Miklaszewska, M.; Tkaczyk, M.; Sikora, P.; Szczepanska, M.; Mizerska-Wasiak, M.; Krzemien, G.; Szmigielska, A.; Zaniew, M.; Darlow, J.M.; Puri, P.; Barton, D.; Casolari, E.; Furth, S.L.; Warady, B.A.; Gucev, Z.; Hakonarson, H.; Flogelova, H.; Tasic, V.; Latos-Bielenska, A.; Materna-Kiryluk, A.; Allegri, L.; Wong, C.S.; Drummond, I.A.; D’Agati, V.; Imamoto, A.; Barasch, J.M.; Hildebrandt, F.; Kiryluk, K.; Lifton, R.P.; Morrow, B.E.; Jeanpierre, C.; Papaioannou, V.E.; Ghiggeri, G.M.; Gharavi, A.G.; Katsanis, N.; Sanna-Cherchi, S.
2017-01-01
BACKGROUND The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. METHODS We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. RESULTS We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10−14). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. CONCLUSIONS We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.) PMID:28121514
ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development.
Cang, Shundong; Iragavarapu, Chaitanya; Savooji, John; Song, Yongping; Liu, Delong
2015-11-20
With the advent of new agents targeting CD20, Bruton's tyrosine kinase, and phosphoinositol-3 kinase for chronic lymphoid leukemia (CLL), more treatment options exist than ever before. B-cell lymphoma-2 (BCL-2) plays a major role in cellular apoptosis and is a druggable target. Small molecule inhibitors of BCL-2 are in active clinical studies. ABT-199 (venetoclax, RG7601, GDC-0199) has been granted breakthrough designation by FDA for relapsed or refractory CLL with 17p deletion. In this review, we summarized the latest clinical development of ABT-199/venetoclax and other novel agents targeting the BCL-2 proteins.
Targeted mutagenesis in sea urchin embryos using TALENs.
Hosoi, Sayaka; Sakuma, Tetsushi; Sakamoto, Naoaki; Yamamoto, Takashi
2014-01-01
Genome editing with engineered nucleases such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) has been reported in various animals. We previously described ZFN-mediated targeted mutagenesis and insertion of reporter genes in sea urchin embryos. In this study, we demonstrate that TALENs can induce mutagenesis at specific genomic loci of sea urchin embryos. Injection of TALEN mRNAs targeting the HpEts transcription factor into fertilized eggs resulted in the impairment of skeletogenesis. Sequence analyses of the mutations showed that deletions and/or insertions occurred at the HpEts target site in the TALEN mRNAs-injected embryos. The results suggest that targeted gene disruption using TALENs is feasible in sea urchin embryos. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Insights into structural variations and genome rearrangements in prokaryotic genomes.
Periwal, Vinita; Scaria, Vinod
2015-01-01
Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Parrish, C R; Coia, G; Hill, A; Müllbacher, A; Westaway, E G; Blanden, R V
1991-07-01
A series of recombinant vaccinia viruses expressing various parts of the entire Kunjin virus (KUN) coding region was used to analyse the cytotoxic T (Tc) cell responses to KUN. CBA/H mice inoculated with KUN or West Nile virus were shown to develop responses to KUN or various vaccinia virus expression constructs in either primary cytotoxic assays, or after secondary stimulation of the Tc cells in vitro with KUN antigens. Tc cells from CBA mice showed the strongest response to target cells infected with recombinant vaccinia viruses expressing parts of the KUN NS3 and NS4A proteins, and only a weak response to the other structural or non-structural proteins. Further analysis of deleted versions of the NS3-NS4A region showed that the main epitope recognized was derived from a sequence of 99 amino acids spanning parts of NS3 and NS4A. No other major epitopes were detected by Tc cells from CBA mice in the remaining 3333 amino acids of the KUN polypeptide.
Murillo Solano, Claribel; Akinyi Okoth, Sheila; Abdallah, Joseph F; Pava, Zuleima; Dorado, Erika; Incardona, Sandra; Huber, Curtis S; Macedo de Oliveira, Alexandre; Bell, David; Udhayakumar, Venkatachalam; Barnwell, John W
2015-01-01
A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the 100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2-negative isolates in the Colombian Amazon may have implications for the use of PfHRP2-based RDTs in the region and may explain inconsistencies observed when PfHRP2-based tests and assays are performed.
Murillo Solano, Claribel; Akinyi Okoth, Sheila; Abdallah, Joseph F.; Pava, Zuleima; Dorado, Erika; Incardona, Sandra; Huber, Curtis S.; Macedo de Oliveira, Alexandre; Bell, David; Udhayakumar, Venkatachalam; Barnwell, John W.
2015-01-01
A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2-negative isolates in the Colombian Amazon may have implications for the use of PfHRP2-based RDTs in the region and may explain inconsistencies observed when PfHRP2-based tests and assays are performed. PMID:26151448
Fraenkel, D. G.; Banerjee, Santimoy
1972-01-01
Genes for three enzymes of intermediary sugar metabolism in E. coli, zwf (glucose 6-phosphate dehydrogenase, constitutive), edd (gluconate 6-phosphate dehydrase, inducible), and eda (2-keto-3-deoxygluconate 6-phosphate aldolase, differently inducible) are closely linked on the E. coli genetic map, the overall gene order being man... old... eda. edd. zwf... cheB... uvrC... his. One class of apparent revertants of an eda mutant strain contains a secondary mutation in edd, and some of these mutations are deletions extending into zwf. We have used a series of spontaneous edd-zwf deletions to map a series of point mutants in zwf and thus report the first fine structure map of a gene for a constitutive enzyme (zwf). PMID:4560065
Targeted deletion of RANKL in M cell inducer cells by the Col6a1-Cre driver.
Nagashima, Kazuki; Sawa, Shinichiro; Nitta, Takeshi; Prados, Alejandro; Koliaraki, Vasiliki; Kollias, George; Nakashima, Tomoki; Takayanagi, Hiroshi
2017-11-04
The gut-associated lymphoid tissues (GALTs), including Peyer's patches (PPs), cryptopatches (CPs) and isolated lymphoid follicles (ILFs), establish a host-microbe symbiosis by the promotion of immune reactions against gut microbes. Microfold cell inducer (MCi) cells in GALTs are the recently identified mesenchymal cells that express the cytokine RANKL and initiate bacteria-specific immunoglobulin A (IgA) production via induction of microfold (M) cell differentiation. In the previous study, the Twist2-Cre driver was utilized for gene deletion in mesenchymal cells including MCi cells. In order to investigate MCi cells more extensively, it will be necessary to develop experimental tools in addition to the Twist2-Cre driver mice and characterize such drivers in specificity and efficiency. Here we show that M cell differentiation and IgA production are impaired in the targeted deletion of RANKL by the Col6a1-Cre driver. We compared Col6a1-Cre with Twist2-Cre in terms of the specificity for mesenchymal cells in GALTs. Col6a1-Cre CAG-CAT-EGFP mice exhibited EGFP expression in podoplanin + CD31 - cells including MCi cells, while Twist2-Cre mice were shown to target endothelial cells and podoplanin + CD31 - cells. Tnfsf11 fl/Δ Col6a1-Cre mice exhibited the absence of M cells and severe IgA reduction together with an alteration in gut microbial composition. Moreover, we analyzed germ free mice to test whether changes in the microbiota are the cause of M cell deficiency. M cell differentiation was normal in the CPs/ILFs of germ free mice, indicating that MCi cells induce M cells independently of microbial colonization. This study demonstrates that Col6a1-Cre driver mice are as useful as Twist2-Cre driver mice for functional analyses of GALT-resident mesenchymal cells, including MCi cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Sweeney, Colin L; Choi, Uimook; Liu, Chengyu; Koontz, Sherry; Ha, Seung-Kwon; Malech, Harry L
2017-07-01
Chronic granulomatous disease (CGD) is characterized by defects in the production of microbicidal reactive oxygen species (ROS) by phagocytes. Testing of gene and cell therapies for the treatment of CGD in human hematopoietic cells requires preclinical transplant models. The use of the lymphocyte-deficient NOD.Cg-Prkdc scid Il2rg tm1Wjl/ SzJ (NSG) mouse strain for human hematopoietic cell xenografts to test CGD therapies is complicated by the presence of functional mouse granulocytes capable of producing ROS for subsequent bacterial and fungal killing. To establish a phagocyte-defective mouse model of X-linked CGD (X-CGD) in NSG mice, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was utilized for targeted knockout of mouse Cybb on the X-chromosome by microinjection of NSG mouse zygotes with Cas9 mRNA and CRISPR single-guide RNA targeting Cybb exon 1 or exon 3. This resulted in a high incidence of indel formation at the CRISPR target site, with all mice exhibiting deletions in at least one Cybb allele based on sequence analysis of tail snip DNA. A female mouse heterozygous for a 235-bp deletion in Cybb exon 1 was bred to an NSG male to establish the X-CGD NSG mouse strain, NSG.Cybb[KO]. Resulting male offspring with the 235 bp deletion were found to be defective for production of ROS by neutrophils and other phagocytes, and demonstrated increased susceptibility to spontaneous bacterial and fungal infections with granulomatous inflammation. The establishment of the phagocyte-defective NSG.Cybb[KO] mouse model enables the in vivo assessment of gene and cell therapy strategies for treating CGD in human hematopoietic cell transplants without obfuscation by functional mouse phagocytes, and may also be useful for modeling other phagocyte disorders in humanized NSG mouse xenografts.
Jin, Duo; Liu, Yuanyuan; Sun, Fang; Wang, Xuhua; Liu, Xuefeng; He, Zhigang
2015-01-01
The limited rewiring of the corticospinal tract (CST) only partially compensates the lost functions after stroke, brain trauma and spinal cord injury. Therefore it is important to develop new therapies to enhance the compensatory circuitry mediated by spared CST axons. Here by using a unilateral pyramidotomy model, we find that deletion of cortical suppressor of cytokine signaling 3 (SOCS3), a negative regulator of cytokine-activated pathway, promotes sprouting of uninjured CST axons to the denervated spinal cord. A likely trigger of such sprouting is ciliary neurotrophic factor (CNTF) expressed in local spinal neurons. Such sprouting can be further enhanced by deletion of phosphatase and tensin homolog (PTEN), a mechanistic target of rapamycin (mTOR) negative regulator, resulting in significant recovery of skilled locomotion. Ablation of the corticospinal neurons with sprouting axons abolishes the improved behavioural performance. Furthermore, by optogenetics-based specific CST stimulation, we show a direct limb motor control by sprouting CST axons, providing direct evidence for the reformation of a functional circuit. PMID:26598325