Sample records for structures undergoing corrosion

  1. KENNEDY SPACE CENTER, FLA. - Launch Pad 39A undergoes sandblasting of its metal structures and surfaces. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - Launch Pad 39A undergoes sandblasting of its metal structures and surfaces. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  2. Experimental Design for the Evaluation of Detection Techniques of Hidden Corrosion Beneath the Thermal Protective System of the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Kammerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.

    2007-01-01

    The United States Space Operational Space Shuttle Fleet Consists of three shuttles with an average age of 19.7 years. Shuttles are exposed to corrosive conditions while undergoing final closeout for missions at the launch pad and extreme conditions during ascent, orbit, and descent that may accelerate the corrosion process. Structural corrosion under TPS could progress undetected (without tile removal) and eventually result in reduction in structural capability sufficient to create negative margins of . safety and ultimate loss of local structural capability.

  3. Metallic corrosion processes reactivation sustained by iron-reducing bacteria: Implication on long-term stability of protective layers

    NASA Astrophysics Data System (ADS)

    Esnault, L.; Jullien, M.; Mustin, C.; Bildstein, O.; Libert, M.

    In deep geological environments foreseen for the disposal of radioactive waste, metallic containers will undergo anaerobic corrosion. In this context, the formation of corrosion products such as magnetite may reduce the rate of corrosion processes through the formation of a protective layer. This study aims at determining the direct impact of iron-reducing bacteria (IRB) activity on the stability of corrosion protective layers. Batch experiments investigating iron corrosion processes including the formation of secondary magnetite and its subsequent alteration in the presence of IRB show the bacteria ability to use structural Fe(III) for respiration which leads to the sustainment of a high corrosion rate. With the bio-reduction of corrosion products such as magnetite, and H 2 as electron donor, IRB promote the reactivation of corrosion processes in corrosive environments by altering the protective layer. This phenomenon could have a major impact on the long-term stability of metallic compounds involved in multi-barrier system for high-level radioactive waste containment.

  4. KSC-2009-3834

    NASA Image and Video Library

    2009-06-24

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, workers place a protective cover over a reinforced-carbon carbon, or RCC, panel removed from space shuttle Atlantis. for SPAR corrosion inspection. The structural edge of the wing will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs

  5. KENNEDY SPACE CENTER, FLA. - On Launch Pad 39A, clouds of dust float away from the Mobile Launcher Platform, which is undergoing sandblasting to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 39A, clouds of dust float away from the Mobile Launcher Platform, which is undergoing sandblasting to remove corrosion before repainting. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  6. Monitoring corrosion of rebar embedded in mortar using guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin Lee

    This thesis investigates the use of guided mechanical waves for monitoring uniform and localized corrosion in steel reinforcing bars embedded in concrete. The main forms of structural deterioration from uniform corrosion in reinforced concrete are the destruction of the bond between steel and concrete, the loss of steel cross-sectional area, and the loss of concrete cross-sectional area from cracking and spalling. Localized corrosion, or pitting, leads to severe loss of steel cross-sectional area, creating a high risk of bar tensile failure and unintended transfer of loads to the surrounding concrete. Reinforcing bars were used to guide the waves, rather than bulk concrete, allowing for longer inspection distances due to lower material absorption, scattering, and divergence. Guided mechanical waves in low frequency ranges (50-200 kHz) and higher frequency ranges (2-8 MHz) were monitored in reinforced mortar specimens undergoing accelerated uniform corrosion. The frequency ranges chosen contain wave modes with varying amounts of interaction, i.e. displacement profile, at the material interface. Lower frequency modes were shown to be sensitive to the accumulation of corrosion product and the level of bond between the surrounding mortar and rebar. This allows for the onset of corrosion and bond deterioration to be monitored. Higher frequency modes were shown to be sensitive to changes in the bar profile surface, allowing for the loss of cross-sectional area to be monitored. Guided mechanical waves in the higher frequency range were also used to monitor reinforced mortar specimens undergoing accelerated localized corrosion. The high frequency modes were sensitive to the localized attack. Also promising was the unique frequency spectrum response for both uniform and localized corrosion, allowing the two corrosion types to be differentiated from through-transmission evaluation. The isolated effects of the reinforcing ribs, simulated debonding, simulated pitting, water surrounding, and mortar surrounding were also investigated using guided mechanical waves. Results are presented and discussed within the framework of a corrosion process degradation model and service life. A thorough review and discussion of the corrosion process, modeling the propagation of corrosion, nondestructive methods for monitoring corrosion in reinforced concrete, and guided mechanical waves have also been presented.

  7. The Effect of Different Delivery Conditions on the Accelerated Degradation of Structural Steel in the Coal Mine Environment / Wpływ Różnego Stanu Dostawy Na Przyspieszoną Degradację Stali Konstrukcyjnej W Środowisku Kopalnianym

    NASA Astrophysics Data System (ADS)

    Pawłowski, Bogdan; Bała, Piotr

    2012-12-01

    The main objective of this work was to determine the effect of different delivery conditions on the accelerated degradation of structural steels used for lifting beams (rails) of the monorail transport systems. Some of these rails, made of the same steel grade as others, undergoes accelerated corrosion in the coal mine environment. Corrosion degradation occurs much faster (more than two times faster), comparing to the same steel grade rails operated under the same conditions but with different microstructures. However, all the provided rails meet the requirements of appropriate standards for steel on the lifting beams of the monorail transport systems. The investigations were carried out on rails made of the same steel grade but with different microstructures and showed that the main factor influencing the accelerated corrosion degradation of tested steels is the delivery condition, so-called "as rolled" condition. The greatest resistance to the accelerated corrosion showed rails in the normalized or normalizing rolling condition.

  8. THE CANADIAN PERSPECTIVE ON CORROSION CONTROL: HEALTH CANADA'S CORROSION CONTROL GUIDELINE

    EPA Science Inventory

    Health Canada has proposed a Corrosion Control Guideline, based on lead, which is undergoing public consultation and expected to be finalized in 2007. In Canada, there are no regulations and little guidance to address corrosion problems and existing sampling methods are inappropr...

  9. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    NASA Astrophysics Data System (ADS)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  10. Characterization of corrosion products of AB{sub 5}-type hydrogen storage alloys for nickel-metal hydride batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurel, F.; Knosp, B.; Backhaus-Ricoult, M.

    2000-01-01

    To better understand the decrease in storage capacity of AB{sub 5}-type alloys in rechargeable Ni/MH batteries undergoing repeated charge/discharge cycles, the corrosion of a MnNi{sub 3.55}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.3} alloy in aqueous KOH electrolyte was studied. The crystal structure, chemical composition, and distribution of corrosion products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Hollow and filed needles of a mixed rare earth hydroxide Mn(OH){sub 3} were found to cover a continuous nanocrystalline corrosion scale composed of metal (Ni, Co) solid solution, oxide (Ni,Co)O solid solution and rare earth hydroxide, and a Mn-depleted alloy subscale. Corrosionmore » kinetics were measured for three different temperatures. Growth kinetics of the continuous corrosion scale and of the Mm(OH){sub 3} needles obeyed linear and parabolic rate laws, respectively. Models for the corrosion mechanism were developed on the basis of diffusional transport of Mn and OH through the hydroxide needles and subsequent diffusion along grain boundaries through the nanocrystalline scale.« less

  11. Modification of Ti6Al4V implant surfaces by biocompatible TiO2/PCL hybrid layers prepared via sol-gel dip coating: Structural characterization, mechanical and corrosion behavior.

    PubMed

    Catauro, Michelina; Bollino, Flavia; Giovanardi, Roberto; Veronesi, Paolo

    2017-05-01

    Surface modification of metallic implants is a promising strategy to improve tissue tolerance, osseointegration and corrosion resistance of them. In the present work, bioactive and biocompatible organic-inorganic hybrid coatings were prepared using a sol-gel dip coating route. They consist of an inorganic TiO 2 matrix in which different percentages of poly(ε-caprolactone) (PCL), a biodegradable and biocompatible polymer, were incorporated. The coatings were used to modify the surface of Ti6Al4V substrates in order to improve their wear and corrosion resistance. The chemical structure of the coatings was analyzed by attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy. Coating microstructure, mechanical properties and ability to inhibit the corrosion of the substrates were evaluated as a function of the PCL amount. Scanning electron microscopy (SEM) showed that the polymer allows to obtain crack-free coatings, but when high percentages were added uncoated areas appear. Nano-indentation tests revealed that, as expected, surface hardness and elastic modulus decrease as the percentage of polymeric matrix increases, but scratch testing demonstrated that the coatings are effective in preventing scratching of the underlying metallic substrate, at least for PCL contents up to 20wt%. The electrochemical tests (polarization curves acquired in order to evaluate the corrosion resistance) allowed to asses that the coatings have a significant effect in term of corrosion potential (E corr ) but they do not significantly affect the passivation process that titanium undergoes in contact with the test solution used (modified Dulbecco's phosphate-buffered saline or DPBS). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. KSC-2009-3832

    NASA Image and Video Library

    2009-06-24

    CAPE CANAVERAL, Fla. – A closeup of the wing leading edge on space shuttle Atlantis where a reinforced-carbon carbon, or RCC, panel has been removed. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs

  13. Embedded micro-sensor for monitoring pH in concrete structures

    NASA Astrophysics Data System (ADS)

    Srinivasan, Rengaswamy; Phillips, Terry E.; Bargeron, C. Brent; Carlson, Micah A.; Schemm, Elizabeth R.; Saffarian, Hassan M.

    2000-04-01

    Three major causes of corrosion of steel in concrete are chloride ions (Cl-), temperature (T) and acidity (pH). Under normal operating temperatures and with pH above 13, steel does not undergo pitting corrosion. In presence of Cl-, if the pH decreases below 12, the probability of pitting increases. Acid rain and atmospheric carbon dioxide cause the pH to drop in concrete, often leading to corrosion of the structure with the concomitant cost of repair or replacement. Currently, the pH level in concrete is estimated through destructive testing of the structures. Glass ISFET, and other pH sensors that need maintenance and calibration cannot be embedded in concrete. In this paper, we describe an inexpensive solid state pH sensor that can be embedded in concrete, to detect pH changes at the early stages. It employs a chemical reagent, trinitrobenzenesulfonic acid (TNBS) that exhibits changes in optical properties in the 12 - 14 pH range, and is held in a film of a sol-gel/TNBS composite on an optically transparent surface. A simple LED/filter/photodiode transducer monitors pH-induced changes in TNBS. Such a device needs no periodic calibration or maintenance. The optical window, the light-source and sensor can be easily housed and encapsulated in a chemically inert structure, and embedded in concrete.

  14. Separation of Depleted Uranium From Soil

    DTIC Science & Technology

    2009-03-01

    order to remove the metallic DU present in these soils. This procedure would re- duce the amount of time that metallic uranium could undergo corrosion ...slow corrosion is not sufficient to ignite the uranium . Unfired rod Weathered, unfired rod with yellow uranyl salt deposits Figure 1. Comparison...resulting in less downward movement. Interactions between uranium corrosion products and soil mineral and organic components can also affect

  15. KSC-2009-3833

    NASA Image and Video Library

    2009-06-24

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, a worker removes a reinforced-carbon carbon, or RCC, panel from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs

  16. KSC-2009-3831

    NASA Image and Video Library

    2009-06-24

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, workers remove the reinforced-carbon carbon, or RCC, panels from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs

  17. KSC-2009-3829

    NASA Image and Video Library

    2009-06-24

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, workers remove the reinforced-carbon carbon, or RCC, panels from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs

  18. KSC-2009-3830

    NASA Image and Video Library

    2009-06-24

    CAPE CANAVERAL, Fla. – In Orbiter Processing Facility 1 at NASA's Kennedy Space Center in Florida, workers remove the reinforced-carbon carbon, or RCC, panels from the wing leading edge on space shuttle Atlantis. The structural edge of the wing (area of red and green behind the panels) will undergo spar corrosion inspection to verify the structural integrity of the wing. The RCC panels will be placed in protective coverings until the inspection is complete. Atlantis will make the 31st flight to the International Space Station for the STS-129 mission, targeted for launch on Nov. 12. Photo credit: NASA/Tim Jacobs

  19. Prediction of Failure Due to Thermal Aging, Corrosion and Environmental Fracture in Amorphous and Titanium Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C

    2003-04-15

    DARPA is exploring a number of advanced materials for military applications, including amorphous metals and titanium-based alloys. Equipment made from these materials can undergo degradation due to thermal aging, uniform corrosion, pitting, crevice corrosion, denting, stress corrosion cracking, corrosion fatigue, hydrogen induced cracking and microbial influenced corrosion. Amorphous alloys have exceptional resistance to corrosion, due in part to the absence of grain boundaries, but can undergo crystallization and other phase instabilities during heating and welding. Titanium alloys are extremely corrosion resistant due to the formation of a tenacious passive film of titanium oxide, but is prone to hydrogen absorption inmore » crevices, and hydrogen induced cracking after hydrogen absorption. Accurate predictions of equipment reliability, necessary for strategic planning, requires integrated models that account for all relevant modes of attack, and that can make probabilistic predictions. Once developed, model parameters must be determined experimentally, and the validity of models must be established through careful laboratory and field tests. Such validation testing requires state-of-the-art surface analytical techniques, as well as electrochemical and fracture mechanics tests. The interaction between those processes that perturb the local environment on a surface and those that alter metallurgical condition must be integrated in predictive models. The material and environment come together to drive various modes of corrosive attack (Figure 1). Models must be supported through comprehensive materials testing capabilities. Such capabilities are available at LLNL and include: the Long Term Corrosion Test Facility (LTCTF) where large numbers of standard samples can be exposed to realistic test media at several temperature levels; a reverse DC machine that can be used to monitor the propagation of stress corrosion cracking (SCC) in situ; and banks of potentiostats with temperature controlled cells for potentiostatic and potentiodynamic testing (Figure 2).« less

  20. Automated Telerobotic Inspection Of Surfaces

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Prasad, K. Venkatesh

    1996-01-01

    Method of automated telerobotic inspection of surfaces undergoing development. Apparatus implementing method includes video camera that scans over surfaces to be inspected, in manner of mine detector. Images of surfaces compared with reference images to detect flaws. Developed for inspecting external structures of Space Station Freedom for damage from micrometeorites and debris from prior artificial satellites. On Earth, applied to inspection for damage, missing parts, contamination, and/or corrosion on interior surfaces of pipes or exterior surfaces of bridges, towers, aircraft, and ships.

  1. Ultimate strength performance of tankers associated with industry corrosion addition practices

    NASA Astrophysics Data System (ADS)

    Kim, Do Kyun; Kim, Han Byul; Zhang, Xiaoming; Li, Chen Guang; Paik, Jeom Kee

    2014-09-01

    In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSRH) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures

  2. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  3. Monitoring corrosion of steel bars in reinforced concrete structures.

    PubMed

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  4. Assessment of concrete damage and strength degradation caused by reinforcement corrosion

    NASA Astrophysics Data System (ADS)

    Nepal, Jaya; Chen, Hua-Peng

    2015-07-01

    Structural performance deterioration of reinforced concrete structures has been extensively investigated, but very limited studies have been carried out to investigate the effect of reinforcement corrosion on time-dependent reliability with consideration of the influence of mechanical characteristics of the bond interface due to corrosion. This paper deals with how corrosion in reinforcement creates different types of defects in concrete structure and how they are responsible for the structural capacity deterioration of corrosion affected reinforced concrete structures during their service life. Cracking in cover concrete due to reinforcement corrosion is investigated by using rebar-concrete model and realistic concrete properties. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution due to reinforcement corrosion, which is examined by the experimental data available. The time-dependent reliability analysis is undertaken to calculate the life time structural reliability of corrosion damaged concrete structures by stochastic deterioration modelling of reinforced concrete. The results from the numerical example show that the proposed approach is capable of evaluating the damage caused by reinforcement corrosion and also predicting the structural reliability of concrete structures during their lifecycle.

  5. Monitoring uniform and localized corrosion in reinforced mortar using high-frequency guided longitudinal wages

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.

    2008-03-01

    High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.

  6. Rebar corrosion monitoring in concrete structure under salt water enviroment using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Pan, Yuheng; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; He, Pan; Yan, Jinlin

    2015-08-01

    Monitoring corrosion of steel reinforcing bars is critical for the durability and safety of reinforced concrete structures. Corrosion sensors based on fiber optic have proved to exhibit meaningful benefits compared with the conventional electric ones. In recent years, Fiber Bragg Grating (FBG) has been used as a new kind of sensing element in an attempt to directly monitor the corrosion in concrete structure due to its remarkable advantages. In this paper, we present a novel kind of FBG based rebar corrosion monitoring sensor. The rebar corrosion is detected by volume expansion of the corroded rebar by transferring it to the axial strain of FBG when concrete structure is soaked in salt water. An accelerated salt water corrosion test was performed. The experiment results showed the corrosion can be monitored effectively and the corrosion rate is obtained by volume loss rate of rebar.

  7. Corrosion protection of reusable surgical instruments.

    PubMed

    Shah, Sadiq; Bernardo, Mildred

    2002-01-01

    To understand the corrosion properties of surgical scissors, 416 stainless steel disks and custom electrodes were used as simulated surfaces under various conditions. These simulated surfaces were exposed to tap water and 400-ppm synthetic hard water as Ca2CO3 under different conditions. The samples were evaluated by various techniques for corrosion potential and the impact of environmental conditions on the integrity of the passive film. The electrodes were used to monitor the corrosion behavior by potentiodynamic polarization technique in water both in the presence and absence of a cleaning product. The surface topography of the 416 stainless steel disks was characterized by visual observations and scanning electron microscopy (SEM), and the surface chemistry of the passive film on the surface of the scissors was characterized by x-ray photoelectron spectroscopy (XPS). The results suggest that surgical instruments made from 416 stainless steel are not susceptible to uniform corrosion; however, they do undergo localized corrosion. The use of suitable cleaning products can offer protection against localized corrosion during the cleaning step. More importantly, the use of potentiodynamic polarization techniques allowed for a quick and convenient approach to evaluate the corrosion properties of surgical instruments under a variety of simulated-use environmental conditions.

  8. Hot corrosion of the B2 nickel aluminides

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  9. In vitro corrosion behaviour of Ti-Nb-Sn shape memory alloys in Ringer's physiological solution.

    PubMed

    Rosalbino, F; Macciò, D; Scavino, G; Saccone, A

    2012-04-01

    The nearly equiatomic Ni-Ti alloy (Nitinol) has been widely employed in the medical and dental fields owing to its shape memory or superelastic properties. The main concern about the use of this alloy derives form the fact that it contains a large amount of nickel (55% by mass), which is suspected responsible for allergic, toxic and carcinogenic reactions. In this work, the in vitro corrosion behavior of two Ti-Nb-Sn shape memory alloys, Ti-16Nb-5Sn and Ti-18Nb-4Sn (mass%) has been investigated and compared with that of Nitinol. The in vitro corrosion resistance was assessed in naturally aerated Ringer's physiological solution at 37°C by corrosion potential and electrochemical impedance spectroscopy (EIS) measurements as a function of exposure time, and potentiodynamic polarization curves. Corrosion potential values indicated that both Ni-Ti and Ti-Nb-Sn alloys undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the aggressive environment. It also indicated that the tendency for the formation of a spontaneous oxide is greater for the Ti-18Nb-5Sn alloy. Significantly low anodic current density values were obtained from the polarization curves, indicating a typical passive behaviour for all investigated alloys, but Nitinol exhibited breakdown of passivity at potentials above approximately 450 mV(SCE), suggesting lower corrosion protection characteristics of its oxide film compared to the Ti-Nb-Sn alloys. EIS studies showed high impedance values for all samples, increasing with exposure time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The obtained EIS spectra were analyzed using an equivalent electrical circuit representing a duplex structure oxide film, composed by an outer and porous layer (low resistance), and an inner barrier layer (high resistance) mainly responsible for the alloys corrosion resistance. The resistance of passive film present on the metals' surface increases with exposure time displaying the highest values to Ti-18Nb-4Sn alloy. All these electrochemical results suggest that Ti-Nb-Sn alloys are promising materials for biomedical applications.

  10. Marine corrosion of mild steel at Lumut, Perak

    NASA Astrophysics Data System (ADS)

    Ting, Ong Shiou; Potty, Narayanan Sambu; Liew, Mohd. Shahir

    2012-09-01

    The corrosion rate of structural steels in the adverse marine and offshore environments affects the economic interest of offshore structures since the loss of steel may have significant impact on structural safety and performance. With more emphasis to maintain existing structures in service for longer time and hence to defer replacement costs, there is increasing interest in predicting corrosion rate at a given location for a given period of exposure once the protection coating or cathodic protection is lost. The immersion depth, salinity, steel composition and water pollution will be taken into account. Various corrosion allowances are prescribed for structural members by different standards. There are no studies to determine the appropriate corrosion allowance for steel structures in marine environment in Malaysia. The objectives of the research are to determine the nature and rate of corrosion in mm/year for steel structures in marine environment. It also tries to identify whether the corrosion rate is affected by differences in the chemical composition of the steels, and microalgae. Two sets of corrosion coupons of Type 3 Steel consisting of mild steel were fabricated and immersed in seawater using steel frames. The corrosion rate of the coupon in mm/ per year is estimated based on the material weight loss with time in service. The results are compared with recommendations of the code.

  11. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    PubMed Central

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  12. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique.

    PubMed

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G; Alver, Ninel

    2015-08-05

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  13. Filament dynamics in confined chemical gardens and in filiform corrosion.

    PubMed

    Brau, Fabian; Haudin, Florence; Thouvenel-Romans, Stephanie; De Wit, Anne; Steinbock, Oliver; Cardoso, Silvana S S; Cartwright, Julyan H E

    2018-01-03

    Two reaction systems that are at first sight very different produce similar macroscopic filamentary product trails. The systems are chemical gardens confined to a Hele-Shaw cell and corroding metal plates that undergo filiform corrosion. We show that the two systems are in fact very much alike. Our experiments and analysis show that filament dynamics obey similar scaling laws in both instances: filament motion is nearly ballistic and fully self-avoiding, which creates self-trapping events.

  14. Application of fiber Bragg grating sensor for rebar corrosion

    NASA Astrophysics Data System (ADS)

    Geng, Jiang; Wu, Jin; Zhao, Xinming

    2009-07-01

    Corrosion of rebar is one of the most important factors which can affect the durability of concrete structure, so in the service of these structures, measuring the degree of corrosion, and then evaluating the reliability of these structures are very important. The most significant characteristic of the rebar corrosion is its volume expansion. By the principle and characteristics of fiber bragg grating (FBG), a sensor for rebar corrosion is designed. In this paper, based upon laboratory studies, the fiber bragg grating sensor is applied in No.58 Berth of Lianyungang Port. According to the filed condition, a proper embedding scheme is proposed. Considering the optimal sensor placement, the monitoring points are determined and five sensor groups were applied in the structure. Based on the results of the calibration experiment, the relationship between corrosion ratio and the change of wavelength is established. So the corrosion status of the structure can be obtained by measuring wavelength. The study shows that the FBG sensor was feasible to monitor the status of rebar in concrete structures.

  15. Corrosion detection and evolution monitoring in reinforced concrete structures by the use of fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Ali-Alvarez, S.; Ferdinand, P.; Magne, S.; Nogueira, R. P.

    2013-04-01

    Corrosion of reinforced bar (rebar) in concrete structures represents a major issue in civil engineering works, being its detection and evolution a challenge for the applied research. In this work, we present a new methodology to corrosion detection in reinforced concrete structures, by combining Fiber Bragg Grating (FBG) sensors with the electrochemical and physical properties of rebar in a simplified assembly. Tests in electrolytic solutions and concrete were performed for pitting and general corrosion. The proposed Structural Health Monitoring (SHM) methodology constitutes a direct corrosion measurement potentially useful to implement or improve Condition-Based Maintenance (CBM) program for civil engineering concrete structures.

  16. Image-based corrosion recognition for ship steel structures

    NASA Astrophysics Data System (ADS)

    Ma, Yucong; Yang, Yang; Yao, Yuan; Li, Shengyuan; Zhao, Xuefeng

    2018-03-01

    Ship structures are subjected to corrosion inevitably in service. Existed image-based methods are influenced by the noises in images because they recognize corrosion by extracting features. In this paper, a novel method of image-based corrosion recognition for ship steel structures is proposed. The method utilizes convolutional neural networks (CNN) and will not be affected by noises in images. A CNN used to recognize corrosion was designed through fine-turning an existing CNN architecture and trained by datasets built using lots of images. Combining the trained CNN classifier with a sliding window technique, the corrosion zone in an image can be recognized.

  17. Corrosion monitoring using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  18. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  19. Terahertz NDE for Under Paint Corrosion Detection and Evaluation

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Corrosion under paint is not visible until it has caused paint to blister, crack, or chip. If corrosion is allowed to continue then structural problems may develop. Identifying corrosion before it becomes visible would minimize repairs and costs and potential structural problems. Terahertz NDE imaging under paint for corrosion is being examined as a method to inspect for corrosion by examining the terahertz response to paint thickness and to surface roughness.

  20. Corrosion detection in steel-reinforced concrete using a spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Garboczi, E. J.; Stutzman, P. E.; Wang, S.; Martys, N. S.; Hassan, A. M.; Duthinh, D.; Provenzano, V.; Chou, S. G.; Plusquellic, D. F.; Surek, J. T.; Kim, S.; McMichael, R. D.; Stiles, M. D.

    2014-02-01

    Detecting the early corrosion of steel that is embedded in reinforced concrete (rebar) is a goal that would greatly facilitate the inspection and measurement of corrosion in the US physical infrastructure. Since 2010, the National Institute of Standards and Technology (NIST) has been working on a large project to develop an electromagnetic (EM) probe that detects the specific corrosion products via spectroscopic means. Several principal iron corrosion products, such as hematite and goethite, are antiferromagnetic at field temperatures. At a given applied EM frequency, which depends on temperature, these compounds undergo a unique absorption resonance that identifies the presence of these particular iron corrosion products. The frequency of the resonances tends to be on the order of 100 GHz or higher, so transmitting EM waves through the cover concrete and back out again at a detectable level has been challenging. NIST has successfully detected these two iron corrosion products, and is developing equipment and methodologies that will be capable of penetrating the typical 50 mm of cover concrete in the field. The novel part of this project is the detection of specific compounds, rather than only geometrical changes in rebar cross-section. This method has the potential of providing an early-corrosion probe for steel in reinforced concrete, and for other applications where steel is covered by various layers and coatings.

  1. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2014-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  2. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  3. The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Sapiro, David O.

    This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron, while insulating substrates supported only localized corrosion.

  4. Phased array ultrasonic steel corrosion mapping for bridges and ancillary structures.

    DOT National Transportation Integrated Search

    2017-08-01

    Steel corrosion on bridges and ancillary structures due to environmental effects and deicing chemicals is a serious problem for Minnesota's infrastructure. The ability to detect, locate, and measure corrosion is an important aspect of structure inspe...

  5. Iron-Oxidizing Bacteria: A Review of Corrosion Mechanisms in Fresh Water and Marine Environments

    DTIC Science & Technology

    2010-01-01

    ABSTRACT Models for corrosion influenced by iron-oxidizing ba < v-~~/ •" *> combinations, i.e., 300 series stainless steel exposed to oxygenated...surrounding oxygenated cathode . Metal at the anode dissolves, forming metal cations that undergo hydrolysis and decrease pH. The extent of the pH...S, K, Ca and Mn in addition to Fe. The underside of the tubercle, the surface that had been in contact with the metal, was comprised of bacteria

  6. Fighting Corrosion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.

  7. Electrochemical stability and postmortem studies of Pt/SiC catalysts for polymer electrolyte membrane fuel cells.

    PubMed

    Stamatin, Serban N; Speder, Jozsef; Dhiman, Rajnish; Arenz, Matthias; Skou, Eivind M

    2015-03-25

    In the presented work, the electrochemical stability of platinized silicon carbide is studied. Postmortem transmission electron microscopy and X-ray photoelectron spectroscopy were used to document the change in the morphology and structure upon potential cycling of Pt/SiC catalysts. Two different potential cycle aging tests were used in order to accelerate the support corrosion, simulating start-up/shutdown and load cycling. On the basis of the results, we draw two main conclusions. First, platinized silicon carbide exhibits improved electrochemical stability over platinized active carbons. Second, silicon carbide undergoes at least mild oxidation if not even silicon leaching.

  8. Accelerated Test Method for Corrosion Protective Coatings Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  9. Structural Effects of Reinforced Concrete Beam Due to Corrosion

    NASA Astrophysics Data System (ADS)

    Noh, Hamidun Mohd; Idris, Nur'ain; Noor, Nurazuwa Md; Sarpin, Norliana; Zainal, Rozlin; Kasim, Narimah

    2018-03-01

    Corrosion of steel in reinforced concrete is one of the main issues among construction stakeholders. The main consequences of steel corrosion include loss of cross section of steel area, generation of expansive pressure which caused cracking of concrete, spalling and delaminating of the concrete cover. Thus, it reduces the bond strength between the steel reinforcing bar and concrete, and deteriorating the strength of the structure. The objective of this study is to investigate the structural effects of corrosion damage on the performance of reinforced concrete beam. A series of corroded reinforced concrete beam with a corrosion rate of 0%, 20% and 40% of rebar corrosion is used in parametric study to assess the influence of different level of corrosion rate to the structural performance. As a result, the used of interface element in the finite element modelling predicted the worst case of corrosion analysis since cracks is induced and generate at this surface. On the other hand, a positive linear relationship was sketched between the increase of expansive pressure and the corrosion rate. Meanwhile, the gradient of the graph is decreased with the increase of steel bar diameter. Furthermore, the analysis shows that there is a significant effect on the load bearing capacity of the structure where the higher corrosion rate generates a higher stress concentration at the mid span of the beam. This study could predict the residual strength of reinforced concrete beam under the corrosion using the finite element analysis. The experimental validation is needed on the next stage to investigate the quantitative relation between the corrosion rate and its influence on the mechanical properties.

  10. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  11. Enamel coated steel reinforcement for improved durability and life-cycle performance of concrete structures: microstructure, corrosion, and deterioration

    NASA Astrophysics Data System (ADS)

    Tang, Fujian

    This study is aimed (a) to statistically characterize the corrosion-induced deterioration process of reinforced concrete structures (concrete cracking, steel mass loss, and rebar-concrete bond degradation), and (b) to develop and apply three types of enamel-coated steel bars for improved corrosion resistance of the structures. Commercially available pure enamel, mixed enamel with 50% calcium silicate, and double enamel with an inner layer of pure enamel and an outer layer of mixed enamel were considered as various steel coatings. Electrochemical tests were respectively conducted on steel plates, smooth bars embedded in concrete, and deformed bars with/without concrete cover in 3.5 wt.% NaCl or saturated Ca(OH)2 solution. The effects of enamel microstructure, coating thickness variation, potential damage, mortar protection, and corrosion environment on corrosion resistance of the steel members were investigated. Extensive test results indicated that corrosion-induced concrete cracking can be divided into four stages that gradually become less correlated with corrosion process over time. The coefficient of variation of crack width increases with the increasing level of corrosion. Corrosion changed the cross section area instead of mechanical properties of steel bars. The bond-slip behavior between the corroded bars and concrete depends on the corrosion level and distribution of corrosion pits. Although it can improve the chemical bond with concrete and steel, the mixed enamel coating is the least corrosion resistant. The double enamel coating provides the most consistent corrosion performance and is thus recommended to coat reinforcing steel bars for concrete structures applied in corrosive environments. Corrosion pits in enamel-coated bars are limited around damage locations.

  12. Corrosion protection of prestressing strand in transportation structures and strand-concrete bond improvement.

    DOT National Transportation Integrated Search

    2012-12-01

    Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...

  13. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    NASA Astrophysics Data System (ADS)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  14. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianyuan; Xu, Gui-Liang; Li, Yan

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  15. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE PAGES

    Ma, Tianyuan; Xu, Gui -Liang; Li, Yan; ...

    2017-02-16

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  16. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries.

    PubMed

    Ma, Tianyuan; Xu, Gui-Liang; Li, Yan; Wang, Li; He, Xiangming; Zheng, Jianming; Liu, Jun; Engelhard, Mark H; Zapol, Peter; Curtiss, Larry A; Jorne, Jacob; Amine, Khalil; Chen, Zonghai

    2017-03-02

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated from the electrochemical oxidation are energetically unstable and readily undergo a deprotonation reaction that generates protons and promotes the dissolution of Al 3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.

  17. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianyuan; Xu, Gui -Liang; Li, Yan

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  18. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  19. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  20. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1995-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  1. Environmentally Preferred Coatings for Steel

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2016-01-01

    NASA is responsible for a number of facilities and structures with metallic structural and nonstructural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. It is vital to reduce corrosion costs and risks in a sustainable manner.

  2. Corrosion inhibitors for concrete bridges.

    DOT National Transportation Integrated Search

    2004-12-01

    Deicing salts and salt-water spray can cause serious corrosion problems for reinforced concrete bridge structures. : These problems can lead to costly and labor-intensive repair and even replacement of the structure. Surface applied : corrosion inhib...

  3. A corrosion monitoring system for existing reinforced concrete structures.

    DOT National Transportation Integrated Search

    2015-05-01

    This study evaluated a multi-parameter corrosion monitoring system for existing reinforced concrete structures in chloride-laden service environments. The system was fabricated based on a prototype concrete corrosion measurement system that : had bee...

  4. Joint Test Plan for Gas Dynamic Spray Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2008-01-01

    Air Force Space Command (AFSPC) and NASA have similar missions, facilities, and structures located in similar harsh environments. Both are responsible for a number of facilities/structures with metallic structural and non-structural components in highly and moderately corrosive environments. Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are subject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by AFSPC and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GDS) technology (also known as Cold Spray) will be evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GDS coatings also have no VOCs and are environmentally preferable coatings. To achieve a condition suitable for the application of a coating system, including GDS coatings, the substrate must undergo some type of surface preparation and/or depainting operation to ensure adhesion of the new coating system. The GDS unit selected for demonstration has a powder feeding system that can be used for surface preparation or coating application. The surface preparation feature will also be examined. The primary objective of this effort is to demonstrate GDS technology as a repair method for TSCs. The project will also determine the optimal GDS coating thickness for acceptable performance. Successful completion of this project will result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations and will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  5. Corrosion behavior of high-nickel and chromium alloys in natural Baltic seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birn, J.; Janik-Czachor, M.; Wolowik, A.

    Effect of Cl{sup {minus}} ion concentration (O M sodium chloride [NaCl] to 2 M NaCl) and temperature (25 C to 75 C) on stability of the passive state of high-Ni and Cr alloys: NI-1 ({approximately} 16% Mo), CR-2 ({approximately} 6.2% Mo), and NI-3 (3.5% Mo) were investigated in acidic and neutral electrolytes in strictly controlled electrochemical conditions. The anodic behavior of the alloys appeared to depend mostly upon Mo content in the alloy. Thus, the NI-1 was the most stable alloy under the applied experimental conditions. The other alloys were also quite resistant, undergoing pitting only at elevated temperatures, atmore » high anodic potentials, and at a chloride concentration not lower than 1 M. In natural Baltic seawater, these alloys did not exhibit any tendency to pitting, in qualitative agreement with the accelerated electrochemical tests. Complementary microscopic and surface analytical (AES) investigations were carried out to correlate the anodic and corrosion behavior of these materials with their composition and structure, and the composition of the passivating films formed at their surfaces.« less

  6. Method for monitoring environmental and corrosion

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1995-08-01

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figs.

  7. Experimental Protocol to Determine the Chloride Threshold Value for Corrosion in Samples Taken from Reinforced Concrete Structures

    PubMed Central

    Angst, Ueli M.; Boschmann, Carolina; Wagner, Matthias; Elsener, Bernhard

    2017-01-01

    The aging of reinforced concrete infrastructure in developed countries imposes an urgent need for methods to reliably assess the condition of these structures. Corrosion of the embedded reinforcing steel is the most frequent cause for degradation. While it is well known that the ability of a structure to withstand corrosion depends strongly on factors such as the materials used or the age, it is common practice to rely on threshold values stipulated in standards or textbooks. These threshold values for corrosion initiation (Ccrit) are independent of the actual properties of a certain structure, which clearly limits the accuracy of condition assessments and service life predictions. The practice of using tabulated values can be traced to the lack of reliable methods to determine Ccrit on-site and in the laboratory. Here, an experimental protocol to determine Ccrit for individual engineering structures or structural members is presented. A number of reinforced concrete samples are taken from structures and laboratory corrosion testing is performed. The main advantage of this method is that it ensures real conditions concerning parameters that are well known to greatly influence Ccrit, such as the steel-concrete interface, which cannot be representatively mimicked in laboratory-produced samples. At the same time, the accelerated corrosion test in the laboratory permits the reliable determination of Ccrit prior to corrosion initiation on the tested structure; this is a major advantage over all common condition assessment methods that only permit estimating the conditions for corrosion after initiation, i.e., when the structure is already damaged. The protocol yields the statistical distribution of Ccrit for the tested structure. This serves as a basis for probabilistic prediction models for the remaining time to corrosion, which is needed for maintenance planning. This method can potentially be used in material testing of civil infrastructures, similar to established methods used for mechanical testing. PMID:28892023

  8. Experimental Protocol to Determine the Chloride Threshold Value for Corrosion in Samples Taken from Reinforced Concrete Structures.

    PubMed

    Angst, Ueli M; Boschmann, Carolina; Wagner, Matthias; Elsener, Bernhard

    2017-08-31

    The aging of reinforced concrete infrastructure in developed countries imposes an urgent need for methods to reliably assess the condition of these structures. Corrosion of the embedded reinforcing steel is the most frequent cause for degradation. While it is well known that the ability of a structure to withstand corrosion depends strongly on factors such as the materials used or the age, it is common practice to rely on threshold values stipulated in standards or textbooks. These threshold values for corrosion initiation (Ccrit) are independent of the actual properties of a certain structure, which clearly limits the accuracy of condition assessments and service life predictions. The practice of using tabulated values can be traced to the lack of reliable methods to determine Ccrit on-site and in the laboratory. Here, an experimental protocol to determine Ccrit for individual engineering structures or structural members is presented. A number of reinforced concrete samples are taken from structures and laboratory corrosion testing is performed. The main advantage of this method is that it ensures real conditions concerning parameters that are well known to greatly influence Ccrit, such as the steel-concrete interface, which cannot be representatively mimicked in laboratory-produced samples. At the same time, the accelerated corrosion test in the laboratory permits the reliable determination of Ccrit prior to corrosion initiation on the tested structure; this is a major advantage over all common condition assessment methods that only permit estimating the conditions for corrosion after initiation, i.e., when the structure is already damaged. The protocol yields the statistical distribution of Ccrit for the tested structure. This serves as a basis for probabilistic prediction models for the remaining time to corrosion, which is needed for maintenance planning. This method can potentially be used in material testing of civil infrastructures, similar to established methods used for mechanical testing.

  9. Acoustic Emission Analysis of Prestressed Concrete Structures

    NASA Astrophysics Data System (ADS)

    Elfergani, H. A.; Pullin, R.; Holford, K. M.

    2011-07-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  10. Space Shuttle Orbiter corrosion history, 1981-1993: A review and analysis of issues involving structures and subsystems

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes past corrosion issues experienced by the NASA space shuttle orbiter fleet. Design considerations for corrosion prevention and inspection methods are reviewed. Significant corrosion issues involving structures and subsystems are analyzed, including corrective actions taken. Notable successes and failures of corrosion mitigation systems and procedures are discussed. The projected operating environment used for design is contrasted with current conditions in flight and conditions during ground processing.

  11. Imaging of Subsurface Corrosion Using Gradient-Field Pulsed Eddy Current Probes with Uniform Field Excitation

    PubMed Central

    Ren, Shuting; Yan, Bei; Zainal Abidin, Ilham Mukriz; Wang, Yi

    2017-01-01

    A corrosive environment leaves in-service conductive structures prone to subsurface corrosion which poses a severe threat to the structural integrity. It is indispensable to detect and quantitatively evaluate subsurface corrosion via non-destructive evaluation techniques. Although the gradient-field pulsed eddy current technique (GPEC) has been found to be superior in the evaluation of corrosion in conductors, it suffers from a technical drawback resulting from the non-uniform field excited by the conventional pancake coil. In light of this, a new GPEC probe with uniform field excitation for the imaging of subsurface corrosion is proposed in this paper. The excited uniform field makes the GPEC signal correspond only to the field perturbation due to the presence of subsurface corrosion, which benefits the corrosion profiling and sizing. A 3D analytical model of GPEC is established to analyze the characteristics of the uniform field induced within a conductor. Following this, experiments regarding the imaging of subsurface corrosion via GPEC have been carried out. It has been found from the results that the proposed GPEC probe with uniform field excitation not only applies to the imaging of subsurface corrosion in conductive structures, but provides high-sensitivity imaging results regarding the corrosion profile and opening size. PMID:28758985

  12. Imaging of Subsurface Corrosion Using Gradient-Field Pulsed Eddy Current Probes with Uniform Field Excitation.

    PubMed

    Li, Yong; Ren, Shuting; Yan, Bei; Zainal Abidin, Ilham Mukriz; Wang, Yi

    2017-07-31

    A corrosive environment leaves in-service conductive structures prone to subsurface corrosion which poses a severe threat to the structural integrity. It is indispensable to detect and quantitatively evaluate subsurface corrosion via non-destructive evaluation techniques. Although the gradient-field pulsed eddy current technique (GPEC) has been found to be superior in the evaluation of corrosion in conductors, it suffers from a technical drawback resulting from the non-uniform field excited by the conventional pancake coil. In light of this, a new GPEC probe with uniform field excitation for the imaging of subsurface corrosion is proposed in this paper. The excited uniform field makes the GPEC signal correspond only to the field perturbation due to the presence of subsurface corrosion, which benefits the corrosion profiling and sizing. A 3D analytical model of GPEC is established to analyze the characteristics of the uniform field induced within a conductor. Following this, experiments regarding the imaging of subsurface corrosion via GPEC have been carried out. It has been found from the results that the proposed GPEC probe with uniform field excitation not only applies to the imaging of subsurface corrosion in conductive structures, but provides high-sensitivity imaging results regarding the corrosion profile and opening size.

  13. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements

    PubMed Central

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-01-01

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface. PMID:28327510

  14. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements.

    PubMed

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-03-22

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.

  15. Corrosion protection and steel-concrete bond improvement of prestressing strand.

    DOT National Transportation Integrated Search

    2012-12-01

    Corrosion can lead to the premature deterioration and failure of transportation structures. In pre-stressed bridge structures corrosion is more severe, : leading to sudden failures when cracking is induced at pitting sites by tensile or compressive s...

  16. Smart Coatings for Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  17. Corrosion Control in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.

    2016-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it..

  18. Acoustic emission monitoring of tensile testing of corroded and un-corroded clad aluminum 2024-T3 and characterization of effects of corrosion on AE source events and material tensile properties

    NASA Astrophysics Data System (ADS)

    Okafor, A. Chukwujekwu; Natarajan, Shridhar

    2014-02-01

    Corrosion damage affects structural integrity and deteriorates material properties of aluminum alloys in aircraft structures. Acoustic Emission (AE) is an effective nondestructive evaluation (NDE) technique for monitoring such damages and predicting failure in large structures of an aircraft. For successful interpretation of data from AE monitoring, sources of AE and factors affecting it need to be identified. This paper presents results of AE monitoring of tensile testing of corroded and un-corroded clad Aluminum 2024-T3 test specimens, and characterization of the effects of strain-rate and corrosion damage on material tensile properties and AE source events. Effect of corrosion was studied by inducing corrosion in the test specimens by accelerated corrosion testing in a Q-Fog accelerated corrosion chamber for 12 weeks. Eight (8) masked dog-bone shaped specimens were placed in the accelerated corrosion chamber at the beginning of the test. Two (2) dog-bone shaped specimens were removed from the corrosion chamber after exposure time of 3, 6, 9, and 12 weeks respectively, and subjected to tension testing till specimen failure along with AE monitoring, as well as two (2) reference samples not exposed to corrosion. Material tensile properties (yield strength, ultimate tensile strength, toughness, and elongation) obtained from tension test and AE parameters obtained from AE monitoring were analyzed and characterized. AE parameters increase with increase in exposure period of the specimens in the corrosive environment. Aluminum 2024-T3 is an acoustically silent material during tensile deformation without any damage. Acoustic emission events increase with increase of corrosion damage and with increase in strain rate above a certain value. Thus AE is suitable for structural health monitoring of corrosion damage. Ultimate tensile strength, toughness and elongation values decrease with increase of exposure period in corrosion chamber.

  19. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  20. A Monitoring Method Based on FBG for Concrete Corrosion Cracking

    PubMed Central

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-01-01

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure. PMID:27428972

  1. A Monitoring Method Based on FBG for Concrete Corrosion Cracking.

    PubMed

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-07-14

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure.

  2. Smart Multifunctional Coatings for Corrosion Detection and Control in the Aerospace Industry

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.

  3. Research on corrosion detection for steel reinforced concrete structures using the fiber optical white light interferometer sensing technique

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Cui, Yanjun; Wei, Heming; Kong, Xianglong; Zhang, Pinglei; Sun, Changsen

    2013-06-01

    In this paper, a novel kind of steel rebar corrosion monitoring technique for steel reinforced concrete structures is proposed, designed, and tested. The technique is based on the fiber optical white light interferometer (WLI) sensing technique. Firstly, a feasibility test was carried out using an equal-strength beam for comparison of strain sensing ability between the WLI and a fiber Bragg grating (FBG). The comparison results showed that the sensitivity of the WLI is sufficient for corrosion expansion strain monitoring. Then, two WLI corrosion sensors (WLI-CSs) were designed, fabricated, and embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion. Their performance was studied in an accelerated electrochemical corrosion test. Experimental results show that expansion strain along the fiber optical coil winding area can be detected and measured accurately by the proposed sensor. The advantages of the proposed monitoring technique allow for quantitative corrosion expansion monitoring to be executed in real time for reinforced concrete structures and with low cost.

  4. Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire.

    PubMed

    Segal, Nadav; Hell, Jess; Berzins, David W

    2009-06-01

    The purpose of this investigation was to study the effect of stress and phase transformation on the corrosion properties of a superelastic nickel-titanium orthodontic wire. The phase transformation profiles of superelastic nickel-titanium (Sentalloy, GAC International, Bohemia, NY) and beta-titanium (TMA, Ormco, Orange, Calif) archwires were analyzed by using differential scanning calorimetry. The force/deflection behavior of the wires at 37 degrees C was measured in a 3-point bending test per modified American Dental Association specification no. 32. Electrochemical testing consisted of monitoring the open circuit potential (OCP) for 2 hours followed by polarization resistance and cyclic polarization tests on archwire segments engaged in a 5-bracket simulation apparatus with bend deflections of 0.75, 1.5, or 3 mm in artificial saliva at 37 degrees C. Nondeflected segments were also tested. Sentalloy was additionally examined for bending and corrosion at 5 degrees C, where it exists as martensite and is devoid of stress-induced phase transformation. OCP at 2 hours and corrosion current density (i(corr)) were analyzed by using ANOVA and Tukey tests (alpha = .05) (n = 10 per deflection). Significant differences (P < 0.05) in OCP with deflection were found for the TMA and the Sentalloy wires at 5 degrees C, but not for Sentalloy at 37 degrees C. Significant differences (P < 0.05) in i(corr) with deflection were also observed. All 3 wire groups had their lowest mean i(corr) values when not deflected. The i(corr) for superelastic Sentalloy (37 degrees C) peaked at 0.75 mm deflection before the wire's stress-induced phase transformation point and then decreased with further deflection and transformation. The i(corr) values for TMA and Sentalloy at 5 degrees C, both of which do not undergo phase transformation with deformation, continuously increased from 0 to 1.5 mm deflection before decreasing at the 3.0-mm deflection. Stress increased the corrosion rate in nickel-titanium and beta-titanium orthodontic wires. Alterations in stress/strain associated with phase transformation in superelastic nickel-titanium might alter the corrosion rate in ways different from wires not undergoing phase transformation.

  5. High-frequency guided ultrasonic waves to monitor corrosion thickness loss

    NASA Astrophysics Data System (ADS)

    Fromme, Paul; Bernhard, Fabian; Masserey, Bernard

    2017-02-01

    Corrosion due to adverse environmental conditions can occur for a range of industrial structures, e.g., ships and offshore oil platforms. Pitting corrosion and generalized corrosion can lead to the reduction of the strength and thus degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided ultrasonic waves propagating along the structure. Using standard ultrasonic transducers with single sided access to the structure, the two fundamental Lamb wave modes were selectively generated simultaneously, penetrating through the complete thickness of the structure. The wave propagation and interference of the guided wave modes depends on the thickness of the structure. Numerical simulations were performed using a 2D Finite Difference Method (FDM) algorithm in order to visualize the guided wave propagation and energy transfer across the plate thickness. Laboratory experiments were conducted and the wall thickness reduced initially uniformly by milling of the steel structure. Further measurements were conducted using accelerated corrosion in salt water. From the measured signal change due to the wave mode interference, the wall thickness reduction was monitored and good agreement with theoretical predictions was achieved. Corrosion can lead to non-uniform thickness reduction and the influence of this on the propagation of the high frequency guided ultrasonic waves was investigated. The wave propagation in a steel specimen with varying thickness was measured experimentally and the influence on the wave propagation characteristics quantified.

  6. Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol-gel layers.

    PubMed

    Burnat, B; Dercz, G; Blaszczyk, T

    2014-03-01

    The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol-gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 °C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode's physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 °C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate-layer interaction. From the point of view of corrosion, the best TiO2 sol-gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 °C.

  7. Methodology for assessing the probability of corrosion in concrete structures on the basis of half-cell potential and concrete resistivity measurements.

    PubMed

    Sadowski, Lukasz

    2013-01-01

    In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential E corr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures.

  8. KSC-04pd1297

    NASA Image and Video Library

    2004-06-11

    KENNEDY SPACE CENTER, FLA. - Viewed from the transfer aisle inside the Vehicle Assembly Building, one of the massive doors undergoes a face-lift. The North Transfer Aisle and the High Bay 3 Vertical and Horizontal doors have entered a 13-month restoration period to repair the damage caused by prolonged exposure to the Florida environment - one of the most corrosive in the nation. Extensive corrosion damage exists on the interior of the framework of the existing doors in both locations. All exterior siding is to be replaced, as well as all the hardware. The work contributes to the ongoing safety infrastructure upgrade efforts at Kennedy Space Center.

  9. Demonstration of Corrosion-Resistant Hybrid Composite Bridge Beams for Structural Applications

    DTIC Science & Technology

    2016-09-01

    result of corrosion of the steel support structures or the reinforcing bar in the concrete. The application of corrosion-resistant technology can...demonstrated and validated a corrosion-resistant hybrid-composite beam (HCB) for the reconstruction of a one span of a traditional steel and...concrete bridge at Fort Knox, Kentucky. The HCBs were installed on half of the bridge, and conventional steel beams were installed on the other half

  10. 76 FR 13072 - Airworthiness Directives; Saab AB, Saab Aerosystems Model SAAB 2000 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... important to the structural integrity of the horizontal stabilizer. Corrosion damage in these areas, if not... structural integrity of the horizontal stabilizer. Corrosion damage in these areas, if not detected and... convoluted tubing on the harness, applying corrosion prevention compound to the inspected area, making sure...

  11. Corrosion monitoring using high-frequency guided waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  12. Development of Anticorrosive Polymer Nanocomposite Coating for Corrosion Protection in Marine Environment

    NASA Astrophysics Data System (ADS)

    Mardare, L.; Benea, L.

    2017-06-01

    The marine environment is considered to be a highly aggressive environment for metal materials. Steels are the most common materials being used for shipbuilding. Corrosion is a major cause of structural deterioration in marine and offshore structures. Corrosion of carbon steel in marine environment becomes serious due to the highly corrosive nature of seawater with high salinity and microorganism. To protect metallic materials particularly steel against corrosion occurrence various organic and inorganic coatings are used. The most used are the polymeric protective coatings. The nanostructured TiO2 polymer coating is able to offer higher protection to steel against corrosion, and performed relatively better than other polymer coatings.

  13. Metallurgical effects on chloride ion corrosion threshold of steel in concrete.

    DOT National Transportation Integrated Search

    2001-11-30

    The chloride-induced corrosion of reinforcing steel bars (rebar) in concrete seriously limits durability of reinforcing concrete structures. This investigation examines key issues in pitting corrosion and chloride corrosion threshold of rebar in alka...

  14. Enhanced Imaging of Corrosion in Aircraft Structures with Reverse Geometry X-ray(registered tm)

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Cmar-Mascis, Noreen A.; Parker, F. Raymond

    2000-01-01

    The application of Reverse Geometry X-ray to the detection and characterization of corrosion in aircraft structures is presented. Reverse Geometry X-ray is a unique system that utilizes an electronically scanned x-ray source and a discrete detector for real time radiographic imaging of a structure. The scanned source system has several advantages when compared to conventional radiography. First, the discrete x-ray detector can be miniaturized and easily positioned inside a complex structure (such as an aircraft wing) enabling images of each surface of the structure to be obtained separately. Second, using a measurement configuration with multiple detectors enables the simultaneous acquisition of data from several different perspectives without moving the structure or the measurement system. This provides a means for locating the position of flaws and enhances separation of features at the surface from features inside the structure. Data is presented on aircraft specimens with corrosion in the lap joint. Advanced laminographic imaging techniques utilizing data from multiple detectors are demonstrated to be capable of separating surface features from corrosion in the lap joint and locating the corrosion in multilayer structures. Results of this technique are compared to computed tomography cross sections obtained from a microfocus x-ray tomography system. A method is presented for calibration of the detectors of the Reverse Geometry X-ray system to enable quantification of the corrosion to within 2%.

  15. Corrosion-Indicating Pigment And Probes

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Bugga, Ratnakumar V.; Attia, Alan I.

    1993-01-01

    Proposed hydrogen-sensitive paint for metal structures changes color at onset of corrosion, involving emission of hydrogen as result of electrochemical reactions. Pigment of suitable paint includes rhodium compound RhCl(PPh3)3, known as Wilkinson's catalyst. As coating on critical parts of such structures as bridges and aircraft, paint gives early warning of corrosion, and parts thus repaired or replaced before failing catastrophically. Reveals corrosion before it becomes visible to eye. Inspection for changes in color not ordinarily necessitate removal of structure from service, and costs less than inspection by x-ray or thermal neutron radiography, ultrasonic, eddy-current, or acoustic-emission techniques.

  16. Effect of crack openings on carbonation-induced corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghantous, Rita Maria, E-mail: rita-maria.ghantous@yncrea.fr; LMDC, Université de Toulouse, INSA, UPS, Toulouse; Poyet, Stéphane

    Reinforced concrete is widely used in the construction of buildings, historical monuments, infrastructures and nuclear power plants. For a variety of reasons, many concrete structures are subject to unavoidable cracks that accelerate the diffusion of atmospheric carbon dioxide to the steel/concrete interface. Carbonation at the interface induces steel corrosion that could cause the development of new cracks in the structure, a determining factor for its durability. The aim of this article is to study the effect of existing cracks on the development of carbonation-induced corrosion. The results indicate that, after the initiation phase, the corrosion kinetics decreases with time andmore » the free corrosion potential increases independently of the crack opening. In addition, the corroded zone matches the carbonated one. The interpretation of these results allows the authors to conclude that, during the corrosion process, corrosion products seal the crack and act as a barrier to oxygen and water diffusion. Consequently, the influence of crack opening on corrosion development is masked and the corrosion development is limited.« less

  17. High temperature corrosion of cold worked YUS409D bellows of bellow-sealed valve in LBE

    NASA Astrophysics Data System (ADS)

    Mustari1, A. P. A.; Irwanto1, D.; Takahashi, M.

    2017-01-01

    Lead-bismuth eutectic (LBE) loop test is highly contributes to the lead-alloy-cooled fast breeder reactor (LFR) and accelerator driven system (ADS) research and development by providing comprehensive results of both corrosion and erosion phenomenon. Bellows-sealed valve is a crucial part in the LBE loop test apparatus, due to its capability of preventing corrosion on valve spring, thus improves the operation time of the system. LBE is very corrosive to stainless steel by formation of oxide layer or elemental dissolution, e.g. Ni. Thus, new type of bellows for bellows-sealed valve made of nickel free material, i.e. YUS409D, is proposed to be used in the LBE. Bellows material undergo heat treatments for mechanical improvement including cold working and annealing. The thickness reduction by the heat treatments is about 90% of initial condition. Corrosion behavior of the bellows has been studied in stagnant LBE at 500 and 600 °C for 500 hours. The oxygen concentration was controlled at about 10-7 wt%. Typical oxide layers were developed on the surface. Oxidation rate was sharply increased at 600°C.

  18. No corrosion of 304 stainless steel implant after 40 years of service.

    PubMed

    Blackwood, D J; Pereira, B P

    2004-07-01

    When exposed to 0.9% NaCl type 304 stainless steel undergoes severe pitting corrosion within a matter of days. However, a Sherman plate fabricated from type 304 stainless steel remained inside a patient's arm for almost 40 years without any visible indications of corrosion. Given the previous understanding of the pathological environments this was considered quite remarkable. It is proposed that the low dissolved oxygen levels found in human-body fluids makes the long-term in vivo environment much more benign than would be anticipated from in vitro experiments. Furthermore, it is proposed that previous cases of localized pitting corrosion on stainless steel implants most likely arose due to the development of short-term aggressive conditions due to pathological changes in the surrounding tissue as a result of the trauma of the implant procedure. In the present case the Sherman plate was sufficiently small that the surrounding tissue was not aggravated sufficiently to lead to the development of such an environment aggressive. The conclusion that surgical implants are at most risk during the first few weeks of service implies that short-term corrosion protection methods, such as coatings, may be more effective than previously thought.

  19. Corrosion susceptibility of steel drums containing cemented intermediate level nuclear wastes

    NASA Astrophysics Data System (ADS)

    Duffó, Gustavo S.; Farina, Silvia B.; Schulz, Fátima M.; Marotta, Francesca

    2010-10-01

    Cementation processes are used as immobilization techniques for low or intermediate level radioactive waste for economical and safety reasons and for being a simple operation. In particular, ion-exchange resins commonly used for purification of radioactive liquid waste from nuclear reactors are immobilized before being stored to improve the leach resistance of the waste matrix and to maintain mechanical stability. Combustible solid radioactive waste can be incinerated and the resulting ashes can also be immobilized before storage. The immobilized resins and ashes are then contained in steel drums that may undergo corrosion depending on the presence of certain contaminants. The work described in this paper was aimed at evaluating the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins and incineration ashes containing different concentrations of aggressive species (mostly chloride and sulphate ions). A special type of specimen was designed to simulate the cemented waste in the drum. The evolution of the corrosion potential and the corrosion current density of the steel, as well as the electrical resistivity of the matrix were monitored over a time period of 1 year. The results show the deleterious effect of chloride on the expected lifespan of the waste containers.

  20. Corrosion and fatigue of surgical implants

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1975-01-01

    Implants for the treatment of femoral fractures, mechanisms leading to the failure or degradation of such structures, and current perspectives on surgical implants are discussed. Under the first heading, general usage, materials and procedures, environmental conditions, and laboratory analyses of implants after service are considered. Corrosion, crevice corrosion, stress corrosion cracking, intergranular corrosion, pitting corrosion, fatigue, and corrosion fatigue are the principal degradation mechanisms described. The need for improvement in the reliability of implants is emphasized.

  1. Corrosion-resistant multilayer structures with improved reflectivity

    DOEpatents

    Soufli, Regina; Fernandez-Perea, Monica; Robinson, Jeff C.

    2013-04-09

    In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.

  2. [The Research on Optic Fiber FBG Corrosion Sensor Based on the Analysis of the Spectral Characteristics].

    PubMed

    Zhang, Jun; Zeng, Jie; Wang, Bo; Wang, Wen-juan; Liang, Da-kai; Liu, Xiao-ying

    2016-03-01

    Aiming at meeting the need of aluminum corrosion monitoring in aerospace field, a pre-load type fiber grating corrosion sensor based on an aluminum thin tube structure is proposed. The corrosion sensor of aluminum alloy structure in-service monitoring mechanism is studied, a theoretical model about the relation of FBG reflection spectral characteristics and aluminum thickness variation is also obtained. Optical fiber grating corrosion monitoring test system based on the capillary structure of aluminum alloy is constructed by acid-base environment. The problem of cross sensitivity of temperature and strain is solved by configuring an optical fiber grating which is not affected by strain and only sensitive to temperature inside the aluminum alloy tube. The results shows that he aluminum tube packaging design not only can sense the effects of corrosion on the mechanical properties, but also can interference shielding effect of corrosion on the tube optical fiber sensing device. With the deepening of the metal tube corrosion and aluminum alloy tube thickness gradually thinning, fiber grating reflective spectrum gradually shift to the short wavelength and the wall thickness and the grating center wavelength offset has a good monotonic relation. These characteristics can provide useful help to further research corrosion online monitoring based on optic fiber sensor.

  3. Stress-corrosion cracking in metals

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for preventing stress-corrosion cracking from impairing the structural integrity and flightworthiness of space vehicles are presented. The important variables affecting stress-corrosion cracking are considered to be the environment, including time and temperature; metal composition, and structure; and sustained tensile stress. For designing spacecraft structures that are free of stress-corrosion cracking for the service life of the vehicle the following rules apply: (1) identification and control of the environments to which the structure will be exposed during construction, storage, transportation, and use; (2) selection of alloy compositions and tempers which are resistant to stress-corrosion cracking in the identified environment; (3) control of fabrication and other processes which may introduce residual tensile stresses or damage the material; (4) limitation of the combined residual and applied tensile stresses to below the threshold stress level for the onset of cracking throughout the service life of the vehicle; and (5) establishment of a thorough inspection program.

  4. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    PubMed

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  5. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    PubMed Central

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672

  6. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures.

    PubMed

    Païssé, Sandrine; Ghiglione, Jean-François; Marty, Florence; Abbas, Ben; Gueuné, Hervé; Amaya, José Maria Sanchez; Muyzer, Gerard; Quillet, Laurent

    2013-08-01

    In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically active SRB within five natural corrosion deposits located within tidal or low water zone and showing either normal or accelerated corrosion. By using molecular techniques, such as quantitative real-time polymerase chain reaction, denaturing gel gradient electrophoresis, and sequence cloning based on 16S rRNA, dsrB genes, and their transcripts, we demonstrated a clear distinction between SRB population structure inhabiting normal or accelerated low-water corrosion deposits. Although SRB were present in both normal and accelerated low-water corrosion deposits, they dominated and were exclusively active in the inner and intermediate layers of accelerated corrosion deposits. We also highlighted that some of these SRB populations are specific to the accelerated low-water corrosion deposit environment in which they probably play a dominant role in the sulfured corrosion product enrichment.

  7. Fracture Characteristics of Monolayer CVD-Graphene

    PubMed Central

    Hwangbo, Yun; Lee, Choong-Kwang; Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Jang, Bongkyun; Lee, Hak-Joo; Lee, Seoung-Ki; Kim, Seong-Su; Ahn, Jong-Hyun; Lee, Seung-Mo

    2014-01-01

    We have observed and analyzed the fracture characteristics of the monolayer CVD-graphene using pressure bulge testing setup. The monolayer CVD-graphene has appeared to undergo environmentally assisted subcritical crack growth in room condition, i.e. stress corrosion cracking arising from the adsorption of water vapor on the graphene and the subsequent chemical reactions. The crack propagation in graphene has appeared to be able to be reasonably tamed by adjusting applied humidity and stress. The fracture toughness, describing the ability of a material containing inherent flaws to resist catastrophic failure, of the CVD-graphene has turned out to be exceptionally high, as compared to other carbon based 3D materials. These results imply that the CVD-graphene could be an ideal candidate as a structural material notwithstanding environmental susceptibility. In addition, the measurements reported here suggest that specific non-continuum fracture behaviors occurring in 2D monoatomic structures can be macroscopically well visualized and characterized. PMID:24657996

  8. Numerical predictions and experiments for optimizing hidden corrosion detection in aircraft structures using Lamb modes.

    PubMed

    Terrien, N; Royer, D; Lepoutre, F; Déom, A

    2007-06-01

    To increase the sensitivity of Lamb waves to hidden corrosion in aircraft structures, a preliminary step is to understand the phenomena governing this interaction. A hybrid model combining a finite element approach and a modal decomposition method is used to investigate the interaction of Lamb modes with corrosion pits. The finite element mesh is used to describe the region surrounding the corrosion pits while the modal decomposition method permits to determine the waves reflected and transmitted by the damaged area. Simulations make easier the interpretation of some parts of the measured waveform corresponding to superposition of waves diffracted by the corroded area. Numerical results permit to extract significant information from the transmitted waveform and thus to optimize the signal processing for the detection of corrosion at an early stage. Now, we are able to detect corrosion pits down to 80-mum depth distributed randomly on a square centimeter of an aluminum plate. Moreover, thickness variations present on aircraft structures can be discriminated from a slightly corroded area. Finally, using this experimental setup, aircraft structures have been tested.

  9. Research progress of microbial corrosion of reinforced concrete structure

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Li, Dawang; Jiang, Nan; Wang, Dongwei

    2011-04-01

    Microbial corrosion of reinforce concrete structure is a new branch of learning. This branch deals with civil engineering , environment engineering, biology, chemistry, materials science and so on and is a interdisciplinary area. Research progress of the causes, research methods and contents of microbial corrosion of reinforced concrete structure is described. The research in the field is just beginning and concerted effort is needed to go further into the mechanism of reinforce concrete structure and assess the security and natural life of reinforce concrete structure under the special condition and put forward the protective methods.

  10. Electrostatically self-assembled polyoxometalates on molecular-dye-functionalized diamond.

    PubMed

    Zhong, Yu Lin; Ng, Wibowo; Yang, Jia-Xiang; Loh, Kian Ping

    2009-12-30

    We have successfully immobilized phosphotungstic acid (PTA), a polyoxometalate, on the surface of boron-doped diamond (BDD) surface through electrostatic self-assembly of PTA on pyridinium dye-functionalized-BDD. The inorganic/organic bilayer structure on BDD is found to exhibit fast surface-confined reversible electron transfer. The molecular dye-grafted BDD can undergo controllable electrical stripping and regeneration of PTA which can be useful for electronics or sensing applications. Furthermore, we have demonstrated the use of PTA as a molecular switch in which the direction of photocurrent from diamond to methyl viologen is reversed by the surface bound PTA. Robust photocurrent converter based on such molecular system-diamond platform can operate in corrosive medium which is not tolerated by indium tin oxide electrodes.

  11. Methodology for Assessing the Probability of Corrosion in Concrete Structures on the Basis of Half-Cell Potential and Concrete Resistivity Measurements

    PubMed Central

    2013-01-01

    In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential E corr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures. PMID:23766706

  12. Investigation on the thermographic detection of corrosion in RC structures

    NASA Astrophysics Data System (ADS)

    Tantele, Elia A.; Votsis, Renos A.; Kyriakides, Nicholas; Georgiou, Panagiota G.; Ioannou, Fotia G.

    2017-09-01

    Corrosion of the steel reinforcement is the main problem of reinforced concrete (RC) structures. Over the past decades, several methods have been developed aiming to detect the corrosion process early in order to minimise the structural damage and consequently the repairing costs. Emphasis was given in developing methods and techniques of non-destructive nature providing fast on-the-spot detection and covering large areas rather that concentrating on single locations. This study, investigates a non-destructive corrosion detection technique for reinforced concrete, which is based on infrared thermography and the difference in thermal characteristics of corroded and non-corroded steel rebars. The technique is based on the principle that corrosion products have poor heat conductivity, and they inhibit the diffusion of heat that is generated in the reinforcing bar due to heating. For the investigation RC specimens, have been constructed in the laboratory using embedded steel bars of different corrosion states. Afterward, one surface of the specimens was heated using an electric device while thermal images were captured at predefined time instants on the opposite surface with an IR camera. The test results showed a clear difference between the thermal characteristics of the corroded and the non-corroded samples, which demonstrates the potential of using thermography in corrosion detection in RC structures.

  13. Stainless steel corrosion scale formed in reclaimed water: Characteristics, model for scale growth and metal element release.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Hu, Hongying; Tang, Fusheng; Li, Yuhong; Yu, Kanghua

    2016-10-01

    Stainless steels generally have extremely good corrosion resistance, but are still susceptible to pitting corrosion. As a result, corrosion scales can form on the surface of stainless steel after extended exposure to aggressive aqueous environments. Corrosion scales play an important role in affecting water quality. These research results showed that interior regions of stainless steel corrosion scales have a high percentage of chromium phases. We reveal the morphology, micro-structure and physicochemical characteristics of stainless steel corrosion scales. Stainless steel corrosion scale is identified as a podiform chromite deposit according to these characteristics, which is unlike deposit formed during iron corrosion. A conceptual model to explain the formation and growth of stainless steel corrosion scale is proposed based on its composition and structure. The scale growth process involves pitting corrosion on the stainless steel surface and the consecutive generation and homogeneous deposition of corrosion products, which is governed by a series of chemical and electrochemical reactions. This model shows the role of corrosion scales in the mechanism of iron and chromium release from pitting corroded stainless steel materials. The formation of corrosion scale is strongly related to water quality parameters. The presence of HClO results in higher ferric content inside the scales. Cl - and SO 4 2- ions in reclaimed water play an important role in corrosion pitting of stainless steel and promote the formation of scales. Copyright © 2016. Published by Elsevier B.V.

  14. 'Long-Cell Action' Corrosion: A Basic Mechanism Hidden Behind Components Degradation Issues in Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genn Saji

    2006-07-01

    In spite of industries' effort over the last 40 years, corrosion-related issues continue to be one of the largest unresolved problems for nuclear power plants worldwide. There are several types of strange corrosion phenomena from the point of view of our current understanding of corrosion science established in other fields. Some of these are IGSCC, PWSCC, AOA, and FAC (Erosion-Corrosion). Through studying and coping with diverse corrosion phenomena, the author believes that they share a common basis with respect to the assumed corrosion mechanism (e.g., 'local cell action' hypothesis). In general, local cell action is rarely severe since it producesmore » a fairly uniform corrosion. The 'long cell action' that transports electrons through structures far beyond the region of local cell corrosion activities has been identified as a basic mechanism in soil corrosion. If this mechanism is assumed in nuclear power plants, the structure becomes anodic in the area where the potential is less positive and cathodic where this potential is more positive. Metallic ions generated at anodic corrosion sites are transported to remote cathodic sites through the circulation of water and deposits as corrosion products. The SCC, FAC (E-C) and PWSCC occur in the anodic sites as the structure itself acts as a short-circuiting conductor between the two sites, the action is similar to a galvanic cell but in a very large scale. This situation is the same as a battery that has been short-circuited at the terminals. No apparent external potential difference exists between the two electrodes, but an electrochemical reaction is still taking place inside the battery cell with a large internal short current. In this example what is important is the potential difference between the local coolant and the surface of the structural material. Long cell action corrosion is likely enhancing the local cell action's anodic corrosion activities, such as SCC, FAC/E-C, and PWSCC. It tends to be more hazardous because of its localized nature compared with the local cell action corrosion. There exist various mechanisms (electrochemical cell configurations) that induce such potential differences, including: ionic concentration, aeration, temperature, flow velocity, radiation and corrosion potentials. In this paper, the author will discuss these potential differences and their relevance to the un-resolved corrosion issues in nuclear power plants. Due to the importance of this potential mechanism the author is calling for further verification experiments as a joint international project. (author)« less

  15. Study of iron structure stability in high temperature molten lead-bismuth eutectic with oxygen injection using molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkundato, Artoto; Su'ud, Zaki; Sudarko

    2014-09-30

    Corrosion of structural materials in high temperature molten lead-bismuth eutectic is a major problem for design of PbBi cooled reactor. One technique to inhibit corrosion process is to inject oxygen into coolant. In this paper we study and focus on a way of inhibiting the corrosion of iron using molecular dynamics method. For the simulation results we concluded that effective corrosion inhibition of iron may be achieved by injection 0.0532 wt% to 0.1156 wt% oxygen into liquid lead-bismuth. At this oxygen concentration the structure of iron material will be maintained at about 70% in bcc crystal structure during interaction withmore » liquid metal.« less

  16. Simulation of fiber Bragg grating sensor for rebar corrosion

    NASA Astrophysics Data System (ADS)

    Geng, Jiang; Wu, Jin; Zhao, Xinming

    2009-07-01

    It is world widely concerned in the durability of reinforced concrete structures. Corrosion of rebar is one of the most important factors which can affect the durability of the concrete structures, and may result in damage to the structures in the form of expansion, cracking and eventually spalling of the cover concrete. In addition, the structural damage may be due to loss of bond between reinforcement and concrete and reduction of reinforcement cross-sectional area, and finally it may cause structure failure. With the advantages of linear reaction, small volume, high anti-erosion capability and automatic signal transmission, the smart sensors made of fiber bragg grating (FBG) to monitor strain, stress, temperature and local crack have got wide application in buildings, bridges and tunnels. FBG can be adhered to the surface of the structure, and also can be embedded into the inner of the structures when the project is being under construction to realize the real-time health monitoring. Based on volume expansion, the fiber bragg grating sensor for rebar corrosion is designed. The corrosion status of the structure can be obtained from the information provided by sensors. With the aid of the finite element software ANSYS, the simulation of the corrosion sensor was carried in this paper. The relationship between corrosion ratio and the shift of wavelength was established. According to the results of the simulation, there were differences between simulated results and measured results. The reason of the differences was also studied in this paper.

  17. The Performance Analysis of Distributed Brillouin Corrosion Sensors for Steel Reinforced Concrete Structures

    PubMed Central

    Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen

    2014-01-01

    The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage. PMID:24379048

  18. The performance analysis of distributed Brillouin corrosion sensors for steel reinforced concrete structures.

    PubMed

    Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen

    2013-12-27

    The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage.

  19. Bridges Structural Health Monitoring and Deterioration Detection - Synthesis of Knowledge and Technology

    DOT National Transportation Integrated Search

    2010-12-01

    Bridges are continuously subjected to destructive effects of material aging, widespread corrosion of steel : reinforcing bars in concrete structures, corrosion of steel structures and components, increasing traffic : volume and overloading, or simply...

  20. Cathodic Protection Deployment on Space Shuttle Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Zook, Lee M.

    1998-01-01

    Corrosion protection of the space shuttle solid rocket boosters incorporates the use of cathodic protection(anodes) in concert with several coatings systems. The SRB design has large carbon/carbon composites(motor nozzle) electrically connected to an aluminum alloy structure. Early in the STS program, the aluminum structures incurred tremendous corrosive attack due primarily to the galvanic couple to the carbon/carbon nozzle at coating damage locations. Also contributing to the galvanic corrosion problem were stainless steel and titanium alloy components housed within the aluminum structures and electrically connected to the aluminum structures. This paper will highlight the evolution in the protection of the aluminum structures, providing historical information and summary data from the operation of the corrosion protection systems. Also, data and information will be included regarding the evaluation and deployment of inorganic zinc rich primers as anode area on the aluminum structures.

  1. FIM/atom probe analysis of a heat treated 7150 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Brenner, S. S.; Kowalik, J.; Hua Ming-Jian

    1991-04-01

    The stress corrosion cracking resistance of high strength aluminum alloys can be substantially altered by heat treatment. In addition to microstructural changes, the alloys may also undergo chemical changes as a result of the heat treatment which may affect the stress corrosion properties. The FIM/atom probe has been used to detect such changes. The compositions of the matrix, matrix precipitates, precipitate-free zone (PFZ) and grain boundary precipitates in a heat-treated 7150 Al alloy tempered to peak strength have been quantitatively measured. A substantial increase in the concentrations of Mg, Zn and Cu were found in the PFZ. The average compositions of the precipitates in the matrix and at the sub-boundaries were shown not to differ significantly. The coarser precipitates at high-angle boundaries, which may have a more important effect on stress corrosion, were difficult to analyze because of their low number density and the large grain size of the material.

  2. Influence of microclimate on the sustainability and reliability of weathering steel bridge

    NASA Astrophysics Data System (ADS)

    Kubzova, M.; Krivy, V.; Kreislova, K.

    2018-04-01

    Reliability and sustainability of bridge structures designed from weathering steel are influenced by the development of a sufficiently protective layer of corrosion products on its surface. The development of this protective layer is affected by several parameters such as air pollution around the bridge structure, the microclimate under the bridge, the location of surface within the bridge structure and the time of wetness. Design of structural details also significantly influences the development of the protective corrosion layer. The article deals with the results of the experimental tests carried out on the road bridge located in the city of Ostrava in the Czech Republic. The development of the protective corrosion layer on the surface of the bridge is significantly influenced by the intensive traffic under the bridge construction and the design solution of the bridge itself. Attention is focused mainly on the influence of chloride deposition on the protective function of the corrosion layer. Corrosion samples were placed on the bridge to evaluate the influence of the above-mentioned parameters. The deposition rate of chlorides spreading from the road to surfaces of the steel structure is also measured.

  3. Understanding the corrosion behavior of amorphous multiple-layer carbon coating

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Gao, Ying; Xu, Yongxian; Zhang, Renhui; Madkour, Loutfy H.; Yang, Yingchang

    2018-04-01

    The corrosion behavior of multiple-layer carbon coating that contained hydrogen, fluorine and silicon, possessed dual amorphous structure with sutured interfaces was investigated using potentiodynamic polarization and electrochemical impedances (ETS) in 3.5 wt.% NaCl solution. The coating exhibited good resistance to corrosion in 3.5 wt.% NaCl solution due to its amorphous and dense structures.

  4. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D.

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion;more » sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.« less

  5. Initial investigation of the corrosion stability of craniofacial implants.

    PubMed

    Beline, Thamara; Vechiato Filho, Aljomar José; Wee, Alvin G; Sukotjo, Cortino; Dos Santos, Daniela Micheline; Brandão, Thaís Bianca; Barão, Valentim Adelino Ricardo

    2018-01-01

    Although craniofacial implants have been used for retention of facial prostheses, failures are common. Titanium undergoes corrosion in the oral cavity, but the corrosion of craniofacial implants requires evaluation. The purpose of this in vitro study was to investigate the corrosion stability of commercially pure titanium (CP Ti) exposed to simulated human perspiration at 2 different pH levels (5.5 and 8). Fifteen titanium disks were divided into 3 groups (n=5 per group). The control group was subjected to simulated body fluid (SBF) (control). Disks from the 2 experimental groups were immersed in simulated alkaline perspiration (SA K P) and simulated acidic perspiration (SA C P). Electrochemical tests, including open circuit potential (3600 seconds), electrochemical impedance spectroscopy, and potentiodynamic tests were performed according to the standardized method of 3-cell electrodes. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α=.05). Simulated human perspiration reduced the corrosion stability of CP Ti (P<.05). The SBF group presented the lowest capacitance values (P<.05). SA K P and SA C P groups showed increased values of capacitance and showed no statistically significant differences (P>.05) from each other. The increase in capacitance suggests that the acceleration of the ionic exchanges between the CP Ti and the electrolyte leads to a lower corrosion resistance. SA K P reduced the oxide layer resistance of CP Ti (P<.05), and an increased corrosion rate was noted in both simulated human perspiration groups. Craniofacial implants can corrode when in contact with simulated human perspiration, whereas alkaline perspiration shows a more deleterious effect. Perspiration induces a more corrosive effect than simulated body fluid. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Effect of molecular structure of aniline-formaldehyde copolymers on corrosion inhibition of mild steel in hydrochloric acid solution.

    PubMed

    Zhang, Yan; Nie, Mengyan; Wang, Xiutong; Zhu, Yukun; Shi, Fuhua; Yu, Jianqiang; Hou, Baorong

    2015-05-30

    Aniline-formaldehyde copolymers with different molecular structures have been prepared and investigated for the purpose of corrosion control of mild steel in hydrochloric acid. The copolymers were synthesized by a condensation polymerization process with different ratios of aniline to formaldehyde in acidic precursor solutions. The corrosion inhibition efficiency of as-synthesized copolymers for Q235 mild steel was investigated in 1.0 mol L(-1) hydrochloric acid solution by weight loss measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy, respectively. All the results demonstrate that as-prepared aniline-formaldehyde copolymers are efficient mixed-type corrosion inhibitors for mild steels in hydrochloric acid. The corrosion inhibition mechanism is discussed in terms of the role of molecular structure on adsorption of the copolymers onto the steel surface in acid solution. Copyright © 2015. Published by Elsevier B.V.

  7. Simulation of Corrosion Process for Structure with the Cellular Automata Method

    NASA Astrophysics Data System (ADS)

    Chen, M. C.; Wen, Q. Q.

    2017-06-01

    In this paper, from the mesoscopic point of view, under the assumption of metal corrosion damage evolution being a diffusive process, the cellular automata (CA) method was proposed to simulate numerically the uniform corrosion damage evolution of outer steel tube of concrete filled steel tubular columns subjected to corrosive environment, and the effects of corrosive agent concentration, dissolution probability and elapsed etching time on the corrosion damage evolution were also investigated. It was shown that corrosion damage increases nonlinearly with increasing elapsed etching time, and the longer the etching time, the more serious the corrosion damage; different concentration of corrosive agents had different impacts on the corrosion damage degree of the outer steel tube, but the difference between the impacts was very small; the heavier the concentration, the more serious the influence. The greater the dissolution probability, the more serious the corrosion damage of the outer steel tube, but with the increase of dissolution probability, the difference between its impacts on the corrosion damage became smaller and smaller. To validate present method, corrosion damage measurements for concrete filled square steel tubular columns (CFSSTCs) sealed at both their ends and immersed fully in a simulating acid rain solution were conducted, and Faraday’s law was used to predict their theoretical values. Meanwhile, the proposed CA mode was applied for the simulation of corrosion damage evolution of the CFSSTCs. It was shown by the comparisons of results from the three methods aforementioned that they were in good agreement, implying that the proposed method used for the simulation of corrosion damage evolution of concrete filled steel tubular columns is feasible and effective. It will open a new approach to study and evaluate further the corrosion damage, loading capacity and lifetime prediction of concrete filled steel tubular structures.

  8. Lamb-Wave-Based Tomographic Imaging Techniques for Hole-Edge Corrosion Monitoring in Plate Structures

    PubMed Central

    Wang, Dengjiang; Zhang, Weifang; Wang, Xiangyu; Sun, Bo

    2016-01-01

    This study presents a novel monitoring method for hole-edge corrosion damage in plate structures based on Lamb wave tomographic imaging techniques. An experimental procedure with a cross-hole layout using 16 piezoelectric transducers (PZTs) was designed. The A0 mode of the Lamb wave was selected, which is sensitive to thickness-loss damage. The iterative algebraic reconstruction technique (ART) method was used to locate and quantify the corrosion damage at the edge of the hole. Hydrofluoric acid with a concentration of 20% was used to corrode the specimen artificially. To estimate the effectiveness of the proposed method, the real corrosion damage was compared with the predicted corrosion damage based on the tomographic method. The results show that the Lamb-wave-based tomographic method can be used to monitor the hole-edge corrosion damage accurately. PMID:28774041

  9. Concrete Solution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A Space Act Agreement between Kennedy Space Center and Surtreat Southeast, Inc., resulted in a new treatment that keeps buildings from corroding away over time. Structural corrosion is a multi-billion dollar problem in the United States. The agreement merged Kennedy Space Center's research into electrical treatments of structural corrosion with chemical processes developed by Surtreat. Combining NASA and Surtreat technologies has resulted in a unique process with broad corrosion-control applications.

  10. Recent Progress and Required Developments in Atmospheric Corrosion of Galvanised Steel and Zinc

    PubMed Central

    Cole, Ivan S.

    2017-01-01

    This paper reviews the progress in atmospheric corrosion of zinc since 2009. It firstly summarises the state of the art in 2009, then outlines progress since 2009, and then looks at the significance of this progress and the areas the need more research. Within this framework, it looks at climate effects, oxide formation, oxide properties, pitting, laboratory duplication of atmospheric corrosion, and modelling. The major findings are that there have been major advances in the fields understanding of the structure of corrosion patina, in particular their layered structure and the presence of compact layers, local corrosion attacks have been found to be a significant process in atmospheric corrosion and experiments under droplets are leading to new understanding of the criticality of drop size in regulating atmospheric corrosion processes. Further research is indicating that zinc oxide within corrosion products may promote the oxygen reduction reaction (ORR) and that, in porous oxides, the ORR would control pore chemistry and may promote oxide densification. There is a strong need for more research to understand more deeply the formation and properties of these layered oxides as well as additional research to refine and quantify our emerging understanding of corrosion under droplets. PMID:29120373

  11. Fracture of concrete caused by the reinforcement corrosion products

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. T.; Millard, A.; Caré, S.; L'Hostis, V.; Berthaud, Y.

    2006-11-01

    One of the most current degradations in reinforced concrete structures is related to the corrosion of the reinforcements. The corrosion products during active corrosion induce a mechanical pressure on the surrounding concrete that leads to cover cracking along the rebar. The objective of this work is to study the cracking of concrete due to the corrosion of the reinforcements. The phenomenon of corrosion/cracking is studied in experiments through tests of accelerated corrosion on plate and cylindrical specimens. A CCD camera is used to take images every hour and the pictures are analyzed by using the intercorrelation image technique (Correli^LMT) to derive the displacement and strain field. Thus the date of appearance of the first through crack is detected and the cinematic crack initiations are observed during the test. A finite element model that allows prediction of the mechanical consequences of the corrosion of steel in reinforced concrete structures is proposed. From the comparison between the test results and numerical simulations, it may be concluded that the model is validated in term of strains up to the moment when the crack becomes visible, and in terms of crack pattern.

  12. Boric Acid Corrosion of Concrete Rebar

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Yang, L.; Chiang, K.–T.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure and compromise the integrity of the structure. Because corrosion rate of carbon steel in concrete in the presence of boric acid is lacking in published literature and available data are equivocal on the effect of boric acid on rebar corrosion, corrosion rate measurements were conducted in this study using several test methods. Rebar corrosion rates were measured in (i) borated water flowing in a simulated concrete crack, (ii) borated water flowing over a concrete surface, (iii) borated water that has reacted with concrete, and (iv) 2,400 ppm boric acid solutions with pH adjusted to a range of 6.0 to 7.7. The corrosion rates were measured using coupled multielectrode array sensor (CMAS) and linear polarization resistance (LPR) probes, both made using carbon steel. The results indicate that rebar corrosion rates are low (~1 μm/yr or less)when the solution pH is ~7.1 or higher. Below pH ~7.1, the corrosion rate increases with decreasing pH and can reach ~100 μm/yr in solutions with pH less than ~6.7. The threshold pH for carbon steel corrosion in borated solution is between 6.8 and 7.3.

  13. Influence of the bond-slip relationship on the flexural capacity of R.C. joints damaged by corrosion

    NASA Astrophysics Data System (ADS)

    Imperatore, Stefania

    2016-06-01

    In moderate and aggressive environmental condition, old reinforced concrete structures are often subjected to corrosive phenomena. Corrosion causes cracking, loss of diameter in reinforcement and variation of the bond behavior between steel and concrete. Then, in presence of cyclic actions like the seismic ones, old R.C. elements vary their ultimate drift, ductility, plastic rotation capacity and energy dissipation with the corrosion level. The problem is of current interest: the issue has been introduced in some paragraph of the Model Code 2010 and a committee is now drafting a new document on assessment strategies on existing concrete structures also damaged by corrosion. In this work, a first step on the analysis of the impact of the corrosion on the seismic behavior of R.C. elements is assessed: by mean FEM analyses, of a poor detailed column/foundation joint is analyzed in a parametric way in order to evaluate the influence of the bond-slip degradation by corrosion on the element flexural capacity.

  14. Hot Corrosion Resistance and Mechanical Behavior of Atmospheric Plasma Sprayed Conventional and Nanostructured Zirconia Coatings

    NASA Astrophysics Data System (ADS)

    Saremi, Mohsen; Keyvani, Ahmad; Heydarzadeh Sohi, Mahmoud

    Conventional and nanostructured zirconia coatings were deposited on In-738 Ni super alloy by atmospheric plasma spray technique. The hot corrosion resistance of the coatings was measured at 1050°C using an atmospheric electrical furnace and a fused mixture of vanadium pent oxide and sodium sulfate respectively. According to the experimental results nanostructured coatings showed a better hot corrosion resistance than conventional ones. The improved hot corrosion resistance could be explained by the change of structure to a dense and more packed structure in the nanocoating. The evaluation of mechanical properties by nano indentation method showed the hardness (H) and elastic modulus (E) of the YSZ coating increased substantially after hot corrosion.

  15. [Microflora of damaged ferroconcrete structures under the conditions of inhibitory protection].

    PubMed

    Kopteva, Zh P; Zanina, V V; Purish, L M; Piliashenko-Novokhatnyĭ, A I; Kozlova, I A

    2004-01-01

    Thionic, sulphate-reducing, denitrifying and ammonifying bacteria widely distributed in the sewer system on various structure elements have been isolated from damaged ferroconcrete samples. Effect of protective materials on microbe-induced corrosion of metal famework of concrete samples has been studied. Selective effect of corrosion inhibitors and coatings on the growth of corrosion-active bacteria of sulphur and nitrogen cycle has been revealed. It is shown that acid medium formed by thionic bacteria is more aggressive than ammonium-hydrosulphide one formed by denitrifying and sulphate-reducing bacteria. It has been established that the corrosion inhibitor--pyrquin, organosilicon coating CO-FMI and epoxyorganosilicon coating 4sk are most effective materials as to the action of thionic bacteria--dangerous agents of ferroconcrete aerobic corrosion.

  16. The Effect of Heat Treatment on the Sensitized Corrosion of the 5383-H116 Al-Mg Alloy

    PubMed Central

    Lin, Ying-Kai; Wang, Shing-Hai; Chen, Ren-Yu; Hsieh, Tso-Sheng; Tsai, Liren; Chiang, Chia-Chin

    2017-01-01

    In this study, the effects of heat treatment and sensitized corrosion on the 5383-H116 Al-Mg alloy were investigated for temperatures ranging from 100 to 450 °C. The results show that the heat treatment temperature is the main factor that causes changes to the microstructure and mechanical strength of the 5383-H116 Al-Mg alloy, inducing β-phase (Al3Mg2) precipitation in the form of a continuous layer along the grain boundaries. Intergranular corrosion was caused by the β-phase of the grain boundary precipitation, and the corrosion susceptibility of the recrystallized structure was significantly higher than the corrosion susceptibility of the recovered structure. According to the conductivity values detected, β-phase precipitation can enhance the 5383-H116 Al-Mg alloy conductivity, with the response due to structural dislocation density being higher than that due to the recrystallized structure. As such, the β-phase precipitation after sensitization is more significant than the β-phase precipitation prior to the sensitization, such that after sensitization, the conductivity rises to a significantly higher level than that exhibited by the recrystallization structure. PMID:28772635

  17. Environmentally Preferable Coatings for Structural Steel Project

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Editor)

    2014-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described a the "launch support and infrastructure modernization program" in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion resistant coatings for launch facilities and ground support equipment. The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. Number of facilities/structures with metallic structural and non-structural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the application of corrosion protective coating system.

  18. Hot Corrosion of Inconel 625 Overlay Weld Cladding in Smelting Off-Gas Environment

    NASA Astrophysics Data System (ADS)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2013-10-01

    Degradation mechanisms and hot corrosion behavior of weld overlay alloy 625 were studied. Phase structure, morphology, thermal behavior, and chemical composition of deposited salt mixture on the weld overlay were characterized utilizing XRD, SEM/EDX, DTA, and ICP/OES, respectively. Dilution level of Fe in the weldment, dendritic structure, and degradation mechanisms of the weld were investigated. A molten phase formed on the weld layer at the operating temperature range of the boiler, which led to the hot corrosion attack in the water wall and the ultimate failure. Open circuit potential and weight-loss measurements and potentiodynamic polarization were carried out to study the hot corrosion behavior of the weld in the simulated molten salt medium at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Internal oxidation and sulfidation plus pitting corrosion were identified as the main hot corrosion mechanisms in the weld and boiler tubes. The presence of a significant amount of Fe made the dendritic structure of the weld susceptible to preferential corrosion. Preferentially corroded (Mo, Nb)-depleted dendrite cores acted as potential sites for crack initiation from the surface layer. The penetration of the molten phase into the cracks accelerated the cracks' propagation mainly through the dendrite cores and further crack branching/widening.

  19. 75 FR 27419 - Airworthiness Directives; BAE Systems (Operations) Limited Model BAe 146 and Avro 146-RJ70A, 146...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... environmental and fatigue inspections would not have detected the corrosion or fatigue damage. Corrosion or fatigue damage in this area, if not detected and corrected, could lead to degradation of the structural... fatigue inspections would not have detected the corrosion or fatigue damage. Corrosion or fatigue damage...

  20. Demonstration and Validation of Two Coat High Performance Coating System for Steel Structures in Corrosive Environments

    DTIC Science & Technology

    2016-12-01

    System for Steel Structures in Corrosive Environments Final Report on Project F12-AR06 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra...Prevention and Control Program ERDC/CERL TR-16-27 December 2016 Demonstration and Validation of Two-Coat High- Performance Coating System for Steel ...Performance Coating System for Steel Structures in Corrosive Environments” ERDC/CERL TR-16-27 ii Abstract Department of Defense (DoD) installations

  1. Initial stage corrosion of nanocrystalline copper particles and thin films

    NASA Astrophysics Data System (ADS)

    Tao, Weimin

    1997-12-01

    Corrosion behavior is an important issue in nanocrystalline materials research and development. A very fine grain size is expected to have significant effects on the corrosion resistance of these novel materials. However, both the macroscopic corrosion properties and the corresponding structure evolution during corrosion have not been fully studied. Under such circumstances, conducting fundamental research in this area is important and necessary. In this study, high purity nanocrystalline and coarse-grained copper were selected as our sample material, sodium nitrite aqueous solution at room temperature and air at a high temperature were employed as corrosive environments. The weight loss testing and electrochemical methods were used to obtain the macroscopic corrosion properties, whereas the high resolution transmission electron microscope was employed for the structure analysis. The weight loss tests indicate that the corrosion rate of nanocrystalline copper is about 5 times higher than that of coarse-grained copper at the initial stage of corrosion. The electrochemical measurements show that the corrosion potential of the nanocrystalline copper has a 230 mV negative shift in comparison with that of the coarse-grained copper. The nanocrystalline copper also exhibits a significantly higher exchange current density than the coarse-grained copper. High resolution TEM revealed that the surface structure changes at the initial stage of corrosion. It was found that the first copper oxide layer formed on the surface of nanocrystalline copper thin film contains a large density of high angle grain boundaries, whereas that formed on the surface of coarse-grained copper shows highly oriented oxide nuclei and appears to show a strong tendency for forming low angle grain boundaries. A correlation between the macroscopic corrosion properties and the structure characteristics is proposed for the nanocrystalline copper based on the concept of the "apparent" exchange current density associated with mass transport of ions in the oxide layer. A hypothesis is developed that the high corrosion rate of the nanocrystalline copper is closely associated with the structure of the copper oxide layer. Therefore, a high "apparent" exchange current density for the nanocrystalline copper is associated with the high angle grain boundary structure in the initial oxide layer. Additional structure analysis was also carried out: (a) High resolution TEM imaging has provided a cross sectional view of the epitaxial interface between nanocrystalline copper and copper (I) oxide and explicitly discloses the presence of interface defects such as misfit dislocations. Based on this observation, a mechanism was proposed to explain the Cu/Cusb2O interface misfit accommodation. This appears to be the first time this interface has been directly examined. (b) A nanocrystalline analogue to a cross-section of Gwathmey's copper single crystal sphere was revealed by high resolution TEM imaging. A partially oxidized nanocrystalline copper particle is used to examine the variation of the Cu/Cusb2O orientation relationship with respect to changes in surface orientation. A new orientation relationship, Cu (011) //Cusb2O (11), ˜ Cu(011)//Cusb2O(111), was found for the oxidation of nanocrystalline copper.

  2. Investigation of Corrosion Behavior of Ti/TiN Multilayers on Al7075 Deposited by High-Vacuum Magnetron Sputtering in 3.5% NaCl Solution

    NASA Astrophysics Data System (ADS)

    Molavi, Esfandiar; Shanaghi, Ali; Chu, Paul K.

    2018-05-01

    Although Al 7075 has many favorable mechanical properties such as the large strength-to-weight ratio, the relatively poor corrosion resistance has restricted industrial applications. In this work, Ti/TiN as hard multilayered and nanostructured coatings are deposited on the relatively soft Al 7075 structure by high-vacuum radio-frequency magnetron sputtering and the phase, structure, and morphology are investigated in details. The corrosion behavior is evaluated by electrochemical impedance spectroscopy in 3.5% NaCl at a pH of 7.5 for 1, 6, 12, 24, 36, 48, 60, and 72 h. At time points of 1, 6, 12, and 24 h, primary oxide layers and double layers are formed, but the corrosive medium penetrates the primary titanium nitride columnar structure. At longer time points of 24, 36, 48, 60, and 72 h, formation of stronger oxide and double layers leads to better corrosion resistance which is 14.8 times better than that observed from the uncoated substrate after immersion for 36 h. According to R ct, the corrosion resistances of the short and long immersion groups are 808.5-1984 and 808.5-1248 kΩ cm2, respectively, thereby confirming the effectiveness of the Ti/TiN coating against corrosion in comparison with the corrosion resistance of 84.3 kΩ cm2 observed from the uncoated Al 7075. The smallest corrosion resistance of 808.5 kΩ cm2 observed at the time point of 24 h is 9.6 times that of the uncoated substrate.

  3. PULSED EDDY CURRENT THICKNESS MEASUREMENT OF SELECTIVE PHASE CORROSION ON NICKEL ALUMINUM BRONZE VALVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, T. W.; Harlley, D.; Babbar, V. K.

    Nickel Aluminum Bronze (NAB) is a material with marine environment applications that under certain conditions can undergo selective phase corrosion (SPC). SPC involves the removal of minority elements while leaving behind a copper matrix. Pulsed eddy current (PEC) was evaluated for determination of SPC thickness on a NAB valve section with access from the surface corroded side. A primarily linear response of PEC amplitude, up to the maximum available SPC thickness of 4 mm was observed. The combination of reduced conductivity and permeability in the SPC phase relative to the base NAB was used to explain the observed sensitivity ofmore » PEC to SPC thickness variations.« less

  4. Corrosion products of carbonation induced corrosion in existing reinforced concrete facades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köliö, Arto; Honkanen, Mari; Lahdensivu, Jukka

    Active corrosion in reinforced concrete structures is controlled by environmental conditions and material properties. These factors determine the corrosion rate and type of corrosion products which govern the total achieved service life. The type and critical amount of corrosion products were studied by electron microscopy and X-ray diffractometry on concrete and reinforcement samples from existing concrete facades on visually damaged locations. The corrosion products in outdoor environment exposed concrete facades are mostly hydroxides (Feroxyhite, Goethite and Lepidocrocite) with a volume ratio to Fe of approximately 3. The results can be used to calibrate calculation of the critical corrosion penetration ofmore » concrete facade panels.« less

  5. Apollo experience report: The problem of stress-corrosion cracking

    NASA Technical Reports Server (NTRS)

    Johnson, R. E.

    1973-01-01

    Stress-corrosion cracking has been the most common cause of structural-material failures in the Apollo Program. The frequency of stress-corrosion cracking has been high and the magnitude of the problem, in terms of hardware lost and time and money expended, has been significant. In this report, the significant Apollo Program experiences with stress-corrosion cracking are discussed. The causes of stress-corrosion cracking and the corrective actions are discussed, in terminology familiar to design engineers and management personnel, to show how stress-corrosion cracking can be prevented.

  6. Agricultural Polymers as Corrosion Inhibitors

    USDA-ARS?s Scientific Manuscript database

    Agricultural polymers were composed of extra-cellular polysaccharides secreted by Leuconostoc mesenteroides have been shown to inhibit corrosion on corrosion-sensitive metals. The substantially pure exopolysaccharide has a general structure consisting of alpha(1-6)-linked D-glucose backbone and appr...

  7. Steel reinforcement corrosion detection with coaxial cable sensors

    NASA Astrophysics Data System (ADS)

    Muchaidze, Iana; Pommerenke, David; Chen, Genda

    2011-04-01

    Corrosion processes in the steel reinforced structures can result in structural deficiency and with time create a threat to human lives. Millions of dollars are lost each year because of corrosion. According to the U. S. Federal Highway Administration (FHWA) the average annual cost of corrosion in the infrastructure sector by the end of 2002 was estimated to be $22.6 billion. Timely remediation/retrofit and effective maintenance can extend the structure's live span for much less expense. Thus the considerable effort should be done to deploy corrosion monitoring techniques to have realistic information on the location and the severity of damage. Nowadays commercially available techniques for corrosion monitoring require costly equipment and certain interpretational skills. In addition, none of them is designed for the real time quality assessment. In this study the crack sensor developed at Missouri University of Science and Technology is proposed as a distributed sensor for real time corrosion monitoring. Implementation of this technology may ease the pressure on the bridge owners restrained with the federal budget by allowing the timely remediation with the minimal financial and labor expenses. The sensor is instrumented in such a way that the location of any discontinuity developed along its length can be easily detected. When the sensor is placed in immediate vicinity to the steel reinforcement it is subjected to the same chemical process as the steel reinforcement. And corrosion pitting is expected to develop on the sensor exactly at the same location as in the rebar. Thus it is expected to be an effective tool for active corrosion zones detection within reinforced concrete (RC) members. A series of laboratory tests were conducted to validate the effectiveness of the proposed methodology. Nine sensors were manufactured and placed in the artificially created corrosive environment and observed over the time. To induce accelerated corrosion 3% and 5% NaCL solutions were used. Based on the test results, the proposed/corrosion distributed sensor is capable of delivering fairly accurate information on the location of a discontinuity along the sensor caused by corrosion pitting. Forensic study was also conducted to validate the concept. In order to test the sensors in real live condition, 27 sensors were prepared to be placed into RC beams. The beams will be subjected to corrosive environment. After that the sensors will be monitored over the time for signs of corrosion.

  8. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability. Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.

  9. Research on a new type of fiber Bragg grating based corrosion sensor

    NASA Astrophysics Data System (ADS)

    Li, Peng; Song, Shide; Wang, Xiaona; Zhou, Weijie; Zhang, Zuocai

    2015-08-01

    Investigations of the corrosion of rebars in concrete structures are widely studied because of the serious damage to concrete caused by rebar corrosion. The rebar corrosion products in reinforced concrete take up 2~6 times the volume of the rebar. Based on this principle, a new type of fiber Bragg grating (FBG) corrosion sensor is proposed in this paper, which consists of two sensors, an FBG corrosion measurement sensor to measure the expansion strain caused by rebar corrosion, and a temperature compensation sensor to eliminate the cross-sensitivity of FBG corrosion sensor. The corrosion rate is derived by the wavelength shift of FBG corrosion sensor, so rebar corrosion can be monitored and assessed by the FBG wavelength shift. A customized rebar with epoxy fixing groove is designed to install a corrosion sensor on its surface and an embedded temperature compensation sensor. The corrosion sensor is embedded in cement mortar and subsequently casted in concrete. The performance of the corrosion sensor is studied in an accelerated electrochemical corrosion test. Experimental results show that the new type of corrosion sensor has advantage of relatively large measurement range of corrosion rate. The corrosion sensor is suitable to monitor slightly and moderately corroded rebars.

  10. A Multifunctional Smart Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  11. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  12. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  13. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  14. Quantitative structure activity relationships of some pyridine derivatives as corrosion inhibitors of steel in acidic medium.

    PubMed

    El Ashry, El Sayed H; El Nemr, Ahmed; Ragab, Safaa

    2012-03-01

    Quantum chemical calculations using the density functional theory (B3LYP/6-31G DFT) and semi-empirical AM1 methods were performed on ten pyridine derivatives used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. Quantum chemical parameters such as total negative charge (TNC) on the molecule, energy of highest occupied molecular orbital (E (HOMO)), energy of lowest unoccupied molecular orbital (E (LUMO)) and dipole moment (μ) as well as linear solvation energy terms, molecular volume (Vi) and dipolar-polarization (π) were correlated to corrosion inhibition efficiency of ten pyridine derivatives. A possible correlation between corrosion inhibition efficiencies and structural properties was searched to reduce the number of compounds to be selected for testing from a library of compounds. It was found that theoretical data support the experimental results. The results were used to predict the corrosion inhibition of 24 related pyridine derivatives.

  15. Ultrasonic guided wave for monitoring corrosion of steel bar

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Qin, Lei; Huang, Bosheng

    2018-01-01

    Steel corrosion of reinforced concrete structures has become a serious problem all over the word. In this paper, the work aims at monitoring steel corrosion using ultrasonic guided wave (UGW). Ultrasonic guided wave monitoring is a dynamic and non-destructive testing technology. The advantages of ultrasonic guided wave monitoring for reinforcement corrosion are real-time, online and continuous. In addition, it can judge the different stages of steel bar corrosion, which achieved non-destructive detection.

  16. Novel methods for aircraft corrosion monitoring

    NASA Astrophysics Data System (ADS)

    Bossi, Richard H.; Criswell, Thomas L.; Ikegami, Roy; Nelson, James; Normand, Eugene; Rutherford, Paul S.; Shrader, John E.

    1995-07-01

    Monitoring aging aircraft for hidden corrosion is a significant problem for both military and civilian aircraft. Under a Wright Laboratory sponsored program, Boeing Defense & Space Group is investigating three novel methods for detecting and monitoring hidden corrosion: (1) atmospheric neutron radiography, (2) 14 MeV neutron activation analysis and (3) fiber optic corrosion sensors. Atmospheric neutron radiography utilizes the presence of neutrons in the upper atmosphere as a source for interrogation of the aircraft structure. Passive track-etch neutron detectors, which have been previously placed on the aircraft, are evaluated during maintenance checks to assess the presence of corrosion. Neutrons generated by an accelerator are used via activation analysis to assess the presence of distinctive elements in corrosion products, particularly oxygen. By using fast (14 MeV) neutrons for the activation, portable, high intensity sources can be employed for field testing of aircraft. The third novel method uses fiber optics as part of a smart structure technology for corrosion detection and monitoring. Fiber optic corrosion sensors are placed in the aircraft at locations known to be susceptible to corrosion. Periodic monitoring of the sensors is used to alert maintenance personnel to the presence and degree of corrosion at specific locations on the aircraft. During the atmospheric neutron experimentation, we identified a fourth method referred to as secondary emission radiography (SER). This paper discusses the development of these methods.

  17. Effects of climate and corrosion on concrete behaviour

    NASA Astrophysics Data System (ADS)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  18. Review and study of physics driven pitting corrosion modeling in 2024-T3 aluminum alloys

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Jata, Kumar V.

    2015-04-01

    Material degradation due to corrosion and corrosion fatigue has been recognized to significantly affect the airworthiness of civilian and military aircraft, especially for the current fleet of airplanes that have served beyond their initial design life. The ability to predict the corrosion damage development in aircraft components and structures, therefore, is of great importance in managing timely maintenance for the aging aircraft vehicles and in assisting the design of new ones. The assessment of aircraft corrosion and its influence on fatigue life relies on appropriate quantitative models that can evaluate the initiation of the corrosion as well as the accumulation during the period of operation. Beyond the aircraft regime, corrosion has also affected the maintenance, safety and reliability of other systems such as nuclear power systems, steam and gas turbines, marine structures and so on. In the work presented in this paper, we reviewed and studied several physics based pitting corrosion models that have been reported in the literature. The classic work of particle induced pitting corrosion by Wei and Harlow is reviewed in detail. Two types of modeling, a power law based simplified model and a microstructure based model, are compared for 2024-T3 alloy. Data from literatures are used as model inputs. The paper ends with conclusions and recommendations for future work.

  19. Modelling the influence of ionic and fluid transport on rebars corrosion in unsaturated cement systems

    NASA Astrophysics Data System (ADS)

    Dridi, W.; Dangla, P.; Foct, F.; Petre-Lazar, I.

    2006-11-01

    This paper deals with numerical modelling of rebar corrosion kinetics in unsaturated concrete structures. The corrosion kinetics is investigated in terms of mechanistic coupling between reaction rates at the steel surface and the ionic transport processes in the concrete pore system. The ionic and mass transport model consists of time-dependent equations for the concentration of dissolved species, the liquid pressure and the electrical potential. The complete set of nonlinear equations is solved using the finite-volume method. The nonlinear boundary conditions dealing with corrosion are introduced at the steel-concrete interface where they are implicitly coupled with the mass transport model in the concrete structure. Both the case of free corrosion and potentiostatic polarisation are discussed in a one dimensional model.

  20. An artifical corrosion protocol for lap-splices in aircraft skin

    NASA Technical Reports Server (NTRS)

    Shaw, Bevil J.

    1994-01-01

    This paper reviews the progress to date to formulate an artificial corrosion protocol for the Tinker AFB C/KC-135 Corrosion Fatigue Round Robin Test Program. The project has provided new test methods to faithfully reproduce the corrosion damage within a lap-splice by accelerated means, the rationale for a new laboratory test environment, and a means for corrosion damage quantification. The approach is pragmatic and the resulting artificial corrosion protocol lays the foundation for future research in the assessment of aerospace alloys. The general means for quantification of corrosion damage has been presented in a form which can be directly applied to structural integrity calculations.

  1. [Conservative treatment improved corrosive esophagitis and pneumomediastinum in a patient who ingested bleaching agent containing sodium hypochlorite and sodium hydroxide].

    PubMed

    Nakano, Hiroshi; Iseki, Ken; Ozawa, Akiko; Tominaga, Aya; Sadahiro, Ryoichi; Otani, Koichi

    2014-03-01

    A 69-year-old man was admitted to the emergency department 3 hours after ingestion of a bleaching agent containing hypochlorous acid and sodium hydroxide in a suicide attempt. Enhanced chest computed tomography scans taken on admission indicated an edematous esophagus and air bubbles in the mediastinum. He underwent endotracheal intubation and mechanical ventilation until day 9 because of laryngeal edema. On day 10, his endoscopy indicated diffuse reddish mucosal hyperemia, erosions, and lacerated mucosal lesions in the esophagus that were indicative of grade 2b corrosive esophagitis. Treatment with a proton pump inhibitor was initiated, with which the condition of the esophagus improved, and on day 44, a slight stricture of the upper part of the esophagus was observed. He was discharged on day 64 without any complaints. The ingestion of sodium hypochlorite induces corrosive esophagitis and acute phase of gastritis. Ingestion of any corrosive agent is known as a risk factor for esophagus cancer in the long-term. In such cases with esophageal stricture, esophagectomy is recommended for preventing esophagus cancer. Considering the age of the patient, however, he did not undergo esophagectomy.

  2. A Capsule-Type Electromagnetic Acoustic Transducer for Fast Screening of External Corrosion in Nonmagnetic Pipes.

    PubMed

    Li, Yong; Cai, Rui; Yan, Bei; Zainal Abidin, Ilham Mukriz; Jing, Haoqing; Wang, Yi

    2018-05-28

    For fuel transmission and structural strengthening, small-diameter pipes of nonmagnetic materials are extensively adopted in engineering fields including aerospace, energy, transportation, etc. However, the hostile and corrosive environment leaves them vulnerable to external corrosion which poses a severe threat to structural integrity of pipes. Therefore, it is imperative to nondestructively detect and evaluate the external corrosion in nonmagnetic pipes. In light of this, a capsule-type Electromagnetic Acoustic Transducer (EMAT) for in-situ nondestructive evaluation of nonmagnetic pipes and fast screening of external corrosion is proposed in this paper. A 3D hybrid model for efficient prediction of responses from the proposed transducer to external corrosion is established. Closed-form expressions of field quantities of electromagnetics and EMAT signals are formulated. Simulations based on the hybrid model indicate feasibility of the proposed transducer in detection and evaluation of external corrosion in nonmagnetic pipes. In parallel, experiments with the fabricated transducer have been carried out. Experimental results are supportive of the conclusion drawn from simulations. The investigation via simulations and experiments implies that the proposed capsule-type EMAT is capable of fast screening of external corrosion, which is beneficial to the in-situ nondestructive evaluation of small-diameter nonmagnetic pipes.

  3. The Effect of Rod-Shaped Long-Period Stacking Ordered Phases Evolution on Corrosion Behavior of Mg95.33Zn2Y2.67 Alloy

    PubMed Central

    Wang, Jingfeng; Jiang, Weiyan; Li, Yang; Ma, Yao

    2018-01-01

    The morphology evolution of long-period stacking ordered (LPSO) phases on corrosion behavior of Mg95.33Zn2Y2.67 alloy is investigated systematically during as-cast, pre-extrusion heat-treated, as-extruded and post-extrusion heat-treated conditions. The second phases in the as-cast alloy are only LPSO phases with a few Y particles. The pre-extrusion heat treatment changed LPSO phases from blocks into a rudimentary rod shape with lamellar structure, subsequently into fine fragments by extrusion, and then into a regular rod shape with lamellar structure followed by post-extrusion heat treatment. Immersion tests and electrochemical measurements in 3.5 wt % NaCl solution reveal that the post-extrusion heat-treated alloy has the best corrosion resistance with the lowest corrosion rate. This is attributed to the rod-shaped LPSO phases, which could hinder corrosion proceeding, and result in corrosion orientated along the direction of rods and forming relatively dense long-strip corrosion products. Our findings demonstrate that the improved corrosion resistance of magnesium alloys with LPSO phases can be tailored effectively by the proceeding technology and post-heat treatment. PMID:29772721

  4. Superhydrophobic Post Treatment and Coating Extenders for Improved Asset Sustainability

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven; Montgomery, Eliza L.; Calle, Luz M.

    2015-01-01

    Launch structures, hardware, and ground support equipment, at NASA's John F. Kennedy Space Center in Florida, are exposed to a highly corrosive natural coastal marine environment. In addition, during launches, rocket exhaust deposition is also highly corrosive. Superhydrophobic coatings are being considered for additional corrosion protection on existing structures to enhance corrosion resistance and add an additional layer of protection against harsh environmental elements. These coatings have come into their own recently, and are now being investigated as corrosion protective coatings due to their water repelling capability. These coatings can be used on existing coatings, newly coated materials, or used on bare substrates. The coatings are not suitable for permanent corrosion protection, but can be used where additional corrosion control is desired or only when temporary corrosion control is needed, such as in hardware sitting on a launch pad for 30-45 days prior to a launch. In this study, superhydrophobic coatings were applied on various coated and uncoated substrates and exposed to the spaceport environment for various times up to 60 days. This paper highlights the current results of the superhydrophobic coatings performance evaluated by X-ray photoelectron spectroscopy, and contact angle measurements.

  5. Modeling corrosion inhibition efficacy of small organic molecules as non-toxic chromate alternatives using comparative molecular surface analysis (CoMSA).

    PubMed

    Fernandez, Michael; Breedon, Michael; Cole, Ivan S; Barnard, Amanda S

    2016-10-01

    Traditionally many structural alloys are protected by primer coatings loaded with corrosion inhibiting additives. Strontium Chromate (or other chromates) have been shown to be extremely effectively inhibitors, and find extensive use in protective primer formulations. Unfortunately, hexavalent chromium which imbues these coatings with their corrosion inhibiting properties is also highly toxic, and their use is being increasingly restricted by legislation. In this work we explore a novel tridimensional Quantitative-Structure Property Relationship (3D-QSPR) approach, comparative molecular surface analysis (CoMSA), which was developed to recognize "high-performing" corrosion inhibitor candidates from the distributions of electronegativity, polarizability and van der Waals volume on the molecular surfaces of 28 small organic molecules. Multivariate statistical analysis identified five prototypes molecules, which are capable of explaining 71% of the variance within the inhibitor data set; whilst a further five molecules were also identified as archetypes, describing 75% of data variance. All active corrosion inhibitors, at a 80% threshold, were successfully recognized by the CoMSA model with adequate specificity and precision higher than 70% and 60%, respectively. The model was also capable of identifying structural patterns, that revealed reasonable starting points for where structural changes may augment corrosion inhibition efficacy. The presented methodology can be applied to other functional molecules and extended to cover structure-activity studies in a diverse range of areas such as drug design and novel material discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A systematic multiscale modeling and experimental approach to protect grain boundaries in magnesium alloys from corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horstemeyer, Mark R.; Chaudhuri, Santanu

    2015-09-30

    A multiscale modeling Internal State Variable (ISV) constitutive model was developed that captures the fundamental structure-property relationships. The macroscale ISV model used lower length scale simulations (Butler-Volmer and Electronics Structures results) in order to inform the ISVs at the macroscale. The chemomechanical ISV model was calibrated and validated from experiments with magnesium (Mg) alloys that were investigated under corrosive environments coupled with experimental electrochemical studies. Because the ISV chemomechanical model is physically based, it can be used for other material systems to predict corrosion behavior. As such, others can use the chemomechanical model for analyzing corrosion effects on their designs.

  7. Stress corrosion cracking properties of 15-5PH steel

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  8. Mechanical behavior of precipitation hardenable steels exposed to highly corrosive environment

    NASA Technical Reports Server (NTRS)

    Rosa, Ferdinand

    1994-01-01

    Unexpected occurrences of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15 - 5 PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a 3.5 percent NaCl aqueous solution. The material selected for the study was 15 - 5 PH steel in the H 900 condition. The Slow Strain Rate technique was used to test the metallic specimens.

  9. Steel Bar corrosion monitoring based on encapsulated piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Tang, Tianyou

    2018-05-01

    The durability of reinforced concrete has a great impact on the structural bearing capacity, while the corrosion of steel bars is the main reason for the degradation of structural durability. In this paper, a new type of encapsulated cement based piezoelectric sensor is developed and its working performance is verified. The consistency of the finite element simulation and the experimental results shows the feasibility of monitoring the corrosion of steel bars using encapsulated piezoelectric sensors. The research results show that the corrosion conditions of the steel bars can be determined by the relative amplitude of the measured signal through the encapsulated piezoelectric sensor.

  10. Corrosion behavior of ultrafine-grained AA2024 aluminum alloy produced by cryorolling

    NASA Astrophysics Data System (ADS)

    Laxman Mani Kanta, P.; Srivastava, V. C.; Venkateswarlu, K.; Paswan, Sharma; Mahato, B.; Das, Goutam; Sivaprasad, K.; Krishna, K. Gopala

    2017-11-01

    The objectives of this study were to produce ultrafine-grained (UFG) AA2024 aluminum alloy by cryorolling followed by aging and to evaluate its corrosion behavior. Solutionized samples were cryorolled to 85% reduction in thickness. Subsequent aging resulted in a UFG structure with finer precipitates of Al2CuMg in the cryorolled alloy. The (1) solutionized and (2) solutionized and cryorolled samples were uniformly aged at 160°C/24 h and were designated as CGPA and CRPA, respectively; these samples were subsequently subjected to corrosion studies. Potentiodynamic polarization studies in 3.5wt% NaCl solution indicated an increase in corrosion potential and a decrease in corrosion current density for CRPA compared to CGPA. In the case of CRPA, electrochemical impedance spectroscopic studies indicated the presence of two complex passive oxide layers with a higher charge transfer resistance and lower mass loss during intergranular corrosion tests. The improved corrosion resistance of CRPA was mainly attributed to its UFG structure, uniform distribution of fine precipitates, and absence of coarse grain-boundary precipitation and associated precipitate-free zones as compared with the CGPA alloy.

  11. Sustainability and durability analysis of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.

    2017-09-01

    The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.

  12. Hybrid composite rebars for smart concrete structures

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, R. K.; Belarbi, Abdeldjelil; Chandrashekhara, K.; Watkins, Steve E.

    1997-05-01

    In reinforced concrete structures, steel reinforcing bars (rebars) corrode with time and thus reduce their life span. Composite rebars can be used in lieu of steel rebars to overcome this problem. The conventional composite rebars designed to take tensile force are composed of unidirectional fibers in a resin matrix, and are linearly elastic till failure; thus providing a brittle behavior. The problems of corrosion and brittle behavior can be solved by using a composite rebar which fails gradually under tension. The rebar consists of a hybrid composite system in conjunction with helical fibers. The hybrid system gives the rebar its initial stiffness and enables pseudo-yielding at lower strains. As the strain increase, the load is gradually transferred from the hybrid core to the helical fibers, which enables the rebar to undergo large elongations before failure. Embedded fiber optic sensors in the rebar can be used for health monitoring over a long period of time. The proof of concept and preliminary test results are described in the paper.

  13. Identification of controlling factors for the initiation of corrosion of fresh concrete sewers.

    PubMed

    Jiang, Guangming; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L

    2015-09-01

    The development of concrete corrosion in new sewer pipes undergoes an initiation process before reaching an active corrosion stage. This initiation period is assumed to last several months to years but the key factors affecting the process, and its duration, are not well understood. This study is therefore focused on this initial stage of the corrosion process and the effect of key environmental factors. Such knowledge is important for the effective management of corrosion in new sewers, as every year of life extension of such systems has a very high financial benefit. This long-term (4.5 year) study has been conducted in purpose-built corrosion chambers that closely simulated the sewer environment, but with control of three key environmental factors being hydrogen sulfide (H2S) gas phase concentration, relative humidity and air temperature. Fresh concrete coupons, cut from an industry-standard sewer pipe, were exposed to the corrosive conditions in the chambers, both in the gas phase and partially submerged in wastewater. A total of 36 exposure conditions were investigated to determine the controlling factors by regular retrieval of concrete coupons for detailed analysis of surface pH, sulfur compounds (elemental sulfur and sulfate) and concrete mass loss. Corrosion initiation times were thus determined for different exposure conditions. It was found that the corrosion initiation time of both gas-phase and partially-submerged coupons was positively correlated with the gas phase H2S concentration, but only at levels of 10 ppm or below, indicating that sulfide oxidation rate rather than the H2S concentration was the limiting factor during the initiation stage. Relative humidity also played a role for the corrosion initiation of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as these coupons were in direct contact with the sewage and hence did have sufficient moisture to enable the microbial processes to proceed. The corrosion initiation time was also shortened by higher gas temperature due to its positive impact on reaction kinetics. These findings provide real opportunities for pro-active sewer asset management with the aim to delay the on-set of the corrosion processes, and hence extend the service life of sewers, through improved prediction and optimization capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Proceedings of the Tri-Service Conference on Corrosion Held in Atlantic City, New Jersey on 17-19 October 1989

    DTIC Science & Technology

    1989-10-19

    installation. 4. Corrosion inhibiting compounds need to be applied in the final assealbly of models to all corrosion prone areas of the structure, e.g...Figure 12 shows an example of poor surface treatment of a previously repaired stringer area. Application of a corrosion inhibiting compound may have... compounds and a good corrosion control maintenance program. REFERENCE U. G. Goranson and M. Miller, "Aging Fleet - Aging Fleet Evaluation Program

  15. Defense Infrastructure: DOD’s 2013 Facilities Corrosion Study Addressed Reporting Elements

    DTIC Science & Technology

    2014-03-27

    the coating system to metal structures helped prevent corrosion and provided resistance to fire . For the second element, to review a sampling of...noted, was to apply an epoxy coating system to metal structures to prevent corrosion and provide fire resistance. In 2006, DOD applied an epoxy... heat exchange  Fuel distribution  Plumbing  Bridge  Fuel storage  Roof  Building exterior—paint  Generator  Signage  Compressor  Hot water

  16. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Fluxmore » Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.« less

  17. Structural design guidelines for concrete bridge decks reinforced with corrosion-resistant reinforcing bars.

    DOT National Transportation Integrated Search

    2014-10-01

    This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...

  18. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOEpatents

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  19. [The effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental casting alloys after electrochemical corrosion].

    PubMed

    Qiao, Guang-yan; Zhang, Li-xia; Wang, Jue; Shen, Qing-ping; Su, Jian-sheng

    2014-08-01

    To investigate the effect of epigallocatechin gallate (EGCG) on the surface properties of nickel-chromium dental alloys after electrochemical corrosion. The surface morphology and surface structure of nickel-chromium dental alloys were examined by stereomicroscope and scanning electron microscopy before and after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. The surface element component and chemical states of nickel-chromium dental alloys were analyzed by X-ray photoelectron spectrograph after electrochemical tests in 0 g/L and 1.0 g/L EGCG artificial saliva. More serious corrosion happened on the surface of nickel-chromium alloy in 1.0 g/L EGCG artificial saliva than in 0 g/L EGCG. The diameters of corrosion pits were smaller, and the dendrite structure of the alloy surface was not affected in 0 g/L EGCG. While the diameters of corrosion pits were larger, the dendritic interval of the alloy surface began to merge, and the dendrite structure was fuzzy in 1.0 g/L EGCG. In addition, the O, Ni, Cr, Be, C and Mo elements were detected on the surface of nickel-chromium alloys after sputtered for 120 s in 0 g/L EGCG and 1.0 g/L EGCG artificial saliva after electrochemical corrosion, and the surface oxides were mainly NiO and Cr(2)O(3). Compared with 0 g/L EGCG artificial saliva, the content of O, NiO and Cr(2)O(3) were lower in 1.0 g/L EGCG. The results of surface morphology and the corrosion products both show that the corrosion resistance of nickel-chromium alloys become worse and the oxide content of corrosion products on the surface reduce in 1.0 g/L EGCG artificial saliva.

  20. Effects of laser polishing on surface microstructure and corrosion resistance of additive manufactured CoCr alloys

    NASA Astrophysics Data System (ADS)

    Wang, W. J.; Yung, K. C.; Choy, H. S.; Xiao, T. Y.; Cai, Z. X.

    2018-06-01

    Laser polishing of 3D printed metal components has drawn great interest in view of its potential applications in the dental implant industries. In this study, corrosion resistance, surface composition and crystalline structure of CoCr alloys were investigated. The corrosion resistance, micromorphology, composition, phase transformations and crystalline structures of samples were characterized using an electrochemical analyzer, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and transmission electron microscope (TEM), respectively. The results indicate that high laser powers and low object distances within a certain range can facilitate the formation of complex oxide films, which exhibits high corrosion resistance. Further, object distances have a significant influence on cooling rates during the solidification of the melt pool in laser polishing, and fast cooling generates vast amounts of vacancies and defects, which result in the crystalline phase transformation from γ to ε. Consequently, the formed oxides play an important role in corrosion resistance on the outer layer, and inner layer with γ phase also helps keep the CoCr alloys in a stable structure with high resistant to corrosion. The two process parameters in laser polishing, laser power and object distances, are demonstrated as being important for controlling the surface microstructures and corrosion resistance of the additive manufactured CoCr alloy components.

  1. The use of electrochemical impedance spectroscopy (EIS) to measure the corrosion of metals in contact with wood

    Treesearch

    Samuel L. Zelinka; Douglas R. Rammer

    2005-01-01

    Although preservative treatments prolong the life of wood, they can also contribute to the corrosion of fasteners. The corrosion of fasteners merits further study because it can affect the long-term durability of structures and fundamental knowledge of corrosion in wood is limited. The goal of this study is to determine the viability of electrochemical impedance...

  2. Corrosion process monitoring by AFM higher harmonic imaging

    NASA Astrophysics Data System (ADS)

    Babicz, S.; Zieliński, A.; Smulko, J.; Darowicki, K.

    2017-11-01

    The atomic force microscope (AFM) was invented in 1986 as an alternative to the scanning tunnelling microscope, which cannot be used in studies of non-conductive materials. Today the AFM is a powerful, versatile and fundamental tool for visualizing and studying the morphology of material surfaces. Moreover, additional information for some materials can be recovered by analysing the AFM’s higher cantilever modes when the cantilever motion is inharmonic and generates frequency components above the excitation frequency, usually close to the resonance frequency of the lowest oscillation mode. This method has been applied and developed to monitor corrosion processes. The higher-harmonic imaging is especially helpful for sharpening boundaries between objects in heterogeneous samples, which can be used to identify variations in steel structures (e.g. corrosion products, steel heterogeneity). The corrosion products have different chemical structures because they are composed of chemicals other than the original metal base (mainly iron oxides). Thus, their physicochemical properties are different from the primary basis. These structures have edges at which higher harmonics should be more intense because of stronger interference between the tip and the specimen structure there. This means that the AFM’s higher-harmonic imaging is an excellent tool for monitoring surficial effects of the corrosion process.

  3. Effect of calcium nitrite on the properties of concrete used in bridge decks.

    DOT National Transportation Integrated Search

    1992-01-01

    Chloride-induced corrosion of the reinforcing steel in bridge decks can impair its structural integrity and cause spalling, which reduces the ride quality of the deck. One system to prevent corrosion involves the use of corrosion inhibitors in freshl...

  4. On-Line Corrosion Monitoring of Plate Structures Based on Guided Wave Tomography Using Piezoelectric Sensors.

    PubMed

    Rao, Jing; Ratassepp, Madis; Lisevych, Danylo; Hamzah Caffoor, Mahadhir; Fan, Zheng

    2017-12-12

    Corrosion is a major safety and economic concern to various industries. In this paper, a novel ultrasonic guided wave tomography (GWT) system based on self-designed piezoelectric sensors is presented for on-line corrosion monitoring of large plate-like structures. Accurate thickness reconstruction of corrosion damages is achieved by using the dispersive regimes of selected guided waves and a reconstruction algorithm based on full waveform inversion (FWI). The system makes use of an array of miniaturised piezoelectric transducers that are capable of exciting and receiving highly dispersive A0 Lamb wave mode at low frequencies. The scattering from transducer array has been found to have a small effect on the thickness reconstruction. The efficiency and the accuracy of the new system have been demonstrated through continuous forced corrosion experiments. The FWI reconstructed thicknesses show good agreement with analytical predictions obtained by Faraday's law and laser measurements, and more importantly, the thickness images closely resemble the actual corrosion sites.

  5. Atomistic Modeling of Corrosion Events at the Interface between a Metal and Its Environment

    DOE PAGES

    Taylor, Christopher D.

    2012-01-01

    Atomistic simulation is a powerful tool for probing the structure and properties of materials and the nature of chemical reactions. Corrosion is a complex process that involves chemical reactions occurring at the interface between a material and its environment and is, therefore, highly suited to study by atomistic modeling techniques. In this paper, the complex nature of corrosion processes and mechanisms is briefly reviewed. Various atomistic methods for exploring corrosion mechanisms are then described, and recent applications in the literature surveyed. Several instances of the application of atomistic modeling to corrosion science are then reviewed in detail, including studies ofmore » the metal-water interface, the reaction of water on electrified metallic interfaces, the dissolution of metal atoms from metallic surfaces, and the role of competitive adsorption in controlling the chemical nature and structure of a metallic surface. Some perspectives are then given concerning the future of atomistic modeling in the field of corrosion science.« less

  6. Structural health monitoring of localized internal corrosion in high temperature piping for oil industry

    NASA Astrophysics Data System (ADS)

    Eason, Thomas J.; Bond, Leonard J.; Lozev, Mark G.

    2015-03-01

    Crude oil is becoming more corrosive with higher sulfur concentration, chloride concentration, and acidity. The increasing presence of naphthenic acids in oils with various environmental conditions at temperatures between 150°C and 400°C can lead to different internal degradation morphologies in refineries that are uniform, non-uniform, or localized pitting. Improved corrosion measurement technology is needed to better quantify the integrity risk associated with refining crude oils of higher acid concentration. This paper first reports a consolidated review of corrosion inspection technology to establish the foundation for structural health monitoring of localized internal corrosion in high temperature piping. An approach under investigation is to employ flexible ultrasonic thin-film piezoelectric transducer arrays fabricated by the sol-gel manufacturing process for monitoring localized internal corrosion at temperatures up to 400°C. A statistical analysis of sol-gel transducer measurement accuracy using various time of flight thickness calculation algorithms on a flat calibration block is demonstrated.

  7. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  8. Effects of Corrosion and Fatigue on the Load-Carrying Capacity of Structural and Reinforcing Steel

    DOT National Transportation Integrated Search

    1994-03-01

    Pitting and crevice corrosion have profound effects on the fatigue life of structural and reinforcing steels used in bridge construction. Stress concentration factors were measured on actual corroded plates with strain gage instrumentation. Using cor...

  9. Factors that influence the efficiency of electrochemical chloride extraction during corrosion mitigation in reinforced concrete structures.

    DOT National Transportation Integrated Search

    2006-01-01

    Electrochemical chloride extraction (ECE) is an electrochemical bridge restoration method for mitigating corrosion in reinforced concrete structures. ECE does this by moving chlorides away from the reinforcement and out of the concrete while simultan...

  10. 49 CFR 192.467 - External corrosion control: Electrical isolation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... submerged pipeline must be electrically isolated from other underground metallic structures, unless the pipeline and the other structures are electrically interconnected and cathodically protected as a single... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected copper...

  11. 49 CFR 192.467 - External corrosion control: Electrical isolation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... submerged pipeline must be electrically isolated from other underground metallic structures, unless the pipeline and the other structures are electrically interconnected and cathodically protected as a single... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected copper...

  12. 49 CFR 192.467 - External corrosion control: Electrical isolation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... submerged pipeline must be electrically isolated from other underground metallic structures, unless the pipeline and the other structures are electrically interconnected and cathodically protected as a single... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected copper...

  13. Environmentally Compatible Vapor-Phase Corrosion Inhibitor for Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.

    2003-01-01

    USA-SRB Element is responsible for the assembly and refurbishment of the non-motor components of the SRB as part of Space Shuttle. Thrust Vector Control (TVC) frames structurally support components of the TVC system located in the aft skirt of the SRB. TVC frames are exposed to the seacoast environment after refurbishment and, also, to seawater immersion after splashdown, and during tow-back to CCAFS-Hangar AF refurbishment facilities. During refurbishment operations it was found that numerous TVC frames were experiencing internal corrosion and coating failures, both from salt air and seawater intrusions. Inspectors using borescopes would visually examine the internal cavities of the complicated aluminum alloy welded tubular structure. It was very difficult for inspectors to examine cavity corners and tubing intersections and particularly, to determine the extent of the corrosion and coating anomalies. Physical access to TVC frame internal cavities for corrosion removal and coating repair was virtually impossible, and an improved method using a Liquid (water based) Vapor-phase Corrosion Inhibitor (LVCI) for preventing initiation of new corrosion, and mitigating and/or stopping existing corrosion growth was recommended in lieu of hazardous paint solvents and high VOC / solvent based corrosion inhibitors. In addition, the borescopic inspection method used to detect corrosion, and/or coating anomalies had severe limitations because of part geometry, and an improved non-destructive inspection (NDI) method using Neutron Radiography (N-Ray) was also recommended.

  14. Environmentally Compatible Vapor-Phase Corrosion Inhibitor for Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.; Martin, David (Technical Monitor)

    2002-01-01

    USA-SRB Element is responsible for the assembly and refurbishment of the non-motor components of the SRB as part of Space Shuttle. Thrust Vector Control (TVC) frames structurally support components of the TVC system located in the aft skirt of the SRB (Solid Rocket Booster). TVC frames are exposed to the seacoast environment after refurbishment and, also, to seawater immersion after splashdown, and during tow-back to CCAFS-Hangar AF refurbishment facilities. During refurbishment operations it was found that numerous TVC frames were experiencing internal corrosion and coating failures, both from salt air and seawater intrusions. Inspectors using borescopes would visually examine the internal cavities of the complicated aluminum alloy welded tubular structure. It was very difficult for inspectors to examine cavity corners and tubing intersections and particularly. to determine the extent of the corrosion and coating anomalies. Physical access to TVC frame internal cavities for corrosion removal and coating repair was virtually impossible, and an improved method using a Liquid (water based) Vapor-phase Corrosion Inhibitor (LVCI) for preventing initiation of new corrosion, and mitigating and/or stopping existing corrosion growth was recommended in lieu of hazardous paint solvents and high VOC/solvent based corrosion inhibitors. In addition, the borescopic inspection method used to detect corrosion, and/or coating anomalies had severe limitations because of part geometry, and an improved non-destructive inspection (NDI) method using Neutron Radiography (N-Ray) was also recommended.

  15. Treatment Prevents Corrosion in Steel and Concrete Structures

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In the mid-1990s, to protect rebar from corrosion, NASA developed an electromigration technique that sends corrosion-inhibiting ions into rebar to prevent rust, corrosion, and separation from the surrounding concrete. Kennedy Space Center worked with Surtreat Holding LLC, of Pittsburgh, Pennsylvania, a company that had developed a chemical option to fight structural corrosion, combining Surtreat's TPS-II anti-corrosive solution and electromigration. Kennedy's materials scientists reviewed the applicability of the chemical treatment to the electromigration process and determined that it was an effective and environmentally friendly match. Ten years later, NASA is still using this approach to fight concrete corrosion, and it has also developed a new technology that will further advance these efforts-a liquid galvanic coating applied to the outer surface of reinforced concrete to protect the embedded rebar from corrosion. Surtreat licensed this new coating technology and put it to use at the U.S. Army Naha Port, in Okinawa, Japan. The new coating prevents corrosion of steel in concrete in several applications, including highway and bridge infrastructures, piers and docks, concrete balconies and ceilings, parking garages, cooling towers, and pipelines. A natural compliment to the new coating, Surtreat's Total Performance System provides diagnostic testing and site analysis to identify the scope of problems for each project, manufactures and prescribes site-specific solutions, controls material application, and verifies performance through follow-up testing and analysis.

  16. Environmentally Compatible Vapor-Phase Corrosion Inhibitor for Space Shuttle Hardware

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Hall, Phillip B.; McCool, Alex (Technical Monitor)

    2001-01-01

    USA-SRB Element is responsible for the assembly and refurbishment of the non-motor components of the SRB as part of Space Shuttle. Thrust Vector Control (TVC) frames structurally support components of the TVC system located in the aft skirt of the SRB. TVC frames are exposed to the seacoast environment after refurbishment and, also, to seawater immersion after splashdown, and during tow-back to CCAFS-Hangar AF refurbishment facilities. During refurbishment operations it was found that numerous TVC frames were experiencing internal corrosion and coating failures, both from salt air and seawater intrusions. Inspectors using borescopes would visually examine the internal cavities of the complicated aluminum alloy welded tubular structure. It was very difficult for inspectors to examine cavity corners and tubing intersections and particularly, to determine the extent of the corrosion and coating anomalies. Physical access to TVC frame internal cavities for corrosion removal and coating repair was virtually impossible, and an improved method using a Liquid (water based) Vapor-phase Corrosion Inhibitor (LVCI) for preventing initiation of new corrosion, and mitigating and/or stopping existing corrosion growth was recommended in lieu of hazardous paint solvents and high VOC/solvent based corrosion inhibitors. In addition, the borescopic inspection method used to detect corrosion, and/or coating anomalies had severe limitations because of part geometry, and an improved non-destructive inspection (NDI) method using Neutron Radiography (N-Ray) was also recommended.

  17. A Survey of Corrosion and Conditions of Corrosion Protection Systems in Civil Works Structures of the U.S. Army Corps of Engineers

    DTIC Science & Technology

    2014-09-01

    corrosion: coatings and cathodic protection (CP). Coatings consist of paints, epoxies, enamels , metalizing, and other coatings. CP is a chem- ical means...environmental factors such as water quality and resistivity. One of the major problems associated with lock gates is structural cracking in the...One of the problems described by Mr. Davis is fatigue crack growth resulting from the poor welding usually associated with stress risers and

  18. Adhesive bonding and the use of corrosion resistant primers. [for metal surface preparation

    NASA Technical Reports Server (NTRS)

    Hockridge, R. R.; Thibault, H. G.

    1972-01-01

    The use of an anti-corrosive primer has been shown to be essential to assure survival of a bonded structure in a hostile environment, particularly if a stress is to be applied to the adhesively bonded joint during the environmental exposure. For example, the Lockheed L-1011 TriStar assembly, after exhaustive evaluation tests specifies use of chromate filled inhibitive polysulfide sealants, and use of corrosion inhibiting adhesive primers prior to structural bonding with film adhesive.

  19. 40 CFR 280.11 - Interim prohibition for deferred UST systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Will prevent releases due to corrosion or structural failure for the operational life of the UST system; (2) Is cathodically protected against corrosion, constructed of noncorrodible material, steel clad... substance. (b) Notwithstanding paragraph (a) of this section, an UST system without corrosion protection may...

  20. 40 CFR 280.11 - Interim prohibition for deferred UST systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Will prevent releases due to corrosion or structural failure for the operational life of the UST system; (2) Is cathodically protected against corrosion, constructed of noncorrodible material, steel clad... substance. (b) Notwithstanding paragraph (a) of this section, an UST system without corrosion protection may...

  1. 40 CFR 280.11 - Interim prohibition for deferred UST systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Will prevent releases due to corrosion or structural failure for the operational life of the UST system; (2) Is cathodically protected against corrosion, constructed of noncorrodible material, steel clad... substance. (b) Notwithstanding paragraph (a) of this section, an UST system without corrosion protection may...

  2. 40 CFR 280.11 - Interim prohibition for deferred UST systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Will prevent releases due to corrosion or structural failure for the operational life of the UST system; (2) Is cathodically protected against corrosion, constructed of noncorrodible material, steel clad... substance. (b) Notwithstanding paragraph (a) of this section, an UST system without corrosion protection may...

  3. 40 CFR 280.11 - Interim prohibition for deferred UST systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Will prevent releases due to corrosion or structural failure for the operational life of the UST system; (2) Is cathodically protected against corrosion, constructed of noncorrodible material, steel clad... substance. (b) Notwithstanding paragraph (a) of this section, an UST system without corrosion protection may...

  4. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Inspection of the Engineering Condition of Underwater Concrete Structures.

    DTIC Science & Technology

    1989-04-01

    corrosion of rebar Spalling of concrete surface IIl Detect hidden and beginning Location of rebar damage Beginning corrosion of rebar ...honeycombs MD Moderate defects: spalling of concrete minor corrosion of exposed rebar rust stains along rebar with or without visible cracking softening of...velocity. . Replenishment of the attacking chemical hgents. h. Higher temperatures. i. Corrosion of reinforcing steel. 46. Note that concrete which

  5. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    NASA Astrophysics Data System (ADS)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  6. Structural strength deterioration of coastal bridge piers considering non-uniform corrosion in marine environments

    NASA Astrophysics Data System (ADS)

    Guo, Anxin; Yuan, Wenting; Li, Haitao; Li, Hui

    2018-04-01

    In the aggressive marine environment over a long-term service period, coastal bridges inevitably sustain corrosion-induced damage due to high sea salt and humidity. This paper investigates the strength reduction of coastal bridges, especially focusing on the effects of non-uniform corrosion along the height of bridge piers. First, the corrosion initiation time and the degradation of reinforcement and concrete are analyzed for bridge piers in marine environments. To investigate the various damage modes of the concrete cover, a discretization method with fiber cells is used for calculating time-dependent interaction diagrams of cross-sections of the bridge piers at the atmospheric zone and the splash and tidal zone under a combination of axial force and bending moment. Second, the shear strength of these aging structures is analyzed. Numerical simulation indicates that the strength of a concrete pier experiences dramatic reduction from corrosion initiation to the spalling of the concrete cover. Strength loss in the splash and tidal zone is more significant than in the atmospheric zone when structures' service time is assumed to be the same.

  7. Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk; Kim, Sang-Heon; Kim, Jong-Sang; Lee, Jae-Won; Shon, Je-Ha; Jin, Young-Sool

    2016-01-01

    The effects of Mg and Al content on the microstructure and corrosion resistance of hot-dip Zn-Mg-Al alloycoated steel sheets were investigated. Pure Zn and Zn-based alloy coatings containing Mg (0-5 wt%) and Al (0.2-55 wt%) were produced by a hot-dip galvanizing method. Mg and Al addition induced formation of intermetallic microstructures, like primary Zn, Zn/MgZn2 binary eutectic, dendric Zn/Al eutectoid, and Zn/Al/MgZn2/ternary eutectic structures in the coating layer. MgZn2-related structures (Zn/MgZn2, Zn/Al/MgZn2, MgZn2) played an important role in increasing the corrosion resistance of Zn-Mg-Al alloy-coated steel sheets. Zn-3%Mg-2.5%Al coating layer containing a large volume of lamellar-shaped Zn/MgZn2 binary eutectic structures showed the best cut-edge corrosion resistance. The analysis indicated that Mg dissolved from MgZn2 in the early stage of corrosion and migrated to the cathodic region of steel-exposed cut-edge area to form dense and ordered protective corrosion products, leading to prolonged cathodic protection of Zn-Mg-Al alloy-coated steel sheets.

  8. Effect of Ca(OH)2, NaCl, and Na2SO4 on the corrosion and electrochemical behavior of rebar

    NASA Astrophysics Data System (ADS)

    Jin, Zuquan; Zhao, Xia; Zhao, Tiejun; Hou, Baorong; Liu, Ying

    2017-05-01

    The corrosion of rebar in reinforced concrete in marine environments causes significant damage to structures built in ocean environments. Studies on the process and mechanism of corrosion of rebar in the presence of multiple ions may help to control damage and predict the service life of reinforced concrete structures in such environments. The effect of interactions between sulfate and chloride ions and calcium hydroxide on the electrochemical behavior of rebar are also important for evaluation of structure durability. In this work, electrochemical impedance spectroscopy (EIS) plots of rebar in Ca(OH)2 solution and cement grout, including NaCl and Na2SO4 as aggressive salts, were measured for diff erent immersion times. The results show that corrosion of rebar was controlled by the rate of charge transfer as the rebar was exposed to chloride solution. In the presence of high concentrations of sulfate ions in the electrolyte, generation and dissolution of the passive film proceeded simultaneously and corrosion was mainly controlled by the diff usion rate. When Na2SO4 and NaCl were added to Ca(OH)2 solution, the instantaneous corrosion rate decreased by a factor of 10 to 20 as a result of the higher pH of the corroding solution.

  9. 78 FR 72598 - Airworthiness Directives; British Aerospace Regional Aircraft Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... product. The MCAI describes the unsafe condition as stress corrosion cracking of the main landing gear.... The subsequent investigation revealed stress corrosion cracking of the MLG yoke pintle housing as a..., consequently, stress corrosion cracking. This condition, if not corrected, could lead to structural failure of...

  10. Application of response surface methodology method in designing corrosion inhibitor

    NASA Astrophysics Data System (ADS)

    Asmara, Y. P.; Athirah; Siregar, J. P.; Kurniawan, T.; Bachtiar, D.

    2017-10-01

    In oil and gas pipelines and offshore structure, inhibitors have been considered to be the first choice to reduce corrosion rate. There are many corrosion inhibitor compositions available in the market. To produce the best corrosion inhibitor requires many experimental data which is not efficient. These experiments used response surface methodology (RSM) to select corrosion inhibitor compositions. The experiments investigated effects of corrosion inhibition on corrosion rate of low carbon steel in 3% NaCl solution with different concentrations of selected main inhibitor compositions which are ethyl acetate (EA), ethylene glycol (EG) and sodium benzoate (SB). Corrosion rate were calculated using linear polarization resistance (LPR). All of the experiments were set in natural conditions at pH 7. MINITAB® version 15 was used for data analysis. It is shown that a quadratic model is a representative model can predict best corrosion inhibitor composition comprehensibly.

  11. Evaluation of bridge cables corrosion using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Ou, Jinping

    2010-04-01

    Owing to the nature of the stress, corrosion of bridge cable may result in catastrophic failure of the structure. However, using electrochemical techniques isn't fully efficient for the detection and control on line of the corrosion phenomenon. A non-destructive testing method based on acoustic emission technique monitoring bridge cable corrosion was explored. The steel strands were placed at room temperature in 5% NaCl solution. Acoustic emission (AE) characteristic parameters were recorded in the whole corrosion experiment process. Based on the plot of cumulated acoustic activity, the bridge cables corrosion included three stages. It can be clearly seen that different stages have different acoustic emission signal characteristics. The AE characteristic parameters would be increased with cables corrosion development. Finally, the bridge cables corrosion experiment with different stress state and different corrosion environment was performed. The results shows that stress magnitude only affects the bridge cable failure time, however, the AE characteristic parameters value has changed a little. It was verified that AE technique can be used to detect the bridge cable early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.

  12. A study of the effects of phosphates on copper corrosion in drinking water: Copper release, electrochemical, and surface analysis approach

    NASA Astrophysics Data System (ADS)

    Kang, Young C.

    The following work is the study to evaluate the impact of corrosion inhibitors on the copper metal in drinking water and to investigate the corrosion mechanism in the presence and absence of inhibitors. Electrochemical experiments were conducted to understand the effect of specific corrosion inhibitors in synthetic drinking water which was prepared with controlled specific water quality parameters. Water chemistry was studied by Inductively Coupled Plasma--Atomic Emission Spectroscopy (ICP--AES) to investigate the copper leaching rate with time. Surface morphology, crystallinity of corrosion products, copper oxidation status, and surface composition were characterized by various solid surface analysis methods, such as Scanning Electron Microscopy/Energy--Dispersive Spectrometry (SEM/EDS), Grazing-Incidence-angle X-ray Diffraction (GIXRD), X-ray Photoelectron Spectroscopy (XPS), and Time-of-Flight Secondary Ions Mass Spectrometry (ToF-SIMS). The purpose of the first set of experiments was to test various electrochemical techniques for copper corrosion for short term before studying a long term loop system. Surface analysis techniques were carried out to identify and study the corrosion products that form on the fresh copper metal surface when copper coupons were exposed to test solutions for 2 days of experiments time. The second phase of experiments was conducted with a copper pipe loop system in a synthetic tap water over an extended period of time, i.e., 4 months. Copper release and electrochemically measured corrosion activity profiles were monitored carefully with and without corrosion inhibitor, polyphosphate. A correlation between the copper released into the solution and the electrochemically measured corrosion activities was also attempted. To investigate corrosion products on the copper pipe samples, various surface analysis techniques were applied in this study. Especially, static mass spectra acquisition and element distribution mapping were carried out by ToF-SIMS. Dynamic SIMS provided shallow depth profile of corroded copper sample. The third set of the experiments was related to electrochemical noise (EN) measurement through copper coupons to pipes. Calculating corrosion rate of a metal and predicting exactly how long it lasts are problematic since the metal corrosion may be caused by combined corrosion types. Many other metals undergo not only uniform corrosion, but localized corrosion. Uniform corrosion may be conducive for copper pipe to prevent it from further severe corrosion and form passivated film, but localized corrosion causes pinhole leaks and limits the copper pipe applications. The objective of this set of experiment is to discuss the application of electrochemical noise approaches to drinking water copper corrosion problems. Specially, a fundamental description of EN is presented including a discussion of how to interpret the results and technique limitations. Although it was indicated with electrochemical analysis that the corrosion activity was affected by orthophosphate addition in the short-term test, no copper-phosphate complex or compound was found by copper surface characterization. Apparently, orthophosphate can inhibit corrosion by adsorption on the copper surface, but cannot form solid complexes with copper in such a short time, 2 days. When polyphosphate was added into recirculating copper pipe system, copper level increased and polarization resistance decreased. Greenish blue residue on the copper pipe was suspected as copper phosphate complex and corrosion inhibition mechanism was proposed.

  13. Characterization of newly synthesized pyrimidine derivatives for corrosion inhibition as inferred from computational chemical analysis

    NASA Astrophysics Data System (ADS)

    El-Taib Heakal, F.; Rizk, S. A.; Elkholy, A. E.

    2018-01-01

    Corrosion of metallic constructions is a serious problem in most industries worldwide that can be controlled via addition of special chemicals having adsorption capability on metal surfaces and hence isolating it from the aggressive environment. These chemicals are characterized by being rich in functional groups containing free lone pairs of electrons and/or π-electrons. In the present study four newly imidazole-pyrimidine based ionic derivatives have been synthesized and their structures were characterized by means of elemental analysis and different spectroscopic techniques. Quantum chemical calculations were carried out to give insights into the structural and electronic characteristics of these fabricated compounds. Monte Carlo simulation was also applied to shed the light on our prepared corrosion inhibitor molecules by examining their aptitude to adsorb on iron surface. Our ultimate goal is to help industries in fighting corrosion by providing them with a cheap and efficient anti-corrosion molecules.

  14. Corrosion sensor for monitoring the service condition of chloride-contaminated cement mortar.

    PubMed

    Lu, Shuang; Ba, Heng-Jing

    2010-01-01

    A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures.

  15. Fatigue strength degradation of metals in corrosive environments

    NASA Astrophysics Data System (ADS)

    Adasooriya, N. D.; Hemmingsen, T.; Pavlou, D.

    2017-12-01

    Structures exposed to aggressive environmental conditions are often subjected to time-dependent loss of coating and loss of material due to corrosion; this causes reduction in the cross-sectional properties of the members, increased surface roughness, surface irregularities and corrosion pits, and degradation of material strengths. These effects have been identified and simulated in different research studies. However, time and corrosive media dependent fatigue strength curves for materials have not been discussed in the design or assessment guidelines for structures. This paper attempts to review the corrosion degradation process and available approaches/models used to determine the fatigue strength of corroded materials and to interpolate corrosion deterioration data. High cycle fatigue and full range fatigue life formulae for fatigue strength of corroded materials are proposed. The above formulae depend on the endurance limit of corroded material, in addition to the stress-life fatigue curve parameters of the uncorroded material. The endurance limit of corroded material can either be determined by a limited number of tests in the very high-cycle fatigue region or predicted by an analytical approach. Comparison with experimentally measured corrosion fatigue behavior of several materials is provided and discussed.

  16. Recent progress to understand stress corrosion cracking in sodium borosilicate glasses: linking the chemical composition to structural, physical and fracture properties

    NASA Astrophysics Data System (ADS)

    Rountree, Cindy L.

    2017-08-01

    This topical review is dedicated to understanding stress corrosion cracking in oxide glasses and specifically the SiO_2{\\text-B_2O_3{\\text-}Na_2O} (SBN) ternary glass systems. Many review papers already exist on the topic of stress corrosion cracking in complex oxide glasses or overly simplified glasses (pure silica). These papers look at how systematically controlling environmental factors (pH, temperature...) alter stress corrosion cracking, while maintaining the same type of glass sample. Many questions still exist, including: What sets the environmental limit? What sets the velocity versus stress intensity factor in the slow stress corrosion regime (Region I)? Can researchers optimize these two effects to enhance a glass’ resistance to failure? To help answer these questions, this review takes a different approach. It looks at how systemically controlling the glass’ chemical composition alters the structure and physical properties. These changes are then compared and contrasted to the fracture toughness and the stress corrosion cracking properties. By taking this holistic approach, researchers can begin to understand the controlling factors in stress corrosion cracking and how to optimize glasses via the initial chemical composition.

  17. Test results of smart aircraft fastener for KC-135 structural integrity

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg

    1998-07-01

    Hidden and inaccessible corrosion in aircraft structures is the number one logistics problem for the US Air Force, with an estimated maintenance cost in excess of $LR 1.0B per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system was developed to provide early warning detection of corrosion-related symptoms in hidden locations of aircraft structures. The SAFE system incorporates an in situ measurement approach that measures and autonomously records several environmental conditions within a Hi-Lok aircraft fastener that could cause corrosion. The SAFE system integrates a miniature electrochemical microsensor array and a time-of-wetness sensor with an ultra low power 8-bit microcontroller and 4- Mbyte solid-state FLASH archival memory to measure evidence of active corrosion. A summary of the technical approach and a detailed analysis of the KC-135 lap joint test coupon results are presented.

  18. Smart fastener for KC-135 structural integrity monitoring

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg

    1997-06-01

    Hidden and inaccessible corrosion in aircraft structures is the number-one logistics problem for the U.S. Air Force, with an estimated maintenance cost in excess of $DOL1.0 billion per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system is being developed to provide early warning detection of corrosion- related symptoms in hidden locations of aircraft structures. The SAFE incorporates an in situ measurement approach that measures and autonomously records several environmental conditions (i.e., pH, temperature, chloride, free potential, time-of-wetness) within a Hi-Lok aircraft fastener that could cause corrosion to occur. The SAFE system integrates a miniature electrochemical microsensor array and a time-of- wetness sensor with an ultra-low-power 8-bit microcontroller and 5-Mbyte solid-state FLASH archival memory to measure the evidence of active corrosion. A summary of the technical approach, system design definition, software architecture, and future field test plans will be presented.

  19. Recent trends in reinforcement corrosion assessment using piezo sensors via electro mechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Visalakshi, Talakokula; Bhalla, Suresh; Gupta, Ashok; Bhattacharjee, Bishwajit

    2014-03-01

    Reinforced concrete (RC) is an economical, versatile and successful construction material as it can be moulded into a variety of shapes and finishes. In most cases, it is durable and strong, performing well throughout its service life. However, in some cases, it does not perform adequately due to various reasons, one of which is the corrosion of the embedded steel bars used as reinforcement. . Although the electro-mechanical impedance (EMI) technique is well established for damage detection and quantification of civil, mechanical and aerospace structures, only limited studies have been reported of its application for rebar corrosion detection in RC structures. This paper presents the recent trends in corrosion assessment based on the model derived from the equivalent structural parameters extracted from the impedance spectrum of concrete-rebar system using the lead zirconate titanate (PZT) sensors via EMI technique.

  20. Analysis of the Effects of Sea Disposal on a One-Ton Container

    NASA Technical Reports Server (NTRS)

    Jackson, Wde C.; Jackson, Karen E.; Fasanella, Edwin L.; Kelley, John

    2007-01-01

    Excess and obsolete stocks of chemical warfare material (CWM) were sea disposed by the United States between 1919 and 1970. One-ton containers were used for bulk storage of CWM and were the largest containers sea disposed. Disposal depths ranged from 300 to 17,000 feet. Based on a Type D container assembly drawing, three independent analyses (one corrosion and two structural) were performed on the containers to address the corrosion resistance from prolonged exposure to sea water and the structural response during the descent. Corrosion predictions were made using information about corrosion rates and the disposal environment. The structural analyses employed two different finite element codes and were used to predict the buckling and material response of the container during sea disposal. The results of these investigations are summarized below. Detailed reports on each study are contained in the appendices.

  1. Effective modern methods of protecting metal road structures from corrosion

    NASA Astrophysics Data System (ADS)

    Panteleeva, Margarita

    2017-10-01

    In the article the ways of protection of barrier road constructions from various external influences which cause development of irreversible corrosion processes are considered. The author studied modern methods of action on metal for corrosion protection and chose the most effective of them: a method of directly affecting the metal structures themselves. This method was studied in more detail in the framework of the experiment. As a result, the article describes the experiment of using a three-layer polymer coating, which includes a thermally activated primer, an elastomeric thermoplastic layer with a spatial structure, and a strong outer polyolefin layer. As a result of the experiment, the ratios of the ingredients for obtaining samples of the treated metal having the best parameters of corrosion resistance, elasticity, and strength were revealed. The author constructed a regression equation describing the main properties of the protective polymer coating using the simplex-lattice planning method in the composition-property diagrams.

  2. Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis.

    PubMed

    Silva, M Z; Gouyon, R; Lepoutre, F

    2003-06-01

    Preliminary results of hidden corrosion detection in aircraft aluminum structures using a noncontact laser based ultrasonic technique are presented. A short laser pulse focused to a line spot is used as a broadband source of ultrasonic guided waves in an aluminum 2024 sample cut from an aircraft structure and prepared with artificially corroded circular areas on its back surface. The out of plane surface displacements produced by the propagating ultrasonic waves were detected with a heterodyne Mach-Zehnder interferometer. Time-frequency analysis of the signals using a continuous wavelet transform allowed the identification of the generated Lamb modes by comparison with the calculated dispersion curves. The presence of back surface corrosion was detected by noting the loss of the S(1) mode near its cutoff frequency. This method is applicable to fast scanning inspection techniques and it is particularly suited for early corrosion detection.

  3. Corrosion behavior of Ni-based structural materials for electrolytic reduction in lithium molten salt

    NASA Astrophysics Data System (ADS)

    Cho, Soo Haeng; Park, Sung Bin; Lee, Jong Hyeon; Hur, Jin Mok; Lee, Han Soo

    2011-05-01

    In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li 2O molten salt at 650 °C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 °C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, NiO, and (Al,Nb,Ti)O 2; those of as cast and heat treated high Si/low Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.

  4. Corrosion Behavior of Magnesium Based Foam Structure in Hank’s Solution

    NASA Astrophysics Data System (ADS)

    Franciska, P. L.; Erryani, A.; Annur, D.; Kartika, I.

    2017-05-01

    Metal foam is a new class of materials with promising applications and a unique combination of physical, chemical, and mechanical properties. The purpose of biodegradable implants is to support tissue regeneration and healing in a particular application by material degradation and implant replacement through the surrounding tissue. Magnesium alloys are expected to be degraded in the body and its corrosion products not deleterious to the surrounding tissue. In the present study, the foam metal was manufactured via powder metallurgy with a different variation of sintering temperature and TiH2 used as a foaming agent which are added to Mg-1Ca-3Zn alloy as much 3% wt TiH2. The sintering temperatures were 500, 550 and 600 °C with a constant holding time of 5 hours. It’s critical that the sintering temperature is carefully selected in consideration of their corrosion behavior. This paper reports the study of the behavior of the Mg-Ca-Zn alloy metal foam which evaluated by SEM, EDX, and electrochemical corrosion test in Hank’s solutions. After exposure, the SEM result of Mg-Ca-Zn-3TiH2 to Hank’s solution, a volcano-like structure is formed. The streams of H2 bubbles form at local sites on the Mg alloy surface where electrochemical reactions are taking place, leading to the particular structure with around shape and often with a hole in the center. The corresponding EDS result maps reveal enrichment of O, Ca, P and Mg as corrosion product. Potentiodynamic polarization experiments conducted at 37 °C and pH 7.4 indicated the increased biodegradation rates resulted from porous structure of foam samples. Corrosion rate in 500oC sintering temperature were 1.99 millimiles per year (mmpy) with corrosion current density (I corr ) 87.3.10-6 A/cm2, corrosion rate in 550 °C sintering temperature were 2,16 mmpy with I corr 94.4.10-6 A/cm2 and rate in 600 °C sintering temperature were 2.41 mmpy with I corr 105.10-6 A/cm2. The results showed that the increasing of sintering temperature could influence the corrosion resistance of Mg alloy.

  5. Nondestructive evaluation of concrete structures by nonstationary thermal wave imaging

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Panda, Soma Sekhara Balaji; Mude, Rupla Naik; Amarnath, Muniyappa

    2012-06-01

    Reinforced concrete structures (RCS) have potential application in civil engineering and with the advent of nuclear engineering RCS to be capable enough to withstanding a variety of adverse environmental conditions. However, failures/loss of durability of designed structures due to premature reinforcement corrosion of rebar is a major constrain. Growing concern of safety of structure due to pre-mature deterioration has led to a great demand for development of non-destructive and non-contact testing techniques for monitoring and assessing health of RCS. This paper presents an experimental investigation of rebar corrosion by non-stationary thermal wave imaging. Experimental results have been proven, proposed approach is an effective technique for identification of corrosion in rebar in the concrete samples.

  6. Metal Oxide Solubility and Molten Salt Corrosion.

    DTIC Science & Technology

    1982-03-29

    METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION .(U) MAR 82 K H STERN UNCLASSI E DL R L-4772NL EL .2. MICROCOPY RESOLUTION TEST CHART NATIONAL BURALU...21 l 7 3 ..... l DTIC NSPECT I" ’I cCPY INSECE( METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION I. INTRODUCTION Molten ...discussed in terms of its importance to the understanding of molten salt corrosion . II. PROTECTIVE COATINGS Since most structural metals and alloys are

  7. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  8. Influence of reinforcement mesh configuration for improvement of concrete durability

    NASA Astrophysics Data System (ADS)

    Pan, Chong-gen; Jin, Wei-liang; Mao, Jiang-hong; Zhang, Hua; Sun, Li-hao; Wei, Dong

    2017-10-01

    Steel bar in concrete structures under harsh environmental conditions, such as chlorine corrosion, seriously affects its service life. Bidirectional electromigration rehabilitation (BIEM) is a new method of repair technology for reinforced concrete structures in such chloride corrosion environments. By applying the BIEM, chloride ions can be removed from the concrete and the migrating corrosion inhibit can be moved to the steel surface. In conventional engineering, the concrete structure is often configured with a multi-layer steel mesh. However, the effect of the BIEM in such structures has not yet been investigated. In this paper, the relevant simulation test is carried out to study the migration law of chloride ions and the migrating corrosion inhibitor in a concrete specimen with complex steel mesh under different energizing modes. The results show that the efficiency of the BIEM increases 50% in both the monolayer steel mesh and the double-layer steel mesh. By using the single-sided BIEM, 87% of the chloride ions are removed from the steel surface. The different step modes can affect the chloride ion removal. The chloride ions within the range of the reinforcement protective cover are easier to be removed than those in the concrete between the two layers of steel mesh. However, the amount of migrating corrosion inhibitor is larger in the latter circumstances.

  9. Quantitative Correlation of 7B04 Aluminum Alloys Pitting Corrosion Morphology Characteristics with Stress Concentration Factor

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguo; Yan, Guangyao; Mu, Zhitao; Li, Xudong

    2018-01-01

    The accelerated pitting corrosion test of 7B04 aluminum alloy specimen was carried out according to the spectrum which simulated airport environment, and the corresponding pitting corrosion damage was obtained and was defined through three parameters A and B and C which respectively denoted the corrosion pit surface length and width and corrosion pit depth. The ratio between three parameters could determine the morphology characteristics of corrosion pits. On this basis the stress concentration factor of typical corrosion pit morphology under certain load conditions was quantitatively analyzed. The research shows that the corrosion pits gradually incline to be ellipse in surface and moderate in depth, and most value of B/A and C/A lies in 1 between 4 and few maximum exceeds 4; The stress concentration factor Kf of corrosion pits is obviously affected by the its morphology, the value of Kf increases with corrosion pits depth increasement under certain corrosion pits surface geometry. Also, the value of Kf decreases with surface width increasement under certain corrosion pits depth. The research conclusion can set theory basis for corrosion fatigue life analysis of aircraft aluminum alloy structure.

  10. Prognostic investigation of galvanic corrosion precursors in aircraft structures and their detection strategy

    NASA Astrophysics Data System (ADS)

    James, Robin; Kim, Tae Hee; Narayanan, Ram M.

    2017-04-01

    Aluminum alloys have been the dominant materials for aerospace construction in the past fifty years due to their light weight, forming and alloying, and relative low cost in comparison to titanium and composites. However, in recent years, carbon fiber reinforced polymers (CFRPs) and honeycomb materials have been used in aircrafts in the quest to attain lower weight, high temperature resistance, and better fuel efficiency. When these two materials are coupled together, the structural strength of the aircraft is unparalleled, but this comes at a price, namely galvanic corrosion. Previous experimental results have shown that when CFRP composite materials are joined with high strength aluminum alloys (AA7075-T6 or AA2024-T3), galvanic corrosion occurs at the material interfaces, and the aluminum is in greater danger of corroding, particularly since carbon and aluminum are on the opposite ends of the galvanic series. In this paper, we explore the occurrence of the recognizable precursors of galvanic corrosion when CFRP plate is coupled to an aluminum alloy using SS-304 bolts and exposed to environmental degradation, which creates significant concerns for aircraft structural reliability. The galvanic corrosion software package, BEASY, is used to simulate the growth of corrosion in the designed specimen after which a microwave non-destructive testing (NDT) technique is explored to detect corrosion defects that appear at the interface of this galvanic couple. This paper also explores a loaded waveguide technique to determine the dielectric constant of the final corrosion product at the Q-band millimeter-wave frequency range (33-50 GHz), as this can be an invaluable asset in developing early detection strategies.

  11. Environmental stress-corrosion cracking of fiberglass: lessons learned from failures in the chemical industry.

    PubMed

    Myers, T J; Kytömaa, H K; Smith, T R

    2007-04-11

    Fiberglass reinforced plastic (FRP) composite materials are often used to construct tanks, piping, scrubbers, beams, grating, and other components for use in corrosive environments. While FRP typically offers superior and cost effective corrosion resistance relative to other construction materials, the glass fibers traditionally used to provide the structural strength of the FRP can be susceptible to attack by the corrosive environment. The structural integrity of traditional FRP components in corrosive environments is usually dependent on the integrity of a corrosion-resistant barrier, such as a resin-rich layer containing corrosion resistant glass fibers. Without adequate protection, FRP components can fail under loads well below their design by an environmental stress-corrosion cracking (ESCC) mechanism when simultaneously exposed to mechanical stress and a corrosive chemical environment. Failure of these components can result in significant releases of hazardous substances into plants and the environment. In this paper, we present two case studies where fiberglass components failed due to ESCC at small chemical manufacturing facilities. As is often typical, the small chemical manufacturing facilities relied largely on FRP component suppliers to determine materials appropriate for the specific process environment and to repair damaged in-service components. We discuss the lessons learned from these incidents and precautions companies should take when interfacing with suppliers and other parties during the specification, design, construction, and repair of FRP components in order to prevent similar failures and chemical releases from occurring in the future.

  12. Development of New Type Seawater Resistant Steel and the Research of Its Structure and Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Yin, Baoliang; Yin, Shaojiang; Liu, Zhiyong; Wang, Yunge; Yu, Hao; Li, Haixu; Zhou, Tao

    This paper investigated two kinds of corrosion resistant low alloy steels depending on the environment of the North China see (Steel S) and South China sea (Steel N), respectively. The mechanical and corrosion properties of the two steels were analyzed in this paper. Tin was added into both steels to improve the corrosion resistance. Structure and mechanical properties of the two steels were detected, and the results revealed that the microstructures of both steels were ferrite and little divorced pearlite. The yield strength and impact toughness at -40°C of the steel S are 423MPa and 98 J, respectively. The yield strength and impact toughness at -40°C of the steel N are 437 MPa and 70 J, respectively. The properties mentioned above met or even exceeded the requirement (yield strength 355 MPa, toughness 34 J) in these areas. The corrosion resistant properties of the two steels were also investigated via the means of immersion test and electrochemical experiment. The immersion test indicated that the corrosion rate of steel S and steel N was 0.00938 mg/h·cm2 and 0.00838 mg/h·cm2, respectively, when completely immersed for 168 hours, and the corrosion rate was much lower than that of E36. The Electrochemical experiments showed that the corrosion potential (Ecorr) of both steels was higher in contrast to E36, which indicated a lower corrosion trend.

  13. Corrosion Inhibition on SAE 1010 Steel by Nanoscale Exopolysaccharides Coatings Determined by Electrochemical and Surface Characterization

    USDA-ARS?s Scientific Manuscript database

    Plating, painting and the application of enamel are the most common anti-corrosion treatments. They are effective by providing a barrier of corrosion resistant material between the damaging environment and the structural material. Coatings start failing rapidly if scratched or damaged because a co...

  14. Method for inhibiting alkali metal corrosion of nickel-containing alloys

    DOEpatents

    DeVan, Jackson H.; Selle, James E.

    1983-01-01

    Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

  15. 77 FR 28328 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... loose or missing fastener, a crack, damage, or corrosion and adding an internal doubler to the aft shear... proposed actions are intended to detect a loose or missing fastener, a crack, damage, or corrosion on the T... inspection of the T/R pylon ``components and structure for obvious damage, cracks, corrosion, and security...

  16. 76 FR 721 - Airworthiness Directives; Gulfstream Aerospace Corporation Model G-1159 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... requires an inspection to detect cracks or corrosion in the wing structure in the area of Fuselage Station... required repetitive inspections to detect corrosion or cracks in the forward and aft wing attach fittings...; and the application of corrosion protection treatment. Since the issuance of the NPRM, the Federal...

  17. Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function of Braze Alloy and Process Variables

    DTIC Science & Technology

    2013-02-01

    aeration solution for 8 hours. A concentrated Nitric acid (HNO3) dip for 15 seconds removed corrosion products prior to post-exposure SEM imaging [25...32 to -37°C under a liquid nitrogen chill at 11.2 V for one minute [10]. The electropolishing solution was a mixture of 1/3 concentrated Nitric acid ...DATES COVERED (From - To) 03/27/06-12/31/12 4. TITLE AND SUBTITLE Corrosion Mechanisms in Brazed Al-Base Alloy Sandwich Structures as a Function

  18. Corrosion behavior of high-strength spring steel for high-speed railway

    NASA Astrophysics Data System (ADS)

    Niu, Gang; Chen, Yin-li; Wu, Hui-bin; Wang, Xuan; Tang, Di

    2018-05-01

    The corrosion resistance and evolution of corrosion products in medium-carbon high-strength spring steels were investigated in a neutral salt spray (5wt% NaCl solution). A formation model of γ-FeOOH and a transformation model describing the conversion of γ-FeOOH to α-FeOOH were constructed. The results indicated that, at the initial corrosion stage, the corrosion resistance was gradually improved with the addition of Cr; however, with the addition of alloying element V, the corrosion resistance decreased. These results were attributed mainly to the initial corrosion stage being closely related to the matrix microstructure parameters such as grain-boundary character and dislocation density. After the rust layer was formed at a later corrosion stage, the corrosion resistance was reinforced with the addition of Cr and V because Cr strongly influenced the composition, structure, and morphology of the corrosion products. The results presented herein show that Cr was conducive to the transformation of γ-FeOOH into α-FeOOH. Moreover, V and Cr exhibited obvious synergy and were enriched in the inner layer of the corrosion products.

  19. Particle filtering based structural assessment with acoustic emission sensing

    NASA Astrophysics Data System (ADS)

    Yan, Wuzhao; Abdelrahman, Marwa; Zhang, Bin; Ziehl, Paul

    2017-02-01

    Nuclear structures are designed to withstand severe loading events under various stresses. Over time, aging of structural systems constructed with concrete and steel will occur. This deterioration may reduce service life of nuclear facilities and/or lead to unnecessary or untimely repairs. Therefore, online monitoring of structures in nuclear power plants and waste storage has drawn significant attention in recent years. Of many existing non-destructive evaluation and structural monitoring approaches, acoustic emission is promising for assessment of structural damage because it is non-intrusive and is sensitive to corrosion and crack growth in reinforced concrete elements. To provide a rapid, actionable, and graphical means for interpretation Intensity Analysis plots have been developed. This approach provides a means for classification of damage. Since the acoustic emission measurement is only an indirect indicator of structural damage, potentially corrupted by non-genuine data, it is more suitable to estimate the states of corrosion and cracking in a Bayesian estimation framework. In this paper, we will utilize the accelerated corrosion data from a specimen at the University of South Carolina to develop a particle filtering-based diagnosis and prognosis algorithm. Promising features of the proposed algorithm are described in terms of corrosion state estimation and prediction of degradation over time to a predefined threshold.

  20. Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides.

    PubMed

    Finkenstadt, Victoria L; Côté, Gregory L; Willett, J L

    2011-06-01

    Corrosion of metals is a serious and challenging problem faced worldwide by industry. Purified Leuconostoc mesenteroides exopolysaccharide (EPS) coatings, cast from aqueous solution, inhibited the corrosion of low-carbon steel as determined by electrochemical impedance spectroscopy (EIS). There were two different corrosion behaviors exhibited when EPS films from different strains were cast onto the steel. One EPS coating reacted immediately with the steel substrate to form an iron (III) oxide layer ("rust") during the drying process while another did not. The samples that did not flash corrode had higher corrosion inhibition and formed an iron (II) passivation layer during EIS testing that persisted after the cells were disassembled. Corrosion inhibition was strain-specific as polysaccharides with similar structure did not have the same corrosion potential.

  1. A quantitative study on magnesium alloy stent biodegradation.

    PubMed

    Gao, Yuanming; Wang, Lizhen; Gu, Xuenan; Chu, Zhaowei; Guo, Meng; Fan, Yubo

    2018-06-06

    Insufficient scaffolding time in the process of rapid corrosion is the main problem of magnesium alloy stent (MAS). Finite element method had been used to investigate corrosion of MAS. However, related researches mostly described all elements suffered corrosion in view of one-dimensional corrosion. Multi-dimensional corrosions significantly influence mechanical integrity of MAS structures such as edges and corners. In this study, the effects of multi-dimensional corrosion were studied using experiment quantitatively, then a phenomenological corrosion model was developed to consider these effects. We implemented immersion test with magnesium alloy (AZ31B) cubes, which had different numbers of exposed surfaces to analyze differences of dimension. It was indicated that corrosion rates of cubes are almost proportional to their exposed-surface numbers, especially when pitting corrosions are not marked. The cubes also represented the hexahedron elements in simulation. In conclusion, corrosion rate of every element accelerates by increasing corrosion-surface numbers in multi-dimensional corrosion. The damage ratios among elements with the same size are proportional to the ratios of corrosion-surface numbers under uniform corrosion. The finite element simulation using proposed model provided more details of changes of morphology and mechanics in scaffolding time by removing 25.7% of elements of MAS. The proposed corrosion model reflected the effects of multi-dimension on corrosions. It would be used to predict degradation process of MAS quantitatively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Multifrequency Eddy Current Inspection of Corrosion in Clad Aluminum Riveted Lap Joints and Its Effect on Fatigue Life

    NASA Astrophysics Data System (ADS)

    Okafor, A. C.; Natarajan, S.

    2007-03-01

    Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.

  3. Events as power source: wireless sustainable corrosion monitoring.

    PubMed

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-12-17

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.

  4. Corrosion detector apparatus for universal assessment of pollution in data centers

    DOEpatents

    Hamann, Hendrik F.; Klein, Levente I.

    2015-08-18

    A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.

  5. The combined effects of prior-corrosion and aggressive chemical environments on fatigue crack growth behavior in aluminum alloy 7075-T651

    NASA Astrophysics Data System (ADS)

    Mills, Thomas Brian

    1997-11-01

    Exfoliation corrosion is a potentially severe form of corrosion that frequently affects high-strength aluminum, particularly 2xxx- and 7xxx-series alloys. Exfoliation degrades components such as sheets, plates, and extrusions that have highly elongated grain structures. Few attempts have been made to investigate the effects of this form of corrosion on the fatigue performance of these materials, so a preliminary study was conducted to determine the effects of exfoliation corrosion on the fatigue response of quarter-inch 7075-T651 aluminum alloy plate. This was accomplished by subjecting aluminum panels to an ASTM standard corrosive solution known as EXCO then fatiguing the panels in corrosion fatigue environments of dry air, humid air, and artificial acid rain. Statistical analyses of the fatigue crack growth data suggest that prior-corrosion and corrosion fatigue are competing mechanisms that both have the potential of accelerating crack growth rates. In the dry air cases, exfoliation accelerated crack growth rates a maximum of 4.75 times over the uncorroded material at lower stress intensities such as 5 ksi surdinch. This accelerated behavior dropped off rapidly, however, and was nonexistent at higher stress intensities. Humid air increased crack velocities considerably as compared to the dry air uncorroded case, but the addition of exfoliation corrosion to the humid cases did not have a significant effect on crack growth behavior. On the other hand, specimens containing exfoliation corrosion and then exposed to artificial acid rain had significantly higher crack growth rates than their uncorroded counterparts. Finally, fractographic examinations of the specimens revealed evidence of lower energy, quasi-cleavage fracture persisting near to the exfoliated edge of specimens tested in the dry air, humid air, and artificial acid rain environments. The implications of this research are that prior-corrosion damage has the ability to significantly increase crack growth rates in this material, and this could render unconservative the inspection intervals determined by damage tolerant analyses based on pristine, uncorroded structure in aircraft where this alloy and damage mechanism are present. The problem is further compounded in the event that prior-corrosion damage and corrosion fatigue act synergisticaliy to increase cracking rates.

  6. The effect of heat treatment simulating porcelain firing processes on titanium corrosion resistance.

    PubMed

    Sokołowski, Grzegorz; Rylska, Dorota; Sokołowski, Jerzy

    2016-01-01

    Corrosion resistance of titanium used in metal-ceramic restorations in manufacturing is based on the presence of oxide layer on the metal surface. The procedures used during combining metallic material with porcelain may affect the changes in oxide layers structure, and thus anticorrosive properties of metallic material. The aim of the study was an evaluation of potential changes in the structure and selected corrosion properties of titanium after sandblasting and thermal treatment applicable to the processes of ceramics fusion. Milled titanium elements were subjected to a few variants of the processes typical of ceramics fusion and studied in terms of resistance to electrochemical corrosion. The study included the OCP changes over time, measurements of Icorr, Ecorr and Rp as well as potentiodynamic examinations. Surface microstructure and chemical composition were analyzed using SEM and EDS methods. The results obtained allow us to conclude that the processes corresponding to ceramic oxidation and fusion on titanium in the variants used in the study do not cause deterioration of its anticorrosive properties, and partially enhance the resistance. This depends on the quality of oxide layers structure. Titanium elements treated by porcelain firing processes do not lose their corrosion resistance.

  7. Detecting Corrosion Under Paint and Insulation

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2011-01-01

    Corrosion is a major concern at the Kennedy Space Center in Florida due to the proximity of the center to the Atlantic Ocean and to salt water lagoons. High humidity, salt fogs, and ocean breezes, provide an ideal environment in which painted steel structures become corroded. Maintenance of painted steel structures is a never-ending process.

  8. Field investigation of the corrosion protection performance of bridge decks and piles constructed with epoxy-coated reinforcing steel in Virginia.

    DOT National Transportation Integrated Search

    1997-10-01

    The corrosion protection performance of epoxy-coated reinforcing steel (ECR) was assessed in three bridge decks and the piles : in three marine structures in Virginia in 1996. The decks were 17 years old, two of the marine structures were 8 years old...

  9. 78 FR 11972 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... cracks in the skin and surrounding structure under the number 3 very high frequency (VHF) antenna on the.... This AD requires inspecting for cracking and corrosion under the number 3 VHF antenna, and corrective... cracks and corrosion of the skin and surrounding structure under the number 3 VHF antenna, which could...

  10. Corrosion of Type 316L stainless steel in Pb-17Li

    NASA Astrophysics Data System (ADS)

    Barker, M. G.; Lees, J. A.; Sample, T.; Hubberstey, P.

    1991-03-01

    Corrosion tests carried out in Pb-17Li in both capsules and a convection loop (hot leg temperature 768 K, cold leg temperature 748 K, flow rate 10 mm/s) have shown that Type 316 stainless steel undergoes almost complete loss of Ni and Mn, and extensive loss of Cr to form a porous ferritic zone. Ferritic zone depths measured on the loop samples exposed between 1000 and 4000 h were in good agreement with previous data. Some evidence was found for the interaction of chromium with oxygen dissolved in Pb-17Li. Examination of the cold leg samples revealed deposition products of iron and chromium but no deposits containing nickels were observed. These observations were rationalised in terms of recent measurements of the solubilities of metals in Pb-17Li.

  11. Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Huston, Dryver R.

    1998-04-01

    The problems associated with the application of chloride-based deicing agents to roadways and specifically bridges include chemical pollution and accelerated corrosion of strength members (especially the rebar) within the structure. In many instances, local ordnances are attempting to force state agencies to reduce, if not eliminate, the use of these chlorides (typically at the cost of increased driving hazards). With respect to the corrosion aspects of chloride application, cracks that occur in the roadway/bridge pavement allow water to seep into the pavement carrying the chloride to the rebar with the resultant increase in corrosion. In tandem with these efforts has been the continuing use of embedded fiber optic sensors for identification of faults or cracks within a highway structure - i.e., structural health monitoring. In this paper, we present multiple-parameter sensing fiber optic sensors which may be embedded into roadway and bridge structures to provide an internal measurement and assessment of its health. Such issues are paramount in determining if remedial or preventative maintenance should be performed on such structures. Laboratory results, comparisons with conventional sensing methods as well as a review of real-world issues in highway sensing are presented.

  12. Validation of mechanical models for reinforced concrete structures: Presentation of the French project ``Benchmark des Poutres de la Rance''

    NASA Astrophysics Data System (ADS)

    L'Hostis, V.; Brunet, C.; Poupard, O.; Petre-Lazar, I.

    2006-11-01

    Several ageing models are available for the prediction of the mechanical consequences of rebar corrosion. They are used for service life prediction of reinforced concrete structures. Concerning corrosion diagnosis of reinforced concrete, some Non Destructive Testing (NDT) tools have been developed, and have been in use for some years. However, these developments require validation on existing concrete structures. The French project “Benchmark des Poutres de la Rance” contributes to this aspect. It has two main objectives: (i) validation of mechanical models to estimate the influence of rebar corrosion on the load bearing capacity of a structure, (ii) qualification of the use of the NDT results to collect information on steel corrosion within reinforced-concrete structures. Ten French and European institutions from both academic research laboratories and industrial companies contributed during the years 2004 and 2005. This paper presents the project that was divided into several work packages: (i) the reinforced concrete beams were characterized from non-destructive testing tools, (ii) the mechanical behaviour of the beams was experimentally tested, (iii) complementary laboratory analysis were performed and (iv) finally numerical simulations results were compared to the experimental results obtained with the mechanical tests.

  13. The Cost Analysis of Corrosion Protection Solutions for Steel Components in Terms of the Object Life Cycle Cost

    NASA Astrophysics Data System (ADS)

    Kowalski, Dariusz; Grzyl, Beata; Kristowski, Adam

    2017-09-01

    Steel materials, due to their numerous advantages - high availability, easiness of processing and possibility of almost any shaping are commonly applied in construction for carrying out basic carrier systems and auxiliary structures. However, the major disadvantage of this material is its high corrosion susceptibility, which depends strictly on the local conditions of the facility and the applied type of corrosion protection system. The paper presents an analysis of life cycle costs of structures installed on bridges used in the road lane conditions. Three anti-corrosion protection systems were considered, analyzing their essential cost components. The possibility of reducing significantly the costs associated with anti-corrosion protection at the stage of steel barriers maintenance over a period of 30 years has been indicated. The possibility of using a new approach based on the life cycle cost estimation in the anti-corrosion protection of steel elements is presented. The relationship between the method of steel barrier protection, the scope of repair, renewal work and costs is shown. The article proposes an optimal solution which, while reducing the cost of maintenance of road infrastructure components in the area of corrosion protection, allows to maintain certain safety standards for steel barriers that are installed on the bridge.

  14. Liquid Coatings for Reducing Corrosion of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G.; Curran, Joseph

    2003-01-01

    Inorganic coating materials are being developed to slow or stop corrosion of reinforcing steel members inside concrete structures. It is much simpler and easier to use these coating materials than it is to use conventional corrosion-inhibiting systems based on impressed electric currents. Unlike impressed electrical corrosion-inhibiting systems, these coatings do not require continuous consumption of electrical power and maintenance of power-supply equipment. Whereas some conventional systems involve the use of expensive arc-spray equipment to apply the metallic zinc used as the sacrificial anode material, the developmental coatings can be applied by use of ordinary paint sprayers. A coating material of the type under development is formulated as a liquid containing blended metallic particles and/or moisture-attracting compounds. The liquid mixture is sprayed onto a concrete structure. Experiments have shown that even though such a coat resides on the exterior surface, it generates a protective galvanic current that flows to the interior reinforcing steel members. By effectively transferring the corrosion process from the steel reinforcement to the exterior coating, the protective current slows or stops corrosion of the embedded steel. Specific formulations have been found to meet depolarization criteria of the National Association of Corrosion Engineers (NACE) for complete protection of steel reinforcing bars ("rebar") embedded in concrete.

  15. 40 CFR 264.192 - Design and installation of new tank systems or components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... structural strength, compatibility with the waste(s) to be stored or treated, and corrosion protection to... component of the tank system will be in contact with the soil or with water, a determination by a corrosion expert of: (i) Factors affecting the potential for corrosion, including but not limited to: (A) Soil...

  16. Structure and Corrosion Resistance of Welded Joints of Alloy 1151 in Marine Atmosphere

    NASA Astrophysics Data System (ADS)

    Bakulo, A. V.; Yakushin, B. F.; Puchkov, Yu. A.

    2017-07-01

    The corrosion behavior of joints formed by TIG and IMIG welding from clad sheets of heat-hardenable aluminum alloy 1151 of the Al - Cu - Mg system is studied. The corrosion tests are performed in an aqueous solution of NaCl in a salt-spray chamber. The welded joints are subjected to a metallographic analysis.

  17. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J; Haslam, J; Wong, F

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoingmore » corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.« less

  18. Determination of the Corrosive Conditions Present within Aircraft Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Lewis, Karen S.; Kelly, Robert G.; Piascik, Robert S.

    1999-01-01

    The complexity of airframe structure lends itself to damage resulting from crevice corrosion. Fuselage lap-splice joints are a particularly important structural detail in this regard because of the difficulty associated with detection and measurement of corrosion in these occluded regions. The objective of this work is to develop a laboratory corrosion test protocol to identify the chemistry to which lap joints are exposed and to develop a model of the corrosion within the joints. A protocol for collecting and identifying the chemistry of airframe crevice corrosion has been developed. Capillary electrophoresis (CE) is used to identify the ionic species contained in corrosion product samples removed from fuselage lap splice joints. CE analysis has been performed on over sixty corrosion product samples removed from both civilian and military aircraft. Over twenty different ions have been detected. Measurements of pH of wetted corroded surfaces indicated an alkaline occluded solution. After determining the species present and their relative concentrations, the resultant solution was reproduced in bulk and electrochemical tests were performed to determine the corrosion rate. Electrochemical analyses of the behavior of AA2024-T3 in these solutions gave corrosion rates of up to 250 microns per year (10 mpy). Additional tests have determined the relative importance of each of the detected ions in model solutions used for future predictive tests. The statistically significant ions have been used to create a second generation solution. Laboratory studies have also included exposure tests involving artificial lap joints exposed to various simulated bulk and crevice environments. The extent and morphology of the attack in artificial lap joints has been compared to studies of corroded samples from actual aircraft. Other effects, such as temperature and potential, as well as the impact of the environment on fatigue crack growth have also been studied.

  19. The chloride induced localised corrosion of aluminium and beryllium: A study by electron and X-ray spectroscopies

    NASA Astrophysics Data System (ADS)

    Mallinson, Christopher F.

    Beryllium is an important metal in the nuclear industry for which there are no suitable replacements. It undergoes localised corrosion at the site of heterogeneities in the metal surface. Corrosion pits are associated with a range of second phase particles. To investigate the role of these particles in corrosion, a safe experimental protocol was established using an aluminium alloy as a corrosion material analogue. The 7075-T6 alloy had not previously been investigated using the experimental methodology used in this thesis. This work led to the development of the experimental methodology and safe working practices for handling beryllium. The range and composition of the second phase particles present in S-65 beryllium billet were identified using a combination of SEM, AES, EDX and WDX. Following the identification of a range of particles with various compositions, including the AlFeBe4 precipitate which has been previously associated with corrosion, the location of the particles were marked to enable their repeated study. Attention was focused on the microchemistry in the vicinity of second phase particles, as a function of immersion time in pH 7, 0.1 M NaCl solution. The corrosion process associated with different particles was followed by repeatedly relocating the particles to perform analysis by means of SEM, AES and EDX. The use of traditional chlorinated vapour degreasing solvents on beryllium was investigated and compared to two modern commercially available cleaning solutions designed as drop-in replacements. This work expanded the range of solvents suitable for cleaning beryllium and validated the conclusions from previous thermodynamic modelling. Additionally, a new experimental methodology has been developed which enables the acquisition of chemical state information from the surface of micron scale features. This was applied to sub-micron copper and iron particles, as well as a copper intermetallic.

  20. Observations of solar-cell metallization corrosion

    NASA Technical Reports Server (NTRS)

    Mon, G. R.

    1983-01-01

    The Engineering Sciences Area of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project is performing long term environmental tests on photovoltaic modules at Wyle Laboratories in Huntsville, Alabama. Some modules have been exposed to 85 C/85% RH and 40 C/93% RH for up to 280 days. Other modules undergoing temperature-only exposures ( 3% RH) at 85 C and 100 C have been tested for more than 180 days. At least two modules of each design type are exposed to each environment - one with, and the other without a 100-mA forward bias. Degradation is both visually observed and electrically monitored. Visual observations of changes in appearance are recorded at each inspection time. Significant visual observations relating to metallization corrosion (and/or metallization-induced corrosion) include discoloration (yellowing and browning) of grid lines, migration of grid line material into the encapsulation (blossoming), the appearance of rainbow-like diffraction patterns on the grid lines, and brown spots on collectors and grid lines. All of these observations were recorded for electrically biased modules in the 280-day tests with humidity.

  1. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Qiang; Pan, Congyuan; Li, Chaoyang; Fei, Teng; Ding, Xiaokang; Du, Xuewei; Wang, Qiuping

    2018-04-01

    The corrosion behavior of structure materials in direct contact with molten metals is widespread in metallurgical industry. The corrosion of casting equipment by molten metals is detrimental to the production process, and the corroded materials can also contaminate the metals being produced. Conventional methods for studying the corrosion behavior by molten metal are offline. This work explored the application of laser-induced breakdown spectroscopy (LIBS) for online monitoring of the corrosion behavior of molten metal. The compositional changes of molten aluminum in crucibles made of 304 stainless steel were obtained online at 1000 °C. Several offline techniques were combined to determine the corrosion mechanism, which was highly consistent with previous studies. Results proved that LIBS was an efficient method to study the corrosion mechanism of solid materials in molten metal.

  2. Corrosion Sensor for Monitoring the Service Condition of Chloride-Contaminated Cement Mortar

    PubMed Central

    Lu, Shuang; Ba, Heng-Jing

    2010-01-01

    A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures. PMID:22319347

  3. Concrete Infrastructure Corrosion

    NASA Astrophysics Data System (ADS)

    Waanders, F. B.; Vorster, S. W.

    2003-06-01

    It is well known that many reinforced concrete structures are at risk of deterioration due to chloride ion contamination of the concrete or atmospheric carbon dioxide dissolving in water to form carbonic acid, which reacts with the concrete and the reinforcing steel. The environment within the concrete will determine the corrosion product layers, which might, inter alia, contain the oxides and/or hydroxides of iron. Tensile forces resulting from volume changes during their formation lead to the cracking and delamination of the concrete. In the present investigation the handrail of an outside staircase suffered rebar corrosion during 30 year's service, leading to severe delamination damage to the concrete structure. The railings had been sealed into the concrete staircase using a polysulphide sealant, Thiokol®. The corrosion products were identified by means of Mössbauer and SEM analyses, which indicated that the corrosion product composition varied from the original steel surface to the outer layers, the former being mainly iron oxides and the latter iron oxyhydroxide.

  4. Corrosion behavior of a superduplex stainless steel in chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Dabalà, Manuele; Calliari, Irene; Variola, Alessandra

    2004-04-01

    Super duplex stainless steels (SDSS) have been widely used as structural materials for chemical plants (especially in those engaged in phosphoric acid production), in the hydrometallurgy industries, and as materials for offshore applications due to their excellent corrosion resistance in chloride environments, compared with other commercial types of ferritic stainless steels. These alloys also possess superior weldability and better mechanical properties than austenitic stainless steels. However, due to their two-phase structure, the nature of which is very dependent on their composition and thermal history, the behavior of SDSS regarding localized corrosion appears difficult to predict, especially in chloride environments. To improve their final properties, the effect of the partition of the alloying elements between the two phases, and the composition and microstructure of each phase are the key to understanding the localized corrosion phenomena of SDSS. This paper concerns the effects of the SDSS microstructure and heat treatment on the SDSS corrosion resistance in aqueous solutions, containing different amounts of NaCl at room temperature.

  5. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2015-01-01

    The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  6. Constitution of green rust and its significance to the corrosion of steel in Portland cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagoe-Crentsil, K.K.; Glasser, F.P.

    1993-06-01

    Studies of the corrosion of pure iron showed green rust, approximately Fe[sub 4][sup 2+]Fe[sub 2][sup 3+] (OH)[sub 12](Cl,OH)[sub 2], was a stable corrosion product at high pH and low E[sub h] in the presence of chloride. The structure, constitution, preparation, and characterization of green rust was reviewed. A diagram relevant to the corrosion of iron in cement, constructed for pH 12, showed stability fields of green rust, [alpha],[delta] FeO(OH), and [beta]FeO(OH,Cl). Overall implications of chloride to the corrosion process were investigated.

  7. 75 FR 9756 - Airworthiness Directives; Bombardier, Inc. Model DHC-8-100 and DHC-8-200 Series Airplanes, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... defined in Part 1 of the Bombardier (de Havilland) DHC-6 Twin Otter, Dash 7 & Dash 8 Corrosion Prevention... Corrosion Prevention and Control Manual PSM 1-GEN- 5, Part 1, Revision 3, contains the revision level of... more likely to exhibit indications of corrosion. We are issuing this AD to prevent structural failure...

  8. Microstructure and corrosion resistance of sputter-deposited titanium-chromium alloy coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landolt, D.; Robyr, C.; Mettraux, P.

    1998-10-01

    Titanium, chromium, and titanium-chromium alloy coatings were sputter-deposited to study their corrosion behaviors in relation to microstructure and composition. Silicon substrates were used to study the effect of alloying on intrinsic corrosion resistance of the coating materials, and brass substrates were used to study the effect of alloying on the penetrating porosity of the coatings. Corrosion behavior was characterized using linear sweep voltammetry. The crystal structure of the coatings was examined by x-ray diffraction (XRD) and the microstructure by scanning electron microscopy (SEM). Electrochemical impedance spectroscopy (EIS) was used to estimate the real surface area of the coatings. Results showedmore » alloying of titanium with chromium greatly influenced microstructure of the coatings. Alloying led to deposits of higher apparent density and, in some cases, to an x-ray amorphous structure. Alloy coatings showed significantly lower corrosion currents than the constituting metals. The effect was attributed to a smoother surface topography. When corrected of differences in real surface area, the intrinsic corrosion rate of the alloy coatings did not differ significantly from that of the constituting metals. Alloy coatings deposited on brass exhibited a lower porosity than titanium or chromium metal coatings produced under identical conditions.« less

  9. Corrosion processes of physical vapor deposition-coated metallic implants.

    PubMed

    Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes

    2009-01-01

    Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.

  10. A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures.

    PubMed

    Leung, Christopher K Y; Wan, Kai Tai; Chen, Liquan

    2008-03-20

    Steel corrosion resulting from the penetration of chloride ions or carbon dioxide is a major cause of degradation for reinforced concrete structures,. The objective of the present investigation was to develop a low-cost sensor for steel corrosion, which is based on a very simple physical principle. The flat end of a cut optical fiber is coated with an iron thin film using the ion sputtering technique. Light is then sent into a fiber embedded in concrete and the reflected signal is monitored. Initially, most of the light is reflected by the iron layer. When corrosion occurs to remove the iron layer, a significant portion of the light power will leave the fiber at its exposed end, and the reflected power is greatly reduced. Monitoring of the reflected signal is hence an effective way to assess if the concrete environment at the location of the fiber tip may induce steel corrosion or not. In this paper, first the principle of the corrosion sensor and its fabrication are described. The sensing principle is then verified by experimental results. Sensor packaging for practical installation will be presented and the performance of the packaged sensors is assessed by additional experiments.

  11. Finite element simulation of ultrasonic waves in corroded reinforced concrete for early-stage corrosion detection

    NASA Astrophysics Data System (ADS)

    Tang, Qixiang; Yu, Tzuyang

    2017-04-01

    In reinforced concrete (RC) structures, corrosion of steel rebar introduces internal stress at the interface between rebar and concrete, ultimately leading to debonding and separation between rebar and concrete. Effective early-stage detection of steel rebar corrosion can significantly reduce maintenance costs and enable early-stage repair. In this paper, ultrasonic detection of early-stage steel rebar corrosion inside concrete is numerically investigated using the finite element method (FEM). Commercial FEM software (ABAQUS) was used in all simulation cases. Steel rebar was simplified and modeled by a cylindrical structure. 1MHz ultrasonic elastic waves were generated at the interface between rebar and concrete. Two-dimensional plain strain element was adopted in all FE models. Formation of surface rust in rebar was modeled by changing material properties and expanding element size in order to simulate the rust interface between rebar and concrete and the presence of interfacial stress. Two types of surface rust (corroded regions) were considered. Time domain and frequency domain responses of displacement were studied. From our simulation result, two corrosion indicators, baseline (b) and center frequency (fc) were proposed for detecting and quantifying corrosion.

  12. A Novel Optical Fiber Sensor for Steel Corrosion in Concrete Structures

    PubMed Central

    Leung, Christopher K.Y.; Wan, Kai Tai; Chen, Liquan

    2008-01-01

    Steel corrosion resulting from the penetration of chloride ions or carbon dioxide is a major cause of degradation for reinforced concrete structures,. The objective of the present investigation was to develop a low-cost sensor for steel corrosion, which is based on a very simple physical principle. The flat end of a cut optical fiber is coated with an iron thin film using the ion sputtering technique. Light is then sent into a fiber embedded in concrete and the reflected signal is monitored. Initially, most of the light is reflected by the iron layer. When corrosion occurs to remove the iron layer, a significant portion of the light power will leave the fiber at its exposed end, and the reflected power is greatly reduced. Monitoring of the reflected signal is hence an effective way to assess if the concrete environment at the location of the fiber tip may induce steel corrosion or not. In this paper, first the principle of the corrosion sensor and its fabrication are described. The sensing principle is then verified by experimental results. Sensor packaging for practical installation will be presented and the performance of the packaged sensors is assessed by additional experiments. PMID:27879805

  13. Plastic-bonded electrodes for nickel-cadmium accumulators. IV - Some specific problems of the positive active layer

    NASA Astrophysics Data System (ADS)

    Micka, K.; Mrha, J.; Klapste, B.

    1980-06-01

    The active layer of plastic-bonded nickel oxide electrodes undergoes expansion during discharging and contraction during charging; the latter however does not fully compensate for the expansion. These volume changes can be made reversible by the action of an external pressure. The electro-chemical behavior of the conductive components, carbon black and graphite, shows more or less severe corrosion during anodic current loading.

  14. Composite structural armor for combat vehicle applications

    NASA Technical Reports Server (NTRS)

    Haskell, William E., III; Alesi, A. L.; Parsons, G. R.

    1990-01-01

    Several projects that have demonstrated the advantages of using thick composite armor technology for structural applications in armored combat vehicles are discussed. The first involved composite cargo doors for the Marine Corps LVTP-7 amphibious landing vehicle. Another was a demonstration composite turret that offered a weight reduction of 15.5 percent. The advantages of this composite armor compared to metallic armors used for combat vehicle hull and turret applications are reduced weight at equal ballistic protection; reduced back armor spall; excellent corrosion resistance; reduced production costs by parts consolidation; and inherent thermal and acoustic insulative properties. Based on the encouraging results of these past programs, the Demonstration Composite Hull Program was started in September 1986. To demonstrate this composite armor technology, the Army's newest infantry fighting vehicle, the Bradley Fighting Vehicle (BFV), was selected as a model. A composite infantry fighting vehicle, designated the CIFV for this program, has been designed and fabricated and is currently undergoing a 6000 mile field endurance test. The CIFV demonstration vehicle uses the BFV engine, transmission, suspension, track and other equipment.

  15. Transient Reliability Analysis Capability Developed for CARES/Life

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2001-01-01

    The CARES/Life software developed at the NASA Glenn Research Center provides a general-purpose design tool that predicts the probability of the failure of a ceramic component as a function of its time in service. This award-winning software has been widely used by U.S. industry to establish the reliability and life of a brittle material (e.g., ceramic, intermetallic, and graphite) structures in a wide variety of 21st century applications.Present capabilities of the NASA CARES/Life code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code can compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth failure conditions CARES/Life can handle sustained and linearly increasing time-dependent loads, whereas in cyclic fatigue applications various types of repetitive constant-amplitude loads can be accounted for. However, in real applications applied loads are rarely that simple but vary with time in more complex ways such as engine startup, shutdown, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. A methodology has now been developed to allow the CARES/Life computer code to perform reliability analysis of ceramic components undergoing transient thermal and mechanical loading. This means that CARES/Life will be able to analyze finite element models of ceramic components that simulate dynamic engine operating conditions. The methodology developed is generalized to account for material property variation (on strength distribution and fatigue) as a function of temperature. This allows CARES/Life to analyze components undergoing rapid temperature change in other words, components undergoing thermal shock. In addition, the capability has been developed to perform reliability analysis for components that undergo proof testing involving transient loads. This methodology was developed for environmentally assisted crack growth (crack growth as a function of time and loading), but it will be extended to account for cyclic fatigue (crack growth as a function of load cycles) as well.

  16. Steam generator degradation: Current mitigation strategies for controlling corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millett, P.

    1997-02-01

    Steam Generator degradation has caused substantial losses of power generation, resulted in large repair and maintenance costs, and contributed to significant personnel radiation exposures in Pressurized Water Reactors (PWRs) operating throughout the world. EPRI has just published the revised Steam Generator Reference Book, which reviews all of the major forms of SG degradation. This paper discusses the types of SG degradation that have been experienced with emphasis on the mitigation strategies that have been developed and implemented in the field. SG degradation is presented from a world wide perspective as all countries operating PWRs have been effected to one degreemore » or another. The paper is written from a US. perspective where the utility industry is currently undergoing tremendous change as a result of deregulation of the electricity marketplace. Competitive pressures are causing utilities to strive to reduce Operations and Maintenance (O&M) and capital costs. SG corrosion is a major contributor to the O&M costs of PWR plants, and therefore US utilities are evaluating and implementing the most cost effective solutions to their corrosion problems. Mitigation strategies developed over the past few years reflect a trend towards plant specific solutions to SG corrosion problems. Since SG degradation is in most cases an economic problem and not a safety problem, utilities can focus their mitigation strategies on their unique financial situation. Accordingly, the focus of R&D has shifted from the development of more expensive, prescriptive solutions (e.g. reduced impurity limits) to corrosion problems to providing the utilities with a number of cost effective mitigation options (e.g. molar ratio control, boric acid treatment).« less

  17. Influence of the pulsed plasma treatment on the corrosion resistance of the low-alloy steel plated by Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Dzhumaev, P.; Yakushin, V.; Kalin, B.; Polsky, V.; Yurlova, M.

    2016-04-01

    This paper presents investigation results of the influence of high temperature pulsed plasma flows (HTPPF) treatment on the corrosion resistance of low-alloy steel 0.2C-Cr-Mn- Ni-Mo cladded by the rapidly quenched nickel-based alloy. A technique that allows obtaining a defect-free clad layer with a good adhesion to the substrate was developed. It is shown that the preliminary treatment of steel samples by nitrogen plasma flows significantly increases their corrosion resistance in the conditions of intergranular corrosion test in a water solution of sulfuric acid. A change of the corrosion mechanism of the clad layer from intergranular to uniform corrosion was observed as a result of sub-microcrystalline structure formation and homogeneous distribution of alloying elements in the plasma treated surface layer thus leading to the significant increase of the corrosion resistance.

  18. Thermal effects of laser marking on microstructure and corrosion properties of stainless steel.

    PubMed

    Švantner, M; Kučera, M; Smazalová, E; Houdková, Š; Čerstvý, R

    2016-12-01

    Laser marking is an advanced technique used for modification of surface optical properties. This paper presents research on the influence of laser marking on the corrosion properties of stainless steel. Processes during the laser beam-surface interaction cause structure and color changes and can also be responsible for reduction of corrosion resistance of the surface. Corrosion tests, roughness, microscopic, energy dispersive x-ray, grazing incidence x-ray diffraction, and ferrite content analyses were carried out. It was found that increasing heat input is the most crucial parameter regarding the degradation of corrosion resistance of stainless steel. Other relevant parameters include the pulse length and pulse frequency. The authors found a correlation between laser processing parameters, grazing incidence x-ray measurement, ferrite content, and corrosion resistance of the affected surface. Possibilities and limitations of laser marking of stainless steel in the context of the reduction of its corrosion resistance are discussed.

  19. Electrochemistry and capillary condensation theory reveal the mechanism of corrosion in dense porous media.

    PubMed

    Stefanoni, Matteo; Angst, Ueli M; Elsener, Bernhard

    2018-05-09

    Corrosion in carbonated concrete is an example of corrosion in dense porous media of tremendous socio-economic and scientific relevance. The widespread research endeavors to develop novel, environmentally friendly cements raise questions regarding their ability to protect the embedded steel from corrosion. Here, we propose a fundamentally new approach to explain the scientific mechanism of corrosion kinetics in dense porous media. The main strength of our model lies in its simplicity and in combining the capillary condensation theory with electrochemistry. This reveals that capillary condensation in the pore structure defines the electrochemically active steel surface, whose variability upon changes in exposure relative humidity is accountable for the wide variability in measured corrosion rates. We performed experiments that quantify this effect and find good agreement with the theory. Our findings are essential to devise predictive models for the corrosion performance, needed to guarantee the safety and sustainability of traditional and future cements.

  20. A corrosion control manual for rail rapid transit

    NASA Technical Reports Server (NTRS)

    Gilbert, L. O.; Fitzgerald, J. F., II; Menke, J. T.

    1982-01-01

    In 1979, during the planning stage of the Metropolitan Dade County Transit System, the need was expressed for a corrosion control manual oriented to urban rapid transit system use. This manual responds to that need. The objective of the manual is to aid rail rapid transit agencies by providing practical solutions to selected corrosion problems. The scope of the manual encompasses corrosion problems of the facilities of rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. It also discusses stray electric current corrosion. Both design and maintenance solutions are provided for each problem. Also included are descriptions of the types of corrosion and their causes, descriptions of rapid transit properties, a list of corrosion control committees and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual. A bibliography of papers and excerpts of reports and a glossary of frequency used terms are provided.

  1. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation.

    PubMed

    Vojtěch, D; Kubásek, J; Serák, J; Novák, P

    2011-09-01

    In the present work Zn-Mg alloys containing up to 3wt.% Mg were studied as potential biodegradable materials for medical use. The structure, mechanical properties and corrosion behavior of these alloys were investigated and compared with those of pure Mg, AZ91HP and casting Zn-Al-Cu alloys. The structures were examined by light and scanning electron microscopy (SEM), and tensile and hardness testing were used to characterize the mechanical properties of the alloys. The corrosion behavior of the materials in simulated body fluid with pH values of 5, 7 and 10 was determined by immersion tests, potentiodynamic measurements and by monitoring the pH value evolution during corrosion. The surfaces of the corroded alloys were investigated by SEM, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. It was found that a maximum strength and elongation of 150MPa and 2%, respectively, were achieved at Mg contents of approximately 1wt.%. These mechanical properties are discussed in relation to the structural features of the alloys. The corrosion rates of the Zn-Mg alloys were determined to be significantly lower than those of Mg and AZ91HP alloys. The former alloys corroded at rates of the order of tens of microns per year, whereas the corrosion rates of the latter were of the order of hundreds of microns per year. Possible zinc doses and toxicity were estimated from the corrosion behavior of the zinc alloys. It was found that these doses are negligible compared with the tolerable biological daily limit of zinc. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Peculiarities of steel and alloy electrochemical and corrosion behavior after laser processing

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Tat'yana G.; Kosyrev, Feliks K.; Rodin, Anatoly V.; Sayapin, V. P.

    1997-04-01

    Different types of laser processing can significantly increase the corrosion resistance of constructive materials, secure higher levels of metal properties in comparison with standard protection from corrosion and can be successfully used for industrial application. The research carried out in TRINITI during the last 10 years allowed us to create a data base about corrosion behavior in different chemical media of various metals, alloys and steels after welding, melting, surface alloying, etc. on technological continuous-wave carbon-dioxide-laser with average power up to 5 kilowatt. The investigated materials were subdivided into two groups: (1) without changes of phases composition after laser processing (pure metals, stainless steels); and (2) exposed to structural and phase changes under laser-matter interaction (carbon steels with different carbon content). It has allowed us to investigate the peculiarities of corrosion process mechanism depending on matter surface structure and phase composition both on laser irradiation regimes. Our research was based on the high sensitive electrochemical analysis combined with other corrosion and physical methods. The essential principles of electrochemical analysis are next. There are two main processes on metal under the interaction with electrolyte solution: anodic reaction -- which means the metal oxidation or transition of metal kations into solution; cathodic reaction -- the reoxidation of the ions or molecular of the solution. They are characterizing by the values of current densities and the rates of these reactions are dependent upon the potential arising on the metal-solution frontier. The electrochemical reactions kinetic investigations gives a unique possibility for the research of metal structure and corrosion behavior even in the case of small thickness of laser processed layers.

  3. Bridge maintenance to enhance corrosion resistance and performance of steel girder bridges

    NASA Astrophysics Data System (ADS)

    Moran Yanez, Luis M.

    The integrity and efficiency of any national highway system relies on the condition of the various components. Bridges are fundamental elements of a highway system, representing an important investment and a strategic link that facilitates the transport of persons and goods. The cost to rehabilitate or replace a highway bridge represents an important expenditure to the owner, who needs to evaluate the correct time to assume that cost. Among the several factors that affect the condition of steel highway bridges, corrosion is identified as the main problem. In the USA corrosion is the primary cause of structurally deficient steel bridges. The benefit of regular high-pressure superstructure washing and spot painting were evaluated as effective maintenance activities to reduce the corrosion process. The effectiveness of steel girder washing was assessed by developing models of corrosion deterioration of composite steel girders and analyzing steel coupons at the laboratory under atmospheric corrosion for two alternatives: when high-pressure washing was performed and when washing was not considered. The effectiveness of spot painting was assessed by analyzing the corrosion on steel coupons, with small damages, unprotected and protected by spot painting. A parametric analysis of corroded steel girder bridges was considered. The emphasis was focused on the parametric analyses of corroded steel girder bridges under two alternatives: (a) when steel bridge girder washing is performed according to a particular frequency, and (b) when no bridge washing is performed to the girders. The reduction of structural capacity was observed for both alternatives along the structure service life, estimated at 100 years. An economic analysis, using the Life-Cycle Cost Analysis method, demonstrated that it is more cost-effective to perform steel girder washing as a scheduled maintenance activity in contrast to the no washing alternative.

  4. Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy.

    PubMed

    Nair, R B; Arora, H S; Mukherjee, Sundeep; Singh, S; Singh, H; Grewal, H S

    2018-03-01

    Cavitation erosion and corrosion of structural materials are serious concerns for marine and offshore industries. Durability and performance of marine components are severely impaired due to degradation from erosion and corrosion. Utilization of advanced structural materials can play a vital role in limiting such degradation. High entropy alloys (HEAs) are a relatively new class of advanced structural materials with exceptional properties. In the present work, we report on the cavitation erosion behavior of Al 0.1 CoCrFeNi HEA in two different media: distilled water with and without 3.5wt% NaCl. For comparison, conventionally used stainless steel SS316L was also evaluated in identical test conditions. Despite lower hardness and yield strength, the HEA showed significantly longer incubation period and lower erosion-corrosion rate (nearly 1/4th) compared to SS316L steel. Enhanced erosion resistance of HEA was attributed to its high work-hardening behavior and stable passivation film on the surface. The Al 0.1 CoCrFeNi HEA showed lower corrosion current density, high pitting resistance and protection potential compared to SS316L steel. Further, HEA showed no evidence of intergranular corrosion likely due to the absence of secondary precipitates. Although, the degradation mechanisms (formation of pits and fatigue cracks) were similar for both the materials, the damage severity was found to be much higher for SS316L steel compared to HEA. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Modeling of concrete cracking due to corrosion process of reinforcement bars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossio, Antonio, E-mail: antonio.bossio@unina.it; Monetta, Tullio, E-mail: monetta@unina.it; Bellucci, Francesco, E-mail: bellucci@unina.it

    The reinforcement corrosion in Reinforced Concrete (RC) is a major reason of degradation for structures and infrastructures throughout the world leading to their premature deterioration before design life was attained. The effects of corrosion of reinforcement are: (i) the reduction of the cross section of the bars, and (ii) the development of corrosion products leading to the appearance of cracks in the concrete cover and subsequent cover spalling. Due to their intrinsic complex nature, these issues require an interdisciplinary approach involving both material science and structural design knowledge also in terms on International and National codes that implemented the conceptmore » of durability and service life of structures. In this paper preliminary FEM analyses were performed in order to simulate pitting corrosion or general corrosion aimed to demonstrate the possibility to extend the results obtained for a cylindrical specimen, reinforced by a single bar, to more complex RC members in terms of geometry and reinforcement. Furthermore, a mechanical analytical model to evaluate the stresses in the concrete surrounding the reinforcement bars is proposed. In addition, a sophisticated model is presented to evaluate the non-linear development of stresses inside concrete and crack propagation when reinforcement bars start to corrode. The relationships between the cracking development (mechanical) and the reduction of the steel section (electrochemical) are provided. Finally, numerical findings reported in this paper were compared to experimental results available in the literature and satisfactory agreement was found.« less

  6. Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys

    NASA Astrophysics Data System (ADS)

    Minárik, P.; Král, R.; Janeček, M.

    2013-09-01

    Corrosion properties of AE21 and AE42 magnesium alloys were investigated in the extruded state and after subsequent 8 passes of Equal Channel Angular Pressing (ECAP) via route Bc, by Electrochemical Impedance Spectroscopy (EIS) in 0.1 M NaCl solution. The resulting microstructure was observed by the Transmission Electron Microscope (TEM) and the Scanning Electron Microscope (SEM). Corrosion layer created after 7 days of immersion was observed by (SEM) in order to explain different evolution of the corrosion resistance after ECAP processing in both alloys. It was found that Al-rich Al11RE3 dispersed particles (present in both alloys) strongly influence the corrosion process and enhance the corrosion resistance. Ultra-fine grained structure was found to reduce the corrosion resistance in AE21. On the other hand, the microstructure of AE42 after ECAP and particularly the better distribution of the alloying elements in the matrix enhance the corrosion resistance when compared to the extruded material.

  7. Anti-Corrosive Powder Particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald; MacDowell, Louis, III

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks partners for a new approach in protecting embedded steel surfaces from corrosion. Corrosion of reinforced steel in concrete structures is a significant problem for NASA structures at Kennedy Space Center (KSC) because of the close proximity of the structures to salt spray from the nearby Atlantic Ocean. In an effort to minimize the damage to such structures, coatings were developed that could be applied as liquids to the external surfaces of a substrate in which the metal structures were embedded. The Metallic Pigment Powder Particle technology was developed by NASA at KSC. This technology combines the metallic materials into a uniform particle. The resultant powder can be sprayed simultaneously with a liquid binder onto the surface of concrete structures with a uniform distribution of the metallic pigment for optimum cathodic protection of the underlying steel in the concrete. Metallic Pigment Powder Particle technology improves upon the performance of an earlier NASA technology Liquid Galvanic Coating (U.S. Patent No. 6,627,065).

  8. Natural Corrosion Inhibitors for Steel Reinforcement in Concrete — a Review

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Ghoreishiamiri, Seyedmojtaba; Ismail, Mohammad

    2015-04-01

    Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.

  9. Corrosion Management of the Hanford High-Level Nuclear Waste Tanks

    NASA Astrophysics Data System (ADS)

    Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.

    2014-03-01

    The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.

  10. Molten salt corrosion behavior of structural materials in LiCl-KCl-UCl3 by thermogravimetric study

    NASA Astrophysics Data System (ADS)

    Rao, Ch Jagadeeswara; Ningshen, S.; Mallika, C.; Mudali, U. Kamachi

    2018-04-01

    The corrosion resistance of structural materials has been recognized as a key issue in the various unit operations such as salt purification, electrorefining, cathode processing and injection casting in the pyrochemical reprocessing of spent metallic nuclear fuels. In the present work, the corrosion behavior of the candidate materials of stainless steel (SS) 410, 2.25Cr-1Mo and 9Cr-1Mo steels was investigated in molten LiCl-KCl-UCl3 salt by thermogravimetric analysis under inert and reactive atmospheres at 500 and 600 °C, for 6 h duration. Insignificant weight gain (less than 1 mg/cm2) in the inert atmosphere and marginal weight gain (maximum 5 mg/cm2) in the reactive atmosphere were observed at both the temperatures. Chromium depletion rates and formation of Cr-rich corrosion products increased with increasing temperature of exposure in both inert and reactive atmospheres as evidenced by SEM and EDS analysis. The corrosion attack by LiCl-KCl-UCl3 molten salt, under reactive atmosphere for 6 h duration was more in the case of SS410 than 9Cr-1Mo steel followed by 2.25Cr-1Mo steel at 500 °C and the corrosion attack at 600 °C followed the order: 9Cr-1Mo steel >2.25Cr-1Mo steel > SS410. Outward diffusion of the minor alloying element, Mo was observed in 9Cr-1Mo and 2.25Cr-1Mo steels at both temperatures under reactive atmosphere. Laser Raman spectral analysis of the molten salt corrosion tested alloys under a reactive atmosphere at 500 and 600 °C for 6 h revealed the formation of unprotected Fe3O4 and α-as well as γ-Fe2O3. The results of the present study facilitate the selection of structural materials for applications in the corrosive molten salt environment at high temperatures.

  11. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    PubMed

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  12. Information Theory Filters for Wavelet Packet Coefficient Selection with Application to Corrosion Type Identification from Acoustic Emission Signals

    PubMed Central

    Van Dijck, Gert; Van Hulle, Marc M.

    2011-01-01

    The damage caused by corrosion in chemical process installations can lead to unexpected plant shutdowns and the leakage of potentially toxic chemicals into the environment. When subjected to corrosion, structural changes in the material occur, leading to energy releases as acoustic waves. This acoustic activity can in turn be used for corrosion monitoring, and even for predicting the type of corrosion. Here we apply wavelet packet decomposition to extract features from acoustic emission signals. We then use the extracted wavelet packet coefficients for distinguishing between the most important types of corrosion processes in the chemical process industry: uniform corrosion, pitting and stress corrosion cracking. The local discriminant basis selection algorithm can be considered as a standard for the selection of the most discriminative wavelet coefficients. However, it does not take the statistical dependencies between wavelet coefficients into account. We show that, when these dependencies are ignored, a lower accuracy is obtained in predicting the corrosion type. We compare several mutual information filters to take these dependencies into account in order to arrive at a more accurate prediction. PMID:22163921

  13. Effects of Hot Corrosion on the Room Temperature Strength of Structural Ceramics

    DTIC Science & Technology

    1989-07-01

    Melts. J. Elccrochni. Soc., v. 132, no. 10. 1985, p. 2502-2507. 6. TRESSLER, R. E., MEISER, M. D., and YONUSHONIS, T. Molten Salt Corrosion of SiC and...FOX. D. S. Molten Salt Corrosion ofSilicon Nitride: II. Sodium Sulfate. J. Am. Ceram. Soc., v. 71. no. 2. ]’,;-. p. 139-14R. 11. JACOBSON, N. S...SMIALEK..’. L, and FOX, D. S. Molten Salt Corrosion of SiC and SiN Prepared for NASA-i.cwis Rccarch C,, ter, NASA TM-101346, November 1988. 12. DAVIES G

  14. Computational study: Reduction of iron corrosion in lead coolant of fast nuclear reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkundato, Artoto; Su'ud, Zaki; Abdullah, Mikrajuddin

    2012-06-20

    In this paper we report molecular dynamics simulation results of iron (cladding) corrosion in interaction with lead coolant of fast nuclear reactor. The goal of this work is to study effect of oxygen injection to the coolant to reduce iron corrosion. By evaluating diffusion coefficients, radial distribution functions, mean-square displacement curves and observation of crystal structure of iron before and after oxygen injection, we concluded that a significant reduction of corrosion can be achieved by issuing about 2% of oxygen atoms into lead coolant.

  15. The Secant Rate of Corrosion: Correlating Observations of the USS Arizona Submerged in Pearl Harbor

    NASA Astrophysics Data System (ADS)

    Johnson, Donald L.; DeAngelis, Robert J.; Medlin, Dana J.; Johnson, Jon E.; Carr, James D.; Conlin, David L.

    2018-03-01

    Contrary to previous linear projections of steel corrosion in seawater, analysis of an inert marker embedded in USS Arizona concretion since the 7 December 1941 attack on Pearl Harbor reveals evidence that the effective corrosion rate decreases with time. The secant rate of corrosion, or SRC correlation, derived from this discovery could have a significant impact on failure analysis investigations for concreted shipwrecks or underwater structures. The correlation yields a lower rate of metal thinning than predicted. Development of the correlation is described.

  16. The Influence of the In-Situ Clad Staining on the Corrosion of Zircaloy in PWR Water Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammenzind, B.F., Eklund, K.L. and Bajaj, R.

    Zircaloy cladding tubes strain in-situ during service life in the corrosive environment of a Pressurized Water Reactor for a variety of reasons. First, the tube undergoes stress free growth due to the preferential alignment of irradiation induced vacancy loops on basal planes. Positive strains develop in the textured tubes along prism orientations while negative strains develop along basal orientations (Reference (a)). Second, early in life, free standing tubes will often shrink by creep in the diametrical direction under the external pressure of the water environment, but potentially grow later in life in the diametrical direction once the expanding fuel pelletmore » contacts the cladding inner wall (Reference (b)). Finally, the Zircaloy cladding absorbs hydrogen as a by product of the corrosion reaction (Reference (c)). Once above the solubility limit in Zircaloy, the hydride precipitates as zirconium hydride (References (c) through (j)). Both hydrogen in solid solution and precipitated as Zirconium hydride cause a volume expansion of the Zircaloy metal (Reference (k)). Few studies are reported on that have investigated the influence that in-situ clad straining has on corrosion of Zircaloy. If Zircaloy corrosion rates are governed by diffusion of anions through a thin passivating boundary layer at the oxide-to-metal interface (References (l) through (n)), in-situ straining of the cladding could accelerate the corrosion process by prematurely breaking that passivating oxide boundary layer. References (o) through (q) investigated the influence that an applied tensile stress has on the corrosion resistance of Zircaloy. Knights and Perkins, Reference (o), reported that the applied tensile stress increased corrosion rates above a critical stress level in 400 C and 475 C steam, but not at lower temperatures nor in dry oxygen environments. This latter observation suggested that hydrogen either in the oxide or at the oxide-to-metal interface is involved in the observed stress effect. Kim et al. (Reference (p)) and Kim and Kim (Reference (q)) more recently investigated the influence that an applied hoop stress has on the corrosion resistance of Zircaloy tubes in a 400 C steam and in a 350 C concentrated lithia water environment. Both of these studies found the applied tensile hoop stress to have no effect on cladding corrosion rates in the 400 C steam environment but to have accelerated corrosion in the lithiated water environment. In both cases, the corrosion acceleration in the lithiated water environment was attributed to the accumulation of the increased hydrogen picked up in the lithiated environment into the tensile regions of the test specimen. Dense hydride rims have been shown, independent of clad strain, to accelerate the corrosion of Zirconium alloys (References (r) and (s)), suggesting that the primary effect of applied stresses on the corrosion of Zircaloy in the above studies is through the accumulation of hydrogen at the oxide-to-metal interface and not through a direct mechanical breakdown of the passivating boundary layer. To further investigate the potential role of in-situ clad straining (or stress) on Zircaloy corrosion rates, two experimental studies were performed. First, several samples that were irradiated with and without an applied stress were destructively examined for the extent of corrosion occurring in strained and nonstrained regions of the test samples. The extent of corrosion was determined, posttest, by metallographic examination. Second, the corrosion process was monitored in-situ using electrochemical impedance spectroscopy on samples exposed out-of-reactor with and without an applied stress. Post test, these autoclave samples were also metallographically examined.« less

  17. Detection of active corrosion in reinforced and prestressed concrete: overview of NIST TIP project

    NASA Astrophysics Data System (ADS)

    Gonzalez-Nunez, M. A.; Nanni, A.; Matta, F.; Ziehl, P.

    2011-04-01

    The US transportation infrastructure has been receiving intensive public and private attention in recent years. The Federal Highway Administration estimates that 42 percent of the nearly 600,000 bridges in the Unites States are in need of structural or functional rehabilitation1. Corrosion of reinforcement steel is the main durability issue for reinforced and prestressed concrete structures, especially in coastal areas and in regions where de-icing salts are regularly used. Acoustic Emission (AE) has proved to be a promising method for detecting corrosion in steel reinforced and prestressed concrete members. This type of non-destructive test method primarily measures the magnitude of energy released within a material when physically strained. The expansive ferrous byproducts resulting from corrosion induce pressure at the steel-concrete interface, producing longitudinal and radial microcracks that can be detected by AE sensors. In the experimental study presented herein, concrete block specimens with embedded steel reinforcing bars and strands were tested under accelerated corrosion to relate the AE activity with the onset and propagation stages of corrosion. AE data along with half cell potential measurements and galvanic current were recorded to examine the deterioration process. Finally, the steel strands and bars were removed from the specimens, cleaned and weighed. The results were compared vis-à-vis Faraday's law to correlate AE measurements with degree of corrosion in each block.

  18. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    This one-year project was selected by NASA's Science Innovation Fund in FY17 to address Corrosion on Mars which is a problem that has not been addressed before. Corrosion resistance is one of the most important properties in selecting materials for landed spacecraft and structures that will support surface operations for the human exploration of Mars. Currently, the selection of materials is done by assuming that the corrosion behavior of a material on Mars will be the same as that on Earth. This is understandable given that there is no data regarding the corrosion resistance of materials in the Mars environment. However, given that corrosion is defined as the degradation of a metal that results from its chemical interaction with the environment, it cannot be assumed that corrosion is going to be the same in both environments since they are significantly different. The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars by conducting a literature search of available data, relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This project was motivated by the newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation observed on Curiosity's wheels may be caused by corrosive interactions with the brines, while the most significant damage was attributed to rock scratching. An extensive literature search on data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between an aerospace aluminum alloy (AA7075-T73) and the gases present in the Mars atmosphere, at 20degC and a pressure of 700 Pa, showed that there is an interaction between the small amount of oxygen present in the Mars gas and the alloy when there is a scratch that removes the protective aluminum oxide film. Further studies are needed to consider many other important components of the Mars environment that can affect this interaction such as: the effect of oxidants, the effect of radiation on their oxidizing properties and the possible catalytic effects of the clays present in the Martian regolith. The results of this one-year project provide strong justification for further investigation of the corrosion mechanism of materials relevant to long-term surface operations in support of future human exploration missions on Mars.

  19. Microstructure and Corrosion Behavior of CrN and CrSiCN Coatings

    NASA Astrophysics Data System (ADS)

    Cai, Feng; Yang, Qi; Huang, Xiao; Wei, Ronghua

    2010-07-01

    Three CrN-based coatings were deposited on 17-4PH stainless steel substrate using plasma enhanced magnetron sputtering (PEMS) technique. The microstructure and corrosion resistance were evaluated to examine the effect of Si and C in the coatings. The three coating compositions were CrN(Cr0.69N0.31), CrSiCN-1 (Cr0.55Si0.014C0.14N0.3), and CrSiCN-2 (Cr0.43Si0.037C0.24N0.3). The testing results indicated that with the increase of Si concentration, the coating microstructure transformed from B1 structure to B1 + Si3N4 structure. All the three coating systems were subjected to electrochemical tests in 3.5% NaCl solution at room temperature. Potentiodynamic polarization results revealed that the CrSiCN-2 coating had a higher anodic current density and a lower corrosion potential when compared to the CrN and CrSiCN-1 coatings. Extended exposure in 3.5% NaCl caused several localized corrosion to the CrSiCN-2 coating due to the porous coating structure. Electrochemical impedance spectroscopic measurements demonstrated that the CrSiCN-1 has better corrosion resistance than CrN and CrSiCN-2.

  20. Nano-based sensor for assessment of weaponry structural degradation

    NASA Astrophysics Data System (ADS)

    Brantley, Christina L.; Edwards, Eugene; Ruffin, Paul B.; Kranz, Michael

    2016-04-01

    Missiles and weaponry-based systems are composed of metal structures that can degrade after prolonged exposure to environmental elements. A particular concern is accumulation of corrosion that generally results from prolonged environmental exposure. Corrosion, defined as the unintended destruction or deterioration of a material due to its interaction with the environment, can negatively affect both equipment and infrastructure. System readiness and safety can be reduced if corrosion is not detected, prevented and managed. The current corrosion recognition methods (Visual, Radiography, Ultrasonics, Eddy Current, and Thermography) are expensive and potentially unreliable. Visual perception is the most commonly used method for determining corrosion in metal. Utilization of an inductance-based sensor system is being proposed as part of the authors' research. Results from this research will provide a more efficient, economical, and non-destructive sensing approach. Preliminary results demonstrate a highly linear degradation within a corrosive environment due to the increased surface area available on the sensor coupon. The inductance of the devices, which represents a volume property of the coupon, demonstrated sensitivity to corrosion levels. The proposed approach allows a direct mass-loss measurement based on the change in the inductance of the coupon when placed in an alternating magnetic field. Prototype devices have demonstrated highly predictable corrosion rates that are easily measured using low-power small electronic circuits and energy harvesting methods to interrogate the sensor. Preliminary testing demonstrates that the device concept is acceptable and future opportunities for use in low power embedded applications are achievable. Key results in this paper include the assessment of typical Army corrosion cost, degradation patterns of varying metal materials, and application of wireless sensors elements.

  1. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  2. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-11-30

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  3. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  4. The effect of alloy composition on the mechanism of stress corrosion cracking of titanium alloys in aqueous environments

    NASA Technical Reports Server (NTRS)

    Boyd, J. D.; Williams, D. N.; Wood, R. A.; Jaffee, R. I.

    1972-01-01

    The effects of alloy composition on the aqueous stress corrosion of titanium alloys were studied with emphasis on determining the interrelations among composition, phase structure, and deformation and fracture properties of the alpha phase in alpha-beta alloys. Accomplishments summarized include the effects of alloy composition on susceptibility, and metallurgical mechanisms of stress-corrosion cracking.

  5. Contribution to the study of the vasculature of submandibular and sublingual glands and lymph nodes of rats by corrosion cast technique combined with scanning electron microscopy.

    PubMed

    Rossi-Schneider, Tíssiana Rachel; Verli, Flaviana Dornela; Yurgel, Liliane Soares; De Souza, Maria Antonieta Lopes; Cherubini, Karen

    2008-10-01

    The study of anatomical structures in their normal state allows the identification of pathological changes that can occur in them. Angiogenesis and the vasculature have been widely studied, mainly because of their association with the development of neoplasms. One of the methods applied for such purposes is the corrosion cast technique, which provides a copy of the vessels with normal as well as pathological structures. The replica of the vasculature provided by this technique allows the three-dimensional analysis of vessels by means of scanning electron microscopy. The aim of the present study was to demonstrate, by means of corrosion casts, the angioarchitecture of the submandibular and sublingual glands and lymph nodes. Scanning electron microscopy showed that the three structures have distinct vascular patterns. The corrosion cast technique can be employed in the study of the angioarchitecture of the submandibular and sublingual glands and lymph nodes, but requires specific precautions. The removal of the structures en bloc and the handling of the replicas with the aid of a stereoscopic magnifier reduce the risk of fractures. (c) 2008 Wiley-Liss, Inc.

  6. Research notes : shear capacity of corrosion-damaged RC beams.

    DOT National Transportation Integrated Search

    2004-01-01

    Bridges on Oregons coast must withstand a corrosive marine environment. Concrete in reinforced concrete structures offers temporary protection to the reinforcing steel against the environment; but eventually the embedded steel succumbs to the inex...

  7. Cementation of colloidal particles on electrodes in a galvanic microreactor.

    PubMed

    Jan, Linda; Punckt, Christian; Aksay, Ilhan A

    2013-07-10

    We have studied the processes leading to the cementation of colloidal particles during their autonomous assembly on corroding copper electrodes within a Cu-Au galvanic microreactor. We determined the onset of particle immobilization through particle tracking, monitored the dissolution of copper as well as the deposition of insoluble products of the corrosion reactions in situ, and showed that particle immobilization initiated after reaction products (RPs) began to deposit on the electrode substrate. We further demonstrated that the time and the extent of RP precipitation and thus the strength of the particle-substrate bond could be tuned by varying the amount of copper in the system and the microreactor pH. The ability to cement colloidal particles at locations undergoing corrosion illustrates that the studied colloidal assembly approach holds potential for applications in dynamic material property adaptation.

  8. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    PubMed

    Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M

    2015-06-30

    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.

  9. NASA's Corrosion Technology Laboratory at the Kennedy Space Center: Anticipating, Managing, and Preventing Corrosion

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina

    2014-01-01

    Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.

  10. Raising the Corrosion Resistance of Low-Carbon Steels by Electrolytic-Plasma Saturation with Nitrogen and Carbon

    NASA Astrophysics Data System (ADS)

    Kusmanov, S. A.; Grishina, E. P.; Belkin, P. N.; Kusmanova, Yu. V.; Kudryakova, N. O.

    2017-05-01

    Structural features of the external oxide layer and internal nitrided, carbonitrided and carburized layers in steels 10, 20 and St3 produced by the method of electrolytic plasma treatment are studied. Specimens of the steels are tested for corrosion in a naturally aerated 1-N solution of sodium chloride. The condition of the metal/sodium chloride solution interface is studied by the method of electrochemical impedance spectroscopy. It is shown that the corrosion resistance of low-carbon steels can be raised by anode electrolytic-plasma saturation with nitrogen and carbon. Recommendations are given on the choice of carbonitriding modes for structural steels.

  11. Evaluation of reinforced concrete structures using the electromagnetic method

    NASA Astrophysics Data System (ADS)

    Chady, Tomasz; Frankowski, Paweł; Waszczuk, Paweł; Zieliński, Adam

    2018-04-01

    Reinforced concrete has been a universally dominant construction material for over a century, although structures made of this material are often exposed to many types of damage and deterioration due to different causes and external conditions. The most important problem is corrosion of the reinforcement. Currently, most of the inspection methods of rebar in concrete are of an indirect nature or they are partially destructive. Moreover, none of the well-known systems allow for direct and non-destructive evaluation of the rebar corrosion. The purpose of this paper is to present the new, direct and non-destructive method, which allows detection of cracks and corrosion of the reinforcement bars.

  12. Simultaneous increase in the strength, plasticity, and corrosion resistance of an ultrafine-grained Ti-4Al-2V pseudo-alpha-titanium alloy

    NASA Astrophysics Data System (ADS)

    Chuvil'deev, V. N.; Kopylov, V. I.; Nokhrin, A. V.; Bakhmet'ev, A. M.; Sandler, N. G.; Kozlova, N. A.; Tryaev, P. V.; Tabachkova, N. Yu.; Mikhailov, A. S.; Ershova, A. V.; Gryaznov, M. Yu.; Chegurov, M. K.; Sysoev, A. N.; Smirnova, E. S.

    2017-05-01

    The influence of severe plastic deformation on the structural-phase state of grain boundaries in a Ti-4Al-2V (commercial PT3V grade) pseudo-alpha-titanium alloy has been studied. It is established that increase in the strength, plasticity, and corrosion resistance of this alloy is related to the formation of an ultrafine- grained structure. In particular, it is shown that an increase in the resistance to hot-salt intergranular corrosion is due to diffusion-controlled redistribution of aluminum and vanadium atoms at the grain boundaries of titanium formed during thermal severe plastic deformation.

  13. High-frequency ultrasonic methods for determining corrosion layer thickness of hollow metallic components.

    PubMed

    Liu, Hongwei; Zhang, Lei; Liu, Hong Fei; Chen, Shuting; Wang, Shihua; Wong, Zheng Zheng; Yao, Kui

    2018-05-16

    Corrosion in internal cavity is one of the most common problems occurs in many hollow metallic components, such as pipes containing corrosive fluids and high temperature turbines in aircraft. It is highly demanded to non-destructively detect the corrosion inside hollow components and determine the corrosion extent from the external side. In this work, we present two high-frequency ultrasonic non-destructive testing (NDT) technologies, including piezoelectric pulse-echo and laser-ultrasonic methods, for detecting corrosion of Ni superalloy from the opposite side. The determination of corrosion layer thickness below ∼100 µm has been demonstrated by both methods, in comparison with X-CT and SEM. With electron microscopic examination, it is found that with multilayer corrosion structure formed over a prolonged corrosion time, the ultrasonic NDT methods can only reliably reveal outer corrosion layer thickness because of the resulting acoustic contrast among the multiple layers due to their respective different mechanical parameters. A time-frequency signal analysis algorithm is employed to effectively enhance the high frequency ultrasonic signal contrast for the piezoelectric pulse-echo method. Finally, a blind test on a Ni superalloy turbine blade with internal corrosion is conducted with the high frequency piezoelectric pulser-receiver method. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Seawater Corrosion of Fasteners in Various Structural Materials

    DTIC Science & Technology

    1976-04-01

    17 - 4PH stainless steel. The seven bolt materials were: 2024 aluminum, anodized ASTM grade 5 steel, 304 and 316 stainless steels, A286 stain- less...performed well in titanium structures. Use of MP35N, A286, and 304 stainless steel fasteners for constantly immersed 17 - 4PH stainless steel structures...would have been satisfactory only if sealant was not used and if protection had been provided to the 17 - 4PH to minimize crevice corrosion. Additional

  15. Mechanical characteristics of heterogeneous structures obtained by high-temperature brazing of corrosion-resistant steels with rapidly quenched non-boron nickel-based alloys

    NASA Astrophysics Data System (ADS)

    Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.

    2018-01-01

    Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.

  16. Development of an Improved Crack Propagation Model for Corrosion-Induced Cover Cracking in RC Structures

    NASA Astrophysics Data System (ADS)

    Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.

    2017-06-01

    During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.

  17. Compatibility of structural materials with liquid bismuth, lead, and mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeks, J.R.

    1996-06-01

    During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies,more » the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.« less

  18. Photoactive and self-sensing P3HT-based thin films for strain and corrosion monitoring

    NASA Astrophysics Data System (ADS)

    Ryu, Donghyeon; Loh, Kenneth J.

    2014-03-01

    Structural systems deteriorate due to excessive deformation and corrosive environments. If damage is left undetected, they can propagate to cause sudden collapse. However, one of the main difficulties of monitoring damage progression is that, for example, excessive/plastic deformation and corrosion are drastically different physical processes. Strain is a mechanical phenomenon, whereas corrosion is a complex electrochemical process. The current strategy for structural health monitoring (SHM) is to use either different types of sensors or to employ system identification for quantifying overall changes to the structure. In this study, an alternative SHM paradigm is proposed in that a single, multifunctional material would be able to selectively sense different but simultaneously occurring structural damage. In particular, a photoactive and self-sensing thin film was developed for monitoring strain and corrosion. Another unique aspect was that the films were self-sensing and did not depend on external electrical energy for operations. First, the thin films were fabricated using photoactive poly(3-hexylthiophene) (P3HT) and other functional polymers using spin-coating and layerby- layer assembly. Second, the fabricated thin films were interrogated using an ultraviolet-visible (UV-Vis) spectrophotometer for quantifying their optical response to applied external stimuli, such as strain and exposure to pH buffer solutions. Lastly, the multifunctional thin films were tested and validated for strain and pH sensing. Interrogation of these separate responses was achieved by illuminating the thin films different wavelengths of light and then measuring the corresponding electrical current generated.

  19. Structural modifications and corrosion behavior of martensitic stainless steel nitrided by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Figueroa, C. A.; Alvarez, F.; Zhang, Z.; Collins, G. A.; Short, K. T.

    2005-07-01

    In this work we report a study of the structural modifications and corrosion behavior of martensitic stainless steels (MSS) nitrided by plasma immersion ion implantation (PI3). The samples were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, photoemission electron spectroscopy, and potentiodynamic electrochemical measurements. Depending on the PI3 treatment temperature, three different material property trends are observed. At lower implantation temperatures (e.g., 360 °C), the material corrosion resistance is improved and a compact phase of ɛ-(Fe,Cr)3N, without changes in the crystal morphology, is obtained. At intermediate temperatures (e.g., 430 °C), CrN precipitates form principally at grain boundaries, leading to a degradation in the corrosion resistance compared to the original MSS material. At higher temperatures (e.g., 500 °C), the relatively great mobility of the nitrogen and chromium in the matrix induced random precipitates of CrN, transforming the original martensitic phase into α-Fe (ferrite), and causing a further degradation in the corrosion resistance.

  20. Durability tests of a fiber optic corrosion sensor.

    PubMed

    Wan, Kai Tai; Leung, Christopher K Y

    2012-01-01

    Steel corrosion is a major cause of degradation in reinforced concrete structures, and there is a need to develop cost-effective methods to detect the initiation of corrosion in such structures. This paper presents a low cost, easy to use fiber optic corrosion sensor for practical application. Thin iron film is deposited on the end surface of a cleaved optical fiber by sputtering. When light is sent into the fiber, most of it is reflected by the coating. If the surrounding environment is corrosive, the film is corroded and the intensity of the reflected signal drops significantly. In previous work, the sensing principle was verified by various experiments in laboratory and a packaging method was introduced. In this paper, the method of multiplexing several sensors by optical time domain reflectometer (OTDR) and optical splitter is introduced, together with the interpretation of OTDR results. The practical applicability of the proposed sensors is demonstrated in a three-year field trial with the sensors installed in an aggressive marine environment. The durability of the sensor against chemical degradation and physical degradation is also verified by accelerated life test and freeze-thaw cycling test, respectively.

  1. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    NASA Astrophysics Data System (ADS)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  2. Protection of structural concrete substructures.

    DOT National Transportation Integrated Search

    1992-12-01

    The corrosion of reinforcing steel within concrete has always been a problem in construction of bridge decks. With low slump concrete and epoxy rebar, progress has been made in controlling the corrosion. There is concern, however, that the chloride a...

  3. The relationship between corrosion protection and hydrogen embrittlement properties of HAZ in flux cored are welding

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Jong; Moon, Kyung-Man

    2002-07-01

    The cathodic protection method is being widely used in marine structural steel. However, a high tensile steel such as RE 36 steel used for marine structural steel is easily susceptible to hydrogen embrittlement due to overprotection as well as the preferential corrosion of the heat affected zone (HAZ). In this paper, corrosion resistance and mechanical properties were investigated from the electrochemical view and mechanical view in as-wedded and post-weld heat treated specimens. Fracture surface was analyzed by SEM. The corrosion resistance in post-weld heat treated at 550°C was superior to that at other post-weld heat treatment (PWHT) temperature. On the other hand, elongation was decreased with a shift to the low potential direction which may cause hydrogen embrittlement. And a quasi-cleavage (Q.C) fracture mode was also observed significantly with a potential increase to the active direction.

  4. Strength and Durability of Fly Ash-Based Fiber-Reinforced Geopolymer Concrete in a Simulated Marine Environment

    NASA Astrophysics Data System (ADS)

    Martinez Rivera, Francisco Javier

    This research is aimed at investigating the corrosion durability of polyolefin fiberreinforced fly ash-based geopolymer structural concrete (hereafter referred to as GPC, in contradistinction to unreinforced geopolymer concrete referred to as simply geopolymer concrete), where cement is completely replaced by fly ash, that is activated by alkalis, sodium hydroxide and sodium silicate. The durability in a marine environment is tested through an electrochemical method for accelerated corrosion. The GPC achieved compressive strengths in excess of 6,000 psi. Fiber reinforced beams contained polyolefin fibers in the amounts of 0.1%, 0.3%, and 0.5% by volume. After being subjected to corrosion damage, the GPC beams were analyzed through a method of crack scoring, steel mass loss, and residual flexural strength testing. Fiber reinforced GPC beams showed greater resistance to corrosion damage with higher residual flexural strength. This makes GPC an attractive material for use in submerged marine structures.

  5. Corrosion control for reinforced concrete

    NASA Astrophysics Data System (ADS)

    Torigoe, R. M.

    The National Bureau of Standards has recorded that in 1975 the national cost of corrosion was estimated at $70 billion. Approximately 40% of that total was attributed to the corrosion of steel reinforcements in concrete. Though concrete is generally perceived as a permanent construction material, cracking and spalling can occur when corrosion of steel reinforcements progresses to an advanced stage. This problem frequently occurs in reinforced concrete highway bridge decks, wharves, piers, and other structures in marine and snowbelt environments. Since concrete has a very low tensile strength, steel reinforcements are added to carry the tensile load of the composite member. Corrosion reduces the effective diameter of the reinforcements and, therefore, decreases the load carrying capability of the member. Though the corrosion process may occur in various forms and may be caused by different sources, the ultimate result is still the failure of the reinforced concrete.

  6. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Hintze, P. E.; Li, W.; Buhrow, J. W.; Jolley, S. T.

    2011-01-01

    This slide presentation reviews the effects of corrosion on various structures at the Kennedy Space Center, and the work to discover a corrosion control coating that will be autonomous and will indicate corrosion at an early point in the process. Kennedy Space Center has many environmental conditions that are corrosive: ocean salt spray, heat, humidity, sunlight and acidic exhaust from the Solid Rocket Boosters (SRBs). Presented is a chart which shows the corrosion rates of carbon steel at various locations. KSC has the highest corrosion rates with 42.0 mils/yr, leading the next highest Galeta Point Beach, in the Panama Canal Zone with 27 mils/yr corrosion. A chart shows the changes in corrosion rate with the distance from the ocean. The three types of corrosion protective coatings are described: barrier (passive), Barrier plus active corrosion inhibiting components, and smart. A smart coating will detect and respond actively to changes in its environment in a functional and predictable manner and is capable of adapting its properties dynamically. The smart coating uses microcapsules, particles or liquid drops coated in polymers, that can detect and control the corrosion caused by the environment. The mechanism for a pH sensitive microcapsule and the hydrophobic core microcapsule are demonstrated and the chemistry is reviewed. When corrosion begins, the microcapsule will release the contents of the core (indicator, inhibitor, and self healing agent) in close proximity to the corrosion. The response to a pH increase is demonstrated by a series of pictures that show the breakdown of the microcapsule and the contents release. An example of bolt corrosion is used, as an example of corrosion in places that are difficult to ascertain. A comparison of various coating systems is shown.

  7. Evaluation of SARs for the prediction of eye irritation/corrosion potential: structural inclusion rules in the BfR decision support system.

    PubMed

    Tsakovska, I; Saliner, A Gallegos; Netzeva, T; Pavan, M; Worth, A P

    2007-01-01

    The proposed REACH regulation within the European Union (EU) aims to minimise the number of laboratory animals used for human hazard and risk assessment while ensuring adequate protection of human health and the environment. One way to achieve this goal is to develop non-testing methods, such as (quantitative) structure-activity relationships ([Q]SARs), suitable for identifying toxicological hazard from chemical structure and physicochemical properties alone. A database containing data submitted within the EU New Chemicals Notification procedure was compiled by the German Bundesinstitut für Risikobewertung (BfR). On the basis of these data, the BfR built a decision support system (DSS) for the prediction of several toxicological endpoints. For the prediction of eye irritation and corrosion potential, the DSS contains 31 physicochemical exclusion rules evaluated previously by the European Chemicals Bureau (ECB), and 27 inclusion rules that define structural alerts potentially responsible for eye irritation and/or corrosion. This work summarises the results of a study carried out by the ECB to assess the performance of the BfR structural rulebase. The assessment included: (a) evaluation of the structural alerts by using the training set of 1341 substances with experimental data for eye irritation and corrosion; and (b) external validation by using an independent test set of 199 chemicals. Recommendations are made for the further development of the structural rules in order to increase the overall predictivity of the DSS.

  8. Flame-Resistant Composite Materials For Structural Members

    NASA Technical Reports Server (NTRS)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  9. USAF Corrosion Prevention and Control Enterprise - Sustainability Links

    DTIC Science & Technology

    2014-11-18

    projects and $84M  Example of potential synergy: From FY05-14, the DoD Corrosion Program funded 21 projects on hexavalent chromium reduction  OSD...coatings, effects on structural integrity, environmental effects, etc  Some topics of interest  Inhibitor mechanisms for mg-rich primer (non- chrome ...approach  Financial and engineering resources are limited  Potential costs of corrosion are significant  Supporting replacements for hexavalent

  10. Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models

    NASA Astrophysics Data System (ADS)

    Weisenburger, A.; Schroer, C.; Jianu, A.; Heinzel, A.; Konys, J.; Steiner, H.; Müller, G.; Fazio, C.; Gessi, A.; Babayan, S.; Kobzova, A.; Martinelli, L.; Ginestar, K.; Balbaud-Célerier, F.; Martín-Muñoz, F. J.; Soler Crespo, L.

    2011-08-01

    Considering the status of knowledge on corrosion and corrosion protection and especially the need for long term compatibility data of structural materials in HLM a set of experiments to generate reliable long term data was defined and performed. The long term corrosion behaviour of the two structural materials foreseen in ADS, 316L and T91, was investigated in the design relevant temperature field, i.e. from 300 to 550 °C. The operational window of the two steels in this temperature range was identified and all oxidation data were used to develop and validate the models of oxide scale growth in PbBi. A mechanistic model capable to predict the oxidation rate applying some experimentally fitted parameters has been developed. This model assumes parabolic oxidation and might be used for design and safety relevant investigations in future. Studies on corrosion barrier development allowed to define the required Al content for the formation of thin alumina scales in LBE. These results as well as future steps and required improvements are discussed. Variation of experimental conditions clearly showed that specific care has to be taken with respect to local flow conditions and oxygen concentrations.

  11. Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion

    NASA Astrophysics Data System (ADS)

    Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.

    2011-04-01

    The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.

  12. Stress Corrosion of Ceramic Materials

    DTIC Science & Technology

    1981-10-01

    stresses are liable to fail after an indeterminate period of time, leading to a considerable uncertainty in the safe design stress. One of the objectives...of modern ceramics technology is to reduce the uncertainty associated with structural design , and hence, to improve our capabilities of designing ...processes that occur during stress corrosion cracking. Recent advances in th~earea of structural design with ceramic materials have lead to several

  13. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review.

    PubMed

    Umoren, Saviour A; Eduok, Ubong M

    2016-04-20

    Naturally occurring polysaccharides are biopolymers existing as products of biochemical processes in living systems. A wide variety of them have been employed for various material applications; as binders, coatings, drug delivery, corrosion inhibitors etc. This review describes the application of some green and benign carbohydrate biopolymers and their derivatives for inhibition of metal corrosion. Their modes and mechanisms of protection have also been described as directly related to their macromolecular weights, chemical composition and their unique molecular and electronic structures. For instance, cellulose and chitosan possess free amine and hydroxyl groups capable of metal ion chelation and their lone pairs of electrons are readily utilized for coordinate bonding at the metal/solution interface. Some of the carbohydrate polymers reviewed in this work are either pure or modified forms; their grafted systems and nanoparticle composites with multitude potentials for metal protection applications have also been highlighted. Few inhibitors grafted to introduce more compact structures with polar groups capable of increasing the total energy of the surface have also been mentioned. Exudate gums, carboxymethyl and hydroxyethyl cellulose, starch, pectin and pectates, substituted/modified chitosans, carrageenan, dextrin/cyclodextrins and alginates have been elaborately reviewed, including the effects of halide additives on their anticorrosion performances. Aspects of computational/theoretical approach to corrosion monitoring have been recommended for future studies. This non-experimental approach to corrosion could foster a better understanding of the corrosion inhibition processes by correlating actual inhibition mechanisms with molecular structures of these carbohydrate polymers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Analysis of Wood Structure Connections Using Cylindrical Steel and Carbon Fiber Dowel Pins

    NASA Astrophysics Data System (ADS)

    Vodiannikov, Mikhail A.; Kashevarova, Galina G., Dr.

    2017-06-01

    In this paper, the results of the statistical analysis of corrosion processes and moisture saturation of glued laminated timber structures and their joints in corrosive environment are shown. This paper includes calculation results for dowel connections of wood structures using steel and carbon fiber reinforced plastic cylindrical dowel pins in accordance with applicable regulatory documents by means of finite element analysis in ANSYS software, as well as experimental findings. Dependence diagrams are shown; comparative analysis of the results obtained is conducted.

  15. Forecasting Corrosion of Steel in Concrete Introducing Chloride Threshold Dependence on Steel Potential

    NASA Astrophysics Data System (ADS)

    Sanchez, Andrea Nathalie

    Corrosion initiates in reinforced concrete structures exposed to marine environments when the chloride ion concentration at the surface of an embedded steel reinforcing bar exceeds the chloride corrosion threshold (CT) value. The value of CT is generally assumed to have a conservative fixed value ranging from 0.2% to - 0.5 % of chloride ions by weight of cement. However, extensive experimental investigations confirmed that C T is not a fixed value and that the value of CT depends on many variables. Among those, the potential of passive steel embedded in concrete is a key influential factor on the value of CT and has received little attention in the literature. The phenomenon of a potential-dependent threshold (PDT) permits accounting for corrosion macrocell coupling between active and passive steel assembly components in corrosion forecast models, avoiding overly conservative long-term damage projections and leading to more efficient design. The objectives of this investigation was to 1) expand by a systematic experimental assessment the knowledge and data base on how dependent the chloride threshold is on the potential of the steel embedded in concrete and 2) introduce the chloride threshold dependence on steel potential as an integral part of corrosion-related service life prediction of reinforced concrete structures. Experimental assessments on PDT were found in the literature but for a limited set of conditions. Therefore, experiments were conducted with mortar and concrete specimens and exposed to conditions more representative of the field than those previously available. The experimental results confirmed the presence of the PDT effect and provided supporting information to use a value of -550 mV per decade of Cl- for the cathodic prevention slope betaCT, a critical quantitative input for implementation in a practical model. A refinement of a previous corrosion initiation-propagation model that incorporated PDT in a partially submerged reinforced concrete column in sea water was developed. Corrosion was assumed to start when the chloride corrosion threshold was reached in an active steel zone of a given size, followed by recalculating the potential distribution and update threshold values over the entire system at each time step. Notably, results of this work indicated that when PDT is ignored, as is the case in present forecasting model practice, the corrosion damage prediction can be overly conservative which could lead to structural overdesign or misguided future damage management planning. Implementation of PDT in next-generation models is therefore highly desirable. However, developing a mathematical model that forecasts the corrosion damage of an entire marine structure with a fully implemented PDT module can result in excessive computational complexity. Hence, a provisional simplified approach for incorporating the effect of PDT was developed. The approach uses a correction function to be applied to projections that have been computed using the traditional procedures.

  16. Static Fatigue Behavior of Structural Ceramics in a Corrosive Environment

    DTIC Science & Technology

    1990-06-01

    R. E., MEISER, M. D., and YONUSHONIS, T. Molten Salt Corrosion of SiC and Si3N4 Ceramics. J. Am. Ceram. Soc., v. 59, no. 5-6, 1976, p. 278-279. 7...Engineering Materials 1I, NASA TM-89820, April 13-15, 1987. 10. JACOBSON, N. S., and FOX, D. S. Molten Salt Corrosion of Silicon Nitride: II, Sodium...Sulfate. J. Am. Ceram. Soc.. v. 71. no. 2., 198,. p. 139-148. 11. JACOBSON, N. S., SMIALEK, J. L., and FOX, D. S. Molten Salt Corrosion of SiC and Si3N4

  17. Progress in the Research of Fatigue of Weathering Steel after Corrosion

    NASA Astrophysics Data System (ADS)

    Jianyu, Liang; Jian, Yao; Youwu, Xu

    2017-12-01

    Weathering steel has a good corrosion resistance in the atmosphere, and the application of weathering steel in civil structure also reduces the cost of painting and maintenance. It is also possible for the bare weathering steel to bear the fatigue load with a rust layer. This paper summarizes the fatigue researches after corrosion of weathering steel, including the shape of specimens, failure modes of fatigue and the conclusions obtained through experimental investigations. It is also introduced the fatigue model of weathering steel after corrosion, which can be useful for the engineering application or further researches.

  18. A Corrosion Control Manual for Rail Rapid Transit

    NASA Technical Reports Server (NTRS)

    Gilbert, L. O.; Fitzgerald, J. H., III; Menke, J. T.; Lizak, R. M. (Editor)

    1982-01-01

    This manual addresses corrosion problems in the design, contruction, and maintenance of rapid transit systems. Design and maintenance solutions are provided for each problem covered. The scope encompasses all facilities of urban rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. The types of corrosion and their causes as well as rapid transit properties are described. Corrosion control committees, and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual are listed. A bibliography of papers and excerpts of reports is provided and a glossary of frequently used terms is included.

  19. Ultrasonic detection of simulated corrosion in 1 inch diameter steel tieback rods.

    DOT National Transportation Integrated Search

    2009-08-01

    Corrosion of tieback rods in sheet piling systems can compromise the reliability of associated transportation : structures due to loss of crosssection and reduced strength of the tieback rods. Common inspection techniques : currently involve excav...

  20. Procedures for evaluating corrosion-inhibiting admixtures for structural concrete

    DOT National Transportation Integrated Search

    2000-06-01

    The objectives of this research were to (1) develop procedures for evaluating and qualifying corrosion-inhibiting admixtures (CIAs) and (2) recommend performance criteria for their acceptance. Phase I work included a literature review of CIAs, the re...

  1. Sustainability of transportation structures using composite materials to support trade and growth.

    DOT National Transportation Integrated Search

    2014-06-01

    Corrosion-induced deterioration of steel rebar is one of the main reasons for repair and rehabilitation programs : for conventional steel-reinforced concrete bridge decks. According to the National Association of Corrosion Engineers : (NACE), of all ...

  2. Evaluation of corrosion resistance of various concrete reinforcing materials.

    DOT National Transportation Integrated Search

    2013-06-01

    The Vermont Agency of Transportation undertook a simple experiment to determine the corrosion : resistance ability of various reinforcing steels (rebar) that may be used in bridges and other concrete : structures. Eight types of rebar were used in th...

  3. A 20 Year Lifecycle Study for Launch Facilities at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Kolody, Mark R.; Li. Wenyan; Hintze, Paul E.; Calle, Luz-Marina

    2009-01-01

    The lifecycle cost analysis was based on corrosion costs for the Kennedy Space Center's Launch Complexes and Mobile Launch Platforms. The first step in the study involved identifying the relevant assets that would be included. Secondly, the identification and collection of the corrosion control cost data for the selected assets was completed. Corrosion control costs were separated into four categories. The sources of cost included the NASA labor for civil servant personnel directly involved in overseeing and managing corrosion control of the assets, United Space Alliance (USA) contractual requirements for performing planned corrosion control tasks, USA performance of unplanned corrosion control tasks, and Testing and Development. Corrosion control operations performed under USA contractual requirements were the most significant contributors to the total cost of corrosion. The operations include the inspection of the pad, routine maintenance of the pad, medium and large scale blasting and repainting activities, and the repair and replacement of structural metal elements. Cost data was collected from the years between 2001 and 2007. These costs were then extrapolated to future years to calculate the 20 year lifecycle costs.

  4. Microbially Influenced Corrosion of 304 Stainless Steel and Titanium by P. variotii and A. niger in Humid Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei; Zhou, Feichi; Xiao, Kui; Cui, Tianyu; Qian, Hongchong; Li, Xiaogang

    2015-07-01

    Microbially induced corrosion (MIC) poses significant threats to reliability and safety of engineering materials and structures. While most MIC studies focus on prokaryotic bacteria such as sulfate-reducing bacteria, the influence of fungi on corrosion behaviors of metals has not been adequately reported. In this study, 304 stainless steel and titanium were exposed to two very common fungi, Paecilomyces variotii, Aspergillus niger and their mixtures under highly humid atmosphere. The initial corrosion behaviors within 28 days were studied via scanning Kelvin probe, which showed marked surface ennoblement and increasingly heterogeneous potential distribution upon prolonged fungus exposure. Using stereomicroscopy, fungus growth as well as corrosion morphology of 304 stainless steel and titanium were also evaluated after a long-term exposure for 60 days. The presence of fungi decreased the corrosion resistance for both 304 stainless steel and titanium. Titanium showed higher resistance to fungus growth and the induced corrosion. Exposure to the mixed strains resulted in the highest fungus growth rate but the mildest corrosion, possibly due to the decreased oxygen level by increased fungal activities.

  5. The Effect of High Temperature Corrosion on Mechanical Behavior of a GAMMA-TiAl Alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Wenyue; Ma, Yue; Gong, Shengkai

    The mechanical properties of Ti-48Al-2Cr-2Nb alloy were discussed after the high temperature corrosion tests carried out with salt mixture of 75wt. % Na2SO4 and 25wt. % NaCl at 800°C. The microstructure of the alloy after corrosion was observed by SEM and the fracture behavior of the corroded and uncorroded alloys was investigated by means of the three-point bending tests. It has been shown that the corrosion path was mainly along the lamellar structure and rough surface with a large number of corrosion pits formed during the high temperature corrosion. The experimental results also indicated that the bearing capacity of bending fracture descended evidently due to the molten salt corrosion at high temperature, which only had remarkable effects on the surface state of the alloy. The microcracks inside the alloy always propagated along the phase interfaces and grain boundaries while the corrosion pits on salt-deposited surface became the main crack initiation location in corroded alloy. The stress concentration caused by corrosion was considered as the essential reason of the property reduction, which decreased the energy barrier of crack nucleation and shortened the incubation period.

  6. Cluster analysis of stress corrosion mechanisms for steel wires used in bridge cables through acoustic emission particle swarm optimization.

    PubMed

    Li, Dongsheng; Yang, Wei; Zhang, Wenyao

    2017-05-01

    Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic parameter figure. A particle swarm optimization cluster method was developed to determine the relationship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types of clustering data, the mean value of each damage pattern's AE characteristic parameters was determined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE particle swarm optimization cluster analysis based on principal component analysis was also proposed. This method can completely distinguish the four types of damage sources and simplifies the determination of the evolution process of corrosion damage and broken wire signals. Copyright © 2017. Published by Elsevier B.V.

  7. Corrosion Behaviour of Sn-based Lead-Free Solders in Acidic Solution

    NASA Astrophysics Data System (ADS)

    Nordarina, J.; Mohd, H. Z.; Ahmad, A. M.; Muhammad, F. M. N.

    2018-03-01

    The corrosion properties of Sn-9(5Al-Zn), Sn-Cu and SAC305 were studied via potentiodynamic polarization method in an acidic solution of 1 M hydrochloric acid (HCl). Sn-9(5Al-Zn) produced different polarization profile compared with Sn-Cu and SAC305. The morphological analysis showed that small, deep grooves shaped of corrosion product formed on top of Sn-9(5Al-Zn) solder while two distinctive structures of closely packed and loosely packed corrosion product formed on top of Sn-Cu and SAC305 solder alloys. Phase analysis revealed the formations of various corrosion products such as SnO and SnO2 mainly dominant on surface of solder alloys after potentiodynamic polarization in 1 M hydrochloric acid (HCl).

  8. A study of the effect of clinical washing decontamination process on corrosion resistance of Martensitic Stainless Steel 420.

    PubMed

    Xu, Yunwei; Huang, Zhihong; Corner, George

    2016-09-28

    Corrosion of surgical instruments provides a seat for contamination and prevents proper sterilisation, placing both patients and medical staff at risk of infection. Corrosion can also compromise the structural integrity of instruments and lead to mechanical failure in use. It is essential to understand the various factors affecting corrosion resistance of surgical instruments and how it can be minimised.This paper investigates the effect on corrosion resistance from the clinical washing decontamination (WD) process, specifically by studying the changes in surface roughness and Cr/Fe ratio. Results indicate that the WD process provides a positive effect on smooth polished samples, while a lesser positive effect was observed on rough reflection reduced samples.

  9. Image analysis of corrosion pit initiation on ASTM type A240 stainless steel and ASTM type A 1008 carbon steel

    NASA Astrophysics Data System (ADS)

    Nine, H. M. Zulker

    The adversity of metallic corrosion is of growing concern to industrial engineers and scientists. Corrosion attacks metal surface and causes structural as well as direct and indirect economic losses. Multiple corrosion monitoring tools are available although those are time-consuming and costly. Due to the availability of image capturing devices in today's world, image based corrosion control technique is a unique innovation. By setting up stainless steel SS 304 and low carbon steel QD 1008 panels in distilled water, half-saturated sodium chloride and saturated sodium chloride solutions and subsequent RGB image analysis in Matlab, in this research, a simple and cost-effective corrosion measurement tool has identified and investigated. Additionally, the open circuit potential and electrochemical impedance spectroscopy results have been compared with RGB analysis to gratify the corrosion. Additionally, to understand the importance of ambiguity in crisis communication, the communication process between Union Carbide and Indian Government regarding the Bhopal incident in 1984 was analyzed.

  10. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring.

    PubMed

    Du, Cong; Owusu Twumasi, Jones; Tang, Qixiang; Guo, Xu; Zhou, Jingcheng; Yu, Tzuyang; Wang, Xingwei

    2018-04-27

    This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring.

  11. Research and development of weathering resistant bridge steel of Shougang

    NASA Astrophysics Data System (ADS)

    Yang, Yongda; Wang, Yanfeng; Huang, Leqing; Di, Guobiao; Ma, Changwen; Ma, Qingshen

    2017-09-01

    To introduce the composition design and mechanical properties and microstructure of the weathering bridge steel which would be used for bridge of Guanting reservoir. We adopt cyclic immersion corrosion test to study corrosion resistance difference of weathering bridge steel and common bridge steel. At the same corrosion time, the weight loss and corrosion rate of weathering bridge steel are lower than the common bridge steel's. Testing phase composition of rust layer by X-ray diffraction, two kinds of test steel's rust layer is mainly composed of Goethite and Fe3O4 and Fe2O3. At the same corrosion time, the percentage composition of goethite in rust layer of weathering bridge steel are significantly higher than common bridge steel's, the higher goethite content is, the compacter rust layer structure is. The compact rust layer would prevent the water and air passing the rust layer, and then preventing the further corrosion reaction, improving the corrosion resistance performance of weathering bridge steel.

  12. Effects of H2S/HS- on Stress Corrosion Cracking Behavior of X100 Pipeline Steel Under Simulated Sulfate-Reducing Bacteria Metabolite Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, Z.; Liu, Z. Y.; Li, X. G.; Wang, S. Q.

    2017-04-01

    The effect of H2S/HS-, which simulates the main metabolites of sulfate-reducing bacteria (SRB), on the electrochemical and stress corrosion cracking (SCC) behaviors of X100 steel was investigated in a near-neutral solution. The results showed that different H2S/HS- contents mainly affected the cathodic process of X100 electrochemical corrosion. As the concentration of H2S/HS- increased, the corrosion potential was shifted negatively, the corrosion current density was considerably increased, and the corrosion rate was linearly increased. Different rust layers with shifting structures were formed under different conditions and had different effects on electrochemical behaviors. However, sulfide mainly promoted local corrosion processes. With the synergistic effects of stress and H2S/HS-, SCC susceptibility was considerably enhanced. The accelerated process of hydrogen evolution by sulfide was crucial in enhancing SCC processes. In brief, the trace H2S/HS- generated by SRB metabolites played a positive role in promoting SCC.

  13. DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill W. Bogan; Brigid M. Lamb; John J. Kilbane II

    2004-10-30

    The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed to determine ifmore » chemical compounds other than pepper extracts could inhibit the growth of corrosion-associated microbes and to determine if pepper extracts and other compounds can inhibit corrosion when mature biofilms are present. Several chemical compounds were shown to be capable of inhibiting the growth of corrosion-associated microorganisms, and all of these compounds limited the amount of corrosion caused by mature biofilms to a similar extent. It is difficult to control corrosion caused by mature biofilms, but any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion.« less

  14. Lamb Wave Tomography for Corrosion Mapping

    NASA Technical Reports Server (NTRS)

    Hinders, Mark K.; McKeon, James C. P.

    1999-01-01

    As the world-wide civil aviation fleet continues to age, methods for accurately predicting the presence of structural flaws-such as hidden corrosion-that compromise airworthiness become increasingly necessary. Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. However, extracting quantitative information from Lamb wave data has always involved highly trained personnel with a detailed knowledge of mechanical-waveguide physics. Our work focuses on using a variety of different tomographic reconstruction techniques to graphically represent the Lamb wave data in images that can be easily interpreted by technicians. Because the velocity of Lamb waves depends on thickness, we can convert the travel times of the fundamental Lamb modes into a thickness map of the inspection region. In this paper we show results for the identification of single or multiple back-surface corrosion areas in typical aluminum aircraft skin structures.

  15. Theoretical and practical aspects of improving the durability of steel reinforcement in transport designs, using passivation and plasticizing chemical additives

    NASA Astrophysics Data System (ADS)

    Velichko, Evgenij; Talipov, Linar

    2017-10-01

    The article deals with the problem of steel reinforcement corrosion in reinforced concrete structures exposed to aggressive media, in particular in reinforced concrete construction of transport infrastructure, in snowy areas, and subject to the influence of chlorides contained in applied deicing agents. Basic schemes for preventing the reinforcement corrosion in reinforced-concrete structures have been considered and analyzed. Prospects of primary protection against corrosion of reinforcement by introducing chemical additives with plasticizing/passivating action in a concrete mixture with mixing water have been considered in detail. The physical/chemical mechanism of the protective action of a superplasticizer together with a passivator has been highlighted.

  16. The effect of treatment temperature on corrosion resistance and hydrophilicity of an ionic liquid coating for Mg-based stents.

    PubMed

    Zhang, Yafei; Forsyth, Maria; Hinton, Bruce R W

    2014-01-01

    Mg alloys are attractive candidate materials for biodegradable stents. However, there are few commercially available Mg-based stents in clinical use because Mg alloys generally undergo rapid localized corrosion in the body. In this study, we report a new surface coating for Mg alloy AZ31 based on a low-toxicity ionic liquid (IL), tributyl(methyl)phosphonium diphenyl phosphate (P1,4,4,4 dpp), to control its corrosion rate. Emphasis is placed on the effect of treatment temperature. We showed that enhancing the treatment temperature provided remarkable improvements in the performances of both corrosion resistance and biocompatibility. Increasing treatment temperature resulted in a thicker (although still nanometer scale) and more homogeneous IL film on the surface. Scanning electron microscopy and optical profilometry observations showed that there were many large, deep pits formed on the surface of bare AZ31 after 2 h of immersion in simulated body fluid (SBF). The IL coating (particularly when formed at 100 °C for 1 h) significantly suppressed the formation of these pits on the surface, making corrosion occur more uniformly. The P1,4,4,4 dpp IL film formed at 100 °C was more hydrophilic than the bare AZ31 surface, which was believed to be beneficial for avoiding the deposition of the proteins and cells on the surface and therefore improving the biocompatibility of AZ31 in blood. The interaction mechanism between this IL and AZ31 was also investigated using ATR-FTIR, which showed that both anion and cation of this IL were present in the film, and there was a chemical interaction between dpp(-) anion and the surface of AZ31 during the film formation.

  17. Corrosion Behavior Of Potential Structural Materials For Use In Nitrate Salts Based Solar Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Summers, Kodi

    The increasing global demand for electricity is straining current resources of fossil fuels and placing increased pressure on the environment. The implementation of alternative sources of energy is paramount to satisfying global electricity demand while reducing reliance on fossil fuels and lessen the impact on the environment. Concentrated solar power (CSP) plants have the ability to harness solar energy at an efficiency not yet achieved by other technologies designed to convert solar energy to electricity. The problem of intermittency in power production seen with other renewable technologies can be virtually eliminated with the use of molten salt as a heat transfer fluid in CSP plants. Commercial and economic success of CSP plants requires operating at maximum efficiency and capacity which requires high temperature and material reliability. This study investigates the corrosion behavior of structural alloys and electrochemical testing in molten nitrate salts at three temperatures common to CSP plants. Corrosion behavior was evaluated using gravimetric and inductively-coupled plasma optical emission spectroscopy (ICP-OES) analysis. Surface morphology was studied using scanning electron microscopy. Surface oxide structure and chemistry was characterized using X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical behavior of candidate structural alloys Alloy 4130, austenitic stainless steel 316, and super-austenitic Incoloy 800H was evaluated using potentiodynamic polarization characteristics. It was observed that electrochemical evaluation of these candidate materials correlates well with the corrosion behavior observed from gravimetric and ICP-OES analysis. This study identifies that all three alloys exhibited acceptable corrosion in 300°C molten salt while elevated salt temperatures require the more corrosion resistant alloys, stainless steel 316 and 800H. Characterization of the sample surfaces revealed the presence of spinels at lower temperatures, while Fe2O3 was the dominant iron oxide at higher temperatures for each alloy. It is recommended that accelerated corrosion testing be investigated further to evaluate alloys in other molten salt systems considered for utilization in concentrated solar power plants.

  18. Long-Term, Deep Ocean Test of Concrete Spherical Structures - Results after 13 Years.

    DTIC Science & Technology

    1985-07-01

    corrosion of reinforcing steel are problems, even though the concrete becomes saturated with seawater. Uncoated concrete has a very low rate of permeation... concrete matrix nor corrosion of reinforcing steel are problems, even though the concrete becomes saturated with seawater. Uncoated concrete I has a...which concrete protects the steel against corrosion in the deep ocean environ- ment. The ocean depth range for the spheres corresponds to predicled

  19. Influence of High Pulsed and Continuous Magnetic Fields on the Corrosion and Microstructure of Metallic Conductors

    DTIC Science & Technology

    2014-03-31

    stainless steel , 416 stainless steel , 1018 steel , and 8620 steel as these offer structural integrity as well as both magnetic and...corrosion rate of untreated materials such as 304 stainless steel , 416 stainless steel , 1018 steel , 8620 steel . It is believed that the magnetic field...at characterizing the impact of a magnetic field on the corrosion behavior of the selected alloys, namely, 304 austenitic stainless steel

  20. Implementation of Remote Corrosion-Monitoring Sensor for Mission-Essential Structures at Okinawa

    DTIC Science & Technology

    2009-08-01

    with voluminous corrosion products. Martensitic stainless steels are susceptible to pitting and chlo- ride stress corrosion cracking in marine... steel , zinc- rich epoxy-coated steel , phenolic coated steel and bare type 410 stainless steel . (The steel panels were A36 steel .) The racks were...and ER probes were installed on building number 125. The coupons were mounted to an aluminum frame using stainless steel bolts and nylon spacer

  1. The one-step electroposition of superhydrophobic surface on AZ31 magnesium alloy and its time-dependence corrosion resistance in NaCl solution

    NASA Astrophysics Data System (ADS)

    Zhong, Yuxing; Hu, Jin; Zhang, Yufen; Tang, Shawei

    2018-01-01

    A calcium myristic superhydrophobicity coating with a hierarchical micro-nanostructure was fabricated on AZ31 magnesium alloy by one-step electroposition. The effects of deposition time on the coating structure, such as morphology, thickness, wettability and phase composition of the coating were studied. The corrosion behavior of the coated samples in 3.5% NaCl solution was also investigated and the corrosion mechanism was discussed. It was found that the deposition time has a visible effect on the morphology, thickness and wettability, which distinctly affects the corrosion resistance of coatings. The corrosion resistance of the coating gradually decreases with the increase in the immersion time due to the disappearance of the air layer which exists on the coating surface. The superhydrophobic surfaces present the temporal limitations to the corrosion resistance of AZ31 magnesium alloy.

  2. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  3. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  4. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    NASA Technical Reports Server (NTRS)

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.

    2012-01-01

    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.

  5. Evaluation of two corrosion inhibitors using two surface application methods for reinforced concrete structures.

    DOT National Transportation Integrated Search

    2004-01-01

    This study investigated the use of penetrating corrosion inhibitors to extend the life of existing reinforced concrete bridge decks. The use of assisted (vacuum/pressure injection) and unassisted (diffusion) treatment methods and two inhibitors were ...

  6. Coated steel rebar for enhanced concrete-steel bond strength and corrosion resistance.

    DOT National Transportation Integrated Search

    2010-10-01

    This report summarizes the findings and recommendations on the use of enamel coating in reinforced concrete structures both for bond strength and : corrosion resistance of steel rebar. Extensive laboratory tests were conducted to characterize the pro...

  7. Structure-to-property relationships in fuel cell catalyst supports: Correlation of surface chemistry and morphology with oxidation resistance of carbon blacks

    NASA Astrophysics Data System (ADS)

    Artyushkova, Kateryna; Pylypenko, Svitlana; Dowlapalli, Madhu; Atanassov, Plamen

    2012-09-01

    Linking durability of carbon blacks, expressed as their oxidation resistance, used in PEMFCs as catalyst supports, with their chemistry and morphology is an important task towards designing carbon blacks with desired properties. Structure-to-property relationship between surface chemistry determined by X-ray photoelectron spectroscopy (XPS), morphological structure determined by digital image processing of scanning electron microscopy (SEM) images, physical properties, and electrochemical corrosion behavior determined in an air-breathing gas-diffusion electrode is studied for several un-altered and several modified carbon blacks. We are showing that surface chemistry, graphitic content and certain physical characteristics such as Brunauer-Emmett-Teller (BET) surface area and pore volume, determined by nitrogen adsorptions are not sufficient to explain high corrosion instability of types of carbon blacks. Inclusion of morphological characteristics, such as roughness, texture and shape parameters provide for more inclusive description and therefore more complete structure-to-property correlations of corrosion behavior of carbon blacks. This paper presents the first direct statistically-derived structure-to-property relationship, developed by multivariate analysis (MVA) that links chemical and physical structural properties of the carbon blacks to their critical properties as supports for PEMFC catalysts. We have found that balance between electrocatalytic activity and high resistance towards oxidation and corrosion is achieved by balance between amount of graphitic content and surface oxide coverage, smaller overall roughness and, finally, larger amount of big elongated and loose, and, hypothetically, more hydrophobic pores.

  8. The Effect of Silane on the Microstructure, Corrosion, and Abrasion Resistances of the Anodic Films on Ti Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jinwei; Chen, Jiali

    2016-04-01

    Anodic oxide films on Ti-6Al-4V alloy are prepared using sodium hydroxide as the base electrolyte containing aminopropyl trimethoxysilane (APS) as an additive. Some APS undergo hydrolysis, adsorption, and chemical reaction with the TiO x to form Ti-O-Si bond as confirmed by ATR-FTIR and XPS spectra, and in turn their surface appearance and roughness are greatly changed with the addition of APS as observed by their SEM images. These amino anodic films possess much higher corrosive resistances since the formation of Ti-O-Si complex enhances the compactness of the anodic films and the existence of aminopropyl groups inside the pores provides additional blocking effects. Besides, their improvement in anti-abrasive capability is attributed to the toughening effect of the chemically bonded silanes and the lubrication functions from both the chemically bonded and physically absorbed silanes between the touched interfaces.

  9. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britto, Reuben J.; Benck, Jesse D.; Young, James L.

    2016-06-02

    Gallium indium phosphide (GaInP2) is a semiconductor with promising optical and electronic properties for solar water splitting, but its surface stability is problematic as it undergoes significant chemical and electrochemical corrosion in aqueous electrolytes. Molybdenum disulfide (MoS2) nanomaterials are promising to both protect GaInP2 and to improve catalysis since MoS2 is resistant to corrosion and also possesses high activity for the hydrogen evolution reaction (HER). In this work, we demonstrate that GaInP2 photocathodes coated with thin MoS2 surface protecting layers exhibit excellent activity and stability for solar hydrogen production, with no loss in performance (photocurrent onset potential, fill factor, andmore » light limited current density) after 60 hours of operation. This represents a five-hundred fold increase in stability compared to bare p-GaInP2 samples tested in identical conditions.« less

  10. Misoriented grain boundaries vicinal to the (1 1 1) <1 1¯0> twin in nickel Part I: Thermodynamics & temperature-dependent structure

    DOE PAGES

    O’Brien, Christopher J.; Medlin, Douglas L.; Foiles, Stephen M.

    2016-03-30

    Here, grain boundary-engineered materials are of immense interest for their corrosion resistance, fracture resistance and microstructural stability. This work contributes to a larger goal of understanding both the structure and thermodynamic properties of grain boundaries vicinal (within ±30°) to the Σ3(1 1 1) <1 1¯0> (coherent twin) boundary which is found in grain boundary-engineered materials. The misoriented boundaries vicinal to the twin show structural changes at elevated temperatures. In the case of nickel, this transition temperature is substantially below the melting point and at temperatures commonly reached during processing, making the existence of such boundaries very likely in applications. Thus,more » the thermodynamic stability of such features is thoroughly investigated in order to predict and fully understand the structure of boundaries vicinal to twins. Low misorientation angle grain boundaries (|θ| ≲ 16°) show distinct ±1/3(1 1 1) disconnections which accommodate misorientation in opposite senses. The two types of disconnection have differing low-temperature structures which show different temperature-dependent behaviours with one type undergoing a structural transition at approximately 600 K. At misorientation angles greater than approximately ±16°, the discrete disconnection nature is lost as the disconnections merge into one another. Free energy calculations demonstrate that these high-angle boundaries, which exhibit a transition from a planar to a faceted structure, are thermodynamically more stable in the faceted configuration.« less

  11. Evaluation of the electrical conductivity and corrosion resistance for layers deposited via sputtering on stainless steel

    NASA Astrophysics Data System (ADS)

    Blanco, J.; Salas, Y.; Jiménez, C.; Pineda, Y.; Bustamante, A.

    2017-12-01

    In some Engineering fields, we need that conductive materials have a mechanic performance and specific electrical for that they maintain conditions or corrosive attack if they are in the environment or if they are closed structure. The stainless steels have an inert film on their surface and it has the function to act in contrast to external agents who generates the corrosion, especially for stings, spoiling the film until to fail. We found a solution taking into account the electrical performance and the anticorrosive; into the process we put recovering of specific oxides on, stainless steel using the method of sputtering with Unbalanced Magnetron, (UBM) varying the oxygen in the reactive environment. The coating obtained had a thickness one micron approximately and we saw on serious structural uniformity [1]. The corrosion resistance was evaluated through the potentiodynamics polarization and electrochemical spectroscopy impedance in NACL according to the standard. The cathode protection is the most important method employed for the corrosion prevention of metallic structures in the soil or immersed on the water. The electrical resistivity was evaluated with the four points methods and it showed a behaviour of diode type in some substrates with a threshold potential in several volts. We noticed a simple resistance solution when it was analysed in the Nyquist graphics whit the Electrochemical Impedance Spectroscopy technique. With on equivalent circuit, for this reason we determinate a variation in the corrosion speed in almost two orders of magnitude when we analysed the potentiodynamics curve by Tafel approximation. The data obtained and analysed show that this type of surface modification maintains the conductivity condition at the interface, improving the resistance in relation whit the corrosion of these elements where the recovering allowed the ionic flow wished for overcoming threshold voltage, acting as an insulator in different cases.

  12. Ultrasonic assessment of service life of concrete structures subject to reinforcing steel corrosion

    NASA Astrophysics Data System (ADS)

    Udegbunam, Ogechukwu Christian

    Over half of the bridges in the United States were built before 1970. Such bridges and the network of roads that they carry include the Inter State system, which was built as part of the great public works program, following the end of the Second World War. During that era, the emphasis was on strength design and economical construction of new structures, and not much premium was placed on durability and maintainability concerns. Since the end of this construction boom in the early 1970s, the concern for the durability of transportation infrastructure has steadily gained prominence among those agencies that must secure, program and administer funds for maintaining highway networks. The objective of this research was to develop a nondestructive method of assessing the durability of concrete bridge decks susceptible to damage from corrosion of embedded reinforcing steel. This was accomplished by formulating a holistic approach that accounts for the major factors that influence corrosion based deterioration of reinforced concrete. In this approach, the assessment of the durability of concrete bridge decks is based on a model that estimates the time it takes for the cover concrete to fail a result of stresses caused by expansion of reinforcing steel bars, due to corrosion activities. This time to failure is comprised of two distinct periods that must be evaluated before the problem can be solved. The research consisted of an experimental program and an analytical study. In the experimental program concrete specimens were cast and tested to determine their diffusivity and mechanical properties. The diffusivity was used to evaluate the period it takes for corrosion of the reinforcing bars to commence. In the analytical study, the resistance of the concrete structure against the internal forces caused by corrosion was evaluated with the finite element techniques. This resistance was used to evaluate the period defining the failure of the cover concrete. These two periods were then used to determine the service life of the structure.

  13. Stainless steel prestressing strands and bars for use in prestressed concrete girders and slabs.

    DOT National Transportation Integrated Search

    2015-08-01

    Corrosion decay on structures has continued to be a challenge in the scientific and engineering : communities, where significant federal and state funds have been spent towards replacement or rehabilitation : of bridges that were damaged by corrosion...

  14. Seismic evaluation and retrofit of deteriorated concrete bridge components.

    DOT National Transportation Integrated Search

    2013-06-01

    Corrosion of steel bars in reinforced concrete structures is a major durability problem for bridges constructed in the New York State : (NYS). The heavy use of deicing salt compounds this problem. Corrosion of steel bars results in loss of steel cros...

  15. Corrosion of Aluminum Alloys in the Presence of Fire-Retardant Aircraft Interior Materials

    DOT National Transportation Integrated Search

    1995-10-01

    This research project was to evaluate the potential for fire-retardant materials used in aircraft interiors to cause corrosion of aluminum structural alloys. Service Difficulty Reports (SDR's) were reviewed for several aircraft types, and the most fr...

  16. Application of cathodic prevention in a new concrete bridge deck in Virginia.

    DOT National Transportation Integrated Search

    2003-01-01

    Corrosion of reinforcement in concrete bridges has been a major factor in limiting the service life of many such structures. As part of a concerted effort to identify cost-effective options for eliminating corrosion of reinforcement, the application ...

  17. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is lowered using a hydrophobic emulsion. The hydrophobic concrete samples were able to repel incoming water droplets as well as resist droplet pinning. Corrosion resistance is achieved in cast iron samples by rendering them superhydrophobic. The corrosion resistance of superhydrophobic surfaces with micro/nanotopography may be explained by the low effective contact area with the electrolyte. The experimental results matched the theoretical predictions based on surface roughness and wettability. The icephobicity of engineered cementitious composite samples is achieved by hydrophobization, by using coatings containing dielectric material (such as polyvinyl alcohol fibers), and by controlling the surface topography. Two aspects of the icephobicity of concrete, namely, the repulsion of incoming water droplets before freezing and the ice adhesion strength, are investigated experimentally. It is found that icephobic performance of concrete depends on these parameters --- the hydrophobic emulsion concentration, the polyvinyl alcohol fiber content, the water to cement ratio, and the sand to cement ratio. The potential for biomimetic icephobicity of thermogenic skunk cabbage plant is investigated, and it is found that the surface topography of its leaves can affect the heat transfer from the plant to the surrounding snow. The hierarchical microstructure of the leaf surface coupled with its high adhesion to water suggests the presence of an impregnated wetting state, which can minimize the heat loss. Thus functional materials and surfaces, such as hydrophobic and icephobic engineered cementitious composites and corrosion resistant metallic surfaces, can be produced by controlling the surface micro/nanotopography.

  18. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    DOE PAGES

    Jiang, Xingmao; Jiang, Ying-Bing; Liu, Nanguo; ...

    2011-01-01

    Ceriumore » m (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0 × 10 − 14  m 2 s for Ce 3+ compared to 2.5 × 10 − 13  m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.« less

  19. Tannin bark Melalauca cajuputi powell (gelam) as green corrosion inhibitor of mild steel

    NASA Astrophysics Data System (ADS)

    Talib, Nur Atiqah Abu; Zakaria, Sarani; Hua, Chia Chin; Othman, Norinsan Kamil

    2014-09-01

    Tannin was extracted from gelam bark and used to produce corrosion inhibitor for mild steel. Tannin was extracted from gelam bark using 70% aqueous acetone for 6 hour. Tannin powder was characterization using fourier transform infrared spectroscopy to analyse chemical component in tannin and Scanning electron microscope (SEM) for tannin physical structure. The tannin effect on the corrosion inhibition of mild steel has been investigated in 1Mol HCl solution for 6 hour followed ASTM. The weight loss method were applied to study the mild steel corrosion behavior in the present and absend of different concentration of tannin (250, 300, 350)ppm. Tannin act good inhibitor as corrosion inhibitor for mild steel in acid medium. Surface morphology of carbon steel with and without inhibitor was investigated by scanning electron microscopy.

  20. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors.

    PubMed

    Hassan, Refat M; Zaafarany, Ishaq A

    2013-06-17

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  1. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    PubMed Central

    Hassan, Refat M.; Zaafarany, Ishaq A.

    2013-01-01

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper. PMID:28809282

  2. Stainless and Galvanized Steel, Hydrophobic Admixture and Flexible Polymer-Cement Coating Compared in Increasing Durability of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Tittarelli, Francesca; Giosuè, Chiara; Mobili, Alessandra

    2017-08-01

    The use of stainless or galvanized steel reinforcements, a hydrophobic admixture or a flexible polymer-cement coating were compared as methods to improve the corrosion resistance of sound or cracked reinforced concrete specimens exposed to chloride rich solutions. The results show that in full immersion condition, negligible corrosion rates were detected in all cracked specimens, except those treated with the flexible polymer-cement mortar as preventive method against corrosion and the hydrophobic concrete specimens. High corrosion rates were measured in all cracked specimens exposed to wet-dry cycles, except for those reinforced with stainless steel, those treated with the flexible polymer-cement coating as restorative method against reinforcement corrosion and for hydrophobic concrete specimens reinforced with galvanized steel reinforcements.

  3. The interface microstructure, mechanical properties and corrosion resistance of dissimilar joints during multipass laser welding for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong

    2018-05-01

    This study presents the interface microstructure, mechanical properties and corrosion resistance of dissimilar joints between Inconel 52M overlays and 316L stainless steel during multipass laser welding for nuclear power plants. The results indicate that the microstructure at the interface beside 316L stainless steel consists of cellular with the width of 30-40 μm, which also exhibits numerous Cr and Mo-rich precipitates like flocculent structure and in chains along grain boundaries as a mixed chemical solution for etching. Many dendritic structure with local melting characteristics and Nb-rich precipitates are exhibited at the interface beside Inconel 52M overlays. Such Nb-rich precipitates at the interface beside Inconel 52M overlays deteriorate the tensile strength and toughness of dissimilar joints at room temperature. The tensile strength of 316L stainless steel at 350 °C significantly decreases with the result that dissimilar joints are fractured in 316L stainless steel. The correlation between corrosion behavior and microstructure of weld metals is also discussed. The difference in high corrosion potential between Nb-rich precipitates and the matrix could result in establishing effective galvanic couples, and thus accelerating the corrosion of weld metals.

  4. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate

    NASA Astrophysics Data System (ADS)

    Li, Xuewu; Zhang, Qiaoxin; Guo, Zheng; Shi, Tian; Yu, Jingui; Tang, Mingkai; Huang, Xingjiu

    2015-07-01

    This work has developed a simple and low-cost method to render 6061 aluminum alloy surface superhydrophobicity and excellent corrosion inhibition. The superhydrophobic aluminum alloy surface has been fabricated by hydrochloric acid etching, potassium permanganate passivation and fluoroalkyl-silane modification. Meanwhile, the effect of the etching and passivation time on the wettability and corrosion inhibition of the fabricated surface has also been investigated. Results show that with the etching time of 6 min and passivation time of 180 min the fabricated micro/nano-scale terrace-like hierarchical structures accompanying with the nanoscale coral-like network bulge structures after being modified can result in superhydrophobicity with a water contact angle (CA) of 155.7°. Moreover, an extremely weak adhesive force to droplets as well as an outstanding self-cleaning behavior of the superhydrophobic surface has also been proved. Finally, corrosion inhibition in seawater of the as-prepared aluminum alloy surface is characterized by potentiodynamic polarization curves and electrochemical impedance spectroscopy. Evidently, the fabricated superhydrophobic surface attained an improved corrosion inhibition efficiency of 83.37% compared with the traditional two-step processing consisting of etching and modification, which will extend the further applications of aluminum alloy especially in marine engineering fields.

  5. Fatigue in the Presence of Corrosion (Fatigue sous corrosion)

    DTIC Science & Technology

    1999-03-01

    Fatigue Crack Growth Propagation of Aluminum Lithium cycle managers to safely delay repairs to a more appropriate Alloys " described the effect of... effects of service corrosion on fatigue lab tests with 2024 -T3, because 7178 life , if any, can be established in this was not available. However, we did not... life and the fatigue crack growth behavior of the cases where a structural member is the 2024 alloy was studied as well. stressed or fatigued

  6. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOEpatents

    Liu, C.T.; McKamey, C.G.; Tortorelli, P.F.; David, S.A.

    1994-06-14

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium. 9 figs.

  7. Passive Films, Surface Structure and Stress Corrosion and Crevice Corrosion Susceptibility.

    DTIC Science & Technology

    1980-08-01

    with pure titanium ( 4 ], it is of interest to pursue the effects on titanium -palladium alloys, to evaluate their susceptibility to stress corrosion...cracking due to hydrogen embrittlement with the field ion microscope, and to compare the results with those previously obtained with pure titanium [ 4 ...characterized as 99.99+ percent pure, and was used in the previous field ion microscopy study of titanium [ 4 ], where it was found that strain annealing titanium

  8. Aircraft Fatigue - with Particular Emphasis on Australian Operations and Research.

    DTIC Science & Technology

    1983-04-01

    its research on the fatigue behaviour of full-scale alluminium -alloy structures by undertaking a major investigation using surplus wings from North...on the corrosion fatigue of Taper-Lok bolted joints in D6AC steel. In March 1973 the RAAF finally took delivery of its first F-IliC, and among the...development of multiple defects, corrosion /stress corrosion , detvrirrat- ion of bonded joints, undetected cracks or damage, inadquate repairs 2r untested

  9. Corrosion resistant iron aluminides exhibiting improved mechanical properties and corrosion resistance

    DOEpatents

    Liu, Chain T.; McKamey, Claudette G.; Tortorelli, Peter F.; David, Stan A.

    1994-01-01

    The specification discloses a corrosion-resistant intermetallic alloy comprising, in atomic percent, an FeAl iron aluminide containing from about 30 to about 40% aluminum alloyed with from about 0.01 to 0.4% zirconium and from 0.01 to about 0.8% boron. The alloy exhibits considerably improved room temperature ductility for enhanced usefulness in structural applications. The high temperature strength and fabricability is improved by alloying with molybdenum, carbon, chromium and vanadium.

  10. Performance of Plasma Sprayed Al2O3 Coating in Bio-Simulated Environment

    NASA Astrophysics Data System (ADS)

    Yıldız, F.; Yetim, A. F.; Alsaran, A.; Çelik, A.

    2014-01-01

    Alumina coatings deposited on the surface of stainless steel 316L by the method of plasma spraying are studied. Tests for wear and corrosion are preformed in Ringer's solution simulating a human body environment. The structure, microhardness, wear resistance and corrosion resistance of the steel are determined with and without a coating. Deposition of a coating onto the stainless steel is shown to be an effective means for protecting implants from corrosion and wear.

  11. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes.

    PubMed

    Hakimi, O; Aghion, E; Goldman, J

    2015-06-01

    The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg-6%Nd-2%Y-0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd2O3 content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System

    PubMed Central

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-01-01

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths. PMID:27999252

  13. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System.

    PubMed

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-12-16

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths.

  14. Corrosion Behavior of FBR Structural Materials in High Temperature Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Furukawa, Tomohiro; Inagaki, Yoshiyuki; Aritomi, Masanori

    A key problem in the application of a supercritical carbon dioxide (CO2) turbine cycle to a fast breeder reactor (FBR) is the corrosion of structural material by supercritical CO2 at high temperature. In this study, corrosion test of high-chromium martensitic steel (12Cr-steel) and FBR grade type 316 stainless steel (316FR), which are candidate materials for FBRs, were performed at 400-600°C in supercritical CO2 pressurized at 20MPa. Corrosion due to the high temperature oxidation in exposed surface was measured up to approximately 2000h in both steels. In the case of 12Cr-steel, the weight gain showed parabolic growth with exposure time at each temperature. The oxidation coefficient could be estimated by the Arrhenius function. The specimens were covered by two successive oxide layers, an Fe-Cr-O layer (inside) and an Fe-O layer (outside). A partial thin oxide diffusion layer appeared between the base metal and the Fe-Cr-O layer. The corrosion behavior was equivalent to that in supercritical CO2 at 10MPa, and no effects of CO2 pressure on oxidation were observed in this study. In the case of 316FR specimens, the weight gain was significantly lower than that of 12Cr-steel. Dependency of neither temperature nor exposed time on oxidation was not observed, and the value of all tested specimens was within 2g/m2. Nodule shape oxides which consisted of two structures, Fe-Cr-O and Fe-O were observed on the surface of the 316FR specimen. Carburizing, known as a factor in the occurrence of breakaway corrosion and/or the degradation of ductility, was observed on the surface of both steels.

  15. Structure and Mechanical and Corrosion Properties of a Magnesium Mg-Y-Nd-Zr Alloy after High Pressure Torsion

    NASA Astrophysics Data System (ADS)

    Lukyanova, E. A.; Martynenko, N. S.; Serebryany, V. N.; Belyakov, A. N.; Rokhlin, L. L.; Dobatkin, S. V.; Estrin, Yu. Z.

    2017-11-01

    The structure and the properties of an Mg-Y-Nd-Zr alloy (WE43) are studied after high pressure torsion (HPT) in the temperature range 20-300°C. Structure refinement proceeds mainly by deformation twinning with the formation of a partial nanocrystalline structure with a grain size of 30-100 nm inside deformation twins. The WE43 alloy is shown to be aged during heating after HPT due to the decomposition of a magnesium solid solution. HPT at room temperature and subsequent aging causes maximum hardening. It is shown that HPT significantly accelerates the decomposition of a magnesium solid solution. HPT at all temperatures considerably increases the tensile strength and the yield strength upon tensile tests and significantly decreases plasticity. Subsequent aging additionally hardens the WE43 alloy. A potentiodynamic study shows that the corrosion resistance of this alloy after HPT increases. However, subsequent aging degrades the corrosion properties of the alloy.

  16. Structural Characteristics and In Vitro Biodegradation of a Novel Zn-Li Alloy Prepared by Induction Melting and Hot Rolling

    NASA Astrophysics Data System (ADS)

    Zhao, Shan; McNamara, Cameron T.; Bowen, Patrick K.; Verhun, Nicholas; Braykovich, Jacob P.; Goldman, Jeremy; Drelich, Jaroslaw W.

    2017-03-01

    Zinc shows great promise as a bioabsorbable metal; however, the low tensile strength of pure zinc limits its application for endovascular stent purposes. In this study, a new Zn- xLi alloy (with x = 2, 4, 6 at. pct) was prepared by induction melting in an argon atmosphere and processed through hot rolling. Structures of the formulated binary alloys were characterized by X-ray diffraction and optical microscopy. Mechanical testing showed that the incorporation of Li into Zn increased ultimate tensile strength from <120 MPa (pure Zn) to >560 MPa ( x = 6 at. pct). In vitro corrosion behavior was evaluated by immersion tests in simulated body fluid. The Zn-2Li and Zn-4Li corrosion study demonstrated that corrosion rates and products resemble those observed for pure Zn in vivo, and in addition, the Zn-4Li alloy exhibits higher resistance to corrosion as compared to Zn-2Li. The findings herein encourage further exploration of Zn-Li systems for structural use in biomedical vascular support applications with the ultimate goal of simplifying stent procedures, thereby reducing stent-related complications.

  17. Prediction and Computation of Corrosion Rates of A36 Mild Steel in Oilfield Seawater

    NASA Astrophysics Data System (ADS)

    Paul, Subir; Mondal, Rajdeep

    2018-04-01

    The parameters which primarily control the corrosion rate and life of steel structures are several and they vary across the different ocean and seawater as well as along the depth. While the effect of single parameter on corrosion behavior is known, the conjoint effects of multiple parameters and the interrelationship among the variables are complex. Millions sets of experiments are required to understand the mechanism of corrosion failure. Statistical modeling such as ANN is one solution that can reduce the number of experimentation. ANN model was developed using 170 sets of experimental data of A35 mild steel in simulated seawater, varying the corrosion influencing parameters SO4 2-, Cl-, HCO3 -,CO3 2-, CO2, O2, pH and temperature as input and the corrosion current as output. About 60% of experimental data were used to train the model, 20% for testing and 20% for validation. The model was developed by programming in Matlab. 80% of the validated data could predict the corrosion rate correctly. Corrosion rates predicted by the ANN model are displayed in 3D graphics which show many interesting phenomenon of the conjoint effects of multiple variables that might throw new ideas of mitigation of corrosion by simply modifying the chemistry of the constituents. The model could predict the corrosion rates of some real systems.

  18. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  19. Electromagnetic Metrology on Concrete and Corrosion.

    PubMed

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S 11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete.

  20. Electromagnetic Metrology on Concrete and Corrosion*

    PubMed Central

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete. PMID:26989590

  1. The effects of argon ion bombardment on the corrosion resistance of tantalum

    NASA Astrophysics Data System (ADS)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  2. Degradation and mechanism of the mechanics and durability of reinforced concrete slab in a marine environment

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-xing; Liu, Guan-guo; Bian, Han-bing; Lv, Wei-bo; Jiang, Jian-hua

    2016-04-01

    An experimental research was conducted to determine the corrosion and bearing capacity of a reinforced concrete (RC) slab at different ages in a marine environment. Results show that the development of corrosion-induced cracks on a slab in a marine environment can be divided into three stages according to crack morphology at the bottom of the slab. In the first stage, cracks appear. In the second stage, cracks develop from the edges to the middle of the slab. In the third stage, longitudinal and transverse corrosion-induced cracks coexist. The corrosion ratio of reinforcements nonlinearly increases with the age, and the relationship between the corrosion ratio of the reinforcements and the corrosion-induced crack width of the concrete is established. The flexural capacity of the corroded RC slab nonlinearly decreases with the age, and the model for the bearing capacity factor of the corroded RC slab is established. The mid-span deflection of the corroded RC slab that corresponds to the yield of the reinforcements linearly increases with the increase in corrosion ratio. Finally, the mechanisms of corrosion morphology and the degradation of the mechanical properties of an RC slab in a marine environment are discussed on the basis of the basic theories of steel corrosion in concrete and concrete structure design.

  3. Inter-relationships between corrosion and mineral-scale deposition in aqueous systems.

    PubMed

    Hodgkiess, T

    2004-01-01

    The processes of corrosion and scale deposition in natural and process waters are often linked and this paper considers a number of instances of interactions between the two phenomena. In some circumstances a scale layer (e.g. calcium carbonate) can be advantageously utilised as a corrosion-protection coating on components and this feature has been exploited for many decades in the conditioning of water to induce spontaneous precipitation of a scale layer upon the surfaces of engineering equipment. The electrochemical mechanisms associated with some corrosion and corrosion-control processes can promote alkaline-scale deposition directly upon component surfaces. This is a feature that can be exploited in the operation of cathodic protection (CP) of structures and components submerged in certain types of water (e.g. seawater). Similar phenomena can occur during bi-metallic corrosion and a case study, involving carbon steel/stainless steel couples in seawater, is presented. Additional complexities pertain during cyclic loading of submerged reinforced concrete members in which scale deposition may reduce the severity of fatigue stresses but can be associated with severe corrosion damage to embedded reinforcing steel. Also considered are scale-control/corrosion interactions in thermal desalination plant and an indirect consequence of the scale-control strategy on vapourside corrosion is discussed.

  4. Water adsorption on the P-rich GaP(100) surface: optical spectroscopy from first principles

    NASA Astrophysics Data System (ADS)

    May, Matthias M.; Sprik, Michiel

    2018-03-01

    The contact of water with semiconductors typically changes its surface electronic structure by oxidation or corrosion processes. A detailed knowledge—or even control of—the surface structure is highly desirable, as it impacts the performance of opto-electronic devices from gas-sensing to energy conversion applications. It is also a prerequisite for density functional theory-based modelling of the electronic structure in contact with an electrolyte. The P-rich GaP(100) surface is extraordinary with respect to its contact with gas-phase water, as it undergoes a surface reordering, but does not oxidise. We investigate the underlying changes of the surface in contact with water by means of theoretically derived reflection anisotropy spectroscopy (RAS). A comparison of our results with experiment reveals that a water-induced hydrogen-rich phase on the surface is compatible with the boundary conditions from experiment, reproducing the optical spectra. We discuss potential reaction paths that comprise a water-enhanced hydrogen mobility on the surface. Our results also show that computational RAS—required for the interpretation of experimental signatures—is feasible for GaP in contact with water double layers. Here, RAS is sensitive to surface electric fields, which are an important ingredient of the Helmholtz-layer. This paves the way for future investigations of RAS at the semiconductor–electrolyte interface.

  5. Diffusion model of penetration of a chloride-containing environment in the volume of a constructive element

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, I. I.; Snezhkina, O. V.; Ovchinnikov, I. G.

    2018-06-01

    A generalized model of diffusional penetration of a chloride-containing medium into the volume of a compressed reinforced concrete element is considered. The equations of deformation values of reinforced concrete structure are presented, taking into account the degradation of concrete and corrosion of reinforcement. At the initial stage, an applied force calculation of section of the structural element with mechanical properties of the material which are determined by the initial field of concentration of aggressive medium, is carried out. Furthermore, at each discrete instant moment of time, the following properties are determined: the distribution law of concentration for chloride field, corresponding to the parameters of the stress-strain state; the calculation of corrosion damage field of reinforcing elements and the applied force calculation of section of the structural element with parameters corresponding to the distribution of the concentration field and the field of corrosion damage are carried out.

  6. CORROSION PROCESS IN REINFORCED CONCRETE IDENTIFIED BY ACOUSTIC EMISSION

    NASA Astrophysics Data System (ADS)

    Kawasaki, Yuma; Kitaura, Misuzu; Tomoda, Yuichi; Ohtsu, Masayasu

    Deterioration of Reinforced Concrete (RC) due to salt attack is known as one of serious problems. Thus, development of non-destructive evaluation (NDE) techniques is important to assess the corrosion process. Reinforcement in concrete normally does not corrode because of a passive film on the surface of reinforcement. When chloride concentration at reinfo rcement exceeds the threshold level, the passive film is destroyed. Thus maintenance is desirable at an early stage. In this study, to identify the onset of corrosion and the nucleation of corrosion-induced cracking in concrete due to expansion of corrosion products, continuous acoustic emission (AE) monitoring is applied. Accelerated corrosion and cyclic wet and dry tests are performed in a laboratory. The SiGMA (Simplified Green's functions for Moment tensor Analysis) proce dure is applied to AE waveforms to clarify source kinematics of micro-cracks locations, types and orientations. Results show that the onset of corrosion and the nu cleation of corrosion-induced cracking in concrete are successfully identified. Additionally, cross-sections inside the reinforcement are observed by a scanning electron microscope (SEM). From these results, a great promise for AE techniques to monitor salt damage at an early stage in RC structures is demonstrated.

  7. Improving by postoxidation of corrosion resistance of plasma nitrocarburized AISI 316 stainless steels

    NASA Astrophysics Data System (ADS)

    Yenilmez, A.; Karakan, M.; Çelik, İ.

    2017-01-01

    Austenitic stainless steels are widely used in several industries such as chemistry, food, health and space due to their perfect corrosion resistance. However, in addition to corrosion resistance, the mechanic and tribological features such as wear resistance and friction are required to be good in the production and engineering of this type of machines, equipment and mechanic parts. In this study, ferritic (FNC) and austenitic (ANC) nitrocarburizing were applied on AISI 316 stainless steel specimens with perfect corrosion resistance in the plasma environment at the definite time (4 h) and constant gas mixture atmosphere. In order to recover corrosion resistance which was deteriorated after nitrocarburizing again, plasma postoxidation process (45 min) was applied. After the duplex treatment, the specimens' structural analyses with XRD and SEM methods, corrosion analysis with polarization method and surface hardness with microhardness method were examined. At the end of the studies, AISI 316 surface hardness of stainless steel increased with nitrocarburizing process, but the corrosion resistance was deteriorated with FNC (570 °C) and ANC (670 °C) nitrocarburizing. With the following of the postoxidation treatment, it was detected that the corrosion resistance became better and it approached its value before the process.

  8. 76 FR 38213 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... quality standards for using Portland Cement grout to protect prestressing steel from corrosion. The prestressing tendon system of a prestressed concrete containment structure is a principal strength element of... strength elements. Thus, any significant deterioration of the prestressing elements caused by corrosion may...

  9. 46 CFR 197.204 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the diver access to the surrounding environment, and is capable of being used as a refuge during... supervisor. Diver means a person working beneath the surface, exposed to hyperbaric conditions, and using.... Injurious corrosion means an advanced state of corrosion which may impair the structural integrity or safe...

  10. Initial study and verification of a distributed fiber optic corrosion monitoring system for transportation structures.

    DOT National Transportation Integrated Search

    2012-07-01

    For this study, a novel optical fiber sensing system was developed and tested for the monitoring of corrosion in : transportation systems. The optical fiber sensing system consists of a reference long period fiber gratings (LPFG) sensor : for corrosi...

  11. 77 FR 37770 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... repetitive inspections for cracking, corrosion damage, and any other irregularity of the lower main sill... 3187). That NPRM proposed to require repetitive inspections for cracking, corrosion damage, and any... agree that clarification is needed. Other ADs require inspections of certain structure covered by this...

  12. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  13. Study on Microstructure and Electrochemical Corrosion Behavior of PEO Coatings Formed on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Xiang, N.; Song, R. G.; Li, H.; Wang, C.; Mao, Q. Z.; Xiong, Y.

    2015-12-01

    Plasma electrolytic oxidation (PEO) treated 6063 aluminum alloy was applied in a silicate- and borate-based alkaline solution. The microstructure and electrochemical corrosion behavior were studied by scanning electron microscopy, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization techniques. The results showed that the silicate-based PEO coating was of a denser structure compared with that of borate-based PEO coating. In addition, the silicate-based PEO coating was composed of more phased (Al9Si) than borate-based PEO coating. The results of corrosion test indicated that the silicate-based PEO coating provided a superior protection to 6063 aluminum alloy substrate, while borate-based PEO coating with a porous structure showed an inferior conservancy against corrosive electrolyte. Furthermore, the EIS tests proved that both coatings were capable to resist the aggressive erosion in 0.5 M NaCl solution after 72 h of immersion. However, the borate-based PEO coating could not provide sufficient protection to the substrate after 72-h immersion in 1 M NaCl solution.

  14. Raman spectroscopy of selected copper minerals of significance in corrosion.

    PubMed

    Frost, R L

    2003-04-01

    The Raman spectroscopy of selected minerals of the corrosion products has been measured including nantokite, eriochalcite, claringbullite, atacamite, paratacamite, clinoatacamite and brochantite and related minerals. The free energy of formation shows that each mineral is stable relative to copper metal. The mineral, which is formed in copper corrosion, depends on the kinetics and conditions of the reaction. Raman spectroscopy clearly identifies each mineral by its characteristic Raman spectrum. The Raman spectrum is related to the mineral structure and bands are assigned to CuCl stretching and bending modes and to SO stretching modes. Clinoatacamite is identified as the polymorph of atacamite and not paratacamite. Paratacamite is a separate mineral with a similar but different structure to that of atacamite.

  15. Analytical model of cracking due to rebar corrosion expansion in concrete considering the structure internal force

    NASA Astrophysics Data System (ADS)

    Lin, Xiangyue; Peng, Minli; Lei, Fengming; Tan, Jiangxian; Shi, Huacheng

    2017-12-01

    Based on the assumptions of uniform corrosion and linear elastic expansion, an analytical model of cracking due to rebar corrosion expansion in concrete was established, which is able to consider the structure internal force. And then, by means of the complex variable function theory and series expansion technology established by Muskhelishvili, the corresponding stress component functions of concrete around the reinforcement were obtained. Also, a comparative analysis was conducted between the numerical simulation model and present model in this paper. The results show that the calculation results of both methods were consistent with each other, and the numerical deviation was less than 10%, proving that the analytical model established in this paper is reliable.

  16. Study on performance of waterborne anticorrosive coatings on steel rebars

    NASA Astrophysics Data System (ADS)

    Ramaswamy, S. N.; Varalakshmi, R.; Selvaraj, R.

    2017-12-01

    Durability of reinforced cement concrete structures is mainly affected by corrosion of steel reinforcements. In order to protect the reinforcing bars from corrosion and to enhance the lifetime of reinforced cement concrete structural members, anticorrosive treatment to steel is of prime importance. Conventional coatings are solvent based. In this study, water based Latex was used to formulate anticorrosive coating. Latex is applied to steel specimen substrates such as plates and rods and their mechanical properties such as flexibility, abrasion, bendability, adhesive strength, impact resistance, etc. were studied. It was inferred that coating containing latex, micro silica, zinc phosphate, ferric oxide, aluminum oxide, titanium oxide and silica fume was found to possess more corrosion resistance under marine exposure conditions.

  17. QSAR, DFT and quantum chemical studies on the inhibition potentials of some carbozones for the corrosion of mild steel in HCl.

    PubMed

    Eddy, Nnabuk O; Ita, Benedict I

    2011-02-01

    Experimental aspects of the inhibition of the corrosion of mild steel in HCl solutions by some carbozones were studied using gravimetric, thermometric and gasometric methods, while a theoretical study was carried out using density functional theory, a quantitative structure-activity relation, and quantum chemical principles. The results obtained indicated that the studied carbozones are good adsorption inhibitors for the corrosion of mild steel in HCl. The inhibition efficiencies of the studied carbozones were found to increase with increasing concentration of the respective inhibitor. A strong correlation was found between the average inhibition efficiency and some quantum chemical parameters, and also between the experimental and theoretical inhibition efficiencies (obtained from the quantitative structure-activity relation).

  18. Hydrostatic Extrusion and Nano-Hardness of Nanocrystalline Grade 2 Titanium.

    PubMed

    Sitek, Ryszard; Kaminski, Janusz; Spychalski, Maciej; Garbacz, Halina; Pachla, Waclaw; Kurzydlowski, Krzysztof Jan

    2015-07-01

    The structure and corrosion resistance of Grade 2 titanium subjected to the hydroextrusion processes were examined. The microstructure was characterized using optical microscopy and transmission electron microscopy. The corrosion resistance was determined using the impedance and potentiodynamic methods, in 0.1 M H2SO4 solutions and an acidified 0.1 M NaCl solution with a pH of 4.2, at ambient temperature. Nanohardness tests were performed under a load of 100 mN. It has been demonstrated that the hydroextrusion method makes it possible to obtain relatively homogeneous nanocrystalline titanium Grade 2 with an increased hardness, the elastic modulus almost unchanged with respect to that of the initial structure and a lower corrosion resistance.

  19. Chemical grafting of the superhydrophobic surface on copper with hierarchical microstructure and its formation mechanism

    NASA Astrophysics Data System (ADS)

    Cai, Junyan; Wang, Shuhui; Zhang, Junhong; Liu, Yang; Hang, Tao; Ling, Huiqin; Li, Ming

    2018-04-01

    In this paper, a superhydrophobic surface with hierarchical structure was fabricated by chemical deposition of Cu micro-cones array, followed by chemical grafting of poly(methyl methacrylate) (PMMA). Water contact measurements give contact angle of 131.0° on these surfaces after PMMA grafting of 2 min and 165.2° after 6 min. The superhydrophobicity results from two factors: (1) the hierarchical structure due to Cu micro-cones array and the second level structure caused by intergranular corrosion during grafting of PMMA (confirmed by the scanning electron microscopy) and (2) the chemical modification of a low surface energy PMMA layer (confirmed by Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy). In the chemical grafting process, the spontaneous reduction of nitrobenzene diazonium (NBD) tetrafluoroborate not only causes the corrosion of the Cu surface that leads to a hierarchical structure, but also initiates the polymerization of methyl methacrylate (MMA) monomers and thus the low free energy surface. Such a robust approach to fabricate the hierarchical structured surface with superhydrophobicity is expected to have practical application in anti-corrosion industry.

  20. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose via ammonia exposure: visual detection of volatile compounds in a piece of plasmonic nanopaper

    NASA Astrophysics Data System (ADS)

    Heli, B.; Morales-Narváez, E.; Golmohammadi, H.; Ajji, A.; Merkoçi, A.

    2016-04-01

    The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging.The localized surface plasmon resonance exhibited by noble metal nanoparticles can be sensitively tuned by varying their size and interparticle distances. We report that corrosive vapour (ammonia) exposure dramatically reduces the population density of silver nanoparticles (AgNPs) embedded within bacterial cellulose, leading to a larger distance between the remaining nanoparticles and a decrease in the UV-Vis absorbance associated with the AgNP plasmonic properties. We also found that the size distribution of AgNPs embedded in bacterial cellulose undergoes a reduction in the presence of volatile compounds released during food spoilage, modulating the studied nanoplasmonic properties. In fact, such a plasmonic nanopaper exhibits a change in colour from amber to light amber upon the explored corrosive vapour exposure and from amber to a grey or taupe colour upon fish or meat spoilage exposure. These phenomena are proposed as a simple visual detection of volatile compounds in a flexible, transparent, permeable and stable single-use nanoplasmonic membrane, which opens the way to innovative approaches and capabilities in gas sensing and smart packaging. Electronic supplementary information (ESI) available: Details on the estimations of evaporation rates and limits of detection, ESI figures and author contributions. See DOI: 10.1039/c6nr00537c

  1. Corrosion resistance and in-vitro bioactivity of BaO containing Na2O-CaO-P2O5 phosphate glass-ceramic coating prepared on 316 L, duplex stainless steel 2205 and Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Edathazhe, Akhila B.; Shashikala, H. D.

    2018-03-01

    The phosphate glass with composition 11Na2O-15BaO-29CaO-45P2O5 was coated on biomedical implant materials such as stainless steel 316 L, duplex stainless steel (DSS) 2205 and Ti6Al4V alloy by thermal enamelling method. The structural properties and composition of glass coated substrates were studied by x-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDS) analysis. The coatings were partially crystalline in nature with porous structure and pore size varied from micro to nanometer range. The polarization curve was obtained for uncoated and coated substrates from electrochemical corrosion test which was conducted at 37 °C in Hank’s balanced salt solution (HBSS). The corrosion resistance of 316 L substrate increased after coating, whereas it decreased in case of DSS 2205 and Ti6Al4V. The XRD and SEM/EDS studies indicated the bioactive hydroxyapatite (HAp) layer formation on all the coated surfaces after electrochemical corrosion test, which improved the corrosion resistance. The observed electrochemical corrosion behavior can be explained based on protective HAp layer formation, composition and diffusion of ions on glass coated surfaces. The in-vitro bioactivity test was carried out at 37 °C in HBS solution for 14 days under static conditions for uncoated and coated substrates. pH and ion release rate measurements from the coated samples were conducted to substantiate the electrochemical corrosion test. The lower ion release rates of Na+ and Ca2+ from coated 316 L supported its higher electrochemical corrosion resistance among coated samples. Among the uncoated substrates, DSS showed higher electrochemical corrosion resistance. Amorphous calcium-phosphate (ACP) layer formation on all the coated substrates after in-vitro bioactivity test was confirmed by XRD, SEM/EDS and ion release measurements. The present work is a comparative study of corrosion resistance and bioactivity of glass coated and uncoated biomedical implants such as 316 L, DSS and Ti6Al4V.

  2. Nano-engineering of superhydrophobic aluminum surfaces for anti-corrosion

    NASA Astrophysics Data System (ADS)

    Jeong, Chanyoung

    Metal corrosion is a serious problem, both economically and operationally, for engineering systems such as aircraft, automobiles, pipelines, and naval vessels. In such engineering systems, aluminum is one of the primary materials of construction due to its light weight compared to steel and good general corrosion resistance. However, because of aluminum's relatively lower resistance to corrosion in salt water environments, protective measures such as thick coatings, paints, or cathodic protection must be used for satisfactory service life. Unfortunately, such anti-corrosion methods can create other concerns, such as environmental contamination, protection durability, and negative impact on hydrodynamic efficiency. Recently, a novel approach to preventing metal corrosion has emerged, using superhydrophobic surfaces. Superhydrophobic surfaces create a composite interface to liquid by retaining air within the surface structures, thus minimizing the direct contact of the liquid environment to the metal surface. The result is a highly non-wetting and anti-adherent surface that can offer other benefits such as biofouling resistance and hydrodynamic low friction. Prior research with superhydrophobic surfaces for corrosion applications was based on irregular surface roughening and/or chemical coatings, which resulted in random surface features, mostly on the micrometer scale. Such microscale surface roughness with poor controllability of structural dimensions and shapes has been a critical limitation to deeper understanding of the anti-corrosive effectiveness and optimized application of this approach. The research reported here provides a novel approach to producing controlled superhydrophobic nanostructures on aluminum that allows a systematic investigation of the superhydrophobic surface parameters on the corrosion resistance and hence can provide a route to optimization of the surface. Electrochemical anodization is used to controllably modulate the oxide layer thickness and pore dimensions at the aluminum surface. The results show that thicker oxide layers with larger pore sizes allow the nanostructured surface to retain more gas (air) and hence provide a more effective barrier to corrosion. The anodizing techniques are further advanced to design and produce hierarchical three-dimensional nanostructures for better retention of the gaseous barrier layer at the surface.

  3. The Role of Deformation and Microchemistry in the Corrosion Processes of Type 304 Stainless Steel in Simulated Pressurized Water Reactor Environments

    NASA Astrophysics Data System (ADS)

    Fisher, Kevin B.

    Degradation of structural components in nuclear environments is a limiting factor in the lifetime of nuclear power plants. Despite decades of research on the topic, there are still aspects of the degradation phenomena that are not well understood, leading to premature failure of components that can be both expensive to repair and potentially dangerous. The current work addresses the role of material deformation on the corrosion phenomena of 304 SS in a simulated nuclear reactor environment by studying the relationship of the material microstructure and microchemistry with the resulting corrosion products using a multiscale analysis approach. The general corrosion phenomenon was studied in relation to the surface deformation of the material, and it was determined that surface deformation not only increases the rate of oxidation, but also has a pronounced impact on the microchemical structure of the oxide film when compared to undeformed material. These findings were applied to understanding the role of deformation in the more complex corrosion phenomena of stress corrosion cracking (SCC) and corrosion fatigue cracking (CFC). In SCC experiments, material deformation in the form of cold work played a synergistic role with unique microchemical features of the materials studied to promote the cracking process under certain environmental and material heat treatment conditions. Despite the fact that the materials studied were low carbon heats of 304L SS thought to be immune to the sensitization and therefore resistant to SCC, elevated boron and delta ferrites in the material were implicated in the SCC susceptibility after heat treatment. On the other hand, low levels of residual deformation played only a minor role in the corrosion processes occurring during CFC experiments over a wide range of rise times. Instead, deformation was suspected to play a larger role in the mechanical cracking response of the material. By studying multiple corrosion processes of 304 SS a greater understanding of the role of deformation and microchemical factors in the related corrosion phenomena has been achieved, and provides evidence that material and component fabrication, in terms of surface and bulk deformation, material microchemistry, and heat treatment must be considered to avoid degradation issues.

  4. Natural analogues of nuclear waste glass corrosion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information availablemore » on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.« less

  5. Molten salt corrosion of SiC and Si3N4

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Smialek, James L.; Fox, Dennis S.

    1988-01-01

    Industrial systems such as heat engines and heat exchangers involve harsh environments. The structural materials are subjected to high temperatures as well as corrosive gases and condensed phases. Past experience with metal alloys has shown that these condensed phases can be particularly corrosive and are often the limiting factor in the operation of these systems. In a heat engine the most common condensed corrodent is Na2SO4 whereas in a heat exchanger an oxide slag may be present. The primary emphasis is on Na2SO4 induced corrosion, however, similarities and differences to oxide slag are also discussed. The extensive research on corrosion of metal alloys has led to understanding and controlling corrosion for these materials. Currently silicon based ceramics are prime candidates for the applications discussed. Therefore it is important to understand the effects of condensed phase deposits on this emerging class of high temperature materials. Both the thermodynamic and strength of the ceramic is also examined. Finally some control strategies for corrosion of silicon based ceramics are explored.

  6. Experimental Study on the Electrochemical Anti-Corrosion Properties of Steel Structures Applying the Arc Thermal Metal Spraying Method

    PubMed Central

    Choe, Hong-Bok; Lee, Han-Seung; Shin, Jun-Ho

    2014-01-01

    The arc thermal metal spraying method (ATMSM) provides proven long-term protective coating systems using zinc, aluminum and their alloys for steel work in a marine environment. This paper focuses on studying experimentally the anti-corrosion criteria of ATMSM on steel specimens. The effects of the types of spraying metal and the presence or absence of sealing treatment from the thermal spraying of film on the anti-corrosion performance of TMSM were quantitatively evaluated by electrochemical techniques. The results showed that ATMSM represented a sufficient corrosion resistance with the driving force based on the potential difference of more than approximately 0.60 V between the thermal spraying layer and the base substrate steel. Furthermore, it was found that the sealing treatment of specimens had suppressed the dissolution of metals, increased the corrosion potential, decreased the corrosion current density and increased the polarization resistance. Metal alloy Al–Mg (95%:5%) by mass with epoxy sealing coating led to the most successful anti-corrosion performance in these electrochemical experiments. PMID:28788271

  7. Effects of temperature on the corrosion behavior of coated carbon steel in 1 wt.% sodium chloride (NaCl) solution

    NASA Astrophysics Data System (ADS)

    Razak, Khalil Abdul; Fuad, Mohd Fazril Irfan Ahmad; Alias, Nur Hashimah; Othman, Nur Hidayati; Zahari, Muhammad Imran

    2017-12-01

    Special attention has been paid in the past decade on the use of metal corrosion protection to conserve natural resources and to improve the performance of engine, build structures and other equipment. Coating is considered as one of the promising methods that can be used to protect the metal against corrosion. However, not many attentions have been given on the evaluation of coating mechanism towards corrosion protection. In this work, the performance of zinc-rich paint (ZRP) was investigated under saltwater environment as to simulate the nature of corrosion in seawater. The adhesion of the coated steel was also studied to determine the adherence of the coatings to the metal substrate. Results obtained from the immersion test was then used to determine the corrosion rate of the coatings. The mechanisms and the function of ZRP as a protection layer were also investigated. By using 3 coated system of ZRP, the corrosion rate of the steel was observed to decrease thus provide better protection in seawater environment.

  8. All-Optical Photoacoustic Sensors for Steel Rebar Corrosion Monitoring

    PubMed Central

    Du, Cong; Owusu Twumasi, Jones; Tang, Qixiang; Guo, Xu; Zhou, Jingcheng; Yu, Tzuyang; Wang, Xingwei

    2018-01-01

    This article presents an application of an active all-optical photoacoustic sensing system with four elements for steel rebar corrosion monitoring. The sensor utilized a photoacoustic mechanism of gold nanocomposites to generate 8 MHz broadband ultrasound pulses in 0.4 mm compact space. A nanosecond 532 nm pulsed laser and 400 μm multimode fiber were employed to incite an ultrasound reaction. The fiber Bragg gratings were used as distributed ultrasound detectors. Accelerated corrosion testing was applied to four sections of a single steel rebar with four different corrosion degrees. Our results demonstrated that the mass loss of steel rebar displayed an exponential growth with ultrasound frequency shifts. The sensitivity of the sensing system was such that 0.175 MHz central frequency reduction corresponded to 0.02 g mass loss of steel rebar corrosion. It was proved that the all-optical photoacoustic sensing system can actively evaluate the corrosion of steel rebar via ultrasound spectrum. This multipoint all-optical photoacoustic method is promising for embedment into a concrete structure for distributed corrosion monitoring. PMID:29702554

  9. Effects of Co contents on the microstructures and properties of the electrodeposited NiCo–Zr composite coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Fei; Jiang, Chuanhai, E-mail: chuanhaijiang1963@163.com; Zhao, Yuantao

    2015-05-15

    Highlights: • The novel NiCo–Zr coatings were prepared by electro-deposition. • Surface morphology, crystal structure, grain size and microstrain were examined. • Texture, residual stress and corrosion resistance were investigated. • Addition of Co increased the hardness and corrosion resistance of the coatings. - Abstract: In this study, the NiCo–Zr composite coatings were prepared from the electrolytes with different Co{sup 2+} concentrations by electrodeposition method. The effects of Co contents on the crystal structure, surface morphology, grain size, microstrain and residual stress were examined by X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) andmore » atomic force microscope (AFM). The corrosion resistance of the composite coatings was also examined by the potentiodynamic polarization and electrochemical impedance (EIS) measurements. The results revealed that the crystal structures of the coatings were dependent on the Co contents and addition of Co content of 58 wt% resulted in the formation of hexagonal (hcp) Co. The increasing Co contents in the NiCo–Zr composite coatings resulted in the smoother and more compact surface, decreased the grain size and increased the microstrain. The micro-hardness and residual stress also increased with increasing Co contents. The addition of Co increased the corrosion resistance of the NiCo–Zr composite coatings compared with the Ni–Zr coating while the corrosion resistance of the NiCo–Zr composite coatings decreased as the Co contents increased.« less

  10. The effect of ozonated cooling water on the corrosion behavior of stainless steel, titanium and copper alloys. Ozone biocidal action on sessile and planktonic bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Videla, H.A.; Guiamet, P.S.; Mele, M.F.L. de

    1999-11-01

    Two aspects of ozone utilization as sole chemical treatment for cooling water demand a better understanding: (a) the effect of dissolved ozone on the corrosion behavior of heat exchanger structural materials and (b) the biocidal action of ozone on bacterial biofilms. To assess the effect of ozone dissolved in synthetic cooling water on the corrosion behavior of different structural materials (stainless steel; 70:30 copper-nickel; aluminum brass and titanium), voltamperometric experiments and corrosion potential vs. time measurements were made at ozone concentrations between 0.1 and 1.2 ppm. Present results show that the passive behavior of stainless steel and titanium is notmore » affected by dissolved ozone whereas copper alloys are susceptible to corrosion in the presence of ozone. To study the biocidal action of various concentrations of dissolved ozone against planktonic and sessile bacteria, liquid cultures and biofilms of Pseudomonas fluorescense, formed on different structural materials, were used at different contact times. The results show that dissolved ozone is an effective biocide for controlling planktonic cells but its effectiveness decreases in the presence of sessile bacteria and the extracellular polymeric matrix of the biofilm. It is suggested that the penetration of ozone through the biofilm depends on the simultaneous diffusion and reaction of the biocide with the biofilm matrix which may exhibit local differences in biomass distribution and hydrodynamic conditions.« less

  11. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system.

    PubMed

    Yang, Fan; Shi, Baoyou; Gu, Junnong; Wang, Dongsheng; Yang, Min

    2012-10-15

    The corrosion scales on iron pipes could have great impact on the water quality in drinking water distribution systems (DWDS). Unstable and less protective corrosion scale is one of the main factors causing "discolored water" issues when quality of water entering into distribution system changed significantly. The morphological and physicochemical characteristics of corrosion scales formed under different source water histories in duration of about two decades were systematically investigated in this work. Thick corrosion scales or densely distributed corrosion tubercles were mostly found in pipes transporting surface water, but thin corrosion scales and hollow tubercles were mostly discovered in pipes transporting groundwater. Magnetite and goethite were main constituents of iron corrosion products, but the mass ratio of magnetite/goethite (M/G) was significantly different depending on the corrosion scale structure and water source conditions. Thick corrosion scales and hard shell of tubercles had much higher M/G ratio (>1.0), while the thin corrosion scales had no magnetite detected or with much lower M/G ratio. The M/G ratio could be used to identify the characteristics and evaluate the performances of corrosion scales formed under different water conditions. Compared with the pipes transporting ground water, the pipes transporting surface water were more seriously corroded and could be in a relatively more active corrosion status all the time, which was implicated by relatively higher siderite, green rust and total iron contents in their corrosion scales. Higher content of unstable ferric components such as γ-FeOOH, β-FeOOH and amorphous iron oxide existed in corrosion scales of pipes receiving groundwater which was less corroded. Corrosion scales on groundwater pipes with low magnetite content had higher surface area and thus possibly higher sorption capacity. The primary trace inorganic elements in corrosion products were Br and heavy metals. Corrosion products obtained from pipes transporting groundwater had higher levels of Br, Ti, Ba, Cu, Sr, V, Cr, La, Pb and As. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Proceedings of the 1980 Tri-Service Conference on Corrosion, 5-7 November 1980, US Air Force Academy, Colorado. Volume 1

    DTIC Science & Technology

    1980-11-01

    McCourry Warner Robins ALC/MMETC R obins AFB, Georgia Overview -.4Corrosion of Naval, Sea Systems) 41 George A. Wacker, Head Metals Divisioný David...Materials and Structure / Naval Sea Systems Command ( Sea 05R15) Washington, D. C. 20362 Vincent D. Schafer Materials Engineer David Taylor Naval Ship R&D...IL(USAF) -) 1969 Society Activities/Offices: Air Force Association 40 .- - - - ---i/ AFWAL-TR-81-4019 I! CORROSION OF NAVAL SEA SYSTEMS AN OVERVIEW

  13. Effects of crack tip plastic zone on corrosion fatigue cracking of alloy 690(TT) in pressurized water reactor environments

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Qiu, S. Y.; Chen, Y.; Fu, Z. H.; Lin, Z. X.; Xu, Q.

    2015-01-01

    Alloy 690(TT) is widely used for steam generator tubes in pressurized water reactor (PWR), where it is susceptible to corrosion fatigue. In this study, the corrosion fatigue behavior of Alloy 690(TT) in simulated PWR environments was investigated. The microstructure of the plastic zone near the crack tip was investigated and labyrinth structures were observed. The relationship between the crack tip plastic zone and fatigue crack growth rates and the environment factor Fen was illuminated.

  14. KSC-2010-1085

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians cover a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson

  15. KSC-2010-1087

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians prepare to cover a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson

  16. KSC-2010-1088

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a United Space Alliance technician inspects a wing leading edge of space shuttle Atlantis following removal of the reinforced carbon carbon panels, or RCC panels. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson

  17. KSC-2010-1086

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, a United Space Alliance technician inspects a reinforced carbon carbon panel, or RCC panel, removed from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson

  18. KSC-2010-1084

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. - In Orbiter Processing Facility-1 at NASA's Kennedy Space Center in Florida, United Space Alliance technicians remove a reinforced carbon carbon panel, or RCC panel, from a wing leading edge of space shuttle Atlantis. Inspection and maintenance of the RCC panels and the wing leading edge are standard procedure between shuttle missions. The RCC panels, components of the shuttle's thermal protection system, are placed in protective coverings while the structural edge of the wing -- the orange and green area behind the panels -- undergoes spar corrosion inspection to verify the structural integrity of the wing. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Glenn Benson

  19. Materials and Methods for Corrosion Control of Reinforced and Prestressed Concrete Structures in New Construction

    DOT National Transportation Integrated Search

    2000-08-03

    Salt-induced reinforcing steel corrosion in concrete bridges has undoubtedly become a considerable economic burden to many State and local transportation agencies. Since the iron in the steel has a natural tendency to revert eventually to its most st...

  20. Benzotriazole a Corrosion Inhibitor for Antiques: Some Practical Surface Chemistry.

    ERIC Educational Resources Information Center

    Walker, Robert

    1980-01-01

    Describes the structure and inhibitive properties of Benzotriazole. The chemical may be employed as an inhibitor to reduce corrosion of articles during storage or display. It may be applied to copper and copper-based antiques as well as to silver and other metals. (Author/JN)

  1. High temperature corrosion-resistant protective coatings in stationary gas turbines

    NASA Technical Reports Server (NTRS)

    Gruenling, H. W.

    1977-01-01

    Methods currently used to deposit protective coatings in gas turbines are reviewed, and the structure of the respective coatings is examined. The corrosion behavior of such coatings is discussed on the basis of experimental data. General trends in the preparation of protective coatings are noted.

  2. Use of electrochemical chloride extraction and associated repairs to extend the beneficial life of reinforced concrete substructures.

    DOT National Transportation Integrated Search

    2016-05-01

    One of the biggest causes of bridge deterioration is corrosion of the reinforcement in concrete structures. Therefore, repair : techniques that mitigate corrosion and extend the service life of reinforced concrete are of great value to the Virginia D...

  3. Bioactive Ca-P coating with self-sealing structure on pure magnesium.

    PubMed

    Gan, Junjie; Tan, Lili; Yang, Ke; Hu, Zhuangqi; Zhang, Qiang; Fan, Xinmin; Li, Yangde; Li, Weirong

    2013-04-01

    Bioactive coatings containing Ca and P with self-sealing structures were fabricated on the surface of pure magnesium using micro-arc oxidation technique (MAO) in a specific calcium hydroxide based electrolyte system. Coatings were prepared at three applied voltages, i.e. 360, 410 and 450 V, and the morphology, chemical composition, corrosion resistance and the degradation properties in Hank's solution of the MAO-coated samples with three different applied voltages were investigated. It was found that all the three coatings showed similar surface morphologies that the majority of micro-pores were filled with compound particles. Both the porous structures and the compound particles were found to contain consistent chemical compositions which were mainly composed of O, Mg, F, Ca and P. Electrochemical tests showed a significant increase in corrosion resistance for the three coatings, meanwhile the coating obtained at 450 V exhibited the superior corrosion resistance owing to the largest coating thickness. The long term immersion tests in Hank's solution also revealed an effective reduction in corrosion rate for the MAO coated samples, and the pH values of the coated samples always maintained a lower level. Besides, all the three coatings were subjected to a mild and uniform degradation, while the coating obtained at 360 V showed a relatively obvious degradation characteristic and appreciable Ca and P contents on the surfaces of the three coatings were observed after immersion in Hank's solution. The results of the present study confirmed that the MAO coatings containing bioactive Ca and P elements with self-sealing structures could significantly enhance the corrosion resistance of magnesium substrate in Hanks' solution with great potential for medical application.

  4. Materials Safety - Not just Flammability and Toxic Offgassing

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.

    2007-01-01

    For many years, the safety community has focused on a limited subset of materials and processes requirements as key to safety: Materials flammability, Toxic offgassing, Propellant compatibility, Oxygen compatibility, and Stress-corrosion cracking. All these items are important, but the exclusive focus on these items neglects many other items that are equally important to materials safety. Examples include (but are not limited to): 1. Materials process control -- proper qualification and execution of manufacturing processes such as structural adhesive bonding, welding, and forging are crucial to materials safety. Limitation of discussions on materials process control to an arbitrary subset of processes, known as "critical processes" is a mistake, because any process where the quality of the product cannot be verified by inspection can potentially result in unsafe hardware 2 Materials structural design allowables -- development of valid design allowables when none exist in the literature requires extensive testing of multiple lots of materials and is extremely expensive. But, without valid allowables, structural analysis cannot verify structural safety 3. Corrosion control -- All forms of corrosion, not just stress corrosion, can affect structural integrity of hardware 4. Contamination control during ground processing -- contamination control is critical to manufacturing processes such as adhesive bonding and also to elimination foreign objects and debris (FOD) that are hazardous to the crew of manned spacecraft in microgravity environments. 5. Fasteners -- Fastener design, the use of verifiable secondary locking features, and proper verification of fastener torque are essential for proper structural performance This presentation discusses some of these key factors and the importance of considering them in ensuring the safety of space hardware.

  5. The Corrosion Behavior of Cold Sprayed Zinc Coatings on Mild Steel Substrate

    NASA Astrophysics Data System (ADS)

    Chavan, Naveen Manhar; Kiran, B.; Jyothirmayi, A.; Phani, P. Sudharshan; Sundararajan, G.

    2013-04-01

    Zinc and its alloy coatings have been used extensively for the cathodic protection of steel. Zinc coating corrodes in preference to the steel substrate due to its negative corrosion potential. Numerous studies have been conducted on the corrosion behavior of zinc and its alloy coatings deposited using several techniques viz., hot dip galvanizing, electrodeposition, metalizing or thermal spray etc. Cold spray is an emerging low temperature variant of thermal spray family which enables deposition of thick, dense, and pure coatings at a rapid rate with an added advantage of on-site coating of steel structures. In the present study, the corrosion characteristics of cold sprayed zinc coatings have been investigated for the first time. In addition, the influence of heat treatment of zinc coating at a temperature of 150 °C on its corrosion behavior has also been addressed.

  6. Tannin bark Melalauca cajuputi powell (gelam) as green corrosion inhibitor of mild steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talib, Nur Atiqah Abu; Zakaria, Sarani; Hua, Chia Chin

    Tannin was extracted from gelam bark and used to produce corrosion inhibitor for mild steel. Tannin was extracted from gelam bark using 70% aqueous acetone for 6 hour. Tannin powder was characterization using fourier transform infrared spectroscopy to analyse chemical component in tannin and Scanning electron microscope (SEM) for tannin physical structure. The tannin effect on the corrosion inhibition of mild steel has been investigated in 1Mol HCl solution for 6 hour followed ASTM. The weight loss method were applied to study the mild steel corrosion behavior in the present and absend of different concentration of tannin (250, 300, 350)ppm.more » Tannin act good inhibitor as corrosion inhibitor for mild steel in acid medium. Surface morphology of carbon steel with and without inhibitor was investigated by scanning electron microscopy.« less

  7. Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric chondroitin-4-sulfate as anionic polyelectrolyte inhibitor.

    PubMed

    Hassan, Refat M; Ibrahim, Samia M; Takagi, Hideo D; Sayed, Suzan A

    2018-07-15

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyelectrolyte chondroitin-4-sulfate (CS) polysaccharide has been studied using both gasometrical and weight-loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing the inhibitor concentration and decreased with increasing temperature. The inhibition action of CS on Al metal surface was found to obey both of Langmuir and Freundlich isotherms. The factors affecting the corrosion rates such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and the temperature were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the results obtained is discussed. Copyright © 2018. Published by Elsevier Ltd.

  8. Influence of coating defects on the corrosion behavior of cold sprayed refractory metals

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Rao, A. Arjuna

    2017-02-01

    The defects in the cold sprayed coatings are critical in the case of corrosion performances of the coatings in aggressive conditions. To understand the influence of coating defects on corrosion, immersion tests have been carried out in HF solution for the cold sprayed and heat treated Titanium, Tantalum and Niobium coatings. Long duration immersion tests reveal inhomogeneous weight losses of the samples prepared at different heat treatment conditions. The weight loss for different coatings has been well corroborated with the coating defects and microstructures. Chemical and micro structural analysis elucidates the reason behind the inhomogeneous performance of different type of cold sprayed coatings in corrosion medium. In the case of cold sprayed titanium, formation of stable oxide along the inter-splat boundary hinders the aggressive attack of the corrosion medium which is not so in other cases.

  9. Main Pipelines Corrosion Monitoring Device

    NASA Astrophysics Data System (ADS)

    Anatoliy, Bazhenov; Galina, Bondareva; Natalia, Grivennaya; Sergey, Malygin; Mikhail, Goryainov

    2017-01-01

    The aim of the article is to substantiate the technical solution for the problem of monitoring corrosion changes in oil and gas pipelines with use (using) of an electromagnetic NDT method. Pipeline wall thinning under operating conditions can lead to perforations and leakage of the product to be transported outside the pipeline. In most cases there is danger for human life and environment. Monitoring of corrosion changes in pipeline inner wall under operating conditions is complicated because pipelines are mainly made of structural steels with conductive and magnetic properties that complicate test signal passage through the entire thickness of the object under study. The technical solution of this problem lies in monitoring of the internal corrosion changes in pipes under operating conditions in order to increase safety of pipelines by automated prediction of achieving the threshold pre-crash values due to corrosion.

  10. High-resistant castable corrosion-resistant nickel alloy for monocrystalline casting by the directional crystallization method

    NASA Astrophysics Data System (ADS)

    Belikov, S. B.; Andrienko, A. G.; Gaiduk, S. V.; Kononov, V. V.; Zamkovoi, V. E.

    2008-01-01

    A high-resistant corrosion-resistant nickel-based alloy has been developed for monocrystalline casting using the directional crystallization method. Its mechanical properties are close to those of aircraft alloys ZhS6K-VI and ZhS6U-VI with an equiaxial structure and ZhS26-VI with an oriented structure. The technology of producing blades for turboprop engines from the new alloy has been developed and tested.

  11. Fe-Based Amorphous Coatings on AISI 4130 Structural Steel for Corrosion Resistance

    NASA Astrophysics Data System (ADS)

    Katakam, Shravana; Santhanakrishnan, S.; Dahotre, Narendra B.

    2012-06-01

    The current study focuses on synthesizing a novel functional coating for corrosion resistance applications, via laser surface alloying. The iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder is used for laser surface alloying on AISI 4130 steel substrate, with a continuous wave ytterbium Nd-YAG fiber laser. The corrosion resistance of the coatings is evaluated for different processing conditions. The microstructural evolution and the response of the microstructure to the corrosive environment is studied using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Microstructural studies indicate the presence of face-centered cubic Fe-based dendrites intermixed within an amorphous matrix along with fine crystalline precipitates. The corrosion resistance of the coatings decrease with an increase in laser energy density, which is attributed to the precipitation and growth of chromium carbide. The enhanced corrosion resistance of the coatings processed with low energy density is attributed to the self-healing mechanism of this amorphous system.

  12. Effect of Different Cooling Rates on the Corrosion Behavior of High-Carbon Pearlitic Steel

    NASA Astrophysics Data System (ADS)

    Katiyar, Prvan Kumar; Misra, Sudhir; Mondal, K.

    2018-03-01

    The present work discusses the effect of pearlitic morphology on the corrosion behavior of high-carbon fully pearlitic steel in 3.5% NaCl solution. Four different types of pearlitic steels (furnace-cooled, as-received, air-cooled and forced-air-cooled) consisting of coarse, medium, fine and very fine microstructures, respectively, were tested. Electrochemical behavior of these steels was studied with the help of dynamic and linear polarization and AC impedance spectroscopic tests. The corrosion resistance improved with fineness of the microstructure in general. However, with further reduction in interlamellar spacing beyond a limit, the corrosion resistance reduced slightly. Formation of homogeneous distribution of microgalvanic cells between cementite and ferrite lamellae of fine pearlitic steel improved the corrosion resistance. However, entanglement of the lamellae of pearlite in very fine pearlitic structure as well as breaking of cementite lamellae due to finer pearlitic colonies was attributed to the higher corrosion of the forced-air-cooled steel as compared to the air-cooled steel.

  13. Corrosion Performance of New Generation Aluminum-Lithium Alloys for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Moran, James P.; Bovard, Francine S.; Chrzan, James D.; Vandenburgh, Peter

    Over the past several years, a new generation of aluminum-lithium alloys has been developed. These alloys are characterized by excellent strength, low density, and high modulus of elasticity and are therefore of interest for lightweight structural materials applications particularly for construction of current and future aircraft. These new alloys have also demonstrated significant improvements in corrosion resistance when compared with the legacy and incumbent alloys. This paper documents the superior corrosion resistance of the current commercial tempers of these materials and also discusses the corrosion performance as a function of the degree of artificial aging. Results from laboratory corrosion tests are compared with results from exposures in a seacoast atmosphere to assess the predictive capability of the laboratory tests. The correlations that have been developed between the laboratory tests and the seacoast exposures provide confidence that a set of available methods can provide an accurate assessment of the corrosion performance of this new generation of alloys.

  14. Effect of Sn4+ Additives on the Microstructure and Corrosion Resistance of Anodic Coating Formed on AZ31 Magnesium Alloy in Alkaline Solution

    NASA Astrophysics Data System (ADS)

    Salman, S. A.; Kuroda, K.; Saito, N.; Okido, M.

    Magnesium is the lightest structural metal with high specific strength and good mechanical properties. However, poor corrosion resistance limits its widespread use in many applications. Magnesium is usually treated with Chromate conversion coatings. However, due to changing environmental regulations and pollution prevention requirements, a significant push exists to find new, alternative for poisonous Cr6+. Therefore, we aim to improve corrosion resistance of anodic coatings on AZ31 alloys using low cost non-chromate electrolyte. Anodizing was carried out in alkaline solutions with tin additives. The effect of tin additives on the coating film was characterized by SEM and XRD. The corrosion resistance was evaluated using anodic and cathodic polarizations and electrochemical impedance spectroscopy (EIS). Corrosion resistance property was improved with tin additives and the best anti-corrosion property was obtained with addition of 0.03 M Na2SnO3.3H2O to anodizing solution.

  15. Microstructural Aspects of Localized Corrosion Behavior of Mg Alloys

    NASA Astrophysics Data System (ADS)

    Chu, Peng-Wei

    Combining high specific strength and unique electrochemical properties, magnesium (Mg) alloys are promising lightweight materials for various applications from automotive, consumer electronics, biomedical body implant, to battery electrodes. Engineering solutions such as coatings have enabled the use of Mg alloys, despite their intrinsic low corrosion resistance. Consequently, the fundamental mechanisms responsible for the unique localized corrosion behavior of bare Mg alloys, the associated abnormal hydrogen evolution response, and the relationships between corrosion behavior and alloy microstructure are still unsolved. This thesis aims to uncover the specificities of Mg corrosion and the roles of alloy chemistry and microstructure. To this end, multiscale site-specific microstructure characterization techniques, including in situ optical microscopy, scanning electron microscopy with focused ion beam milling, and transmission electron microscopy, combined with electrochemical analysis and hydrogen evolution rate monitoring, were performed on pure Mg and selected Mg alloys under free corrosion and anodic polarization, revealing key new information on the propagation mode of localized corrosion and the role of alloy microstructures, thereby confirming or disproving the validity of previously proposed corrosion models. Uniform surface corrosion film on Mg alloys immersed in NaCl solution consisted a bi-layered structure, with a porous Mg(OH)2 outer layer on top of a MgO inner layer. Presence of fine scale precipitates in Mg alloys interacted with the corrosion reaction front, reducing the corrosion rate and surface corrosion film thickness. Protruding hemispherical dome-like corrosion products, accompanied by growing hydrogen bubbles, formed on top of the impurity particles in Mg alloys by deposition of Mg(OH)2 via a microgalvanic effect. Localized corrosion on Mg alloys under both free immersion and anodic polarization was found to be governed by a common mechanism, with the corrosion front propagating laterally a few mum inside the alloy and underneath the surface corrosion film, with finger-like features aligned with (0001) Mg basal planes at the localized corrosion/alloy interface. Rising streams of hydrogen bubbles were found to follow the anodic dissolution of Mg and formation of Mg(OH)2 corrosion products at the propagating localized corrosion fronts. Alloying elements segregation to the grain boundaries showed the ability to stop localized corrosion propagation momentarily. By revealing the microstructure of corrosion features on Mg alloys, a descriptive model was proposed. Relationships between the corrosion behavior and alloy microstructures were also identified. This microscopic information can serve as a guideline for future development of Mg alloys by tailoring the microstructure to achieve proper corrosion responses for applications under different environments.

  16. Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-Bin; Liu, Han-Peng; Li, Chang-Yang; Chen, Yong; Li, Shuo-Qi; Zeng, Rong-Chang; Wang, Zhen-Lin

    2018-03-01

    A polyvinylpyrrolidone (PVP)/polyacrylic acid (PAA) layer-by-layer (LbL) assembled composite coating with a multilayer structure for the corrosion protection of AZ31 magnesium alloy was prepared by a novel spin-casting method. The microstructure and composition of this coating were investigated by means of SEM, XRD and FT-IR measurements. Moreover, electrochemical, immersion and scratch tests in vitro were performed to measure the corrosion performance and the adhesion strength. These results indicated that the (PVP/PAA)10 composite coating with defect-free, dense and uniform morphologies could be successfully deposited on the surface of magnesium alloy. The coating had excellent corrosion resistance and adhesion strength.

  17. Probability of stress-corrosion fracture under random loading.

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.

    1972-01-01

    A method is developed for predicting the probability of stress-corrosion fracture of structures under random loadings. The formulation is based on the cumulative damage hypothesis and the experimentally determined stress-corrosion characteristics. Under both stationary and nonstationary random loadings, the mean value and the variance of the cumulative damage are obtained. The probability of stress-corrosion fracture is then evaluated using the principle of maximum entropy. It is shown that, under stationary random loadings, the standard deviation of the cumulative damage increases in proportion to the square root of time, while the coefficient of variation (dispersion) decreases in inversed proportion to the square root of time. Numerical examples are worked out to illustrate the general results.

  18. The effect of zeolite and diatomite on the corrosion of reinforcement steel in 1 M HCl solution

    NASA Astrophysics Data System (ADS)

    Gerengi, Husnu; Kurtay, Mine; Durgun, Hatice

    The greatest disadvantage of reinforced concrete structures is the corrosion occurring in the reinforcement which, over time, causes a reduction in the reinforcement-concrete adherence and eventual sectional loss. The purpose of this study was to reveal the corrosion mechanism of ribbed reinforcement inside additive-free (reference), 20% zeolite-doped and 20% diatomite-doped concrete samples after exposure to 1 M HCl over 240 days. Electrochemical impedance spectroscopy (EIS) measurements were made every 10 days. Consequently, it was determined that the 20% zeolite-doped concrete samples had higher concrete and reinforcement resistance compared to the 20% diatomite-doped and the reference concrete, i.e. they exhibited less corrosion.

  19. Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel.

    PubMed

    Wang, Huiru; Du, Cuiwei; Liu, Zhiyong; Wang, Luntao; Ding, De

    2017-07-25

    This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m². In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described.

  20. Analysis and estimation of service life of corrosion prevention materials using diffusion, resistivity and accelerated curing for new bridge structures : [summary].

    DOT National Transportation Integrated Search

    2014-01-01

    Much infrastructure on Floridas coasts relies : on steel-reinforced concrete that is exposed : to seawater. Corrosion of steel reinforcing bars : (rebar) in concrete exposed to seawater has : been documented as a major cause of bridge : deteriorat...

  1. Effect of Phosphate Inhibitors on the Formation of Lead Phosphate/Carbonate Nanorods, Microrods and Dendritic Structures

    EPA Science Inventory

    There are several factors which influence the corrosion rate of lead, which in turn morphs into different crystal shapes and sizes. Some of the important factors are: alkalinity, pH, calcium, orthophosphate and silica. Low to moderate alkalinity decreases corrosion rates, while ...

  2. Use of electrochemical chloride extraction and associated repairs to extend the beneficial life of reinforced concrete substructures: VCTIR report detail.

    DOT National Transportation Integrated Search

    2016-01-01

    One of the biggest causes of bridge deterioration is corrosion of the reinforcement in concrete structures. Therefore, repair techniques that mitigate corrosion and extend the service life of reinforced concrete are of great value to the Virginia Dep...

  3. Iron Drinking Water Pipe Corrosion Products: Concentrators of Toxic Metals

    DTIC Science & Technology

    2013-01-01

    health risk. In addition Pb corrosion products may be sinks for other metals such as chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn). These...Vanadium K-Edge X-ray Absorption Near-Edge Structure Interpretation: Application to the Speciation of Vanadium in Oxide Phases from Steel Slag ’, Journal

  4. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation.

    PubMed

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Xu, Zhigang; Dong, Zhongyun; Collins, Boyce; Yun, Yeoheung; Sankar, Jagannathan

    2015-03-01

    Mg-Zn-Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg-xZn-0.3Ca (x=1, 3 and 5wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg-xZn-0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca2Mg6Zn3 formed along grain boundaries, 2) the corrosion rate of Mg-xZn-0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH)2), hydroxyapatite (Ca10(PO4)6(OH)2), and magnesite (MgCO3·3H2O). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Corrosion Analysis of TiCN Coated Al-7075 Alloy for Marine Applications: A Case Study

    NASA Astrophysics Data System (ADS)

    Srinath, M. K.; Ganesha Prasad, M. S.

    2018-05-01

    Corrosion is one of the most important marine difficulties that cause long term problems, occurring in ships and submarines surrounded by a corrosive environment when coupled with chemical, temperature and stress related conditions. Corrosion of marine parts could lead to severe disasters. Coatings and heat treatment in a very effective way could be used to protect the aluminium parts against corrosion. The present case study focuses on the corrosion and microstructural properties of TiCN coatings fabricated on Al-7075 aluminium alloy substrate by using Physical Vapour Deposition technique. Corrosion properties of specimen's heat treated at 500 °C at durations of 1, 4, 8 and 12 h were tested through salt spray test. According to D-1193, ASTM standard, corrosion resistance of coated and heat treated Al-7075 samples were investigated in solution kept at 95 °F with a pH of 6.5-7.2, with 5 sections of NaCl to 95 sections of type IV water. The specimen's heat treated for 1 h showed positive corrosion resistance, while the specimens treated for longer durations had the opposite effect. The microstructures of the salt spray tested coatings were investigated by scanning electron microscope. X-ray diffraction tests were conducted on specimens to determine the atomic and molecular structure of the surface crystals and the unit cell dimensions. The corrosion mechanisms of the coated specimens under the heat treated conditions have been explored.

  6. Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility.

    PubMed

    Vigneron, Adrien; Alsop, Eric B; Chambers, Brian; Lomans, Bartholomeus P; Head, Ian M; Tsesmetzis, Nicolas

    2016-04-01

    Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. The Influence of Corrosion and Cross-Section Diameter on the Mechanical Properties of B500c Steel

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, Ch. Alk.

    2009-03-01

    Corrosion is a negative contributor on the structural integrity of concrete structures and leads to degradation of the mechanical properties of steel rebar. Exposure to chloride, seawater, salt and saltwater and deicing chemical environments influences the concrete-steel bond and weakens it. A considerable strength factor of the two-phase steel B500c (martensitic, ferritic-perlitic) is considered to be the outer martensitic cortex thickness, which varies according to the area of the rebar cross section. In order to evaluate the influence of corrosion and the size of the area on the mechanical properties of B500c steel, an experimental investigation was conducted on B500c ribbed steel rebar of 8, 12, 16, and 18 mm diameter, and which were artificially corroded for 10, 20, 30, 45, 60, 90, and 120 days. The laboratory tests suggest that corrosion duration and rebar cross-sectional area size had a significant impact on the strength and ductility degradation of the specimens. The tensile mechanical properties before and after corrosion indicated progressive variation and drastic drop in their values. The extended salt spray exposure enhanced the damage and created pits and notches, resulting in stress concentration points and progressive reduction of ductility and available energy. Anti-seismic design and codes that ignore the influence of the size of the cross-section area and the level of corrosion and mechanical behavior of reinforcing steel could lead to unpredictable performance during severe ground motion.

  8. Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application.

    PubMed

    Syed, Junaid Ali; Tang, Shaochun; Meng, Xiangkang

    2017-06-30

    The wetting characteristic of a metal surface can be controlled by employing different coating materials and external stimuli, however, layer number (n) modulated surface swapping between hydrophobicity and hydrophilicity in a multilayer structure to achieve prolonged anti-corrosion ability was not taken into consideration. In this study, we proposed a layer-by-layer (LbL) spin assembled polyaniline-silica composite/tetramethylsilane functionalized silica nanoparticles (PSC/TMS-SiO 2 ) coating with the combined effect of super-hydrophobicity and enhanced anti-corrosion ability. Interestingly, the hierarchical integration of two coating materials with inherently different surface roughness and energy in a multilayer structure allows the wetting feature to swap from hydrophobic to hydrophilic state by modulating n with decreasing hydrophilicity. The samples with odd n (TMS-SiO 2 surface) are hydrophobic while the samples with even n (PSC surface) exhibits the hydrophilic character. The TMS-SiO 2 content was optimized to achieve super-hydrophobic coating with significantly high water contact angle (CA) 153° ± 2° and small sliding angle (SA) 6° ± 2°. Beside its self-cleaning behavior, the electro-active PSC/TMS-SiO 2 coating also exhibits remarkably enhanced corrosion resistance against aggressive media. The corrosion resistance of the coating was remained stable even after 240 h of exposure, this enhancement is attributed to super-hydrophobicity and anodic shift in corrosion potential.

  9. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel-tungsten composite coatings

    NASA Astrophysics Data System (ADS)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-02-01

    Silicon carbide (SiC) reinforced nickel-tungsten (Ni-W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni-W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni-W-5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni-W-5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, Ecorr) compared to Ni-W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni-W-5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO4 and SiO2.

  10. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  11. Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility

    PubMed Central

    Alsop, Eric B.; Chambers, Brian; Lomans, Bartholomeus P.; Head, Ian M.; Tsesmetzis, Nicolas

    2016-01-01

    Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. PMID:26896143

  12. Alloy Microstructure Dictates Corrosion Modes in THA Modular Junctions.

    PubMed

    Pourzal, Robin; Hall, Deborah J; Ehrich, Jonas; McCarthy, Stephanie M; Mathew, Mathew T; Jacobs, Joshua J; Urban, Robert M

    2017-12-01

    Adverse local tissue reactions (ALTRs) triggered by corrosion products from modular taper junctions are a known cause of premature THA failure. CoCrMo devices are of particular concern because cobalt ions and chromium-orthophosphates were shown to be linked to ALTRs, even in metal-on-polyethylene THAs. The most common categories of CoCrMo alloy are cast and wrought alloy, which exhibit fundamental microstructural differences in terms of grain size and hard phases. The impact of implant alloy microstructure on the occurring modes of corrosion and subsequent metal ion release is not well understood. The purpose of this study was to determine whether (1) the microstructure of cast CoCrMo alloy varies broadly between manufacturers and can dictate specific corrosion modes; and whether (2) the microstructure of wrought CoCrMo alloy is more consistent between manufacturers and has low implications on the alloy's corrosion behavior. The alloy microstructure of four femoral-stem and three femoral-head designs from four manufacturers was metallographically and electrochemically characterized. Three stem designs were made from cast alloy; all three head designs and one stem design were made from wrought alloy. Alloy samples were sectioned from retrieved components and then polished and etched to visualize grain structure and hard phases such as carbides (eg, M 23 C 6 ) or intermetallic phases (eg, σ phase). Potentiodynamic polarization (PDP) tests were conducted to determine the corrosion potential (E corr ), corrosion current density (I corr ), and pitting potential (E pit ) for each alloy. Four devices were tested within each group, and each measurement was repeated three times to ensure repeatable results. Differences in PDP metrics between manufacturers and between alloys with different hard phase contents were compared using one-way analysis of variance and independent-sample t-tests. Microstructural features such as twin boundaries and slip bands as well as corrosion damage features were viewed and qualitatively assessed in a scanning electron microscope. We found broad variability in implant alloy microstructure for both cast and wrought alloy between manufacturers, but also within the same implant design. In cast alloys, there was no difference in PDP metrics between manufacturers. However, coarse hard phases and clusters of hard phases (mainly intermetallic phases) were associated with severe phase boundary corrosion and pitting corrosion. Furthermore, cast alloys with hard phases had a lower E pit than those without (0.46 V, SD 0.042; 0.53 V, SD 0.03, respectively; p = 0.015). Wrought alloys exhibited either no hard phases or numerous carbides (M 23 C 6 ). However, the corrosion behavior was mainly affected by lattice defects and banded structures indicative of segregations that appear to be introduced during bar stock manufacturing. Alloys with banding had a lower E corr (p = 0.008) and higher I corr (p = 0.028) than alloys without banding (-0.76 V, SD 0.003; -0.73 V, SD 0.009; and 1.14 × 10 -4 mA/cm 2 , SD 1.47 × 10 -5 ; 5.2 × 10 -5 mA/cm 2 , SD 2.57 × 10 -5 , respectively). Alloys with carbides had a slightly higher E corr (p = 0.046) than those without (-0.755 V, SD 0.005; -0.761 V, SD 0.004); however, alloys with carbides exhibited more severe corrosion damage as a result of phase boundary corrosion, hard phase detachment, and subsequent local crevice corrosion. The observed variability in CoCrMo alloy microstructure of both cast and wrought components in this study appears to be an important issue to address, perhaps through better standards, to minimize in vivo corrosion. The finding of the banded structures within wrought alloys is especially concerning because it unfavorably influences the corrosion behavior independent of the manufacturer. The findings suggest that a homogeneous alloy microstructure with a minimal hard phase fraction exhibits more favorable corrosion behavior within the in vivo environment of modular taper junctions, thus lowering metal ion release and subsequently the risk of ALTRs to corrosion products. Also, the question arises if hard phases fulfill a useful purpose in metal-on-polyethylene bearings, because they may come with a higher risk of phase boundary corrosion and pitting corrosion and the benefit they provide by adding strength is not needed (unlike in metal-on-metal bearings). Implant failure resulting from corrosion processes within modular junctions is a major concern in THA. Our results suggest that implant alloy microstructure is not sufficiently standardized and may also dictate specific corrosion modes and subsequent metal ion release.

  13. Relationship between the specific surface area of rust and the electrochemical behavior of rusted steel in a wet-dry acid corrosion environment

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Zhao, Qing-he; Li, Shuan-zhu

    2017-01-01

    The relationship between the specific surface area (SSA) of rust and the electrochemical behavior of rusted steel under wet-dry acid corrosion conditions was investigated. The results showed that the corrosion current density first increased and then decreased with increasing SSA of the rust during the corrosion process. The structure of the rust changed from single-layer to double-layer, and the γ-FeOOH content decreased in the inner layer of the rust with increasing corrosion time; by contrast, the γ-FeOOH content in the outer layer was constant. When the SSA of the rust was lower than the critical SSA corresponding to the relative humidity during the drying period, condensed water in the micropores of the rust could evaporate, which prompted the diffusion of O2 into the rust and the following formation process of γ-FeOOH, leading to an increase of corrosion current density with increasing corrosion time. However, when the SSA of the rust reached or exceeded the critical SSA, condensate water in the micro-pores of the inner layer of the rust could not evaporate which inhibited the diffusion of O2 and decreased the γ-FeOOH content in the inner rust, leading to a decrease of corrosion current density with increasing corrosion time.

  14. Effect of applied bias voltage on corrosion-resistance for TiC 1- xN x and Ti 1- xNb xC 1- yN y coatings

    NASA Astrophysics Data System (ADS)

    Caicedo, J. C.; Amaya, C.; Yate, L.; Aperador, W.; Zambrano, G.; Gómez, M. E.; Alvarado-Rivera, J.; Muñoz-Saldaña, J.; Prieto, P.

    2010-02-01

    Corrosion-resistance behavior of titanium carbon nitride (Ti-C-N) and titanium niobium carbon nitride (Ti-Nb-C-N) coatings deposited onto Si(1 0 0) and AISI 4140 steel substrates via r.f. magnetron sputtering process was analyzed. The coatings in contact with a solution of sodium chloride at 3.5% were studied by Tafel polarization curves and impedance spectroscopy methods (EIS). Variations of the bias voltage were carried out for each series of deposition to observe the influence of this parameter upon the electrochemical properties of the coatings. The introduction of Nb in the ternary Ti-C-N film was evaluated via X-ray diffraction (XRD) analysis. The structure was characterized by using Raman spectroscopy to identify ternary and quaternary compounds. Surface corrosion processes were characterized using optical microscopy and scanning electron microscopy (SEM). XRD results show conformation of the quaternary phase, change in the strain of the film, and lattice parameter as the effect of the Nb inclusion. The main Raman bands were assigned to interstitial phases and "impurities" of the coatings. Changes in Raman intensities were attributed to the incorporation of niobium in the Ti-C-N structure and possibly to resonance enhancement. Finally, the corrosion data obtained for Ti-C-N were compared with the results of corrosion tests of Ti-Nb-C-N coating. The results obtained showed that the incorporation of niobium to Ti-C-N coatings led to an increase in the corrosion-resistance. On another hand, an increase in the bias voltage led to a decrease in the corrosion-resistance for both Ti-C-N and Ti-Nb-C-N coatings.

  15. Space Shuttle Corrosion Protection Performance

    NASA Technical Reports Server (NTRS)

    Curtis, Cris E.

    2007-01-01

    The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.

  16. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  17. Effects of Laser Re-melting on the Corrosion Properties of HVOF Coatings

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Toor, I. H.; Patel, F.; Baig, M. A.

    2013-05-01

    HVOF coating of Inconel 625 powder on carbon steel is carried out. Laser melting of the resulting coating is realized to improve coating structural integrity. Morphological and microstructural changes are examined in the coating prior and after laser treatment process using scanning electron microscopy, energy dispersive spectroscopy, and x-ray diffraction (XRD). The residual stress developed is measured on the surface vicinity of the laser-treated coating using the XRD technique. The corrosion resistance of the laser-treated and untreated coating surfaces is measured, incorporating the potentiodynamic tests in 0.5 M NaCl aqueous solution. It is found that laser treatment reduces the pores and produces cellular structures with different sizes and orientations in the coating. Laser-controlled melting improves the corrosion resistance of the coating surface.

  18. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.

    PubMed

    Oliveira, N T C; Guastaldi, A C

    2009-01-01

    Electrochemical behavior of pure Ti and Ti-Mo alloys (6-20wt.% Mo) was investigated as a function of immersion time in electrolyte simulating physiological media. Open-circuit potential values indicated that all Ti-Mo alloys studied and pure Ti undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the chloride-containing solution. It also indicated that the addition of Mo to pure Ti up to 15wt.% seems to improve the protection characteristics of its spontaneous oxides. Electrochemical impedance spectroscopy (EIS) studies showed high impedance values for all samples, increasing with immersion time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The fit obtained suggests a single passive film present on the metals' surface, improving their resistance with immersion time, presenting the highest values to Ti-15Mo alloy. Potentiodynamic polarization showed a typical valve-metal behavior, with anodic formation of barrier-type oxide films, without pitting corrosion, even in chloride-containing solution. In all cases, the passive current values were quite small, and decrease after 360h of immersion. All these electrochemical results suggest that the Ti-15Mo alloy is a promising material for orthopedic devices, since electrochemical stability is directly associated with biocompatibility and is a necessary condition for applying a material as biomaterial.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkrob, Ilya A.; Pupek, Krzysztof Z.; Gilbert, James A.

    Lithium hexafluorophosphate (LiPF 6) is ubiquitous in commercial lithium-ion batteries, but it is hydrolytically unstable and corrosive on electrode surfaces. Using a more stable salt would confer multiple benefits for high-voltage operation, but many such electrolyte systems facilitate anodic dissolution and pitting corrosion of aluminum current collectors that negate their advantages. Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) is a new salt that was designed specifically for high-voltage cells. In this study we demonstrate that in carbonate electrolytes, LiTDI prevents anodic dissolution of Al current collectors, which places it into a select group of corrosion inhibitors. However, we also demonstrate that LiTDI becomes reducedmore » on lithiated graphite, undergoing sequential defluorination and yielding a thick and resistive solid-electrolyte interphase (SEI), which increases impedance and lowers electrode capacity. The mechanistic causes for this behavior are examined using computational chemistry methods in the light of recent spectroscopic studies. Here, we demonstrate that LiTDI reduction can be prevented by certain electrolyte additives, which include fluoroethylene carbonate, vinylene carbonate and lithium bis(oxalato)borate. This beneficial action is due to preferential reduction of these additives over LiTDI at a higher potential vs. Li/Li +, so the resulting SEI can prevent the direct reduction of LiTDI at lower potentials on the graphite electrode.« less

  20. The influence of the internal microbiome on the materials used for construction of the transmission natural gas pipelines in the Lodz Province

    NASA Astrophysics Data System (ADS)

    Staniszewska, Agnieszka; Jastrzębska, Magdalena; Ziemiński, Krzysztof

    2017-10-01

    This paper presents investigation results of the influence of gas microbes on the biocorrosion rate of the materials used for gas pipelines construction in the Lodz Province. Samples of two types of carbon steel and cast iron were stored in the laboratory pipeline model reflecting the real conditions of working natural gas pipelines were. In the next step the influence of cathodic protection with parameters recommended for protection of underground structures was tested. Analyses of biological corrosion products generated on the test surface were carried out using a scanning electron microscope with an X-ray analyzer. The level of ATP was measured to confirm presence of the adsorbed microorganisms on the observed structures. Corrosion rates were determined by gravimetric methods. In the course of the study it was revealed that the rate of biocorrosion of steel is lower than that for cast iron. Our results also proved that the weight corrosion rate depends on the number of adhered microorganisms. In addition, it has been found that application of the carbon steel cathodic protection decreases its weight corrosion rate. The information obtained will help to increase the knowledge on the rate of biological corrosion causing losses/pits inside gas pipline.

  1. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2009-04-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF 2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 °C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface.

  2. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Calderoni; P. Sharpe; H. Nishimura

    2009-04-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF+BeF2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 C,more » and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to level close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimens corrosion progressed. Metallographic analysis of the samples after 500 hours exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimens surface.« less

  3. Structural Analysis, Electrochemical Behavior, and Biocompatibility of Novel Quaternary Titanium Alloy with near β Structure

    NASA Astrophysics Data System (ADS)

    Popa, Monica; Calderon Moreno, Jose Maria; Vasilescu, Cora; Drob, Silviu Iulian; Neacsu, Elena Ionela; Coer, Andrej; Hmeljak, Julija; Zerjav, Gregor; Milošev, Ingrid

    2014-06-01

    This article analyses the microstructure, electrochemical behavior, and biocompatibility of a novel Ti-20Nb-10Zr-5Ta alloy with low Young's modulus (59 GPa) much closer to that of bone, between 10 and 30 GPa, than Ti and other Ti alloys used as implant biomaterial. XRD and SEM measurements revealed a near β crystalline microstructure containing β phase matrix and secondary α phase, with a typical grain size of around 200 μm. The corrosion behavior in neutral Ringer solution evidenced: self-passivation behavior characterizing a very resistant passive film; an easy passivation as a result of favorable influence of the alloying elements Nb, Zr, and Ta that participate with their passive oxides to the formation of the alloy passive film; low corrosion and ion release rates corresponding with very low toxicity. In MEM solution, the novel alloy demonstrated very high corrosion resistance and no susceptibility to localized corrosion. Biocompatibility was evaluated on in vitro human osteoblast-like and human immortalized pulmonary fibroblast cell (Wi-38) lines and the new Ti-20Nb-10Zr-5Ta alloy exhibited no cytotoxicity. The new Ti-20Nb-10Zr5Ta alloy is a promising material for implants due to combined properties of low elastic modulus, very low corrosion rate, and good biocompatibility.

  4. Structure-composition-property relationships in 5xxx series aluminum alloys

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.

    Al-Mg alloys are well suited for marine applications due to their low density, ease of fabrication, structural durability, and most notably resistance to corrosion. The purpose of this study is to investigate the effects of alloying additions, mechanical processing and heat treatments on the development of grain boundary phases that have an effect on intergranular corrosion (IGC). Cu, Zn, and Si modified compositions of AA5083 were produced that were subjected to a low and high degree of cold work and various heat treatments. ASTM G67 (NAMLT) intergranular corrosion testing and detailed microstructural characterization for various alloys was carried out. An optimal composition and processing condition that yielded the best intergranular corrosion resistant material was identified based on the ASTM G67 test screening. Further, the outstanding modified AA5083 was selected for further microstructural analysis. This particular alloy with has a magnesium level high enough to make it susceptible to intergranular corrosion is very resistant to IGC. It was found that development of the appropriate sub-structure with some Cu, Si and Zn resulted in a material very resistant to IGC. Formation of many sinks, provided by sub-boundaries, within microstructure is very beneficial since it produces a relatively uniform distribution of Mg in the grain interiors, and this can suppress sensitization of this alloy very successfully. This is a very promising rote for the production of high-strength, and corrosion resistant aluminum alloys. Additionally in this study, TEM sample preparation become very crucial step in grain boundary phase investigation. Focus Ion Beam (FIB) milling was used as a primary TEM sample preparation technique because it enables to extract the samples from desired and very specific locations without dissolving grain boundary phases as it was in conventional electropolishing method. However, other issues specifically relevant to FIB milling of aluminum alloys related to Ga accumulation were discovered, that produce significant microstructural artifacts. It is well known that liquid gallium can cause Liquid Metal Embitterment (LME) aluminum alloys, and gallium readily penetrates aluminum grain boundaries. Low energy Ar ion nanomilling is potentially quite effective at removing gallium from the external and internal surfaces of aluminum thin foils, but can still leave persistent artifacts. Al-Mg alloys can be also susceptible to localized corrosion such as pitting corrosion in the presence of chloride ions. In this study the phases responsible for this type of corrosion were identified. ASSET (ASTM G66) test was used to determine the influence of heat-treatment on pitting corrosion on various modified AA5083 alloys. Additionally, potentiodynamic polarization as well as potentiostatic measurements in conjunction with SEM analysis were carried out to obtain pitting potential (Epit) and to determine the location of metastable pit initiation, respectively.

  5. Effect of Immersion Time and Cooling Mode on the Electrochemical Behavior of Hot-Dip Galvanized Steel in Sulfuric Acid Medium

    NASA Astrophysics Data System (ADS)

    Lekbir, Choukri; Dahoun, Nessrine; Guetitech, Asma; Hacid, Abdenour; Ziouche, Aicha; Ouaad, Kamel; Djadoun, Amar

    2017-04-01

    In this work, we investigated the influence of galvanizing immersion time and cooling modes environments on the electrochemical corrosion behavior of hot-dip galvanized steel, in 1 M sulfuric acid electrolyte at room temperature using potentiodynamic polarization technique. In addition, the evolution of thickness, structure and microstructure of zinc coatings for different immersion times and two cooling modes (air and water) is characterized, respectively, by using of Elcometer scan probe, x-ray diffraction and metallography analysis. The analysis of the behavior of steel and galvanized steel, vis-a-vis corrosion, by means of corrosion characteristic parameters as anodic (β a) and cathodic (β c) Tafel slopes, corrosion potential (E corr), corrosion current density (i corr), corrosion rate (CR) and polarization resistance (R p), reveals that the galvanized steel has anticorrosion properties much better than that of steel. More the immersion time increases, more the zinc coatings thickness increases, and more these properties become better. The comparison between the two cooling modes shows that the coatings of zinc produced by hot-dip galvanization and air-cooled provides a much better protection to steel against corrosion than those cooled by quenching in water which exhibit a brittle corrosive behavior due to the presence of cracks.

  6. Direct observation of pitting corrosion evolutions on carbon steel surfaces at the nano-to-micro- scales.

    PubMed

    Guo, Peng; La Plante, Erika Callagon; Wang, Bu; Chen, Xin; Balonis, Magdalena; Bauchy, Mathieu; Sant, Gaurav

    2018-05-22

    The Cl - -induced corrosion of metals and alloys is of relevance to a wide range of engineered materials, structures, and systems. Because of the challenges in studying pitting corrosion in a quantitative and statistically significant manner, its kinetics remain poorly understood. Herein, by direct, nano- to micro-scale observations using vertical scanning interferometry (VSI), we examine the temporal evolution of pitting corrosion on AISI 1045 carbon steel over large surface areas in Cl - -free, and Cl - -enriched solutions. Special focus is paid to examine the nucleation and growth of pits, and the associated formation of roughened regions on steel surfaces. By statistical analysis of hundreds of individual pits, three stages of pitting corrosion, namely, induction, propagation, and saturation, are quantitatively distinguished. By quantifying the kinetics of these processes, we contextualize our current understanding of electrochemical corrosion within a framework that considers spatial dynamics and morphology evolutions. In the presence of Cl - ions, corrosion is highly accelerated due to multiple autocatalytic factors including destabilization of protective surface oxide films and preservation of aggressive microenvironments within the pits, both of which promote continued pit nucleation and growth. These findings offer new insights into predicting and modeling steel corrosion processes in mid-pH aqueous environments.

  7. Corrosion Behavior of Alloys in Molten Fluoride Salts

    NASA Astrophysics Data System (ADS)

    Zheng, Guiqiu

    The molten fluoride salt-cooled high-temperature nuclear reactor (FHR) has been proposed as a candidate Generation IV nuclear reactor. This reactor combines the latest nuclear technology with the use of molten fluoride salt as coolant to significantly enhance safety and efficiency. However, an important challenge in FHR development is the corrosion of structural materials in high-temperature molten fluoride salt. The structural alloys' degradation, particularly in terms of chromium depletion, and the molten salt chemistry are key factors that impact the lifetime of nuclear reactors and the development of future FHR designs. In support of materials development for the FHR, the nickel base alloy of Hastelloy N and iron-chromium base alloy 316 stainless steel are being actively considered as critical structural alloys. Enriched 27LiF-BeF2 (named as FLiBe) is a promising coolant for the FHR because of its neutronic properties and heat transfer characteristics while operating at atmospheric pressure. In this study, the corrosion behavior of Ni-5Cr and Ni-20Cr binary model alloys, and Hastelloy N and 316 stainless steel in molten FLiBe with and without graphite were investigated through various microstructural analyses. Based on the understanding of the corrosion behavior and data of above four alloys in molten FLiBe, a long-term corrosion prediction model has been developed that is applicable specifically for these four materials in FLiBe at 700ºC. The model uses Cr concentration profile C(x, t) as a function of corrosion distance in the materials and duration fundamentally derived from the Fick's diffusion laws. This model was validated with reasonable accuracy for the four alloys by fitting the calculated profiles with experimental data and can be applied to evaluate corrosion attack depth over the long-term. The critical constant of the overall diffusion coefficient (Deff) in this model can be quickly calculated from the experimental measurement of alloys' weight loss due to Cr depletion. While many factors affect the Deff such as the grain boundary type, grain size, precipitates, initial Cr concentration as well as temperature, this model provides a methodology for estimating corrosion attack depth of alloys in molten fluoride salts obviating the need for difficult and challenging experiment.

  8. Corrosion resistance of cast irons and titanium alloys as reference engineered metal barriers for use in basalt geologic storage: a literature assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charlot, L.A.; Westerman, R.E.

    A survey and assessment of the literature on the corrosion resistance of cast irons and low-alloy titanium are presented. Selected engineering properties of cast iron and titanium are briefly described; however, the corrosion resistance of cast iron and titanium in aqueous solutions or in soils and their use in a basalt repository are emphasized. In evaluating the potential use of cast iron and titanium as structural barrier materials for long-lived nuclear waste packages, it is assumed that titanium has the general corrosion resistance to be used in relatively thin cross sections whereas the cost and availability of cast iron allowsmore » its use even in very thick cross sections. Based on this assumption, the survey showed that: The uniform corrosion of low-alloy titanium in a basalt environment is expected to be extremely low. A linear extrapolation of general corrosion rates with an added corrosion allowance suggests that a 3.2- to 6.4-mm-thick wall may have a life of 1000 yr. Pitting and crevice corrosion are not likely corrosion modes in basalt ground waters. It is also unlikely that stress corrosion cracking (SCC) will occur in the commercially pure (CP) titanium alloy or in palladiumor molybdenum-alloyed titanium materials. Low-alloy cast irons may be used as barrier metals if the environment surrounding the metal keeps the alloy in the passive range. The solubility of the corrosion product and the semipermeable nature of the oxide film allow significant uniform corrosion over long time periods. A linear extrapolation of high-temperature corrosion rates on carbon steels and corrosion rates of cast irons in soils gives an estimated metal penetration of 51 to 64 mm after 1000 yr. A corrosion allowance of 3 to 5 times that suggests that an acceptable cast iron wall may be from 178 to 305 mm thick. Although they cannot be fully assessed, pitting and crevice corrosion should not affect cast iron due to the ground-water chemistry of basalt.« less

  9. Corrosion initiation and propagation behavior of corrosion resistant concrete reinforcing materials

    NASA Astrophysics Data System (ADS)

    Hurley, Michael F.

    The life of a concrete structure exposed to deicing compounds or seawater is often limited by chloride induced corrosion of the steel reinforcement. In this study, the key material attributes that affect the corrosion initiation and propagation periods were studied. These included material composition, surface condition, ageing time, propagation behavior during active corrosion, morphology of attack, and type of corrosion products generated by each rebar material. The threshold chloride concentrations for solid 316LN stainless steel, 316L stainless steel clad over carbon steel, 2101 LDX, MMFX-2, and carbon steel rebar were investigated using electrochemical techniques in saturated calcium hydroxide solutions. Surface preparation, test method, duration of period exposed to a passivating condition prior to introduction of chloride, and presence of cladding defects all affected the threshold chloride concentration obtained. A model was implemented to predict the extension of time until corrosion initiation would be expected. 8 years was the predicted time to corrosion initiation for carbon steel. However, model results confirmed that use of 316LN may increase the time until onset of corrosion to 100 years or more. To assess the potential benefits afforded by new corrosion resistant rebar alloys from a corrosion resistance standpoint the corrosion propagation behavior and other factors that might affect the risk of corrosion-induced concrete cracking must also be considered. Radial pit growth was found to be ohmically controlled but repassivation occurred more readily at high potentials in the case of 316LN and 2101 stainless steels. The discovery of ohmically controlled propagation enabled transformation of propagation rates from simulated concrete pore solution to less conductive concrete by accounting for resistance changes in the surrounding medium. The corrosion propagation behavior as well as the morphology of attack directly affects the propensity for concrete cracking. Experimental results were used in conjunction with an existing model to predict the time until concrete cracking occurs for new rebar materials. The results suggest that corrosion resistant materials offer a significant extension to the corrosion propagation stage over carbon steel, even in very aggressive conditions because small, localized anodes develop when initiated.

  10. Surface characteristic of chemically converted graphene coated low carbon steel by electro spray coating method for polymer electrolyte membrane fuel cell bipolar plate.

    PubMed

    Kim, Jungsoo; Kim, Yang Do; Nam, Dae Geun

    2013-05-01

    Graphene was coated on low carbon steel (SS400) by electro spray coating method to improve its properties of corrosion resistance and contact resistance. Exfoliated graphite was made of the graphite by chemical treatment (Chemically Converted Graphene, CCG). CCG is distributed using dispersing agent, and low carbon steel was coated with diffuse graphene solution by electro spray coating method. The structure of the CCG was analyzed using XRD and the coating layer of surface was analyzed using SEM. Analysis showed that multi-layered graphite structure was destroyed and it was transformed in to fine layers graphene structure. And the result of SEM analysis on the surface and the cross section, graphene layer was uniformly formed with 3-5 microm thickness on the surface of substrate. Corrosion resistance test was applied in the corrosive solution which is similar to the polymer electrolyte membrane fuel cell (PEMFC) stack inside. And interfacial contact resistance (ICR) test was measured to simulate the internal operating conditions of PEMFC stack. As a result of measuring corrosion resistance and contact resistance, it could be confirmed that low carbon steel coated with CCG was revealed to be more effective in terms of its applicability as PEMFC bipolar plate.

  11. Synthesis and corrosion inhibition application of NATN on mild steel surface in acidic media complemented with DFT studies

    NASA Astrophysics Data System (ADS)

    Al-Baghdadi, Shaimaa B.; Hashim, Fanar G.; Salam, Ahmed Q.; Abed, Talib K.; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Reda, Khalid S.; Ahmed, Wahab K.

    2018-03-01

    The corrosion inhibition effectiveness of thiosemicarbazide compound, namely 3-nitro-5-(2-amino-1,3,4-thiadiazolyl)nitrobenzene (NATN), on mild steel in 1 M hydrochloric acid media has been investigated by weight loss technique. The results exhibit that the corrosion ratio of mild steel was reduced regarding to adding NATN. The corrosion inhibition rate for the NATN was 92.3% at the highest investigated NATN concentration. From the weight loss results it could be concluded that NATN with sulfur, nitrogen and oxygen atoms has clarified best corrosion inhibition achievement comparing to 3,5-dinitrobenzoic acid. Regarding to theoretical studies, DFT was employee to figured geometrical structure and electronic characteristics on NATN. The investigation have been extensive to the HOMO and LUMO analysis to evaluate the energy gap, Ionization potential, Electron Affinity, Global Hardness, Chemical Potential, Electrophilicity, Electronegativity and Polarizability.

  12. Effect of Atmospheric Corrosion on the Mechanical Properties of SAE 1020 Structural Steel.

    PubMed

    Martínez, Carola; Briones, Francisco; Villarroel, María; Vera, Rosa

    2018-04-11

    Resistance to atmospheric corrosion in different environments located in Chile and the corrosion's effect on the mechanical properties of SAE 1020 steel were studied. Atmospheric corrosivity categories at each station under study were determined. These categories were C2, for Laja; C3 and C4, for the Arica and Antarctic stations, respectively; and the most aggressive, C5 and higher at Quintero. These specific environments significantly influenced the mechanical responses of steel exposed for 36 months. Rupture elongation, the modulus of toughness, ultimate tensile strength, and hardness of the material all decreased as a function of environmental atmospheric aggressiveness. Lowered ductility is the result of the increased corrosion rate due to the high deposition of chlorides. This is due to the morphology of material degradation, which consequently occurs as pores, microstrains, and other defects that promote early rupture of the steel.

  13. Modeling local chemistry in PWR steam generator crevices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millett, P.J.

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledgemore » of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.« less

  14. Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel

    NASA Astrophysics Data System (ADS)

    Cubillos, G. I.; Olaya, J. J.; Bethencourt, M.; Cifredo, G.; Blanco, G.

    2013-10-01

    Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel's resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.

  15. Corrosion properties of zirconium-based ceramic coatings for micro-bearing and biomedical applications

    NASA Astrophysics Data System (ADS)

    Walkowicz, J.; Zavaleyev, V.; Dobruchowska, E.; Murzynski, D.; Donkov, N.; Zykova, A.; Safonov, V.; Yakovin, S.

    2016-03-01

    Ceramic oxide ZrO2 and oxynitride ZrON coatings are widely used as protective coatings against diffusion and corrosion. The enhancement of the coatings' mechanical properties, as well as their wear and corrosion resistance, is very important for their tribological performance. In this work, ZrO2 and ZrON coatings were deposited by magnetron sputtering on stainless steel (AISI 316) substrates. The adhesion, hardness and elastic properties were evaluated by standard methods. The surface structure of the deposited coatings was observed by electron scanning microscopy (SEM) and atomic force microscopy (AFM). The composition of the coatings was analyzed by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). The corrosion resistance properties were evaluated using the potentiodynamic method. The results show that the corrosion parameters are significantly increased in the cases of both oxynitride and oxide coatings in comparison with the stainless steel (AISI 316) substrates.

  16. Two new supramolecular metal diphosphonates: Synthesis, characterization, crystal structure and inhibiting effects on metallic corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholivand, Khodayar, E-mail: gholi_kh@modares.ac.ir; Yaghoubi, Rouhollah; Farrokhi, Alireza

    Two new divalent metal(II) aminodiphosphonates with layered structure, namely, Cu(H{sub 3}L{sup 1}){sub 2}·2H{sub 2}O (1), [H4L{sup 1}=methyl-N(CH{sub 2}PO{sub 3}H{sub 2}){sub 2}] and Cd{sub 2}(H{sub 2}L{sup 2}){sub 4}(2), [H{sub 4}L{sup 2}=n-propyl-N(CH{sub 2}PO{sub 3}H{sub 2}){sub 2}] were synthesized and characterized. The Cu(II) ions in complex 1 are octahedrally coordinated by four oxygen atoms from two chelating ligands and two phosphonate oxygen atoms from two neighboring Cu(H{sub 3}L{sup 1}){sub 2} units. The Cu(H{sub 3}L{sup 1}){sub 2} units are interconnected by bridging phosphonate groups, forming a 2-D metal phosphonate layer. The structure of complex 2 contains two unique Cd(II) ions octahedrally-coordinated by six phosphonatemore » oxygen atoms from four H{sub 2}L{sup 2} diphosphonate anions. Corrosion inhibition performances of 1 and 2 were also compared with each other in order to study the effect of combinations of externally added Cd/H{sub 4}L{sup 2} and Cu/H{sub 4}L{sup 1} (1:1 ratio) on corrosion rates of carbon steel. It was found that at pH 3.0, Cd/H{sub 4}L{sup 2} or Cu/H{sub 4}L{sup 1} combinations do not have noticeable corrosion inhibition efficiency for carbon steel. In contrast, at pH 7.0, higher corrosion inhibition efficiency was achieved for Cd/H{sub 4}L{sup 2}. Physical characterizations such as scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) were applied to study the corrosion specimens and film material. - Graphical abstract: Two new metal phosphonates have been synthesized and characterized by single-crystal X-ray diffraction and thermogravimetric analysis. corrosion inhibition performances 1 and 2 are also compared.« less

  17. Effect of Post-spray Shot Peening Treatment on the Corrosion Behavior of NiCr-Mo Coating by Plasma Spraying of the Shell-Core-Structured Powders

    NASA Astrophysics Data System (ADS)

    Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2018-01-01

    Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.

  18. Microencapsulation of Self Healing Agents for Corrosion Control Coatings

    NASA Technical Reports Server (NTRS)

    Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.

  19. Structure and Corrosion Behavior of Arc-Sprayed Zn-Al Coatings on Ductile Iron Substrate

    NASA Astrophysics Data System (ADS)

    Bonabi, Salar Fatoureh; Ashrafizadeh, Fakhreddin; Sanati, Alireza; Nahvi, Saied Mehran

    2018-02-01

    In this research, four coatings including pure zinc, pure aluminum, a double-layered coating of zinc and aluminum, and a coating produced by simultaneous deposition of zinc and aluminum were deposited on a cast iron substrate using electric arc-spraying technique. The coatings were characterized by XRD, SEM and EDS map and spot analyses. Adhesion strength of the coatings was evaluated by three-point bending tests, where double-layered coating indicated the lowest bending angle among the specimens, with detection of cracks at the coating-substrate interface. Coatings produced by simultaneous deposition of zinc and aluminum possessed a relatively uniform distribution of both metals. In order to evaluate the corrosion behavior of the coatings, cyclic polarization and salt spray tests were conducted. Accordingly, pure aluminum coating showed susceptibility to pitting corrosion and other coatings underwent uniform corrosion. For double-layered coating, SEM micrographs revealed zinc corrosion products as flaky particles in the pores formed by pitting on the surface, an indication of penetration of corrosion products from the lower layer (zinc) to the top layer (aluminum). All coatings experienced higher negative corrosion potentials than the iron substrate, indicative of their sacrificial behavior.

  20. Non-destructive testing (NDT) of a segmental concrete bridge scheduled for demolition, with a focus on condition assessment and corrosion detection of internal tendons.

    DOT National Transportation Integrated Search

    2017-05-01

    The service life and durability of prestressed concrete in bridges are vulnerable to corrosion damages due to many factors such as construction, material, and environment. To ensure public safety, it is important to inspect these structures and to de...

Top