Sample records for sts launch environment

  1. Space Shuttle Pad Exposure Period Meteorological Parameters STS-1 Through STS-107

    NASA Technical Reports Server (NTRS)

    Overbey, B. G.; Roberts, B. C.

    2005-01-01

    During the 113 missions of the Space Transportation System (STS) to date, the Space Shuttle fleet has been exposed to the elements on the launch pad for approx. 4,195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This Technical Memorandum (TM) provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Parameters included in this TM are temperature, relative humidity, wind speed, wind direction, sea level pressure, and precipitation. Extremes for each of these parameters for each mission are also summarized. Sources for the data include meteorological towers and hourly surface observations. Data are provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.

  2. STS-35 Commander Brand listens to trainer during water egress exercises

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Commander Vance D. Brand listens to training personnel during launch emergency egress procedures conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Brand, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), is seated on the pool side while reviewing instructions.

  3. Liquid rocket booster integration study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the executive summary of the five volume series.

  4. Liquid rocket booster integration study. Volume 5, part 1: Appendices

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the appendices of the five volume series.

  5. Liquid Rocket Booster Integration Study. Volume 2: Study synopsis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the study summary of the five volume series.

  6. STS-55 MS3 Harris in life raft during emergency egress exercises at JSC WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Using a small single person life raft, STS-55 Mission Specialist 3 (MS3) Bernard A. Harris, Jr floats in the pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Harris, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), prepares to send a flare during this launch emergency egress (bailout) training session. STS-55 with the Spacelab Deutsche 2 (SL-D2) payload will fly aboard Columbia, Orbiter Vehicle (OV) 102, in 1993.

  7. Liquid rocket booster integration study. Volume 3: Study products. Part 2: Sections 8-19

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part two of the study products section of the five volume series.

  8. Liquid rocket booster integration study. Volume 3, part 1: Study products

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part one of the study products section of the five volume series.

  9. STS-42 Payload Specialist Bondar in single person life raft at JSC's WETF

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, Payload Specialist Roberta L. Bondar, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress exercises held in the Weightless Environment Training Facility (WETF) Bldg 29 pool. Bondar holds the Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB). The STS-42 crewmembers rehearsed procedures for launch emergency egress and a water landing. Bondar is representing Canada during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.

  10. STS-46 ESA MS Nicollier in life raft during water egress training at JSC WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a one-person life raft during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.

  11. STS-46 MS Chang-Diaz floats in life raft during water egress training at JSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Franklin R. Chang-Diaz, wearing launch and entry suit (LES) and launch and entry helmet (LEH), relies on a one-person life raft to get him to 'safety' during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.

  12. A Summary of Meteorological Parameters During Space Shuttle Pad Exposure Periods

    NASA Technical Reports Server (NTRS)

    Overbey, Glenn; Roberts, Barry C.

    2005-01-01

    During the 113 missions of the Space Transportation System (STS), the Space Shuffle fleet has been exposed to the elements on the launch pad for a total of 4195 days. The Natural Environments Branch at Marshall Space Flight Center archives atmospheric environments to which the Space Shuttle vehicles are exposed. This paper provides a summary of the historical record of the meteorological conditions encountered by the Space Shuttle fleet during the pad exposure period. Sources of the surface parameters, including temperature, dew point temperature, relative humidity, wind speed, wind direction, sea level pressure and precipitation are presented. Data is provided from the first launch of the STS in 1981 through the launch of STS-107 in 2003.

  13. STS-55 MS2 Precourt in life raft during egress exercises at JSC's WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Mission Specialist 2 (MS2) Charles J. Precourt drains his single person life raft (using hose) as he floats in the pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Precourt, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), is participating in launch emergency egress (bailout) training. A SCUBA-equipped diver monitors Precourt's actions. STS-55 with the Spacelab Deutsche 2 (SL-D2) payload will fly aboard Columbia, Orbiter Vehicle (OV) 102, in 1993.

  14. STS-35 MS Hoffman watches water egress exercises at JSC's WETF Bldg 29 pool

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Mission Specialist (MS) Jeffrey A. Hoffman, wearing launch and entry suit (LES), comments on launch emergency egress procedures from the poolside of JSC's Weightless Environment Training Facility (WETF) Bldg 29. Hoffman awaits his turn to participate in the training activities.

  15. STS-93 MS Coleman takes in view from 195-foot level of launch pad

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the 195-foot level of Launch Pad 39B, STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) takes in the view. The STS-93 crew are at KSC to participate in a Terminal Countdown Demonstration Test, which familiarizes them with the mission, provides training in emergency exit from the orbiter and launch pad, and includes a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  16. STS-46 Pilot Allen and Payload Specialist Malerba in life rafts at JSC's WEFT

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Pilot Andrew M. Allen (foreground) and Italian Payload Specialist Franco Malerba, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), float in one-person life rafts during a launch emergency egress (bailout) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. A SCUBA-equipped diver assists in the training activity.

  17. STS-55 MS3 Harris in life raft during emergency egress exercises at JSC WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Using a small single person life raft, STS-55 Mission Specialist 3 (MS3) Bernard A. Harris, Jr floats in the pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Harris, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), opens a sealed canister containing a flare. Harris, along with other crewmembers, is participating in a launch emergency egress (bailout) training session. STS-55 with the Spacelab Deutsche 2 (SL-D2) payload will fly aboard Columbia, Orbiter Vehicle (OV) 102, in 1993.

  18. STS-55 MS2 Precourt in life raft during egress exercises at JSC's WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Using a small single person life raft, STS-55 Mission Specialist 2 (MS2) Charles J. Precourt floats in the pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Precourt, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), operates the Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLC) as SCUBA-equipped diver looks on. Precourt, along with other crewmembers, practiced launch emergency egress (bailout). STS-55 with the Spacelab Deutsche 2 (SL-D2) payload will fly aboard Columbia, Orbiter Vehicle (OV) 102, in 1993.

  19. STS-35 Commander Brand is suspended over JSC WETF pool during egress exercise

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Commander Vance D. Brand is suspended via his parachute harness above the pool in JSC's Weightless Environment Training Facility (WETF) Bldg 29 during launch emergency egress exercises. Divers in the pool hold Brand's feet to steady him. In the background and on the poolside is Pilot Guy S. Gardner. Both Brand and Gardner are wearing launch and entry suits (LESs) and launch and entry helmets (LEHs).

  20. STS-53 Launch and Landing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Footage of various stages of the STS-53 Discovery launch is shown, including shots of the crew at breakfast, getting suited up, and departing to board the Orbiter. The launch is seen from many vantage points, as is the landing. On-orbit activities show the crew performing several medical experiments, such as taking a picture of the retina and measuring the pressure on the eyeball. One crewmember demonstrates how to use the rowing machine in an antigravity environment.

  1. Simulation of Shuttle launch G forces and acoustic loads using the NASA Ames Research Center 20G centrifuge

    NASA Technical Reports Server (NTRS)

    Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.

    1994-01-01

    The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.

  2. Atmospheric environment for Space Shuttle (STS-3) launch

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Brown, S. C.; Batts, G. W.

    1982-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-3 launch time on March 22, 1982, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prlaunch Jimsphere measured vertical wind profiles and the wind and thermodynamic parameters measured at the surface and aloft in the SRB descent/impact ocean area are presented. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-3 vehicle ascent and SRB descent were constructed. The STS-3 ascent meteorological data tape is constructed.

  3. STS-42 Commander Grabe in single person life raft during JSC egress exercises

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, Commander Ronald J. Grabe, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during launch emergency egress (bailout) exercises conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The Space Shuttle Search and Rescue Satellite Aided Tracking (SARSAT) portable locating beacon (PLB) antenna is extended through the life raft cover. SCUBA-equipped divers monitor egress exercises.

  4. STS-47 Commander Gibson and MS Apt in JSC WETF for bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Commander Robert L. Gibson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), listens to instructions before participating in launch emergency egress (bailout) exercises in JSC's Weightless Environment Trainining Facility (WETF) Bldg 29. Mission Specialist (MS) Jerome Apt, wearing LES and LES parachute, is seen in the background. This exercise is conducted in the WETF pool to simulate a water landing.

  5. STS-55 MS3 Harris listens to technician during JSC WETF egress exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, listens to technician Karen Porter's instructions prior to launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Harris and other crewmembers practiced water bailout procedures.

  6. Testing of Laser Components Subjected to Exposure in Space

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2010-01-01

    Materials International Space Station Experiment (MISSE) missions provide an opportunity for developing space qualifiable materials by studying the response of novel materials when subjected to the synergistic effects of the harsh space environment. MISSE 6 was transported to the international Space Station (ISS) via STS 123 on March 11. 2008. The astronauts successfully attached the passive experiment containers (PEC) to external handrails of the international space station (ISS) and opened up for long term exposure. After more than a year of exposure attached to the station's exterior, the PEC with several hundred material samples returned to the earth with the STS-128 space shuttle crew that was launched on shuttle Discovery from the Kennedy Space Center, Fla., on Aug. 28. Meanwhile, MISSE 7 launch is scheduled to be launched on STS 129 mission. MISSE-7 was launched on Space Shuttle mission STS-129 on Atlantis was launched on November 16, 2009. This paper will briefly review recent efforts on MISSE 6 and MISSE 7 missions at NASA Langley Research Center (LaRC).

  7. STS-52 Commander Wetherbee, in LES/LEH, during JSC WETF bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, fully outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), prepares for emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used to simulate a water landing.

  8. STS-39 MS Hieb floats in single person life raft in JSC's WETF Bldg 29 pool

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-39 Mission Specialist (MS) Richard J. Hieb, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft after landing in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. During emergency egress bailout procedures, Hieb practiced procedures necessary for a water landing. Divers monitor Hieb's activity.

  9. STS-42 crewmembers in LESs prepare for egress exercises in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, crewmembers, (left to right) Commander Ronald J. Grabe, Payload Specialist Roberta L. Bondar, and Pilot Stephen S. Oswald, participate in launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The crewmembers are outfitted in their launch and entry suits (LESs) and launch and entry helmets (LEHs) as they prepare for the simulated water landing using the WETF's 25 ft deep pool as the ocean.

  10. STS-65 Commander Cabana floats in life raft during WETF bailout exercise

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Commander Robert D. Cabana, suited in his launch and entry suit (LES) and launch and entry helmet, deploys a single person life raft during launch emergency egress (bailout) training at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Cabana will be joined by five other NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  11. STS-46 crewmembers during water egress training in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier (left) and backup Italian Payload Specialist Umberto Guidoni, seated at the pool's side, relax before participating in a launch emergency egress (bailout) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The two participants are wearing launch and entry suits (LESs) during the pretest briefing.

  12. STS-47 backup payload specialists participate in JSC WETF bailout exercise

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, backup payload specialists (left to right) Chiaki Naito-Mukai, Takao Doi, and Stan Koszelak, wearing launch and entry suits, sit on the poolside in JSC's Weightless Environment Training Facility (WETF) Bldg 29. These alternates are waiting to participate launch emergency egress (bailout) exercises. The training is conducted in the WETF pool to simulate a water landing.

  13. STS-46 Payload Specialist Malerba in JSC's WETF pool during egress training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Italian Payload Specialist Franco Malerba, wearing launch and entry suit (LES) and clamshell helmet, laughes as he floats in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Malerba's flotation vest (life jacket) and two SCUBA-equipped divers keep him afloat after he was dropped into the pool during a launch emergency egress simulation.

  14. STS-52 Commander Wetherbee floats in life raft during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The bailout exercises utilize the WETF's 25-foot deep pool as the ocean for this water landing simulation.

  15. Atmospheric environment for Space Shuttle (STS-11) launch

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1984-01-01

    Atmospheric conditions observed near Space Shuttle STS-11 launch time on February 3, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles are reported. Wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area are presented. Meteorological tapes, which consist of wind and thermodynamic parameters vesus altitude, for STS-11 vehicle ascent and SRB descent/impact were constructed.

  16. STS-65 Pilot Halsell floats in a life raft during WETF bailout exercises

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Pilot James D. Halsell, Jr, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft while he is assisted by a SCUBA-equipped diver during an emergency egress bailout rehearsal. The STS-65 crew used the 25-feet deep pool in Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29 to simulate a water landing during the launch emergency egress (bailout) exercise. Halsell will join five other NASA astronauts and a Japanese payload specialist for the International Microgravity Laboratory 2 (IML-2) mission aboard Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  17. STS-56 MS1 Foale, in LES/LEH, floats during bailout exercises in JSC WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist 1 (MS1) Michael Foale, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Foale's body is covered with the life raft tarp. His head and the space shuttle search and rescue satellite aided tracking (SARSAT) antenna protrude above the tarp. This simulation prepares the astronauts for the event of an emergency egress and subsequent water landing during launch.

  18. STS-93 MS Tognini tries on his helmet in the O&C Bldg.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During launch and entry suit check in the Operations and Checkout Bldg, STS-93 Mission Specialist Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), tries on his helmet. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include equipment check and a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew participating are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  19. STS-35 MS Hoffman drains LES after water egress exercises in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Mission Specialist (MS) Jeffrey A. Hoffman drains his launch and entry suit (LES) by propping himself upside down against a chair. Training personnel (left) and Pilot Guy S. Gardner watch as Hoffman's head stand forces water from his suit. Crewmembers were participating in launch emergency egress procedures in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Various WETF mockups are visible in the background.

  20. STS-52 backup Payload Specialist Tryggvason during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, backup Payload Specialist Bjarni V. Tryggvason, wearing launch and entry suit (LES), checks his launch and entry helmet (LEH) fitting prior to participating in emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25-ft deep pool will serve as the ocean during this water landing simulation. Tryggvason represents the Canadian Space Agency (CSA).

  1. STS-55 Payload Specialist Schlegel with technicians during JSC WETF bailout

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Payload Specialist 2 Hans Schlegel, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, discusses procedures with technicians Karen Porter and Todd Bailey prior to launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Schlegel and other crewmembers practiced water bailout procedures. Schlegel represents the DLR for the upcoming Spacelab Deutsche 2 (SL-D2) mission.

  2. STS-55 backup Payload Specialist Thiele with technician in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, backup German Payload Specialist Dr. P. Gerhard Thiele, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, seated on the poolside waits his turn to participate in launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Thiele and other crewmembers practiced water bailout procedures. Thiele represents the DLR for the upcoming Spacelab Deutsche 2 (SL-D2) mission.

  3. A field study of solid rocket exhaust impacts on the near-field environment

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Keller, Vernon W.

    1990-01-01

    Large solid rocket motors release large quantities of hydrogen chloride and aluminum oxide exhaust during launch and testing. Measurements and analysis of the interaction of this material with the deluge water spray and other environmental factors in the near field (within 1 km of the launch or test site) are summarized. Measurements of mixed solid and liquid deposition (typically 2 normal HCl) following space shuttle launches and 6.4 percent scale model tests are described. Hydrogen chloride gas concentrations measured in the hours after the launch of STS 41D and STS 51A are reported. Concentrations of 9 ppm, which are above the 5 ppm exposure limits for workers, were detected an hour after STS 51A. A simplified model which explains the primary features of the gas concentration profiles is included.

  4. STS-26 MS Lounge floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) John M. Lounge, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Lounge pulls cord on life raft and enlists the aid of a SCUBA-equipped diver. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle. Lounge is wearing gear like that each STS-26 crewmember and subsequent crews will carry onboard during launch.

  5. STS-50 Payload Specialist Trinh during JSC WETF Bailout Exercises in Bldg 29

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-50 Columbia, Orbiter Vehicle (OV) 102, United States Microgravity Laboratory 1 (USML-1) Payload Specialist Eugene H. Trinh, wearing launch and entry suit (LES), listens to instructions prior to participating in launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25-foot deep pool will simulate the ocean as crewmembers familiarize themselves with procedures associated with a bailout and subsequent water landing.

  6. STS-37 MS Jerome Apt during water egress exercise in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Jerome Apt, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is suspended above pool via a parachute harness during water egress exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Apt simulates emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.

  7. STS-52 Mission Specialist Veach, in LES/LEH, during JSC WETF bailout exercise

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Charles Lacy Veach, wearing launch and entry suit (LES) and launch and entry helmet (LEH), smiles as he observes emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Veach waits his turn to be dropped into the WETF's 25-ft deep pool which will simulate the ocean during of his water landing.

  8. STS-37 MS Linda M. Godwin during water egress exercise in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Linda M. Godwin, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is suspended above pool via a parachute harness during water egress exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Godwin simulates emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.

  9. STS-52 Mission Specialist Veach in life raft during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Charles Lacy Veach, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. SCUBA-equipped divers look on. The bailout exercises utilize the WETF's 25-foot deep pool as the ocean for this water landing simulation.

  10. KSC-07pd3599

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- Doug Lyons, STS-122 launch director, participates in a news briefing following the conclusion of a Mission Management Team, or MMT, meeting. The meeting followed the morning's launch scrub of the space shuttle Atlantis STS-122 mission caused by problems experienced with the external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  11. Summary of miscellaneous hazard environments for hypothetical Space Shuttle and Titan IV launch abort accidents

    NASA Technical Reports Server (NTRS)

    Eck, M.; Mukunda, M.

    1989-01-01

    The various analyses described here were aimed at obtaining a more comprehensive understanding and definition of the environments in the vicinity of the Radioisotope Thermal Generator (RTG) during certain Space Transportation System (STS) and Titan IV launch abort accidents. Addressed here are a number of issues covering explosion environments and General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) responses to those environments.

  12. Atmospheric environment for Space Shuttle (STS-41D) launch

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Hill, C. K.; Jasper, G.; Batts, G. W.

    1984-01-01

    Selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida are summarized. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given as well as wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact were constructed. The STS-41D ascent meteorological data tape was constructed by Marshall Space Flight Center's Atmospheric Science Division to provide an internally consistent data set for use in post flight performance assessments.

  13. Earth observations taken during the STS-103 mission

    NASA Image and Video Library

    1999-12-26

    STS103-728-035 (19-27 December 1999) --- One of the astronauts aboard the Earth-orbiting Space Shuttle Discovery used a handheld 70mm camera to photograph this scene of the Kennedy Space Center, Florida and its environs. The old launch pads dot the "V" shaped land (Cape Canaveral) along the coast. On Merritt Island the Shuttle launch pads and runway are visible. The large city surrounded by circular lakes to the west of Cape Canaveral is Orlando.

  14. STS-52 MS Jemison, in LES/LEH, during JSC WETF bailout exercise

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Tamara E. Jernigan, wearing launch and entry suit (LES) and launch and entry helmet (LEH), listens to a briefing about water landings during an emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Jernigan waits her turn to be dropped into the WETF's 25-ft deep pool which will simulate the ocean during of her water landing.

  15. STS-37 Mission Specialist (MS) Godwin floating in life raft in JSC WETF pool

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Linda M. Godwin, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a one-person life raft during a training session in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. She was simulating steps involved in emergency egress from a Space Shuttle. The WETF's 25-ft deep pool served as a simulated ocean into which a parachute landing might be made.

  16. STS-50 Payload Specialist DeLucas floats in life raft during JSC WETF bailout

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-50 Columbia, Orbiter Vehicle (OV) 102, United States Microgravity Laboratory 1 (USML-1) Payload Specialist Lawrence J. DeLucas, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises, the WETF's 25-foot deep pool was used to simulate the ocean. Crewmembers were dropped from their parachute harnesses into the pool, inflated their life rafts, and used survival equipment to protect themselves from the elements and signal for help.

  17. STS-78 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The flight crew of the STS-78 mission, Cmdr. Terence T. Henricks, Pilot Kevin R. Kregel, Payload Cmdr. Susan J. Helms, Mission Specialists Richard M. Linnehan, Charles E. Brady, Jr., and Payload Specialists Jean-Jacques Favier, Ph.D. and Robert B. Thirsk, M.D., back from their seventeen day mission, offer a video and still photo presentation of their journey. Included in the presentation are pre-launch, launch, and post-launch activities; experiments performed in the Spacelab; and re-entry; and the landing at KSC. Each of the STS-78 crew members discuss particular aspects of the mission including the 22 LMS life science and microgravity experiments. The experiments address human physiology, metallic alloys and protein crystal growth, and the study of the behavior of fluids and materials processing in the near-weightless environment of space.

  18. STS-52 Pilot Baker, in LES/LEH, during JSC WETF bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Pilot Michael A. Baker smiles from under his launch and entry helmet (LEH) and from behind the communications carrier assembly (CCA) microphones as he adjusts his parachute harness. Baker, fully outfitted in a launch and entry suit (LES), prepares for emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used in this simulation of a water landing.

  19. STS-37 Mission Specialist (MS) Jerome Apt floats in raft in JSC's WETF pool

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Jerome Apt, wearing launch and entry suit (LES) and launch and entry helmet (LEH), propels his one-person life raft by splashing water during emergency egress exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Apt, floating in the life raft, was simulating the steps involved in emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.

  20. Atmospheric environment for Space Shuttle (STS-5) launch

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1983-01-01

    This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-5 launch time on November 11, 1982, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. Also presented are the wind and thermodynamic parameters measured at the surface and aloft in he SRB descent/impact ocean area. Final meteorological tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-5 vehicle ascent and SRB descent have been constructed. The STS-5 ascent meteorological data tape has been constructed by Marshall Space Flight Center in response to Shuttle task agreement No. 936-53-22-368 with Johnson Space Center.

  1. STS-102 MPLM Leonardo is moved to the payload canister for transfer to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, an overhead crane begins lifting the Multi-Purpose Logistics Module Leonardo. The MPLM is being moved to the payload canister for transfer to Launch Pad 39B and installation in Space Shuttle Discovery. The Leonardo, one of Italy'''s major contributions to the International Space Station program, is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.

  2. STS-102 MPLM Leonardo is moved to the payload canister for transfer to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, workers attach an overhead crane to the Multi-Purpose Logistics Module Leonardo. The MPLM is being moved to the payload canister for transfer to Launch Pad 39B and installation in Space Shuttle Discovery. The Leonardo, one of Italy'''s major contributions to the International Space Station program, is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.

  3. Gaseous oxygen cooling of the Space Transportation System launch pad environment

    NASA Astrophysics Data System (ADS)

    Ahmad, R. A.; Mathias, E. C.; Boraas, S.

    1991-12-01

    The external tank (ET) of the Space Transportation System (STS) contains liquid oxygen and hydrogen as oxidizer and fuel for the Space Shuttle main engines (SSMEs). During and subsequent to the loading of the ET prior to the launch of an STS, the cryogens boil in the near atmospheric conditions existing within their respective tanks. The gaseous oxygen (GOX) formed as a result of this boiling is vented overboard, mixes with air, and may, under certain wind conditions, be transported toward the STS to cause a cooling of its environment. This paper describes a two-dimensional computational fliud dynamics analysis to determine the magnitude of this cooling effect by determining the temperature depression and stratification caused by this GOX/air mixture in the region around the east redesigned solid rocket motor (RSRM), the ET, and below the STS assembly. For a severe wintertime launch temperature of -4.44 C, the maximum local temperature depression of the mixture was calculated to be 32.22 C in the inboard region next to the ET surface, and a surface temperature on the east RSRM was found to be as much as 13.89 C colder than ambient. The computed average surface temperatures on either side of the RSRM were in excellent agreement with a temperature determined from a correlation of prelaunch temperature measurements.

  4. KSC-98pc521

    NASA Image and Video Library

    1998-04-21

    Processing activities for STS-91 continue in KSC's Orbiter Processing Facility Bay 2. Two Get Away Special (GAS) canisters are shown after their installation into Discovery's payload bay. At left is G-090, containing three educational experiments sponsored by Utah State University, and at right is G-743, an experiment sponsored by Broward Community College in Florida to test DNA exposed to cosmic radiation in a microgravity environment. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT

  5. STS-65 Mission Specialist Chiao in LES at pre-test WETF bailout briefing

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), listens to a briefing on procedures that would become necessary in the event of an emergency egress situation from the Space Shuttle. The astronaut was in the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29 for the launch emergency egress training (bailout) exercise. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  6. STS-45 Payload Specialist Frimout prepares for water egress training at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, Payload Specialist Dirk D. Frimout, a European Space Agency (ESA) crewmember from Belgium, smiles while taking a break from water egress exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Frimout along with other STS-45 is participating a launch emergency egress simulation during which the crewmembers will be dropped from their parachute harnesses into the pool.

  7. Testing of NASA LaRC Materials under MISSE 6 and MISSE 7 Missions

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2009-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. MISSE missions provide an opportunity for developing space qualifiable materials. Two lasers and a few optical components from NASA Langley Research Center (LaRC) were included in the MISSE 6 mission for long term exposure. MISSE 6 items were characterized and packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. MISSE 6 was transported to the international Space Station (ISS) via STS 123 on March 11. 2008. The astronauts successfully attached the PEC to external handrails of the ISS and opened the PEC for long term exposure to the space environment. The current plan is to bring the MISSE 6 PEC back to the Earth via STS 128 mission scheduled for launch in August 2009. Currently, preparations for launching the MISSE 7 mission are progressing. Laser and lidar components assembled on a flight-worthy platform are included from NASA LaRC. MISSE 7 launch is scheduled to be launched on STS 129 mission. This paper will briefly review recent efforts on MISSE 6 and MISSE 7 missions at NASA Langley Research Center (LaRC).

  8. Syncom 4 deploy, LDEF retrieval highlight 10-day Columbia flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-32 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objectives of STS-32 are the deployment of a Navy synchronous communications satellite (Syncom 4) and the retrieval of the Long Duration Exposure Facility (LDEF) launched from the Challenger in April 1984. Secondary STS-32 payloads include a protein crystal growth experiment, the Fluids Experiment Apparatus (FEA) for the investigation of microgravity materials processing, the Mesoscale Lighting Experiment, the Latitude-Longitude Locator Experiment, the Americal Flight Echocardiograph, and an experiment to investigate neurospora circadian rhythms in a microgravity environment.

  9. STS-93 crew members take part in an emergency egress exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an emergency egress exercise at the launch pad, Pilot Jeffrey S. Ashby (left) and Commander Eileen M. Collins (right) practice getting into the slidewire basket that is part of an emergency escape route for persons in the Shuttle and on the Rotating Service Structure. The STS-93 crew has been taking part in Terminal Countdown Demonstration Test (TCDT) activities that include the emergency exit training and a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Mission Specialists Catherine G. Coleman (Ph.D.), Steven A. Hawley (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  10. STS-93 crew members take part in an emergency egress exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During an emergency egress exercise at the launch pad, Pilot Jeffrey S. Ashby (left) and Commander Eileen M. Collins (right) hurry down the yellow-painted path to a slidewire basket. The baskets are part of an emergency escape route for persons in the Shuttle and on the Rotating Service Structure. The STS-93 crew members have been taking part in Terminal Countdown Demonstration Test (TCDT) activities that include the emergency exit training and a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Mission Specialists Catherine G. Coleman (Ph.D.), Steven A. Hawley (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  11. Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle.

    DTIC Science & Technology

    Space Shuttle. The microcapsules in space (MIS) equipment will replace two space shuttle middeck storage lockers. Design changes have been...Mission STS-53 pending final safety certification by NASA. STS-53 is scheduled for launch on October 15, 1992. RA 2; Microencapsulation ; Controlled-release; Space Shuttle; Antibiotics; Drug development.

  12. Summary Report of Mission Acceleration Measurements for MSL-1: STS-83, Launched April 14, 1997; STS-94, Launched July 1, 1997

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Tschen, Peter; McPherson, Kevin; Nati, Maurizio; Reckart, Timothy A.

    1998-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-83 and STS-94 flights of the Microgravity Science Laboratory (MSL-1) mission using four different accelerometer systems: the Orbital Acceleration Research Experiment (OARE), the Space Acceleration Measurement System (SAMS), the Microgravity Measurement Assembly (MMA), and the Quasi-Steady Acceleration Measurement (QSAM) system. All four accelerometer systems provided investigators with acceleration measurements downlinked in near-real-time. Data from each system was recorded for post-mission analysis. The OARE measured the Shuttle's acceleration with high resolution in the quasi-steady frequency regime below about 0.1 Hz. The SAMS provided investigators with higher frequency acceleration measurements up to 25 Hz. The QSAM and MMA systems provided investigators with quasi-steady and higher frequency (up to 100 Hz) acceleration measurements, respectively. The microgravity environment related to various Orbiter maneuvers, crew activities, and experiment operations as measured by the OARE and MMA is presented and interpreted in section 8 of this report.

  13. Microphysical properties of the Shuttle exhaust cloud

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Anderson, B. J.

    1983-01-01

    A data base describing the properties of the exhaust cloud produced by the launch of the STS has been developed based on data from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Aircraft observations were performed during the STS-3 launch with a NOAA WP-3D Orion hurricane research aircraft which contained instrumentation for cloud condensation nucleus and ice nucleus counting, Aitken particle counting, and pH determination. Ground observations were conducted at 50 different sites, as well as in the direct exhaust from the solid rocket booster flame trench at all three launches. The data is analyzed in order to determine any possible adverse impacts of the exhaust products on human health and/or the environment. Analyses of the exhaust cloud measurements indicate that in the case of the ground cloud where plenty of large water drops are present and considerable scavenging and fallout of aerosol takes place, possible adverse impacts of the remaining aerosols (CCN and IN) on natural precipitation processes which may occur in the launch area hours after the launch are remote. However, it is determined that under certain atmospheric conditions there could be short term adverse effects on visibility.

  14. Summary Report of mission acceleration measurements for STS-66. Launched November 3, 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    Experiments flown in the middeck of Atlantis during the STS-66 mission were supported by the Space Acceleration Measurement System (SAMS). In particular, the three triaxial SAMS sensor heads collected data in support of protein crystal growth experiments. Data collected during STS-66 are reviewed in this report. The STS-66 SAMS data represent the microgravity environment in the 0.01 Hz to 10 Hz range. Variations in the environment related to differing levels of crew activity are discussed in the report. A comparison is made among times when the crew was quiet during a public affairs conference, working quietly, and exercising. These levels of activity are also compared to levels recorded by a SAMS unit in the Spacelab on Columbia during the STS-65 mission.

  15. STS-93 Commander Collins takes part in emergency egress training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Commander Eileen M. Collins climbs into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. Collins is the first woman to serve as mission commander. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  16. Vibro-Acoustic Analysis of NASA's Space Shuttle Launch Pad 39A Flame Trench Wall

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi N.

    2009-01-01

    A vital element to NASA's manned space flight launch operations is the Kennedy Space Center Launch Complex 39's launch pads A and B. Originally designed and constructed In the 1960s for the Saturn V rockets used for the Apollo missions, these pads were modified above grade to support Space Shuttle missions. But below grade, each of the pad's original walls (including a 42 feet deep, 58 feet wide, and 450 feet long tunnel designed to deflect flames and exhaust gases, the flame trench) remained unchanged. On May 31, 2008 during the launch of STS-124, over 3500 of the. 22000 interlocking refractory bricks that lined east wall of the flame trench, protecting the pad structure were liberated from pad 39A. The STS-124 launch anomaly spawned an agency-wide initiative to determine the failure root cause, to assess the impact of debris on vehicle and ground support equipment safety, and to prescribe corrective action. The investigation encompassed radar imaging, infrared video review, debris transport mechanism analysis using computational fluid dynamics, destructive testing, and non-destructive evaluation, including vibroacoustic analysis, in order to validate the corrective action. The primary focus of this paper is on the analytic approach, including static, modal, and vibro-acoustic analysis, required to certify the corrective action, and ensure Integrity and operational reliability for future launches. Due to the absence of instrumentation (including pressure transducers, acoustic pressure sensors, and accelerometers) in the flame trench, defining an accurate acoustic signature of the launch environment during shuttle main engine/solid rocket booster Ignition and vehicle ascent posed a significant challenge. Details of the analysis, including the derivation of launch environments, the finite element approach taken, and analysistest/ launch data correlation are discussed. Data obtained from the recent launch of STS-126 from Pad 39A was instrumental in validating the design analysis philosophies outlined in this paper.

  17. KSC00pp0299

    NASA Image and Video Library

    2000-03-01

    KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined

  18. KSC-00pp0298

    NASA Image and Video Library

    2000-03-01

    KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined

  19. KSC-00pp0299

    NASA Image and Video Library

    2000-03-01

    KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined

  20. KSC00pp0298

    NASA Image and Video Library

    2000-03-01

    KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. Expected to be a major feature in future research, Destiny will provide facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined

  1. STS-93 crew members take part in an emergency egress exercise

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On Launch Pad 39B, (right) STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) gives a thumbs up to Mission Specialist Michel Tognini of France (left) to pull the lever that will release the slidewire basket they are in. Also in the basket is Mission Specialist Steven A. Hawley (Ph.D.). The baskets are part of an emergency escape route for persons in the Shuttle and on the Rotating Service Structure. During the exercise, which is part of Terminal Countdown Demonstration Test (TCDT) activities, the basket is wired in place. The TCDT also includes a launch-day dress rehearsal culminating with a simulated main engine cut-off. Other crew members participating are Commander Eileen M. Collins and Pilot Jeffrey S. Ashby. Tognini represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  2. STS-52 MS Veach and Payload Specialist MacLean during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Charles Lacy Veach (left) and Canadian Payload Specialist Steven G. MacLean listen to a briefing during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Veach and MacLean are fully outfitted in launch and entry suits (LESs), launch and entry helmets (LEHs), parachutes, and water survival equipment including a life jacket. The WETF's 25-ft deep pool will simulate the ocean as the crewmember's prepare for the event of a water landing. MacLean represents the Canadian Space Agency (CSA).

  3. STS-65 Payload Specialist Mukai dons LES and parachute with technicians' help

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Payload Specialist Chiaki Mukai adjusts the neck dam of her launch and entry suit (LES) as Boeing's Sharon Daley and Grady Due help her with the parachute pack prior to a launch emergency egress training (bailout) exercise at the Johnson Space Center's (JSC's) Weightless Environment Training Facility (WETF) Bldg 29. Mukai will join six NASA astronauts later this year for two weeks aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, in support of the second International Microgravity Laboratory 2 (IML-2) mission. Mukai represents Japan's National Space Development Agency (NASDA).

  4. STS-102 MPLM Leonardo is transferred from the PCR into Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - In the Payload Changeout Room, Launch Pad 39B, the Multi-Purpose Logistics Module Leonardo is ready to be transferred into Space Shuttle Discovery'''s payload bay. Discovery is scheduled to launch March 8 at 6:42 a.m. EST on mission STS-102, the eighth construction flight to the International Space Station. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny.

  5. STS-26 Pilot Covey floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  6. STS-102 MPLM Leonardo moves into PCR

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the payload changeout room on the Rotating Service Structure, Launch Pad 39B, workers move the Multi-Purpose Logistics Module Leonardo out of the payload canister. From the PCR Leonardo then will be transferred into Space Shuttle Discovery'''s payload bay. One of Italy'''s major contributions to the International Space Station program, Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.

  7. STS-93 Mission Specialist Coleman takes part in emergency egress training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) smiles for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  8. STS-93 Mission Specialist Tognini takes part in emergency egress training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), pauses for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  9. STS-93 Mission Specialist Coleman drives an M-113 during training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under the watchful eyes of Capt. George Hoggard (left), trainer with the KSC Fire Department, STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) drives the M-113 armored personnel carrier during emergency egress training at the launch pad. Behind her is Pilot Jeffrey S. Ashby and Commander Eileen M. Collins. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew participating are Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  10. STS-93 Pilot Ashby takes part in emergency egress training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    STS-93 Pilot Jeffrey S. Ashby pauses for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  11. STS-102 MS Voss, Helms and Usachev suited up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - STS-102 Mission Specialists James Voss, Susan Helms and Yury Usachev hold up a sign after donning their launch and entry suits. In Cyrillic and English, the sign recognizes International Women'''s Day, March 8. Voss and Helms are making their fifth Shuttle flights and Usachev is making his second. All three are the Expedition Two crew who are replacing Expedition One on the International Space Station. STS-102 is the eighth construction flight to the Station, carrying the Multi-Purpose Logistics Module Leonardo. . The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. Discovery is set to launch March 8 at 6:42 a.m. EST. The 12-day mission is expected to end with a landing at KSC on March 20.

  12. The STS-93 crew practice emergency egress training from Launch Pad 39B.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside an M-113 armored personnel carrier at the launch pad, the STS-93 crew take part in emergency egress training under the watchful eyes of Capt. George Hoggard (center), trainer with the KSC Fire Department. From left are Mission Specialist Michel Tognini of France, Commander Eileen M. Collins, Hoggard, Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, and Mission Specialist Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). The training is part of Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  13. STS-26 Pilot Covey floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing newly designed launch and entry suit (LES), floats in single-occupant life raft during simulations in the JSC Weightless Environment Training Facility Bldg 29 pool. During the simulation of escape and rescue operations, the crew escape system (CES) pole mode of egress from the Space Shuttle was utilized.

  14. New Mission Control Center Briefing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Live footage shows panelists, Chief Center Systems Division John Muratore, and Acting Chief, Control Center Systems Division, Linda Uljon, giving an overview of the new Mission Control Center. Muratore and Uljon talk about the changes and modernization of the new Center. The panelists mention all the new capabilities of the new Center. They emphasize the Distributed real time command and control environment, the reduction in operation costs, and even the change from coaxial cables to fiber optic cables. Uljon also tells us that the new Control Center will experience its first mission after the launch of STS-70 and its first complete mission (both launching and landing) during STS-71.

  15. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-059 (16 Nov. 2009) --- In Firing Room 4 of NASA Kennedy Space Center's Launch Control Center, Kennedy Director Bob Cabana congratulates the launch team upon the successful launch of Space Shuttle Atlantis. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  16. KSC-99pp0729

    NASA Image and Video Library

    1999-06-22

    STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) smiles for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B

  17. KSC-99pp0726

    NASA Image and Video Library

    1999-06-22

    STS-93 Commander Eileen M. Collins climbs into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. Collins is the first woman to serve as mission commander. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B

  18. KSC-99pp0731

    NASA Image and Video Library

    1999-06-22

    STS-93 Mission Specialist Steven A. Hawley (Ph.D.) smiles for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Catherine G. Coleman (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B

  19. KSC-99pp0728

    NASA Image and Video Library

    1999-06-22

    STS-93 Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), pauses for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B

  20. KSC-99pp0727

    NASA Image and Video Library

    1999-06-22

    STS-93 Pilot Jeffrey S. Ashby pauses for the photographer before climbing into an M-113 armored personnel carrier at the launch pad to take part in emergency egress training. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew are Commander Eileen M. Collins and Mission Specialists Steven A. Hawley (Ph.D.), Catherine G. Coleman (Ph.D.), and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B

  1. STS-93 M.S. Tognini and Commander Collins take part in emergency egress training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    During emergency egress training inside an M-113 armored personnel carrier at the launch pad, Mission Specialist Michel Tognini of France and Commander Eileen M. Collins share a light moment. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Also at KSC are Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), and Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  2. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-058 (16 Nov. 2009) --- In Firing Room 4 of NASA Kennedy Space Center's Launch Control Center, shuttle launch director Michael Leinbach (standing), assistant launch director Peter Nickolenko and Atlantis flow director Angie Brewer (both seated), applaud the launch team upon the successful launch of Space Shuttle Atlantis. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  3. STS-102 MPLM Leonardo moves into PCR

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Inside the payload changeout room on the Rotating Service Structure, Launch Pad 39B, the Multi-Purpose Logistics Module Leonardo is ready for the payload ground-handling mechanism (PGHM) to remove it from the canister. A worker beneath the MPLM checks equipment. Leonardo then will be transferred into Space Shuttle Discovery'''s payload bay. One of Italy'''s major contributions to the International Space Station program, Leonardo is a reusable logistics carrier. It is the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo is the primary payload on mission STS-102 and will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:45 a.m. EST.

  4. STS natural environment analysis

    NASA Technical Reports Server (NTRS)

    Batts, W.

    1984-01-01

    Climatological data sets to determine the risk of Shuttle landing delay for selected alternate landing sites were evaluated. Construction of a Shuttle ascent data tape using L-O atmospheric data for a specified Shuttle launch are reported.

  5. Atmospheric environment for Space Shuttle (STS-51D)

    NASA Technical Reports Server (NTRS)

    Jasper, G. L.; Johnson, D. L.; Hill, C. K.; Batts, G. W.

    1985-01-01

    A summary of selected atmospheric conditions observed near the space shuttle STS-51D launch time on April 12, 1985, at Kennedy Space Center Florida is presented. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of prelaunch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51D vehicle ascent is constructed. The STS-51D ascent atmospheric data tape is compiled by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post-flight performance assessments.

  6. STS-93 Mission Specialist Tognini drives an M-113 during training

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Under the watchful eyes of KSC Fire Department trainer Capt. George Hoggard (seated on the front), STS-93 Mission Specialist Michel Tognini of France (right) drives the M-113 armored personnel carrier during emergency egress training at the launch pad. Tognini represents the Centre National d'Etudes Spatiales (CNES). At the far left is Roland Nedelkovich, with the Vehicle Integration Test Team, JSC. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew participating are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Catherine G. Coleman (Ph.D.) Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B.

  7. STS-26 Pilot Covey floats in life raft during JSC WETF exercises

    NASA Image and Video Library

    1988-07-08

    S88-42425 (20 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  8. STS-45 backup Payload Specialist Chappell during water egress training at JSC

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-45 Atlantis, Orbiter Vehicle (OV) 104, backup Payload Specialist Charles R. Chappell, wearing launch and entry suit (LES), is suspended via his parachute harness above JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Chappell will be dropped into the pool during the exercise which simulates a parachute landing into a body of water. SCUBA-equipped divers swimming in the pool will assist during the training.

  9. STS-32 Commander Brandenstein in LES prepares for WETF water egress training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 Commander Daniel C. Brandenstein, wearing a launch and entry suit (LES), orange parachute harness and life vest, is briefed on emergency egress procedures in JSC's Weightless Environment Training Facility Bldg 29. The crew used the WETF's nearby 25 ft deep pool for the exercises, which familiarize assigned space shuttle crewmembers with procedures associated with the post-Challenger pole system of emergency egress.

  10. STS-26 Pilot Covey floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey has paddle-like gloves on his hands. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  11. External tank chill effect on the space transportation system launch pad environment

    NASA Technical Reports Server (NTRS)

    Ahmad, R. A.; Boraas, S.

    1991-01-01

    The external tank (ET) of the STS contains liquid oxygen and liquid hydrogen as oxidizer and fuel for the SSMEs. Once the cryogen have been loaded into the ET, the temperature of the air surrounding the STS is chilled by the cold outer surface of the ET. This paper describes a two-dimensional flow and thermal analysis to determine this chill effect on the STS launch pad environment subsequent to the ET loading operation. The analysis was done assuming winter conditions and a northwest wind direction. An existing CFD code, PHOENICS '81, was used in the study. The results are presented as local and average values of the heat transfer coefficient, the Nusselt number, and the surface temperature around the redesigned solid rocket motors (RSRMs) and the ET. The temperature depression caused by the ET chilling of the air in the vicinity of the RSRMs was calculated to be 3 F below the ambient. This compares with the observed 1-2 F RSRM surface temperature depression based upon measurements made prior to the winter flight of STS-29. Since the surface temperature would be expected to be slightly higher than the local air temperature, the predicted temperature depression of the air appears to be substantiated.

  12. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-056 (16 Nov. 2009) --- Members of the space shuttle launch team watch Space Shuttle Atlantis' launch through the newly installed windows of Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  13. The Role of CFD Simulation in Rocket Propulsion Support Activities

    NASA Technical Reports Server (NTRS)

    West, Jeff

    2011-01-01

    Outline of the presentation: CFD at NASA/MSFC (1) Flight Projects are the Customer -- No Science Experiments (2) Customer Support (3) Guiding Philosophy and Resource Allocation (4) Where is CFD at NASA/MSFC? Examples of the expanding Role of CFD at NASA/MSFC (1) Liquid Rocket Engine Applications : Evolution from Symmetric and Steady to 3D Unsteady (2)Launch Pad Debris Transport-> Launch Pad Induced Environments (a) STS and Launch Pad Geometry-steady (b) Moving Body Shuttle Launch Simulations (c) IOP and Acoustics Simulations (3)General Purpose CFD Applications (4) Turbomachinery Applications

  14. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-055 (16 Nov. 2009) --- The space shuttle launch team monitors the progress of Space Shuttle Atlantis' countdown from consoles on the main floor of Firing Room 4 in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  15. KSC-2011-1045

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, STS-133 NASA Test Director Stephen Payne sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  16. STS-102 MS Usachev suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - STS-102 Mission Specialist Yury Usachev, a Russian cosmonaut, shows his support of International Women'''s Day, March 8, with a sign in both Cyrillic and English. This will be Usachev'''s second Shuttle flight. Usachev is also part of a crew, known as Expedition One, who will be replacing Expedition One on the International Space Station. STS-102 is the eighth construction flight to the Space Station, carrying the Multi-Purpose Logistics Module Leonardo. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. Discovery is set to launch March 8 at 6:42 a.m. EST. The 12-day mission is expected to end with a landing at KSC on March 20.

  17. KSC00pp0292

    NASA Image and Video Library

    2000-03-01

    KENNEDY SPACE CENTER, FLA. -- The Space Station Processing Facility is filled with hardware, components for the International Space Station. Lined up (left to right) are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined.

  18. KSC-00pp0292

    NASA Image and Video Library

    2000-03-01

    KENNEDY SPACE CENTER, FLA. -- The Space Station Processing Facility is filled with hardware, components for the International Space Station. Lined up (left to right) are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined.

  19. KSC-2010-4937

    NASA Image and Video Library

    2010-09-30

    CAPE CANAVERAL, Fla. -- High overhead in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer (AMS) hovers over a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller

  20. Work continues on Leonardo, the Multi-Purpose Logistics Module, in the Space Station Processing Faci

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers in the Space Station Processing Facility work on Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The MPLM, a reusable logistics carrier, will be the primary delivery system used to resupply and return International Space Station cargo requiring a pressurized environment. Leonardo is the first of three MPLM carriers for the International Space Station. It is scheduled to be launched on Space Shuttle Mission STS-102, targeted for June 2000. Leonardo shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM), targeted for launch in September 1999, and Destiny, the U.S. Lab module, targeted for mission STS-98 in late April 2000.

  1. KSC-2010-4938

    NASA Image and Video Library

    2010-09-30

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead hoist lowers the Alpha Magnetic Spectrometer (AMS) onto a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller

  2. KSC-2010-4939

    NASA Image and Video Library

    2010-09-30

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians guide the Alpha Magnetic Spectrometer (AMS) onto a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller

  3. STS-2 second space shuttle mission: Shuttle to carry scientific payload on second flight

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The STS-2 flight seeks to (1) fly the vehicle with a heavier payload than the first flight; (2) test Columbia's ability to hold steady attitude for Earth-viewing payloads; (3) measure the range of payload environment during launch and entry; (4) further test the payload bay doors and space radiators; and (5) operate the Canadian-built remote manipulator arm. The seven experiments which comprise the OSTA-1 payload are described as well as experiments designed to assess shuttle orbiter performance during launch, boost, orbit, atmospheric entry and landing. The menu for the seven-day flight and crew biographies, are included with mission profiles and overviews of ground support operations.

  4. Characterization of Pump-Induced Acoustics in Space Launch System Main Propulsion System Liquid Hydrogen Feedline Using Airflow Test Data

    NASA Technical Reports Server (NTRS)

    Eberhart, C. J.; Snellgrove, L. M.; Zoladz, T. F.

    2015-01-01

    High intensity acoustic edgetones located upstream of the RS-25 Low Pressure Fuel Turbo Pump (LPFTP) were previously observed during Space Launch System (STS) airflow testing of a model Main Propulsion System (MPS) liquid hydrogen (LH2) feedline mated to a modified LPFTP. MPS hardware has been adapted to mitigate the problematic edgetones as part of the Space Launch System (SLS) program. A follow-on airflow test campaign has subjected the adapted hardware to tests mimicking STS-era airflow conditions, and this manuscript describes acoustic environment identification and characterization born from the latest test results. Fluid dynamics responsible for driving discrete excitations were well reproduced using legacy hardware. The modified design was found insensitive to high intensity edgetone-like discretes over the bandwidth of interest to SLS MPS unsteady environments. Rather, the natural acoustics of the test article were observed to respond in a narrowband-random/mixed discrete manner to broadband noise thought generated by the flow field. The intensity of these responses were several orders of magnitude reduced from those driven by edgetones.

  5. STS-52 Pilot Baker, in LES, dons parachute during JSC WETF bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Pilot Michael A. Baker is assisted with a training version of his Shuttle partial-pressure launch and entry suit (LES). A technician adjusts his parachute harness prior to the emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used in this simulation of a water landing.

  6. STS-39 MS Hieb prepares for emergency egress exercises in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-39 Mission Specialist (MS) Richard J. Hieb, wearing launch and entry suit (LES), parachute pack, and communications carrier assembly (CCA), listens to instructions prior to emergency egress bailout exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25 ft deep pool will simulate the ocean. Crewmembers will practice procedures necessary in the event of an emergency onboard the Space Shuttle requiring a water landing.

  7. STS-26 Pilot Covey floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Covey pulls and fastens life raft protective cover over himself. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  8. KSC-00pp0297

    NASA Image and Video Library

    2000-03-01

    KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. The U.S. Laboratory module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined

  9. KSC00pp0297

    NASA Image and Video Library

    2000-03-01

    KENNEDY SPACE CENTER, FLA. -- The floor of the Space Station Processing Facility is filled with racks and hardware for testing the various components of the International Space Station (ISS). The large module in the center of the floor (top) is the U.S. Lab, Destiny. The U.S. Laboratory module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. It is scheduled to be launched on mission STS-98 (no date determined yet for launch). At top left are the Multi-Purpose Logistics Modules Raffaello and Leonardo and the Pressurized Mating Adapter-3 (PMA-3). Italy's major contributions to the ISS program, Raffaello and Leonardo are reusable logistics carriers to resupply and return Station cargo requiring a pressurized environment. They are slated as payloads on missions STS-102 and STS-100, respectively. Dates have not yet been determined for the two missions. The PMA-3, once launched, will be mated to Node 1, a connecting passageway to the living and working areas of the Space Station. The primary purpose of PMA-3 is to serve as a Shuttle docking port through which crew members and equipment will transfer to the Space Station during later assembly missions. PMA-3 is scheduled as payload on mission STS-92, whose date for launch is not yet determined

  10. KSC-99pp0730

    NASA Image and Video Library

    1999-06-22

    Under the watchful eyes of Capt. George Hoggard (left), trainer with the KSC Fire Department, STS-93 Mission Specialist Catherine G. Coleman (Ph.D.) drives the M-113 armored personnel carrier during emergency egress training at the launch pad. Behind her is Pilot Jeffrey S. Ashby and Commander Eileen M. Collins. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew participating are Mission Specialists Steven A. Hawley (Ph.D.) and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a mission commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B

  11. NASA Administrator, U.S. Secretary of State watch STS-88 launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    At the Banana Creek Viewing Site, NASA Administrator Daniel Goldin (left), U.S. Secretary of State Madeleine Albright (center) and astronaut Michael Lopez-Alegria watch the launch of STS-88 from Launch Pad 39A at 3:35:34 a.m. EST. STS-88 is the first U.S. mission dedicated to the assembly of the International Space Station (ISS). Lopez-Alegria is part of the STS-92 crew that is assigned to the fourth ISS assembly flight scheduled for launch on Oct. 28, 1999, aboard Discovery.

  12. KSC-2011-1046

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Assistant Launch Orbiter Test Conductor Mark Taffet sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-1042

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Shuttle Launch Director Mike Leinbach sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-1041

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, STS-133 Assistant Launch Director Pete Nickolenko sits at his console in Firing Room 4 along with other launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  15. KSC-2011-1047

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Launch Orbiter Test Conductor John Kracsun sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  16. STS-88 Mission Specialist Currie suits up for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-88 Mission Specialist Nancy J. Currie dons her orange launch and entry suit in the Operations and Checkout Building. STS-88 will be Currie's third spaceflight. She and the five other STS-88 crew members will depart shortly for Launch Pad 39A where the Space Shuttle Endeavour is poised for liftoff on the first U.S. mission dedicated to the assembly of the International Space Station.

  17. KSC-99pp0723

    NASA Image and Video Library

    1999-06-22

    The STS-93 crew pose in front of an M-113, an armored personnel carrier, which they will use for emergency egress training from the launch pad. From left are Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, Mission Specialist Michel Tognini of France, Commander Eileen M. Collins and Mission Specialist Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B

  18. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Hubble Space Telescope Orbiting Systems Test (HOST) is checked out by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar- observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  19. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is moved inside the Space Shuttle Processing Facility. The HOST platform, one of the payloads on the STS-95 mission, is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  20. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - As part of Terminal Countdown Demonstration Test (TCDT) activities, the STS-113 and Expedition 6 crews receive training in emergency exit from the orbiter on Launch Pad 39A. Shown are (from left) Expedition 6 Commander Ken Bowersox; STS-113 Pilot Paul Lockhart; astronaut Donald Pettit; Mission Specialist Michael Lopez-Alegria, Commander James Wetherbee and Mission Specialist John Herrington; and cosmonaut Nikolai Budarin. The TCDT also includes a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  1. STS-93 crew practices emergency egress training from Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-93 crew pose in front of an M-113, an armored personnel carrier, before emergency egress training from the launch pad. From left are Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, Mission Specialist Michel Tognini of France, Commander Eileen M. Collins and Mission Specialist Catherine G. Coleman. Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). TCDT activities familiarize the crew with the mission, provide training in emergency exit from the orbiter and launch pad, and include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS- 93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X- ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe.

  2. Ambitious STS-7 mission to feature first landing at Kennedy

    NASA Technical Reports Server (NTRS)

    Garrett, D.; Hess, M.; White, T.; Taylor, J.

    1982-01-01

    The STS-7 press briefing schedule, NASA select television schedule; launch preparations, countdown and liftoff; major countdown milestones; launch window; STS-7 flight sequence of events, landing timeline; STS-7 flight timeline; landing and post landing operations; flight objectives; Telesat's ANIK-C 2; PALAPA-B; STS-7 experiments; and spacecraft tracking and data network are presented.

  3. STS-130 Launch-on-Need (LON) Assessment

    NASA Technical Reports Server (NTRS)

    Jezierski, Eduardo; Margasahayam, Ravi; McCarter, Dallas; Stampfel, Andrew

    2011-01-01

    A viewgraph presentation covering an STS-130 Launch on Need assessment is shown. The contents include: 1) LON Status GREEN II STS-132 is processing as the LON for STS-131; 2) TSM Bonnet Closure Timing; 3) LC-39A High Pressure Gas Storage Facility (HPGF) Net Damage; and 4) STS-130 Ice Detection Camera FOD concern.

  4. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  5. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla trains on a glove box experiment. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  6. STS 63: Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At a post flight conference, Captain Jim Wetherbee, of STS Flight 63, introduces each of the other members of the STS 63 crew (Eileen Collins, Pilot; Dr. Bernard Harris, Payload Commander; Dr. Michael Foale, Mission Specialist from England; Dr. Janice Voss, Misssion Specialist; and Colonel Vladimir Titor, Misssion Specialist from Russia. A short biography of each member and a brief description of their assignment during this mission is given. A film was shown that included the preflight suit-up, a view of the launch site, the actual night launch, a tour of the Space Shuttle and several of the experiment areas, several views of earth and the MIR Space Station and cosmonauts, the MIR-Space Shuttle rendezvous, the deployment of the Spartan Ultraviolet Telescope, Foale and Harris's EVA and space walk, the retrieval of Spartan, and the night entry home, including the landing. Several spaceborne experiments were introduced: the radiation monitoring experiment, environment monitoring experiment, solid surface combustion experiment, and protein crystal growth and plant growth experiments. This conference ended with still, color pictures, taken by the astronauts during the entire STS 63 flight, being shown.

  7. STS 63: Post flight presentation

    NASA Astrophysics Data System (ADS)

    1995-02-01

    At a post flight conference, Captain Jim Wetherbee, of STS Flight 63, introduces each of the other members of the STS 63 crew (Eileen Collins, Pilot; Dr. Bernard Harris, Payload Commander; Dr. Michael Foale, Mission Specialist from England; Dr. Janice Voss, Mission Specialist; and Colonel Vladimir Titor, Mission Specialist from Russia), gave a short autobiography of each member and a brief description of their assignment during this mission. A film was shown that included the preflight suit-up, a view of the launch site, the actual night launch, a tour of the Space Shuttle and several of the experiment areas, several views of earth and the MIR Space Station and cosmonauts, the MlR-Space Shuttle rendezvous, the deployment of the Spartan Ultraviolet Telescope, Foale and Harris's EVA and space walk, the retrieval of Spartan, and the night entry home, including the landing. Several spaceborne experiments were introduced: the radiation monitoring experiment, environment monitoring experiment, solid surface combustion experiment, and protein crystal growth and plant growth experiments. This conference ended with still, color pictures, taken by the astronauts during the entire STS 63 flight, being shown.

  8. KSC-07pd3516

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- After the mission STS-122 crew's arrival at NASA's Kennedy Space Center, Mission Specialist Hans Schlegel is introduced during a media opportunity on the Shuttle Landing Facility. Schlegel represents the European Space Agency. The crew's arrival signals the imminent launch of space shuttle Atlantis on mission STS-122. The launch countdown begins at 7 p.m. Dec. 3. Launch is scheduled for 4:31 p.m. EST on Dec. 6. Atlantis will carry the Columbus Lab, Europe's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  9. KSC-07pd3511

    NASA Image and Video Library

    2007-12-03

    KENNEDY SPACE CENTER, FLA. -- Center Director Bill Parsons welcomes STS-122 Mission Specialist Rex Walheim after the mission crew's arrival at NASA's Kennedy Space Center. Behind Walheim are Mission Specialists Hans Schlegel and Stanley Love. Schlegel represents the European Space Agency. The crew's arrival signals the imminent launch of space shuttle Atlantis on mission STS-122. The launch countdown begins at 7 p.m. Dec. 3. Launch is scheduled for 4:31 p.m. EST on Dec. 6. Atlantis will carry the Columbus Lab, Europe's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus, a program of ESA, is a multifunctional, pressurized laboratory that will be permanently attached to Node 2 of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  10. KSC-07pd3598

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- LeRoy Cain, the Mission Management Team chairman, participates in a news briefing following the conclusion of a team meeting. The meeting followed the morning's launch scrub caused by problems experienced with the space shuttle Atlantis STS-122 external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd3597

    NASA Image and Video Library

    2007-12-09

    KENNEDY SPACE CENTER, FLA. -- Bill Gerstenmaier, associate administrator for Space Operations, participates in a news briefing following the conclusion of a Mission Management Team, or MMT, meeting. The meeting followed the morning's launch scrub of the space shuttle Atlantis STS-122 mission caused by problems experienced with the external tank's engine cutoff sensor system during tanking for the second launch attempt. An announcement was made during the briefing that the STS-122 launch is postponed to no earlier than Jan. 2, 2008, to give the team time to resolve the system's problems. Atlantis will carry the Columbus Laboratory, the European Space Agency's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Permanently attached to the Harmony node of the space station, the laboratory will carry out experiments in materials science, fluid physics and biosciences, as well as perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  12. The RSS rolls back revealing STS-102 Discovery on Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - With the Rotating Service Structure rolled back, Space Shuttle Discovery is revealed, poised for launch on mission STS-102 at 6:42 a.m. EST March 8. It sits on the Mobile Launcher Platform, which straddles the flame trench below that helps deflect the intense heat of launch. Made of concrete and refractory brick, the trench is 490 feet long, 58 feet wide and 40 feet high. Situated above the external tank is the Gaseous Oxygen Vent Arm with the '''beanie cap,''' a vent hood. On this eighth construction flight to the International Space Station, Discovery carries the Multi-Purpose Logistics Module Leonardo, the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny.

  13. The STS-102 crew has snack before suiting up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The STS-102 crew enjoys a snack before beginning suitup procedures for launch of Space Shuttle Discovery on the eighth construction flight to the International Space Station. From left, seated are Mission Specialists Paul Richards and Andrew Thomas, Pilot James Kelly and Commander James Wetherbee; Mission Specialists Yury Usachev, representing the Russian Aviation and Space Agency, Susan Helms and James Voss. Usachev, Helms and Voss are wearing different shirts because they also are the Expedition Two crew who will be replacing Expedition One on the International Space Station. Discovery is scheduled to launch March 8 at 6:42 a.m. EST, carrying the Multi-Purpose Logistics Module Leonardo. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny.

  14. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialists Yury Usachev (left), Susan Helms (center) and James Voss (right) take time to pose for the camera after emergency escape training on the 195-foot level of the Fixed Service Structure, Launch Pad 39B. They are the Expedition Two crew who will be flying to the International Space Station on mission STS-102 to replace Expedition One. The STS-102 crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  15. STS-52 Payload Specialist MacLean floats in pool during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Payload Specialist Steven G. MacLean, wearing launch and entry suit (LES) and clamshell helmet, is assisted by SCUBA-equipped divers as he floats in pool during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility Bldg 29. Bailout exercises utilize the WETF's 25-foot deep pool as the ocean during this water landing simulation. MacLean represents the Canadian Space Agency (CSA).

  16. Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch

    NASA Astrophysics Data System (ADS)

    Metzger, Philip T.; Lane, John E.; Carilli, Robert A.; Long, Jason M.; Shawn, Kathy L.

    2010-07-01

    A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the object's path relative to the reference point coordinate system was found for every set of synchronized images. This trajectory was then compared to a predicted trajectory while performing regression analysis on the ballistic coefficient and other parameters. This identified, with a high degree of confidence, the object's material density and thus its probable origin within the launch pad environment. Future extensions of this methodology may make it possible to diagnose the underlying causes of debris-releasing events in near-real time, thus improving flight safety.

  17. KSC01pp0308

    NASA Image and Video Library

    2001-02-13

    STS-102 Commander James Wetherbee drives the M-113 armored carrier that the crew could use to exit the pad if an emergency ever occurred prior to launch. The STS-102 crew is at KSC to take part in Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, carrying as payload the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8

  18. Flight motor set 360L009 (STS-36). Volume 1: System overview

    NASA Technical Reports Server (NTRS)

    Garecht, Diane M.

    1990-01-01

    Flight Motor Set 360L009, as part of NASA Space Shuttle Mission STS-36, a Department of Defence mission, was launched after two launch attempts. One launch was scrubbed following the failure of a ground-based Range Safety computer and one was scrubbed due to cloud cover at the return to launch landing site. As with all previous redesigned solid rocket motor launches, overall motor performance was excellent. There were no debris concerns from either motor. All ballistic and mass property parameters that could be assessed, closely matched the predicted values and were well within the required contract item specification levels. All field joint heaters and igniter joint heaters performed without anomalies. Evaluation of the ground environment instrumentation measurements again verified thermal model analysis data and showed agreement with predicted environmental effects. No launch commit criteria violations occurred. Postflight inspection again verified nominal performance of the insulation, phenolics, metal parts, and seals. Postflight evaluation indicated that both nozzles performed as expected during flight. All combustion gas was contained by insulation in the field and case-to-nozzle joints. Recommendations were made concerning improved thermal modeling and measurements. The rationale for these recommendations and complete result details are presented.

  19. KSC-2009-4354

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett

  20. KSC-2009-4352

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett

  1. KSC-2009-4355

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett

  2. KSC-2009-4353

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, the payload canister is lifted up to the Payload Changeout Room in the rotating service structure. Umbilical lines that keep the payload in an environmentally controlled environment are still attached. Inside is the payload for space shuttle Discovery and the STS-128 mission, the Multi-Purpose Logistics Module Leonardo and the Lightweight Multi-Purpose Experiment Support Structure Carrier. Discovery's 13-day flight will deliver a new crew member and 33,000 pounds of equipment to the station. The equipment includes science and storage racks, a freezer to store research samples, a new sleeping compartment and the COLBERT treadmill. Launch of Discovery on its STS-128 mission is targeted for August 25. Photo credit: NASA/Kim Shiflett

  3. STS-65 Mission Specialist Chiao floats in a single person raft in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Having just deployed a small, single-person life raft, astronaut and STS-65 Mission Specialist Leroy Chiao, outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), floats in a 25-feet deep pool at the Johnson Space Center (JSC). The astronaut was in the Weightless Environment Training Facility (WETF) Bldg 29 pool for a training exercise, designed to familiarize crewmembers with procedures to call on in the event of an emergency egress situation with the Space Shuttle. Chiao will join five other NASA astronauts and a Japanese payload specialist for the second International Microgravity Laboratory 2 (IML-2) mission aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102, later this year.

  4. KSC-2011-1049

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  5. KSC-2011-1051

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  6. Launch-Off-Need Shuttle Hubble Rescue Mission: Medical Issues

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas; Gillis, David; Ilcus, Linda; Perchonok, Michele; Polk, James; Brandt, Keith; Powers, Edward; Stepaniak, Phillip

    2008-01-01

    The Space Shuttle Hubble repair mission (STS-125) is unique in that a rescue mission (STS-400) has to be ready to launch before STS-125 life support runs out should the vehicle become stranded. The shuttle uses electrical power derived from fuel cells that use cryogenic oxygen and hydrogen (CRYO) to run all subsystems including the Environmental Control System. If the STS-125 crew cannot return to Earth due to failure of a critical subsystem, they must power down all nonessential systems and wait to be rescued by STS-400. This power down will cause the cabin temperature to be 60 F or less and freeze the rest of the vehicle, preventing it from attempting a reentry. After an emergency has been declared, STS-125 must wait at least 7 days to power down since that is the earliest that STS-400 can be launched. Problem The delayed power down of STS-125 causes CYRO to be consumed at high rates and limits the survival time after STS-400 launches to 10 days or less. CRYO will run out sooner every day that the STS-400 launch is delayed (weather at launch, technical issues etc.). To preserve CRYO and lithium hydroxide (LiOH - carbon dioxide removal) the crew will perform no exercise to reduce their metabolic rates, yet each deconditioned STS-125 crewmember must perform an EVA to rescue himself. The cabin may be cold for 10 days, which may cause shivering, increasing the metabolic rate of the STS-125 crew. Solution To preserve LiOH, the STS-125 manifest includes nutrition bars with low carbohydrate content to maintain crew respiratory quotient (RQ) below 0.85 as opposed to the usual shuttle galley food which is rich in carbohydrates and keeps the RQ at approximately 0.95. To keep the crew more comfortable in the cold vehicle warm clothing also has been included. However, with no exercise and limited diet, the deconditioned STS-125 crew returning on STS-400 may not be able to egress the vehicle autonomously requiring a supplemented crash-and-rescue capability.

  7. KSC-99pp0732

    NASA Image and Video Library

    1999-06-22

    Under the watchful eyes of KSC Fire Department trainer Capt. George Hoggard (seated on the front), STS-93 Mission Specialist Michel Tognini of France (right) drives the M-113 armored personnel carrier during emergency egress training at the launch pad. Tognini represents the Centre National d'Etudes Spatiales (CNES). At the far left is Roland Nedelkovich, with the Vehicle Integration Test Team, JSC. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Others in the crew participating are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley (Ph.D.) and Catherine G. Coleman (Ph.D.) Collins is the first woman to serve as a Shuttle commander. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B

  8. KSC-2011-1050

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, United Space Alliance Safety Engineer Dwayne Thompson, left, and NASA Safety Engineer Dallas McCarter rehearse procedures for the liftoff of space shuttle Discovery's final mission with other STS-133 launch team members in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  9. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Image and Video Library

    1990-09-05

    S90-48650 (5 Sept 1990) --- This rare view shows two space shuttles on adjacent pads at Launch Complex 39 with the Rotating Service Structures (RSR) retracted. Space Shuttle Columbia (foreground) is on Pad A where it awaits further processing for a September 6 early morning launch on STS-35. Discovery, its sister spacecraft, is set to begin preparations for an October liftoff on STS-41 when the Ulysses spacecraft is scheudled to be taxied into space. PLEASE NOTE: Following the taking of this photograph, STS-35 was postponed and STS-41's Discovery was successfully launched on Oct. 6.

  10. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist John Herrington (left) and cosmonaut Nikolai Budarin (center) listen to instructions from a trainer on the emergency egress system on Launch Pad 39A. They are other crew members are taking part in Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  11. KSC-2011-1048

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Test Director Robert Holl sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-1052

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, United Space Alliance Guidance and Navigation Engineer Jennifer Guida sits at her console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-1043

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Test Director Charlie Blackwell-Thompson sits at her console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  14. KSC-2011-1054

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Orbiter Project Engineer Todd Campbell sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  15. KSC-2011-1044

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Bart Pannullo, the vehicle processing engineer for space shuttle Discovery, sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  16. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Commander James Wetherbee talks about the mission during a media event at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  17. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Hubble Space Telescope Orbiting Systems Test (HOST)is being raised to a workstand by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  18. STS-131 Launch from Firing Room 4

    NASA Image and Video Library

    2010-04-05

    STS131-S-055 (5 April 2010) --- Assistant Launch Director Mike Leinbach (right) speaks with NASA commentator Mike Curie in Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida prior to the launch of space shuttle Discovery's STS-131 mission. The seven-member STS-131 crew will deliver the multi-purpose logistics module Leonardo, filled with supplies, a new crew sleeping quarters and science racks that will be transferred to the International Space Station's laboratories. The crew also will switch out a gyroscope on the station’s truss structure, install a spare ammonia storage tank and retrieve a Japanese experiment from the station’s exterior. STS-131 is the 33rd shuttle mission to the station and the 131st shuttle mission overall.

  19. STS-32 MS Dunbar wearing LES prepares for WETF water egress training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES), orange parachute harness and life vest, is briefed on emergency egress procedures in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress. The crewmembers will simulate parachuting into water by using the WETF's nearby 25 ft deep pool.

  20. STS-26 MS Hilmers floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Hilmers pulls his legs into the inflating raft while he is assisted by two SCUBA-equipped divers. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  1. STS-26 Commander Hauck floats in life raft during JSC WETF exercises

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. Removing water from his raft, Hauck awaits the assistance of SCUBA-equipped divers (one of whom is partially visible at bottom right). The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.

  2. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla looks over equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  3. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  4. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on a glove box experiment inside the training module. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  5. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark manipulates a piece of equipment. She and other crew members are at SPACEHAB, Port Canaveral, Fla., for Crew Equipment Interface Test (CEIT) activities that enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, David M. Brown and Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  6. STS-102 Launch Activities inside the MCC.

    NASA Image and Video Library

    2001-03-08

    JSC2001-E-06208 (8 March 2001) --- At his console in Houston's Mission Control Center, ascent flight director Wayne Hale monitors Discovery's pre-launch activities several hundred miles away in Florida on STS-102 launch day.

  7. STS-79 Commander William Readdy arrives at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Commander William F. Readdy arrives at KSC's Shuttle Landing Facility with five fellow astronauts, ready to participate in the Terminal Countdown Demonstration Test (TCDT). The TCDT is a dress rehearsal for launch for the flight crew and launch team. Over the next several days, the astronauts will take part in training exercises at the launch pad that will culminate in a simulated launch countdown. The Space Shuttle Atlantis is being prepared for liftoff on STS-79 around September 12.

  8. STS-119 Launch Skyline

    NASA Image and Video Library

    2009-03-15

    STS119-S-025 (15 March 2009) --- The setting sun paints the clouds over NASA's Kennedy Space Center in Florida before the launch of Space Shuttle Discovery on the STS-119 mission. Liftoff is scheduled for 7:43 p.m. (EDT) on March 15, 2009.

  9. STS-113 Mission Specialist John Herrington at pad before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist John Herrington pauses in front of Space Shuttle Endeavour at Launch Pad 39A during a tour of Kennedy Space Center prior to his launch. Upon launch, Herrington will become the first Native American in space. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  10. STS-120 launch

    NASA Image and Video Library

    2007-10-23

    STS120-S-026 (23 Oct. 2007) --- In the firing room of the Kennedy Space Center in Florida, NASA Shuttle Launch Director Michael Leinbach (second right) and launch managers watch the 11:38 a.m. (EDT) launch of Space Shuttle Discovery. Discovery launched Oct. 23 on a 14-day construction mission to the International Space Station. Photo credit: NASA/Bill Ingalls

  11. STS-108 Pilot Kelly suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Pilot Kelly suits up for launch KSC-01PD-1776 KENNEDY SPACE CENTER, Fla. -- STs-108 Pilot Mark E. Kelly is helped with his launch and entry suit in preparation for the second launch attempt of Space Shuttle Endeavour. The first attempt Dec. 4 was scrubbed due to poor weather conditions at KSC. The main goals of the mission are to carry the Expedition 4 crew to the International Space Station as replacement for Expedition 3; carry the Multi-Purpose Logistics Module Raffaello filled with water, equipment and supplies; and install thermal blankets over equipment at the base of the ISS solar wings. STS-108 is the final Shuttle mission of 2001 and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Launch is scheduled for 5:19 p.m. EST Dec. 5, 2001, from Launch Pad 39B.

  12. KSC-99pp0724

    NASA Image and Video Library

    1999-06-22

    Inside an M-113 armored personnel carrier at the launch pad, the STS-93 crew take part in emergency egress training under the watchful eyes of Capt. George Hoggard (center), trainer with the KSC Fire Department. From left are Mission Specialist Michel Tognini of France, Commander Eileen M. Collins, Hoggard, Mission Specialist Steven A. Hawley (Ph.D.), Pilot Jeffrey S. Ashby, and Mission Specialist Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). The training is part of Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B

  13. KSC-99pp0725

    NASA Image and Video Library

    1999-06-22

    During emergency egress training inside an M-113 armored personnel carrier at the launch pad, Mission Specialist Michel Tognini of France and Commander Eileen M. Collins share a light moment. In preparation for their mission, the STS-93 crew are participating in Terminal Countdown Demonstration Test activities that also include a launch-day dress rehearsal culminating with a simulated main engine cut-off. Also at KSC are Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley (Ph.D.), and Catherine G. Coleman (Ph.D.). Collins is the first woman to serve as mission commander. Tognini represents the Centre National d'Etudes Spatiales (CNES). The primary mission of STS-93 is the release of the Chandra X-ray Observatory, which will allow scientists from around the world to obtain unprecedented X-ray images of exotic environments in space to help understand the structure and evolution of the universe. Chandra is expected to provide unique and crucial information on the nature of objects ranging from comets in our solar system to quasars at the edge of the observable universe. Since X-rays are absorbed by the Earth's atmosphere, space-based observatories are necessary to study these phenomena and allow scientists to analyze some of the greatest mysteries of the universe. The targeted launch date for STS-93 is no earlier than July 20 at 12:36 a.m. EDT from Launch Pad 39B

  14. KSC01padig082

    NASA Image and Video Library

    2001-02-13

    The STS-102 crew pose in front of an armored carrier that is used for emergency egress training. In the event of an emergency at the pad prior to launch, the carrier could be used to transport the crew to a nearby bunker or farther. The STS-102 crew is at KSC to take part in Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, carrying as payload the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8

  15. Assessment of mixed fleet potential for space station launch and assembly

    NASA Technical Reports Server (NTRS)

    Deryder, L. J. (Editor)

    1987-01-01

    Reductions in expected STS flight rates of the Space Shuttle since the 51-L accident raise concerns about the ability of available launch capacity to meet both payload-to-orbit and crew rotation requirements for the Space Station. In addition, it is believed that some phases of Station build-up could be expedited using unmanned launch systems with significantly greater lift capacity than the STS. Examined is the potential use of expendable launch vehicles (ELVs), yet-to-be-developed unmanned shuttle-derived vehicles (SDVs), and international launch vehicles for meeting overall launch requirements to meet Space Station program objectives as defined by the 1986 Critical Evaluation Task Force (CETF). The study concludes that use of non-STS transportation can help meet several important program objectives as well as reduce the total number of STS flights. It also finds, however, that reduction of Space Station-dedicated STS flights below 8 per year forces a reduction in Station crew size assuming the CETF 90 day crew stay time baseline and seriously impairs scientific utilization of the Station.

  16. STS-102 Pilot Kelly talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Pilot James Kelly answers a question from the media during an interview session at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  17. STS-102 MS Richards talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialist Paul Richards answers a question from the media during an interview session at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  18. STS-102 MS Thomas talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialist Andrew Thomas answers a question from the media during an interview session at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  19. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - As part of Terminal Countdown Demonstration Test (TCDT) activities, the STS-113 and Expedition 6 crews receive training in emergency exit from the orbiter on Launch Pad 39A. Shown are (from left) Mission Commander James Wetherbee and cosmonaut Nikolai Budarin and astronaut Donald Pettit of the Expedition 6 crew. The TCDT also includes a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  20. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Commander James D. Halsell Jr. waves as he stands with his wife Kathy during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  1. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Mary Ellen Weber and her husband Jerome Elkind during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  2. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Yuri Vladimirovich Usachev, a Russian cosmonaut, and his wife Vera Sergeevna Usacheva during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  3. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 39A, a trainer (right) explains use of the slidewire basket, part of the emergency egress system, to Expedition 6 astronaut Donald Pettit (left) and STS-113 Mission Specialists Michael Lopez-Alegria (center) and John Herrington (right). . They are other crew members are taking part in Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  4. KSC01pd1113

    NASA Image and Video Library

    2001-06-11

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Laurel Blair Salton Clark gets hands-on training on equipment inside the Spacehab module. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband; Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and David M. Brown; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  5. KSC-01pp1114

    NASA Image and Video Library

    2001-06-11

    KENNEDY SPACE CENTER, Fla. -- During Crew Equipment Interface Test (CEIT)activities at Spacehab, Cape Canaveral, Fla., STS-107 Commander Rick Douglas Husband checks out a piece of equipment. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool; Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla, David M. Brown and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel. STS-107 is scheduled for launch May 23, 2002

  6. STS-87 Payload Canister being raised into PCR

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A payload canister containing the primary payloads for the STS-87 mission is lifted into the Payload Changeout Room at Pad 39B at Kennedy Space Center. The STS-87 payload includes the United States Microgravity Payload-4 (USMP-4) and Spartan-201. Spartan- 201 is a small retrievable satellite involved in research to study the interaction between the Sun and its wind of charged particles. USMP-4 is one of a series of missions designed to conduct scientific research aboard the Shuttle in the unique microgravity environment for extended periods of time. In the past, USMP missions have provided invaluable experience in the design of instruments needed for the International Space Station (ISS) and microgravity programs to follow in the 21st century. STS-87 is scheduled for launch Nov. 19.

  7. KSC-2009-5560

    NASA Image and Video Library

    2009-10-19

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, STS-129 Commander Charles O. Hobaugh prepares to drive an M113 armored personnel carrier. The M113 is kept at the foot of the launch pad in case an emergency egress from the vicinity of the pad is needed. The crew members of space shuttle Atlantis' STS-129 mission are at Kennedy for training related to their launch dress rehearsal, the Terminal Countdown Demonstration Test. Launch of Atlantis on its STS-129 mission to the International Space Station is targeted for Nov. 16. For information on the STS-129 mission objectives and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-5557

    NASA Image and Video Library

    2009-10-19

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, STS-129 Mission Specialist Mike Foreman prepares to practice driving an M113 armored personnel carrier. The M113 is kept at the foot of the launch pad in case an emergency egress from the vicinity of the pad is needed. The crew members of space shuttle Atlantis' STS-129 mission are at Kennedy for training related to their launch dress rehearsal, the Terminal Countdown Demonstration Test. Launch of Atlantis on its STS-129 mission to the International Space Station is targeted for Nov. 16. For information on the STS-129 mission objectives and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  9. STS-79 Commander Readdy and Pilot Wilcutt at slidewire

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Clad in their launch/entry suits, STS-79 Commander William F. Readdy (left) and Pilot Terrence W. Wilcutt test the fit of a slidewire basket on the emergency egress system at Launch Pad 39A. The six astronauts assigned to the fourth Shuttle-Mir docking flight are completing Terminal Countdown Demonstration Test (TCDT) activities. A dress rehearsal for launch, the TCDT includes emergency egress training at the launch pad and culminates with a simulated countdown. The Space Shuttle Atlantis is undergoing preparations for liftoff on STS-79 no earlier than Sept. 12.

  10. STS-26 launch and entry crew equipment demonstration at Naval Weapons Center

    NASA Technical Reports Server (NTRS)

    1988-01-01

    STS-26 launch and entry crew equipment demonstration is conducted by JSC Crew and Thermal Systems Division's (CTSD's) employee James O. Schlosser at the Naval Weapons Center, China Lake, California. Schlosser (left) gives a briefing on the new crew equipment baselined for STS-26 as Astronaut James P. Bagian models the new gear. Included in the package are navy blue launch and entry suit (LES), launch and entry helmet (LEH), parachute, life raft, and survival gear. A mission specialist seat is visible in background between the two men.

  11. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-057 (16 Nov. 2009) --- From left, LeRoy Cain, NASA's deputy manager, Space Shuttle Program; Michael Coats, director of NASA's Johnson Space Center; and Bob Cabana, director of NASA's Kennedy Space Center, watch the launch of Space Shuttle Atlantis from the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  12. STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.

  13. STS-113 Mission Specialist John Herrington suits up for second launch attempt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- - STS-113 Mission Specialist John Herrington smiles as he finishes suiting up for a second launch attempt on mission STS-113. The launch on Nov. 22 was scrubbed due to poor weather conditions at the Transoceanic Abort Landing sites. Herrington will be making his first Shuttle flight. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is now scheduled for Nov. 23 at 7:50 p.m. EST.

  14. STS-102 Launch Activities inside the MCC.

    NASA Image and Video Library

    2001-03-08

    JSC2001-E-06203 (8 March 2001) --- At his console in Houston's Mission Control Center, astronaut Scott D. Altman, spacecraft communicator (CAPCOM), monitors weather data possibly affecting Discovery's pre-launch activities several hundred miles away in Florida on STS-102 launch day.

  15. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., the STS-107 crew takes part in Crew Equipment Interface Test (CEIT) activities. From left are Mission Specialist Laurel Blair Salton Clark, Commander Rick Douglas Husband, Payload Specialist Ilan Ramon, of Israel, and Payload Commander Michael P. Anderson. A trainer is at far right. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Pilot William C. McCool and Mission Specialists Kalpana Chawla and David M. Brown. STS-107 is scheduled for launch May 23, 2002

  16. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Payload Specialist Ilan Ramon (foreground), of Israel, and Mission Specialist Kalpana Chawla (background) check out experiments inside the Spacehab module. They and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities that enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. . Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002

  17. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002

  18. STS-105 and Expedition Three crews pose for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose at Launch Pad 39A after training exercises. Pictured (left to right) are STS-105 Mission Specialists Patrick Forrester and Daniel Barry and Commander Scott Horowitz; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; and STS-105 Pilot Rick Sturckow. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  19. STS-102 MS Helms, Usachev and Voss pose on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- After emergency escape training on the 195-foot level of the Fixed Service Structure, Launch Pad 39B, STS-102 Mission Specialists Susan Helms, Yury Usachev and James Voss pose for the camera. The three are also the Expedition Two crew who will be replacing Expedition One on the International Space Station. Behind them, at left, can be seen the tops of the solid rocket booster and external tank on Space Shuttle Discovery. The STS-102 crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the Space Station, with Discovery carrying the Multi-Purpose Logistics Module Leonardo. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  20. SRB environment evaluation and analysis. Volume 1: Redesigned SRB flight heating evaluation

    NASA Technical Reports Server (NTRS)

    Crain, William K.

    1991-01-01

    Following the Space Shuttle STS-51L disaster on January 28, 1986, a considerable redesign effort was launched on the Solid Rocket Booster. This effort culminated in three instrumented flights, STS-26R, 27R, and 29R, beginning in September of 1989. Aeroheating data were obtained on these flights in the form of pressure, heat flux, and gas temperature probe measurements. These data were analyzed from an ascent and reentry heating point of view. The flight data were verified, compared with historic and theoretical results, and scaled to design. Impact of these results on the current design environment set was assessed and recommendations made. This report documents this effort.

  1. STS-108 Endeavour Launch from Pad 39-B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Endeavour Launch from Pad 39-B KSC-01PD-1788 KENNEDY SPACE CENTER, Fla. -- A pool of water near Launch Pad 39B turns crimson from the reflection of flames at the launch of Space Shuttle Endeavour on mission STS-109. The second attempt in two days, liftoff occurred at 5:19:28 p.m. EST (10:19.28 GMT). Endeavour will dock with the International Space Station on Dec. 7. STS-108 is the final Shuttle mission of 2001and the 107th Shuttle flight overall. It is the 12th flight to the Space Station. Landing of the orbiter at KSC's Shuttle Landing Facility is targeted for 1:05 p.m. EST (6:05 p.m. GMT) Dec. 16.

  2. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Marc Garneau (right) answers a question from the media. At left is Mission Specialist Joe Tanner. They and the other crew members are meeting with the media before beginning emergency egress training at Launch Pad 39B. The training is part of Terminal Countdown Demonstration Test activities that include a simulated launch countdown. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  3. STS-82 Mission Specialist Steven L. Smith during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-82 Mission Specialist Steven L. Smith adjusts the glove of his launch and entry space suit during a practice countdown at KSC. Smith and the other six STS-82 crew members are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. STS-82 will be the second Hubble Space Telescope servicing mission. Liftoff is targeted for February 11.

  4. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Three members of the STS-102 crew hurry to the slidewire baskets for emergency egress training. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  5. KSC-2011-1055

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Seen on display overhead are the five orbiter tribute wall hangings. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  6. KSC-08pd0123

    NASA Image and Video Library

    2008-02-04

    KENNEDY SPACE CENTER, FLA. -- At NASA's Kennedy Space Center, STS-122 mission specialists disembark from a shuttle training aircraft. From left are Hans Schlegel, Rex Walheim and Leland Melvin. Schlegel represents the European Space Agency. Schlegel represents the European Space Agency. The crew's arrival signals the imminent launch of space shuttle Atlantis' STS-122 mission, at 2:45 p.m. Feb. 7. This will be the third launch attempt for the mission. Some of the tank's ECO sensors gave failed readings during propellant tanking for launch attempts on Dec. 6 and Dec. 9, subsequently scrubbing further attempts until the cause could be found and repairs made. Atlantis will carry the Columbus module, Europe's largest contribution to the construction of the International Space Station. It will support scientific and technological research in a microgravity environment. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to the Harmony module of the space station to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  7. The Space Transportation System summer environment on launch pad

    NASA Technical Reports Server (NTRS)

    Ahmad, R. A.

    1992-01-01

    This paper describes a 2D flow and thermalanalysis to determine the solar effect on the Space Shuttle launch components subsequent to the external tank (ET) loading operation in extremely hot conditions. An existing CFD code Parabolic Hyperbolic or Elliptical Numerical Integration Code Series was used in the study. The analysis was done for a 2D slice between planes perpendicular to the longitudinal axis of the STS and passing through the lower portions of the Redesigned Solid Rocket Motors (RSRMs), the ET, and the wing of the Orbiter. The results are presented as local and average values of the heat transfer coefficient, and the Nusselt number, and the surface temperature around the RSRMs and the ET. Solar heating effects increased the surface temperatures of the RSRMs by 9-11 F. Higher prelaunch surface temperatures measured on the east and west RSRMs (in the inboard region between the RSRMs and the ET) during 19 most recent launches of the STS are correlated as a function of the ambient temperature.

  8. Measurement of Cosmic Ray and Trapped Proton LET Spectra on the STS-95 HOST Mission

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Barth, J. L.; Stauffer, C. A.

    2017-01-01

    This paper reports on in situ measurements of the Linear-Energy-Transfer (LET) spectra of galactic cosmic rays and their progeny and of trapped Van Allen belt protons as recorded by a Pulse Height Analyzer (PHA) radiation spectrometer which flew on the STS-95 DISCOVERY mission on the Hubble Orbital Systems Test (HOST) cradle. The Shuttle was launched on 29 October 1998 and had a mission duration of 8.5 days during the minimum phase of the solar activity cycle. The orbit of the STS-95 was about 550 km altitude and 28.5deg inclination. A close correlation was seen between radiation environment model predictions and the measurements of the PHA.

  9. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Administrator Charles Bolden, right, participates in the post launch traditional beans and cornbread at the NASA Kennedy Space Center, Launch Control Center (LCC) shortly after the space shuttle Atlantis, STS-135, launched on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  10. KSC-2011-5312

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Launch controllers wave their STS-135 shuttle launch team member flags and cheer in Firing Room 4 of the Launch Control Center following the successful launch of space shuttle Atlantis from NASA's Kennedy Space Center in Florida. In the foreground, from left, are NASA Test Directors Steve Payne and Bob Holl; Landing and Recovery Director Greg Gaddis; Shuttle Launch Director Mike Leinbach; Atlantis' NASA Flow Director Angie Brewer; NASA Test Director Charlie Blackwell-Thompson; STS-135 Launch Commentator George Diller; NASA Test Directors Jeremy Graeber, Tim Potter, and Jeff Spaulding; Orbiter Test Conductor Roberta Wyrick; Assistant Orbiter Test Conductor Laurie Sally; Assistant Launch Director Pete Nickolenko; United Space Alliance Vice President of Launch and Recovery Systems Mark Nappi; and United Space Alliance Test Conductor Mark Paxton. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also is flying the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  11. KENNEDY SPACE CENTER, FLA. - The Rotating Service Structure has been retracted at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-10

    KENNEDY SPACE CENTER, FLA. - The Rotating Service Structure has been retracted at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

  12. View of the early morning launch of STS 41-G Challenger

    NASA Image and Video Library

    1984-10-05

    View of the early morning launch of STS 41-G Challenger. The dark launch complex is illuminated by spotlights as the orbiter begins its ascent from the pad. The light is reflected off the clouds of smoke from the orbiter's engines.

  13. STS-32 MS Dunbar wearing LES floats in life raft during water egress training

    NASA Image and Video Library

    1989-11-15

    STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES) and lauch and entry helmet (LEH), in a single-occupant (one man) lift raft enlists the aid of two SCUBA-equipped divers as she floats in 25 ft deep pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress.

  14. STS-32 MS Dunbar wearing LES floats in life raft during water egress training

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 Mission Specialist (MS) Bonnie J. Dunbar, wearing a launch and entry suit (LES) and lauch and entry helmet (LEH), in a single-occupant (one man) lift raft enlists the aid of two SCUBA-equipped divers as she floats in 25 ft deep pool located in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises the crew practiced the procedures to follow in the event of an emergency aboard the Space Shuttle and familiarized themselves with post-Challenger pole system of emergency egress.

  15. STS-102 MPLM Leonardo is transferred from the PCR into Discovery's payload bay

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The Multi-Purpose Logistics Module Leonardo is moved into Space Shuttle Discovery'''s payload bay. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. Discovery is scheduled to launch March 8 at 6:42 a.m. EST on mission STS-102, the eighth construction flight to the International Space Station.

  16. STS-113 crew breakfast before second launch attempt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - On the second launch attempt, the STS-113 crew enjoys a snack before suiting up for launch. The launch was scrubbed on Nov. 22 because of poor weather in the Transoceanic Abort Landing sites. Seated left to right are Mission Specialists Michael Lopez-Alegria and John Herrington, Pilot Paul Lockhart and Commander James Wetherbee; Expedition 6 flight engineer Nikolai Budarin, Commander Ken Bowersox and flight engineer Donald Pettit. STS-113 is the 16th American assembly flight to the International Space Station. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is now scheduled for Nov. 23 at 7:50 p.m. EST.

  17. The STS-97 crew leaves O&C for Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew leaves the O&C Building on their way to Launch Pad 39B for a simulated launch countdown. Commander Brent Jett (right) leads the way with Pilot Mike Bloomfield behind him. Taking up the rear are (left) Mission Specialists Carlos Noriega, Joe Tanner and (right) Marc Garneau, who is with the Canadian Space Agency. The crew is taking part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and the simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  18. STS-102 MS Helms, Usachev and Voss pose on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialists Susan Helms, Yury Usachev and James Voss clasp hands showing their unity as the Expedition Two crew who will be replacing Expedition One on the International Space Station. Behind them can be seen the tops of the solid rocket booster and external tank on Space Shuttle Discovery. The STS-102 crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the Space Station, with Discovery carrying the Multi-Purpose Logistics Module Leonardo. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  19. STS-131 Launch from Firing Room 4

    NASA Image and Video Library

    2010-04-05

    STS131-S-050 (5 April 2010) --- NASA commentator Mike Curie and astronaut Kathryn (Kay) Hire discuss the launch of space shuttle Discovery on the STS-131 mission in the Launch Control Center's Firing Room 4 at NASA's Kennedy Space Center in Florida. The seven-member STS-131 crew will deliver the multi-purpose logistics module Leonardo, filled with supplies, a new crew sleeping quarters and science racks that will be transferred to the International Space Station's laboratories. The crew also will switch out a gyroscope on the station’s truss structure, install a spare ammonia storage tank and retrieve a Japanese experiment from the station’s exterior. STS-131 is the 33rd shuttle mission to the station and the 131st shuttle mission overall.

  20. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080432 (14 May 2010) --- Astronaut Charles Hobaugh, spacecraft communicator (CAPCOM) for the STS-132 mission, is pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  1. KSC-06pd1744

    NASA Image and Video Library

    2006-08-07

    KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The STS-115 crew has flown to NASA's Kennedy Space Center to take part in Terminal Countdown Demonstration Test activities. The TCDT is a pre-launch preparation that includes practicing emergency egress from the pad, driving an M-113 armored personnel carrier, and simulating the launch countdown. Launch of STS-115 is currently scheduled for Aug. 27. Photo credit: NASA/George Shelton

  2. STS-70 Mission Specialist Nancy Jane Currie suits up

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 Mission Specialist Nancy Jane Currie is donning her launch/entry suit in the Operations and Checkout Building with help from a suit technician. Currie has flown in space once before, on STS-57. Currie and four crew mates will depart shortly for Launch Pad 39B, where the Space Shuttle Discovery is undergoing final preparations for a liftoff scheduled during a two and a half hour launch window opening at 9:41 a.m. EDT.

  3. STS-91 Commander Precourt talks to Cosmonauts Kondakova and Ryumin at SLF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-91 Mission Commander Charles Precourt (left) talks to Elena V. Kondakova and her husband, Valery Ryumin, a cosmonaut with the Russian Space Agency (RSA) and STS-91 mission specialist, at Kennedy Space Center's Shuttle Landing Facility (SLF). The STS-91 crew had just arrived at the SLF aboard T-38 jets in preparation for launch. Kondakova, also a cosmonaut with the RSA, flew with Commander Precourt as a mission specialist on STS-84 which launched on May 15, 1997. STS-91 is scheduled to be launched on June 2 on Space Shuttle Discovery with a launch window opening around 6:10 p.m. EDT. The mission will feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.- Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew also includes Pilot Dominic Gorie and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; and Janet Kavandi, Ph.D. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir.

  4. STS-112 Pilot Melroy suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Pilot Pamela Melroy finishes suiting up for launch. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B. .

  5. STS-112 M.S. Magnus suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist Sandra Magnus finishes suiting up before launch. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  6. Post STS-135 Evaluation of Main Flame Deflector Witness Materials

    NASA Technical Reports Server (NTRS)

    Long, Victoria

    2011-01-01

    NASA and USA design engineers submitted witness materials from the solid rocket booster (SRB) main flame deflector for evaluation after the launch of STS-135. The following items were submitted for analysis: HY-80 steel witnes rods, 304 sta inles steel caps, and tungsten pistons. All of the items were photographed in order to document their condition after the launch of STS-135. The submitted samples were dimensionally measured in order to determine the amount of material lost during launch. Microstructural changes were observed in the HY-80 witness rod metallographic samples due to the heat of the launch.

  7. Post STS-134 Evaluation of Main Flame Deflector Witness Materials

    NASA Technical Reports Server (NTRS)

    Long, Victoria

    2011-01-01

    NASA and USA design engineers submitted witness materials from the solid rocket booster (SRB) main flame deflector for evaluation after the launch of STS-134. The following items were submitted for analysis: 1018 steel witness rods 304 stainless steel caps, tungsten pistons, and A-286 piston sleeves. All of the items were photographed in order to document their condition after the launch of STS-134. All of the items were dimensionally measured in order to determine the amount of material lost during launch. Microstructural changes were observed in the 1018 witness rod metallographic samples due to the heat of the launch

  8. KSC-2010-5884

    NASA Image and Video Library

    2010-12-17

    CAPE CANAVERAL, Fla. -- Team members stationed at consoles in the Launch Control Center at NASA's Kennedy Space Center in Florida monitor space shuttle Discovery's external fuel tank as it is loaded with more than 535,000 gallons of cryogenic propellants. From back, are STS-133 Assistant NASA Test Director Jeff Spaulding, STS-133 NASA Test Director Steve Payne, Launch Orbiter Test Conductor John Kracsun and Assistant Launch Orbiter Test Conductor Mark Taffet. During today's tanking test, the team is paying particular attention to the external tank's ribbed intertank region. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston

  9. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Photographer Kim Shiflett, left, and Videographer Glenn Benson capture a group photo of the launch team in Firing Room Four of the NASA Kennedy Space Center Launch Control Center (LCC) shortly after the space shuttle Atlantis, STS-135, launched on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  10. Space Shuttle Discovery Launch

    NASA Image and Video Library

    2008-05-31

    NASA Shuttle Launch Director Michael Leinbach, left, STS-124 Assistant Launch Director Ed Mango, center, and Flow Director for Space Shuttle Discovery Stephanie Stilson clap in the the Launch Control Center after the main engine cut off and successful launch of the Space Shuttle Discovery (STS-124) Saturday, May 31, 2008, at the Kennedy Space Center in Cape Canaveral, Fla. The Shuttle lifted off from launch pad 39A at 5:02 p.m. EDT. Photo Credit: (NASA/Bill Ingalls)

  11. KSC-06pd1398

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Lisa Nowak is happy to be making a third launch attempt on the mission. She is suiting up before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett

  12. KSC-06pd1394

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - Mission Specialist Thomas Reiter, happy to be making a third launch attempt on mission STS-121, is suited up before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett

  13. STS-105 crew poses for photo on Fixed Service Structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  14. STS-105 and Expedition Three crews pose together for photo on Fixed Service Structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  15. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Relaxing after emergency escape training on the 195-foot level of the Fixed Service Structure, Launch Pad 39B, are(left to right) STS-102 Mission Specialists Andrew Thomas and Paul Richards and Commander James Wetherbee. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Also flying on the mission are the Expedition Two crew, who will replace the Expedition One crew on Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  16. STS-121: Discovery L-1 Countdown Status Briefing

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Bruce Buckingham, NASA Public Affairs, introduces Jeff Spaulding, NASA Test Director; Debbie Hahn, STS-121 Payload Manager; and Kathy Winters, Shuttle Weather Officer. Spaulding gives his opening statement on this one day prior to the launching of the Space Shuttle Discovery. He discusses the following topics: 1) Launch of the Space Shuttle Discovery; 2) Weather; 3) Load over of onboard reactants; 4) Hold time for liquid hydrogen; 5) Stowage of Mid-deck completion; 6) Check-out of onboard and ground network systems; 7) Launch windows; 8) Mission duration; 9) Extravehicular (EVA) plans; 10) Space Shuttle landing day; and 11) Scrub turn-around plans. Hahn presents and discusses a short video of the STS-121 payload flow. Kathy Winters gives her weather forecast for launch. She then presents a slide presentation on the following weather conditions for the Space Shuttle Discovery: 1) STS-121 Tanking Forecast; 2) Launch Forecast; 3) SRB Recovery; 4) CONUS Launch; 5) TAL Launch; 6) 24 Hour Delay; 7) CONUS 24 Hour; 8) TAL 24 Hour; 9) 48 Hour Launch; 10) CONUS 48 Hour; and 11) TAL 48 Hour. The briefing ends with a question and answer period from the media.

  17. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Commander Michael Anderson trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Anderson and other crew members Commander Rick D. Husband, Pilot William C. McCool, Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. . As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  18. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-107 Mission Specialist David M. Brown trains on equipment in the training module at SPACEHAB, Cape Canaveral, Fla. Brown and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; Mission Specialists Kalpana Chawla and Laurel Blair Salton Clark; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  19. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, trains on equipment in the training module at SPACEHAB, Cape Canaveral. Ramon and other crew members Commander Rick D. Husband, Pilot William C. McCool, Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown are at SPACEHAB to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  20. KSC-01pp1118

    NASA Image and Video Library

    2001-06-11

    KENNEDY SPACE CENTER, Fla. -- STS-107 Payload Specialist Ilan Ramon, of Israel, manipulates a piece of equipment in the Spacehab module. He and other crew members are taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Cape Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Kalpana Chawla, Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002

  1. STS-132/ULF4 WFCR Flight Controllers on Console

    NASA Image and Video Library

    2010-05-14

    JSC2010-E-080410 (14 May 2010) --- Astronauts Steve Frick (standing) and Charles Hobaugh, both spacecraft communicators (CAPCOM) for the STS-132 mission, are pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Atlantis? STS-132 launch. Liftoff was on time at 2:20 p.m. (EDT) on May 14, 2010 from launch pad 39A at NASA's Kennedy Space Center.

  2. STS-107 Columbia rollout to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia, framed by trees near the Banana River, rolls towards Launch Pad 39A, sitting atop the Mobile Launcher Platform, which in turn is carried by the crawler-transporter underneath. The STS-107 research mission comprises experiments ranging from material sciences to life sciences (many rats), plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.

  3. STS-107 Mission Specialist Kalpana Chawla during TCDT at LC-39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Kalpana Chawla is shown during the crew's Terminal Countdown Demonstration Test activities on Launch Pad 39A. The TCDT also includes a simulated launch countdown. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .

  4. KSC-06pd1745

    NASA Image and Video Library

    2006-08-07

    KENNEDY SPACE CENTER, FLA. - STS-115 Commander Brent Jett introduces his crew to waiting media at KSC's Shuttle Landing Facility after their arrival from Houston. The STS-115 crew has flown to NASA's Kennedy Space Center to take part in Terminal Countdown Demonstration Test activities. The TCDT is a pre-launch preparation that includes practicing emergency egress from the pad, driving an M-113 armored personnel carrier, and simulating the launch countdown. Launch of STS-115 is currently scheduled for Aug. 27. Photo credit: NASA/George Shelton

  5. STS-103 Wiring inspections in the aft compartment of Discovery

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Todd Biddle, with United Space Alliance, inspects wiring in the aft compartment of Discovery before launch. Electrical wire inspections and repairs in the orbiter's payload bay, external tank umbilical and engine compartment have been ongoing for more than a month and are near completion. Launch of Space Shuttle Discovery on mission STS-103 is scheduled for Dec. 11 at 11:42 p.m. from Launch Pad 39B. STS-103 is the third servicing mission for the Hubble Space Telescope.

  6. Mission Specialist Pedro Duque undergoes equipment check prior to launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Operations and Checkout Building, STS-95 Mission Specialist Pedro Duque of Spain, with the European Space Agency, gets help with his suit from suit technician Tommy McDonald. The STS-95 crew were conducting flight crew equipment fit checks prior to launch on Oct. 29. STS-95 is expected to launch at 2 p.m. EST on Oct. 29, last 8 days, 21 hours and 49 minutes, and land at 11:49 a.m. EST on Nov. 7.

  7. KENNEDY SPACE CENTER, FLA. - The White Room is seen at the upper left where the astronauts enter the Space Shuttle for flight. The Rotating Service Structure has been retracted at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-10

    KENNEDY SPACE CENTER, FLA. - The White Room is seen at the upper left where the astronauts enter the Space Shuttle for flight. The Rotating Service Structure has been retracted at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

  8. KENNEDY SPACE CENTER, FLA. - At the KSC Launch Pad 39A, two members of the payload closeout crew check equipment as the doors are just about ready to be closed. The Payload inside the bay of Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-07

    KENNEDY SPACE CENTER, FLA. - At the KSC Launch Pad 39A, two members of the payload closeout crew check equipment as the doors are just about ready to be closed. The Payload inside the bay of Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope and provide a reboost to the optimum altitude.

  9. KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-07

    KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at KSC's Launch Pad 39A. Discovery, the orbiter for the STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

  10. STS-28 crewmembers' wives at KSC shuttle landing facility (SLF) with banner

    NASA Image and Video Library

    1989-08-05

    STS028-S-009 (5 Aug 1989) --- Wives of the STS-28 crewmembers display a banner upon the arrival of the astronauts in Florida to begin preparing for their Aug. 8 launch. Left to right are Susan Adamson, Kathleen Ann Shaw, Lynne A. Brown, Lois Richards and Patti K. Leestma. The banner reads, "Go Columbia, STS-28." Launch for the Department of Defense (DOD)-devoted mission is scheduled for August 8.

  11. STS-113 and Expedition Six crews pose for a group photo at SLF

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-113 and Expedition Six crews pose for a group photo at Launch Pad 39A with Space Shuttle Endeavour in the background during a tour of Kennedy Space Center prior to their launch. From left are Expedition Six crew members Donald Pettit and Nikolai Budarin of the Russian Space Agency, STS-113 Mission Specialists John Herrington and Michael Lopez-Alegria, Expedition Six Commander Ken Bowersox, STS-113 Pilot Paul Lockhart, and STS-113 Commander James Wetherbee. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  12. STS-113 and Expedition Six crews pose for a group photo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - The STS-113 and Expedition Six crews pose for a group photo at Launch Pad 39A with Space Shuttle Endeavour in the background during a tour of Kennedy Space Center prior to their launch. From left are Expedition Six crew members Donald Pettit and Nikolai Budarin of the Russian Space Agency, STS-113 Mission Specialists John Herrington and Michael Lopez-Alegria, Expedition Six Commander Ken Bowersox, STS-113 Pilot Paul Lockhart, and STS-113 Commander James Wetherbee. The primary mission of STS-113 is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. Another major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 between midnight and 4 a.m. EST.

  13. STS-113 crew group photo during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The crews of Mission STS-113 gather for a group photograph on the 195-foot level of the Fixed Service Structure on Launch Pad 39A. From left are Expedition 6 cosmonaut Nikolai Budarin and astronaut Donald Pettit; STS-113 Pilot Paul Lockhart and Commander James Wetherbee; Expedition 6 Commander Ken Bowersox; STS-113 Mission Specialists Michael Lopez-Alegria and John Herrington. They have been participating in emergency egress training, part of Terminal Countdown Demonstration Test activities in preparation for their launch. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour, as well as Expedition 6, who will replace Expedition 5 on the Station. The mission is scheduled to launch Nov. 10, 2002.

  14. STS-113 crew group photo during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- The crews of Mission STS-113 gather for a group photograph on the 195-foot level of the Fixed Service Structure on Launch Pad 39A. From left are STS-113 Pilot Paul Lockhart; Expedition 6 Commander Ken Bowersox; STS-113 Mission Specialists Michael Lopez-Alegria and John Herrington, and Commander James Wetherbee; Expedition 6 astronaut Donald Pettit and cosmonaut Nikolai Budarin. They have been participating in emergency egress training, part of Terminal Countdown Demonstration Test activities in preparation for their launch. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour, as well as Expedition 6, who will replace Expedition 5 on the Station. The mission is scheduled to launch Nov. 10, 2002.

  15. STS-94 Commander Halsell in LC-39A White Room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-94 Mission Commander James D. Halsell, Jr., prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. Halsell is on his fourth space flight, having served as commander of STS-83 and pilot of both STS-74 and STS-65. He is a lieutenant colonel in the Air Force and a former SR-71 Blackbird test pilot and holds masters degrees in management and space operations. Halsell will have responsibility for the success of the mission and will operate and maintain Columbia during the Red, or second shift. He will also assist with a materials science experiment and a protein crystal growth payload during the 16-day mission. Halsell and six fellow crew members will lift off during a launch window that opens at 1:50 a.m. EDT, July 1. The launch window will open 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reach the space center.

  16. STS-101 Mission Specialist J.Williams arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Jeffrey Williams arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft flown by STS- 101 Pilot Scott Horowitz. They and the rest of the crew are at KSC to take part in Terminal Countdown Demonstration Test (TCDT) activities that include emergency egress training and a dress rehearsal for launch. The other crew members are Commander James Halsell and Mission Specialists Mary Ellen Weber, James Voss, Susan Helms and Yuri Usachev. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  17. STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Space shuttle mission STS-107, the 28th flight of the space shuttle Columbia and the 113th shuttle mission to date, will give more than 70 international scientists access to both the microgravity environment of space and a set of seven human researchers for 16 uninterrupted days. Columbia's 16-day mission is dedicated to a mixed complement of competitively selected and commercially sponsored research in the space, life and physical sciences. An international crew of seven, including the first Israeli astronaut, will work 24 hours a day in two alternating shifts to carry out experiments in the areas of astronaut health and safety; advanced technology development; and Earth and space sciences. When Columbia is launched from Kennedy Space Center's Launch Pad 39A it will carry a SPACEHAB Research Double Module (RDM) in its payload bay. The RDM is a pressurized environment that is accessible to the crew while in orbit via a tunnel from the shuttle's middeck. Together, the RDM and the middeck will accommodate the majority of the mission's payloads/experiments. STS-107 marks the first flight of the RDM, though SPACEHAB Modules and Cargo Carriers have flown on 17 previous space shuttle missions. Astronaut Rick Husband (Colonel, USAF) will command STS-107 and will be joined on Columbia's flight deck by pilot William 'Willie' McCool (Commander, USN). Columbia will be crewed by Mission Specialist 2 (Flight Engineer) Kalpana Chawla (Ph.D.), Mission Specialist 3 (Payload Commander) Michael Anderson (Lieutenant Colonel, USAF), Mission Specialist 1 David Brown (Captain, USN), Mission Specialist 4 Laurel Clark (Commander, USN) and Payload Specialist 1 Ilan Ramon (Colonel, Israeli Air Force), the first Israeli astronaut. STS-107 marks Husband's second flight into space - he served as pilot during STS-96, a 10-day mission that saw the first shuttle docking with the International Space Station. Husband served as Chief of Safety for the Astronaut Office until his selection to command the STS-107 crew. Anderson and Chawla will also be making their second spaceflights. Anderson first flew on STS-89 in January 1998 (the eighth Shuttle-Mir docking mission) while Chawla flew on STS-87 in November 1997 (the fourth U.S. Microgravity Payload flight). McCool, Brown, Clark and Ramon will be making their first flights into space.

  18. STS-112 M.S. Wolf suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-112 Mission Specialist David Wolf suits up for launch, just hours away. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B. .

  19. STS-112 M.S. Sellers suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During suitup for launch, STS-112 Mission Specialist Piers Sellers smiles in anticipation of his first Shuttle flight. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  20. STS-113 Space Shuttle Endeavour launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Water near Launch Pad 39A provides a mirror image of Space Shuttle Endeavour blazing a path into the night sky after launch on mission STS-113. Liftoff occurred ontime at 7:49:47 p.m. EST. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Also onboard are the Expedition 6 crew, who will replace Expedition 5. Endeavour is scheduled to land at KSC after an 11-day journey.

  1. KSC-01pp1344

    NASA Image and Video Library

    2001-07-20

    KENNEDY SPACE CENTER, Fla. -- STS-105 Pilot Rick Sturckow waits for his helmet during suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  2. KSC-01pp1345

    NASA Image and Video Library

    2001-07-20

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz finishes with suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities includes emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  3. HOST payload for STS-95 being moved into SSPF

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is lowered onto a workstand in the Space Shuttle Processing Facility. To the right can be seen the Rack Insertion Device and Leonardo, a Multi-Purpose Logistics Module. The HOST platform, one of the payloads on the STS-95 mission, is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process.

  4. KSC-01pp0406

    NASA Image and Video Library

    2001-03-04

    After arrival at the Shuttle Landing Facility, STS-102 Mission Specialist Yury Usachev laughs at a comment from the media. At the right can be seen Commander James Wetherbee. The crew is making the eighth construction flight to the International Space Station. In addition, Usachev is part of the Expedition Two crew who will be replacing Expedition One on the Station. STS-102 will be carrying the Multi-Purpose Logistics Module Leonardo, the primary delivery system used to resupply and return Station cargo requiring a pressurized environment. Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. STS-102 is scheduled to launch March 8 at 6:42 a.m. EST

  5. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the 195-foot level on the Fixed Service Structure, Launch Pad 39B, members of the STS-102 crew relax after emergency escape training. From left are Mission Specialists Paul Richards, Andrew Thomas and Susan Helms, and Commander James Wetherbee. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Helms is part of the Expedition Two crew who will be on the mission to replace Expedition One on the International Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  6. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the 195-foot level on the Fixed Service Structure, Launch Pad 39B, members of the STS-102 crew relax after emergency escape training. At left is Pilot James Kelly; in the center and right are Mission Specialists Yury Usachev and James Voss. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Usachev and Voss are part of the Expedition Two crew who will be on the mission to replace Expedition One on the International Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  7. STS-102 crew gets emergency exit training at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Getting training on the use of the slidewire basket for emergency exits from the launch pad are STS-102 Mission Specialists Paul Richards and Andrew Thomas. The rest of the crew includes Commander James Wetherbee, Pilot James Kelly and Mission Specialists James Voss, Susan Helms and Yury Usachev. The crew is taking part in Terminal Countdown Demonstration Test activities, which include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  8. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Commander Brent Jett listens to a question from a reporter during a media session near Launch Pad 39B. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. The other crew members are Pilot Mike Bloomfield and Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. Garneau is with the Canadian Space Agency. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  9. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities, the STS-97 crew pause in the White Room at Launch Pad 39B for a photo. At left is Commander Brent Jett and crouching in front is Pilot Mike Bloomfield. Standing behind him are Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. . Garneau is with the Canadian Space Agency. The TCDT includes emergency egress training, familiarization with the payload, and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  10. KSC-06pd1393

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - Mission Specialist Piers Sellers is happy to be making a third launch attempt on mission STS-121. Here, he fixes one of his gloves during suitup before heading to Launch Pad 39B. The July 2 launch attempt was scrubbed due to the presence of showers and thunderstorms within the surrounding area of the launch site. The launch of Space Shuttle Discovery on mission STS-121 is the 115th shuttle flight and the 18th U.S. flight to the International Space Station. During the 12-day mission, the STS-121 crew will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Photo credit: NASA/Kim Shiflett

  11. STS-113 Mission Specialist John Herrington in White Room before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the White Room on Launch Pad 39A, STS-113 Mission Specialist John Herrington is helped with his launch and entry suit by Rick Welty, United Space Alliance Vehicle Closeout chief. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 23 at 7:50 p.m. EST.

  12. STS-32 crewmembers wave as they leave KSC O&C Bldg for launch pad

    NASA Image and Video Library

    1990-01-09

    STS032-S-056 (20 Jan 1990) --- STS-32 Columbia, Orbiter Vehicle (OV) 102, crewmembers depart the Kennedy Space Center (KSC) Operations and Checkout (O and C) Building enroute to KSC Launch Complex (LC) Pad 39A. Dubious weather at the return-to-launch site (RTLS) caused postponement of yesterday's planned launch. From left to right are Mission Specialist (MS) G. David Low, MS Marsha S. Ivins, MS Bonnie J. Dunbar, Pilot James D. Wetherbee, and Commander Daniel C. Brandenstein. All crewmembers are wearing launch and entry suits (LESs) and Low, Ivins, and Wetherbee wave to spectators as they head to the transportation van. Following the crew are astronaut Michael L. Coats (left) and NASA/JSC manager Donald R. Puddy.

  13. KSC-05PD-1603

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Roger Crouch (center), a payload specialist, talks to the media prior to the launch of Space Shuttle Discovery on the historic Return to Flight mission STS- 114. He has flown on two Shuttle missions, STS-83 and STS-94. STS-114 is the 114th Space Shuttle flight and the 31st for Discovery. More than a thousand media representatives from 36 states, the District of Columbia and 32 countries converged on the News Center for the historic launch.

  14. STS-86 Mission Specialist Wolf at SLF for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 Mission Specialist David A. Wolf arrives in a T-38 jet at KSCs Shuttle Landing Facility for the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. STS-86 will be the seventh docking of the Space Shuttle with the Russian Space Station Mir. During the mission, Wolf will transfer to the Mir 24 crew, replacing astronaut C. Michael Foale, who will return to Earth with the rest of the STS-86 crew. Wolf is scheduled to remain on the Mir until his replacement arrives on the STS-89 mission in January. STS-86 is targeted for a Sept. 25 launch aboard the Space Shuttle Atlantis.

  15. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 35mm camera was used to record the image, which includes much of the base of the launch site as well as the launch itself.

  16. Launch of STS-66 Space Shuttle Atlantis

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Space Shuttle Atlantis returns to work after a refurbishing and a two-year layoff, as liftoff for NASA's STS-66 occurs at noon (EDT), November 3, 1994. A 70mm camera was used to record the image. Note the vegetation and the reflection of the launch in the water across from the launch pad.

  17. Secretary of State Albright awaits the launch of STS-88

    NASA Technical Reports Server (NTRS)

    1998-01-01

    U.S. Secretary of State Madeleine Albright talks with NASA Administrator Daniel Goldin (at left) in the VIP lounge at the Apollo/Saturn V Center while awaiting launch of Mission STS-88, the first U.S. launch for the International Space Station. Astronaut Michael Lopez-Alegria is looking on in background.

  18. STS-98 crew talks about the mission during a media briefing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-98 Commander Ken Cockrell answers a question from the media during a briefing at Launch Pad 39A. Other crew members present are Pilot Mark Polansky, Mission Specialist Thomas Jones, [Cockrell], and Mission Specialists Marsha Ivins and Robert Curbeam. All are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  19. STS-98 crew talks about the mission during a media briefing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Four members of the STS-98 crew pose for a photo at Launch Pad 39A. Standing, left to right, are Mission Specialist Robert Curbeam, Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialist Thomas Jones. Not pictured is Mission Specialist Marsha Ivins. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  20. STS-97 crew arrives at KSC for launch

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the Shuttle Landing Facility, STS-97 Mission Specialist Joseph Tanner (left) is greeted by Center Director Roy Bridges on his arrival at KSC from Johnson Space Center. Tanner and the rest of the crew have returned to KSC for the launch, scheduled for Nov. 30 at about 10:06 p.m. EST. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  1. STS-98 crew poses for photo after media briefing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- After a media briefing at Launch Pad 39A, the STS-98 crew poses in the slidewire basket landing zone. Standing, left to right, are Pilot Mark Polansky, Mission Specialist Thomas Jones, Commander Ken Cockrell and Mission Specialists Marsha Ivins and Robert Curbeam. All are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  2. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Commander James Wetherbee reaches for the release lever for the slidewire basket, used for emergency egress from the orbiter and pad. Behind him is Pilot James Kelly. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  3. STS-105 Mission Specialists in slidewire basket during TCDT at pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-105 Mission Specialists Daniel Barry (left) and Patrick Forrester (right) wait in the slidewire basket that is part of the emergency egress system. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities also include a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  4. KSC-01pp0075

    NASA Image and Video Library

    2001-01-05

    In the White Room, STS-98 Mission Specialist Thomas Jones gets help with his launch and entry suit before entering Atlantis for a simulated launch countdown. The White Room is an environmental chamber at the end of the orbiter access arm that mates with the orbiter to allow personnel to enter the orbiter’s crew compartment. The STS-98 crew is taking part in Terminal Countdown Demonstration Test activities, which also include emergency egress training at the pad. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST

  5. KSC-01pp0076

    NASA Image and Video Library

    2001-01-05

    In the White Room, STS-98 Pilot Mark Polansky gets help with his launch and entry suit before entering Atlantis for a simulated launch countdown. The White Room is an environmental chamber at the end of the orbiter access arm that mates with the orbiter to allow personnel to enter the orbiter’s crew compartment. The STS-98 crew is taking part in Terminal Countdown Demonstration Test activities, which also include emergency egress training at the pad. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST

  6. Effects of space shuttle launches STS-1 through STS-9 on terrestrial vegetation of John F. Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Schmalzer, P. A.; Hinkle, C. R.; Breininger, D.; Knott, W. M., III (Editor); Koller, A. M., Jr. (Editor)

    1985-01-01

    Space Shuttle launches produce a cloud containing hydrochloric acid (HCl), aluminum oxide (Al203), and other substances. Acidities of less than 0.5 pH have been measured routinely in association with the launch cloud. In an area of about 22 ha regularly exposed to the exhaust cloud during most Shuttle launches, acute vegetation damage has resulted from the first nine Shuttle launches. Changes include loss of sensitive species, loss of plant community structure, reduction in total cover, and replacement of some species by weedy invaders. Community level changes define a retrogressive sequence. One-time impacts to strand and dune vegetation occurred after launches of STS-8 and STS-9. Acute vegetation damage occurred especially to sensitive species. Within six months, however, recovery was nearly complete. Sensitivity of species to the launch cloud was partially predicted by previous laboratory studies. Far-field acidic and dry fallout from the cloud as it rises to stabilization and moves with the prevailing winds causes vegetation spotting. Damage from this deposition is minor; typically at most 1% to 5% of leaf surface area is affected. No plant mortality or community changes have occurred from far-field deposition.

  7. STS-112 crew group photo at launch pad during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During Terminal Countdown Demonstration Test activities, the STS-112 crew poses for a group photo near the launch pad where Space Shuttle Atlantis waits for launch. Standing left to right are Mission Specialist Piers Sellers, Commander Jeffrey Ashby, Mission Specialist David Wolf, Pilot Pamela Melroy, and Mission Specialists Sandra Magnus and Fyodor Yurchikhin, who is with the Russian Space Agency. The TCDT includes emergency egress training and a simulated launch countdown. Mission STS-112 aboard Space Shuttle Atlantis is scheduled to launch no earlier than Oct. 2, between 2 and 6 p.m. EDT. STS-112 is the 15th assembly mission to the International Space Station. Atlantis will be carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts.

  8. STS-108 Crew Breakfast for second launch attempt

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-108 Crew Breakfast for second launch attempt KSC-01PD-1775 KENNEDY SPACE CENTER, Fla. -- Gathered for a second day after a scrub due to weather conditions, the STS-108 crew again enjoy a pre-launch snack featuring a cake with the mission patch. Seated left to right are Mission Specialists Daniel M. Tani and Linda A. Godwin, Pilot Mark E. Kelly and Commander Dominic L. Gorie; the Expedition 4 crew Commander Yuri Onufrienko and astronauts Carl E. Walz and Daniel W. Bursch. Top priorities for the STS-108 (UF-1) mission of Endeavour are rotation of the International Space Station Expedition 3 and Expedition 4 crews; bringing water, equipment and supplies to the station in the Multi-Purpose Logistics Module Raffaello; and the crew's completion of robotics tasks and a spacewalk to install thermal blankets over two pieces of equipment at the bases of the Space Station's solar wings. Launch is scheduled for 5:19 p.m. EST Dec .5, 2001, from Launch Pad 39B.

  9. Post STS-133 Evaluation of Main Flame Deflector Witness Materials

    NASA Technical Reports Server (NTRS)

    Long, Victoria

    2011-01-01

    NASA and USA Structures engineers submitted main flame deflector witness materials for evaluation after the launch of STS-133. The following items were submitted for analysis: HY-80 steel witness rods, 304 stainless steel caps, tungsten pistons, 17-4 precipitation hardened (PH) stainless steel and A-286 piston sleeves, Medtherm Corporation calorimeters, and Nanmac Corporation thermocouples. All of the items were photographed in order to document their condition after the launch of STS-133, and before they were reinstalled at the launch pad for future launches. The HY -80 witness rods, 304 stainless steel caps, and the piston sleeves were dimensionally measured in order to determine the amount of material lost during launch. Microstructural changes were observed in the HY-80 witness rod and 304 stainless steel cap metallographic samples due to the heat of the launch.

  10. KSC-2010-5880

    NASA Image and Video Library

    2010-12-17

    CAPE CANAVERAL, Fla. -- Team members stationed at consoles in the Launch Control Center at NASA's Kennedy Space Center in Florida monitor space shuttle Discovery's external fuel tank as it is loaded with more than 535,000 gallons of cryogenic propellants. From back, are Assistant Launch Orbiter Test Conductor Mark Taffet, Launch Orbiter Test Conductor John Kracsun, STS-133 NASA Test Director Steve Payne, NASA Commentator Allard Beutel, NASA Test Director Jeremy Graeber and STS-133 Assistant NASA Test Director Jeff Spaulding. During today's tanking test, the team is paying particular attention to the external tank's ribbed intertank region. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston

  11. LC-39A RSS Rollback before launch of STS-113

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour stands ready for launch on mission STS-113. . The Orbiter Access Arm extends from the Fixed Service Structure (FSS) to the crew compartment hatch, through which the STS-113 crew will enter Endeavour. STS-113 is the 16th American assembly flight to the International Space Station. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  12. KSC-98pc1812

    NASA Image and Video Library

    1998-12-04

    U.S. Secretary of State Madeleine Albright (right) talks with astronaut Jim Voss following the successful launch of Endeavour on Mission STS-88 from Launch Pad 39A at 3:35:34 a.m. EST. STS-88 is the first U.S. mission dedicated to the assembly of the International Space Station (ISS). Voss is a member of the STS-100 crew, the eighth ISS assembly team

  13. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-054 (16 Nov. 2009) --- Michael Coats (left), director of NASA's Johnson Space Center in Houston; and Bob Cabana, director of NASA's Kennedy Space Center in Florida, monitor the progress of Space Shuttle Atlantis' countdown from consoles in the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) on Nov. 16, 2009.

  14. STS-87 Commander Kevin R. Kregel suits up

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Commander Kevin Kregel sits in his launch and entry suit in the Operations and Checkout Building holding a cap of his sons soccer team of which Kregel is the coach. Shortly, he and the five other crew members of STS-87 will depart for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. A veteran of two space flights (STS-70 and -78), Kregel has logged more than 618 hours in space.

  15. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., STS-107 Mission Specialist Kalpana Chawla checks out items stored in the Spacehab module. Behind her, left, is Payload Specialist Ilan Ramon, of Israel, looking over a piece of equipment. At right is a trainer. The crew is taking part in Crew Equipment Interface Test (CEIT) activities at SPACEHAB, Port Canaveral, Fla. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. The CEIT activities enable the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. Other STS-107 crew members are Commander Rick Douglas Husband, Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists Laurel Blair Salton Clark and David M. Brown. STS-107 is scheduled for launch May 23, 2002

  16. KSC-2011-2205

    NASA Image and Video Library

    2011-03-10

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, media check out the Alpha Magnetic Spectrometer-2 (AMS). AMS is a particle physics detector, designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson

  17. KSC-2011-2206

    NASA Image and Video Library

    2011-03-10

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, media check out the Alpha Magnetic Spectrometer-2 (AMS). AMS is a particle physics detector, designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson

  18. KSC-2011-2201

    NASA Image and Video Library

    2011-03-10

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, processing continues for the Alpha Magnetic Spectrometer-2 (AMS). AMS is a particle physics detector, designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson

  19. KSC-2010-4462

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, space shuttle Endeavour's STS-134 Commander Mark Kelly is on hand for the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett

  20. KSC-98pc1039

    NASA Image and Video Library

    1998-09-04

    Workers watch as the Hubble Space Telescope Orbiting Systems Test (HOST)is moved inside the Space Shuttle Processing Facility. The HOST platform, one of the payloads on the STS-95 mission, is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  1. KSC-98pc1037

    NASA Image and Video Library

    1998-09-04

    The Hubble Space Telescope Orbiting Systems Test (HOST)is being raised to a workstand by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  2. KSC-98pc1036

    NASA Image and Video Library

    1998-09-04

    KENNEDY SPACE CENTER, FLA. -- The Hubble Space Telescope Orbiting Systems Test (HOST) is checked out by technicians in the Space Shuttle Processing Facility. One of the payloads on the STS-95 mission, the HOST platform is carrying four experiments to validate components planned for installation during the third Hubble Space Telescope servicing mission and to evaluate new technologies in an earth orbiting environment. The STS-95 mission is scheduled to launch Oct. 29. It will carry three other payloads: the Spartan solar-observing deployable spacecraft, the International Extreme Ultraviolet Hitchhiker, and the SPACEHAB single module with experiments on space flight and the aging process

  3. KSC-2010-4465

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, space shuttle Endeavour's STS-134 Commander Mark Kelly speaks to the media before the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett

  4. KSC-2010-4473

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, STS-134 Mission Specialist Michael Fincke pauses for a photo before the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett

  5. STS-26 MS Nelson during Crew escape system (CES) testing in JSC WETF Bldg 29

    NASA Image and Video Library

    1988-07-08

    S88-42409 (20 July 1988) --- STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) George D. Nelson participates in crew escape system (CES) testing in JSC Weightless Environment Training Facility (WETF) Bldg 29. Nelson, wearing the newly designed (navy blue) launch and entry suit (LES), floats in WETF pool with the aid of an underarm flotation device (modern version of Mas West floats). He awaits the assistance of SCUBA-equipped divers during a simulation of escape and rescue operations utilizing a new CES pole for emergency exit from the Space Shuttle.

  6. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-107 Commander Rick D. Husband (left) and Pilot William C. McCool train in the SPACHEAB Double Module that will fly on their mission. Husband, McCool and other crew members Payload Commander Michael P. Anderson; Mission Specialists Laurel Blair Salton Clark and David M. Brown; and Payload Specialist Ilan Ramon, of Israel, are at SPACEHAB, Cape Canaveral, Fla., to take part in Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the SPACEHAB Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  7. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., members of the STS-107 crew discuss the experiments in the Spacehab module. Seated, in the foreground, is Mission Specialist Laurel Blair Salton Clark; standing behind her are Commander Rick Douglas Husband and Mission Specialist Kalpana Chawla. They and other crew members Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists David M. Brown and Ilan Ramon, of Israel, are at SPACEHAB for Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  8. STS-102 MS Voss suits up for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - -- While suiting up in the Operations and Checkout Building, Mission Specialist James Voss shows his support of International Women'''s Day, March 8, with a sign in both Cyrillic and English. Voss is also part of a crew, known as Expedition One, who will be replacing Expedition One on the International Space Station. STS-102 is the eighth construction flight to the Space Station, carrying the Multi-Purpose Logistics Module Leonardo. The primary delivery system used to resupply and return Station cargo requiring a pressurized environment, Leonardo will deliver up to 10 tons of laboratory racks filled with equipment, experiments and supplies for outfitting the newly installed U.S. Laboratory Destiny. Discovery is set to launch March 8 at 6:42 a.m. EST. The 12-day mission is expected to end with a landing at KSC on March 20.

  9. STS-114 Mission Support - Flight Controllers on Launch Day

    NASA Image and Video Library

    2005-07-26

    Documentation of flight controllers in the White Flight Control Room (WFCR) on STS-114 Launch Day, July 26, 2005. View of Phil Engelauf and Flight Director Paul Hill standing at the Mission Operations Directorate (MOD) console.

  10. STS-101 Mission Specialists Helms, Usachev and Voss practice emergency exit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    As part of Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew practices emergency egress from the orbiter at the 195-foot level of the Fixed Service Structure. Shown heading down the easily identified exit path, known as the 'yellow brick road,' are Mission Specialists Susan J. Helms (leading), Yuri Usachev of Russia and James Voss. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS- 101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight to the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  11. STS-97 crew poses for photo on Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39B, the STS-97 crew poses for a photo at the 215-foot level. From left, they are Mission Specialist Carlos Noriega, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Marc Garneau and Joe Tanner. Behind them at left can be seen the top of the solid rocket booster and external tank on Space Shuttle Endeavour. The TCDT includes emergency egress training, opportunities to inspect the mission payloads in the orbiter'''s payload bay and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  12. STS-100 crew take a group photo before walkou

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The STS-100 crew pauses for a photo before walkout and the ride to Launch Pad 39A for a simulated countdown. Standing, from left, are Mission Specialists Scott E. Parazynski, Umberto Guidoni, John L. Phillips, Yuri V. Lonchakov and Chris A. Hadfield; Commander Kent V. Rominger; and Pilot Jeffrey S. Ashby. The STS-100 crew is at KSC for Terminal Countdown Demonstration Test activities that include emergency escape training at the pad and the simulated launch countdown. The mission is carrying the Multi-Purpose Logistics Module Raffaello and the SSRMS, to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The SSRMS is crucial to the continued assembly of the orbiting complex. Launch of mission STS-100 is scheduled for April 19 at 2:41 p.m. EDT from Launch Pad 39A.

  13. The STS-98 crew poses for group photo near top of FSS

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-98 crew poses for a group photo on the 215-foot level of the Fixed Service Structure at Launch Pad 39A. Dressed in their orange launch and entry suits are (left to right) Commander Ken Cockrell, Mission Specialist Marsha Ivins, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. Behind them can be seen the white nose cone of a solid rocket booster and the orange external tank on Space Shuttle Atlantis. The crew is taking part in emergency egress training and a simulated launch countdown as part of Terminal Countdown Demonstration Test activities. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.

  14. KSC-07pd3377

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Mission Specialist Leopold Eyharts takes part in a press conference at the slidewire basket landing on Launch Pad 39A. Eyharts is with the European Space Agency and will remain on the International Space Station as a flight engineer for Expedition 16 following the STS-122 mission. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  15. STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- On the 195-foot level of the Fixed Service Structure, Launch Pad 39A, the STS-105 and Expedition Three crews listen to instructions about use of the slidewire basket, part of emergency egress training at the pad. From left are Expedition Three Commander Frank Culbertson, STS-105 Pilot Rick Sturckow; cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; Mission Specialist Patrick Forrester, Commander Scott Horowitz and Mission Specialist Daniel Barry. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  16. The STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew pose for photographers at the base of Launch Pad 39B. They are, left to right, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Carlos Noriega, Marc Garneau and Joe Tanner. Garneau is with the Canadian Space Agency. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Visible in the background are the solid rocket booster and external tank on Space Shuttle Endeavour. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  17. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the slidewire landing zone at Launch Pad 39B, STS-97 Mission Specialist Carlos Noriega (at right, with microphone) describes the mission for the media. Next to him are Mission Specialists Joe Tanner (left) and Marc Garneau (center). The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. The other crew members are Commander Brent Jett and Pilot Mike Bloomfield. Mission STS- 97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  18. STS-35 MS Hoffman is suspended above pool during JSC water egress exercises

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-35 Mission Specialist (MS) Jeffrey A. Hoffman is suspended above pool during launch emergency egress procedures conducted in JSC's Weightless Environmental Training Facility Bldg 29. Hoffman, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), adjusts flotation device (life jacket) as he is raised above the pool.

  19. Barbara Morgan and Christa McAuliffe watch the STS 61-A launch of Challenger

    NASA Image and Video Library

    1986-01-09

    S86-25293 (30 Oct. 1985) --- Barbara R. Morgan and Sharon Christa McAuliffe (right) are pictured during a visit to NASA's Kennedy Space Center (KSC) Launch Complex 39 to witness the launch of the space shuttle Challenger. McAuliffe is scheduled to launch aboard the space shuttle Challenger, STS-51L mission, herself early next year as the United States? first in-space citizen observer. Morgan is the backup for the Teacher-in-Space Project?s payload specialist position. The photo was taken by Keith Meyers of the New York Times. EDITOR'S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  20. Barbara Morgan and Christa McAuliffe watch the STS 61-A launch of Challenger

    NASA Image and Video Library

    1986-01-09

    S86-25294 (30 Oct. 1985) --- Barbara R. Morgan and Sharon Christa McAuliffe (right) are pictured during a visit to NASA's Kennedy Space Center (KSC) Launch Complex 39 to witness the launch of the space shuttle Challenger. McAuliffe is scheduled to launch aboard the space shuttle Challenger, STS-51L mission, herself early next year as the United States? first in-space citizen observer. Morgan is the backup for the Teacher-in-Space Project?s payload specialist position. The photo was taken by Keith Meyers of the New York Times. EDITOR?S NOTE: The STS-51L crew members lost their lives in the space shuttle Challenger accident moments after launch on Jan. 28, 1986 from the Kennedy Space Center (KSC). Photo credit: NASA

  1. STS-87 Mission Specialist Chawla is assisted with her launch and entry spacesuit at LC 39B during TC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Kalpana Chawla, Ph.D., is assisted with her orange launch and entry spacesuit by NASA suit technicians at Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  2. STS-112 Pilot Melroy inspects cables prior to launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-112 Pilot Pamela Ann Melroy (left) conducts a last-minute inspection of some cables inside Space Shuttle Atlantis at Launch Pad 39B prior to the launch of her mission. The STS-112 crew also includes Commander Jeffrey S. Ashby and Mission Specialists David A. Wolf, Sandra H. Magnus, Piers J. Sellers, and Fyodor N. Yurchikhin of the Russian Space Agency. Launch of the mission was postponed today to no earlier than Thursday, Oct. 3, while weather forecasters and the mission management team assess the possible effect Hurricane Lili may have on the Mission Control Center located at the Lyndon B. Johnson Space Center in Houston, Texas.

  3. STS-101 Mission Specialist Williams arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Jeffrey N. Williams stands ready to begin preparations for the launch on May 18 after arriving at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  4. STS-101 Commander Halsell arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Commander James D. Halsell Jr. arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft to prepare for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  5. STS-101 M.S. Usachev arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Yuri Usachev waves on his arrival KSC's Shuttle Landing Facility aboard a T-38 jet aircraft to prepare for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  6. U.S. Congressmen from Florida Tom Feeney and Dave Weldon at the STS-113 launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - U.S. Congressmen from Florida Tom Feeney (left) and Dave Weldon wait in the VIP viewing site for the STS-113 launch. The launch will carry the Expedition 6 crew to the Station and return the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is now scheduled for Nov. 23 at 7:50 p.m. EST.

  7. STS-135 Launch Day

    NASA Image and Video Library

    2011-07-07

    NASA Chief, Astronaut Office, Johnson Space Center Peggy Whitson, center, STS-135 Astronauts, Rex Walheim, left, and Commander Chris Ferguson are seen as the entire crew plays a traditional card game at the NASA Kennedy Space Center Operations and Checkout Building prior to them leaving for the launch pad, on Friday, July 8, 2011 in Cape Canaveral, Fla. The point of the game is that the commander must use up all his or her bad luck before launch, so the crew can only leave for the pad after the commander loses. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Jerry Ross)

  8. The faulty Master Events Controller is removed from STS-99 Endeavour

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Technicians remove a faulty Enhanced Main Events Controller (E- MEC) from Shuttle Endeavour at Launch Pad 39A. The E-MEC became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. Both E-MECs are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.

  9. The faulty Master Events Controller is carried away from STS-99 Endeavour

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers carry away the faulty Enhanced Main Events Controller (E- MEC) from Shuttle Endeavour at Launch Pad 39A. The E-MEC became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. Both E-MECs are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.

  10. KSC-2010-5494

    NASA Image and Video Library

    2010-11-04

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) sits in its cargo element work stand, where technicians will continue to process the experiment for launch. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller

  11. KSC-2010-5493

    NASA Image and Video Library

    2010-11-04

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer-2 (AMS) sits in its cargo element work stand, where technicians will continue to process the experiment for launch. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 27, 2011. Photo credit: NASA/Jack Pfaller

  12. KSC-2010-4537

    NASA Image and Video Library

    2010-08-30

    CAPE CANAVERAL, Fla. -- Technicians in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, begin processing the Alpha Magnetic Spectrometer, or AMS, to prepare it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  13. KSC-2010-4532

    NASA Image and Video Library

    2010-08-30

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer, or AMS, awaits processing for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  14. STS-135 Atlantis Launch

    NASA Image and Video Library

    2011-07-07

    NASA Administrator Charles Bolden speaks to visitors at the NASA Kennedy Space Center Banana Creek viewing site prior to going to the Launch Control Center (LCC) for the planned launch of the space shuttle Atlantis from pad 39A on Friday, July 8, 2011, in Cape Canaveral, Fla. The launch of Atlantis, STS-135, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  15. STS-102 crew talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Terminal Countdown Demonstration Test activities, the STS-102 crew takes time to talk to the media at the slidewire basket landing near Launch Pad 39B. From left to right are Commander James Wetherbee; Mission Specialists Yury Usachev, Andrew Thomas, James Voss, Susan Helms and Paul Richards; and Pilot James Kelly. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo Launch on mission STS-102 is scheduled for March 8.

  16. STS-98 Commander Cockrell talks with Leinbach and Bridges at SLF

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-98 Mission Commander Kenneth Cockrell (center) talks with Launch Director Michael Leinbach (red and white jacket) and Center Director Roy Bridges (right) at the Shuttle Landing Facility after the crew's arrival Sunday to complete preparations for launch. Behind him are, from left to right, Mission Specialist Thomas Jones; Tom Kwiatkowski, NASA, Johnson Space Center (JSC); and Robert Hanley, United Space Alliance, JSC. The crew also includes Pilot Mark Polansky and Mission Specialists Marsha Ivins and Robert Curbeam. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Feb. 7 at 6:11 p.m. EST.

  17. STS-98 crew talks about the mission during a media briefing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- A humorous question from the media (out of view) produces smiles among the STS-98 crew during a briefing at Launch Pad 39A. Standing, left to right, are Pilot Mark Polansky, Mission Specialist Thomas Jones (with microphone), Commander Ken Cockrell, and Mission Specialists Marsha Ivins and Robert Curbeam. All are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  18. STS-98 crew talks about the mission during a media briefing

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-98 crew talks to the press at a briefing at Launch Pad 39A. Holding the microphone is Commander Ken Cockrell, who answers a question about the mission. The other crew members are (left to right) Pilot Mark Polansky, Mission Specialist Thomas Jones, [Cockrell], and Mission Specialists Marsha Ivins and Robert Curbeam. They are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  19. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- An STS-102 crew member reaches for the release lever for the slidewire basket, used for emergency egress from the orbiter and pad. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. On the horizon in the background can be seen the Vehicle Assembly Building. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  20. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialists Andrew Thomas (front, left) and Paul Richards take their seats in the slidewire basket, used for emergency egress from the orbiter and pad. Behind them, other crew members climb into their basket. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  1. STS-89 M.S. Andrew Thomas suits up

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist Andrew Thomas, Ph.D., gives a 'thumbs up' as he completes the donning of his launch/entry suit in the Operations and Checkout (O&C) Building. In June 1995, he was named as payload commander for STS-77 and flew his first flight in space on Endeavour in May 1996. He and six fellow crew members will soon depart the O&C and head for Launch Pad 39A, where the Space Shuttle Endeavour will lift off during a launch window that opens at 9:43 p.m. EST, Jan. 22. STS-89 is the eighth of nine planned missions to dock the Space Shuttle with Russia's Mir space station, where Dr. Thomas will succeed David Wolf, M.D.

  2. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the slidewire basket landing near Launch Pad 39B, the Expedition Two crew poses for a photograph. From left to right are Susan Helms, Yury Usachev and James Voss. They are flying on Space Shuttle Discovery (seen in the background) as mission specialists for STS-102, joining Commander James Wetherbee, Pilot James Kelly and Mission Specialists Andrew Thomas and Paul Richards for the eighth construction flight to the International Space Station. Voss, Helms and Usachev will be replacing the Expedition One crew, who will return to Earth with Discovery. STS-102 will be carrying the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8.

  3. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Terminal Countdown Demonstration Test activities, the STS-102 crew takes time to talk to the media at the slidewire basket landing near Launch Pad 39B. From left to right are Commander James Wetherbee; Mission Specialists Yury Usachev, Andrew Thomas, James Voss, Susan Helms and Paul Richards; and Pilot James Kelly. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo Launch on mission STS-102 is scheduled for March 8.

  4. KSC-05PD-1601

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Astronaut James Reilly is interviewed in the NASA News Center at NASA Kennedy Space Center by a television reporter during launch activities for Return to Flight mission STS-114. Reilly has flown on two Shuttle missions, STS-89 and STS-104. More than a thousand media representatives from 36 states, the District of Columbia and 32 countries converged on the News Center for the historic launch.

  5. STS-87 Crew arrives at KSC for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In preparation for Space Shuttle Mission STS-87, the crew arrives at the Kennedy Space Center Shuttle Landing Facility to participate in the Terminal Countdown Demonstration Test (TCDT) for their mission. The TCDT is a dress rehearsal for launch. STS- 87 will be the fourth flight of the United States Microgravity Payload and the Spartan-201 deployable satellite. Launch is targeted for Nov. 19.

  6. U.S. Secretary of State chats with astronaut

    NASA Technical Reports Server (NTRS)

    1998-01-01

    U.S. Secretary of State Madeleine Albright (right) talks with astronaut Jim Voss following the successful launch of Endeavour on Mission STS-88 from Launch Pad 39A at 3:35:34 a.m. EST. STS-88 is the first U.S. mission dedicated to the assembly of the International Space Station (ISS). Voss is a member of the STS- 100 crew, the eighth ISS assembly team.

  7. STS-75 Mission Commander Andrew M. Allen suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 Mission Commander Andrew M. Allen completes suitup activities in the Operations and Checkout Building. STS-75 will be Allen's third trip into space, his first as commander. Allen and an international crew will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff during a two-and- a-half-hour launch window opening at 3:18 p.m. EST.

  8. KSC-2011-5309

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Launch controllers wave their STS-135 shuttle launch team member flags and cheer in Firing Room 4 of the Launch Control Center following the successful launch of space shuttle Atlantis from NASA's Kennedy Space Center in Florida. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also is flying the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  9. KSC-2010-5885

    NASA Image and Video Library

    2010-12-17

    CAPE CANAVERAL, Fla. -- Team members stationed at consoles in the Launch Control Center at NASA's Kennedy Space Center in Florida monitor space shuttle Discovery's external fuel tank as it is loaded with more than 535,000 gallons of cryogenic propellants. From back, are STS-133 Assistant NASA Test Director Jeff Spaulding, STS-133 NASA Test Director Steve Payne and Launch Orbiter Test Conductor John Kracsun. During today's tanking test, the team is paying particular attention to the external tank's ribbed intertank region. Beginning tomorrow, engineers will evaluate data on 21-foot-long, U-shaped aluminum brackets, called stringers, and the newly replaced ground umbilical carrier plate (GUCP). Discovery's first launch attempt for STS-133 was scrubbed in early November due to a hydrogen gas leak at the GUCP. In order to perform additional analysis on the tank, Discovery will be rolled back to the Vehicle Assembly Building, a move that is planned for next week. The next launch opportunity is no earlier than Feb. 3, 2011. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Cory Huston

  10. Astronaut Stephen Oswald during emergency bailout training

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Suited in a training version of the Shuttle partial-pressure launch and entry garment, astronaut Stephen S. Oswald, STS-67 commander, gets help with a piece of gear from Boeing's David Brandt. The scene was photographed prior to a session of emergency bailout training in the 25-feet deep pool at JSC's Weightless Environment Training Facility (WETF).

  11. STS-94 Mission Specialist Thomas in LC-39A White Room

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-94 Mission Specialist Donald A. Thomas prepares to enter the Space Shuttle Columbia at Launch Pad 39A in preparation for launch. He has flown on STS-83, STS-70 and STS-65. He holds a doctorate in materials science and has been the Principal Investigator for a Space Shuttle crystal growth experiment. Because of his background in materials science, Thomas will be concentrating his efforts during the Red shift on the five experiments in this discipline in the Large Isothermal Furnace. He also will work on the ten materials science investigations in the Electromagnetic Containerless Processing Facility and four that will be measuring the effects of microgravity and motion in the orbiter on the experiments. Thomas and six fellow crew members will lift off during a launch window that opens at 1:50 a.m. EDT, July opportunity to lift off before Florida summer rain showers reach the space center.

  12. KSC-2009-6192

    NASA Image and Video Library

    2009-11-12

    CAPE CANAVERAL, Fla. - STS-129 Mission Specialist Mike Foreman, left, is greeted by Space Shuttle Launch Director Mike Leinbach upon his arrival at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Looking on is astronaut Jerry L. Ross, chief of the Vehicle Integration Test Office at the Johnson Space Center. The six astronauts for space shuttle Atlantis’ STS-129 mission arrived at Kennedy aboard a NASA Shuttle Training Aircraft, a modified Gulfstream II jet, to make final preparations for their launch. On STS-129, the crew will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Launch is set for Nov. 16. For information on the STS-129 mission objectives and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  13. KSC-06pd1081

    NASA Image and Video Library

    2006-06-15

    KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Stephanie Wilson signals all is well after donning her launch and entry suit in preparation for the simulated countdown she and other crew members will undertake. The crew is taking part in Terminal Countdown Demonstration Test activities, including the dress rehearsal for launch. Mission STS-121 is scheduled to be launched July 1. Photo credit: NASA/Kim Shiflett

  14. STS-132 Launch Tweetup

    NASA Image and Video Library

    2010-05-12

    NASA Astronaut Janet Voss speaks to participants at the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)

  15. STS-101 crew poses for a photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During a break in Terminal Countdown Demonstration (TCDT) activities, the STS-101 crew poses for a photo at Launch Pad 39A. They are at the 195-foot level of the Fixed Service Structure for emergency egress training. Standing, from left to right, are Mission Specialist James Voss, Commander James D. Halsell Jr., and Mission Specialists Jeffrey N. Williams, Mary Ellen Weber and Yuri Usachev of Russia. Kneeling in front are Pilot Scott J. 'Doc' Horowitz and Mission Specialist Susan J. Helms. Behind them are the white solid rocket booster and orange external tank attached to Space Shuttle Atlantis. The TCDT also includes a simulated launch countdown and familiarization with the payload. During their mission to the International Space Station, the STS- 101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  16. Computation of Unsteady Flow in Flame Trench For Prediction of Ignition Overpressure Waves

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kris, Cetin

    2010-01-01

    Computational processes/issues for supporting mission tasks are discussed using an example from launch environment simulation. Entire CFD process has been discussed using an existing code; STS-124 conditions were revisited to support wall repair effort for STS-125 flight; when water bags were not included, computed results indicate that IOP waves with the peak values have been reflected from SRB s own exhaust hole; ARES-1X simulations show that there is a shock wave going through the unused exhaust hole, however, it plays a secondary role; all three ARES-1X cases and STS-1 simulations showed very similar IOP magnitudes and patters on the vehicle; with the addition of water bags and water injection, it will further diminish the IOP effects.

  17. Measurement of Cosmic Ray and Trapped Proton LET Spectra on the STS-95 HOST Mission

    NASA Astrophysics Data System (ADS)

    Stassinopoulos, E. G.; Barth, J. L.; Stauffer, C. A.

    2017-08-01

    This paper reports on in situ measurements of the linear energy transfer spectra of galactic cosmic rays and their progeny and of trapped Van Allen belt protons as recorded by a pulse height analyzer (PHA) radiation spectrometer which flew on the STS-95 DISCOVERY mission on the Hubble Orbital Systems Test cradle. The shuttle was launched on October 29, 1998 and had a mission duration of 8.5 days during the minimum phase of the solar activity cycle. The orbit of the STS-95 was about 550 km altitude and 28.5° inclination. Close agreement was seen between radiation environment model predictions and the measurements of the PHA. Agreement is obtained by considering the directionality of the radiation interacting with the shuttle structure.

  18. STS-9 Spacelab 1 Press Kit

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Press information on the STS-9/SPACELAB 1 mission is provided. Launch preparations, launch window, flight objectives, experiments, life sciences baseline data collection, SPACELAB 1 payload operations and control crew and specialists, and tracking and data management are among the topics explained.

  19. STS-89 Commander Wilcutt poses the day before launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Commander Terrence Wilcutt poses in front of the crew's family and friends at KSC's Launch Pad 39A the day before the scheduled launch of Space Shuttle Endeavour. Final preparations are under way toward liftoff on Jan. 22 on the eighth mission to dock with the Russian Space Station Mir. After docking, Mission Specialist Andrew Thomas, Ph.D., will transfer to the space station, succeeding David Wolf, M.D., who will return to Earth aboard Endeavour. Dr. Thomas will live and work on Mir until June. STS-89 is scheduled for liftoff at 9:48 p.m. EST.

  20. Launch of STS-63 Discovery

    NASA Image and Video Library

    1995-02-03

    STS063-S-007 (3 Feb 1995) --- The race to catch up with the Russia's Mir gets underway as the Space Shuttle Discovery launches from Pad 39B, Kennedy Space Center (KSC) at 12:22:04 (EST), February 3, 1995. Discovery is the first in the current fleet of four Space Shuttle vehicles to make 20 launches. Onboard for the 67th (STS-63 is out of sequence) Shuttle flight are astronauts James D. Wetherbee, mission commander; Eileen M. Collins, pilot; Bernard A. Harris Jr., payload commander; mission specialists Janice Voss and C. Michael Foale; along with Russian cosmonaut Vladimir G. Titov.

  1. KSC ice/frost/debris assessment for space shuttle mission STS-29R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-29R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-29R and their effect on the Space Shuttle Program are documented.

  2. Ice/frost/debris assessment for space shuttle mission STS-27R, December 2, 1988

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An Ice/Frost/Debris assessment was conducted for Space Shuttle Mission STS-27R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is viewed after launch to identify ice/debris sources and evaluate potential vehicle damage. The Ice/Frost/Debris conditions of Mission STS-27R and their effect on the Space Shuttle Program are documented.

  3. KSC-02pd0711

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- STS-111 Mission Specialist Philippe Perrin gets ready in his launch and entry suit for a simulated launch countdown at the pad. Perrin is with the French Space Agency. The simulation is part of STS-111 Terminal Countdown Demonstration Test activities for the STS-111 crew and Expedition 5. The payload on the mission to the International Space Station includes the Mobile Base System, an Orbital Replacement Unit and Multi-Purpose Logistics Module Leonardo. The Expedition 5 crew is traveling on Endeavour to replace the Expedition 4 crew on the Station. Launch of Endeavour is scheduled for May 30, 2002.

  4. Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle - Follow-On Experiments

    DTIC Science & Technology

    1996-10-01

    TITLE: Microencapsulation of Drugs in the Microgravity Environment of the United States Space Shuttle - Follow-On Experiments PRINCIPAL INVESTIGATOR...REPORT DATE 3. REPORT TYPE AND DATES COVERED October 1996 Final (4 May 92 - 3 Jul 96) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Microencapsulation of...call the Microencapsulation in Space (MIS-B) experiment. The MIS-B experiment flew on Space Shuttle Discovery -- Mission STS-70. Before launch, NASA

  5. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. This study focused on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results of these tests, the most corrosion resistant alloys were found to be (in order) Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of those tested for this application.

  6. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III; Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made out of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. Nineteen metal alloys were tested. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results, the most corrosion resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of the alloys tested.

  7. View of the launch of STS 51-A shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1984-01-01

    View across the water of the launch of STS 51-A shuttle Discovery. The orbiter is just clearing the launch pad (90032); closer view of the Shuttle Discovery just clearing the launch pad. Photo was taken from across the river, with trees and shrubs forming the bottom edge of the view (90033); Low angle view of the rapidly climbing Discovery, still attached to its two solid rocket boosters and an external fuel tank (90034).

  8. STS-134 Flight Controllers on Console - Launch.

    NASA Image and Video Library

    2011-05-16

    JSC2011-E-044228 (16 May 2011) --- Flight director Tony Ceccacci is pictured at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Endeavour's STS-134 launch. Liftoff was at 8:56 a.m. (EDT) on May 16, 2011, from Launch Pad 39A at NASA's Kennedy Space Center. Photo credit: NASA

  9. STS-122 flight controllers in WFCR during launch

    NASA Image and Video Library

    2008-02-07

    JSC2008-E-010344 (7 Feb. 2008) --- Flight directors Norm Knight (left), Bryan Lunney and Richard Jones monitor data at their consoles in the space shuttle flight control room of Johnson Space Center's Mission Control Center (MCC) during launch countdown activities a few hundred miles away in Florida, site of Space Shuttle Atlantis' scheduled STS-122 launch. Liftoff occurred at 2:45 p.m. (EST) on Feb. 7, 2008 from launch pad 39A at Kennedy Space Center.

  10. President and Mrs. Clinton watch launch of Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Watching a successful launch of Space Shuttle Discovery from the roof of the Launch Control Center are (left to right) Astronaut Eileen Collins (in flight suit) with unidentified companions, NASA Administrator Daniel Goldin, Astronaut Robert Cabana, First Lady Hillary Rodham Clinton, and U.S. President Bill Clinton. This was the first launch of a Space Shuttle to be viewed by President Clinton, or any President to date. They attended the launch to witness the return to space of American legend John H. Glenn Jr., payload specialist on mission STS-95. Collins will command the crew of STS-93, the first woman to hold that position. Cabana will command the crew of STS-88, the first Space Shuttle mission to carry hardware to space for the assembly of the International Space Station, targeted for liftoff on Dec. 3.

  11. Summary Report of Mission Acceleration Measurements for STS-62, Launched 4 March 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The second mission of the United States Microgravity Payload on-board the STS-62 mission was supported with three accelerometer instruments: the Orbital Acceleration Research Experiment (OARE) and two units of the Space Acceleration Measurements System (SAMS). The March 4, 1994 launch was the fourth successful mission for OARE and the ninth successful mission for SAMS. The OARE instrument utilizes a sensor for very low frequency measurements below one Hertz. The accelerations in this frequency range are typically referred to as quasisteady accelerations. One of the SAMS units had two remote triaxial sensor heads mounted on the forward MPESS structure between two furnance experiments, MEPHISTO and AADSF. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The other SAMS unit utilized three remote triaxial sensor heads. Two of the sensor heads were mounted on the aft MPESS structure between the two experiments IDGE and ZENO. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The third sensor head was mounted on the thermostat housing inside the IDGE experiment container. This triaxial head had a low-pass filter cut-off frequency at 5 Hz. This report is prepared to furnish interested experiment investigators with a guide to evaluating the acceleration environment during STS-62 and as a means of identifying areas which require further study. To achieve this purpose, various pieces of information are included, such as an overview of the STS-62 mission, a description of the accelerometer system flown on STS-62, some specific analysis of the accelerometer data in relation to the various mission activities, and an overview of the low-gravity environment during the entire mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  12. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers (in protective clothing) brief STS-117 Mission Specialist James Reilly (center) and STS-115 Mission Specialist Joseph Tanner (right) about the Japanese Experiment Module (JEM). Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-21

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers (in protective clothing) brief STS-117 Mission Specialist James Reilly (center) and STS-115 Mission Specialist Joseph Tanner (right) about the Japanese Experiment Module (JEM). Equipment familiarization is a routine part of astronaut training and launch preparations.

  13. STS-101 crew talks with the media after TCDT activities at the pad

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After Terminal Countdown Demonstration Test (TCDT) activities at Launch Pad 39A, the STS-101 crew talk to the media. At the far left is George Diller, with NASA Public Affairs, who is moderating the event. At the microphone Commander James D. Halsell Jr. answers a question. Next to him, standing left to right, are Pilot Scott J. 'Doc' Horowitz and Mission Specialists Mary Ellen Weber, Jeffrey N. Williams, James Voss, Susan J. Helms and Yuri Usachev of Russia. The TCDT includes emergency egress training and a simulated launch countdown. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  14. KSC-07pd3371

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- The space shuttle Atlantis STS-122 crew poses for a group portrait at Launch Pad 39A as Atlantis undergoes final preparations for launch behind them. From left are Mission Specialists Hans Schlegel, Rex Walheim and Leland Melvin; Pilot Alan Poindexter; Commander Steve Frick; and Mission Specialists Stanley Love and Leopold Eyharts. Schlegel and Eyharts are with the European Space Agency. Eyharts will remain on the International Space Station as a flight engineer for Expedition 16 following the STS-122 mission. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  15. STS-82 Discovery payloads being integrated in VPF

    NASA Image and Video Library

    1997-01-30

    KENNEDY SPACE CENTER, FLORIDA STS-82 PREPARATIONS VIEW --- Workers in the Kennedy Space Center (KSC) Vertical Processing Facility (VPF) prepare to integrate the Small Orbital Replacement Unit (Oru) Protective Enclosure (Sope), shown here being lifted, with the ORU Carrier shelf, in background, as part of the pre-launch processing for STS-82. The mission, the second one devoted to servicing of the HST, is targeted for launch on February 11, 1997.

  16. A new Master Events Controller is prepared for installation in STS-99 Endeavour

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers in a Quality trailer in the Launch Pad 39B Area unwrap a new Enhanced Main Events Controller (E-MEC) to be installed in Shuttle Endeavour. The original E-MEC in Endeavour became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. The E-MECs are located in the orbiter's aft compartment and both are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. Before workers can begin E-MEC replacement efforts at the launch pad, cryogenic reactants must be offloaded from the orbiter and Space Shuttle ordnance disconnected. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.

  17. A new Master Events Controller is prepared for installation in STS-99 Endeavour

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A new Enhanced Main Events Controller (E-MEC) for Shuttle Endeavour sits on a table in a Quality trailer in the Launch Pad 39B area. The original E-MEC in Endeavour became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. The E-MECs are located in the orbiter's aft compartment and both are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. Before workers can begin E-MEC replacement efforts at the launch pad, cryogenic reactants must be offloaded from the orbiter and Space Shuttle ordnance disconnected. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.

  18. STS-112 M.S. Yurchikhin suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- During suitup for launch, STS-112 Mission Specialist Fyodor Yurchikhin shows he is ready for his first Shuttle flight. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure, the first starboard truss segment, to be attached to the central truss segment, S0, and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  19. STS-105 crew poses for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  20. STS-92 Mission Specialist Chiao has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-92 Mission Specialist Leroy Chiao has his launch and entry suit adjusted during fit check. Chiao and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be Chiao's third Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  1. STS-101 crew members meet family and friends

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A light-hearted moment during a meeting of the STS-101 crew with family and friends at Launch Pad 39A. From left, Commander James D. Halsell Jr., Mission Specialist Mary Ellen Weber and Pilot Scott J. Horowitz. Mission STS-101 will take the crew to the International Space Station to deliver logistics and supplies, plus prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. The crew will conduct one space walk to perform maintenance on the Space Station as well. This will be the third assembly flight for the Space Station. Launch is targeted for April 24 at about 4:15 p.m. EDT from Launch Pad 39A.

  2. STS-101 M.S. Helms arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Susan Helms arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The last to arrive, she and the rest of the crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  3. STS-101 M.S. Weber arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Mary Ellen Weber waves before climbing out of a T-38 jet aircraft at KSC's Shuttle Landing Facility. She and the rest of the crew will be preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  4. STS-101 Pilot Horowitz arrives at KSC for 4th launch attempt

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Pilot Scott J. Horowitz climbs out of a T-38 jet aircraft after arriving at KSC's Shuttle Landing Facility. He and the rest of the crew will begin preparing for the launch on May 18. The mission will take the crew of seven to the International Space Station, delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is targeted for liftoff at 6:38 a.m. EDT from Launch Pad 39A.

  5. KSC-07pd3374

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Pilot Alan Poindexter takes part in a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  6. KSC-07pd3376

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Mission Specialist Stanley Love takes part in a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  7. KSC-07pd3375

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Mission Specialist Leland Melvin takes part in a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  8. STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During emergency egress training on Launch Pad 39A, Expedition Three cosmonaut Vladimir Nikolaevich Dezhurov, STS-105 Mission Specialist Patrick Forrester, and cosmonaut Mikhail Tyurin watch while other crew members descend in a slidewire basket. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  9. STS-86 crew member Wolf dons a gas mask during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 Mission Specialist David A. Wolf dons a gas mask as part of training exercises during the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. Wolf is wearing the patch from his first and only mission to date, STS-58 in 1993. STS-86 will be the seventh docking of the Space Shuttle with the Russian Space Station Mir. During the docking, Wolf will transfer to the orbiting Russian station and become a member of the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who has been on the Mir since the last docking mission, STS-84, in May. Launch of Mission STS-86 aboard the Space Shuttle Atlantis is targeted for Sept. 25.

  10. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-109

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  11. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-110

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  12. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-105

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  13. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-104

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  14. Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-108

    NASA Technical Reports Server (NTRS)

    Oliu, Armando

    2005-01-01

    The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.

  15. A Change of Inertia-Supporting the Thrust Vector Control of the Space Launch System

    NASA Technical Reports Server (NTRS)

    Dziubanek, Adam J.

    2012-01-01

    The Space Launch System (SLS) is America's next launch vehicle. To utilize the vehicle more economically, heritage hardware from the Space Transportation System (STS) will be used when possible. The Solid Rocket Booster (SRB) actuators could possibly be used in the core stage of the SLS. The dynamic characteristics of the SRB actuator will need to be tested on an Inertia Load Stand (ILS) that has been converted to Space Shuttle Main Engine (SSME). The inertia on the pendulum of the ILS will need to be changed to match the SSME inertia. In this testing environment an SRB actuator can be tested with the equivalent resistence of an SSME.

  16. STS-97 P6 truss payload canister is lifted into payload changeout room

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On Launch Pad 39B, the payload transport canister, with the P6 integrated truss segment inside, is lifted toward the payload changeout room (PCR). The PCR is the enclosed, environmentally controlled portion of the Rotating Service Structure that supports payload delivery at the pad and subsequent vertical installation in the orbiter payload bay. Attached to the canister are the red umbilical lines that maintain the controlled environment inside. The P6, payload on mission STS-97, comprises Solar Array Wing-3 and the Integrated Electronic Assembly, to be installed on the International Space Station. The Station'''s electrical power system will use eight photovoltaic solar arrays, each 112 feet long by 39 feet wide, to convert sunlight to electricity. The solar arrays are mounted on a '''blanket''' that can be folded like an accordion for delivery. Once in orbit, astronauts will deploy the blankets to their full size. Gimbals will be used to rotate the arrays so that they will face the Sun to provide maximum power to the Space Station. Launch of STS-97 is scheduled for Nov. 30 at 10:06 p.m. EST.

  17. STS-102 crew talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During Terminal Countdown Demonstration Test activities, the STS-102 crew takes time to talk to the media at the slidewire basket landing near Launch Pad 39B. With the microphone (left) is Commander James Wetherbee; the others are (left to right) Mission Specialists Yury Usachev, Andrew Thomas, James Voss, Susan Helms and Paul Richards; and Pilot James Kelly. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Voss, Helms and Usachev are the Expedition Two crew who will be the second resident crew on the International Space Station. They will replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  18. STS-120 Crew Portrait

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These seven astronauts took a break from training to pose for the STS-120 crew portrait. Pictured from the left are astronauts Scott E. Parazynski, Douglas H. Wheelock, Stephanie D. Wilson, all mission specialists; George D. Zamka, pilot; Pamela A. Melroy, commander; Daniel M. Tani, Expedition 16 flight engineer; and Paolo A. Nespoli, mission specialist representing the European Space Agency (ESA). The crew members were attired in training versions of their shuttle launch and entry suits. Tani joined Expedition 16 as flight engineer after launching to the International Space Station (ISS) and is scheduled to return home on mission STS-122. STS-120 launched October 23, 2007 with the main objectives of installing the U.S. Node 2, Harmony, and the relocation and deployment of the P6 truss to its permanent location.

  19. KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at Pad 39A, Kennedy Space Center, Fla. Discovery, the orbiter for STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

    NASA Image and Video Library

    1997-02-07

    KENNEDY SPACE CENTER, FLA. - The Payload is seen inside of the Bay just before the doors are closed for flight at Pad 39A, Kennedy Space Center, Fla. Discovery, the orbiter for STS-82 mission, is ready for the launch of the second Hubble Space Telescope service mission. The payload consists of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) that will be installed, Fine Guidance Sensor #1 (FGS-1), and the Space Telescope Imaging Spectrograph (STIS) to be installed. The STS-82 will launch with a crew of seven at 3:54 a.m. EST, Feb. 11, 1997. The launch window is 65 minutes in duration. The Mission Commander for STS-82 is Ken Bowersox. The purpose of the mission is to upgrade the scientific capabilities, service or replace aging components on the Telescope, and provide a reboost to the optimum altitude.

  20. STS-1 - LAUNCH - KSC

    NASA Image and Video Library

    1981-04-15

    The Space Shuttle Columbia begins a new era of space transportation when it lifts off from NASA Kennedy Space Center (KSC). The reusable Orbiter, its two (2) fuel tanks and two (2) Solid Rocket Boosters (SRB) has just cleared the launch tower. Aboard the spacecraft are Astronauts John W. Young, Commander, and Robert L. Crippen, Pilot . 1. STS-I - LAUNCH KSC, FL KSC, FL Also available in 4x5 BW

  1. STS-135 Launch Day

    NASA Image and Video Library

    2011-07-07

    Warren Hinson, a NASA Emergency Response Team (ERT) member, keeps an eye out while flying near the Vehicle Assembly Building (VAB) prior to the launch of space shuttle Atlantis, STS-135, Friday, July 8, 2011, at Kennedy Space Center in Cape Canaveral, Fla. The launch of Atlantis, is the final flight of the shuttle program, a 12-day mission to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  2. Storm Clouds Roll In Over The Vehicle Assembly Building

    NASA Image and Video Library

    2009-07-12

    Storm clouds roll in over the NASA Vehicle Assembly building moments after STS-127 Space Shuttle Launch Director Pete Nickolenko and the launch team called the launch a "No Go" due to weather conditions at the NASA Kennedy Space Center in Cape Canaveral, Florida, Sunday, July 12, 2009. Endeavour will be launching with the crew of STS-127 on a 16-day mission that will feature five spacewalks and complete construction of the Japan Aerospace Exploration Agency's Kibo laboratory. Photo Credit: (NASA/Bill Ingalls)

  3. Storm Clouds Roll In Over The Vehicle Assembly Building

    NASA Image and Video Library

    2009-07-11

    Storm clouds roll in over the NASA Vehicle Assembly building moments after STS-127 Space Shuttle Launch Director Pete Nickolenko and the launch team called the launch a "No Go" due to weather conditions at the NASA Kennedy Space Center in Cape Canaveral, Florida, Sunday, July 12, 2009. Endeavour will be launching with the crew of STS-127 on a 16-day mission that will feature five spacewalks and complete construction of the Japan Aerospace Exploration Agency's Kibo laboratory. Photo Credit: (NASA/Bill Ingalls)

  4. KSC-07pd2717

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Doug Wheelock has his helmet fitted on his launch and entry suit, preparing for launch. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  5. KSC-07pd2719

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Daniel Tani tries on his helmet with his launch and entry suit, preparing for launch. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  6. KSC-07pd2715

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Doug Wheelock tries on his launch and entry suit to prepare for launch. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  7. KSC-07pd2718

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Paolo Nespoli has his helmet fitted on his launch and entry suit, preparing for launch. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  8. KSC-07pd2721

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Stephanie Wilson tries on her launch and entry suit, preparing for launch. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  9. Bird Strike Risk for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hales, Christy; Czech, Matthew

    2017-01-01

    Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. This presentation will outline an approach for estimating risk resulting from bird strikes to space launch vehicles. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts all affect the risk due to bird strike. Lessons learned, challenges over lack of data, and significant risk contributors will be discussed.

  10. STS-101 Mission Specialist Williams takes his seat in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialist Jeffrey N. Williams takes his seat inside Space Shuttle Atlantis before taking part in a simulated launch countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that also include emergency egress training and familiarization with the payload. Other crew members taking part are Commander James D. Halsell Jr., Pilot Scott J. 'Doc' Horowitz and Mission Specialists Mary Ellen Weber, James Voss, Susan Helms, and Yuri Usachev of Russia. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  11. STS-101 crew members Weber and Williams take their seats in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-101 Mission Specialists Mary Ellen Weber (left) and Jeffrey N. Williams (right) happily settle into their seats inside Space Shuttle Atlantis for a simulated launch countdown. The countdown is part of Terminal Countdown Demonstration Test (TCDT) activities that also include emergency egress training and familiarization with the payload. Other crew members taking part are Commander James D. Halsell Jr., Pilot Scott J. 'Doc' Horowitz and Mission Specialists James Voss, Susan Helms and Yuri Usachev of Russia. During their mission to the International Space Station, the STS-101 crew will be delivering logistics and supplies, plus preparing the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk to perform maintenance on the Space Station. This will be the third assembly flight for the Space Station. STS-101 is scheduled to launch April 24 at 4:15 p.m. from Launch Pad 39A.

  12. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the slidewire landing zone at Launch Pad 39B, STS-97 Mission Specialist Joe Tanner (center, with microphone) speaks to the press about his extravehicular activity (EVA) during the mission. With him are the rest of the crew, Commander Brent Jett and Pilot Mike Bloomfield on the left and Mission Specialists Marc Garneau and Carlos Noriega on the right. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Visible in the background are the solid rocket booster and external tank on Space Shuttle Endeavour. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  13. The STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the slidewire landing zone at Launch Pad 39B, STS-97 Mission Specialist Joe Tanner (center, with microphone) speaks to the press about his extravehicular activity (EVA) during the mission. With him are the rest of the crew, Commander Brent Jett and Pilot Mike Bloomfield on the left and Mission Specialists Marc Garneau and Carlos Noriega on the right. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Visible in the background are the solid rocket booster and external tank on Space Shuttle Endeavour. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  14. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Standing in the slidewire landing zone at Launch Pad 39B, the STS-97 crew respond to questions from the media. They are, left to right, Commander Brent Jett, Pilot Mike Bloomfield and Mission Specialists Joe Tanner, Marc Garneau and Carlos Noriega. Garneau is with the Canadian Space Agency. The nets suspended behind them are a braking system catch net for the slidewire baskets that provide emergency exit from the orbiter and Fixed Service Structure. The crew is at KSC to take part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and a simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  15. STS-100 MPLM Raffaello is moved to the payload canister

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - Suspended by the overhead crane, the Multi-Purpose Logistics Module Raffaello approaches the end of the payload canister. Part of the payload on mission STS-100 to the International Space Station, Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001 at 2:41 p.m. EDT from Launch Pad 39A.

  16. Astronaut Joseph P. Allen, STS-5 crew member, in front of open hatch

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Astronaut Joseph P. Allen, right, STS-5 mission specialist, slips on jacket portion of his Shuttle constant-wear garment in the White room at Launch Pad 39A at the Kennedy Space Center (KSC). Astronaut William B. Lenoir, STS-5's other mission specialist, left, waits to enter the Columbia, whose open hatch is at center. Electrodes on Allen's face and head are for monitoring his reflexes during launch.

  17. STS_135_Launch

    NASA Image and Video Library

    2011-07-08

    JSC2011-E-067589 (8 July 2011) --- The space shuttle Atlantis launches for the STS-135 mission to the International Space Station in the final mission of the Space Shuttle Program at NASA?s Kennedy Space Center in Florida. Liftoff was at 11:29 a.m. (EDT) on July 8, 2011. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  18. STS_135_Launch

    NASA Image and Video Library

    2011-07-09

    JSC2011-E-067644 (8 July 2011) --- The space shuttle Atlantis launches for the STS-135 mission to the International Space Station in the final mission of the Space Shuttle Program at NASA?s Kennedy Space Center in Florida. Liftoff was at 11:29 a.m. (EDT) on July 8, 2011. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  19. STS_135_Launch

    NASA Image and Video Library

    2011-07-08

    JSC2011-E-067612 (8 July 2011) --- The space shuttle Atlantis launches for the STS-135 mission to the International Space Station in the final mission of the Space Shuttle Program at NASA?s Kennedy Space Center in Florida. Liftoff was at 11:29 a.m. (EDT) on July 8, 2011. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  20. STS_135_Launch

    NASA Image and Video Library

    2011-07-08

    JSC2011-E-067590 (8 July 2011) --- The space shuttle Atlantis launches for the STS-135 mission to the International Space Station in the final mission of the Space Shuttle Program at NASA?s Kennedy Space Center in Florida. Liftoff was at 11:29 a.m. (EDT) on July 8, 2011. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  1. STS_135_Launch

    NASA Image and Video Library

    2011-07-09

    JSC2011-E-067640 (8 July 2011) --- The space shuttle Atlantis launches for the STS-135 mission to the International Space Station in the final mission of the Space Shuttle Program at NASA?s Kennedy Space Center in Florida. Liftoff was at 11:29 a.m. (EDT) on July 8, 2011. Onboard are NASA astronauts Chris Ferguson, STS-135 commander; Doug Hurley, pilot; Sandy Magnus and Rex Walheim, both mission specialists. Photo credit: NASA Photo/Houston Chronicle, Smiley N. Pool

  2. STS-69 crew prepares for landing

    NASA Image and Video Library

    1995-09-21

    STS069-343-014 (18 September 1995) --- Astronaut David M. Walker, mission commander, gets a hand from astronaut Michael L. Gernhardt as he gets into the partial-pressure launch and entry suit in preparation for landing. STS-69 and the Space Shuttle Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC). The multifaceted mission ended September 18, 1995, with a successful landing on Runway 33 at KSC.

  3. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Space shuttle Atlantis launches through the clouds from Launch Pad 39A on a balmy Florida afternoon at NASA's Kennedy Space Center. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  4. STS-99 workers carry new Master Events Controller to Endeavour

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Workers carry the replacement Enhanced Main Events Controller (E- MEC) to Shuttle Endeavour at Launch Pad 39A for installation in the aft compartment of the payload bay. The original E-MEC became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. Both E-MECs are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.

  5. STS-99 workers move new Master Events Controller into aft compartment

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At Launch Pad 39A, workers move the replacement Enhanced Main Events Controller (E-MEC) into Shuttle Endeavour's aft compartment in the payload bay. The original E-MEC became suspect during the Jan. 31 launch countdown and mission STS-99 was delayed when NASA managers decided to replace it. Each Shuttle carries two enhanced master events controllers (E-MECs), which provide relays for onboard flight computers to send signals to arm and fire pyrotechnics that separate the solid rockets and external tank during assent. Both E-MECs are needed for the Shuttle to be cleared for flight. Currently Endeavour and Columbia are the only two orbiters with the E-MECs. Built by Rockwell's Satellite Space Electronics Division, Anaheim, Calif., each unit weighs 65 pounds and is approximately 20 inches long, 13 inches wide and 8 inches tall. Previously, three Shuttle flights have been scrubbed or delayed due to faulty MECs: STS-73, STS-49 and STS-41-D. The next scheduled date for launch of STS-99 is Feb. 11 at 12:30 p.m. EST.

  6. KSC-2011-2200

    NASA Image and Video Library

    2011-03-10

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility's conference room at NASA's Kennedy Space Center in Florida, Ken Bollweg, Alpha Magnetic Spectrometer-2 (AMS) deputy project manager, talks to media about the particle physics detector. AMS is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS-2 will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch April 19 at 7:48 p.m. EDT. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Glenn Benson

  7. KSC-2010-4475

    NASA Image and Video Library

    2010-08-26

    CAPE CANAVERAL, Fla. -- At the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, STS-134 Mission Specialist Andrew Feustel looks on as European Space Agency astronaut Roberto Vittori greets the media after the arrival of the Alpha Magnetic Spectrometer, or AMS. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Kim Shiflett

  8. KSC-08pd0165

    NASA Image and Video Library

    2008-02-06

    KENNEDY SPACE CENTER, FLA. -- On the flight deck of space shuttle Atlantis, STS-122 Mission Specialist Stanley Love looks at cables and controls. The STS-122 mission to the International Space Station is scheduled to launch at 2:45 p.m. Feb. 7 with a crew of seven. Atlantis will carry the Columbus Laboratory, Europe's largest contribution to the construction of the station. Columbus will support scientific and technological research in a microgravity environment. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to the Harmony module to carry out experiments in materials science, fluid physics and biosciences, as well as to perform a number of technological applications. Photo credit: NASA/Kim Shiflett

  9. STS-46 MS PLC Hoffman floats in life raft during water egress training at JSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) and Payload Commander Jeffrey A. Hoffman floats in a one-person life raft during launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Hoffman, who has just tumbled out a side hatch mockup, waits for his life raft to fully inflate as a SCUBA-equipped diver looks on. The long cylindrical object in the foreground serves as a prop for the crew escape system (CES) pole. In the background MS Franklin R. Chang-Diaz floats in a fully inflated life raft.

  10. Launch of Space Shuttle Atlantis / STS-125 Mission

    NASA Image and Video Library

    2009-05-11

    STS125-S-050 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.

  11. Launch of Space Shuttle Atlantis / STS-125 Mission

    NASA Image and Video Library

    2009-05-11

    STS125-S-057 (11 May 2009) --- The launch of Space Shuttle Atlantis from launch pad 39A at NASA's Kennedy Space Center in Florida is viewed from behind launch pad 39B. On pad 39B is Space Shuttle Endeavour, which can launch, if needed, for rescue of Atlantis? crew during its STS-125 mission to service NASA?s Hubble Space Telescope. Liftoff of Atlantis was on time at 2:01 p.m. (EDT) on May 11, 2009. Onboard are astronauts Scott Altman, commander; Gregory C. Johnson, pilot; Michael Good, Megan McArthur, John Grunsfeld, Mike Massimino and Andrew Feustel, all mission specialists. Atlantis' 11-day flight will include five spacewalks to refurbish and upgrade the telescope with state-of-the-art science instruments that will expand Hubble's capabilities and extend its operational lifespan through at least 2014. The payload includes a Wide Field Camera 3, Fine Guidance Sensor and the Cosmic Origins Spectrograph.

  12. STS-103 Mission Specialist Smith suits up before launch

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After donning his launch and entry suit, sts-103 Mission Specialist Steven L. Smith shows a positive attitude over the second launch attempt for Space Shuttle Discovery. The previous launch attempt on Dec. 17 was scrubbed about 8:52 p.m. due to numerous violations of weather launch commit criteria at KSC. Smith and other crew members Commander Curtis L. Brown Jr., Pilot Scott J. Kelly and Mission Specialists C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Francois Clervoy of France are scheduled to lift off at 7:50 p.m. EST Dec. 19 on mission STS-103, servicing the Hubble Space Telescope. Objectives for the nearly eight-day mission include replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Discovery is expected to land at KSC Monday, Dec. 27, at about 5:24 p.m. EST.

  13. KSC-2011-5310

    NASA Image and Video Library

    2011-07-08

    CAPE CANAVERAL, Fla. -- Launch controllers wave their STS-135 shuttle launch team member flags and cheer in Firing Room 4 of the Launch Control Center following the successful launch of space shuttle Atlantis from NASA's Kennedy Space Center in Florida. In the foreground, from left, are NASA Test Directors Charlie Blackwell-Thompson, Jeremy Graeber, and Jeff Spaulding; Orbiter Test Conductor Roberta Wyrick; and Assistant Orbiter Test Conductor Laurie Sally. Atlantis began its final flight, the STS-135 mission to the International Space Station, at 11:29 a.m. EDT on July 8. STS-135 will deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also is flying the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett

  14. STS-76 Payload Cmdr Ronald Sega suits up

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-76 Payload Commander Ronald M. Sega is donning his launch/entry suit in the Operations and Checkout Building with assistance from a suit technician. The third docking between the Russian Space Station Mir and the U.S. Space Shuttle marks the second trip into space for Sega, who recently served a five-month assignment in Russia as operations director for NASA activities there. Once suitup activities are completed the six-member STS-76 flight crew will depart for Launch Pad 39B, where the Space Shuttle Atlantis is undergoing final preparations for liftoff during an approximately seven-minute launch window opening around 3:13 a.m. EST, March 22.

  15. KSC-00padig089

    NASA Image and Video Library

    2000-11-08

    STS-97 Mission Specialist Joe Tanner settles into his seat in Space Shuttle Endeavour on Launch Pad 39B. He and the rest of the crew are taking part in a simulated launch countdown, part of Terminal Countdown Demonstration Test activities that also include emergency egress training and familiarization with the payload. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST

  16. STS-107 crew photo during TCDT before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During Terminal Countdown Demonstration Test activities at the launch pad, the STS-107 crew pauses for a group photo. From left are Payload Commander Michael Anderson, Commander Rick Husband, Mission Specialist Laurel Clark, Pilot William 'Willie' McCool, and Mission Specialists Ilan Ramon, Kalpana Chawla and David Brown. Behind them is Space Shuttle Columbia. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .

  17. KSC-01pp0777

    NASA Image and Video Library

    2001-04-08

    STS-100 Commander Kent V. Rominger is ready to take the wheel on the M-113 armored carrier that could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Driving the tracked vehicle is part of Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A

  18. KSC-01pp0779

    NASA Image and Video Library

    2001-04-08

    STS-100 Mission Specialist Chris A. Hadfield is ready to take the wheel on the M-113 armored carrier that could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. Driving the tracked vehicle is part of Terminal Countdown Demonstration Test activities, which include emergency escape training, payload walkdown and a simulated launch countdown. The primary payload on mission STS-100 comprises the Canadian robotic arm, SSRMS, and Multi-Purpose Logistics Module, Raffaello. Launch of Space Shuttle Endeavour on mission STS-100 is targeted for April 19 at 2:41 p.m. EDT from Launch Pad 39A

  19. STS-113 Mission Specialist Michael Lopez-Alegria suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist Michael Lopez-Alegria suits up before launch. This will be his third Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 a.m. EST.

  20. STS-113 Mission Specialist Michael Lopez-Alegria suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist Michael Lopez-Alegria suits up for launch. He will be making his third Shuttle flight. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for 8:15 p.m. EST.

  1. STS-113 Mission Specialist John Herrington suits up before launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington suits up before launch. This will be his first Shuttle flight. The primary mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for Nov. 11 at 12:58 p.m. EST.

  2. STS-108 backup crew member Robinson in an M-113

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Astronaut Stephen K. Robinson takes his turn at driving an M-113 armored personnel carrier. Robinson is a backup crew member for the International Space Station Expedition 4 crew, who are flying on Space Shuttle Endeavour as part of mission STS-108. Both the mission crew and Expedition 4 crews are at KSC for Terminal Countdown Demonstration Test activities. The TCDT includes emergency exit from the launch pad and a simulated launch countdown. The 11-day mission will also carry the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. STS-108 is scheduled to launch Nov. 29.

  3. STS-28 Columbia, OV-102, crewmembers leave KSC O&C Bldg en route to LC Pad 39

    NASA Image and Video Library

    1989-08-08

    STS028-S-001 (8 Aug 1989) --- The five astronaut crewmembers for STS-28 leave the operations and checkout building to board a transfer van en route to Launch Complex 39 for a date with Columbia. Front to back are Brewster H. Shaw Jr., Richard N. Richards, David C. Leestma, James C. Adamson and Mark N. Brown. At the rear of the line are Astronaut Michael L. Coats, acting chief of the astronaut office; and Donald R. Puddy, director of flight crew operations at JSC. Coats later flew a NASA Shuttle training aircraft for pre-launch and launch monitoring activities.

  4. Processing activities for STS-91 continue in OPF Bay 2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Processing activities for STS-91 continue in KSC's Orbiter Processing Facility Bay 2. Two Get Away Special (GAS) canisters are shown after their installation into Discovery's payload bay. At left is G-648, an Canadian Space Agency-sponsored study of manufactured organic thin film by the physical vapor transport method, and the can on the right contains commemorative flags to be flown during the mission. STS-91 is scheduled to launch aboard the Space Shuttle Discovery for the ninth and final docking with the Russian Space Station Mir from KSC's Launch Pad 39A on June 2 with a launch window opening around 6:04 p.m. EDT.

  5. KSC ice/frost/debris assessment for Space Shuttle Mission STS-30R

    NASA Technical Reports Server (NTRS)

    Stevenson, Charles G.; Katnik, Gregory N.; Higginbotham, Scott A.

    1989-01-01

    An ice/frost/debris assessment was conducted for Space Shuttle Mission STS-30R. Debris inspections of the flight elements and launch pad are performed before and after launch. Ice/frost conditions on the external tank are assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by an on-pad visual inspection. High speed photography is analyzed after launch to identify ice/debris sources and evaluate potential vehicle damage. The ice/frost/debris conditions of Mission STS-30R and their overall effect on the Space Shuttle Program is documented.

  6. Debris/Ice/TPS Assessment and Photographic Analysis for Shuttle Mission STS-39

    NASA Technical Reports Server (NTRS)

    Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley

    1991-01-01

    A Debris/Ice/TPS (thermal protection system) assessment and photographic analysis was conducted for Space Shuttle Mission STS-39. Debris inspections of the flight elements and launch pad were performed before and after launch. Ice/frost conditions on the external tank were assessed by the use of computer programs, nomographs, and infrared scanner data during cryogenic loading of the vehicle followed by on-pad visual inspection. High speed photography of launch was analyzed to identify ice/debris anomalies. The debris/ice/TPS conditions and photographic analysis of Mission STS-39, and their overall effect on the Space Shuttle Program are documented.

  7. STS-104 Commander Lindsey talks to media at the SLF after arriving for launch

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- After arriving at the Shuttle Landing Facility, the STS-104 crew stopped to talk to the media. At the microphone is Commander Steven W. Lindsey; at right is Pilot Charles O. Hobaugh. The crew is at KSC to make final preparations for their launch. Other crew members are Mission Specialists James F. Reilly, Janet Lynn Kavandi and Michael L. Gernhardt. The launch of Atlantis on mission STS-104 is scheduled for July 12 from Launch Pad 39B. The mission is the 10th assembly flight to the International Space Station and carries the Joint Airlock Module, which will become the primary path for spacewalk entry and departure using both U.S. spacesuits and the Russian Orlan spacesuit for EVA activity.

  8. STS-113 Mission Specialist John Herrington suits up for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John Herrington suits up for launch. Herrington will be making his first Shuttle flight. This is also the first launch of the first tribally enrolled Native American astronaut -- John B. Herrington -- on Space Transportation System. The primary mission for the crew is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major objective of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is scheduled for 8:15 p.m. EST.

  9. STS-92 Mission Specialist Wakata has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-92 Mission Specialist Koichi Wakata of Japan gets an adjustment on his launch and entry suit. This mission is Wakata's second Shuttle flight. He and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. STS- 92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  10. KSC-07pd3373

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Commander Steve Frick responds to a question from the media during a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  11. STS-79 CREW COMMANDER WILLIAM F. READDY AT PAD 39A FOR TCDT

    NASA Technical Reports Server (NTRS)

    1996-01-01

    With the Space Shuttle Atlantis as a backdrop, STS-79 Commander William F. Readdy answers questions posed by reporters at Launch Pad 39A. Readdy and the other five members of the STS-79 crew, Pilot Terrence W. Wilcutt and Mission Specialists Jay Apt, Carl E. Walz, Tom Akers, and John E. Blaha, are at KSC for the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for the launch targeted for mid-September. STS-79 will be the fourth Shuttle-Mir docking and the first flight of the SPACEHAB Double Module.

  12. STS-97 Mission Specialist Garneau with full launch and entry suit during pre-pack and fit check

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-97 Commander Brent Jett gets help with his gloves from suit technician Bill Todd. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:06 p.m. EST.

  13. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

    NASA Image and Video Library

    2003-10-21

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (left) and STS-117 Mission Specialist James Reilly (right) are donning protective clothing to interface with the Japanese Experiment Module (JEM), in the background. Equipment familiarization is a routine part of astronaut training and launch preparations.

  14. STS-89 Mission Specialist Andrew Thomas in White Room

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist Andrew Thomas, Ph.D., is assisted with his ascent and re-entry flight suit in the white room at Launch Pad 39A before entering Space Shuttle Endeavour for launch. The STS-89 mission will be the eighth docking of the Space Shuttle with the Russian Space Station Mir. After docking, Thomas will transfer to the space station, succeeding David Wolf, M.D., who will return to Earth aboard Endeavour. Dr. Thomas will live and work on Mir until June. STS-89 is scheduled for a Jan. 22 liftoff at 9:48 p.m.

  15. STS126-S-002

    NASA Image and Video Library

    2008-03-01

    STS126-S-002 (5 March 2008) --- Attired in training versions of their shuttle launch and entry suits, these seven astronauts take a break from training to pose for the STS-126 crew portrait. Astronaut Christopher J. Ferguson, commander, is at center; and astronaut Eric A. Boe, pilot, is third from the right. Remaining crewmembers, pictured from left to right, are astronauts Sandra H. Magnus, Stephen G. Bowen, Donald R. Pettit, Robert S. (Shane) Kimbrough and Heidemarie M. Stefanyshyn-Piper, all mission specialists. Magnus is scheduled to join Expedition 18 as flight engineer after launching to the International Space Station on mission STS-126.

  16. STS-132 Launch Tweetup

    NASA Image and Video Library

    2010-05-12

    Kendal Van Dyke, a database professional that is followed on Twitter @twitter.com/sqldba, takes part in the two-day STS-132 Launch Tweetup at Kennedy Space Center, Thursday, May 13, 2010, in Cape Canaveral, Fla. NASA Twitter followers in attendance will have the opportunity to take a tour of NASA's Kennedy Space Center, view the space shuttle launch and speak with shuttle technicians, engineers, astronauts and managers. Photo Credit: (NASA/Paul E. Alers)

  17. STS-100 MCC Launch Activities

    NASA Image and Video Library

    2001-04-19

    JSC2001-E-12125 (19 April 2001) --- Astronauts Mark L. Polansky, from the left, Christopher J. (Gus) Loria, and Scott D. Altman discuss the approaching STS-100 launch at their positions at the Spacecraft Communicator console in Houston's Mission Control Center (MCC). Loria's position addresses weather issues, of which there were few on this particular launch. He will also be assigned to weather matters for the entry phase of the flight.

  18. KSC-02pd1890

    NASA Image and Video Library

    2002-12-09

    KENNEDY SPACE CENTER, FLA. -- Space Shuttle Columbia, atop the Mobile Launcher Platform, approaches the top of Launch Pad 39A where it will undergo preparations for launch. The STS-107 research mission comprises experiments ranging from material sciences to life sciences, plus the Fast Reaction Experiments Enabling Science, Technology, Applications and Research (FREESTAR) that incorporates eight high priority secondary attached shuttle experiments. Mission STS-107 is scheduled to launch Jan. 16, 2003.

  19. KSC-06pd1422

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) and Center Director Jim Kennedy congratulate the launch team after the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett

  20. KSC-06pd1421

    NASA Image and Video Library

    2006-07-04

    KENNEDY SPACE CENTER, FLA. - In Firing Room 4 of the Launch Control Center, Shuttle Launch Director Mike Leinbach (center) congratulates the launch team after the successful launch of Space Shuttle Discovery on mission STS-121. The launch was the first ever to take place on Independence Day. At far right is Center Director Jim Kennedy. During the 12-day mission, the STS-121 crew of seven will test new equipment and procedures to improve shuttle safety, as well as deliver supplies and make repairs to the International Space Station. Landing is scheduled for July 16 or 17 at Kennedy's Shuttle Landing Facility. Photo credit: NASA/Kim Shiflett

  1. KSC-99pp0349

    NASA Image and Video Library

    1999-03-25

    At Astrotech in Titusville, Fla., technicians with DaimlerChrysler Aerospace and RSC Energia of Korolev, Russia, maneuver a Russian cargo crane, the Strela, which is to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). The Strehla has been the focus for two Shuttle crews, STS-96 who are at KSC for a Crew Equipment Interface Test, and STS-101, for payload familiarization. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Russian cargo crane; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler Aerospace and RSC Energia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999

  2. STS-86 crew members Lawrence, Titov and Parazynski in M-113

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-86 crew members get a ride in, and learn to operate, an M-113 armored personnel carrier as part of training exercises during the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. George Hoggard, in back at left, a training officer with KSC Fire Services, provides this part of the training to Mission Specialists David A. Wolf, to the right of Hoggard; Jean-Loup J.M. Chretien of the French Space Agency; and Vladimir Georgievich Titov, in foreground, of the Russian Space Agency. STS-86 will be the seventh docking of the Space Shuttle with the Russian Space Station Mir. During the docking, Wolf will transfer to the orbiting Russian station and become a member of the Mir 24 crew, replacing U.S. astronaut C. Michael Foale, who has been on the Mir since the last docking mission, STS-84, in May. Launch of Mission STS-86 aboard the Space Shuttle Atlantis is targeted for Sept. 25 from Launch Pad 39A.

  3. Electrets and plant fluorometers used in field studies to measure hydrogen chloride produced during Space Shuttle launches

    NASA Technical Reports Server (NTRS)

    Milligan, J. E.; Swoboda, G. D.; Susko, M.

    1985-01-01

    The results of the field tests of two monitoring device techniques, electrets and plant fluorometers are analyzed in order to determine the environmental effects of launch by-products and the extent of these effects. The STS launches are used because the Shuttle emits 2 1/2 times more HCl than any previous systems, it produces a voluminous ground cloud and, most important, it produces near field HCl deposition and revolatilization, far-field acid washout/rainout, and gaseous HCl diffusion. Field evaluations of electrets at STS-5, STS-6, and STS-8 have shown that qualitative assessments can be made for areas lightly or moderately impacted by gaseous and aerosol HCl. Field evaluation of the plant productivity fluorometer at STS-8 has shown that this system is also useful for qualitative assessment in areas lightly, moderately, or heavily affected by gaseous and aerosol HCl. Quantitative prediction of HCl may be possible in lightly and moderately affected areas, given deposition rates correlation.

  4. STS-55 Columbia, Orbiter Vehicle (OV) 102, SSME abort at KSC LC Pad 39A

    NASA Image and Video Library

    1993-03-22

    S93-31601 (March 1993) --- The second Space Shuttle launch attempt of 1993 comes to an abrupt halt when one of the three main engines on the orbiter Columbia shuts down at T -3 seconds, resulting in an on-the-pad abort of Mission STS-55. This was the first time in the post-Challenger era that a main engine shutdown has halted a Shuttle launch countdown, and only the third time in the history of the program. In 1984, STS-41D was scrubbed at T -4 seconds when the orbiter General Purpose Computer detected an anomaly in a main engine, and in 1985, STS-51F was halted at T -3 seconds due to a main engine malfunction that caused shutdown of all three engines. Columbia had been scheduled to lift off from Launch Pad 39B is the Space Shuttle Discovery, undergoing preparations for lift off on Mission STS-56.

  5. STS-98 MS Ivins talks about her role in the mission

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During a media briefing at Launch Pad 39A, STS-98 Mission Specialist Marsha Ivins (second from right) describes how the robotic arm will lift the payload from the orbiter'''s bay and maneuver it into position for attachment to the International Space Station. The other crew members are (left to right) Pilot Mark Polansky, Mission Specialist Thomas Jones, Commander Ken Cockrell and Robert Curbeam. All are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress training and a simulated launch countdown. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m.

  6. STS-108 and Expedition 4 crews during media interview

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-108 crew and Expedition 4 crew answer questions from the media during an interview session. With the microphone is Commander Dominic L. Gorie. From left are STS-108 Pilot Mark E. Kelly, Mission Specialists Daniel M. Tani and Linda A. Godwin, and Gorie; Expedition 4 Commander Yuri Onufrienko, Carl E. Walz and Daniel W. Bursch. The crews are at KSC for Terminal Countdown Demonstration Test activities that include emergency exit training from the orbiter and launch pad and a simulated launch countdown. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour.

  7. STS-108 and Expedition 4 crews during media interview

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-108 crew and Expedition 4 crew answer questions from the media during an interview session. With the microphone is Expedition 4 Commander Yuri Onufrienko. From left are STS-108 Pilot Mark E. Kelly, Mission Specialists Daniel M. Tani and Linda A. Godwin, and Commander Dominic L. Gorie; Onufrienko and Expedition 4 members Carl E. Walz and Daniel W. Bursch. The crews are at KSC for Terminal Countdown Demonstration Test activities that include emergency exit training from the orbiter and launch pad and a simulated launch countdown. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour.

  8. KSC-2011-3586

    NASA Image and Video Library

    2011-05-16

    CAPE CANAVERAL, Fla. -- The American flag sways in the breeze as space shuttle Endeavour launches on the STS-134 mission to the International Space Station. The shuttle and its six-member crew lifted off from Launch Pad 39A at NASA's Kennedy Space Center in Florida on time at 8:56 a.m. EDT on May 16. STS-134 will deliver the Alpha Magnetic Spectrometer-2 (AMS), Express Logistics Carrier-3, a high-pressure gas tank and additional spare parts for the Dextre robotic helper to the International Space Station. Endeavour's first launch attempt on April 29 was scrubbed because of an issue associated with a faulty power distribution box called the aft load control assembly-2 (ALCA-2). STS-134 will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Troy Cryder

  9. STS-113 Mission Specialist John B. Herrington arrives at KSC for launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- STS-113 Mission Specialist John B. Herrington smiles for the camera upon his arrival at KSC's Shuttle Landing Facility to prepare for launch. STS-113 is the 16th American assembly flight to the International Space Station. The primary objective of the mission is bringing the Expedition 6 crew to the Station and returning the Expedition 5 crew to Earth. The major task of the mission is delivery of the Port 1 (P1) Integrated Truss Assembly, which will be attached to the port side of the S0 truss. Three spacewalks are planned to install and activate the truss and its associated equipment. Launch of Space Shuttle Endeavour on mission STS-113 is targeted for no earlier than Nov. 22 between 7 and 11 p.m. EST.

  10. STS-107 Crew Equipment Interface Test (CEIT)activities at SPACEHAB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At SPACEHAB, Cape Canaveral, Fla., Mission Specialist Laurel Blair Salton Clark practices an experiment while Commander Rick Douglas Husband and Mission Specialist Kalpana Chawla observe. They and other crew members Pilot William C. McCool; Payload Commander Michael P. Anderson; and Mission Specialists David M. Brown and Ilan Ramon, of Israel, are at SPACEHAB for Crew Equipment Interface Test (CEIT) activities. The CEIT enables the crew to perform certain flight operations, operate experiments in a flight-like environment, evaluate stowage locations and obtain additional exposure to specific experiment operations. As a research mission, STS-107 will carry the Spacehab Double Module in its first research flight into space and a broad collection of experiments ranging from material science to life science. STS-107 is scheduled for launch May 23, 2002

  11. STS-57 MS2 Sherlock in EMU is ready for underwater EVA simulation at JSC

    NASA Image and Video Library

    1992-06-25

    S92-40376 (March 1992) --- Attired in a training version of the Extravehicular Mobility Unit (EMU), astronaut Nancy J. Sherlock participates in a training session at the Johnson Space Center's (JSC) Weightless Environment Training Facility (WET-F). Training as a mission specialist for the STS-57 mission, Sherlock was rehearsing a contingency space walk. Astronauts scheduled for Extravehicular Activity (EVA) duty and those who might be called upon for unscheduled space walk duty use a nearby 25 feet deep pool to practice various chores. The suits used in the training are equipped with communications gear, pressurized and weighted to create a neutral buoyancy in the water tank. EDITOR'S NOTE: Nancy J. Currie (formerly Sherlock) has been assigned as a mission specialist for the STS-70 mission, scheduled for launch in spring of 1995.

  12. KSC-2010-4536

    NASA Image and Video Library

    2010-08-30

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lifts the Alpha Magnetic Spectrometer, or AMS, so it can be placed onto a work stand and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  13. KSC-2010-4504

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida an overhead crane moves the Alpha Magnetic Spectrometer, or AMS, to an area for technicians to prepare it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  14. KSC-2010-4534

    NASA Image and Video Library

    2010-08-30

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead crane lifts the Alpha Magnetic Spectrometer, or AMS, so it can be lifted onto a work stand and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the International Space Station aboard space shuttle Endeavour's STS-134 mission targeted to launch Feb. 26, 2011. Photo credit: NASA/Jack Pfaller

  15. KSC-2010-4498

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a tractor-trailer carrying the Alpha Magnetic Spectrometer, or AMS, arrives at the Space Station Processing Facility, where it will be prepared for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  16. KSC-2010-4505

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida an overhead crane lowers the Alpha Magnetic Spectrometer, or AMS, onto to floor for technicians to prepare it for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  17. KSC-2010-4500

    NASA Image and Video Library

    2010-08-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, media are on hand as the Alpha Magnetic Spectrometer, or AMS, is delivered to the Space Station Processing Facility, where it will be prepared for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external module on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. The STS-134 crew will fly AMS to the International Space Station aboard space shuttle Endeavour, targeted to launch Feb. 26, 2011. Photo credit: NASA/Frankie Martin

  18. STS-90 Columbia RSS rollback

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the Rotating Service Structure (RSS) rolled back, at left, the Space Shuttle Columbia is nearly ready for launch of STS-90. Rollback of the RSS is a major preflight milestone, typically occurring during the T-11-hour hold on L-1 (the day before launch). The scheduled launch of Columbia on Apr. 16 from Launch Pad 39B was postponed 24 hours due to difficulty with network signal processor No. 2 on the orbiter. This device formats data and voice communications between the ground and the Space Shuttle. The unit, which is located in the orbiter's mid-deck, will be removed and replaced. Prior to launch, one of the final steps will be to load the external tank with approximately 500,000 gallons of liquid hydrogen and liquid oxygen for fueling the orbiters three main engines. Tanking had not yet begun when the launch scheduled for Apr. 16 was scrubbed. STS-90 is slated to be the launch of Neurolab, a nearly 17-day mission to examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  19. KSC-06pd1758

    NASA Image and Video Library

    2006-08-08

    KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Daniel Burbank is ready to practice driving the M-113 armored personnel carrier. The STS-115 crew are at NASA's Kennedy Space Center for Terminal Countdown Demonstration Test activities such as the M-113 training. They will also practice emergency egress from the launch pad and take part in a simulated launch countdown. Liftoff of mission STS-115 aboard Space Shuttle Atlantis is scheduled in a window beginning Aug. 27. Photo credit: NASA/Cory Huston

  20. KSC-06pd1752

    NASA Image and Video Library

    2006-08-08

    KENNEDY SPACE CENTER, FLA. - STS-115 Pilot Christopher Ferguson is ready to practice driving the M-113 armored personnel carrier. The STS-115 crew are at NASA's Kennedy Space Center for Terminal Countdown Demonstration Test activities such as the M-113 training. They will also practice emergency egress from the launch pad and take part in a simulated launch countdown. Liftoff of mission STS-115 aboard Space Shuttle Atlantis is scheduled in a window beginning Aug. 27. Photo credit: NASA/Cory Huston

Top