Sample records for student imaging project

  1. Students' ideas about prismatic images: teaching experiments for an image-based approach

    NASA Astrophysics Data System (ADS)

    Grusche, Sascha

    2017-05-01

    Prismatic refraction is a classic topic in science education. To investigate how undergraduate students think about prismatic dispersion, and to see how they change their thinking when observing dispersed images, five teaching experiments were done and analysed according to the Model of Educational Reconstruction. For projection through a prism, the students used a 'split image projection' conceptualisation. For the view through a prism, this conceptualisation was not fruitful. Based on the observed images, six of seven students changed to a 'diverted image projection' conceptualisation. From a comparison between students' and scientists' ideas, teaching implications are derived for an image-based approach.

  2. Self-Image--Alien Image: A Bilateral Video Project.

    ERIC Educational Resources Information Center

    Kracsay, Susanne

    1995-01-01

    Describes a project in which Austrian and Hungarian students learned how people see each other by creating video pictures and letters of their neighbors (alien images) that were returned with corrections (self-images). Discussion includes student critiques, impressions, and misconceptions. (AEF)

  3. Short Project-Based Learning with MATLAB Applications to Support the Learning of Video-Image Processing

    NASA Astrophysics Data System (ADS)

    Gil, Pablo

    2017-10-01

    University courses concerning Computer Vision and Image Processing are generally taught using a traditional methodology that is focused on the teacher rather than on the students. This approach is consequently not effective when teachers seek to attain cognitive objectives involving their students' critical thinking. This manuscript covers the development, implementation and assessment of a short project-based engineering course with MATLAB applications Multimedia Engineering being taken by Bachelor's degree students. The principal goal of all course lectures and hands-on laboratory activities was for the students to not only acquire image-specific technical skills but also a general knowledge of data analysis so as to locate phenomena in pixel regions of images and video frames. This would hopefully enable the students to develop skills regarding the implementation of the filters, operators, methods and techniques used for image processing and computer vision software libraries. Our teaching-learning process thus permits the accomplishment of knowledge assimilation, student motivation and skill development through the use of a continuous evaluation strategy to solve practical and real problems by means of short projects designed using MATLAB applications. Project-based learning is not new. This approach has been used in STEM learning in recent decades. But there are many types of projects. The aim of the current study is to analyse the efficacy of short projects as a learning tool when compared to long projects during which the students work with more independence. This work additionally presents the impact of different types of activities, and not only short projects, on students' overall results in this subject. Moreover, a statistical study has allowed the author to suggest a link between the students' success ratio and the type of content covered and activities completed on the course. The results described in this paper show that those students who took part in short projects made a significant improvement when compared to those who participated in long projects.

  4. Astronomy Remote Observing Research Projects of US High School Students

    NASA Astrophysics Data System (ADS)

    Kadooka, M.; Meech, K. J.

    2006-08-01

    In order to address the challenging climate for promoting astronomy education in the high schools we have used astronomy projects to give students authentic research experiences in order to encourage their pursuit of science and technology careers. Initially, we conducted teacher workshops to develop a cadre of teachers who have been instrumental in recruiting students to work on projects. Once identified, these students have been motivated to conduct astronomy research projects with appropriate guidance. Some have worked on these projects during non-school hours and others through a research course. The goal has been for students to meet the objectives of inquiry-based learning, a major US National Science Standard. Case studies will be described using event-based learning with the NASA Deep Impact mission. Hawaii students became active participants investigating comet properties through the NASA Deep Impact mission. The Deep Impact Education and Public Outreach group developed materials which were used by our students. After learning how to use image processing software, these students obtained Comet 9P/ Tempel 1 images in real time from the remote observing Faulkes Telescope North located on Haleakala, Maui for their projects. Besides conducting event-based projects which are time critical, Oregon students have worked on galaxies and sunspots projects. For variable star research, they used images obtained from the remote observing offline mode of Lowell Telescope located in Flagstaff, Arizona. Essential to these projects has been consistent follow-up required for honing skills in observing, image processing, analysis, and communication of project results through Science Fair entries. Key to our success has been the network of professional and amateur astronomers and educators collaborating in a multiplicity of ways to mentor our students. This work-in-progress and process will be shared on how to inspire students to pursue careers in science and technology with these projects.

  5. Imaging Spectrograph as a Tool to Enhance the Undergraduate Student Research Experience

    NASA Astrophysics Data System (ADS)

    Williams, B.; Nielsen, K.; Johnson, S.

    2015-12-01

    Undergraduate students often engage in research activities that are part of a larger project outlined by research faculty, while it is less common for students to explore and define their own research project. The later has been shown to have tremendous impact on the learning outcome of the students and provide a stronger sense of pride and ownership of the research project. It is unrealistic to expect starting undergraduate students to define transformative research projects. However, with the proper training and guidance student-driven transformative research is possible for upper division students. We have instituted a student research paradigm with focus on the development of student research skills in coordination with their course progress. We present here a specific student project that engage students in aeronomy research activities and provide them with a solid base to establish their own research projects for senior year. The core of the project is an imaging spectrograph, which is constructed, tested, and calibrated by the students. The instrument provides unique opportunities student research projects across subject such as optics, quantum mechanics, and how these subjects are applied in the geosciences of aeronomy and space physics.

  6. Mars Public Engagement Overview

    NASA Technical Reports Server (NTRS)

    Johnson, Christine

    2009-01-01

    This viewgraph presentation reviews the Mars public engagement goal to understand and protect our home planet, explore the Universe and search for life, and to inspire the next generation of explorers. Teacher workshops, robotics education, Mars student imaging and analysis programs, MARS Student Imaging Project (MSIP), Russian student participation, MARS museum visualization alliance, and commercialization concepts are all addressed in this project.

  7. SOLAR ROTATION: A Laboratory Exercise from Project CLEA and the GONG Project

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Sudol, J. J.; Snyder, G. A.

    2002-12-01

    Digital images from the GONG Project provide a nearly continuous record of sunspots that are ideal for determining the rate of rotation of the Sun. A new laboratory exercise from Project CLEA provides students with the capability to access an archive of 368 images of the Sun obtained at GONG solar telescopes between January 1, 2002 and April 30, 2002, during a period near solar maximum when large numbers of spots were daily visible on the sun. The resolution of each image is about 2.5 arcsec per pixel (or about 0.25 degree in longitude and latitude at the center of the solar disk). Because these images have such exquisite spatial and temporal resolution, they are the best images to date from which students can determine the solar rotation rate. CLEA software for this exercise allows students to select images by date and time, to overlay a coordinate grid on the image, and to record the latitudes and longitudes of sunspots. This data can be tabulated and analyzed with the software to determine solar rotation rates. The expected precision in the solar rotation rates is +/- 3 hours. Students will also have the ability to combine their chosen images into a digital movie showing the solar rotation. The exercise includes a student workbook and a technical manual, as well as a CD-rom of the data and the software. This exercise was produced with funding from the National Science Foundation and Gettysburg College and with the support of the GONG Project at the National Solar Observatory.

  8. Remote Sensing across the Globe: Best Practices in Bringing Together Satellite Imagery, Telecommunications and Ground-Truth Observations

    NASA Astrophysics Data System (ADS)

    Probst, R.; Walker, C. E.; Martin, C.; Dorame, B.; Ochoa, H.; Orellana, D.; Isbell, D. M.; Pompea, S. M.

    2006-12-01

    A special student-to-student videoconference was held mid-May 2006 between students in Tucson, Arizona and La Serena, Chile, the headquarters for the north and south offices of the National Optical Astronomy Observatory (NOAO). Fifty participants at each location reported on a remote-sensing activity conducted by hundreds of students during February, March and April, 2006. The students became acquainted with the geography and geology of their area using Landsat satellite remote sensing imaging. The Tucson students then analyzed images of La Serena and students from Chile analyzed images of Tucson. Since top-down satellite views may not provide complete information, students from one country emailed students from the other country and requested them to be human "rovers," taking local pictures of areas under question to establish ground-truth. Student reaction to the project was unequivocally positive. "The remote sensing project was one of the most fun things in my junior year. I learned how to use a map of La Serena, Chile. I learned about the electromagnetic spectrum, used to form false color images. It was incredible for us Latino students to use our Spanish language to e-mail students in Chile", said Bisbail Dorame, student coordinator for the project at Howenstine High School in Tucson. The success of this cross-cultural program has motivated NOAO outreach staff to broaden the project to schools in other countries, coordinated by students as their service-learning project. To facilitate this effort, a special, yet generic, worksheet is being developed. The worksheet can be by teachers to include local landmarks and geographical features. Once completed and tested, the worksheet will be placed on the NOAO website, along with Landsat7 satellite images for different areas around the world. In 2007, the program will be expanded to examine the surface of Mars using Google Mars and NASA images. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation. For further information on this program, contact Dr. Connie Walker at cwalker@noao.edu or 520.318.8535.

  9. Deep Space Inquiry

    ERIC Educational Resources Information Center

    Rapp, Steve

    2003-01-01

    In this article, the author describes a student-centered research project he introduced to his students. In this research project, his students used images collected by telescopes at Kitt Peak National Optical Observatory (KPNO) to look for novas in the Andromeda Galaxy. This project grew out of the author's experience during a Teachers As Leaders…

  10. Seeing the Light: A Classroom-Sized Pinhole Camera Demonstration for Teaching Vision

    ERIC Educational Resources Information Center

    Prull, Matthew W.; Banks, William P.

    2005-01-01

    We describe a classroom-sized pinhole camera demonstration (camera obscura) designed to enhance students' learning of the visual system. The demonstration consists of a suspended rear-projection screen onto which the outside environment projects images through a small hole in a classroom window. Students can observe these images in a darkened…

  11. Achieving desired images while avoiding undesired images: exploring the role of self-monitoring in impression management.

    PubMed

    Turnley, W H; Bolino, M C

    2001-04-01

    A study was conducted to test the hypothesis that high self-monitors more effectively manage impressions than low self-monitors do. Students in work groups indicated the extent to which they used 5 impression-management tactics over the course of a semester-long project. At the project's conclusion, students provided their perceptions of the other members of their group. The relationship between impression management and image favorability was then examined across 339 student-student dyads. The results generally suggest that high self-monitors can use impression-management tactics more effectively than can low self-monitors. In particular, high self-monitors appear to be more adept than low self-monitors at using ingratiation, self-promotion, and exemplification to achieve favorable images among their colleagues.

  12. Contextual Student Learning through Authentic Asteroid Research Projects using a Robotic Telescope Network

    NASA Astrophysics Data System (ADS)

    Hoette, Vivian L.; Puckett, Andrew W.; Linder, Tyler R.; Heatherly, Sue Ann; Rector, Travis A.; Haislip, Joshua B.; Meredith, Kate; Caughey, Austin L.; Brown, Johnny E.; McCarty, Cameron B.; Whitmore, Kevin T.

    2015-11-01

    Skynet is a worldwide robotic telescope network operated by the University of North Carolina at Chapel Hill with active observing sites on 3 continents. The queue-based observation request system is simple enough to be used by middle school students, but powerful enough to supply data for research scientists. The Skynet Junior Scholars program, funded by the NSF, has teamed up with professional astronomers to engage students from middle school to undergraduates in authentic research projects, from target selection through image analysis and publication of results. Asteroid research is a particularly fruitful area for youth collaboration that reinforces STEM education standards and can allow students to make real contributions to scientific knowledge, e.g., orbit refinement through astrometric submissions to the Minor Planet Center. We have created a set of projects for youth to: 1. Image an asteroid, make a movie, and post it to a gallery; 2. Measure the asteroid’s apparent motion using the Afterglow online image processor; and 3. Image asteroids from two or more telescopes simultaneously to demonstrate parallax. The apparent motion and parallax projects allow students to estimate the distance to their asteroid, as if they were the discoverer of a brand new object in the solar system. Older students may take on advanced projects, such as analyzing uncertainties in asteroid orbital parameters; studying impact probabilities of known objects; observing time-sensitive targets such as Near Earth Asteroids; and even discovering brand new objects in the solar system.Images are acquired from among seven Skynet telescopes in North Carolina, California, Wisconsin, Canada, Australia, and Chile, as well as collaborating observatories such as WestRock in Columbus, Georgia; Stone Edge in El Verano, California; and Astronomical Research Institute in Westfield, Illinois.

  13. The EarthKAM project: creating space imaging tools for teaching and learning

    NASA Astrophysics Data System (ADS)

    Dodson, Holly; Levin, Paula; Ride, Sally; Souviney, Randall

    2000-07-01

    The EarthKAM Project is a NASA-supported partnership of secondary and university students with Earth Science and educational researchers. This report describes an ongoing series of activities that more effectively integrate Earth images into classroom instruction. In this project, students select and analyze images of the Earth taken during Shuttle flights and use the tools of modern science (computers, data analysis tools and the Internet) to disseminate the images and results of their research. A related study, the Visualizing Earth Project, explores in greater detail the cognitive aspects of image processing and the educational potential of visualizations in science teaching and learning. The content and organization of the EarthKAM datasystem of images and metadata are also described. An associated project is linking this datasystem of images with the Getty Thesaurus of Geographic Names, which will allow users to access a wide range of geographic and political information for the regions shown in EarthKAM images. Another project will provide tools for automated feature extraction from EarthKAM images. In order to make EarthKAM resources available to a larger number of schools, the next important goal is to create an integrated datasystem that combines iterative resource validation and publication, with multimedia management of instructional materials.

  14. Students' Target

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03648 Ascraeus Mons

    After examining numerous THEMIS images and using the JMars targeting software, eighth grade students from Charleston Middle School in Charleston, IL, selected the location of -8.37N and 276.66E for capture by the THEMIS visible camera during Mars Odyssey's sixth orbit of Mars on Nov. 22, 2005. The students are investigating relationships between channels, craters, and basins on Mars. The Charleston Middle School students participated in the Mars Student Imaging Project (MSIP) and submitted a proposal to use the THEMIS visible camera.

    Image information: VIS instrument. Latitude 8.8S, Longitude 279.6E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Promoting 21st Century Skills in the Classroom through the Use of Authentic Student Research

    NASA Astrophysics Data System (ADS)

    Klug, S. L.; Swann, J. L.; Manfredi, L.; Christensen, P. R.

    2012-12-01

    Preparing students for the workforce starts well before they start college. The Mars Student Imaging Project has incorporated 21st Century Skills into their project to help the students practice and sharpen these skills. Professional development for the educational facilitators helps the teachers become familiar with these skills. By augmenting the authentic research project with these 21st Century Skills, the students are able to achieve a higher level experience that mirrors the real-world workforce.

  16. Increasing Student Learning through Multimedia Projects.

    ERIC Educational Resources Information Center

    Simkins, Michael; Cole, Karen; Tavalin, Fern; Means, Barbara

    This book discusses enhancing student achievement through project-based learning with multimedia. Chapter 1 describes project-based multimedia learning. Chapter 2 presents a multimedia primer, including the five basic types of media objects (i.e., images, text, sound, motion, and interactivity). Chapter 3 addresses making a real-world connection,…

  17. Image Processing for Teaching: Transforming a Scientific Research Tool into an Educational Technology.

    ERIC Educational Resources Information Center

    Greenberg, Richard

    1998-01-01

    Describes the Image Processing for Teaching (IPT) project which provides digital image processing to excite students about science and mathematics as they use research-quality software on microcomputers. Provides information on IPT whose components of this dissemination project have been widespread teacher education, curriculum-based materials…

  18. Slicing for Biology.

    ERIC Educational Resources Information Center

    Ekstrom, James

    2001-01-01

    Advocates using computer imaging technology to assist students in doing projects in which determining density is important. Students can study quantitative comparisons of masses, lengths, and widths using computer software. Includes figures displaying computer images of shells, yeast cultures, and the Aral Sea. (SAH)

  19. The ATLAS project: The effects of a constructionist digital laboratory project on undergraduate laboratory performance.

    PubMed

    Shoepe, Todd C; Cavedon, Dana K; Derian, Joseph M; Levy, Celine S; Morales, Amy

    2015-01-01

    Anatomical education is a dynamic field where developments in the implementation of constructive, situated-learning show promise in improving student achievement. The purpose of this study was to examine the effectiveness of an individualized, technology heavy project in promoting student performance in a combined anatomy and physiology laboratory course. Mixed-methods research was used to compare two cohorts of anatomy laboratories separated by the adoption of a new laboratory atlas project, which were defined as preceding (PRE) and following the adoption of the Anatomical Teaching and Learning Assessment Study (ATLAS; POST). The ATLAS project required the creation of a student-generated, photographic atlas via acquisition of specimen images taken with tablet technology and digital microscope cameras throughout the semester. Images were transferred to laptops, digitally labeled and photo edited weekly, and compiled into a digital book using Internet publishing freeware for final project submission. An analysis of covariance confirmed that student final examination scores were improved (P < 0.05) following the implementation of the laboratory atlas project (PRE, n = 75; POST, n = 90; means ± SE; 74.9 ± 0.9 versus 78.1 ± 0.8, respectively) after controlling for cumulative student grade point average. Analysis of questionnaires collected (n = 68) from the post group suggested students identified with atlas objectives, appreciated the comprehensive value in final examination preparation, and the constructionism involved, but recommended alterations in assignment logistics and the format of the final version. Constructionist, comprehensive term-projects utilizing student-preferred technologies could be used to improve performance toward student learning outcomes. © 2014 American Association of Anatomists.

  20. The Use of Virtual Reality Simulation to Improve Technical Skill in the Undergraduate Medical Imaging Student

    ERIC Educational Resources Information Center

    Gunn, Therese; Jones, Lee; Bridge, Pete; Rowntree, Pam; Nissen, Lisa

    2018-01-01

    In recent years, simulation has increasingly underpinned the acquisition of pre-clinical skills by undergraduate medical imaging (diagnostic radiography) students. This project aimed to evaluate the impact of an innovative virtual reality (VR) learning environment on the development of technical proficiency by students. The study assessed the…

  1. Students' Ideas about Prismatic Images: Teaching Experiments for an Image-Based Approach

    ERIC Educational Resources Information Center

    Grusche, Sascha

    2017-01-01

    Prismatic refraction is a classic topic in science education. To investigate how undergraduate students think about prismatic dispersion, and to see how they change their thinking when observing dispersed images, five teaching experiments were done and analysed according to the Model of Educational Reconstruction. For projection through a prism,…

  2. Should body image programs be inclusive? A focus group study of college students.

    PubMed

    Ciao, Anna C; Ohls, Olivia C; Pringle, Kevin D

    2018-01-01

    Most evidence-based body image programs for college students (e.g., the Body Project) are designed for female-only audiences, although body dissatisfaction is not limited to female-identified individuals. Furthermore, programs do not explicitly discuss diversity, although individuals with marginalized gender, racial, and sexual identities may be particularly vulnerable to body image disturbances. Making programs more inclusive may increase their disseminability. This qualitative study examined the feasibility of adapting the Body Project for universal and inclusive use with college students. Participants (N = 36; M age = 21.66 years; 73% female-identified; 20% sexual minority; 23% racial minority) attended one of five semi-structured focus groups to explore the inclusivity of appearance-based cultural norms using adapted Body Project activities and discuss the feasibility of universal and inclusive interventions. Inductive qualitative content analysis with three-rater consensus identified focus group themes. There was consensus that inclusive interventions could have a positive impact (broadening perspectives, normalizing body image concerns, increasing awareness) despite potential barriers (poor diversity representation, vulnerability). There was strong consensus regarding advice for facilitating inclusive interventions (e.g., skilled facilitation, education, increasing diversity). Results suggest that inclusive body image programs are desirable and provide a framework for creating the EVERYbody Project, a program for more universal audiences. © 2017 Wiley Periodicals, Inc.

  3. Hanging A "round."

    ERIC Educational Resources Information Center

    Stewart, Barbara

    2000-01-01

    Discusses an art project for fifth and sixth grade that was inspired by a Laurel Burch plate with a jungle motif. Explains that students choose a project name, make lists of images associated with their chosen name, and use those images in their round designs. (CMK)

  4. The World Wide Web--a new tool for biomedical engineering education.

    PubMed

    Blanchard, S M

    1997-01-01

    An ever-increasing variety of materials (text, images, videos, and sound) are available through the World Wide Web (WWW). While textbooks, which are often outdated by the time they are published, are usually limited to black and white text and images, many supplemental materials can be found on the WWW. The WWW also provides many resources for student projects. In BAE 465: Biomedical Engineering Applications, student teams developed WWW-based term projects on biomedical topics, e.g. biomaterials, MRI, and medical ultrasound. After the projects were completed and edited by the instructor, they were placed on-line for world-wide access if permission for this had been granted by the student authors. Projects from three classes have been used to form the basis for an electronic textbook which is available at http:@www.eos.ncsu.edu/bae/research/blanchard /www/465/textbook/. This electronic textbook also includes instructional objectives and sample tests for specific topic areas. Student projects have been linked to the appropriate topic areas within the electronic textbook. Links to relevant sites have been included within the electronic textbook as well as within the individual projects. Students were required to link to images and other materials they wanted to include in their project in order to avoid copyright issues. The drawback to this approach to copyright protection is that addresses can change making links unavailable. In BAE 465 and in BAE 235: Engineering Biology, the WWW has also been used to distribute instructional objectives, the syllabi and class policies, homework problems, and abbreviated lecture notes. This has made maintaining course-related material easier and has reduced the amount of paper used by both the students and the instructor. Goals for the electronic textbook include the addition of instructional simulation programs that can be run from remote sites. In the future, biomedical engineering may be taught in a virtual classroom with participation by an instructor and students from many different parts of the world.

  5. Image-Language Interaction in Online Reading Environments: Challenges for Students' Reading Comprehension

    ERIC Educational Resources Information Center

    Chan, Eveline; Unsworth, Len

    2011-01-01

    This paper presents the qualitative results of a study of students' reading of multimodal texts in an interactive, online environment. The study forms part of a larger project which addressed image-language interaction as an important dimension of language pedagogy and assessment for students growing up in a multimedia digital age. Thirty-two Year…

  6. Image Processing for Teaching.

    ERIC Educational Resources Information Center

    Greenberg, R.; And Others

    1993-01-01

    The Image Processing for Teaching project provides a powerful medium to excite students about science and mathematics, especially children from minority groups and others whose needs have not been met by traditional teaching. Using professional-quality software on microcomputers, students explore a variety of scientific data sets, including…

  7. A Prospective, Randomized Crossover Study Comparing Direct Inspection by Light Microscopy versus Projected Images for Teaching of Hematopathology to Medical Students

    ERIC Educational Resources Information Center

    Carlson, Aaron M.; McPhail, Ellen D.; Rodriguez, Vilmarie; Schroeder, Georgene; Wolanskyj, Alexandra P.

    2014-01-01

    Instruction in hematopathology at Mayo Medical School has evolved from instructor-guided direct inspection under the light microscope (laboratory method), to photomicrographs of glass slides with classroom projection (projection method). These methods have not been compared directly to date. Forty-one second-year medical students participated in…

  8. Student-Scientists use Remote Sensing to Reach across the Equator

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Probst, R.; Martin, C.; Dorame, B.; Isbell, D.; Pompea, S. M.; Ochoa, H.; Orellana, D.; Garcia, A.

    2006-12-01

    A special student-to-student videoconference was held mid-May 2006 between students in Tucson, Arizona and La Serena, Chile, the headquarters for the north and south offices of the National Optical Astronomy Observatory (NOAO). Fifty participants at each location reported on a remote-sensing activity conducted by hundreds of students during February, March and April, 2006. The students became acquainted with the geography and geology of their area using Landsat satellite remote sensing imaging. The Tucson students then analyzed images of La Serena and students from Chile analyzed images of Tucson. Since top-down satellite views may not provide complete information, students from one country emailed students from the other country and requested them to be human “rovers,” taking local pictures of areas under question to establish ground-truth. The success of this cross-cultural program has motivated NOAO outreach staff to broaden the project to schools in other countries, coordinated by students as their service-learning project. To facilitate this effort, a special, yet generic, worksheet is being developed. The worksheet can be by teachers to include local landmarks and geographical features. Once completed and tested, the worksheet will be placed on the NOAO website, along with Landsat7 satellite images for different areas around the world. In 2007, the program will be expanded to examine the surface of Mars using Google Mars and NASA images. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation. For further information, email Connie Walker at cwalker@noao.edu.

  9. ONLINE satellite images and educational material: the Danish Galathea 3 world expedition under and after

    NASA Astrophysics Data System (ADS)

    Bay Hasager, Charlotte; Brøgger Sørensen, Peter; Baltazar Andersen, Ole; Badger, Merete; Højerslev, Niels Kristian; Høyer, Jacob L.; Løkkegaard, Bo; Lichtenegger, Jürg; Nyborg, Lotte; Saldo, Roberto

    2010-05-01

    Students and teachers may use ONLINE satellite image in the classroom. Images have been archived since August 2006 and the archive is updated every day since. This means that series of nearly four years of daily global images are available online. The parameters include ocean surface temperature, sea level anomaly, ocean wave height, ocean winds, global ozone in the atmosphere and clouds, and sea ice in the Arctic and Antarctica. During the Galathea 3 expedition that took place from August 2006 to April 2007 also many other high-resolution (local to regional) satellite images were acquired and stored in the archive. However after the end of the expedition only global satellite data are collected and stored. Use Google Earth at http://galathea.dtu.dk/GE_e.html to access the images. The expedition included 50 science projects and based on this educational material has been developed. There are around 20 educational projects in English at http://galathea3.emu.dk/satelliteeye/index_uk.html and 90 in Danish at http://vg3.dk/ freely available based on the science. All the educational projects in English deal with satellite image analysis and information. In addition, the short educational film (15min) for students and teachers at higher upper level on the use of satellite images during the expedition and in some science projects onboard is available in English. The film is called ‘Galathea's Eye' and is available at http://virtuelgalathea3.dk/om/videoer. All projects in English were developed in the ‘Satellite Eye for Galathea 3' projected supported by Egmontfonden and ESA Eduspace. The satellite images were mainly from ESA and Eduspace. The Danish projects are support also by Tips og Lottopuljen of Ministry of Education.

  10. Bringing Authentic Research into the Classroom with the Mars Student Imaging Project: Comparison of the PBL Gold Standards to the Scientific Methods

    NASA Astrophysics Data System (ADS)

    Pounder, Jean

    2017-04-01

    The goal of Project Based Learning (PBL) is to actively engage students through authentic, real word study to increase content knowledge, understanding, and skills for everyday success. The essential design of PBL is very similar in nature to the scientific method and therefore easy to adapt to the science classroom. In my classroom, students use these essential elements when engaging in the study of the processes that affect the surface of a planet such as weathering and erosion. Studying Mars is a hook to getting students to learn about the same processes that occur on Earth and to contrast the differences that occur on another planetary body. As part of the Mars Student Imaging Project (MSIP), students have the opportunity to engage and collaborate with NASA scientists at Arizona State University and get feedback on their work. They research and develop their own question or area of focus to study. They use images of Mars taken using the THEMIS camera onboard the Mars Odyssey Satellite, which has been orbiting Mars since 2001. Students submit a proposal to the scientists at ASU and, if accepted, they are given the opportunity to use the THEMIS camera in orbit to photograph a new region on Mars that will hopefully contribute to their research. Students give a final presentation to the faculty, staff, community, and other students by presenting their work in a poster session and explaining their work to the audience.

  11. Send Your Students to Mars for Their next Research Project

    ERIC Educational Resources Information Center

    Lindgren, Charles

    2006-01-01

    The NASA's Mars Student Imaging Project (MSIP) is led by the Arizona State University (ASU) Mars Education Program, a major partner of NASA's Mars Exploration Program. MSIP is based on the National Science Education Standards and includes curriculum on terrestrial planet characteristics, experimental design, and proposal writing. Three spacecraft…

  12. KidSat: Image User's Manual

    NASA Technical Reports Server (NTRS)

    Way, JoBea; Andres, Paul; Baker, John; Goodson, Greg; Marshall, William; McGuire, John; Rackley, Kathleen; Stork, Elizabeth Jones; Yiu, Lisa

    1999-01-01

    The goal of KidSat was to provide young students with the opportunity to participate directly in the NASA space program and to enhance learning in the process. The KidSat pilot project was focused on using a color digital camera, mounted on the space shuttle, to take pictures of the Earth. These could be used to enhance middle school curricula. The project not only benefited middle school students, who were essentially the Science Team, responsible for deciding where to take pictures, but it also benefited high school students and undergraduates, who were essentially the Project Team, responsible for the development and implementation of the project. KidSat flew on three missions as part of the pilot project: STS-76, STS-81, and STS-86. This document describes the goals, project elements, results, and data for the three KidSat missions that made up the pilot program. It serves as a record for this pilot project and may be used as a reference for similar projects. It can also be a too] in using the data to its fullest extent. The KidSat Web page remains on-line at http://kidsat.jpl.nasa.gov/kidsat, and the images may be downloaded in their full resolution.

  13. Desktop Parallax and Proper Motion: A Laboratory Exercise on Astrometry of Asteroids from Project CLEA

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Snyder, G. A.; Good, R. F.; Hayden, M. B.; Cooper, P. R.

    1998-12-01

    Students in introductory and advanced astronomy classes can now experience the process of discovering asteroids, can measure proper motions, and can actually see the parallax of real astronomical objects on the screen, using a new set of computer-based exercises from Project CLEA. The heart of the exercise is a sophisticated astrometry program "Astrometry of Asteroids", which is a restricted version of CLEA's research software "Tools for Astrometry" described elsewhere at this meeting. The program, as used in the teaching lab, allows students to read and display digital images, co-align pairs of images using designated reference stars, blink and identify moving objects on the pairs, compare images with charts produced from the HST Guide Star Catalog (GSC), and fit equatorial coordinates to the images using designated reference stars from the GSC. Complete technical manuals for the exercise are provided for the use of the instructor, and a set of digital images, in FITS format, is included for the exercise. A student manual is provided for an exercise in which students go through the step-by-step process of determining the tangential velocity of an asteroid. Students first examine a series of images of a near-earth asteroid taken over several hours, blinking pairs to identify the moving object. They next measure the equatorial coordinates on a half-dozen images, and from this calculate an angular velocity of the object. Finally, using a pair of images of the asteroid taken simultaneously at the National Undergraduate Research Observatory (NURO) and at Colgate University, they measure the parallax of the asteroid, and thus its distance, which enables them to convert the angular velocity into a tangential velocity. An optional set of 10 pairs of images is provided, some of which contain asteroids, so that students can try to "find the asteroid" for themselves. The software is extremely flexible, and though materials are provided for a self-contained exercise, teachers can adapt the material to a wide variety of uses. The software and manuals are currently available on the Web. Project CLEA is supported by grants from Gettysburg College and the National Science Foundation.

  14. A new approach to learning how to teach: medical students as instructional designers.

    PubMed

    Novak, Sean H; Quinn, Molly; Canan, Timothy; Metten, Shaleen; Wisco, Jonathan J; Wimmers, Paul F; Uijtdehaage, Sebastian

    2011-01-01

    As students at the David Geffen School of Medicine at UCLA, the student authors were given the opportunity to develop their own creative projects which would be used to teach future medical students. They chose their own topics, planned and researched their projects, and then implemented the projects in interactive digital Adobe Flash files. In the first project they created interactive case-based radiology teaching files. In the second project they integrated photographic images into the existing illustrative anatomy files. Students in subsequent years have learned from these files on computers both at home and in the school's anatomy lab. The experience of creating the files served as an opportunity for hands-on learning for the student authors, both of the material and of the practice of teaching. In this paper they describe why they undertook these projects, what exactly they did, and the impact their creation had on them. The projects demonstrate that student-driven educational materials are both possible and beneficial. Furthermore, their experience has allowed them to conclude that faculty at other medical schools should consider providing students with opportunities to develop their own creative projects that contribute to the curriculum.

  15. C[squared] = Creative Coordinates

    ERIC Educational Resources Information Center

    McHugh, Shelley R.

    2007-01-01

    "C[squared] = Creative Coordinates" is an engaging group of tasks that fosters the integration of mathematics and art to create meaningful understanding. The project lets students illustrate of find an image, then plot points to map their design on a grid. The project usually takes about a week to complete. When it is finished, students who are…

  16. Graphic Biology Laboratory Modules for the Blind.

    ERIC Educational Resources Information Center

    Brooks, Austin E.

    The goal of this project was to devise new methods of producing tactile facsimiles of microscopic images for the blind and visually impaired biology students at the secondary and college level. The numerous raised-line images that were produced were assembled along with brailled and large print student instructions, audio cassette tapes describing…

  17. Short Project-Based Learning with MATLAB Applications to Support the Learning of Video-Image Processing

    ERIC Educational Resources Information Center

    Gil, Pablo

    2017-01-01

    University courses concerning Computer Vision and Image Processing are generally taught using a traditional methodology that is focused on the teacher rather than on the students. This approach is consequently not effective when teachers seek to attain cognitive objectives involving their students' critical thinking. This manuscript covers the…

  18. Images of Africa: A Report on What American Secondary School Students Know and Believe about Africa South of the Sahara.

    ERIC Educational Resources Information Center

    Beyer, Barry K.; Hicks, E. Perry

    "Project Africa" surveyed selected seventh- and 12th-grade students in 24 states to determine (1) the specific nature of their images of Africa south of the Sahara, both before and after any formal study of this region, and (2) the types and accuracy of the students' knowledge about the region and its peoples. In one survey, students…

  19. Project SunSHINE: A Student Based Solar Research Program

    NASA Astrophysics Data System (ADS)

    Donahue, R.

    2000-12-01

    Eastchester Middle School (NY) is currently conducting an ongoing, interdisciplinary solar research program entitled Project SunSHINE, for Students Help Investigate Nature in Eastchester. Students are to determine how ultraviolet and visible light levels vary throughout the year at the school's geographic location, and to ascertain if any measured variations correlate to daily weather conditions or sunspot activity. The educational goal is to provide students the opportunity to conduct original and meaningful scientific research, while learning to work collaboratively with peers and teachers in accordance with national mathematics, science and technology standards. Project SunSHINE requires the student researchers to employ a number of technologies to collect and analyze data, including light sensors, astronomical imaging software, an onsite AirWatch Weather Station, Internet access to retrieve daily solar images from the National Solar Observatory's Kitt Peak Vacuum Telescope, and two wide field telescopes for live sunspot observations. The program has been integrated into the science, mathematics, health and computer technology classes. Solar and weather datasets are emailed weekly to physicist Dr. Gil Yanow of the Jet Propulsion Laboratory for inclusion in his global study of light levels. Dr. Yanow credited the Project SunSHINE student researchers last year for the discovery of an inverse relationship between relative humidity and ultraviolet light levels. The Journal News Golden Apple Awards named Project SunSHINE the 1999 New York Wired Applied Technology Award winner. This honor recognizes the year's outstanding educational technology program at both the elementary and secondary level, and included a grant of \\$20,000 to the research program. Teacher training and image processing software for Project SunSHINE has been supplied by The Use of Astronomy in Research Based Science Education (RBSE), a Teacher Enhancement Program funded by the National Science Foundation and conducted at the facilities of the National Optical Astronomy Observatory in Tucson, Arizona.

  20. Student-Created Digital Media and Engagement in Middle School History

    ERIC Educational Resources Information Center

    Alexander, Curby

    2014-01-01

    In this study, student engagement during classroom activities was investigated where sixth graders created digital media projects using historical images. The study employed a qualitative design involving observations, student artifacts, and interviews while students were creating digital storyboards using a Web-based application developed for…

  1. Transition of a dental histology course from light to virtual microscopy.

    PubMed

    Weaker, Frank J; Herbert, Damon C

    2009-10-01

    The transition of the dental histology course at the University of Texas Health Science Center at San Antonio Dental School was completed gradually over a five-year period. A pilot project was initially conducted to study the feasibility of integrating virtual microscopy into a traditional light microscopic lecture and laboratory course. Because of the difficulty of procuring quality calcified and decalcified sections of teeth, slides from the student loan collection in the oral histology block of the course were outsourced for conversion to digital images and placed on DVDs along with a slide viewer. The slide viewer mimicked the light microscope, allowing horizontal and vertical movement and changing of magnification, and, in addition, a feature to capture static images. In a survey, students rated the ease of use of the software, quality of the images, maneuverability of the images, and questions regarding use of the software, effective use of laboratory, and faculty time. Because of the positive support from the students, our entire student loan collection of 153 glass slides was subsequently converted to virtual images and distributed on an Apricorn pocket external hard drive. Students were asked to assess the virtual microscope over a four-year period. As a result of the surveys, light microscopes have been totally eliminated, and microscope exams have been replaced with project slide examinations. In the future, we plan to expand our virtual slides and incorporate computer testing.

  2. Computers in Public Schools: Changing the Image with Image Processing.

    ERIC Educational Resources Information Center

    Raphael, Jacqueline; Greenberg, Richard

    1995-01-01

    The kinds of educational technologies selected can make the difference between uninspired, rote computer use and challenging learning experiences. University of Arizona's Image Processing for Teaching Project has worked with over 1,000 teachers to develop image-processing techniques that provide students with exciting, open-ended opportunities for…

  3. Icon Images in HyperCard: An Exploration of Visual Concepts with Middle School Students.

    ERIC Educational Resources Information Center

    Philleo, Tom

    The purpose of this project was to investigate, in an informal and exploratory manner, the reactions of middle school students to unfamiliar symbols used as computer screen icons. The project focused on discovering a means to address the following issues: (1) the appearance of buttons containing text compared to those with graphics; (2) the…

  4. Exploring Intrinsic and Extrinsic Motivations to Participate in a Crowdsourcing Project to Support Blind and Partially Sighted Students.

    PubMed

    Layas, Fatma; Petrie, Helen

    2016-01-01

    There have been a number of crowdsourcing projects to support people with disabilities. However, there is little exploration of what motivates people to participate in such crowdsourcing projects. In this study we investigated how different motivational factors can affect the participation of people in a crowdsourcing project to support visually disabled students. We are developing "DescribeIT", a crowdsourcing project to support blind and partially students by having sighted people describe images in digital learning resources. We investigated participants' behavior of the DescribeIT project using three conditions: one intrinsic motivation condition and two extrinsic motivation conditions. The results showed that participants were significantly intrinsically motivated to participate in the DescribeIT project. In addition, participants' intrinsic motivation dominated the effect of the two extrinsic motivational factors in the extrinsic conditions.

  5. Teaching strategies for using projected images to develop conceptual understanding: Exploring discussion practices in computer simulation and static image-based lessons

    NASA Astrophysics Data System (ADS)

    Price, Norman T.

    The availability and sophistication of visual display images, such as simulations, for use in science classrooms has increased exponentially however, it can be difficult for teachers to use these images to encourage and engage active student thinking. There is a need to describe flexible discussion strategies that use visual media to engage active thinking. This mixed methods study analyzes teacher behavior in lessons using visual media about the particulate model of matter that were taught by three experienced middle school teachers. Each teacher taught one half of their students with lessons using static overheads and taught the other half with lessons using a projected dynamic simulation. The quantitative analysis of pre-post data found significant gain differences between the two image mode conditions, suggesting that the students who were assigned to the simulation condition learned more than students who were assigned to the overhead condition. Open coding was used to identify a set of eight image-based teaching strategies that teachers were using with visual displays. Fixed codes for this set of image-based discussion strategies were then developed and used to analyze video and transcripts of whole class discussions from 12 lessons. The image-based discussion strategies were refined over time in a set of three in-depth 2x2 comparative case studies of two teachers teaching one lesson topic with two image display modes. The comparative case study data suggest that the simulation mode may have offered greater affordances than the overhead mode for planning and enacting discussions. The 12 discussions were also coded for overall teacher student interaction patterns, such as presentation, IRE, and IRF. When teachers moved during a lesson from using no image to using either image mode, some teachers were observed asking more questions when the image was displayed while others asked many fewer questions. The changes in teacher student interaction patterns suggest that teachers vary on whether they consider the displayed image as a "tool-for-telling" and a "tool-for-asking." The study attempts to provide new descriptions of strategies teachers use to orchestrate image-based discussions designed to promote student engagement and reasoning in lessons with conceptual goals.

  6. Validation of TxDOT flexible pavement skid prediction model : workshop : student guide.

    DOT National Transportation Integrated Search

    2017-05-01

    Course Materials: : Background summary of Research Project 0-5627. : Short presentation of research tasks and findings from Research Project 0-6746. : Aggregate characterization with Aggregate Imaging Measurement System (AIMS) and Micro-D...

  7. Inclusive Writing in a Psychology Class

    ERIC Educational Resources Information Center

    Parameswaram, Gowri

    2007-01-01

    Most college professors are looking for ways to make writing a positive experience for students. This is increasingly a challenge in our contemporary world, which tends to be very image-oriented. This short paper outlines ways in which student writing-projects can be designed encourage critical and innovative thinking in students. Inclusive…

  8. Empowering Teachers to Author Multimedia Learning Resources That Support Students' Critical Thinking

    ERIC Educational Resources Information Center

    Holley, Debbie; Boyle, Tom

    2012-01-01

    Students studying Marketing, Fashion, Public Relations, Advertising and similar subjects need to develop a "critical eye" in relation to images, media and digital technologies. This project aims to empower teachers to develop multimedia learning resources that would support students engaging in this essential activity. Developing such…

  9. An Interactive Introduction to Protein Structure

    ERIC Educational Resources Information Center

    Lee, W. Theodore

    2004-01-01

    To improve student understanding of protein structure and the significance of noncovalent interactions in protein structure and function, students are assigned a project to write a paper complemented with computer-generated images. The assignment provides an opportunity for students to select a protein structure that is of interest and detail…

  10. A Mirror Image African American Student Reflections

    ERIC Educational Resources Information Center

    Cannon Dawson, Candice

    2012-01-01

    This dissertation is a narrative inquiry research project that focuses on the collegiate experiences of African American students at both historically black colleges and universities (HBCUs) and predominantly white institutions (PWIs). I look at how African American college students who engage in race or culturally specific activities, the degree…

  11. Remote Imaging Projects In Research And Astrophotography With Starpals

    NASA Astrophysics Data System (ADS)

    Fischer, Audrey; Kingan, J.

    2008-05-01

    StarPals is a nascent non-profit organization with the goal of providing opportunities for international collaboration between students of all ages within space science research. We believe that by encouraging an interest in the cosmos, the one thing that is truly Universal, from a young age, students will not only further their knowledge of and interest in science but will learn valuable teamwork and life skills. The goal is to foster respect, understanding and appreciation of cultural diversity among all StarPals participants, whether students, teachers, or mentors. StarPals aims to inspire students by providing opportunities in which, more than simply visualizing themselves as research scientists, they can actually become one. The technologies of robotic telescopes, videoconferencing, and online classrooms are expanding the possibilities like never before. In honor of IYA2009, StarPals would like to encourage 400 schools to participate on a global scale in astronomy/cosmology research on various concurrent projects. We will offer in-person or online workshops and training sessions to teach the teachers. We will be seeking publication in scientific journals for some student research. For our current project, the Double Stars Challenge, students use the robotic telescopes to take a series of four images of one of 30 double stars from a list furnished by the US Naval Observatory and then use MPO Canopus software to take distance and position angle measurements. StarPals provides students with hands-on training, telescope time, and software to complete the imaging and measuring. A paper will be drafted from our research data and submitted to the Journal of Double Star Observations. The kids who participate in this project may potentially be the youngest contributors to an article in a vetted scientific journal. Kids rapidly adapt and improve their computer skills operating these telescopes and discover for themselves that science is COOL!

  12. Accuracy and consistency of radiographic interpretation among clinical instructors using two viewing systems.

    PubMed

    Lanning, Sharon K; Best, Al M; Temple, Henry J; Richards, Philip S; Carey, Allison; McCauley, Laurie K

    2006-02-01

    Accurate and consistent radiographic interpretation among clinical instructors is needed for assessment of teaching, student performance, and patient care. The purpose of this investigation was to determine if the method of radiographic viewing affects accuracy and consistency of instructors' determinations of bone loss. Forty-one clinicians who provide instruction in a dental school clinical teaching program (including periodontists, general dentists, periodontal graduate students, and dental hygienists) quantified bone loss for up to twenty-five teeth into four descriptive categories using a view box for plain film viewing or a projection system for digitized image viewing. Ratings were compared to the correct category as determined by direct measurement using the Schei ruler. Agreement with the correct choice for the view box and projection system was 70.2 percent and 64.5 percent, respectively. The mean difference was better for a projection system due to small rater error by graduate students. Projection system ratings were slightly less consistent than view box ratings. Dental hygiene faculty ratings were the most consistent but least accurate. Although the projection system resulted in slightly reduced accuracy and consistency among instructors, training sessions utilizing a single method for projecting digitized radiographic images have their advantages and may positively influence dental education and patient care by enhancing accuracy and consistency of radiographic interpretation among instructors.

  13. Critical Elements for Successful Implementation and Adoption of Authentic Scientific Research Programs: Lessons Learned from NASA's Mars Student Imaging Project

    NASA Astrophysics Data System (ADS)

    Klug Boonstra, S.; Swann, J.; Boonstra, D.; Manfredi, L.; Christensen, P. R.

    2016-12-01

    Recent research identifies the most effective learning as active, engaged learning in which students interact with phenomena, other students, and the teacher/leader to derive meaning and construct understanding of their surroundings. "Similarly, an engaging and effective science education goes well beyond the low-level factual recall that is emphasized in many science classes. It must develop the skills that students need to solve complex problems, work in teams, make and recognize evidence-based arguments, and interpret and communicate complex information" (emphasis added). Authentic science research projects provide active, engaged learning in which students interact with authentic science data in an authentic problem-solving context to derive meaning and construct understanding of the world. In formal (and many informal) settings, the teacher/leader is effectively the gatekeeper who determines the learning experiences in which the students will participate. From our experience of nearly a decade and a half of authentic science programming for 5thgrade through early college students working with NASA Mars data, supporting and enabling the teacher is perhaps the most critical and foundational element for designing a successful authentic research experience. Yet, a major barrier to this type of learning are teacher/leaders who are too often not equipped or who lack confidence to succeed in facilitating authentic research projects. The Mars Student Imaging Project has implemented an iterative process of design, testing, and redesign that has identified and implemented critical teacher/leader-enabling elements that have led to increasingly successful adoptions within formal and informal educational settings - allowing more students to gain the benefits of immersive research experience.

  14. Insights on WWW-based geoscience teaching: Climbing the first year learning cliff

    NASA Astrophysics Data System (ADS)

    Lamberson, Michelle N.; Johnson, Mark; Bevier, Mary Lou; Russell, J. Kelly

    1997-06-01

    In early 1995, The University of British Columbia Department of Geological Sciences (now Earth and Ocean Sciences) initiated a project that explored the effectiveness of the World Wide Web as a teaching and learning medium. Four decisions made at the onset of the project have guided the department's educational technology plan: (1) over 90% of funding recieved from educational technology grants was committed towards personnel; (2) materials developed are modular in design; (3) a data-base approach was taken to resource development; and (4) a strong commitment to student involvement in courseware development. The project comprised development of a web site for an existing core course: Geology 202, Introduction to Petrology. The web site is a gateway to course information, content, resources, exercises, and several searchable data-bases (images, petrologic definitions, and minerals in thin section). Material was developed on either an IBM or UNIX machine, ported to a UNIX platform, and is accessed using the Netscape browser. The resources consist primarily of HTML files or CGI scripts with associated text, images, sound, digital movies, and animations. Students access the web site from the departmental student computer facility, from home or a computer station in the petrology laboratory. Results of a survey of the Geol 202 students indicate that they found the majority of the resources useful, and the site is being expanded. The Geology 202 project had a "trickle-up" effect throughout the department: prior to this project, there was minimal use of Internet resources in lower-level geology courses. By the end of the 1996-1997 academic year, we anticipate that at least 17 Earth and Ocean Science courses will have a WWW site for one or all of the following uses: (1) presenting basic information; (2) accessing lecture images; (3) providing a jumping-off point for exploring related WWW sites; (4) conducting on-line exercises; and/or (5) providing a communications forum for students and faculty via a Hypernews group. Url http://www.science.ubc.ca/

  15. Participatory Action Research with College Students with Disabilities: Photovoice for an Inclusive Campus

    ERIC Educational Resources Information Center

    Agarwal, Neelam; Moya, Eva M.; Yasui, Naoko Yura; Seymour, Corene

    2015-01-01

    College students with disabilities face various barriers to academic and social engagement. The present project was conducted based on principles of participatory action research (PAR) using Photovoice method with six students, gathering images representing such barriers, and developing narratives to describe the problems as well as possible ways…

  16. Cultural Collage Paintings

    ERIC Educational Resources Information Center

    Coy, Mary

    2011-01-01

    In this article, the author describes a cultural collage painting project. Three things served as the impetus for this project: (1) a desire for students to explore the theme of "culture"; (2) an appreciation for the photo-montaged, layered images one sees in print media; and (3) noticing that projects from core subject areas hanging on the walls…

  17. K-12 Professional Development at the Harvard Forest LTER

    NASA Astrophysics Data System (ADS)

    Bennett, K.

    2012-12-01

    As part of the Long Term Ecological Research (LTER) program, the Harvard Forest in Petersham, Massachusetts seeks to train the next generation of researchers, by involving K-12 grade students and their teachers in hands-on, field-based, ecological research in their own schoolyard and community. Students learn to collect data on important long-term ecological issues and processes. Student data are then shared on the Harvard Forest website. To prepare teachers for project protocols, teachers are given direct access to Harvard ecologists with professional development workshops and on-line resources. With the Harvard Forest Schoolyard LTER program, students can participate in three different research projects focusing on phenology, invasive insects, and vernal pools. Teachers attend the Summer Institute for Teachers to learn project content and methods. They return in fall to participate in one of three levels of data workshops to learn how to input, manage, and analyze project data. In the spring, teachers again meet with the Harvard ecologists about project protocols, and to share, through a series of teacher presentations, the ways these project themes are being integrated into class curricula. These professional development opportunities result in long term collaborative partnerships with local schools and the Harvard Forest LTER. In addition to the LTER Schoolyard Ecology Program, the Harvard Forest has supported a successful Research Experience for Teachers (RET) program for the last six years. Throughout the summer, teachers work on research projects alongside Harvard Forest and affiliated scientists, post-docs, graduate students, and REU's (Research Experience for Undergraduates). The RET program provides teachers with the opportunity to build scientific knowledge, develop an understanding of research methods, and translate their new knowledge and experiences into cutting edge classroom lessons. The past two summers I have worked with Dr. Andrew Richardson's Phenocam project, a network of near remote sensing digital phenology cameras that send images of forest, shrub, and grassland vegetation cover at more than 130 diverse sites in North America to the digital archives at the University of New Hampshire. Our school district is now part of this network providing a digital image every half hour of the mixed deciduous/ coniferous forest canopy due north from Overlook Middle School in Ashburnham, Massachusetts. As a part of the Phenocam network, students at the K-12 level have expanded the scope of phenological monitoring that is part of the Harvard Forest LTER Schoolyard Ecology Program protocol, Buds, Leaves, and Global Warming. I have developed a series of lessons comparing student data to phenology data derived from Phenocam network images and Modis satellites. The Phenocam Project and the RET program is supported by NASA.

  18. Hawaii Student / Teacher Astronomy Research program (HI STAR): 10 years of high school students exploring the universe

    NASA Astrophysics Data System (ADS)

    Mathews, Geoffrey; Armstrong, James; Nassir, Michael A.; Kaichi, Carolyn

    2017-01-01

    For the past decade, the Hawaii Student / Teacher Astronomy Research program (HI STAR) at UH Manoa’s Institute for Astronomy has trained astronomy-enthusiastic high school students in research, data analysis and science presentation skills. Every summer, a selected group of 8th-to-12th-grade students attend a week-long residential astronomy "camp" in Honolulu, Hawaii. The students experience the profession of astronomy by learning scientific skills such as imaging and spectroscopy, data-reduction, and data analysis. The week culminates with presention of a research project guided by professional astronomer mentors. During the following six months, each student continues to work with a mentor to complete a research project for submission to their local science fair. From 2012 - 2015, ~80% of students completed their long-term projects. Many have performed well; in each of 2015 and 2016, 5 alumni progressed to the International Science and Engineering Fair. Here we present the current structure of HI STAR and plans for the future.

  19. User-Driven Planning for Digital-Image Delivery

    ERIC Educational Resources Information Center

    Pisciotta, Henry; Halm, Michael J.; Dooris, Michael J.

    2006-01-01

    This article draws on two projects funded by the Andrew W. Mellon Foundation concerning the ways colleges and universities can support the legitimate sharing of digital learning resources for scholarly use. The 2001-03 Visual Image User Study (VIUS) assessed the scholarly needs of digital image users-faculty, staff, and students. That study led to…

  20. Finding Your Place in Art History.

    ERIC Educational Resources Information Center

    Murphy, Lauren Parmelee

    2003-01-01

    Describes an art history project used with fifth-grade students where they selected a famous painting as a background for a self-portrait. Explains how the students used Adobe Photoshop to place a digital photograph of themselves into a scanned image of the artwork. (CMK)

  1. Historical Reference.

    ERIC Educational Resources Information Center

    Greenman, Geri

    2000-01-01

    Focuses on an art project that integrates history and social studies. Students depict an historical event that had an impact on the United States with a combination of drawing and transferred images (from the copy machine). Discusses some of the students' works in an advanced drawing class. (CMK)

  2. Doves, Rainbows and an Uneasy Peace: Student Images of Reconciliation in a Post-Conflict Society

    ERIC Educational Resources Information Center

    Ferreira, Ana; Janks, Hilary

    2009-01-01

    In this article we draw on data from a two-cycle action research project, in which ways of teaching reconciliation in post-apartheid secondary school classrooms are explored. We undertake a detailed analysis of a selection of artefacts produced by South African students representing their understandings of reconciliation. Initially students' work…

  3. "Anatomy and imaging": 10 years of experience with an interdisciplinary teaching project in preclinical medical education - from an elective to a curricular course.

    PubMed

    Schober, A; Pieper, C C; Schmidt, R; Wittkowski, W

    2014-05-01

    Presentation of an interdisciplinary, interactive, tutor-based preclinical teaching project called "Anatomy and Imaging". Experience report, analysis of evaluation results and selective literature review. From 2001 to 2012, 618 students took the basic course (4 periods per week throughout the semester) and 316 took the advanced course (2 periods per week). We reviewed 557 (return rate 90.1 %) and 292 (92.4 %) completed evaluation forms of the basic and the advanced course. Results showed overall high satisfaction with the courses (1.33 and 1.56, respectively, on a 5-point Likert scale). The recognizability of the relevance of the course content for medical training, the promotion of the interest in medicine and the quality of the student tutors were evaluated especially positively. The "Anatomy and Imaging" teaching project is a successful concept for integrating medical imaging into the preclinical stage of medical education. The course was offered as part of the curriculum in 2013 for the first time. "Anatomia in mortuis" and "Anatomia in vivo" are not regarded as rivaling entities in the delivery of knowledge, but as complementary methods. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Investigation into the Potential of Investigative Projects Involving Powerful Robotic Telescopes to Inspire Interest in Science

    ERIC Educational Resources Information Center

    Beare, Richard

    2007-01-01

    The Faulkes Telescope Project and its educational aims are briefly summarised. Research to evaluate its impact in inspiring excitement and interest among students is described. The Faulkes Telescope in Hawaii was used to provide images for assessed coursework based on two of the Faulkes "education/research" projects on galaxies.…

  5. Teaching Strategies for Using Projected Images to Develop Conceptual Understanding: Exploring Discussion Practices in Computer Simulation and Static Image-Based Lessons

    ERIC Educational Resources Information Center

    Price, Norman T.

    2013-01-01

    The availability and sophistication of visual display images, such as simulations, for use in science classrooms has increased exponentially however, it can be difficult for teachers to use these images to encourage and engage active student thinking. There is a need to describe flexible discussion strategies that use visual media to engage active…

  6. Research Projects and Undergraduate Retention at the University of Arizona

    NASA Astrophysics Data System (ADS)

    Walker-LaFollette, Amanda; Hardegree-Ullman, K.; Towner, A. P.; McGraw, A. M.; Biddle, L. I.; Robertson, A.; Turner, J.; Smith, C.

    2013-06-01

    The University of Arizona’s Astronomy Club utilizes its access to the many telescopes in and around Tucson, Arizona, to allow students to fully participate in a variety of research projects. Three current projects - the exoplanet project, the radio astronomy project, and the Kepler project - all work to give undergraduates who are interested in astronomy the opportunity to explore practical astronomy outside the classroom and in a peer-supported environment. The exoplanet project strives to teach students about the research process, including observing exoplanet transits on the Steward Observatory 61” Kuiper telescope on Mt. Bigelow in Tucson, AZ, reducing the data into lightcurves with the Image Reduction and Analysis Facility (IRAF), modeling the lightcurves using the Interactive Data Language (IDL), and writing and publishing a professional paper, and does it all with no faculty involvement. The radio astronomy project is designed to provide students with an opportunity to work with a professor on a radio astronomy research project, and to learn about the research process, including observing molecules in molecular clouds using the Arizona Radio Observatory 12-meter radio telescope on Kitt Peak in Arizona. The Kepler project is a new project designed in part to facilitate graduate-undergraduate interaction in the Astronomy Department, and in part to allow students (both graduate and undergraduate) to participate in star-spot cycle research using data from the Kepler Mission. All of these research projects and structures provide students with unique access to telescopes, peer mentoring, networking, and understanding the entire process of astronomical research.

  7. Kaleidoscopes and Mathematics: An Elegant Connection

    ERIC Educational Resources Information Center

    Miller, Catherine M.

    2017-01-01

    This article describes a project in which students investigate the question: What dihedral angles between pairs of mirrors in a kaleidoscope result in perfectly symmetric images? The unit culminates with students building their own kaleidoscopes. This content aligns with parts of the Common Core's standards for fifth grade (classify…

  8. COMETWATCHERS: Bringing Research into the Undergraduate Astronomy Curriculum

    NASA Astrophysics Data System (ADS)

    Womack, M.

    2000-05-01

    Integrating research with education has been an evolving process for me and the "Cometwatchers", the students with whom I work. What started as a totally extracurricular activity, has become well-integrated into St. Cloud State Univerity's upper-division courses on Solar System Astronomy and Observational Astronomy. Maintaining a collaboration with six to eight students is a challenge that is made easier and more efficient when we modularize the projects, utilize each person's expertise, hold weekly meetings, require students to write guides and manuals to instruct others, and require students to write up and present their work at meetings. This also helps students to identify and evaluate their contributions to the research. Here I profile the research component in two courses at SCSU that use a student-run optical observatory equipped with a 0.4-m telescope, CCD, UBVRI photometry filters and a fiber-optic spectrograph. Results from some focused research projects are also discussed, including an optical imaging archive of Comet Hale-Bopp, derivation of dust expansion velocities from comet images, analysis of the visible light-curve of comet Hale-Bopp, spectral analysis of millimeter-wavelength ``datacubes" of HCO+ and of other carbon-bearing molecular spectra in comet Hale-Bopp.

  9. Using the Mars Student Imaging Project to Integrate Science and English into Middle School Classrooms

    NASA Astrophysics Data System (ADS)

    Lindgren, C. F.; Troy, M. T.; Valderrama, P.

    2005-12-01

    Bringing science to life in a middle school classroom, and getting students excited about writing an English research paper can be a challenge. We met the challenge by using the exploration of Mars with Arizona State University`s (ASU) Mars Student Imaging Project (MSIP). We replaced individuals writing their own research papers with teams writing scientific proposals for use of the 2001 Mars Odyssey Orbiter. The 126 students on our academic team divided themselves into 26 teams. Each team selected a Leader, Archivist, Publicist, and Bibliographer. I was the Principal Investigator for each team. For twelve weeks the teams formally met once a week to discuss their progress and plan strategies for the following week. We created a website to communicate our progress. During the twelve weeks, the major task was to narrow each general topic such as ``Volcanoes on Mars," to a specific topic that could be answered by an 18km by 60km visible light image such as ``Is it Possible to Find the Relative Age of Volcanic Depressions in a Lava Flow Using a Mars Odyssey Image?" In addition to traditional research methods, we also participated in four teleconferences with ASU scientists chaired by Paige Valderrama, Assistant Director of the Mars Education Program. As the project evolved, I guided the teams with content, while the English teacher provided strategies for writing a meaningful persuasive essay, using citations, and recording bibliographical entries. When the proposals were completed, each team created a PowerPoint presentation to introduce their proposal to everyone for peer review. The students were hard, but fair with their evaluations. In several cases, they did not cast one of their three votes for their own! They decided that ten proposals met the criteria established by ASU. Those teams selected one member to use the JMARS software to target locations on Mars. The imagers spent two intensive days learning the software and targeting the surface. When we received our Odyssey images, the teams, totaling 42 students, participated in a three week independent study to conduct their experiments, write, and finally submit their proposals to ASU. During that time, team leaders submitted what had been done each day to us for evaluation. All ten teams succeeded. Each participant in the final phase was rewarded by ASU with a laminated image of their target, and an A for their efforts from us!

  10. Promoting a Healthy Body: Collaboration among FCS Majors

    ERIC Educational Resources Information Center

    Yoo, Jeong-Ju

    2011-01-01

    Family and consumer sciences (FCS) professionals educate leaders who will contribute to the well-being of individuals, families, and communities. A description of a collaborative classroom project designed to enhance students' understanding of healthy body images is shared. Students are provided with opportunities to work with their collegiate…

  11. Minority Images: A Project Guide.

    ERIC Educational Resources Information Center

    Murphy, Sharon; Estrada, Paula

    The reading list and assignments in this study guide are designed to involve high school students in examining the media from a nonwhite perspective. The beginning assignments require students to assemble their own bibliography relating to minority groups in the media, to examine the lives and contributions of specific Chicano, black, and American…

  12. Computer Modeling and Research in the Classroom

    ERIC Educational Resources Information Center

    Ramos, Maria Joao; Fernandes, Pedro Alexandrino

    2005-01-01

    We report on a computational chemistry course for undergraduate students that successfully incorporated a research project on the design of new contrast agents for magnetic resonance imaging and shift reagents for in vivo NMR. Course outcomes were positive: students were quite motivated during the whole year--they learned what was required of…

  13. HyperGLOB/Freedom: Preparing Student Designers for a New Media.

    ERIC Educational Resources Information Center

    Slawson, Brian

    The HyperGLOB project introduced university-level graphic design students to interactive multimedia. This technology involves using the personal computer to display and manipulate a variety of electronic media simultaneously (combining elements of text and speech, music and sound, still images, motion video, and animated graphics) and allows…

  14. K-12 Phenology Lessons for the Phenocam Project

    NASA Astrophysics Data System (ADS)

    Bennett, K. F.

    2013-12-01

    Phenology is defined as periodic [or annual] life cycles of plants and animals driven by seasonal environmental changes. Climate change impinges a strong effect on phenology, potentially altering the structure and functioning of ecosystems. In the fall of 2011, the Ashburnham-Westminster Regional School District became the first of five schools to join Harvard University's Phenocam Network with the installation of a webcam to monitor phenology (or 'phenocam') at Overlook Middle School in Ashburnham, Massachusetts. Our school district is now part of a network of near-surface remote sensing phenocams that capture and send images of forest, shrub, and grassland vegetation cover at more than 130 diverse sites in North America. Our phenocam provides a digital image every half hour of the mixed forest canopy north from the school, enabling the detection of changes in canopy development, quantified as canopy 'greenness'. As a part of the Phenocam project, students at the K-12 level have expanded the scope of phenological monitoring protocol that is part of the Harvard Forest Schoolyard Ecology Program, Buds, Leaves, and Global Warming. In this protocol, students work with ecologists at Harvard Forest to monitor buds and leaves on schoolyard trees to determine the length of the growing season, giving them the opportunity to be a part of real and important research concerning the critical environmental issue of climate change. Students involved in the Buds, Leaves, and Global Warming study have the opportunity to compare their ground data on budburst, color change, and leaf drop to the phenocam images, as well as to similar forested sites in locations throughout the United States. Lessons have been developed for comparing student data to phenocam images, canopy greenness time series graphs extracted from the images, and satellite data. Lessons addressing map scale and the Urban Heat Island effect will also be available for teachers. This project will greatly enhance the district's Science, Technology, Engineering and Math, (STEM) initiative and further our goal of educating ecologically literate citizens.

  15. Find Good Sources of Online Images: A Picture Doesn't Have to Be a Thousand Searches

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2006-01-01

    The Internet is a natural place to look for images that teachers can use in lessons and students can use in projects and assignments. Google, Yahoo, AltaVista--many of these popular search engines offer image searching. Usually there is a tab to click at the top of the page to select image searching; just enter a search term and go! However, this…

  16. Digitizing Images for Curriculum 21: Phase II.

    ERIC Educational Resources Information Center

    Walker, Alice D.

    Although visual databases exist for the study of art, architecture, geography, health care, and other areas, readily accessible sources of quality images are not available for engineering faculty interested in developing multimedia modules or for student projects. Presented here is a brief review of Phase I of the Engineering Visual Database…

  17. The radiographic anatomy of the normal ovine digit, the metacarpophalangeal and metatarsophalangeal joints.

    PubMed

    Duncan, Jennifer S; Singer, Ellen R; Devaney, Jane; Oultram, Joanne W H; Walby, Anna J; Lester, Bridie R; Williams, Helen J

    2013-03-01

    The aim of this project was to develop a detailed, accessible set of reference images of the normal radiographic anatomy of the ovine digit up to and including the metacarpo/metatatarsophalangeal joints. The lower front and hind limbs of 5 Lleyn ewes were radiographed using portable radiography equipment, a digital image processer and standard projections. Twenty images, illustrating the normal radiographic anatomy of the limb were selected, labelled and presented along with a detailed description and corresponding images of the bony skeleton. These images are aimed to be of assistance to veterinary surgeons, veterinary students and veterinary researchers by enabling understanding of the normal anatomy of the ovine lower limb, and allowing comparison with the abnormal.

  18. Keck Geology Consortium Lava Project: Undergraduate Research Linking Natural and Experimental Basaltic Lava Flows

    NASA Astrophysics Data System (ADS)

    Karson, J. A.; Hazlett, R. W.; Wysocki, R.; Bromfield, M. E.; Browne, N. C.; Davis, N. C.; Pelland, C. G.; Rowan, W. L.; Warner, K. A.

    2014-12-01

    Undergraduate students in the Keck Geology Consortium Lava Project participated in a month-long investigation of features of basaltic lava flows from two very different perspectives. The first half of the project focused on field relations in basaltic lava flows from the 1984 Krafla Fires eruption in northern Iceland. Students gained valuable experience in the collection of observations and samples in the field leading to hypotheses for the formation of selected features related to lava flow dynamics. Studies focused on a wide range of features including: morphology and heat loss in lava tubes (pyroducts), growth and collapse of lava ponds and overflow deposits, textural changes of lava falls (flow over steep steps), spaced spatter cones from flows over wet ground, and anisotropy of magnetic susceptibility related to flow kinematics. In the second half of the program students designed, helped execute, documented, and analyzed features similar to those they studied in the field with large-scale (50-250 kg) basaltic lava flows created in the Syracuse University Lava Project (http://lavaproject.syr.edu). Data collected included video from multiple perspectives, infrared thermal (FLIR) images, still images, detailed measurements of flow dimensions and rates, and samples for textural and magnetic analyses. Experimental lava flow features provided critical tests of hypotheses generated in the field and a refined understanding of the behavior and final morphology of basaltic lava flows. The linked field and experimental studies formed the basis for year-long independent research projects under the supervision of their faculty mentors, leading to senior theses at the students' respective institutions.

  19. Don't Give It to Me--Put Me Where I Can Reach It Myself: Equipping Anglos to Recognize Hispanic Student Skills in Civic Leadership Roles--An Ethnically Focused Public Speaking Course.

    ERIC Educational Resources Information Center

    Fritz, Paul A.; Miller, Eric J.

    An introductory speech course was revised to fit the goals of Hispanic students. Content analysis of Hispanic student comments during informal advising sessions indicated that students admire the ability to analyze audience preferences, the ability to attract listeners with melodic discourse tone, and the ability to project a professional image in…

  20. Promoting Diversity in Undergraduate Research in Robotics-Based Seismic

    NASA Astrophysics Data System (ADS)

    Gifford, C. M.; Arthur, C. L.; Carmichael, B. L.; Webber, G. K.; Agah, A.

    2006-12-01

    The motivation for this research was to investigate forming evenly-spaced grid patterns with a team of mobile robots for future use in seismic imaging in polar environments. A team of robots was incrementally designed and simulated by incorporating sensors and altering each robot's controller. Challenges, design issues, and efficiency were also addressed. This research project incorporated the efforts of two undergraduate REU students from Elizabeth City State University (ECSU) in North Carolina, and the research staff at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. ECSU is a historically black university. Mentoring these two minority students in scientific research, seismic, robotics, and simulation will hopefully encourage them to pursue graduate degrees in science-related or engineering fields. The goals for this 10-week internship during summer 2006 were to educate the students in the fields of seismology, robotics, and virtual prototyping and simulation. Incrementally designing a robot platform for future enhancement and evaluation was central to this research, and involved simulation of several robots working together to change seismic grid shape and spacing. This process gave these undergraduate students experience and knowledge in an actual research project for a real-world application. The two undergraduate students gained valuable research experience and advanced their knowledge of seismic imaging, robotics, sensors, and simulation. They learned that seismic sensors can be used in an array to gather 2D and 3D images of the subsurface. They also learned that robotics can support dangerous or difficult human activities, such as those in a harsh polar environment, by increasing automation, robustness, and precision. Simulating robot designs also gave them experience in programming behaviors for mobile robots. Thus far, one academic paper has resulted from their research. This paper received third place at the 2006 National Technical Association's (NTA) National Conference in Chicago. CReSIS, in conjunction with ECSU, provided these minority students with a well-rounded educational experience in a real-world research project. Their contributions will be used for future projects.

  1. In Vivo Time-Lapse Imaging in the Zebrafish Lateral Line: A Flexible, Open-Ended Research Project for an Undergraduate Neurobiology Laboratory Course.

    PubMed

    Marra, Molly H; Tobias, Zachary J C; Cohen, Hannah R; Glover, Greta; Weissman, Tamily A

    2015-01-01

    The lateral line sensory system in fish detects movements in the water and allows fish to respond to predators, prey, and other stimuli. As the lateral line forms in the first two days of zebrafish development, axons extend caudally along the lateral surface of the fish, eventually forming synapses with hair cells of neuromasts. Growing lateral line axons are located superficially under the skin and can be labeled in living zebrafish using fluorescent protein expression. This system provides a relatively straightforward approach for in vivo time-lapse imaging of neuronal development in an undergraduate setting. Here we describe an upper-level neurobiology laboratory module in which students investigate aspects of axonal development in the zebrafish lateral line system. Students learn to handle and image living fish, collect time-lapse videos of moving mitochondria, and quantitatively measure mitochondrial dynamics by generating and analyzing kymographs of their movements. Energy demands may differ between axons with extending growth cones versus axons that have already reached their targets and are forming synapses. Since relatively little is known about this process in developing lateral line axons, students generate and test their own hypotheses regarding how mitochondrial dynamics may differ at two different time points in axonal development. Students also learn to incorporate into their analysis a powerful yet accessible quantitative tool, the kymograph, which is used to graph movement over time. After students measure and quantify dynamics in living fish at 1 and 2 days post fertilization, this module extends into independent projects, in which students can expand their studies in a number of different, inquiry-driven directions. The project can also be pared down for courses that wish to focus solely on the quantitative analysis (without fish handling), or vice versa. This research module provides a useful approach for the design of open-ended laboratory research projects that integrate the scientific process into undergraduate Biology courses, as encouraged by the AAAS and NSF Vision and Change Initiative.

  2. Interactive Game for Teaching Laser Amplification Used at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, E

    The purpose of this project was to create an interactive game to expose high school students to concepts in laser amplification by demonstrating the National Ignition Facility's main amplifier at Lawrence Livermore National Laboratory. To succeed, the game had to be able to communicate effectively the basic concepts of laser amplification as accurately as possible and to be capable of exposing as many students as possible. Since concepts need to be communicated in a way that students understand, the Science Content Standards for California Public Schools were used to make assumptions about high school students knowledge of light. Effectively communicatingmore » a new concept necessitates the omission on terminology and symbolism. Therefore, creating a powerful experience was ideal for communicating this material. Various methods of reinforcing this experience ranging from color choice to abstractions kept the student focused on the game to maximize concept retention. The program was created in Java to allow the creation of a Java Applet that can be embedded onto a webpage, which is a perfect medium for mass exposure. Because a game requires interaction, the game animations had to be easily manipulated to enable the program to respond to user input. Image sprites, as opposed to image folders, were used in these animations to minimize the number of Hypertext Transfer Protocol connections, and thus, significantly reduce the transfer time of necessary animation files. These image sprites were loaded and cropped into a list of animation frames. Since the caching of large transition animations caused the Java Virtual Machine to run out of memory, large animations were implemented as animated Graphics Interchange Format images since transitions require no interaction, and thus, no frame manipulation was needed. This reduced the animation's memory footprint. The first version of this game was completed during this project. Future work for the project could include the creation of focus groups to assess the effectiveness of communicating material through an interactive game. Numerical assessments programmed into the game could also be used to collect statistics that reflect difficulty or level of frustration that students experience.« less

  3. The Van Sant AVHRR image projected onto a rhombicosidodecahedron

    NASA Astrophysics Data System (ADS)

    Baron, Michael; Morain, Stan

    1996-03-01

    IDEATION, a design and development corporation, Santa Fe, New Mexico, has modeled Tom Van Sant's ``The Earth From Space'' image to a rhombicosidodecahedron. ``The Earth from Space'' image, produced by the Geosphere® Project in Santa Monica, California, was developed from hundreds of AVHRR pictures and published as a Mercator projection. IDEATION, utilizing a digitized Robinson Projection, fitted the image to foldable, paper components which, when interconnected by means of a unique tabular system, results in a rhombicosidodecahedron representation of the Earth exposing 30 square, 20 triangular, and 12 pentagonal faces. Because the resulting model is not spherical, the borders of the represented features were rectified to match the intersecting planes of the model's faces. The resulting product will be licensed and commercially produced for use by elementary and secondary students. Market research indicates the model will be used in both the demonstration of geometric principles and the teaching of fundamental spatial relations of the Earth's lands and oceans.

  4. Project LASER Volunteer, Marshall Space Flight Center Education Program

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Through Marshall Space Flight Center (MSFC) Education Department, over 400 MSFC employees have volunteered to support educational program during regular work hours. Project LASER (Learning About Science, Engineering, and Research) provides support for mentor/tutor requests, education tours, classroom presentations, and curriculum development. This program is available to teachers and students living within commuting distance of the NASA/MSFC in Huntsville, Alabama (approximately 50-miles radius). This image depicts students viewing their reflections in an x-ray mirror with Marshall optic engineer Vince Huegele at the Discovery Laboratory, which is an onsite MSFC laboratory facility that provides hands-on educational workshop sessions for teachers and students learning activities.

  5. Interactive Learning During Solar Maximum

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; Curtis, Steven (Technical Monitor)

    2001-01-01

    The goal of this project is to develop and distribute e-educational material for space science during times of solar activity that emphasizes underlying basic science principles of solar disturbances and their effects on Earth. This includes materials such as simulations, animations, group projects and other on-line materials to be used by students either in high school or at the introductory college level. The on-line delivery tool originally intended to be used is known as Interactive Multimedia Education at a Distance (IMED), which is a web-based software system used at UCLA for interactive distance learning. IMED is a password controlled system that allows students to access text, images, bulletin boards, chat rooms, animation, simulations and individual student web sites to study science and to collaborate on group projects.

  6. Framing the Text: Using Storyboards to Engage Students with Reading

    ERIC Educational Resources Information Center

    Bruce, David L.

    2011-01-01

    Storyboards deliver a narrative through discrete visual representations. The purpose of the storyboards was always to "scaffold" the final product and students were free to add, delete, or adapt those images that were most helpful to their project. The storyboards served as a brainstorming activity, much like a prewriting exercise for a written…

  7. Only If It's Good: Teaching a Demand Reduction Campaign and a Bibliography on Women and Advertising.

    ERIC Educational Resources Information Center

    Yamasaki, Joan Marie

    1993-01-01

    Identifies cigarette advertising as an example of marketing harmful products to intended consumers using harmful images. Describes a classroom project in which students learn how to create, increase, and maintain demand. Includes a chart with student-designed "demarketing" campaigns and a bibliography on women and advertising. (CFR)

  8. From Local to Global: A Birds-Eye View of Changing Landscapes

    ERIC Educational Resources Information Center

    Wilson, Courtney R.; Murphy, James; Trautmann, Nancy M.; Makinster, James G.

    2009-01-01

    As part of a curriculum development project entitled Crossing Boundaries, these authors designed an inquiry-based activity that introduces students to landscape change and potential impacts on associated biological communities. Using pairs of current and historical satellite images, students explore landscape change in a variety of U.S. and…

  9. Student Perspectives on Quality Teaching: Words and Images

    ERIC Educational Resources Information Center

    Bell, Athene; Ewaida, Marriam; Lynch, Megan R.; Zenkov, Kristien

    2011-01-01

    This article reports on the findings of a photography and literacy project ("Through Students' Eyes") the authors conducted with middle level English language learners and alternative high school youth from a mid-Atlantic (US) ex-urban area. In order to bridge middle and high school settings, the authors used multimodal and photo…

  10. Pixel Palette: Put Your Stamp on It.

    ERIC Educational Resources Information Center

    Osterer, Irv

    1998-01-01

    Describes a project used in a senior information design class where the students created their own self-portraits on rubber stamps through the use of Photoshop and QuarkXPress. Explains that the students learned about the difference between line art and continuous tone images as well as the effects of printing ink and papers. (CMK)

  11. Web Camera Use in Developing Biology, Molecular Biology and Biochemistry Laboratories

    ERIC Educational Resources Information Center

    Ogren, Paul J.; Deibel, Michael; Kelly, Ian; Mulnix, Amy B.; Peck, Charlie

    2004-01-01

    The use of a network-ready color camera is described which is primarily marketed as a security device and is used for experiments in developmental biology, genetics and biochemistry laboratories and in special student research projects. Acquiring and analyzing project and archiving images is very important in microscopy, electrophoresis and…

  12. Incorporating Student Activities into Climate Change Education

    NASA Astrophysics Data System (ADS)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about atmospheric circulation with applications of the Lorenz model, explored the land-sea breeze problem with the Dynamics and Thermodynamics Circulation Model (DTDM), and developed simple radiative transfer models. Class projects explored the effects of varying the content of CO2 and CH4 in the atmosphere, as well as the properties of paleoclimates in atmospheric simulations using EdGCM. Initial assessment of student knowledge, attitudes, and behaviors associated with these activities, particularly about climate change, was measured. Pre- and post-course surveys provided student perspectives about the courses and their learning about remote sensing and climate change concepts. Student performance on the tutorials and course projects evaluated students' ability to learn and apply their knowledge about climate change and skills with remote sensing to assigned problems or proposed projects of their choice. Survey and performance data illustrated that the exercises were successful in meeting their intended learning objectives as well as opportunities for further refinement and expansion.

  13. Unit: Light Forms Images, Inspection Set, National Trials.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    The core portion of this trial unit developed by the Australian Science Education Project provides activities from which students gain experience in the formation of images by water and glass lenses. Additional optional sections of the unit contain suggested activities and questions which lead to a study of mirrors, refraction, eyes and…

  14. Surrealism Meets OP

    ERIC Educational Resources Information Center

    Bowden, Jennifer

    2006-01-01

    Kids always seem to like Surrealism and Op Art. This is a fun project that is popular with students. With Op Art patience and attention to details are required while Surrealistic collage needs strong composition skills for the image placement. Often, many images must be left out to create a clean design. Artistic decisions must be based on the art…

  15. Earth Knowledge Acquired by Middle School Students

    NASA Technical Reports Server (NTRS)

    Ride, Sally

    2008-01-01

    Earth Knowledge Acquired by Middle School Students (EarthKAM), an education activity, allows middle school students to program a digital camera on board the International Space Station to photograph a variety of geographical targets for study in the classroom. Photos are made available on the web for viewing and study by participating schools around the world. Educators use the images for projects involving Earth Science, geography, physics, and social science.

  16. StarPals International Young Astronomers' Network Collaborative Projects for IYA

    NASA Astrophysics Data System (ADS)

    Kingan, Jessi

    2008-09-01

    StarPals is a nascent non-profit organization with the goal of providing opportunities for international collaboration between students of all ages within space science research. We believe that by encouraging an interest in the cosmos, the one thing that is truly Universal, from a young age, students will not only further their knowledge of and interest in science but will learn valuable teamwork and life skills. The goal is to foster respect, understanding and appreciation of cultural diversity among all StarPals participants, whether students, teachers, or mentors. StarPals aims to inspire students by providing opportunities in which, more than simply visualizing themselves as research scientists, they can actually become one. The technologies of robotic telescopes, videoconferencing, and online classrooms are expanding the possibilities like never before. In honor of IYA2009, StarPals would like to encourage 400 schools to participate on a global scale in astronomy/cosmology research on various concurrent projects. We will offer in-person or online workshops and training sessions to teach the teachers. We will be seeking publication in scientific journals for some student research. For our current project, the Double Stars Challenge, students use the robotic telescopes to take a series of four images of one of 30 double stars from a list furnished by the US Naval Observatory and then use MPO Canopus software to take distance and position angle measurements. StarPals provides students with hands-on training, telescope time, and software to complete the imaging and measuring. A paper will be drafted from our research data and submitted to the Journal of Double Star Observations. The kids who participate in this project may potentially be the youngest contributors to an article in a vetted scientific journal. Kids rapidly adapt and improve their computer skills operating these telescopes and discover for themselves that science is COOL!

  17. ISS EarthKam: Taking Photos of the Earth from Space

    ERIC Educational Resources Information Center

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  18. Teaching Photo Manipulation: Simple Photoshop Project Puts Students in Your Living Room

    ERIC Educational Resources Information Center

    Lazaros, Edward J.

    2012-01-01

    Photographs used to be, for the most part, very trustworthy evidence of the visual truth. With the current ready availability of affordable digital photography and image-altering software, that is no longer the case. To be fully technologically literate, today's students should know something about the history of photo manipulation and the current…

  19. Undergraduate Education with the WIYN 0.9-m Telescope

    NASA Astrophysics Data System (ADS)

    Pilachowski, Catherine A.

    2017-01-01

    Several models have been explored at Indiana University Bloomington for undergraduate student engagement in astronomy using the WIYN 0.9-m telescope at Kitt Peak. These models include individual student research projects using the telescope, student observations as part of an observational techniques course for majors, and enrichment activities for non-science majors in general education courses. Where possible, we arrange for students to travel to the telescope. More often, we are able to use simple online tools such as Skype and VNC viewers to give students an authentic observing experience. Experiences with the telescope motivate students to learn basic content in astronomy, including the celestial sphere, the electromagnetic spectrum, telescopes and detectors, the variety of astronomical objects, date reduction processes, image analysis, and color image creation and appreciation. The WIYN 0.9-m telescope is an essential tool for our program at all levels of undergraduate education

  20. Managing Quality by Action Research--Improving Quality Service Delivery in Higher Education as a Marketing Strategy.

    ERIC Educational Resources Information Center

    Corbitt, Brian

    1998-01-01

    Describes two action research projects undertaken at an Australian university to improve quality of services to foreign students and improve the institution's image through word of mouth, or informal marketing. Each project, although small, facilitated changes or improvements to a targeted service. The role of management in empowering employees…

  1. Preliminary Evaluation Report on the Los Angeles City Schools, SB 28 Demonstration Program in Mathematics.

    ERIC Educational Resources Information Center

    Gordon, C. Wayne

    The purpose of this preliminary report is to describe and evaluate the Los Angeles Model Mathematics Project (LAMMP). The objectives of this project include the improvement of mathematical skills and understanding of mathematical concepts, the improvement of students' self-image, the development of instructional materials and the assessment of…

  2. Self-Programmed Counseling and Self-Programmed Control Manual. A Guide to Self-Image Development with Emphasis on the Chicano Student. Student's Guide = Manual de Sistema de Consejo Auto Programado y Control Auto Programado. Una Guia Para el Desarrollo de La Imagen Propia Con un Enfasis en el Estudiante Chicano.

    ERIC Educational Resources Information Center

    Mireles, S. Raymond

    Self-Programmed Counseling, the instructor's guidance, and Self-Programmed Control (SPC), the student's response, was initially developed by Title III Project USTED (United Students and Teachers for Educational Development) for Mexican American college students on academic probation to use on a non-credit, special group counseling basis. As part…

  3. Media Literacy as an Educational Method for Addressing College Women's Body Image Issues

    ERIC Educational Resources Information Center

    Chambers, Karen L.; Alexander, Susan M.

    2007-01-01

    This study assesses the effectiveness of media literacy in the college classroom by comparing two modalities of learning, watching a video versus reading a text. The research questions guiding this project are: as teachers can we facilitate critical awareness among our students in order to alter the way women appropriate media images to evaluate…

  4. Using An Online Photo-Sharing Tool (Flickr) to Connect Students During Earth Science Week

    NASA Astrophysics Data System (ADS)

    Guertin, L. A.

    2009-12-01

    At the university level, some faculty desire to have their students connect with middle school and high school students for activities and discussions relating to Earth science. Unfortunately, it is not always feasible to coordinate face-to-face meetings of the students, especially when trying to forge connections with schools located at a distance. Therefore, I have turned to an online tool to forge the connections for an Earth science outreach activity - specifically, the use of the photo-sharing tool Flickr, http://www.flickr.com. Flickr is an online photo management and sharing application that allows for the creation of a community with authorized members to contribute images viewable by the general public. For this project, the participating student community included undergraduates from Penn State University, as well as middle school and high school students from Delaware, Michigan, Kentucky, and North Carolina. I decided a theme should be selected for the students to frame the project. I selected the 2009 Earth Science Week (ESW) photography context theme, How Climate Shapes My World, as I felt it was important to have the students connect with a nationwide celebration and exploration of this topic. Students were encouraged to consider what the theme meant to them and how to represent that through a photograph. Each student was required to provide a title and description for the photograph contributed to the Flickr group (http://www.flickr.com/groups/earthscienceweek2009). As this Flickr project was only a collaboration and sharing of photos and not a contest, the students were encouraged to not only submit their photo in Flickr but to the actual ESW contest. The deadline to post the photographs online in Flickr was set for the end of Earth Science Week. The key to the ESW Flickr project was not just the taking and viewing of photos. The Flickr website is designed with the idea of social networking around an image. Flickr facilitated a dialogue that had students talking to each other, focusing on an academic topic. I was excited to be able to show students an academic use of Flickr versus just posting and organizing personal photographs for social networking. After the submission deadline, the Penn State students were required to go back into Flickr and post a comment under each photograph submitted by the middle school and high school students, as well as begin a discussion thread on the overall theme. Overall, the project demonstrated how an online scholarly community can be created to share photos and engage in discussion with student participants in separate locations. Flickr can be effective as an online social networking tool to foster collaboration and innovation in a virtual academic community.

  5. Medical imaging education in biomedical engineering curriculum: courseware development and application through a hybrid teaching model.

    PubMed

    Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice

    2012-01-01

    Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings.

  6. The Faulkes Telescope Project at school

    NASA Astrophysics Data System (ADS)

    Neta, Miguel

    2014-05-01

    The Faulkes Telescope Project [1] was started in 2000 and is currently managed by the Las Cumbres Observatory Global Telescope Network (LCOGT) [2]. Allows student access to two remote telescopes (in Hawaii and in Australia), allowing you to capture images of the sky. Since January 2012 I conduct monthly observations with students: first with students from Escola Secundária de Loulé (ESL) [3] and starting from September 2013 with students from Agrupamento de Escolas Dra Laura Ayres [4], in Quarteira. Each session is previously prepared in order to make the best of the time available. For that we use a virtual planetarium that allows us to see the sky in place and time of the scheduled session. After the start of each session a student takes control in real time of one of the telescopes from a computer connected to the internet. This project is a tool that gives the students the feeling of doing science and meet the sky step by step. The observations made by my students can be found at www.miguelneta.pt/faulkestelescope. [1] http://www.faulkes-telescope.com [2] http://lcogt.net [3] https://www.es-loule.edu.pt [4] http://www.esla.edu.pt

  7. Engaging students in astronomy and spectroscopy through Project SPECTRA!

    NASA Astrophysics Data System (ADS)

    Wood, E. L.

    2011-12-01

    Computer simulations for minds-on learning with "Project Spectra!" How do we gain information about the Sun? How do we know Mars has CO2 or that Enceladus has H2O geysers? How do we use light in astronomy? These concepts are something students and educators struggle with because they are abstract. Using simulations and computer interactives (games) where students experience and manipulate the information makes concepts accessible. Visualizing lessons with multi-media solidifies understanding and retention of knowledge and is completely unlike its paper-and-pencil counterpart. Visualizations also enable teachers to forgo purchasing expensive laboratory equipment. "Project Spectra!" is a science and engineering program that uses computer-based Flash interactives to expose students to astronomical spectroscopy and actual data in a way that is not possible with traditional in-class activities. To engage students in "Project Spectra!", students are given a mission, which connects them with the research at hand. Missions range from exploring remote planetary atmospheres and surfaces, experimenting with the Sun using different filters, or analyzing the soil of a remote planet. Additionally, students have an opportunity to learn about NASA missions, view movies, and see images connected with their mission, which is something that is not practical to do during a typical paper-and-pencil activity. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. These interactives complement in-class Project SPECTRA! activities exploring applications of the electromagnetic spectrum.

  8. Fun with Falling Man

    ERIC Educational Resources Information Center

    Mosley, Clay R.

    2009-01-01

    A shiny human figure turned into a car or a jet--what kid (or kid at heart) wouldn't enjoy these images? The author found that showing his students these shiny human sculptures by artist Ernest Trova (1927-2009) was a great place to start an exciting sculpture project with his fourth-grade students. In the 1960s, Ernest Trova created a painting of…

  9. The Effects of Using Touch-Screen Devices on Students' Molecular Visualization and Representational Competence Skills

    ERIC Educational Resources Information Center

    McCollum, Brett M.; Regier, Lisa; Leong, Jaque; Simpson, Sarah; Sterner, Shayne

    2014-01-01

    The impact of touch-screen technology on spatial cognitive skills as related to molecular geometries was assessed through 102 one-on-one interviews with undergraduate students. Participants were provided with either printed 2D ball-and-stick images of molecules or manipulable projections of 3D molecular structures on an iPad. Following a brief…

  10. The art of midwifery: can creative images of birth enhance holistic care?

    PubMed

    Uppal, Elaine; Davies, Sarah; Knowles, Helen; Kandell, Stevie

    2014-05-01

    Art related to birth stimulates debate, particularly if it is perceived to be taboo and challenging popular images of mother and child. Birth traditionally has been in a woman's sphere of experience, thus it has been left unexplored on a wider level. The Birth Rites Collection was originally developed to enable partnerships with artists and childbirth professionals. The other important reason for the Birth Rites project was to begin to make contemporary cutting edge art around childbirth because there has been a real lack of work which explores this subject. Student midwives have been able to engage with these and other artworks related to childbirth and now produce their own original art which is attracting acclaim. The Art of Midwifery student midwife project aims to promote more aesthetic and creative ways of learning to enhance midwifery students' self-awareness and thus promote holistic, woman-centred and sensitive care. Students have visited art exhibitions to interact with artworks related to curriculum themes and explore models and philosophies of birth. This paper reports some of their activities, summarises their responses and evaluates the collaboration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Art as a Vehicle for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Kilburn, Micha

    2013-04-01

    One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.

  12. An Updated Account of the WISELAV Project: A Visual Construction of the English Verb System

    ERIC Educational Resources Information Center

    Pablos, Andrés Palacios

    2016-01-01

    This article presents the state of the art in WISELAV, an on-going research project based on the metaphor Languages Are (like) Visuals (LAV) and its mapping Words-In-Shapes Exchange (WISE). First, the cognitive premises that motivate the proposal are recalled: the power of images, students' increasingly visual cognitive learning style, and the…

  13. Students' learning of clinical sonography: use of computer-assisted instruction and practical class.

    PubMed

    Wood, A K; Dadd, M J; Lublin, J R

    1996-08-01

    The application of information technology to teaching radiology will profoundly change the way learning is mediated to students. In this project, the integration of veterinary medical students' knowledge of sonography was promoted by a computer-assisted instruction program and a subsequent practical class. The computer-assisted instruction program emphasized the physical principles of clinical sonography and contained simulations and user-active experiments. In the practical class, the students used an actual sonographic machine for the first time and made images of a tissue-equivalent phantom. Students' responses to questionnaires were analyzed. On completing the overall project, 96% of the students said that they now understood sonographic concepts very or reasonably well, and 98% had become very or moderately interested in clinical sonography. The teaching and learning initiatives enhanced an integrated approach to learning, stimulated student interest and curiosity, improved understanding of sonographic principles, and contributed to an increased confidence and skill in using sonographic equipment.

  14. Applying an information literacy rubric to first-year health sciences student research posters.

    PubMed

    Goodman, Xan; Watts, John; Arenas, Rogelio; Weigel, Rachelle; Terrell, Tony

    2018-01-01

    This article describes the collection and analysis of annotated bibliographies created by first-year health sciences students to support their final poster projects. The authors examined the students' abilities to select relevant and authoritative sources, summarize the content of those sources, and correctly cite those sources. We collected images of 1,253 posters, of which 120 were sampled for analysis, and scored the posters using a 4-point rubric to evaluate the students' information literacy skills. We found that 52% of students were proficient at selecting relevant sources that directly contributed to the themes, topics, or debates presented in their final poster projects, and 64% of students did well with selecting authoritative peer-reviewed scholarly sources related to their topics. However, 45% of students showed difficulty in correctly applying American Psychological Association (APA) citation style. Our findings demonstrate a need for instructors and librarians to provide strategies for reading and comprehending scholarly articles in addition to properly using APA citation style.

  15. Self-Image Development: A Chicano Enfasis. Self-Programmed Counseling and Self-Programmed Control. Instructor's Guide = Desarrollo de la Imagen Propia: Enfasis en el Chicano. Sistema de Consejo y Control Auto-Programado. Manuel del Profesor.

    ERIC Educational Resources Information Center

    Mireles, S. Raymond

    Self-Programmed Counseling, the instructor's guidance, and Self-Programmed Control (SPC), the student's response, was initially developed by Title III Project USTED (United Students and Teachers for Educational Development) for Mexican American students on academic probation to use on a non-credit, special group counseling basis. As part of a…

  16. The Image of the Female Body in Contemporary Society: An Approach from the Arts Classroom

    ERIC Educational Resources Information Center

    Gillanders, Carol; Franco-Vázquez, Carmen

    2016-01-01

    Project-based learning and artistic creation provide future secondary teachers with an opportunity to experience and to reflect on the importance of including a gender perspective in education. This article describes a case study where students of the Postgraduate course in Secondary Teacher Training explore the image of the female body in comics,…

  17. Exploring the Hidden Structure of Astronomical Images: A "Pixelated" View of Solar System and Deep Space Features!

    ERIC Educational Resources Information Center

    Ward, R. Bruce; Sienkiewicz, Frank; Sadler, Philip; Antonucci, Paul; Miller, Jaimie

    2013-01-01

    We describe activities created to help student participants in Project ITEAMS (Innovative Technology-Enabled Astronomy for Middle Schools) develop a deeper understanding of picture elements (pixels), image creation, and analysis of the recorded data. ITEAMS is an out-of-school time (OST) program funded by the National Science Foundation (NSF) with…

  18. The 2009 Space Science Component of UNH Project SMART and High School Students Building a High-Altitude Balloon Payload

    NASA Astrophysics Data System (ADS)

    Smith, C. W.; Broad, L.; Chen, L.; Farrugia, C. J.; Frederick-Frost, K.; Goelzer, S.; Kucharek, H.; Messeder, R.; Moebius, E.; Puhl-Quinn, P. A.; Torbert, R. B.

    2009-12-01

    For the past 19 years the University of New Hampshire has offered a unique research and education opportunity to motivated high-school students called Project SMART (Science and Mathematics Achievement through Research Training). The Space Science module is strongly research based. Students work in teams of two on real research projects carved from the research programs of the faculty. The projects are carefully chosen to match the abilities of the students. The students receive classes in basic physics as well as lectures in space science to help them with their work. This year the research included the analysis of magnetic reconnection observations and Crater FTE observation, both by the CLUSTER spacecraft, the building of Faraday cups for thermal ion measurements in our thermal vacuum facility, and analysis of the IBEX star sensor. In addition to this, the students work on one combined project and for the past several years this project has been the building of a payload for a high-altitude balloon. The students learn to integrate telemetry and GPS location hardware while they build several small experiments that they then fly to the upper reaches of the Earth's atmosphere. This year the payload included a small video camera and the payload flew to 96,000 feet, capturing images of weather patterns as well as the curvature of the Earth, thickness of the atmosphere, and black space. In addition to still photos, we will be showing 2- and 7-minute versions of the 90-minute flight video that include footage from peak altitude, the bursting of the balloon, and initial descent.

  19. Photo Z: A Real Research Project for Undergraduate Non-Majors

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Puckett, A. W.; Hinnah, K. D.

    2009-01-01

    Research-Based Science Education (RBSE) is a method of instruction that models the processes of scientific inquiry and exploration used by scientists to discover new knowledge. It is "research-based" in the sense that students work together on a real astronomical research project. In other words, in order to learn science, students are given the opportunity to actually do science. We present "Photo Z," a new RBSE project wherein students search for distant galaxies using data from the NOAO Deep Wide Field Survey (NDWFS). Students download FITS data files from the NDWFS cutout server. They then complete photometry of galaxies in three bands (Bw, V and I) using Polaris, a custom-made plugin written for ImageJ. The photometric color of each galaxy allows an estimate of its redshift as well as its star-formation history. Many student projects are possible. An example is to search for galaxies clustered around high-redshift quasars. An advantage of this project is that the datasets are readily available online. This project is part of an NSF CCLI grant to develop and test RBSE curricula in an undergraduate course setting. The goals of RBSE are fourfold: (1) To teach that science is a process, not just a body of knowledge; (2) To improve retention of science content by using it in a research project; (3) to improve attitudes towards STEM careers, particularly among first-year students; and (4) to develop task-driven skills, such as critical thinking and teamwork skills, that are useful in any career path. These curricula are currently being developed and tested at the University of Alaska Anchorage, Indiana University Bloomington, and Pima Community College.

  20. Sustainable Astronomy

    NASA Astrophysics Data System (ADS)

    Blaha, C.; Goetz, J.; Johnson, T.

    2011-09-01

    Through our International Year of Astronomy outreach effort, we established a sustainable astronomy program and curriculum in the Northfield, Minnesota community. Carleton College offers monthly open houses at Goodsell Observatory and donated its recently "retire" observing equipment to local schools. While public evenings continue to be popular, the donated equipment was underutilized due to a lack of trained student observing assistants. With sponsorship from NASA's IYA Student Ambassador program, the sustainable astronomy project began in 2009 to generate greater interest in astronomy and train middle school and high school students as observing assistants. Carleton physics majors developed curricular materials and instituted regular outreach programs for grades 6-12. The Northfield High School Astronomy Club was created, and Carleton undergraduates taught high school students how to use telescopes and do CCD imaging. During the summer of 2009, Carleton students began the Young Astronomers Summer Experience (YASE) program for middle school students and offered a two-week, astronomy-rich observing and imaging experience at Goodsell Observatory. In concert with NASA's Summer of Innovation initiative, the YASE program was offered again in 2010 and engaged a new group of local middle school students in hands-on scientific experiments and observing opportunities. Members of the high school astronomy club now volunteer as observing assistants in the community and graduates of the YASE programs are eager to continue observing as members of a public service astronomy club when they enter the Northfield High School. These projects are training future scientists and will sustain the public's interest in astronomy long after the end of IYA 2009.

  1. Student personality and learning styles: A comparison between radiation therapy and medical imaging undergraduate students in New Zealand.

    PubMed

    Dungey, G; Yielder, J

    2017-05-01

    This study investigated the learning styles and personality type of undergraduate radiation therapy students at the University of Otago, Wellington (UOW) in New Zealand (NZ) to ascertain whether there is a pattern evidenced for this group and how that might compare with NZ medical imaging students. All students enrolled in the first year of the Bachelor of Radiation Therapy degree from 2014 to 2016 at the UOW were invited to participate in this research. The test tool was the Paragon Learning Style Inventory (PLSI), which is a standardised questionnaire adapted from the Myers-Briggs Type Indicator (MBTI). All students who participated in the workshops consented for their data to be used for this project. The current study is longitudinal, and will continue for five years in total. The initial findings indicate that the cohorts of RT students exhibit personality and learning style preferences similar in Introversion/Extraversion and Thinking/Feeling to the proportion expected in the normal population. However, the Sensing/Intuition and Judging/Perceiving dichotomies show some similarities to the medical imaging students studied, who fell considerably outside that expected in the normal population. Overall, the dominant preference combinations identified, although different in degree, were similar to those of medical imaging students. The continuation of the radiation therapy study is important to ascertain more fully whether the results are particular to these cohorts of students or are trending towards showing a pattern of personality and learning style within the profession. Copyright © 2016 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  2. Development of Prostate Specific Membrane Antigen (PSMA) Inhibitors Coupled to 99mTc(CO)3+ with Enhanced Specific Activity for SPECT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul; D.; Benny,

    2011-12-20

    The overall objectives of the project were two fold: 1) the development of new facile reactions for coupling radioactive complexes with biomolecules and 2) the development of a novel molecular imaging targeting vector for Prostate Specific Membrane Antigen (PSMA) for prostate cancer. The didactic approach allowed the synergistic exploration of new technologies for coupling reactions of radioactive complexes that can be applied to a novel targeting moiety. As part of the project, a number of students (undergraduate, graduate and post-doctoral) were trained in radiochemical techniques for preparing and characterizing radiometal complexes. Results from the experiments within the project have generatedmore » several presentations and publications.« less

  3. From Brand Image Research to Teaching Assessment: Using a Projective Technique Borrowed from Marketing Research to Aid an Understanding of Teaching Effectiveness

    ERIC Educational Resources Information Center

    Boddy, Clive Roland

    2004-01-01

    This paper describes how a simple qualitative market research technique using a projective device called a bubble drawing can be used as a useful feedback device to gain an understanding of students' views of the teaching effectiveness of a market research lecture. Comparisons are made with feedback gained from teaching observations and insights…

  4. Cro-Magnon Woman--In Eclipse

    ERIC Educational Resources Information Center

    Harrison, Linda

    1975-01-01

    Reports research project which reveals a male-dominance attitude in students toward material concerning early man. Recommendations are made to use language which encourages images of women instead of merely inferring their existence by the use of masculinely-oriented language. (BR)

  5. Lap-Dissolve Slides

    ERIC Educational Resources Information Center

    Fine, Leonard W.; And Others

    1977-01-01

    Discusses the use of lap-dissolve projection to give students pre-laboratory instruction on an upcoming experiment. In this technique, two slide projectors are operated alternately so that one visual image fades away while the next appears on the same screen area. (MLH)

  6. Tle Triangulation Campaign by Japanese High School Students as a Space Educational Project of the Ssh Consortium Kochi

    NASA Astrophysics Data System (ADS)

    Yamamoto, Masa-Yuki; Okamoto, Sumito; Miyoshi, Terunori; Takamura, Yuzaburo; Aoshima, Akira; Hinokuchi, Jin

    As one of the space educational projects in Japan, a triangulation observation project of TLE (Transient Luminous Events: sprites, elves, blue-jets, etc.) has been carried out since 2006 in collaboration between 29 Super Science High-schools (SSH) and Kochi University of Technol-ogy (KUT). Following with previous success of sprite observations by "Astro High-school" since 2004, the SSH consortium Kochi was established as a national space educational project sup-ported by Japan Science and Technology Agency (JST). High-sensitivity CCD camera (Watec, Neptune-100) with 6 mm F/1.4 C-mount lens (Fujinon) and motion-detective software (UFO-Capture, SonotaCo) were given to each participating team in order to monitor Northern night sky of Japan with almost full-coverage. During each school year (from April to March in Japan) since 2006, thousands of TLE images were taken by many student teams, with considerably large numbers of successful triangulations, i.e., (School year, Numbers of TLE observations, Numbers of triangulations) are (2006, 43, 3), (2007, 441, 95), (2008, 734, 115), and (2009, 337, 78). Note that, school year in Japan begins on April 1 and ends on March 31. The observation campaign began in December 2006, numbers are as of Feb. 28, 2010. Recently, some high schools started wide field observations using multiple cameras, and others started VLF observations using handmade loop antennae and amplifiers. Infomation exchange among the SSH consortium Kochi is frequently communicated with scientific discussion via KUT's mailing lists. Also, interactions with amateur observers in Japan are made through an internet forum of "SonotaCo Network Japan" (http://sonotaco.jp). Not only as an educational project but also as a scientific one, the project is also in success. In February 2008, simultaneous observations of Elves were obtained, in November 2009 a Giant "Graft-shaped" Sprites driven by Jets was clearly imaged with VLF signals. Most recently, ob-servations of Elves and sprite halos with stripes like wave structures on airglow were successfully imaged in January 2010. In this talk, four years activities of the SSH consortium Kochi will be presented by participating high-school students and teachers with their own impressions.

  7. Voluntary community service in medical school: a qualitative study on obstacles faced by student leaders and potential solutions

    PubMed Central

    Loh, Alvona Zi Hui; Tan, Julia Shi Yu; Lee, Jeannette Jen-Mai; Koh, Gerald Choon-Huat

    2015-01-01

    Purpose In medical school, students may participate in various community involvement projects (CIP), which serve disadvantaged communities. However, several obstacles may arise during these projects. The authors conducted a qualitative study with the primary aim of understanding the obstacles and corresponding potential solutions when medical students in Singapore participate in local CIP (LCIP) and overseas CIP (OCIP). Design The authors recruited medical students from Yong Loo Lin School of Medicine, National University of Singapore, who were also leaders of a specific community service project done in medical school. Twelve one-to-one interviews were held for the participants from 6 to 8 January 2013. Participants were led in a discussion based on an interview guide. The interviews were audio-recorded and transcribed into free-flow text. Subsequently, content and thematic analyses of the transcripts were performed independently by three researchers. Results The medical students faced many common obstacles during their community service projects. These obstacles include difficulties in recruiting and managing volunteers, attaining recognition or credibility for the project to acquire funding and resources, adjusting to a different culture or language, setting goals, and facing project-specific obstacles. Potential solutions were offered for some obstacles, such as building a strong executive committee for the project, grooming successive batches of leaders, and improving the project's public image, mentorship, reflections, and sustainability plans. Conclusions Mentorship, reflections, and sustainability are potential solutions that have been proposed to tackle the obstacles faced during community service participation in medical school. However, there may still be difficulty in solving some of the problems even after these measures are put into practice. Future research may focus on evaluating the effectiveness of these suggested solutions. PMID:26490690

  8. Voluntary community service in medical school: a qualitative study on obstacles faced by student leaders and potential solutions.

    PubMed

    Loh, Alvona Zi Hui; Tan, Julia Shi Yu; Lee, Jeannette Jen-Mai; Koh, Gerald Choon-Huat

    2015-01-01

    In medical school, students may participate in various community involvement projects (CIP), which serve disadvantaged communities. However, several obstacles may arise during these projects. The authors conducted a qualitative study with the primary aim of understanding the obstacles and corresponding potential solutions when medical students in Singapore participate in local CIP (LCIP) and overseas CIP (OCIP). The authors recruited medical students from Yong Loo Lin School of Medicine, National University of Singapore, who were also leaders of a specific community service project done in medical school. Twelve one-to-one interviews were held for the participants from 6 to 8 January 2013. Participants were led in a discussion based on an interview guide. The interviews were audio-recorded and transcribed into free-flow text. Subsequently, content and thematic analyses of the transcripts were performed independently by three researchers. The medical students faced many common obstacles during their community service projects. These obstacles include difficulties in recruiting and managing volunteers, attaining recognition or credibility for the project to acquire funding and resources, adjusting to a different culture or language, setting goals, and facing project-specific obstacles. Potential solutions were offered for some obstacles, such as building a strong executive committee for the project, grooming successive batches of leaders, and improving the project's public image, mentorship, reflections, and sustainability plans. Mentorship, reflections, and sustainability are potential solutions that have been proposed to tackle the obstacles faced during community service participation in medical school. However, there may still be difficulty in solving some of the problems even after these measures are put into practice. Future research may focus on evaluating the effectiveness of these suggested solutions.

  9. An International Asteroid Search Campaign: Internet-Based Hands-On Research Program for High Schools and Colleges, in Collaboration with the Hands-On Universe Project

    ERIC Educational Resources Information Center

    Miller, J. Patrick; Davis, Jeffrey W.; Holmes, Robert E., Jr.; Devore, Harlan; Raab, Herbert; Pennypacker, Carlton R.; White, Graeme L.; Gould, Alan

    2008-01-01

    The International Asteroid Search Campaign (IASC, fondly nicknamed "Isaac") is an Internet-based program for high schools and colleges. Within hours of acquisition, astronomical CCD images are made available via the Internet to participating schools around the world. Under the guidance of their teachers, students analyze the images with free…

  10. Inquiry-based learning transitions to interdisciplinary research at a small primarily undergraduate institution.

    NASA Astrophysics Data System (ADS)

    Lehto, H.; Ward, J. W.

    2016-12-01

    Inquiry-based learning has been shown by many to be a useful way of engaging students and fostering a deeper learning of the subject matter. In traditional geophysics courses we use our equipment in a quad on campus or to a nearby site to have our students run surveys that countless students have run before. While this approach is active and does promote a deeper learning than a lecture only course, it can still be stale and unauthentic. By using new and unexplored sites for inquiry-based learning projects within our courses, we provide opportunities for students to be part of an authentic research experience. Inquiry-based learning started in my geophysics course when I needed a site for my students to run a resistivity survey on. My colleague, James Ward, recommended a site that was contaminated with salts believed to be from either an unlined (or improperly lined) brine pit or a leaking casing from old oil field operations. The goal of the project was to use a resistivity survey to determine the shape and therefore cause of the salt source. The students in my geophysics class were introduced to the `client' (James Ward) who told them about the site and the two different hypotheses for the source of the salt contamination. The students studied site images, looked at soil data, and then each proposed a plan for the resistivity survey. We then met in the field and the students were given a quick explanation of how the system worked and what they needed to do that day. The students were told to take thorough notes, lots of photographs, and ask as many questions as they needed to understand what was going on. On the following Monday I broke the students up into groups and taught them how to use the EarthImager 2D software to analyze the data. The students were then required to interpret their data and write-up a technical report for our `client' individually. The final graded technical reports suggested that authentic, inquiry-based learning facilitated a deeper understanding of the process of science and of the geophysical method used. In addition, the students who worked on this study have seen it turn into real research at the institution. Six undergraduate, independent, faculty-mentored research projects and one external, private grant for faculty in geology and agriculture have come from this project so far.

  11. Simulations, Imaging, and Modeling: A Unique Theme for an Undergraduate Research Program in Biomechanics.

    PubMed

    George, Stephanie M; Domire, Zachary J

    2017-07-01

    As the reliance on computational models to inform experiments and evaluate medical devices grows, the demand for students with modeling experience will grow. In this paper, we report on the 3-yr experience of a National Science Foundation (NSF) funded Research Experiences for Undergraduates (REU) based on the theme simulations, imaging, and modeling in biomechanics. While directly applicable to REU sites, our findings also apply to those creating other types of summer undergraduate research programs. The objective of the paper is to examine if a theme of simulations, imaging, and modeling will improve students' understanding of the important topic of modeling, provide an overall positive research experience, and provide an interdisciplinary experience. The structure of the program and the evaluation plan are described. We report on the results from 25 students over three summers from 2014 to 2016. Overall, students reported significant gains in the knowledge of modeling, research process, and graduate school based on self-reported mastery levels and open-ended qualitative responses. This theme provides students with a skill set that is adaptable to other applications illustrating the interdisciplinary nature of modeling in biomechanics. Another advantage is that students may also be able to continue working on their project following the summer experience through network connections. In conclusion, we have described the successful implementation of the theme simulation, imaging, and modeling for an REU site and the overall positive response of the student participants.

  12. Project-oriented teaching model about specialized courses in the information age

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Wang, Jinjiang; Tian, Qingguo; Wang, Yi; Cai, Huaiyu

    2017-08-01

    Specialized courses play a significant role in the usage of basic knowledge in the practical application for engineering college students. The engineering data available has sharply increased since the beginning of the information age in the 20th century, providing much more approaches to study and practice. Therefore, how to guide students to make full use of resources for active engineering practice learning has become one of the key problems for specialized courses. This paper took the digital image processing course for opto-electronic information science and technology major as an example, discussed the teaching model of specialized course in the information age, put forward the "engineering resource oriented model", and fostered the ability of engineering students to use the basic knowledge to innovate and deal with specific project objectives. The fusion of engineering examples into practical training and teaching encourages students to practice independent engineering thinking.

  13. Educational Outreach for Astrobiology

    NASA Astrophysics Data System (ADS)

    Kadooka, M.; Meech, K.

    2009-12-01

    Astrobiology, the search for life in the universe, has fascinating research areas that can excite students and teachers about science. Its integrative nature, relating to astronomy, geology, oceanography, physics, and chemistry, can be used to encourage students to pursue physical sciences careers. Since 2004, the University of Hawaii NASA Astrobiology Institute (NAI) team scientists have shared their research with secondary teachers at our ALI’I national teacher program to promote the inclusion of astrobiology topics into science courses. Since 2007, our NAI team has co-sponsored the HI STAR program for Hawaii’s middle and high school students to work on authentic astronomy research projects and to be mentored by astronomers. The students get images of asteroids, comets, stars, and extrasolar planets from the Faulkes Telescope North located at Haleakala Observatories on the island of Maui and owned by Las Cumbres Observatory Global Telescope network. They also do real time observing with DeKalb Observatory telescope personally owned by Donn Starkey who willing allows any student access to his telescope. Student project results include awards at the Hawaii State Science Fair and the Intel International Science and Engineering Fair. We believe that research experience stimulates these students to select STEM (science, technology, engineering and mathematics) majors upon entering college so a longitudinal study is being done. Plans are underway with California and Hawaii ALI’I teachers cooperating on a joint astronomy classroom project. International collaborations with Brazil, Portugal, and Italy astronomers have begun. We envision joint project between hemispheres and crossing time zones. The establishment of networking teachers, astronomers, students and educator liaisons will be discussed.

  14. Teaching image-processing concepts in junior high school: boys' and girls' achievements and attitudes towards technology

    NASA Astrophysics Data System (ADS)

    Barak, Moshe; Asad, Khaled

    2012-04-01

    Background : This research focused on the development, implementation and evaluation of a course on image-processing principles aimed at middle-school students. Purpose : The overarching purpose of the study was that of integrating the learning of subjects in science, technology, engineering and mathematics (STEM), and linking the learning of these subjects to the children's world and to the digital culture characterizing society today. Sample : The participants were 60 junior high-school students (9th grade). Design and method : Data collection included observations in the classes, administering an attitude questionnaire before and after the course, giving an achievement exam and analyzing the students' final projects. Results and conclusions : The findings indicated that boys' and girls' achievements were similar throughout the course, and all managed to handle the mathematical knowledge without any particular difficulties. Learners' motivation to engage in the subject was high in the project-based learning part of the course in which they dealt, for instance, with editing their own pictures and experimenting with a facial recognition method. However, the students were less interested in learning the theory at the beginning of the course. The course increased the girls', more than the boys', interest in learning scientific-technological subjects in school, and the gender gap in this regard was bridged.

  15. Images as a Resource for Supporting Vocabulary Learning: A Multimodal Analysis of Thai EFL Tablet Apps for Primary School Children

    ERIC Educational Resources Information Center

    Vungthong, Sompatu; Djonov, Emilia; Torr, Jane

    2017-01-01

    In 2011, the Thai government introduced a national project, One Tablet per Child (OTPC), with the aim of supporting students' learning in the digital world. The project commenced with Grade 1 in 2012 and Grade 2 in 2013. The applications embedded in the OTPC tablet given to each child feature multimedia teaching applications (apps) on various…

  16. Transformers: changing the face of nursing and midwifery in the media.

    PubMed

    McAllister, Margaret; Downer, Terri; Hanson, Julie; Oprescu, Florin

    2014-03-01

    This paper reports an educational strategy designed to sensitise and empower students about the impact of media representations of nursing and midwifery on their public image. Numerous studies continue to reveal that stories about nursing and midwifery presented in the mainstream media are often superficial, stereotypical and demeaning. Inaccurate portrayals of nursing damage our professional reputation with the public and potential consumers. It also sends the wrong message to future nursing students. Images are a powerful conductor of misinformation, suggesting to others that nurses are not important agents for social change. In 2012, a small team of academics designed a photography competition and judging process for undergraduate and postgraduate students of nursing and midwifery enrolled at a regional Australian university. The winning entries were photographs of high quality and conveyed rich meaning. They provide an interesting and positive counterpoint to derogatory images often propagated by mainstream media. There is benefit in extending this project so that it: appeals to more students, builds leadership skills, leads to wider social change and benefits society. The intention is to develop the process of student engagement as an educational intervention, and explore experiences and outcomes with stakeholders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Introducing Research Methods to Undergraduate Majors Through an On-Campus Observatory with The University of Toledo's Ritter Observatory

    NASA Astrophysics Data System (ADS)

    Richardson, Noel; Hardegree-Ullman, Kevin; Bjorkman, Jon Eric; Bjorkman, Karen S.; Ritter Observing Team

    2017-01-01

    With a 1-m telescope on the University of Toledo (OH) main campus, we have initiated a grad student-undergraduate partnership to help teach the undergraduates observational methods and introduce them to research through peer mentorship. For the last 3 years, we have trained up to 21 undergraduates (primarily physics/astronomy majors) in a given academic semester, ranging from freshman to seniors. Various projects are currently being conducted by undergraduate students with guidance from graduate student mentors, including constructing three-color images, observations of transiting exoplanets, and determination of binary star orbits from echelle spectra. This academic year we initiated a large group research project to help students learn about the databases, journal repositories, and online observing tools astronomers use for day-to-day research. We discuss early inclusion in observational astronomy and research of these students and the impact it has on departmental retention, undergraduate involvement, and academic success.

  18. Applying an information literacy rubric to first-year health sciences student research posters*

    PubMed Central

    Goodman, Xan; Watts, John; Arenas, Rogelio; Weigel, Rachelle; Terrell, Tony

    2018-01-01

    Objective This article describes the collection and analysis of annotated bibliographies created by first-year health sciences students to support their final poster projects. The authors examined the students’ abilities to select relevant and authoritative sources, summarize the content of those sources, and correctly cite those sources. Methods We collected images of 1,253 posters, of which 120 were sampled for analysis, and scored the posters using a 4-point rubric to evaluate the students’ information literacy skills. Results We found that 52% of students were proficient at selecting relevant sources that directly contributed to the themes, topics, or debates presented in their final poster projects, and 64% of students did well with selecting authoritative peer-reviewed scholarly sources related to their topics. However, 45% of students showed difficulty in correctly applying American Psychological Association (APA) citation style. Conclusion Our findings demonstrate a need for instructors and librarians to provide strategies for reading and comprehending scholarly articles in addition to properly using APA citation style. PMID:29339940

  19. Polaris Instrument Development and PARI Experience

    NASA Astrophysics Data System (ADS)

    Stewart, Nathan

    2011-01-01

    At the Pisgah Astronomical Research Institute (PARI) in Rosman, NC I spent 8 weeks as the NC Space Grant/J. Donald Cline Astronomy Scholar. I developed multiple projects and assisted as a mentor to PARI Space Science Lab and Duke TIP high school gifted student program which both took place during my stay. My main focus was the development of the Polaris imaging telescope. This telescope is used to take images of the pulsating variable star Polaris. These readings are used to make seeing estimates for the air column above PARI. The system stores and archives images and analyzes them for magnitude change and movement of the stellar image. In addition to the Polaris project I developed a solar panel voltage and charge monitoring system which involved me working with charge controllers and photovoltaic technology. I developed a charging scheme using Flexmax 60 charge controller. Data is recorded and transmitted via optical fiber for analysis and correlation with solar zenith angle.

  20. Impacts of a Course-based Undergraduate Research Experience in Introductory Astronomy Using Robotic Telescopes

    NASA Astrophysics Data System (ADS)

    Dobaria, Archana S.; Coble, Kimberly A.; Alejandra, Le; Berryhill, Katie; McLin, Kevin M.; Cominsky, Lynn R.

    2018-06-01

    As part of a general education undergraduate astronomy course at a minority-serving university in the Midwestern US, students completed an observing project with the Global Telescope Network (GTN), where they participated in realistic practices used by professional astronomers, including proposal writing and peer review. First, students went through the process of applying for telescope time by choosing an astronomical object and writing an observing proposal. Then they performed an NSF-style review of classmates’ proposals, including written peer reviews and a review panel. After obtaining images from GTN telescopes, students presented their project and findings in front of the class.This study investigates students’ experiences and perceived impacts of participation in the project. The data analyzed includes an essay assignment [N = 59] administered over seven semesters and individual interviews [N = 8] collected over two semesters. Students were prompted to address what they liked, disliked, or would change about the project experience. These data were coded iteratively into nine categories. A Kruskal-Wallis (KW) test was used to determine that essay results from different semesters could be combined. We find that students expressed an overall strong positive affect, increased perception of self-efficacy, enjoyment of the experience of peer review, an appreciation for being able to use real scientific tools and to take on the role of astronomers, as well as a small number of dislikes such as real-world constraints on observing.

  1. CosmoQuest: Training Educators and Engaging Classrooms in Citizen Science through a Virtual Research Facility

    NASA Astrophysics Data System (ADS)

    Buxner, Sanlyn; Bracey, Georgia; Summer, Theresa; Cobb, Whitney; Gay, Pamela L.; Finkelstein, Keely D.; Gurton, Suzanne; Felix-Strishock, Lisa; Kruse, Brian; Lebofsky, Larry A.; Jones, Andrea J.; Tweed, Ann; Graff, Paige; Runco, Susan; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    CosmoQuest is a Citizen Science Virtual Research Facility that engages scientists, educators, students, and the public in analyzing NASA images. Often, these types of citizen science activities target enthusiastic members of the public, and additionally engage students in K-12 and college classrooms. To support educational engagement, we are developing a pipeline in which formal and informal educators and facilitators use the virtual research facility to engage students in real image analysis that is framed to provide meaningful science learning. This work also contributes to the larger project to produce publishable results. Community scientists are being solicited to propose CosmoQuest Science Projects take advantage of the virtual research facility capabilities. Each CosmoQuest Science Project will result in formal education materials, aligned with Next Generation Science Standards including the 3-dimensions of science learning; core ideas, crosscutting concepts, and science and engineering practices. Participating scientists will contribute to companion educational materials with support from the CosmoQuest staff of data specialists and education specialists. Educators will be trained through in person and virtual workshops, and classrooms will have the opportunity to not only work with NASA data, but interface with NASA scientists. Through this project, we are bringing together subject matter experts, classrooms, and informal science organizations to share the excitement of NASA SMD science with future citizen scientists. CosmoQuest is funded through individual donations, through NASA Cooperative Agreement NNX16AC68A, and through additional grants and contracts that are listed on our website, cosmoquest.org.

  2. Enabling Astronony Research in High Schools with the START Collaboratory

    NASA Astrophysics Data System (ADS)

    Greenberg, G. J.; Pennypacker, C. R.

    2005-12-01

    The START Collaboratory is a three-year, NSF funded project to create a Web-based national astronomy research collaboratory for high school students that will bring authentic scientific research to classrooms across the country. The project brings together the resources and experience of Hands-On Universe at the University of California at Berkeley, the Sloan Digital Sky Survey / National Virtual Observatory at Johns Hopkins University and the Northwestern University Collaboratory Project. The START Collaboratory seamlessly integrates access to gigabytes of searchable data and images from the Sloan Digital Sky Survey and the NVO into Web-based research notebooks and research reports that can be shared and discussed online. Requests for observations can be made through the START Telescope Request Broker. These observations can be viewed with the START Web Visualization Tool for visualization and measurement of FITS files. The project has developed a set of research scenarios to introduce students to the resources and tools available through the START Collaboratory, and to provide a model for network-based collaboration that engages students, teachers and professional scientists. Great attention has been paid to ensuring that the research scenarios result in accurate and authentic research products that are of real interest to working astronomers. In this panel presentation, we will describe the educational benefits and opportunities being seen in pilot testing with teachers and students, and in preparations for a teacher professional development project with the Adler Planetarium.

  3. The ImageJ ecosystem: an open platform for biomedical image analysis

    PubMed Central

    Schindelin, Johannes; Rueden, Curtis T.; Hiner, Mark C.; Eliceiri, Kevin W.

    2015-01-01

    Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available – from commercial to academic, special-purpose to Swiss army knife, small to large–but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts life science, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. PMID:26153368

  4. The ImageJ ecosystem: An open platform for biomedical image analysis.

    PubMed

    Schindelin, Johannes; Rueden, Curtis T; Hiner, Mark C; Eliceiri, Kevin W

    2015-01-01

    Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available-from commercial to academic, special-purpose to Swiss army knife, small to large-but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem. © 2015 Wiley Periodicals, Inc.

  5. Physics meets fine arts: a project-based learning path on infrared imaging

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Bozzo, G.; Sapia, P.

    2018-03-01

    Infrared imaging represents a noninvasive tool for cultural heritage diagnostics, based on the capability of IR radiation to penetrate the most external layers of different objects (as for example paintings), revealing hidden features of artworks. From an educational viewpoint, this diagnostic technique offers teachers the opportunity to address manifold topics pertaining to the physics and technology of electromagnetic radiation, with particular emphasis on the nature of color and its physical correlates. Moreover, the topic provides interesting interdisciplinary bridges towards the human sciences. In this framework, we present a hands-on learning sequence, suitable for both high school students and university freshmen, inspired by the project-based learning (PBL) paradigm, designed and implemented in the context of an Italian national project aimed at offering students the opportunity to participate in educational activities within a real working context. In a preliminary test we involved a group of 23 high school students while they were working as apprentices in the Laboratory of Applied Physics for Cultural Heritage (ArcheoLab) at the University of Calabria. Consistently with the PBL paradigm, students were given well-defined practical goals to be achieved. As final goals they were asked (i) to construct and to test a low cost device (based on a disused commercial camera) appropriate for performing educational-grade IR investigations on paintings, and (ii) to prepare a device working as a simple spectrometer (recycling the optical components of a disused video projector), suitable for characterizing various light sources in order to identify the most appropriate for infrared imaging. The proposed learning path has shown (in the preliminary test) to be effective in fostering students’ interest towards physics and its technological applications, especially because pupils perceived the context (i.e. physics applied to the protection and restoration of cultural heritage) as relevant in relation to the cultural and productive specificities of their country. The learning sequence, originally designed for high school students in apprenticeship at the university, can be easily improved to make it appropriate for university freshmen.

  6. Teaching by research at undergraduate schools: an experience

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.

    1997-12-01

    On this communication I will report a pedagogical experience undertaken in the 1995 class of Image Processing of the course of Applied Physics of the University of Minho. The learning process requires always an active critical participation of the student in an experience essentially personal that should and must be rewarding and fulfilling. To us scientists virtually nothing gives us more pleasure and fulfillment than the research processes. Furthermore it is our main way to improve our, and I stress our, knowledge. Thus I decided to center my undergraduate students' learning process of the basics of digital image processing on a simple applied research program. The proposed project was to develop a process of inspection to be introduced in a generic production line. Measured should be the transversal distance between an object and the extremity of a conveyor belt where it is transported. The measurement method was proposed to be optical triangulation combined with shadow analysis. To the students was given almost entire liberty and responsibility. I limited my self to asses the development of the project orienting them and point out different or pertinent points of view only when strictly necessary.

  7. VICA--Polishing the Image of Vocational Students

    ERIC Educational Resources Information Center

    Fitzpatrick, June

    1976-01-01

    The National Leadership Conference and Skill Olympics sponsored by the Vocational Industrial Clubs of America (VICA) demonstrates job skill competency in the building trades, health occupations, automotive technology, electricity/electronics, and personal services. VICA community service projects and leadership training at the local level also…

  8. Regolith X-Ray Imaging Spectrometer (REXIS) Aboard the OSIRIS-REx Asteroid Sample Return Mission

    NASA Astrophysics Data System (ADS)

    Masterson, R. A.; Chodas, M.; Bayley, L.; Allen, B.; Hong, J.; Biswas, P.; McMenamin, C.; Stout, K.; Bokhour, E.; Bralower, H.; Carte, D.; Chen, S.; Jones, M.; Kissel, S.; Schmidt, F.; Smith, M.; Sondecker, G.; Lim, L. F.; Lauretta, D. S.; Grindlay, J. E.; Binzel, R. P.

    2018-02-01

    The Regolith X-ray Imaging Spectrometer (REXIS) is the student collaboration experiment proposed and built by an MIT-Harvard team, launched aboard NASA's OSIRIS-REx asteroid sample return mission. REXIS complements the scientific investigations of other OSIRIS-REx instruments by determining the relative abundances of key elements present on the asteroid's surface by measuring the X-ray fluorescence spectrum (stimulated by the natural solar X-ray flux) over the range of energies 0.5 to 7 keV. REXIS consists of two components: a main imaging spectrometer with a coded aperture mask and a separate solar X-ray monitor to account for the Sun's variability. In addition to element abundance ratios (relative to Si) pinpointing the asteroid's most likely meteorite association, REXIS also maps elemental abundance variability across the asteroid's surface using the asteroid's rotation as well as the spacecraft's orbital motion. Image reconstruction at the highest resolution is facilitated by the coded aperture mask. Through this operation, REXIS will be the first application of X-ray coded aperture imaging to planetary surface mapping, making this student-built instrument a pathfinder toward future planetary exploration. To date, 60 students at the undergraduate and graduate levels have been involved with the REXIS project, with the hands-on experience translating to a dozen Master's and Ph.D. theses and other student publications.

  9. Medical Students' Understanding of Directed Questioning by Their Clinical Preceptors.

    PubMed

    Lo, Lawrence; Regehr, Glenn

    2017-01-01

    Phenomenon: Throughout clerkship, preceptors ask medical students questions for both assessment and teaching purposes. However, the cognitive and strategic aspects of students' approaches to managing this situation have not been explored. Without an understanding of how students approach the question and answer activity, medical educators are unable to appreciate how effectively this activity fulfills their purposes of assessment or determine the activity's associated educational effects. A convenience sample of nine 4th-year medical students participated in semistructured one-on-one interviews exploring their approaches to managing situations in which they have been challenged with questions from preceptors to which they do not know the answer. Through an iterative and recursive analytic reading of the interview transcripts, data were coded and organized to identify themes relevant to the students' considerations in answering such questions. Students articulated deliberate strategies for managing the directed questioning activity, which at times focused on the optimization of their learning but always included considerations of image management. Managing image involved projecting not only being knowledgeable but also being teachable. The students indicated that their considerations in selecting an appropriate strategy in a given situation involved their perceptions of their preceptors' intentions and preferences as well as several contextual factors. Insights: The medical students we interviewed were quite sophisticated in their understanding of the social nuances of the directed questioning process and described a variety of contextually invoked strategies to manage the situation and maintain a positive image.

  10. S'COOL Takes Students to New Heights

    NASA Technical Reports Server (NTRS)

    Green, Carolyn J.; Chambers, Lin H.

    1998-01-01

    Students Cloud Observations On-Line (S'COOL) is a hands-on educational project which supports NASA's Clouds and the Earth s Radiant Energy System (CERES) satellite instrument; part of the Earth Science Enterprise studying our planet. S'COOL meets science, math, technology and geography Standards of Learning (SOLs) as students observe clouds and related weather conditions, compute data and locate vital information while obtaining ground truth observations for the CERES instrument. These observations can then be used to help validate the CERES measurements; particularly detection of clear sky from space. Participants to date have been in 20 states and 5 countries and have reported great interest and learning among their students. Many have used this project as a stepping stone to further learning in other areas of Earth Science; and to do more with the Internet in the classroom. Satellite images and clues to their interpretation are used on the website ( http://asd-www.larc.nasa.gov/SCOOL/) . Background information is also given on Earth's Radiation Budget and it s importance in understanding our climate. Students can retrieve both their observations and the corresponding satellite data and participate in the validation efforts. A number of suggestions for studies to be done with the data, and related lesson plans, are available. Teachers can tailor this project to the appropriate level and subject matter needed for their students. The recommended grade level is 4th through 12th grade. The project is now open to new participants. We particularly seek schools in more remote areas, to obtain wider geographic coverage for ground truth data; so the project has been designed to use, but not require, computer technology. AGU participants attending the S'COOL presentation will be given a handout describing the project. Material for introducing the project in the classroom will be demonstrated in a participatory style.

  11. Hands-On Universe: A Global Program for Education and Public Outreach in Astronomy

    NASA Astrophysics Data System (ADS)

    Boër, M.; Thiébaut, C.; Pack, H.; Pennypaker, C.; Isaac, M.; Melchior, A.-L.; Faye, S.; Ebisuzaki, T.

    Hands-On Universe (HOU) is an educational program that enables students to investigate the Universe while applying tools and concepts from science, math, and technology. Using the Internet, HOU participants around the world request observations from an automated telescope, download images from a large image archive, and analyze them with the aid of user-friendly image processing software. This program is now in many countries, including the USA, France, Germany, Sweden, Japan, and Australia. A network of telescopes has been established, many of them remotely operated. Students in the classroom are able to make night observations during the day, using a telescope in another country. An archive of images taken on large telescopes is also accessible, as well as resources for teachers. Students deal with real research projects, e.g., the search for asteroids, which resulted in the discovery of a Kuiper Belt object by high-school students. Not only does Hands-On Universe give the general public access to professional astronomy, it also demonstrates the use of a complex automated system, data processing techniques, and automation. Using telescopes located in many countries over the globe, a powerful and genuine cooperation between teachers and children from various countries is promoted, with a clear educational goal.

  12. Online Citizen Science with Clickworkers & MRO HiRISE E/PO

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.; Deardorff, G.; Kanefsky, B.; HiRISE Science Team

    2010-12-01

    The High-Resolution Imaging Science Experiment’s E/PO has fielded several online citizen science projects. Our efforts are guided by HiRISE E/PO’s philosophy of providing innovative opportunities for students and the public to participate in the scientific discovery process. HiRISE Clickworkers, a follow-on to the original Clickworkers crater identification and size diameter marking website, provides an opportunity for the public to identify & mark over a dozen landform feature types in HiRISE images, including dunes, gullies, patterned ground, wind streaks, boulders, craters, layering, volcanoes, etc. In HiRISE Clickworkers, the contributor views several sample images showing variations of different landforms, and simply marks all the landform types they could spot while looking at a small portion of a HiRISE image. Contributors then submit their work & once validated by comparison to the output of other participants, results are then added to geologic feature databases. Scientists & others will eventually be able to query these databases for locations of particular geologic features in the HiRISE images. Participants can also mark other features that they find intriguing for the HiRISE camera to target. The original Clickworkers website pilot study ran from November 2000 until September 2001 (Kanefsky et al., 2001, LPSC XXXII). It was among the first online Citizen Science efforts for planetary science. In its pilot study, we endeavored to answer two questions: 1) Was the public willing & able to help science, & 2) Can the public produce scientifically useful results? Since its inception over 3,500,000 craters have been identified, & over 350,000 of these craters have been classified. Over 2 million of these craters were marked on Viking Orbiter image mosaics, nearly 800,000 craters were marked on Mars Orbiter Camera (MOC) images. Note that these are not counts of distinct craters. For example, each crater in the Viking orbiter images was counted by about 50 contributors. In HiRISE Clickworkers, over a dozen different geologic features have been identified on over 57,000 image tiles. A key objective of Clickworkers has been to break up work into manageable chunks so that people can contribute a few minutes at a time and their work all adds up. Our HiRISE Student Image Challenges (http://quest.nasa.gov), another online citizen science project, provide educators and students a virtual science team experience. Registered participants are given access to HiWeb, the HiRISE team’s image suggestion facility to submit their image suggestions. Once the images are returned, students browse, pan and zoom through their acquired images online and at full resolution before they are released to the public (http://marsoweb.nas.nasa.gov/HiRISE/quest/). Students fill out a report form summarizing the key results of their image analysis and with the help of a HiRISE team member write a caption for their image. The image is posted on the HiRISE image release website along with the caption, with credit to the suggesting class and school. HiWish, HiRISE’s public image suggestion website (see McEwen et al., this mtg.), provides a simpler interface for the public at large to submit HiRISE images. HiWish also provides a list of recently submitted image requests.

  13. Digital Camera Project Fosters Communication Skills

    ERIC Educational Resources Information Center

    Fisher, Ashley; Lazaros, Edward J.

    2009-01-01

    This article details the many benefits of educators' use of digital camera technology and provides an activity in which students practice taking portrait shots of classmates, manipulate the resulting images, and add language arts practice by interviewing their subjects to produce a photo-illustrated Word document. This activity gives…

  14. Spectacular Skies

    ERIC Educational Resources Information Center

    Nickerson, Jessica

    2008-01-01

    Marbling paper is a favorite in many elementary classrooms. The marbling project described in this article, using a sunset and silhouette concept, is foolproof, inexpensive, and engaging. After looking at images of incredible sunsets for inspiration, each student uses marbling paper, black construction paper, three colors of chalk, and a tub of…

  15. 3D Modeling as Method for Construction and Analysis of Graphic Objects

    NASA Astrophysics Data System (ADS)

    Kheyfets, A. L.; Vasilieva, V. N.

    2017-11-01

    The use of 3D modeling when constructing and analyzing perspective projections and shadows is considered. The creation of photorealistic image is shown. The perspective of the construction project and characterization of its image are given as an example. The authors consider the construction of a dynamic block as a means of graphical information storage and automation of geometric constructions. The example of the dynamic block construction at creating a truss node is demonstrated. The constructions are considered as applied to the Auto-CAD software. The paper is aimed at improving the graphic methods of architectural design and improving the educational process when training the Bachelor’s degree students majoring in construction.

  16. Student designed experiments to learn fluids

    NASA Astrophysics Data System (ADS)

    Stern, Catalina

    2013-11-01

    Lasers and high speed cameras are a wonderful tool to visualize the very complex behavior of fluids, and to help students grasp concepts like turbulence, surface tension and vorticity. In this work we present experiments done by physics students in their senior year at the School of Science of the National University of Mexico as a final project in the continuum mechanics course. Every semester, the students make an oral presentation of their work and videos and images are kept in the web page ``Pasión por los Fluidos''. I acknowledge support from the Physics Department of Facultad de Ciencias, Universidad Nacional Autónoma de México.

  17. Livonia, New York, Students Study Past Martian Water

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of the central peak and wall of a crater in Tyrrhena Terra, in Mars' ancient southern highlands, was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0956 UTC (4:56 a.m. EST) on February 8, 2008, near 4.85 degrees south latitude, 104.16 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 35 meters (115 feet) across. The region covered is just over 10 kilometers (6.2 miles) wide at its narrowest point.

    This image was part of an investigation planned by students at Livonia High School in Livonia, New York. The students are working with the CRISM science team in a project called the Mars Exploration Student Data Teams (MESDT), which is part of NASA's Mars Public Engagement Program and Arizona State University's Mars Education Program. The students started by analyzing a medium-resolution map of the area, taken as part of CRISM's 'multispectral survey' campaign to map Mars in 72 colors at 200 meters (660 feet) per pixel. They noted multiple outcrops of clay-like minerals called phyllosilicates in the walls and central peaks of impacts craters, and hypothesized that the craters were excavating an extremely ancient, buried rock layer that had been altered by liquid water. They chose this central peak for a closer look to test their ideas, and provided its coordinates to CRISM's operations team who took a high-resolution image of the site. The Context Imager (CTX) accompanied CRISM with a 6 meter (20 feet) per pixel, high-resolution image to sharpen the relationship of spectral variations to the underlying surface structures. The Livonia High School students worked with a mentor on the CRISM team to analyze the data, and presented their project at the 39th Lunar and Planetary Science Conference, held in League City, Texas, on March 10-14, 2008.

    The upper panel of the image shows the location of the CRISM data and the surrounding, larger CTX image, overlain on an image mosaic taken by the Thermal Emission Imaging System (THEMIS) on Mars Odyssey. The mosaic has been color-coded for elevation using data from the Mars Orbiter Laser Altimeter (MOLA) instrument on the Mars Global Surveyor (MGS) spacecraft. Redder colors indicate higher elevations. The bottom left image shows infrared brightness of the surface measured by CRISM at 2.5, 1.5, and 1.1 micrometers. In the lower right image, the data have been transformed into a map of spectral features indicating the presence of different minerals. This map emphasizes the primary igneous minerals that are present, with reddish areas indicating olivine and blue to greenish areas indicating pyroxene. In a different version of the mineral map, phyllosilicates can also be seen in the crater's central peak near the upper portion of the image.

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  18. Other Worlds, Other Earths

    NASA Astrophysics Data System (ADS)

    Sunbury, Susan; Gould, R. R.

    2011-05-01

    The Harvard-Smithsonian Center for Astrophysics is developing a two-to-three week NSF-funded program for middle and high school students using telescope-based investigations of real world cutting edge scientific questions. The goal is to reveal and enhance students' understanding of core concepts in the physical sciences as well as to develop their proficiency in the practice of scientific inquiry. Specifically, students and teachers are joining scientists in the search for habitable worlds by exploring transiting exoplanets. Using robotic telescopes, image processing software and simulations, students take images and then measure the brightness of their target star to create a portrait of a transiting planet including how large it is; the tilt of its orbit; how far it is from its star and what its environment might be like. Once classes collect and analyze their own data, they can begin to compare, combine, and communicate their findings with others in the community. Interactive models help students predict what they might expect to find and interpret what they do find. During the past two years, the Center for Astrophysics has tested the concept in fifty middle-and high-school classrooms, enrichment classes and after school science clubs in 13 states across the United States. To date, astronomy, earth science, and physics students have successfully detected Jupiter-sized planets transiting stars such as TRES-3, HATP-10, and HATP-12. Preliminary results indicate that learning of core concept did occur. Gains in content were most significant in middle school students as this project delivered new information to them while it served primarily as a review of concepts and application of skills for advanced placement classes. A significant change also occurred in students’ self reported knowledge of exoplanets. There was also an increase in students’ awareness of exoplanets and attitudes about science after participating in this project.

  19. Searching for New Variable Stars: an Educational Project to Mine Archival Data

    NASA Astrophysics Data System (ADS)

    Walls, B. D.; Redmond, C. E.; Murdick, L. J.; Caton, D. B.

    1998-12-01

    As a Senior Seminar project,. three students were each assigned a night of images of a field containing a variable star observed under our eclipsing binary photometry program. Each field was eight arc-minutes square, with the images coming from the DFM 32-inch telescope at our Dark Sky Observatory. The exposures used a Photometrics CH250 camera with a Tektronix 1024(2) CCD and V-filter. Darks were obtained throughout the night, as well as sky flats at dusk or dawn. The fields were around the systems V442 Cas, WW Cyg, and V345 Lac. The students used Axiom Research's MIRA AP software for doing the aperture photometry, using one initial coordinates file for all of the reasonably bright stars in the field. This number varied from about 60 to almost 200 stars. The MIRA software is easy to use, with auto-centroiding and calibration built in, so it was just a matter of loading images and applying the calibration. One of the student/authors (BDW) wrote an application in Microsoft Visual BASIC to scan the output data files and produce new files, per star. These data sets were examined using PSI-Plot, to look for variability. Errors due to occasional drift led to centroiding problems, a lesson in itself! There were still some residual variations in a few stars that may be real. Follow-up observations will be made to verify these suspicions.

  20. NASA's Student Airborne Research Program (SARP) 2009-2017

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.

    2017-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of a NASA airborne campaign, including flying onboard NASA research aircraft while studying Earth system processes. Approximately thirty-two students are competitively selected each summer from colleges and universities across the United States. Students work in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assist in the operation of instruments onboard NASA aircraft where they sample and measure atmospheric gases and image land and water surfaces in multiple spectral bands. Along with airborne data collection, students participate in taking measurements at field sites. Mission faculty and research mentors help to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student develops an individual research project from the data collected and delivers a conference-style final presentation on their results. Each year, several students present the results of their SARP research projects in scientific sessions at this meeting. We discuss the results and effectiveness of the program over the past nine summers and plans for the future.

  1. Variation in external representations as part of the classroom lecture:An investigation of virtual cell animations in introductory photosynthesis instruction.

    PubMed

    Goff, Eric E; Reindl, Katie M; Johnson, Christina; McClean, Phillip; Offerdahl, Erika G; Schroeder, Noah L; White, Alan R

    2017-05-01

    The use of external representations (ERs) to introduce concepts in undergraduate biology has become increasingly common. Two of the most prevalent are static images and dynamic animations. While previous studies comparing static images and dynamic animations have resulted in somewhat conflicting findings in regards to learning outcomes, the benefits of each have been shown individually. Using ERs developed by the Virtual Cell Animation project, we aim to further investigate student learning using different ERs as part of an introductory biology lecture. We focus our study on the topic of photosynthesis as reports have noted that students struggle with a number of basic photosynthesis concepts. Students (n = 167) in ten sections of introductory biology laboratory were introduced to photosynthesis concepts by instructional lectures differing only in the format of the embedded ERs. Normalized gain scores were calculated, showing that students who learned with dynamic animations outperformed students who learned from static images on the posttest. The results of this study provide possible instructional guidelines for those delivering photosynthesis instruction in the introductory biology classroom. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):226-234, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  2. Salish Kootenai College Student Internship With the Landsat Data Continuity Mission: A Student's Perspective

    NASA Astrophysics Data System (ADS)

    Fisher, R.

    2004-12-01

    Hello my name is Richard D. Fisher. I was very fortunate to be picked to travel to Washington DC in July 2004, to complete a five week internship at NASA. My internship project is located on the Flathead Reservation and the area is called the Jocko-Spring Creek. My project was to complete land cover classification and land cover change detection. In order for me to accomplish my goals I had to learn how to use two new computer programs, MultiSpec and ENVI (Environment for Viewing Images) for remote sensing processing. Computer use does not come easy to me because, I lack the training most people take for granted. However, I did not let this lack of training get me down. The first step was to acquire two Landsat images. The first image was from the Landsat 7, landsat satellite in 1999 and the other was from the Landsat 5 satellite in 1987. The path row for my study area is 41-27. Once the images were acquired I had to combine the different color bands to make one image and perform a blue band correction. The blue band correction takes the blue haze out of the images making them clearer. The visible bands are blue, green, red and three bands of infrared. Once these color bands are together you can change the color of the image to help you look for different features, because each different color band will show you something different. After I put the images together I used ENVI to do the land cover classifications. The next step was to subset my project area to a smaller size. I cut both images in exactly the same coordinates. With help from my NASA mentor scientist, Rich Irish from the Landsat Data Continuity Mission, and I used photo shop Adobe PhotoShop to do the subsetting of both images. We were able to then link the two images together using ENVI software. After that I started to analyze the different pixels and their colors. I classified each image starting with the areas I knew from the fieldwork. After the classifications on both images were complete and I felt confident in the final classification, I needed to work with the shadows from the mountains in the image. We performed change detection from subtracting the two images. These computer programs are fun to use and were very useful especially when combining Landsat images. I would recommend these programs to anyone.

  3. Computer Model Locates Environmental Hazards

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Catherine Huybrechts Burton founded San Francisco-based Endpoint Environmental (2E) LLC in 2005 while she was a student intern and project manager at Ames Research Center with NASA's DEVELOP program. The 2E team created the Tire Identification from Reflectance model, which algorithmically processes satellite images using turnkey technology to retain only the darkest parts of an image. This model allows 2E to locate piles of rubber tires, which often are stockpiled illegally and cause hazardous environmental conditions and fires.

  4. Safeguarding Copyrighted Contents: Digital Libraries and Intellectual Property Management. CWRU's Rights Management System.

    ERIC Educational Resources Information Center

    Alrashid, Tareq M.; Barker, James A.; Christian, Brian S.; Cox, Steven C.; Rabne, Michael W.; Slotta, Elizabeth A.; Upthegrove, Luella R.

    1998-01-01

    Describes Case Western Reserve University's (CWRU's) digital library project that examines the networked delivery of full-text materials and high-quality images to provide students excellent supplemental instructional resources delivered directly to their dormitory rooms. Reviews intellectual property (IP) management requirements and describes…

  5. Crater Appeal

    ERIC Educational Resources Information Center

    Mueller, Michael P.; Valderrama, Paige

    2006-01-01

    For many years, the planet Mars was nothing more than a little red dot in a sea of stars and a blur in many science classrooms. Recent focus on the planet, however, has led to incredible teaching opportunities, such as the Mars Student Imaging Project (MSIP) facilitated by Arizona State University's Mars Education Program. The MSIP curriculum…

  6. Teaching Critical Analytical Methods in the Digital Typography Classroom.

    ERIC Educational Resources Information Center

    Gibson, Michael

    1997-01-01

    Describes a studio project designed to help students (1) utilize the digital environment to organize typography and images that represent the socio-political context their solutions were required to identify; and (2) explore the empirical variables that help readers to access and contemplate the content presented by their text. (PA)

  7. Harvey Mudd College: Technology Integration Offers Unique Opportunities for Undergraduates.

    ERIC Educational Resources Information Center

    Barna, John; Winstead, Jim

    1993-01-01

    Describes undergraduate projects at Harvey Mudd College (California) that use advanced laboratory equipment and procedures normally reserved for graduate students. Examples are given in experimental biology (e.g., digital imaging and DNA analysis), in physics (e.g., using satellites to study earthquake faults), and in mathematics (e.g., teaching…

  8. Media/Visual Literacy Art Education: Cigarette Ad Deconstruction

    ERIC Educational Resources Information Center

    Chung, Sheng Kuan

    2005-01-01

    Visual images are not simply embodiments of social reality; they are indeed ideological sites embedded with powerful discursive sociopolitical meanings that exert strong influences on the ways in which people live their lives. The author of this paper describes the Ad-Deconstruction Project, which challenged students to integrate aesthetic…

  9. How Does Technology-Enabled Active Learning Affect Undergraduate Students' Understanding of Electromagnetism Concepts?

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Belcher, John

    2005-01-01

    Educational technology supports meaningful learning and enables the presentation of spatial and dynamic images, which portray relationships among complex concepts. The Technology-Enabled Active Learning (TEAL) Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman…

  10. CATE 2016 Indonesia: Science goals and student training for 2017

    NASA Astrophysics Data System (ADS)

    Penn, M. J.; McKay, M. A.; Kovac, S. A.; Jensen, L.; Hare, H. S.; Mitchell, A. M.; Bosh, R.; Watson, Z.; Baer, R.; Pierce, M.; Gelderman, R.; Walter, D. K.

    2016-12-01

    The Citizen Continental-America Telescopic Eclipse (CATE) Experiment for 2017 is being developed at the National Solar Observatory in partnership with universities, schools, astronomy clubs, and corporations. The CATE experiment will use more than 60 identical telescopes equipped with digital cameras from Oregon to South Carolina to image the solar corona. The project will then splice these images together to show the corona during a 90-minute period, revealing for the first time the plasma dynamics of the inner solar corona. The goals for the CATE experiment range from providing an authentic STEM research experience for students and lifelong learners, to making state-of-the-art solar coronal observations of the plasma dynamics of coronal polar plumes, to increasing the US scientific literacy. Private funds are being raised for the CATE equipment, and so the telescopes will stay with the volunteers after the eclipse and be used in follow-on citizen science astronomy projects. The 2017 eclipse will be viewed by hundreds of millions of people. Four sets of undergraduate students in the path of the 2017 eclipse have become local experts for the eclipse and trainers for the CATE volunteers. These students traveled to the 2016 March eclipse in Indonesia and collected observations with prototype CATE telescopes; science results from these 2016 observations will be discussed. Training videos for use in 2017 were developed and tested on volunteers. Finally several high school groups along the path of totality have been engaged in the CATE project and will participate in the eclipse data collection. This work was supported by the NSO "Training for the 2017 Citizen CATE Experiment" funded by NASA (NASA NNX16AB92A). The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF.

  11. A CCD Spectrometer for One Dollar

    NASA Astrophysics Data System (ADS)

    Beaver, J.; Robert, D.

    2011-09-01

    We describe preliminary tests on a very low-cost system for obtaining stellar spectra for instructional use in an introductory astronomy laboratory. CCD imaging with small telescopes is now commonplace and relatively inexpensive. Giving students direct experience taking stellar spectra, however, is much more difficult, and the equipment can easily be out of reach for smaller institutions, especially if one wants to give the experience to large numbers of students. We have performed preliminary tests on an extremely low-cost (about $1.00) objective grating that can be coupled with an existing CCD camera or commercial digital single-lens reflex (DSLR) camera and a small telescope typical of introductory astronomy labs. With this equipment we believe it is possible for introductory astronomy students to take stellar spectra that are of high enough quality to distinguish between many MK spectral classes, or to determine standard B and V magnitudes. We present observational tests of this objective grating used on an 8" Schmidt-Cassegrain with a low-end, consumer DSLR camera. Some low-cost strategies for reducing the raw data are compared, with an eye toward projects ranging from individual undergraduate research projects to use by many students in a non-majors introductory astronomy lab. Toward this end we compare various trade offs between complexity of the observing and data reduction processes and the usefulness of the final results. We also describe some undergraduate astronomy education projects that this system could potentially be used for. Some of these projects could involve data-sharing collaborations between students at different institutions.

  12. Experimental AMO physics in undergraduate optics and lasers courses

    NASA Astrophysics Data System (ADS)

    Hoyt, Chad

    2017-04-01

    This talk will describe experimental AMO research projects in undergraduate Lasers and Optics courses at Bethel University. The courses, which include a comprehensive lecture portion, are built on open-ended projects that have a novel aspect. Classes begin with four weeks of small student groups rotating between several standard laser and optics laboratory exercises. These may include, for example, alignment and characterization of a helium neon laser and measurements with a Michelson interferometer or a scanning Fabry-Pérot optical cavity. During the following seven weeks of the course, student groups (2-4 people) choose and pursue research questions in the lab. Their work culminates in a group manuscript and a twenty-minute presentation to the class. Projects in the spring, 2016 Optics course included experiments with ultracold lithium atoms in a magneto-optical trap, a prototype, portable, mode-locked erbium fiber laser, a home-built fiber laser frequency comb, double-slit imaging with single photons, and digital holographic tweezers (led by Nathan Lindquist). Projects in the spring, 2015 Lasers course included ultrafast optics with a mode-locked erbium fiber laser, quantum optics, surface plasmon lasers (led by Nathan Lindquist) and a low-cost, near-infrared spectrometer. Several of these projects are related to larger scale, funded research in the physics department. The format and experience in Lasers and Optics is representative of other upper-level courses at Bethel, including Fluid Mechanics and Computer Methods. A physics education research group from the University of Colorado evaluated the spring, 2015 Lasers and 2016 Optics courses. They focused on student experimental attitudes and measurements of student project ownership.

  13. The HOME tutor: a new tool for training in microscope skills.

    PubMed

    Gray, E; Sowter, C

    1995-10-01

    AxioHOME is a new concept in microscope design. It is a microscope with a visual display unit mounted in the head permitting computer generated displays to be projected on to the real microscope image when viewed down the eyepieces. This allows the annotation of the microscope image with both text and graphics. The AxioHOME system was used for the construction of complex interactive tutorials for the training and assessment of students. The basis of a tutorial is that features of interest on a microscope slide are indicated to the student who is then provided with either information or questions about those features. In turn the student can also annotate the slide with comments for later discussion with the teacher. The system therefore allows a dialogue between teacher and student. The creation of tutorials is time consuming. It takes approximately 10 min of teacher time to create 1 min of student time. However since the same tutorial can be used by numerous students this releases the teacher from repetitive training. The student response to this teaching method has been very positive. The main criticism being that insufficient teaching material was available.

  14. Dark Skies are a Universal Resource. So are Quiet Skies!

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.; Heatherly, S.

    2008-05-01

    You've just purchased your first telescope. But where to set it up? Certainly not a WalMart parking lot. Too much light pollution! In the same way that man-made light obscures our night sky and blinds ground-based optical telescopes, man-made radio signals blind radio telescopes as well. NRAO developed the Quiet Skies project to increase awareness of radio frequency interference (RFI) and radio astronomy in general by engaging students in local studies of RFI. To do that we created a sensitive detector which measures RFI. We produced 20 of these, and assembled kits containing detectors and supplementary materials for loan to schools. Students conduct experiments to measure the properties of RFI in their area, and input their measurements into a web-based data base. The Quiet Skies project is a perfect complement to the IYA Dark Skies Awareness initiative. We hope to place 500 Quiet Skies detectors into the field through outreach to museums and schools around the world. Should we be successful, we will sustain this global initiative via a continuing loan program. One day we hope to have a publicly generated image of the Earth which shows RFI much as the Earth at Night image illustrates light pollution. The poster will present the components of the project in detail, including our plans for IYA, and various low-cost alternative strategies for introducing RFI and radio astronomy to the public. We will share the results of some of the experiments already being performed by high school students. Development of the Quiet Skies project was funded by a NASA IDEAS grant. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  15. History, Philosophy, and Science in a Social Perspective: A Pedagogical Project

    NASA Astrophysics Data System (ADS)

    Guerra, Andreia; Braga, Marco; Reis, José Claudio

    2013-06-01

    Various studies have promoted instruction in the history and philosophy of science (HPS) in science classes, but the best way of putting this perspective into practice remains undetermined. To contribute to this issue, we developed a pedagogical project in some high schools in Brazil that aimed to present science content using an historical-philosophical approach focusing on the HPS from a social perspective. The content was developed broadly, highlighting the dialogues between science and the cultures in which scientific knowledge was accumulated. The results of the first stage of project implementation show that some strategies efficiently encouraged student discussion about science using an historical-philosophical approach. One successful strategy was the use of artistic material, such as movies and plays. The creative language and images in these elements allowed teachers to broaden historical-philosophical discussions without compromising science content. This project shows that a social approach to the HPS stimulates interdisciplinary discussions in science classes, enabling students to reflect on the nature of science.

  16. Around Marshall

    NASA Image and Video Library

    1999-09-30

    Through Marshall Space Flight Center (MSFC) Education Department, over 400 MSFC employees have volunteered to support educational program during regular work hours. Project LASER (Learning About Science, Engineering, and Research) provides support for mentor/tutor requests, education tours, classroom presentations, and curriculum development. This program is available to teachers and students living within commuting distance of the NASA/MSFC in Huntsville, Alabama (approximately 50-miles radius). This image depicts students viewing their reflections in an x-ray mirror with Marshall optic engineer Vince Huegele at the Discovery Laboratory, which is an onsite MSFC laboratory facility that provides hands-on educational workshop sessions for teachers and students learning activities.

  17. Nicephor[e]: a web-based solution for teaching forensic and scientific photography.

    PubMed

    Voisard, R; Champod, C; Furrer, J; Curchod, J; Vautier, A; Massonnet, G; Buzzini, P

    2007-04-11

    Nicephor[e] is a project funded by "Swiss Virtual Campus" and aims at creating a distant or mixed web-based learning system in forensic and scientific photography and microscopy. The practical goal is to organize series of on-line modular courses corresponding to the educational requirements of undergraduate academic programs. Additionally, this program could be used in the context of continuing educational programs. The architecture of the project is designed to guarantee a high level of knowledge in forensic and scientific photographic techniques, and to have an easy content production and the ability to create a number of different courses sharing the same content. The e-learning system Nicephor[e] consists of three different parts. The first one is a repository of learning objects that gathers all theoretical subject matter of the project such as texts, animations, images, and films. This repository is a web content management system (Typo3) that permits creating, publishing, and administrating dynamic content via a web browser as well as storing it into a database. The flexibility of the system's architecture allows for an easy updating of the content to follow the development of photographic technology. The instructor of a course can decide which modular contents need to be included in the course, and in which order they will be accessed by students. All the modular courses are developed in a learning management system (WebCT or Moodle) that can deal with complex learning scenarios, content distribution, students, tests, and interaction with instructor. Each course has its own learning scenario based on the goals of the course and the student's profile. The content of each course is taken from the content management system. It is then structured in the learning management system according to the pedagogical goals defined by the instructor. The modular courses are created in a highly interactive setting and offer autoevaluating tests to the students. The last part of the system is a digital assets management system (Extensis Portfolio). The practical portion of each course is to produce images of different marks or objects. The collection of all this material produced, indexed by the students and corrected by the instructor is essential to the development of a knowledge base of photographic techniques applied to a specific forensic subject. It represents also an extensible collection of different marks from known sources obtained under various conditions. It allows to reuse these images for creating image-based case files.

  18. The Use of Computer Tools in the Design Process of Students’ Architectural Projects. Case Studies in Algeria

    NASA Astrophysics Data System (ADS)

    Saighi, Ouafa; Salah Zerouala, Mohamed

    2017-12-01

    This The paper particularly deals with the way in which computer tools are used by students in their design studio’s projects. Four institutions of architecture education in Algeria are considered as a case study to evaluate the impact of such tools on student design process. This aims to inspect in depth such use, to sort out its advantages and shortcomings in order to suggest some solutions. A field survey was undertaken on a sample of students and their teachers at the same institutions. The analysed results mainly show that computer tools are highly focusing on improving the quality of drawings representation and images seeking observers’ satisfaction hence influencing their decision. Some teachers are not very keen to overuse the computer during the design phase; they prefer the “traditional” approach. This is the present situation that Algerian university is facing which leads to conflict and disagreement between students and teachers. Meanwhile, there was no doubt that computer tools have effectively contributed to improve the competitive level among students.

  19. New European Training Network to Improve Young Scientists' Capabilities in Computational Wave Propagation

    NASA Astrophysics Data System (ADS)

    Igel, Heiner

    2004-07-01

    The European Commission recently funded a Marie-Curie Research Training Network (MCRTN) in the field of computational seismology within the 6th Framework Program. SPICE (Seismic wave Propagation and Imaging in Complex media: a European network) is coordinated by the computational seismology group of the Ludwig-Maximilians-Universität in Munich linking 14 European research institutions in total. The 4-year project will provide funding for 14 Ph.D. students (3-year projects) and 14 postdoctoral positions (2-year projects) within the various fields of computational seismology. These positions have been advertised and are currently being filled.

  20. The GAMCIT gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Mccall, Benjamin J.; Grunsfeld, John M.; Sobajic, Srdjan D.; Chang, Chinley Leonard; Krum, David M.; Ratner, Albert; Trittschuh, Jennifer E.

    1993-01-01

    The GAMCIT payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the design of the GAMCIT payload, in the areas of battery selection, power processing, electronics design, gamma-ray detection systems, and the optical imaging of the transients. The paper discusses the progress of the construction, testing, and specific design details of the payload. In addition, this paper discusses the unique challenges involved in bringing this payload to completion, as the project has been designed, constructed, and managed entirely by undergraduate students. Our experience will certainly be valuable to other student groups interested in taking on a challenging project such as a Get-Away-Special payload.

  1. Life on the borders

    NASA Astrophysics Data System (ADS)

    Barry, Edward

    2010-02-01

    Interdisciplinary science has been a hot topic for more than a decade, with increasing numbers of researchers working on projects that do not fit into neat departmental boxes like "physics" or "biology". Yet despite this increased activity, the structures in place to support these interdisciplinary scientists - including research grants and training for PhD students - have sometimes lagged behind. One programme that aims to help fill this gap for students of biomedical, physical and computational sciences is the Interfaces Initiative, a joint project of the Howard Hughes Medical Institute and the US National Institute of Biomedical Imaging and Bioengineering. Physics World talked to a current Interfaces participant, Edward Barry, who is finishing his PhD in biology-related condensed-matter physics at Brandeis University in Massachusetts.

  2. STS-31 crew activity on the middeck of the Earth-orbiting Discovery, OV-103

    NASA Image and Video Library

    1990-04-29

    STS031-05-002 (24-29 April 1990) --- A 35mm camera with a "fish eye" lens captured this high angle image on Discovery's middeck. Astronaut Kathryn D. Sullivan works with the IMAX camera in foreground, while Astronaut Steven A. Hawley consults a checklist in corner. An Arriflex motion picture camera records student ion arc experiment in apparatus mounted on stowage locker. The experiment was the project of Gregory S. Peterson, currently a student at Utah State University.

  3. After APOD: From the Website to the Classroom and Beyond

    NASA Astrophysics Data System (ADS)

    Wilson, Teresa; APOD

    2017-01-01

    Astronomy Picture of the Day (APOD) images may start on the apod.nasa.gov website, but their reach goes much further than the individual sitting at their computer screen. They provoke questions that then prompts the reader to email the authors; teachers use the images in their classrooms; students use them in their projects. This presentation will take a look at some of the work done using APOD images and text, including public outreach via middle school presentations and email communications, and academic uses beyond astronomy such as lesson plans on atmospheric refraction and even plagiarism, copyright and fair use.

  4. Student-led Re-enactment of Eddington’s 1919 Light Deflection Test of General Relativity during the Great American Eclipse of 2017

    NASA Astrophysics Data System (ADS)

    McClelland, Keri; Glazer, Kelsey Samantha; Overduin, James; Miskiewicz, Chris; Eney, Brian; Mouette, Jean

    2018-01-01

    We describe a student-led project to image two seventh-magnitude stars on either side of the Sun during the solar eclipse of August 21, 2017. Both stars were within one solar radius of the Sun, and according to Einstein’s theory of General Relativity, their positions would have been shifted away from the Sun by 1 arcsec. We observed the eclipse from three different sites along the path of totality (Lexington, South Carolina; Indian Valley, Idaho; Madras, Oregon). All three sites were clear, but the brightness of the solar corona has complicated the analysis. We present preliminary results using our best images from the site in Idaho.

  5. Bringing Student Research into the Classroom: An Example from a Course on Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Schmidt, D. A.

    2011-12-01

    Student learning is enhanced through the hands-on experience of working with real data. I present an example where a course is designed around student research projects where the students process and interpret a data set. In this particular case, synthetic aperture radar (SAR) data is the chosen data product. The students learn several skills that are critical to being a good scientist, including how to formulate a project and motivate the objectives. The skills that are taught in the course represent transferable skills. For example, many of the students are exposed to the Unix environment for the first time. Students also learn how best to convey their findings in both written and oral formats. For many undergraduates, this course represents their first research experience where they are working with real data (and all the uncertainties and complexities therein), and the first time they are attempting to answer an open-ended research question. The course format is divided into two parts: (1) a series of lectures and homework assignments that teach the theoretical and technical aspects of radar interferometry, and (2) a series of lab periods where students develop the practical skills of working with the data in a Unix computing environment. Over the term, each student develops an independent research project where they identify a geologic process of interest (such as fault creep, land subsidence, volcanic inflation) and process SAR data over their chosen research target. Since the outcome of each student project is unknown prior to doing the work, the student experiences the thrill of discovery that comes with scientific research. The computational resources and course development was funded by the NSF Career Program, and SAR data was provided through the WInSAR Consortium. Student course reports are published online so that their findings can be shared with the broader community. This was done using a wiki, a server-side software that allows for the collaborative development of content via a web browser. This software allows for students to share information and publish their term projects online. The online posting of course reports serves as additional motivation for the students because they know that their work will be made public. Plus, they learn some basic skills in web publishing and have the opportunity to be creative. Future students also benefit by being able to read the reports from previous years. After three offerings of the course, students have produced 19 research reports. Some highlights from the student projects include the detection of subsidence in Portland (Oregon), the analysis of the 2008 Wells Earthquake (Nevada), and the imaging of active landslides in southern and northern California. Currently, three masters theses have emerged from work first begun in this course, 2 of which are now published papers and 1 paper in preparation. In the latest installment of the course, 5 of the graduate students who took the course initiated SAR projects that will be incorporated into their thesis projects and will likely be written up in future papers.

  6. Costless Platform for High Resolution Stereoscopic Images of a High Gothic Facade

    NASA Astrophysics Data System (ADS)

    Héno, R.; Chandelier, L.; Schelstraete, D.

    2012-07-01

    In October 2011, the PPMD specialized master's degree students (Photogrammetry, Positionning and Deformation Measurement) of the French ENSG (IGN's School of Geomatics, the Ecole Nationale des Sciences Géographiques) were asked to come and survey the main facade of the cathedral of Amiens, which is very complex as far as size and decoration are concerned. Although it was first planned to use a lift truck for the image survey, budget considerations and taste for experimentation led the project to other perspectives: images shot from the ground level with a long focal camera will be combined to complementary images shot from what higher galleries are available on the main facade with a wide angle camera fixed on a horizontal 2.5 meter long pole. This heteroclite image survey is being processed by the PPMD master's degree students during this academic year. Among other type of products, 3D point clouds will be calculated on specific parts of the facade with both sources of images. If the proposed device and methodology to get full image coverage of the main facade happen to be fruitful, the image acquisition phase will be completed later by another team. This article focuses on the production of 3D point clouds with wide angle images on the rose of the main facade.

  7. Rational Design of Molecular Ferroelectric Materials and Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducharme, Stephen

    2012-09-25

    The purpose of this project was to gain insight into the properties of molecular ferroelectrics through the detailed study of oligomer analogs of polyvinylidene fluoride (PVDF). By focusing on interactions at both the molecular level and the nanoscale level, we expect to gain improved understanding about the fundamental mechanism of ferroelectricity and its key properties. The research consisted of three complementary components: 1) Rational synthesis of VDF oligomers by Prof. Takacs' group; 2) Detailed structural and electrical studies of thin by Prof. Ducharme's Group; and 3) First-principles computational studies by DOE Lab Partner Dr. Serge Nakhman-son at Argonne National Laboratory.more » The main results of the work was a detailed understanding of the relationships between the molecular interactions and macroscopic phenomenology of fer-roelectricity VDF oligomers. This is valuable information supporting the development of im-proved electromechanical materials for, e.g., sonar, ultrasonic imaging, artificial muscles, and compliant actuators. Other potential applications include nonvolatile ferroelectric memories, heat-sensing imaging arrays, photovoltaic devices, and functional biomimetic materials. The pro-ject contributed to the training and professional development of undergraduate students and graduate students, post-doctoral assistants, and a high-school teacher. Project personnel took part in several outreach and education activities each year.« less

  8. Involving Undergraduates in Solar Physics Research

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Jenkins, Nancy

    1996-05-01

    Via a combination of local funding, Cottrell Research Corporation and a pending NSF proposal, I am actively involved in including undergraduates in solar physics research. Severl undergraduates, about 2-3 per academic year over the past several years have participated in a combination of activities. This project has been ongoing since November of 1992. Student involvement includes; 1)acquiring image and other data via the INTERNET, 2) reducing dat via inhouse programs and image processing, 3) traveling to Kitt Peak to obtain solar spectral index data.

  9. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here, students from Sycamore High School in Cincinnati, Ohio, help a NASA technician prepare their experiment. This image is from a digital still camera; higher resolution is not available.

  10. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Students from Sycamore High School in Cincinnati, Ohio (girls), and the COSI Academy, Columbus, Ohio (boys), participated. This image is from a digital still camera; higher resolution is not available.

  11. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here, students are briefed by NASA engineer Daniel Dietrich at the top of the drop tower. This image is from a digital still camera; higher resolution is not available.

  12. Using Mars Mission Analogs and Authentic Experiences to Stimulate STEM Learning in K-14 Students

    NASA Astrophysics Data System (ADS)

    Klug, S. L.; Grigsby, B.; Valderrama, P.; Watt, K.

    2005-12-01

    Today, in many of the classrooms across our nation, K-12 educators are finding it more difficult to engage their students in the subjects that will help them to succeed to a more productive way of life - science, technology, engineering, and math (STEM). Finally, add to this formidable task a diverse set of learners (demographically and skill level) of an average classroom and the constraints of high stakes testing. Quite a challenge, indeed! The Arizona State University (ASU) Mars Education Program, in partnership with the Jet Propulsion Laboratory Mars Public Engagement Team have created programming, curriculum, and activities that help to bridge the gap between STEM learning and student interest. Starting with the Standards in the STEM areas - the areas which teachers are tasked to teach already, our team has modeled the STEM-based curriculum after the way that NASA's Mars team conducts their work and research. There is much challenge in the statement "Science for All Americans" when it comes to applying it equally to all classrooms across the U.S. To make sure that these curricular materials and hands-on experiences are available to any teacher and student, the ASU Mars Education Program has adopted a "high-tech, low-tech, and no-tech" approach. In other words, materials and programming have to be available and doable with whatever capabilities a classroom might possess. Using this approach, successful examples of Mars-based educational materials include Marsbound and the Mars Student Imaging Project. The Marsbound simulation is based on National Technology Standards and seemingly low tech. However, the simplicity of this simulation is quickly forgotten as it follows the familiar NASA scenario of building a mission to Mars with engineering constraints. Student teams use a set of equipment cards and a playmat (both available at no cost) to build their mission and balance it according to the constraints given. Students soon realize there is a lot of complexity to achieve science goals, populate a spacecraft with a meaningful payload for science return, not exceed mass margins, and stay within budget. A full set of Standards-based activities and curriculum are also available for the teacher at the same website. The Mars Student Imaging Project (MSIP) is an authentic research experience available to 5th grade - early college student teams across the U.S. During this program, students formulate a question about Mars, write a proposal, and target an image at Mars using the Thermal Emission Imaging System camera (THEMIS) onboard the Mars Odyssey spacecraft. The students then analyze the image and report their findings to NASA. As of June 2005, over 10,000 students have participated in MSIP. The data gathered on this program shows a high rate of interest in students of all ages, demographics, skill levels, and diverse audiences. To sustain our country and the ability to be a nation that will continue to lead and move forward educationally, technologically, and scientifically, we as educators and trainers of educators must persevere to reach diverse audiences in ways that will resonate with our customers - the students. We must pay attention to important issues such as accessibility, cost, Standards, teacher concerns and student interest.

  13. Self-Portrait Printmaking

    ERIC Educational Resources Information Center

    Dianis, Gina

    2008-01-01

    In the project described in this article, sixth-grade students use printmaking processes to design an art image of themselves accompanied by a reflective poem. The lesson begins with a discussion of self-portraits by famous artists, inviting questions such as "What visual clues does the artist present to the viewer?" and "How has the artist placed…

  14. Truth, Evasion, and Deception: A Study of Communicative Behavior.

    ERIC Educational Resources Information Center

    Kardes, Frank; And Others

    Based on research which suggests that individuals transmit good news more than bad news and that people are motivated to project a positive image of themselves, 48 college students participated in a study to test the hypothesis that individuals would be more conscientious in giving information when future social interaction was anticipated.…

  15. Creating Meaning through Multimodality: Multiliteracies Assessment and Photo Projects for Online Portfolios

    ERIC Educational Resources Information Center

    Schmerbeck, Nicola; Lucht, Felecia

    2017-01-01

    Actively engaged in online media, learners today are surrounded by texts overtly and covertly transmitted by visual images, sound effects, and voices as well as the written word. Language learning portfolios can engage students in the literacy-oriented learning processes of interpretation, collaboration, and problem solving as outlined by Kern…

  16. A Molecular Iodine Spectral Data Set for Rovibronic Analysis

    ERIC Educational Resources Information Center

    Williamson, J. Charles; Kuntzleman, Thomas S.; Kafader, Rachael A.

    2013-01-01

    A data set of 7,381 molecular iodine vapor rovibronic transitions between the X and B electronic states has been prepared for an advanced undergraduate spectroscopic analysis project. Students apply standard theoretical techniques to these data and determine the values of three X-state constants (image omitted) and four B-state constants (image…

  17. Violent Images, Violent Acts: What Can Schools and Students Do?

    ERIC Educational Resources Information Center

    Futernick, Ken; Arnstine, Barbara; Hodson, Timothy A.; Ostgaard, Kolleen

    This document is a publication for the tenth televised Town Hall Meeting of The LegiSchool Project, an educational collaboration between California State University, Sacramento and the California State Legislature. The purpose of the meeting was to consider what laws and public policies are needed to protect young people from violence--both real…

  18. CAD Skills Increased through Multicultural Design Project

    ERIC Educational Resources Information Center

    Clemons, Stephanie

    2006-01-01

    This article discusses how students in a college-entry-level CAD course researched four generations of their family histories and documented cultural and symbolic influences within their family backgrounds. AutoCAD software was then used to manipulate those cultural and symbolic images to create the design for a multicultural area rug. AutoCAD was…

  19. Young Children's Aspirations in Science: The unequivocal, the uncertain and the unthinkable

    NASA Astrophysics Data System (ADS)

    DeWitt, Jennifer; Osborne, Jonathan; Archer, Louise; Dillon, Justin; Willis, Beatrice; Wong, Billy

    2013-04-01

    Students' lack of interest in studying science and in science-related careers is a concern in the UK and worldwide. Yet there is limited data, particularly longitudinal, on the sources and development of science-related aspirations. In response, the ASPIRES (Science Aspirations and Career Choice: Age 10-14) longitudinal study is investigating the development of students' educational and occupational aspirations over time. In the first phase of the project, a questionnaire exploring science-related aspirations and interests was completed by over 9,000 primary school students across England. This survey allowed us to explore possible associations between attitudes and aspirations, links which have not been investigated in previous attitudinal studies of this scope. Overall, students expressed positive attitudes to science, reported positive parental attitudes to science and held very positive images of scientists. Multilevel modelling analyses revealed that aspirations in science were most strongly related to parental attitudes to science, attitudes to school science and self-concept in science, and are also associated with students' gender, ethnicity and cultural capital. However, the images students held of scientists were not as closely related to aspirations. These factors are discussed in more detail within the paper, alongside a consideration of possible school-related effects.

  20. The development and evaluation of a medical imaging training immersive environment

    PubMed Central

    Bridge, Pete; Gunn, Therese; Kastanis, Lazaros; Pack, Darren; Rowntree, Pamela; Starkey, Debbie; Mahoney, Gaynor; Berry, Clare; Braithwaite, Vicki; Wilson-Stewart, Kelly

    2014-01-01

    Introduction A novel realistic 3D virtual reality (VR) application has been developed to allow medical imaging students at Queensland University of Technology to practice radiographic techniques independently outside the usual radiography laboratory. Methods A flexible agile development methodology was used to create the software rapidly and effectively. A 3D gaming environment and realistic models were used to engender presence in the software while tutor-determined gold standards enabled students to compare their performance and learn in a problem-based learning pedagogy. Results Students reported high levels of satisfaction and perceived value and the software enabled up to 40 concurrent users to prepare for clinical practice. Student feedback also indicated that they found 3D to be of limited value in the desktop version compared to the usual 2D approach. A randomised comparison between groups receiving software-based and traditional practice measured performance in a formative role play with real equipment. The results of this work indicated superior performance with the equipment for the VR trained students (P = 0.0366) and confirmed the value of VR for enhancing 3D equipment-based problem-solving skills. Conclusions Students practising projection techniques virtually performed better at role play assessments than students practising in a traditional radiography laboratory only. The application particularly helped with 3D equipment configuration, suggesting that teaching 3D problem solving is an ideal use of such medical equipment simulators. Ongoing development work aims to establish the role of VR software in preparing students for clinical practice with a range of medical imaging equipment. PMID:26229652

  1. Impact of Interactive Energy-Balance Modeling on Student Learning in a Core-Curriculum Earth Science Course

    NASA Astrophysics Data System (ADS)

    Mandock, R. L.

    2008-12-01

    An interactive instructional module has been developed to study energy balance at the earth's surface. The module uses a graphical interface to model each of the major energy components involved in the partitioning of energy at this surface: net radiation, sensible and latent heat fluxes, ground heat flux, heat storage, anthropogenic heat, and advective heat transport. The graphical interface consists of an energy-balance diagram composed of sky elements, a line or box representing the air or sea surface, and arrows which indicate magnitude and direction of each of the energy fluxes. In April 2005 an energy-balance project and laboratory assignment were developed for a core-curriculum earth science course at Clark Atlanta University. The energy-balance project analyzes surface weather data from an assigned station of the Georgia Automated Environmental Monitoring Network (AEMN). The first part of the project requires the student to print two observations of the "Current Conditions" web page for the assigned station: one between the hours of midnight and 5:00 a.m., and the other between the hours of 3:00- 5:00 p.m. A satellite image of the southeastern United States must accompany each of these printouts. The second part of the project can be completed only after the student has modeled the 4 environmental scenarios taught in the energy-balance laboratory assignment. The student uses the energy-balance model to determine the energy-flux components for each of the printed weather conditions at the assigned station. On successful completion of the project, the student has become familiar with: (1) how weather observations can be used to constrain parameters in a microclimate model, (2) one common type of error in measurement made by weather sensors, (3) some of the uses and limitations of environmental models, and (4) fundamentals of the distribution of energy at the earth's surface. The project and laboratory assignment tie together many of the earth science concepts taught in the course: geology (soils), oceanography (surface mixed layer), and atmospheric science (meteorology of the lowest part of the atmosphere). Details of the project and its impact on student assessment tests and surveys will be presented.

  2. The MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.

    1994-12-01

    A group of scientists, engineers and educators based at the Harvard-Smithsonian Center for Astrophysics (CfA) has developed a prototype of a small, inexpensive and fully integrated automated astronomical telescope and image processing system. The project team is now building five second generation instruments. The MicroObservatory has been designed to be used for classroom instruction by teachers as well as for original scientific research projects by students. Probably in no other area of frontier science is it possible for a broad spectrum of students (not just the gifted) to have access to state-of-the-art technologies that would allow for original research. The MicroObservatory combines the imaging power of a cooled CCD, with a self contained and weatherized reflecting optical telescope and mount. A microcomputer points the telescope and processes the captured images. The MicroObservatory has also been designed to be used as a valuable new capture and display device for real time astronomical imaging in planetariums and science museums. When the new instruments are completed in the next few months, they will be tried with high school students and teachers, as well as with museum groups. We are now planning to make the MicroObservatories available to students, teachers and other individual users over the Internet. We plan to allow the telescope to be controlled in real time or in batch mode, from a Macintosh or PC compatible computer. In the real-time mode, we hope to give individual access to all of the telescope control functions without the need for an "on-site" operator. Users would sign up for a specific period of time. In the batch mode, users would submit jobs for the telescope. After the MicroObservatory completed a specific job, the images would be e-mailed back to the user. At present, we are interested in gaining answers to the following questions: (1) What are the best approaches to scheduling real-time observations? (2) What criteria should be used for granting telescope time? (3) What are the best approaches to scheduling batch-mode operation? (4) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? The MicroObservatory is supported in part by grants from the NSF, Apple Computers and Eastman Kodak.

  3. Coupling Immersive Experiences with the Use of Mission Data to Encourage Students' Interest in Science, Technology, Engineering, and Math: Examples from the Mars Exploration Program

    NASA Astrophysics Data System (ADS)

    Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.

    2004-12-01

    The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in existence for over two years and has been used by teachers and students from across the US. The Mars Exploration Student Data Team Program was created and prototyped during the Mars Exploration Rover mission this past January through April. Over 500 students from 25 schools from across the US participated in real-time data analysis using the Mars Odyssey and Mars Global Surveyor infrared instruments -Thermal Emission Spectrometer - TES and THEMIS to monitor the rover landing sites. This program utilized a virtual team format and allowed high school students to collaborate with other teams that were, at times, thousands of miles away to implement real-time observations. This program will be carried forward to several of the upcoming missions. Finally, the Athena Student Intern Program is the higher end of involvement for students and teachers. These students and teachers were competitively selected to spend a week during the mission operations of the rovers at JPL. All of these programs have a common thread..ownership of the experience. By empowering the next generation of learners with the knowledge that they can be part of their future through such immersive experiences before they reach college, they will be ready to take on harder challenges that will reach higher towards new frontiers

  4. Bayesian X-ray computed tomography using a three-level hierarchical prior model

    NASA Astrophysics Data System (ADS)

    Wang, Li; Mohammad-Djafari, Ali; Gac, Nicolas

    2017-06-01

    In recent decades X-ray Computed Tomography (CT) image reconstruction has been largely developed in both medical and industrial domain. In this paper, we propose using the Bayesian inference approach with a new hierarchical prior model. In the proposed model, a generalised Student-t distribution is used to enforce the Haar transformation of images to be sparse. Comparisons with some state of the art methods are presented. It is shown that by using the proposed model, the sparsity of sparse representation of images is enforced, so that edges of images are preserved. Simulation results are also provided to demonstrate the effectiveness of the new hierarchical model for reconstruction with fewer projections.

  5. VoiceThread as a Peer Review and Dissemination Tool for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Guertin, L. A.

    2012-12-01

    VoiceThread has been utilized in an undergraduate research methods course for peer review and final research project dissemination. VoiceThread (http://www.voicethread.com) can be considered a social media tool, as it is a web-based technology with the capacity to enable interactive dialogue. VoiceThread is an application that allows a user to place a media collection online containing images, audio, videos, documents, and/or presentations in an interface that facilitates asynchronous communication. Participants in a VoiceThread can be passive viewers of the online content or engaged commenters via text, audio, video, with slide annotations via a doodle tool. The VoiceThread, which runs across browsers and operating systems, can be public or private for viewing and commenting and can be embedded into any website. Although few university students are aware of the VoiceThread platform (only 10% of the students surveyed by Ng (2012)), the 2009 K-12 edition of The Horizon Report (Johnson et al., 2009) lists VoiceThread as a tool to watch because of the opportunities it provides as a collaborative learning environment. In Fall 2011, eleven students enrolled in an undergraduate research methods course at Penn State Brandywine each conducted their own small-scale research project. Upon conclusion of the projects, students were required to create a poster summarizing their work for peer review. To facilitate the peer review process outside of class, each student-created PowerPoint file was placed in a VoiceThread with private access to only the class members and instructor. Each student was assigned to peer review five different student posters (i.e., VoiceThread images) with the audio and doodle tools to comment on formatting, clarity of content, etc. After the peer reviews were complete, the students were allowed to edit their PowerPoint poster files for a new VoiceThread. In the new VoiceThread, students were required to video record themselves describing their research and taking the viewer through their poster in the VoiceThread. This new VoiceThread with their final presentations was open for public viewing but not public commenting. A formal assessment was not conducted on the student impact of using VoiceThread for peer review and final research presentations. From an instructional standpoint, requiring students to use audio for the peer review commenting seemed to result in lengthier and more detailed reviews, connected with specific poster features when the doodle tool was utilized. By recording themselves as a "talking head" for the final product, students were required to be comfortable and confident with presenting their research, similar to what would be expected at a conference presentation. VoiceThread is currently being tested in general education Earth science courses at Penn State Brandywine as a dissemination tool for classroom-based inquiry projects and recruitment tool for Earth & Mineral Science majors.

  6. Student project of optical system analysis API-library development

    NASA Astrophysics Data System (ADS)

    Ivanova, Tatiana; Zhukova, Tatiana; Dantcaranov, Ruslan; Romanova, Maria; Zhadin, Alexander; Ivanov, Vyacheslav; Kalinkina, Olga

    2017-08-01

    In the paper API-library software developed by students of Applied and Computer Optics Department (ITMO University) for optical system design is presented. The library performs paraxial and real ray tracing, calculates 3d order (Seidel) aberration and real ray aberration of axis and non-axis beams (wave, lateral, longitudinal, coma, distortion etc.) and finally, approximate wave aberration by Zernike polynomials. Real aperture can be calculated by considering of real rays tracing failure on each surface. So far we assume optical system is centered, with spherical or 2d order aspherical surfaces. Optical glasses can be set directly by refraction index or by dispersion coefficients. The library can be used for education or research purposes in optical system design area. It provides ready to use software functions for optical system simulation and analysis that developer can simply plug into their software development for different purposes, for example for some specific synthesis tasks or investigation of new optimization modes. In the paper we present an example of using the library for development of cemented doublet synthesis software based on Slusarev's methodology. The library is used in optical system optimization recipes course for deep studying of optimization model and its application for optical system design. Development of such software is an excellent experience for students and help to understanding optical image modeling and quality analysis. This development is organized as student group joint project. We try to organize it as a group in real research and development project, so each student has his own role in the project and then use whole library functionality in his own master or bachelor thesis. Working in such group gives students useful experience and opportunity to work as research and development engineer of scientific software in the future.

  7. The Sky in your Hands - From the planetarium to the classroom

    NASA Astrophysics Data System (ADS)

    Canas, L.; Borges, I.; Ortiz-Gil, A.

    2013-09-01

    "The sky in your hands" is a project created in 2009, during the International Year of Astronomy in Spain, with the goal to create an image of the Universe for the visually impaired audiences. Includes a planetarium show with an audio component and tactile semi - spheres where the public can touch constellations and other objects of the Universe. Following the spirit of the IYA2009, the authors of this project made all products available to everyone that wishes to use them in outreach activities and science education. From observation and analyses of several groups of students and teachers that visited "The sky in your hands" Portuguese adaptation in Lisbon Planetarium, our team concluded that much could be done in classroom with students to make their process of learning easier and more motivating. Additionally it was noticed that for some schools it was difficult to travel with students to visit the planetarium. With this experience in mind different resources and materials were adapted to be used in classroom. Through this adaptation all students including those visually impaired can build a simple tactile image of a constellation and, working in small groups, can use low cost, recycled materials to build these tactile models. Students can record a new audio file explaining the astronomical concepts of the model they have built and include the m in a story. The groups include visually impaired and non-visually impaired students, as different skills from different students complete each other in order to accomplish the task in a more successful way. Afterwards each group presents the work to their peers. With this poster we plan to share our experience with the community where the collaboration between informal science learning in science centers, museums or planetariums and formal learning in school improves science learning, inspires students and facilitates their understanding of the nature of science in general.

  8. Nationwide Eclipse Ballooning Project

    NASA Astrophysics Data System (ADS)

    Colman Des Jardins, Angela; Berk Knighton, W.; Larimer, Randal; Mayer-Gawlik, Shane; Fowler, Jennifer; Harmon, Christina; Koehler, Christopher; Guzik, Gregory; Flaten, James; Nolby, Caitlin; Granger, Douglas; Stewart, Michael

    2016-05-01

    The purpose of the Nationwide Eclipse Ballooning Project is to make the most of the 2017 rare eclipse event in four main areas: public engagement, workforce development, partnership development, and science. The Project is focused on two efforts, both student-led: online live video of the eclipse from the edge of space and the study of the atmospheric response to the eclipse. These efforts, however, involving more than 60 teams across the US, are challenging in many ways. Therefore, the Project is leveraging the NASA Space Grant and NOAA atmospheric science communities to make it a success. The first and primary topic of this poster is the NASA Space Grant supported online live video effort. College and high school students on 48 teams from 31 states will conduct high altitude balloon flights from 15-20 locations across the 8/21/2017 total eclipse path, sending live video and images from near space to a national website. Video and images of a total solar eclipse from near space are fascinating and rare. It’s never been done live and certainly not in a network of coverage across a continent. In addition to the live video to the web, these teams are engaged in several other science experiments as secondary payloads. We also briefly highlight the eclipse atmospheric science effort, where about a dozen teams will launch over one hundred radiosondes from across the 2017 path, recording an unprecedented atmospheric data sample. Collected data will include temperature, density, wind, humidity, and ozone measurements.

  9. Do Interactive Globes and Games Help Students Learn Planetary Science?

    NASA Astrophysics Data System (ADS)

    Coba, Filis; Burgin, Stephen; De Paor, Declan; Georgen, Jennifer

    2016-01-01

    The popularity of animations and interactive visualizations in undergraduate science education might lead one to assume that these teaching aids enhance student learning. We tested this assumption for the case of the Google Earth virtual globe with a comparison of control and treatment student groups in a general education class of over 370 students at a large public university. Earth and Planetary Science course content was developed in two formats: using Keyhole Markup Language (KML) to create interactive tours in Google Earth (the treatment group) and Portable Document Format (PDF) for on-screen reading (the control group). The PDF documents contained identical text and images to the placemark balloons or "tour stops" in the Google Earth version. Some significant differences were noted between the two groups based on the immediate post-questionnaire with the KML students out-performing the PDF students, but not on the delayed measure. In a separate but related project, we undertake preliminary investigations into methods of teaching basic concepts in planetary mantle convection using numerical simulations. The goal of this project is to develop an interface with a two-dimensional finite element model that will allow students to vary parameters such as the temperatures assigned to the boundaries of the model domain, to help them actively explore important variables that control convection.

  10. An interdisciplinary collaboration between computer engineering and mathematics/bilingual education to develop a curriculum for underrepresented middle school students

    NASA Astrophysics Data System (ADS)

    Celedón-Pattichis, Sylvia; LópezLeiva, Carlos Alfonso; Pattichis, Marios S.; Llamocca, Daniel

    2013-12-01

    There is a strong need in the United States to increase the number of students from underrepresented groups who pursue careers in Science, Technology, Engineering, and Mathematics. Drawing from sociocultural theory, we present approaches to establishing collaborations between computer engineering and mathematics/bilingual education faculty to address this need. We describe our work through the Advancing Out-of-School Learning in Mathematics and Engineering project by illustrating how an integrated curriculum that is based on mathematics with applications in image and video processing can be designed and how it can be implemented with middle school students from underrepresented groups.

  11. A novel application of the MIRC repository in medical education.

    PubMed

    Roth, Christopher J; Weadock, William J; Dipietro, Michael A

    2005-06-01

    Medical students on the radiology elective in our institution create electronic presentations to present to each other as part of the requirements for the rotation. Access was given to previous students' presentations via the web-based system, Medical Imaging Resource Center (MIRC) project, created and supported by the Radiological Society of North America (RSNA). RadPix Power 2 MIRC (Weadock Software, LLC, Ann Arbor, MI) software converted the Microsoft PowerPoint (Redmond, WA) presentations to a MIRC-compatible format. The textual information on each slide is searchable across the entire MIRC database. Future students will be able to benefit from the work of their predecessors.

  12. Piloting Augmented Reality Technology to Enhance Realism in Clinical Simulation.

    PubMed

    Vaughn, Jacqueline; Lister, Michael; Shaw, Ryan J

    2016-09-01

    We describe a pilot study that incorporated an innovative hybrid simulation designed to increase the perception of realism in a high-fidelity simulation. Prelicensure students (N = 12) cared for a manikin in a simulation lab scenario wearing Google Glass, a wearable head device that projected video into the students' field of vision. Students reported that the simulation gave them confidence that they were developing skills and knowledge to perform necessary tasks in a clinical setting and that they met the learning objectives of the simulation. The video combined visual images and cues seen in a real patient and created a sense of realism the manikin alone could not provide.

  13. Alliance for Computational Science Collaboration: HBCU Partnership at Alabama A&M University Continuing High Performance Computing Research and Education at AAMU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Xiaoqing; Deng, Z. T.

    2009-11-10

    This is the final report for the Department of Energy (DOE) project DE-FG02-06ER25746, entitled, "Continuing High Performance Computing Research and Education at AAMU". This three-year project was started in August 15, 2006, and it was ended in August 14, 2009. The objective of this project was to enhance high performance computing research and education capabilities at Alabama A&M University (AAMU), and to train African-American and other minority students and scientists in the computational science field for eventual employment with DOE. AAMU has successfully completed all the proposed research and educational tasks. Through the support of DOE, AAMU was able tomore » provide opportunities to minority students through summer interns and DOE computational science scholarship program. In the past three years, AAMU (1). Supported three graduate research assistants in image processing for hypersonic shockwave control experiment and in computational science related area; (2). Recruited and provided full financial support for six AAMU undergraduate summer research interns to participate Research Alliance in Math and Science (RAMS) program at Oak Ridge National Lab (ORNL); (3). Awarded highly competitive 30 DOE High Performance Computing Scholarships ($1500 each) to qualified top AAMU undergraduate students in science and engineering majors; (4). Improved high performance computing laboratory at AAMU with the addition of three high performance Linux workstations; (5). Conducted image analysis for electromagnetic shockwave control experiment and computation of shockwave interactions to verify the design and operation of AAMU-Supersonic wind tunnel. The high performance computing research and education activities at AAMU created great impact to minority students. As praised by Accreditation Board for Engineering and Technology (ABET) in 2009, ?The work on high performance computing that is funded by the Department of Energy provides scholarships to undergraduate students as computational science scholars. This is a wonderful opportunity to recruit under-represented students.? Three ASEE papers were published in 2007, 2008 and 2009 proceedings of ASEE Annual Conferences, respectively. Presentations of these papers were also made at the ASEE Annual Conferences. It is very critical to continue the research and education activities.« less

  14. Facilitating Research and Learning in Petrology and Geochemistry through Classroom Applications of Remotely Operable Research Instrumentation

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.

    2012-12-01

    Bringing the use of cutting-edge research tools into student classroom experiences has long been a popular educational strategy in the geosciences and other STEM disciplines. The NSF CCLI and TUES programs have funded a large number of projects that placed research-grade instrumentation at educational institutions for instructional use and use in supporting undergraduate research activities. While student and faculty response to these activities has largely been positive, a range of challenges exist related to their educational effectiveness. Many of the obstacles these approaches have faced relate to "scaling up" of research mentoring experiences (e.g., providing training and time for use for an entire classroom of students, as opposed to one or two), and to time tradeoffs associated with providing technical training for effective instrument use versus course content coverage. The biggest challenge has often been simple logistics: a single instrument, housed in a different space, is difficult to integrate effectively into instructional activities. My CCLI-funded project sought primarily to knock down the logistical obstacles to research instrument use by taking advantage of remote instrument operation technologies, which allow the in-classroom use of networked analytical tools. Remote use of electron microprobe and SEM instruments of the Florida Center for Analytical Electron Microscopy (FCAEM) in Miami, FL was integrated into two geoscience courses at USF in Tampa, FL. Remote operation permitted the development of whole-class laboratory exercises to familiarize students with the tools, their function, and their capabilities; and it allowed students to collect high-quality chemical and image data on their own prepared samples in the classroom during laboratory periods. These activities improve student engagement in the course, appear to improve learning of key concepts in mineralogy and petrology, and have led to students pursuing independent research projects, as well as requesting additional Geology elective courses offering similar kinds of experiences. I have sustained these activities post-project via student lab fees to pay for in-class microprobe time.

  15. "DEAR ROCK, WHAT'S YOUR DESTINY? Ancient and modern uses of rocks in industry, building and art."

    NASA Astrophysics Data System (ADS)

    Pennesi, Daniela

    2015-04-01

    The project is for students of first grade of secondary school. The activity is a game, virtual or real of associations between rock and soil samples with their uses in industry, building and art. The students, alone or in a team, have to form pairs having available various samples of rocks, soils and building materials as bags of cement, tiles.. They have images of colonnades, staircases of famous churches, cave paintings and colors. The project is multidisciplinary. During the activity, the teachers of art and technical education are involved with and the teacher of sciences. The game can be used as an introduction for the rocks' classification. The inquiry in team, is a good way to learn the several uses of mineral resources.

  16. The body project 4 all: A pilot randomized controlled trial of a mixed-gender dissonance-based body image program.

    PubMed

    Kilpela, Lisa Smith; Blomquist, Kerstin; Verzijl, Christina; Wilfred, Salomé; Beyl, Robbie; Becker, Carolyn Black

    2016-06-01

    The Body Project is a cognitive dissonance-based body image improvement program with ample research support among female samples. More recently, researchers have highlighted the extent of male body dissatisfaction and disordered eating behaviors; however, boys/men have not been included in the majority of body image improvement programs. This study aims to explore the efficacy of a mixed-gender Body Project compared with the historically female-only body image intervention program. Participants included male and female college students (N = 185) across two sites. We randomly assigned women to a mixed-gender modification of the two-session, peer-led Body Project (MG), the two-session, peer-led, female-only (FO) Body Project, or a waitlist control (WL), and men to either MG or WL. Participants completed self-report measures assessing negative affect, appearance-ideal internalization, body satisfaction, and eating disorder pathology at baseline, post-test, and at 2- and 6-month follow-up. Linear mixed effects modeling to estimate the change from baseline over time for each dependent variable across conditions were used. For women, results were mixed regarding post-intervention improvement compared with WL, and were largely non-significant compared with WL at 6-month follow-up. Alternatively, results indicated that men in MG consistently improved compared with WL through 6-month follow-up on all measures except negative affect and appearance-ideal internalization. Results differed markedly between female and male samples, and were more promising for men than for women. Various explanations are provided, and further research is warranted prior to drawing firm conclusions regarding mixed-gender programming of the Body Project. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:591-602). © 2016 Wiley Periodicals, Inc.

  17. The Body Project 4 All: A pilot randomized controlled trial of a mixed-gender dissonance-based body image program

    PubMed Central

    Kilpela, Lisa Smith; Blomquist, Kerstin; Verzijl, Christina; Wilfred, Salomé; Beyl, Robbie; Becker, Carolyn Black

    2017-01-01

    Objective The Body Project is a cognitive dissonance-based body image improvement program with ample research support among female samples. More recently, researchers have highlighted the extent of male body dissatisfaction and disordered eating behaviors; however, boys/men have not been included in the majority of body image improvement programs. This study aims to explore the efficacy of a mixed-gender Body Project compared to the historically female-only body image intervention program. Method Participants included male and female college students (N=185) across two sites. We randomly assigned women to a mixed-gender modification of the two-session, peer-led Body Project (MG), the two-session, peer-led, female-only (FO) Body Project, or a waitlist control (WL), and men to either MG or WL. Participants completed self-report measures assessing negative affect, appearance-ideal internalization, body satisfaction, and eating disorder pathology at baseline, post-test, and at two- and six-month follow-up. Results We used linear mixed effects modeling to estimate the change from baseline over time for each dependent variable across conditions. For women, results were mixed regarding post-intervention improvement compared to WL, and were largely non-significant compared to WL at 6-month follow-up. Alternatively, results indicated that men in MG consistently improved compared to WL through 6-month follow-up on all measures except negative affect and appearance-ideal internalization. Discussion Results differed markedly between female and male samples, and were more promising for men than for women. Various explanations are provided, and further research is warranted prior to drawing firm conclusions regarding mixed-gender programming of the Body Project. PMID:27188688

  18. The Aula Espazio Observatory At The Universidad Del Pais Vasco (Spain): Planetary Observations For Graduate And Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Perez-Hoyos, Santiago; Sanchez-Lavega, A.; Hueso, R.; Rojas, J. F.

    2010-10-01

    The Aula Espazio Gela is a facility at the School of Technical Engineering of the Universidad del Pais Vasco (Bilbao, Spain) dedicated to the education of undergarduated and gratuated students in the research and technology of space science activities. It also promotes the collaboration between the University and industrial spatial sector. One of the main elements of this facility is an astronomical observatory that is oriented to the activities of the students of the Master in Space Science and Technology. The main instrument is a 50 cm aperture Dall-Kirham telescope with equatorial mount completely robotized that includes different CCD cameras. Here we present some of the projects developed by graduate and under-graduate students in the field of the solar system. Explicitly we present some studies dedicated to the studies of planetary atmospheres and to acquire skills on the software management of planetary images. Aknowledgements: This project is supported by the Dpto. Innovación y Promoción Económica de la Diputación Foral de Bizkaia (Basque Country).

  19. Occupational Education Program, Image of the World of Work. Description and Analysis of Teacher Orientation Activities (August 1968).

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Human Factors Research Lab.

    A project was conducted to determine the relationship between changes in attitudes toward work of seventh grade pupils and specified instructional practices of their social studies or language arts teachers. The study encompassed: (1) developing and administering instruments to students and instructors to asess attitudes toward work, (2)…

  20. Space Shuttle Projects

    NASA Image and Video Library

    2002-08-06

    A Virginia student wears gloves to simulate the awkward feel and dexterity that astronauts experience when working in spacesuits. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107. (Digital camera image; no film original.

  1. Gender Issues: An Activity File.

    ERIC Educational Resources Information Center

    Fountain, Susan

    This activity file grew out of research of an "Images of Women in Development" project of the Centre for Global Education at the University of York, England. The activities are intended for students in the 8- to 13-year-old range to learn more about gender issues. The activities are divided into four sections: (1) awareness-raising activities in…

  2. A Blended Approach to Reading and Writing Graphic Stories

    ERIC Educational Resources Information Center

    Brown, Sally

    2013-01-01

    This article documents the experiences of a diverse group of second grade students during a nine week unit of study focused on graphic stories. The project begins as the class is immersed in reading graphic stories designed for young readers. Images, written text, and dialog are utilized to scaffold reading comprehension and to practice fluency.…

  3. Dropping In a Microgravity Environment (DIME) contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here, students from Sycamore High School in Cincinnati, Ohio, help a NASA technician prepare their experiment. This image is from a digital still camera; higher resolution is not available.

  4. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Pictured are students from COSI Academy, Columbus, Ohio and their teacher. The other team was from Sycamore High School in Cincinnati, Ohio. This image is from a digital still camera; higher resolution is not available.

  5. Dropping In a Microgravity Environment (DIME) contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here, students are briefed by NASA engineer Daniel Dietrich at the top of the drop tower. This image is from a digital still camera; higher resolution is not available.

  6. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Pictured are students from COSI Academy, Columbus, Ohio and their teacher. The other team was from Sycamore High School in Cincinnati, Ohio. This image is from a digital still camera; higher resolution is not available.

  7. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. This is the interior of the Sycamore High School (Cincinnati, Ohio) students' experiment to observe the flame spreading on a 100 percent cotton T-shirt under low-g. This image is from a digital still camera; higher resolution is not available.

  8. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here students from Sycamore High School in Cincinnati, Ohio, talk with Dr. Dennis Stocker, one of Glenn's lead microgravity scientists, about the uses of the drop tower. This image is from a digital still camera; higher resolution is not available.

  9. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Students from Sycamore High School in Cincinnati, Ohio (girls), and the COSI Academy, Columbus, Ohio (boys), participated. This image is from a digital still camera; higher resolution is not available.

  10. Improving Bioengineering Student Leadership Identity Via Training and Practice within the Core-Course.

    PubMed

    Rosch, David M; Imoukhuede, P I

    2016-12-01

    The development of a leadership identity has become significant in bioengineering education as a result of an increasing emphasis on teamwork within the profession and corresponding shifts in accreditation criteria. Unsurprisingly, placing bioengineering students in teams to complete classroom-based projects has become a dominant pedagogical tool. However, recent research indicates that engineering students may not develop a leadership identity, much less increased leadership capacity, as a result of such efforts. Within this study, we assessed two similar sections of an introductory course in bioengineering; each placed students in teams, while one also included leadership training and leadership practice. Results suggest that students in the leadership intervention section developed a strong self-image of themselves as leaders compared to students in the control section. These data suggest that creating mechanisms for bioengineering students to be trained in leadership and to practice leadership behaviors within a classroom team may be keys for unlocking leadership development.

  11. Space Science in Project SMART: A UNH High School Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.

    2016-12-01

    Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  12. Planet X probe: A fresh new look at an old familiar place

    NASA Technical Reports Server (NTRS)

    Nicholson, James; Obrien, Tom; Brower, Sharon; Canright, Shelley

    1988-01-01

    Planet X Probe utilizes a Get Away Special (GAS) payload to provide a large student population with a remote Earth sensing experimental package. To provide a cooperative as well as a competitive environment, the effort is targeted at all grade levels and at schools in different geographical regions. LANDSAT capability allows students to investigate the Earth, its physical makeup, its resources, and the impact of man. This project also serves as an educational device to get students to stand back and take a fresh look at their home planet. The key element is to treat the familiar Earth as an unknown planet with knowledge based only on what is observable and provable from the images obtained. Through participation, a whole range of experiences will include: (1) mission planning; (2) research and pilot projects to train teams; (3) identification and recruitment of scientific mentors and dialogue; (4) selection of a student advisory team to be available during the mission; (5) analysis of data and compilation of findings; (6) report preparation, constucted along sound scientific principles; and (7) presentation and defense of findings before a meeting of competitive student groups and scientist in the field.

  13. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    PubMed Central

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors. PMID:12587031

  14. Biotechnology apprenticeship for secondary-level students: teaching advanced cell culture techniques for research.

    PubMed

    Lewis, Jennifer R; Kotur, Mark S; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A; Ferrell, Nick; Sullivan, Kathryn D; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors.

  15. Students developing resources for students.

    PubMed

    Pearce, Michael; Evans, Darrell

    2012-06-01

    The development of new technologies has provided medical education with the ability to enhance the student learning experience and meet the needs of changing curricula. Students quickly adapt to using multimedia learning resources, but these need to be well designed, learner-centred and interactive for students to become significantly engaged. One way to ensure that students become committed users and that resources become distinct elements of the learning cycle is to involve students in resource design and production. Such an approach enables resources to accommodate student needs and preferences, but also provides opportunities for them to develop their own teaching and training skills. The aim of the medical student research project was to design and produce an electronic resource that was focused on a particular anatomical region. The views of other medical students were used to decide what features were suitable for inclusion and the resulting package contained basic principles and clinical relevance, and used a variety of approaches such as images of cadaveric material, living anatomy movies and quizzes. The completed package was assessed using a survey matrix and found to compare well with commercially available products. Given the ever-diversifying arena of multimedia instruction and the ability of students to be fully conversant with technology, this project demonstrates that students are ideal participants and creators of multimedia resources. It is hoped that such an approach will help to further develop the skill base of students, but will also provide an avenue of developing packages that are student user friendly, and that are focused towards particular curricula requirements. © Blackwell Publishing Ltd 2012.

  16. Use of interactive live digital imaging to enhance histology learning in introductory level anatomy and physiology classes.

    PubMed

    Higazi, Tarig B

    2011-01-01

    Histology is one of the main subjects in introductory college-level Human Anatomy and Physiology classes. Institutions are moving toward the replacement of traditional microscope-based histology learning with virtual microscopy learning amid concerns of losing the valuable learning experience of traditional microscopy. This study used live digital imaging (LDI) of microscopic slides on a SMART board to enhance Histology laboratory teaching. The interactive LDI system consists of a digital camera-equipped microscope that projects live images on a wall-mounted SMART board via a computer. This set-up allows real-time illustration of microscopic slides with highlighted key structural components, as well as the ability to provide the students with relevant study and review material. The impact of interactive LDI on student learning of Histology was then measured based on performance in subsequent laboratory tests before and after its implementation. Student grades increased from a mean of 76% (70.3-82.0, 95% CI) before to 92% (88.8-95.3, 95% CI) after integration of LDI indicating highly significant (P < 0.001) enhancement in students' Histology laboratory performance. In addition, student ratings of the impact of the interactive LDI on their Histology learning were strongly positive, suggesting that a majority of students who valued this learning approach also improved learning and understanding of the material as a result. The interactive LDI technique is an innovative, highly efficient and affordable tool to enhance student Histology learning, which is likely to expand knowledge and student perception of the subject and in turn enrich future science careers. Copyright © 2011 American Association of Anatomists.

  17. Internet-Based Laboratory Activities Designed for Studying the Sun with Satellites

    NASA Astrophysics Data System (ADS)

    Slater, T. F.

    1998-12-01

    Yohkoh Public Outreach Project (YPOP) is a collaborative industry, university, and K-16 project bringing fascinating and dynamic images of the Sun to the public in real-time. Partners have developed an extensive public access and educational WWW site containing more than 100 pages of vibrant images with current information that focuses on movies of the X-ray output of our Sun taken by the Yohkoh Satellite. More than 5 Gb of images and movies are available on the WWW site from the Yohkoh satellite, a joint project of the Institute for Space and Astronautical Sciences (ISAS) and NASA. Using a movie theater motif, the site was created by teams working at Lockheed Martin Advanced Technology Center, Palo Alto, CA in the Solar and Astrophysics Research Group, the Montana State University Solar Physics Research Group, and the Montana State University Conceptual Astronomy and Physics Education Research Group with funding from the NASA Learning Technology Project (LTP) program (NASA LTP SK30G4410R). The Yohkoh Movie Theater Internet Site is found at URL: http://www.lmsal.com/YPOP/ and mirrored at URL: http://solar.physics.montana.edu/YPOP/. In addition to being able to request automated movies for any dates in a 5 Gb on-line database, the user can view automatically updated daily images and movies of our Sun over the last 72 hours. Master science teachers working with the NASA funded Yohkoh Public Outreach Project have developed nine technology-based on-line lessons for K-16 classrooms. These interdisciplinary science, mathematics, and technology lessons integrate Internet resources, real-time images of the Sun, and extensive NASA image databases. Instructors are able to freely access each of the classroom-ready activities. The activities require students to use scientific inquiry skills and manage electronic information to solve problems consistent with the emphasis of the NRC National Science Education Standards.

  18. Improved Undergraduate Astronomy Laboratories with A Modern Telescope Control System

    NASA Astrophysics Data System (ADS)

    Milano, Anthony J.; Broder, D.; Finn, R.; Newberg, H.; Weatherwax, A.; Whittet, D.

    2006-12-01

    We are in the middle of a cooperative astronomy education project to improve undergraduate laboratories at RPI (a PhD granting institution) and Siena College (a nearby liberal arts college). We have completed an overhaul of a 40-year-old, 16" B&C telescope on the RPI campus, and have made it available for hundreds of students at both schools, and once per week to the public. We have written an assessment test which was distributed to the students at the beginning and end of the Fall 2006 semester, which will be used as a baseline to determine whether the laboratory activities, which are currently under development, improve student learning in the Fall 2007 semester next year. The studio-style, hands-on, inquiry-based laboratories will be designed to challenge student misconceptions. In order to handle a large number of students using the main telescope and a limited number of smaller telescopes, we will cycle students through concurrent activities. This is enabled by the rapid acquisition and imaging of targets made possible by the upgrade to the control system of our 16" telescope. We demonstrate the productivity of our newly refurbished telescope, show the baseline results of our assessment, and present samples of activities under development. This project is funded by an NSF CCLI grant, 05-11340.

  19. SPARTNIK: Engineering catalyst for government and industry

    NASA Technical Reports Server (NTRS)

    Prass, James D.; Romano, Thomas C.; Hunter, Jeanine M.

    1995-01-01

    Industrial demands for highly motivated and competent technical personnel to carry forward with the technological goals of the US has posed a significant challenge to graduating engineers. While curricula has improved and diversified over time to meet these industry demands, relevant industry experience is not always available to undergraduates. The microsatellite development program at San Jose State University (SJSU) has allowed an entire undergraduate senior class to utilize a broad range of training and education to refine their engineering skills, bringing them closer to becoming engineering professionals. Close interaction with industry mentors and manufacturers on a real world project provides a significant advantage to educators and students alike. With support from companies and government agencies, the students have designed and manufactured a microsatellite, designed to be launched into a low Earth orbit. This satellite will gather telemetry for characterizing the state of the spacecraft. This will enable the students to have a physical check on their predicted value of spacecraft subsystem performance. Additional experiments will also be undertaken during the two year lifetime, including micro-meteorite impact sensing and capturing digital color images of the Earth. This paper will detail the process whereby students designed, prototype and manufactured a small satellite in a large team environment, along with the experiments that will be performed on board. With the project's limited funds, it needed the support of many industry companies to help with technical issues and hardware acquisition. Among the many supporting companies, NASA's space shuttle small payloads program could be used for an affordable launch vehicle for the student project. The paper address these collaborations between the student project and industry support, as well as explaining the benefits to both. The paper draws conclusion on how these types of student projects can be used by industry as a feasible resource for developing small platforms for space based experiments, as well as increasing the practical experience and engineering knowledge of graduating students. These benefits to industry and universities, can lead to a close working relationship between the two. These types of projects can facilitate the development of low-cost space rated parts to be used by the industry and university projects. It can also help with the understanding and use of acceptable risk non-space rated parts reducing the cost of the spacecraft. This will lead to the development of low cost platforms for space based experiments, providing research companies an inexpensive, long duration platform to conduct their in-space experiments, while better preparing engineering undergraduates for their transition into the work force.

  20. SPARTNIK: Engineering catalyst for government and industry

    NASA Astrophysics Data System (ADS)

    Prass, James D.; Romano, Thomas C.; Hunter, Jeanine M.

    1995-09-01

    Industrial demands for highly motivated and competent technical personnel to carry forward with the technological goals of the US has posed a significant challenge to graduating engineers. While curricula has improved and diversified over time to meet these industry demands, relevant industry experience is not always available to undergraduates. The microsatellite development program at San Jose State University (SJSU) has allowed an entire undergraduate senior class to utilize a broad range of training and education to refine their engineering skills, bringing them closer to becoming engineering professionals. Close interaction with industry mentors and manufacturers on a real world project provides a significant advantage to educators and students alike. With support from companies and government agencies, the students have designed and manufactured a microsatellite, designed to be launched into a low Earth orbit. This satellite will gather telemetry for characterizing the state of the spacecraft. This will enable the students to have a physical check on their predicted value of spacecraft subsystem performance. Additional experiments will also be undertaken during the two year lifetime, including micro-meteorite impact sensing and capturing digital color images of the Earth. This paper will detail the process whereby students designed, prototype and manufactured a small satellite in a large team environment, along with the experiments that will be performed on board. With the project's limited funds, it needed the support of many industry companies to help with technical issues and hardware acquisition. Among the many supporting companies, NASA's space shuttle small payloads program could be used for an affordable launch vehicle for the student project. The paper address these collaborations between the student project and industry support, as well as explaining the benefits to both. The paper draws conclusion on how these types of student projects can be used by industry as a feasible resource for developing small platforms for space based experiments, as well as increasing the practical experience and engineering knowledge of graduating students. These benefits to industry and universities, can lead to a close working relationship between the two. These types of projects can facilitate the development of low-cost space rated parts to be used by the industry and university projects. It can also help with the understanding and use of acceptable risk non-space rated parts reducing the cost of the spacecraft. This will lead to the development of low cost platforms for space based experiments, providing research companies an inexpensive, long duration platform to conduct their in-space experiments, while better preparing engineering undergraduates for their transition into the work force.

  1. The GI Project: a prototype electronic textbook for high school biology.

    PubMed

    Calhoun, P S; Fishman, E K

    1997-01-01

    A prototype electronic science textbook for secondary education was developed to help bridge the gap between state-of-the-art medical technology and the basic science classroom. The prototype combines the latest in radiologic imaging techniques with a user-friendly multimedia computer program to teach the anatomy, physiology, and diseases of the gastrointestinal (GI) tract. The program includes original text, illustrations, photographs, animations, images from upper GI studies, plain radiographs, computed tomographic images, and three-dimensional reconstructions. These features are intended to create a stimulus-rich environment in which the high school science student can enjoy a variety of interactive experiences that will facilitate the learning process. The computer-based book is a new educational tool that promises to play a prominent role in the coming years. Current research suggests that computer-based books are valuable as an alternative educational medium. Although it is not yet clear what form textbooks will take in the future, computer-based books are already proving valuable as an alternative educational medium. For beginning students, they reinforce the material found in traditional textbooks and class presentations; for advanced students, they provide motivation to learn outside the traditional classroom.

  2. Design and implementation of I2Vote--an interactive image-based voting system using windows mobile devices.

    PubMed

    van Ooijen, P M A; Broekema, A; Oudkerk, M

    2011-08-01

    To develop, implement and test a novel audience response system (ARS) that allows image based interaction for radiology education. The ARS developed in this project is based on standard Personal Digital Assistants (PDAs) (HP iPAQ 114 classic handheld) running Microsoft® Windows Mobile® 6 Classic with a large 3.5 in. TFT touch screen (320×240 pixel resolution), high luminance and integrated IEEE 802.11b/g wireless. For software development Visual Studio 2008 professional (Microsoft) was used and all components were written in C#. Two test sessions were conducted to test the software technically followed by two real classroom tests in a radiology class for medical students on thoracic radiology. The novel ARS, called I2Vote, was successfully implemented and provided an easy to use, stable setup. The acceptance of both students and teachers was very high and the interaction with the students improved because of the anonymous interaction possibility. An easy to use handheld based ARS that enables interactive, image-based, teaching is achieved. The system effectively adds an extra dimension to the use of an ARS. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Image Processing for Educators in Global Hands-On Universe

    NASA Astrophysics Data System (ADS)

    Miller, J. P.; Pennypacker, C. R.; White, G. L.

    2006-08-01

    A method of image processing to find time-varying objects is being developed for the National Virtual Observatory as part of Global Hands-On Universe(tm) (Lawrence Hall of Science; University of California, Berkeley). Objects that vary in space or time are of prime importance in modern astronomy and astrophysics. Such objects include active galactic nuclei, variable stars, supernovae, or moving objects across a field of view such as an asteroid, comet, or extrasolar planet transiting its parent star. The search for these objects is undertaken by acquiring an image of the region of the sky where they occur followed by a second image taken at a later time. Ideally, both images are taken with the same telescope using the same filter and charge-coupled device. The two images are aligned and subtracted with the subtracted image revealing any changes in light during the time period between the two images. We have used a method of Christophe Alard using the image processing software IDL Version 6.2 (Research Systems, Inc.) with the exception of the background correction, which is done on the two images prior to the subtraction. Testing has been extensive, using images provided by a number of National Virtual Observatory and collaborating projects. They include the Supernovae Trace Cosmic Expansion (Cerro Tololo Inter-American Observatory), Supernovae/ Acceleration Program (Lawrence Berkeley National Laboratory), Lowell Observatory Near-Earth Object Search (Lowell Observatory), and the Centre National de la Recherche Scientifique (Paris, France). Further testing has been done with students, including a May 2006 two week program at the Lawrence Berkeley National Laboratory. Students from Hardin-Simmons University (Abilene, TX) and Jackson State University (Jackson, MS) used the subtraction method to analyze images from the Cerro Tololo Inter-American Observatory (CTIO) searching for new asteroids and Kuiper Belt objects. In October 2006 students from five U.S. high schools will use the subtraction method in an asteroid search campaign using CTIO images with 7-day follow-up images to be provided by the Las Cumbres Observatory (Santa Barbara, CA). During the Spring 2006 semester, students from Cape Fear High School used the method to search for near-Earth objects and supernovae. Using images from the Astronomical Research Institute (Charleston, IL) the method contributed to the original discovery of two supernovae, SN 2006al and SN 2006bi.

  4. Teaching Advanced Data Analysis Tools to High School Astronomy Students

    NASA Astrophysics Data System (ADS)

    Black, David V.; Herring, Julie; Hintz, Eric G.

    2015-01-01

    A major barrier to becoming an astronomer is learning how to analyze astronomical data, such as using photometry to compare the brightness of stars. Most fledgling astronomers learn observation, data reduction, and analysis skills through an upper division college class. If the same skills could be taught in an introductory high school astronomy class, then more students would have an opportunity to do authentic science earlier, with implications for how many choose to become astronomers. Several software tools have been developed that can analyze astronomical data ranging from fairly straightforward (AstroImageJ and DS9) to very complex (IRAF and DAOphot). During the summer of 2014, a study was undertaken at Brigham Young University through a Research Experience for Teachers (RET) program to evaluate the effectiveness and ease-of-use of these four software packages. Standard tasks tested included creating a false-color IR image using WISE data in DS9, Adobe Photoshop, and The Gimp; a multi-aperture analyses of variable stars over time using AstroImageJ; creating Spectral Energy Distributions (SEDs) of stars using photometry at multiple wavelengths in AstroImageJ and DS9; and color-magnitude and hydrogen alpha index diagrams for open star clusters using IRAF and DAOphot. Tutorials were then written and combined with screen captures to teach high school astronomy students at Walden School of Liberal Arts in Provo, UT how to perform these same tasks. They analyzed image data using the four software packages, imported it into Microsoft Excel, and created charts using images from BYU's 36-inch telescope at their West Mountain Observatory. The students' attempts to complete these tasks were observed, mentoring was provided, and the students then reported on their experience through a self-reflection essay and concept test. Results indicate that high school astronomy students can successfully complete professional-level astronomy data analyses when given detailed instruction tailored to their experience level along with proper support and mentoring.This project was funded by a grant from the National Science Foundation, Grant # PHY1157078.

  5. Learning Photogrammetry with Interactive Software Tool PhoX

    NASA Astrophysics Data System (ADS)

    Luhmann, T.

    2016-06-01

    Photogrammetry is a complex topic in high-level university teaching, especially in the fields of geodesy, geoinformatics and metrology where high quality results are demanded. In addition, more and more black-box solutions for 3D image processing and point cloud generation are available that generate nice results easily, e.g. by structure-from-motion approaches. Within this context, the classical approach of teaching photogrammetry (e.g. focusing on aerial stereophotogrammetry) has to be reformed in order to educate students and professionals with new topics and provide them with more information behind the scene. Since around 20 years photogrammetry courses at the Jade University of Applied Sciences in Oldenburg, Germany, include the use of digital photogrammetry software that provide individual exercises, deep analysis of calculation results and a wide range of visualization tools for almost all standard tasks in photogrammetry. During the last years the software package PhoX has been developed that is part of a new didactic concept in photogrammetry and related subjects. It also serves as analysis tool in recent research projects. PhoX consists of a project-oriented data structure for images, image data, measured points and features and 3D objects. It allows for almost all basic photogrammetric measurement tools, image processing, calculation methods, graphical analysis functions, simulations and much more. Students use the program in order to conduct predefined exercises where they have the opportunity to analyse results in a high level of detail. This includes the analysis of statistical quality parameters but also the meaning of transformation parameters, rotation matrices, calibration and orientation data. As one specific advantage, PhoX allows for the interactive modification of single parameters and the direct view of the resulting effect in image or object space.

  6. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  7. Citizen CATE: Evaluating Outcomes of a Solar Eclipse Citizen Science Project

    NASA Astrophysics Data System (ADS)

    Penn, M. J.; Haden, C.

    2017-12-01

    On August 21, 2017, a total solar eclipse will be visible along a path of totality from Oregon to South Carolina. The Citizen Continental-America Telescopic Eclipse Experiment (CATE) will use scientists, students and volunteers to take images of the solar corona using 68 identical telescopes, software and instrument packages along the 2,500-mile path of totality. CATE partners include National Solar Observatory scientists, university faculty and students, high school students, and professional and amateur astronomers. NASA funded CATE educational components including training undergraduates and volunteers on solar imaging software and equipment. The National Science Foundation and corporations including DayStar, MathWorks, Celestron and ColorMaker funded equipment. Undergraduates participated in summer research experiences to build their capacity for gathering eclipse data, and subsequently trained volunteers across the U.S. Aligned to NASA education goals, CATE goals range from providing an authentic research experience for students and lifelong learners, to making state-of-the-art solar coronal observations, to increasing scientific literacy of the public. While project investigators are examining the wealth of scientific data that will come from CATE, evaluators are examining impacts on participants. Through mixed methods, evaluators are examining outcomes related to changes in volunteers' knowledge, skills and attitudes. Additionally, the study will examine how citizen science astronomy using CATE equipment will continue after the eclipse to sustain project impacts. Preliminary findings for undergraduates indicate that they are gaining knowledge and skills related to studying solar coronal phenomena, conducting rigorous scientific research, and interfacing with the public to conduct outreach. Preliminary findings for citizen scientists indicate a high level of engagement in the research, and that they are gaining new knowledge and skills related to solar science and eclipses. Volunteers also reported learning a great deal about safety while observing the Sun. This evaluation study will add to the body of knowledge about the effectiveness and utility of citizen science programs. Findings will be updated with data collected during and immediately after the eclipse events.

  8. Beauty and science in a shot

    NASA Astrophysics Data System (ADS)

    Ciceri, Piera

    2017-04-01

    Taking pictures has become a daily action for young. Photography is an essential component of many areas of science, has played a crucial role in the study of anatomy, botany, archeology, ... Still today it is a "scientific tool" in the school textbooks: pictures describe, make reality larger or smaller, faster or slower, show evidence and experimental results. But a photograph has the ability to move, engage and inspire viewers. That means that a photograph can build an emotional bridge between science and people. People and students can get closer to science through beautiful, evocative and expressive shot. In this project students are involved in taking pictures with a scientific and aesthetic content looking around, setting an experiment, watching nature, playing with light, point of wiew, colors and perspective. They have to write a short text and a title that explains the scientific content, why and how they have taken the picture. Both description and title should let increase curiosity, could looks fun or stress artistic aspects. Student show their shots in an official public event in Milan managed by a committee of science and photograph experts and in a local event to parents and local community. "Shots of science" is a project promoted by the italian national association "Scienza under 18", the Physic Department of "Università degli Studi di Milano" and the "Museo di fotografia contemporanea" of Cinisello Balsamo (MI) that help students in discussing about scientific and artistic aspects of their shots. This project contributes to develop digital skills (such as to manage digital images, to share documents, to learn about copyright and creative commons license), communication skills (such as to write a caption, public speaking, to use a picture to communicate), collaboration skills (such as to work with pairs, to respect scheduled times, to be positive in giving and taking into account suggestions) and artistic skills (to learn how to compose a good image, proportions, background, point of view, light, contrast, to be creative).

  9. [Prophylaxis of nutrition disturbances project "Time for Health"].

    PubMed

    Bargiel-Matusiewicz, Kamilla; Bak-Sosnowska, Monika; Trzcieniecka-Green, Anna; Kapica, Janina

    2004-01-01

    More than half of girls and women treat themselves as obese persons. It is connected with the ideal of slimness, predominating in our culture. The consequences of this cult of slimness involve more and more frequent disturbances in nutrition. Problems, which are the basis for obesity, anorexia and bulimia cannot be related merely to nutrition, weight and body size issues. They are indissolubly connected with low self-esteem, difficulties in one's identity as well as with a lack of interpersonal relation satisfactions. The presented project's aim is prophylaxis concerning nutrition disturbances. It is addressed to girls at the age of 14 and 15. According to the project, classes are organized for the 1st and 2nd year students of secondary schools. The program includes eight meetings devoted to the questions which are significant elements of creating positive image of self-image, a feeling of one's identity as well as developing abilities to make independent opinions and decisions. These factors may prevent girls from following trends e.g. connected with the cult of slimness.

  10. Automated Blazar Light Curves Using Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Spencer James

    Every night in a remote clearing called Fenton Hill high in the Jemez Mountains of central New Mexico, a bank of robotically controlled telescopes tilt their lenses to the sky for another round of observation through digital imaging. Los Alamos National Laboratory’s Thinking Telescopes project is watching for celestial transients including high-power cosmic flashes called, and like all science, it can be messy work. To keep the project clicking along, Los Alamos scientists routinely install equipment upgrades, maintain the site, and refine the sophisticated machinelearning computer programs that process those images and extract useful data from them. Each week themore » system amasses 100,000 digital images of the heavens, some of which are compromised by clouds, wind gusts, focus problems, and so on. For a graduate student at the Lab taking a year’s break between master’s and Ph.D. studies, working with state-of-the-art autonomous telescopes that can make fundamental discoveries feels light years beyond the classroom.« less

  11. Actively Learning about the Active Sun: Using JHelioviewer in Undergraduate Astronomy

    NASA Astrophysics Data System (ADS)

    Stage, Michael D.

    2018-06-01

    Solar phenomena of the chromosphere, corona and photosphere are only truly revealed through multi-wavelength and time-dependent study. While one can show slides of models of the solar convection zone, videos of granulation, and magnetogram and UV images, it is now possible to engage students much more fully in learning about dynamic solar phenomena such as the evolution of sunspots and the magentic field. JHelioviewer is professional solar visualization tool developed by an international team as part of the ESA/NASA Helioviewer project (Muller et al., 2017, A&A 606, A10), which allows users to select and overlay movies of solar data from multiple instruments of multiple satellite and ground-based observatories, with complete control over time-sequencing, image overlays, solar coordinate grids, rotational tracking, and export functions. I developed materials using the viewer for my sophomore-level undergraduate solar astronomy course to introduce students to the dynamics of the solar surface and atmosphere. The lab-like projects, suitable for in-class, labs, or home-work assignments, allow students to watch the formation, strengthening, movement, and dissipation of sunspots; to classify spots; to study the magnetic flux tubes connecting spots; to see reconnection; to learn about the solar coordinate systems (Stonyhurst, Carrington, etc.); to see how line emission (H-alpha, C, Fe and He UV lines from SDO, etc.) traces the structure of the atmosphere at different heights and temperatures; to observe the Wilson effect; and to measure motions such as moat flow and photospheric flow by tracking individual elements in magnetograms. In this presentation I share my activities and approach, which can be tailored to suit gen-ed, intermediate, or advanced astrophysics majors. (The author has no connection with the JHelioviewer project or team.)

  12. Mentoring Undergraduate Students through the Space Shuttle Hitchhiker GoldHELOX Project

    NASA Astrophysics Data System (ADS)

    Moody, J. Ward; Barnes, Jonathan; Roming, Peter; Durfee, Dallin; Campbell, Branton; Turley, Steve; Eastman, Paul

    2015-01-01

    In the late 1980s a team of four BYU undergraduate students designed a space-based telescope to image the sun in soft x-rays from 171-181 Angstroms to gain information on microflares and their relation to the corona-chromosphere transition region. The telescope used a near-normal incidence multi-layered mirror imaging onto film through a micro-channel plate. The system was capable of 1.0 sec time resolution and 2.5 arcsec spatial resolution. Aided by a NASA grant in 1991, a system was built and successfully tested in 1998 at Marshall Space Flight Center. Originally designed to be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle, the good results of this test elevated GoldHelox to greater-priority Hitchhiker status. Even so technical and procedural difficulties delayed a launch until after 2003. Unfortunately after the Columbia re-entry break-up in February 2003, the Hitchhiker program was cancelled and the GoldHelox project ended.Well over 200 undergraduate students worked on GoldHelox. Many of these have since earned advanced degrees in a variety of technical fields. Several have gone on to work in the space industry, becoming NASA scientists and engineers with one becoming a PI on the Swift satellite. The broad range of talent on the team has included students majoring in physics, astronomy, mechanical engineering, electrical engineering, manufacturing engineering, design engineering, business and even English majors who have written technical and public relations documents. We report on lessons learned and the pitfalls and successes of this unique mentoring experience.

  13. [Integrated project of personalisation school curricula and training].

    PubMed

    Zanon, A; Tomassoni, R; Santangelo, N; Gargano, M; Treglia, E; Granai, M G; Incagnoli, A

    2017-01-01

    To strengthen the motivation to study, promote awareness of their attitudes and actions of orientation / re-orientation to the profession, making the learning experience more stimulating and training in order to staunch the sharp drop-out affecting the school. The project, coordinated by psychologists, involved the administration of AMOS Test as a tool to detect the variables of interest (self-image, ambitions and motivations, concerns for the future, soft skills etc.) in a sample of students belonging the CFP of Lazio. The sample consisted of 632 students (aged between 14 and 20 years and made up 70.6% of females). The sample is divided between the Agency's structures Formation of the Province of Frosinone: Anagni (7,3%); Cassino (24,7%); Ferentino (10,9%); Frosinone (31,8 %); Pontecorvo (4,1%) and Sora (21,2%) that offer various training courses: a wellness area (81%), electronic / mechanical area (12%), administrative one (7%). Most of the students have poor self-esteem and con dence in their own resources. They have a poor perception of their skills both profes- sionally and personally, have trouble thinking of an ambitious future with a 'negative self-image'. Few have plans for the future and are determined to achieve them and bring them forward, demonstrating uncertainty about future careers. The survey findings emerges the need of the students to have a support not only educational but also cognitive and emotional. Possible proposals for action are: the implementation of techniques such as cooperative learning, action learning, problem solving, the 'activation of a door psychological listening and the like.

  14. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Meredith Mendenhall of Sycamore High School, Cincinnati, Ohio, flips on a tape recorder in preparation for a drop. This image is from a digital still camera; higher resolution is not available.

  15. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Sandi Thompson of the National Center for Microgravity Research GRC makes a final adjustment to the drop package. This image is from a digital still camera; higher resolution is not available.

  16. Astr 101 Students' Attitudes Towards Essays On Transits, Eclipses And Occultations

    NASA Astrophysics Data System (ADS)

    D'Cruz, Noella L.

    2012-05-01

    Joliet Junior College, Joliet, IL offers a one semester introductory astronomy course each semester. We teach over 110 primarily non-science major students each semester. We use proven active learning strategies such lecture tutorials, think-pair-share questions and small group discussions to help these students develop and retain a good understanding of astrophysical concepts. Occasionally, we offer projects that allow students to explore course topics beyond the classroom. We hope that such projects will increase students' interest in astronomy. We also hope that these assignments will help students to improve their critical thinking and writing skills. In Spring 12, we are offering three short individual essay assignments in our face-to-face sections. The essays focus on transits, eclipses and occultations to highlight the 2012 transit of Venus. For the first essay, students will find images of transit and occultation events using the Astronomy Picture of the Day website and describe their chosen events. In addition, students will predict how variations in certain physical and orbital parameters would alter their particular events. The second essay involves transits, eclipses and occultations observed by spacecraft. Students will describe their transit event, their spacecraft's mission, orbital path, how the orbital path was achieved, etc. The third essay deals with transiting exoplanets. Students will choose at least two exoplanets from an exoplanet database, one of which has been discovered through the transit method. This essay will enable students to learn about detecting exoplanets and how they compare with our solar system. Details of the essay assignments and students' reactions to them will be presented at the meeting.

  17. Alabama NASA EPSCoR Preparation Grant Program: Grant No. NCC5-391

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    2003-01-01

    The funded research projects under the Experimental Program to Stimulate Cooperative Research (EPSCoR) grant program and the student fellowship awards are summarized in this report. The projects include: 1) Crystallization of Dehydratase/DcoH: A Target in Lung Disease; 2) Measuring Velocity Profiles in Liquid Metals using an Ultrasonic Doppler Velocimeter; 3) Synthesis, Structure, and Properties of New Thermoelectric Materials; 4) Computational Determination of Structures and Reactivity of Phenol-Formaldehyde Resins; 5) Synthesis of Microbial Polyesters in the NASA Bioreactor; 6) Visualization of Flow-Fields in Magnetocombustion; 7) Synthesis of Fluorescent Saccharide Derivatives. The student fellowship awards include: 1) Distributed Fusion of Satellite Images; 2) Study of the Relationship between Urban Development, Local Climate, and Water Quality for the Atlanta, Georgia Metrop; 3) Computer Simulation of the Effectiveness of a Spring-Loaded Exercise Device.

  18. Project Aether Aurora: STEM outreach near the arctic circle

    NASA Astrophysics Data System (ADS)

    Longmier, B. W.; Bering, E. A.

    2012-12-01

    Project Aether is a program designed to immerse high-school through graduate students to field research in some of the fields of STEM. The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The balloon's location is monitored during its flight by GPS-satellite relay. Most of the science and video data are recorded on SD cards using an Arduino digitizer. The payload is located using the GPS device. The science data are recovered from the payload and shared with the students. In April 2012, Project Aether leaders conducted a field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. Auroral physics experiments that can be done on ultra small balloons (5 cubic meters) include electric field and magnetic fluctuation observations, full spectrum and narrow band optical imaging, GPS monitoring of the total electron content of the ionosphere, x-ray detection and infrared and UV spectroscopy. The actual undergraduate student experiments will be reviewed and some data presented.; Balloon deployment underneath aurora, Fairbanks Alaska, 2012.

  19. Using DVI To Teach Physics: Making the Abstract More Concrete.

    ERIC Educational Resources Information Center

    Knupfer, Nancy Nelson; Zollman, Dean

    The ways in which Digital Video Interactive (DVI), a new video technology, can help students learn concepts of physics were studied in a project that included software design and production as well as formative and summative evaluation. DVI provides real-time motion, with the full-motion image contained to a window on part of the screen so that…

  20. Small Mammal Jointed Models to Make, Description Cards, and a Menu of Follow-on Activities in Different Intelligence Areas

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Vander Zanden, Sarah

    2012-01-01

    Instilling an appreciation of nature in our youth is an important precursor to environmental protection and support for sustainability. Research has shown that involving students in environmental projects improves their motivation, skills, and achievement on standardized tests, This document contains images of the body parts of small mammals with…

  1. Using Digital Devices in a First Year Classroom: A Focus on the Design and Use of Phonics Software Applications

    ERIC Educational Resources Information Center

    Nicholas, Maria; McKenzie, Sophie; Wells, Muriel A.

    2017-01-01

    When integrated within a holistic literacy program, phonics applications can be used in classrooms to facilitate students' self-directed learning of letter-sound knowledge; but are they designed to allow for such a purpose? With most phonics software applications making heavy use of image cues, this project has more specifically investigated…

  2. Laser-based study of geometrical optics at school level

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Dhingra, Vishal; Sharma, Reena; Mittal, Ankit; Tiwadi, Raman; Chakravarty, Pratik

    2011-10-01

    Students at the school level from grade 7 to 12 are taught various concepts of geometrical optics but with little hands-on activities. Light propagation through different media, image formation using lenses and mirrors under different conditions and application of basic principles to characterization of lenses, mirrors and other instruments has been a subject which although fascinates students but due to lack of suitable demonstrating setups, students find difficulty in understanding these concepts and hence unable to appreciate the importance of such concepts in various useful scientific apparatus, day to day life, instruments and devices. Therefore, students tend to cram various concepts related to geometrical optics instead of understanding them. As part of the extension activity in the University Grants Commission major research project "Investigating science hands-on to promote innovation and research at undergraduate level" and University of Delhi at Acharya Narendra Dev College SPIE student chapter, students working under this optics outreach programme have demonstrated various experiments on geometrical optics using a five beam laser ray box and various optical components like different types of mirrors, lenses, prisms, optical fibers etc. The various hands-on activities includes demonstrations on laws of reflection, image formation using plane, concave and convex mirrors, mirror formula, total internal reflection, light propagation in an optical fiber, laws of refraction, image formation using concave and convex lenses and combination of these lenses, lens formula, light propagation through prisms, dispersion in prism, defects in eye- Myopia and hypermetropia. Subjects have been evaluated through pre and post tests in order to measure the improvement in their level of understanding.

  3. An Augmented Reality magic mirror as additive teaching device for gross anatomy.

    PubMed

    Kugelmann, Daniela; Stratmann, Leonard; Nühlen, Nils; Bork, Felix; Hoffmann, Saskia; Samarbarksh, Golbarg; Pferschy, Anna; von der Heide, Anna Maria; Eimannsberger, Andreas; Fallavollita, Pascal; Navab, Nassir; Waschke, Jens

    2018-01-01

    When preparing young medical students for clinical activity, it is indispensable to acquaint them with anatomical section images which enable them to use the clinical application of imaging methods. A new Augmented Reality Magic Mirror (AR MM) system, which provides the advantage of a novel, interactive learning tool in addition to a regular dissection course, was therefore tested and evaluated by 880 first-year medical students as part of the macroscopic anatomy course in 2015/16 at Ludwig-Maximilians-Universität (LMU) in Munich. The system consists of an RGB-D sensor as a real-time tracking device, which enables the system to link a deposited section image to the projection of the user's body, as well as a large display mimicking a real-world physical mirror. Using gesture input, the users have the ability to interactively explore radiological images in different anatomical intersection planes. We designed a tutorial during which students worked with the system in groups of about 12 and evaluated the results. Subsequently, each participant was asked to assess the system's value by filling out a Likert-scale questionnaire. The respondents approved all statements which stressed the potential of the system to serve as an additional learning resource for anatomical education. In this case, emphasis was put on active learning, 3-dimensional understanding, and a better comprehension of the course of structures. We are convinced that such an AR MM system can be beneficially installed into anatomical education in order to prepare medical students more effectively for the clinical standards and for more interactive, student-centered learning. Copyright © 2017. Published by Elsevier GmbH.

  4. Cassini Scientist for a Day: a tactile experience

    NASA Astrophysics Data System (ADS)

    Canas, L.; Altobelli, N.

    2012-09-01

    In September 2011, the Cassini spacecraft took images of three targets and a challenge was launched to all students: to choose the one target they thought would provide the best science and to write an essay explaining their reasons (more information on the "Cassini Scientist for a Day" essay contest official webpage in: http://saturn.jpl.nasa.gov/education/scientistforaday10thedition/, run by NASA/JPL) The three targets presented were: Hyperion, Rhea and Titan, and Saturn. The idea behind "Cassini Scientist for a Day: a tactile experience" was to transform each of these images into schematic tactile images, highlighting relevant features apprehended through a tactile key, accompanied by a small text in Braille with some additional information. This initial approach would allow reach a broader community of students, more specifically those with visual impairment disabilities. Through proper implementation and careful study cases the adapted images associated with an explanatory key provide more resources in tactile astronomy. As the 2012 edition approaches a new set of targeted objet images will be once again transformed and adapted to visually impaired students and will aim to reach more students into participate in this international competition and to engage them in a quest to expand their knowledge in the amazing Cassini discoveries and the wonders of Saturn and its moons. As the winning essays will be published on the Cassini website and contest winners invited to participate in a dedicated teleconference with Cassini scientists from NASA's Jet Propulsion Laboratory, this initiative presents a great chance to all visually impaired students and teachers to participate in an exciting experience. These initiatives must be complemented with further information to strengthen the learning experience. However they stand as a good starting point to tackle further astronomical concepts in the classroom, especially this field that sometimes lacks the resources. Although the images are ready, any feedback received is paramount. With this initiative we would like to make a call to all interested in participating in the implementation of this project in their country. All interested parties will have the images provided in their native languages by sending the text on your native language translated from the English version.

  5. Helping postpartum rural adolescents visualize future goals.

    PubMed

    Walsh, S M; Corbett, R W

    1995-01-01

    An Art Future Image (AFI) intervention was initiated among postpartum adolescent mothers during the hospitalization period in North Carolina. The aim was to improve adolescents self-image and encourage educational goal setting as a means of changing the cycle of poverty. The hope was that mothers would consider alternatives to public assistance. Nursing students were engaged as teachers during their clinical rotation in the postpartum unit. The project involved 9 mothers (8 Black women and 1 White woman). Women ranged in age from 17 to 24 years. 8 women were single, and all had a low socioeconomic status. Each study participant completed a workbook, which reflected future images as a high school or college graduate, an accountant, and other occupations. The study women selected a future role and spoke about their dreams and plans and constraints to achievement of their goal. Instant photos were taken of the mother and the infant following the interview and the faces placed on personalized body images of their choice. Both students and participants were enthusiastic about the project. An evaluation found, however, that time constraints of staff nurses would prohibit the use of this intervention model. The suggestion was made for this module to be incorporated into two 30 minute classes as part of postpartum classes. Mothers wanted only one time slot. Suggestions were made to expand the AFI program at other postpartum check-up times or when counseling on family planning. Other members of the family unit could be included. The long-term impact of AFI needs to be evaluated.

  6. JOURNAL CLUB: Redefining the Radiology Curriculum in Medical School: Vertical Integration and Global Accessibility.

    PubMed

    Retrouvey, Michele; Trace, Anthony Paul; Goodmurphy, Craig W; Shaves, Sarah

    2018-01-01

    Radiology interconnects medical disciplines given that a working understanding of imaging is essential to clinicians of every specialty. Using online education, we created a globally accessible, web-based undergraduate medical radiology curriculum modeled after the National Medical Student Curriculum in Radiology program of the Alliance of Medical Student Educators in Radiology. Seventy-four radiology faculty-mentored video modules were produced, 50 of which were integrated into the 1st-year anatomy course. We administered tests to medical students before and after students saw the videos to assess the effectiveness of the modules. We surveyed students on their interests in pursuing radiology as a career before and after participating in this curriculum. On the preexamination questions, the mean score was 58.0%, which increased to 83.6% on the pair-matched imaging-related questions on the actual examination. Before participating in the new curriculum, 88% of students did not express an interest in radiology, and 9% were undecided about radiology as a future career. There was an increase in students who reported that they would definitely or most likely pursue a career in radiology (7%) after they had viewed the lectures. Radiology education is now available to a greater number of multidisciplinary learners worldwide. This project produced a comprehensive, globally accessible radiology curriculum in a self-paced, flexible learning format for new generations of physicians.

  7. Dropping In a Microgravity Environment (DIME) contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here students from Sycamore High School in Cincinnati, Ohio, talk with Dr. Dennis Stocker, one of Glenn's lead microgravity scientists, about the uses of the drop tower. This image is from a digital still camera; higher resolution is not available.

  8. Using imaginative literature to foster cultural sensitivity.

    PubMed

    Newcomb, Patricia; Cagle, Carolyn; Walker, Charles

    2006-01-01

    Readings from two novels, Sandra Cisneros' The House on Mango Street and Toni Morrison's The Bluest Eye, were included in maternal-child clinical courses as part of a pilot project to identify potentially effective strategies for increasing student cultural sensitivity and reflective thinking skills. The authors analyzed student journals to determine student values and beliefs during maternal-child clinical experiences. The study sample consisted of 40 young women enrolled in a baccalaureate nursing program in a private, liberal arts university. These young women consistently interpreted ;the other' in their own image. They responded most strongly to themes of belonging, including the struggles of immigrants to ;fit in,' the ways of being acceptable and valued in U.S. society, and the process through which students as nurses learn to accept and care for others who are different.

  9. Dropping In a Microgravity Environment (DIME) contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. This is the interior of the Sycamore High School (Cincinnati, Ohio) students' experiment to observe the flame spreading on a 100 percent cotton T-shirt under low-g. This image is from a digital still camera; higher resolution is not available.

  10. Barriers and facilitators for integrating digital narratives in secondary school science instruction: A media specialist's action research study

    NASA Astrophysics Data System (ADS)

    Midland, Susan

    Media specialists are increasingly assuming professional development roles as they collaborate with teachers to design instruction that combines content with technology. I am a media specialist in an independent school, and collaborated with two science teachers over a three-year period to integrate technology with their instruction. This action study explored integration of a digital narrative project in three eighth-grade earth science units and one ninth-grade physics unit with each unit serving as a cycle of research. Students produced short digital documentaries that combined still images with an accompanying narration. Students participating in the project wrote scripts based on selected science topics. The completed scripts served as the basis for the narratives. These projects were compared with a more traditional science writing project. Barriers and facilitators for implementation of this type of media project in a science classroom were identified. Lack of adequate access to computers proved to be a significant mechanical barrier. Acquisition of a laptop cart reduced but did not eliminate the technology access issues. The complexity of the project increased implementation time in comparison with traditional alternatives. Evaluation of the completed media projects presented problems. Scores by outside evaluators reflected evaluator unfamiliarity with assessing multimedia projects rather than student performance. Despite several revisions of the assessment rubric, low inter-rater reliability remained a concern even in the last cycle. This suggests that evaluation of media could present issues for teachers who attempt projects of this kind. A writing frame was developed to facilitate production of scripts. This reduced the time required to produce the scripts, but produced writing that was formulaic in the teacher's estimate. A graphic organizer was adopted in the final cycle to address this concern. New insights emerged as the study progressed through the four cycles of the study. At the conclusion of the study, the two teachers and I had a better understanding of barriers that can prevent smooth integration of a technology-based project.

  11. Increasing Underrepresented Students in Geophysics and Planetary Science Through the Educational Internship in Physical Sciences (EIPS)

    NASA Astrophysics Data System (ADS)

    Terrazas, S.; Olgin, J. G.; Enriquez, F.

    2017-12-01

    The number of underrepresented minorities pursuing STEM fields, specifically in the sciences, has declined in recent times. In response, the Educational Internship in Physical Sciences (EIPS), an undergraduate research internship program in collaboration with The University of Texas at El Paso (UTEP) Geological Sciences Department and El Paso Community College (EPCC), was created; providing a mentoring environment so that students can actively engage in science projects with professionals in their field so as to gain the maximum benefits in an academic setting. This past year, interns participated in planetary themed projects which exposed them to the basics of planetary geology, and worked on projects dealing with introductory digital image processing and synthesized data on two planetary bodies; Pluto and Enceladus respectively. Interns harnessed and built on what they have learned through these projects, and directly applied it in an academic environment in solar system astronomy classes at EPCC. Since the majority of interns are transfer students or alums from EPCC, they give a unique perspective and dimension of interaction; giving them an opportunity to personally guide and encourage current students there on available STEM opportunities. The goal was to have interns gain experience in planetary geology investigations and networking with professionals in the field; further promoting their interests and honing their abilities for future endeavors in planetary science. The efficacy of these activities toward getting interns to pursue STEM careers, enhance their education in planetary science, and teaching key concepts in planetary geophysics are demonstrated in this presentation.

  12. [Evaporating Droplet and Imaging Slip Flows

    NASA Technical Reports Server (NTRS)

    Larson, R. G.

    2002-01-01

    In this report, we summarize work on Evaporating Droplet and Imaging Slip Flows. The work was primarily performed by post-doc Hue Hu, and partially by grad students Lei Li and Danish Chopra. The work includes studies on droplet evaporation and its effects on temperature and velocity fields in an evaporating droplet, new 3-D microscopic particle image velocimetry and direct visualization on wall slip in a surfactant solution. With the exception of the slip measurements, these projects were those proposed in the grant application. Instead of slip flow, the original grant proposed imaging electro-osmotic flows. However, shortly after the grant was issued, the PI became aware of work on electro-osmotic flows by the group of Saville in Princeton that was similar to that proposed, and we therefore elected to carry out work on imaging slip flows rather than electro-osmotic flows.

  13. INSPIRE

    NASA Technical Reports Server (NTRS)

    Taylor, Bill; Pine, Bill

    2003-01-01

    INSPIRE (Interactive NASA Space Physics Ionosphere Radio Experiment - http://image.gsfc.nasa.gov/poetry/inspire) is a non-profit scientific, educational organization whose objective is to bring the excitement of observing natural and manmade radio waves in the audio region to high school students and others. The project consists of building an audio frequency radio receiver kit, making observations of natural and manmade radio waves and analyzing the data. Students also learn about NASA and our natural environment through the study of lightning, the source of many of the audio frequency waves, the atmosphere, the ionosphere, and the magnetosphere where the waves travel.

  14. Research-Based Astronomy Workshops for Secondary School Students in Thailand

    NASA Astrophysics Data System (ADS)

    Rujopakarn, Wiphu; Kirdkao, Thagoon

    We present the results of the Learning Center for Earth Sciences and Astronomy (LESA). Thai-land organizes a series of research-based astronomical workshops for secondary school students in the country during 2006 present. The goal of LESA is to apply the research-based learn-ing approach to complement astronomy education, which has been included in the national curriculum since 2002, and to let students gain first-hand experience in astronomical research. Realization of research-based astronomical education in Thailand has long been held back by the limited availability of astronomical facilities in the country. We therefore developed work-shop modules for students using professional astronomical data generously made available to us through various collaborations and on-line archives. Two major difficulties we have overcame in developing these modules are, first, to seek research topics that are meaningful, inspiring, and can demonstrate the process of astronomical research with minimal background in astrophysics, and second, to find the software capable of processing large amounts of astronomical data, yet easily accessible for students. Our workshop modules centered on the basic research methods in observational astronomy, including astrometry, photometry, and spectroscopy. Data for these analysis modules were obtained through collaboration with various research groups, such as re-mote robotic telescopes access from the Robotic Optical Transient Search Experiment and the Las Cumbres Observatory Global Telescope Network, archival images from the Catalina Sky Survey, archival spectra from the Observatoire de Haute-Provence, and imaging and spectral data from the Sloan Digital Sky Survey. We adapt the raw data such that they can be accessed and analyzed with freely-available astronomical software such as the Iris or SAOImage ds9 and VSpec for imaging and spectral data, respectively. In each of the past five years, we have organized year-round workshops for students to carry out research projects using these modules and present their work in poster and oral presentations at our annual meetings. Examples of student projects are the search for variable stars and minor planets, light curve analyzes of variable stars and type Ia supernovae, spectral analyzes of stars and galaxies, and exoplanet searches using the radial velocity technique. To date, more than 80 students from 25 schools in Thailand have participated in our workshops. Our results demonstrate the feasibility of adapt-ing astronomical data or remotely available telescopes to carry out research-based education, despite the lack of locally available astronomical infrastructures.

  15. Scopes for Schools: What do students know about light and mirrors?

    NASA Astrophysics Data System (ADS)

    Stassun, K.; Fabian, D.; Brissenden, G.; Lattis, J.

    2002-05-01

    The 'Scopes for Schools Project is an inquiry- and standards-based program that unites K-12 teachers, students, and professional astronomers to conduct outreach, curriculum development, and teacher professional development in astronomy. The main activities of S4S ('Scopes for Schools) are a teacher professional development workshop to increase teachers' astronomy content and pedagogical content knowledge, provide modeled curriculum activities, and the physical materials needed for doing astronomy in the classroom. We then build low-cost, high-quaility Dobsonian telescopes in the classroom with the students supplemented with fun, collaborative, inquiry-based astronomy activities. Finally, we help support the new teacher partners by assisting with star parties and astronomy club development. Previously, the curriculum development aspects of S4S have focused on post-telescope building activities, but in an attempt to provide a clear understanding of the optical properties of a telescope, we have developed an activity that explores how light interacts with a bare mirror. By grades 6-8, we have observed strongly held alternative conceptions about sight, the nature of light, and its interaction with reflective surfaces. We specifically and rigorously address this problem and the Benchmark ``Something can be "seen" when light waves emitted or reflected by it enter the eye-just as something can be "heard" when sound waves from it enter the ear.'' (Project 2061) with an activity that encourages students to manipulate a mirror and a light source to discover how images are formed. Students also gain experience with multiple variables in an experiment and the idea that it may not be possible to prevent outside factors from influencing the experiment. We discuss how this ``mirror activity'' relates to the cognitive development of students, the standards, and the greater S4S project. The 'Scopes for Schools Project has recieved funding from the Wisconsin Space Grant Consortium and a Chandra EPO grant.

  16. Update on Improved Undergraduate Astronomy Laboratories with a Modern Telescope Control System

    NASA Astrophysics Data System (ADS)

    Jacobi, Ian; Broder, D.; Finn, R.; Milano, A. J.; Newberg, H.; Weatherwax, A.; Whittet, D.

    2007-12-01

    We are completing a cooperative astronomy education project designed to improve undergraduate laboratories at RPI (a PhD granting institution) and Siena College (a nearby liberal arts college). Following the overhaul of a 40-year-old, 16" B&C telescope on the RPI campus, we have made it available for use for hundreds of students at both schools and once per week to the public. This telescope has been integrated into studio-style, hands-on, inquiry-based laboratories designed to challenge student misconceptions. An assessment test was designed and distributed to the students taking the course at the beginning and end of the Fall 2007 semester, the results of which we compare to a baseline study undertaken in Fall 2006 and Spring 2007 to determine the efficacy of the laboratories in improving undergraduate astronomy education. In order to handle a large number of students using the main telescope and a limited number of smaller telescopes, we have cycled students through concurrent activites. This has been enabled by the rapid acquisition and imaging of targets made possible by the upgrade to the control system of our 16" telescope. We show preliminary results of the Fall 2007 assessments and comparisons to the baseline assessment. This project is funded by an NSF CCLI grant, 05-11340.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridge, Pete, E-mail: pete.bridge@qut.edu.au; Gunn, Therese; Kastanis, Lazaros

    A novel realistic 3D virtual reality (VR) application has been developed to allow medical imaging students at Queensland University of Technology to practice radiographic techniques independently outside the usual radiography laboratory. A flexible agile development methodology was used to create the software rapidly and effectively. A 3D gaming environment and realistic models were used to engender presence in the software while tutor-determined gold standards enabled students to compare their performance and learn in a problem-based learning pedagogy. Students reported high levels of satisfaction and perceived value and the software enabled up to 40 concurrent users to prepare for clinical practice.more » Student feedback also indicated that they found 3D to be of limited value in the desktop version compared to the usual 2D approach. A randomised comparison between groups receiving software-based and traditional practice measured performance in a formative role play with real equipment. The results of this work indicated superior performance with the equipment for the VR trained students (P = 0.0366) and confirmed the value of VR for enhancing 3D equipment-based problem-solving skills. Students practising projection techniques virtually performed better at role play assessments than students practising in a traditional radiography laboratory only. The application particularly helped with 3D equipment configuration, suggesting that teaching 3D problem solving is an ideal use of such medical equipment simulators. Ongoing development work aims to establish the role of VR software in preparing students for clinical practice with a range of medical imaging equipment.« less

  18. Special Education Delivery Alternatives: Changes Over Time in Teacher Ratings, Self-Image, Perceived Classroom Climate and Academic Achievement Among Handicapped and Nonhandicapped Children. Revised.

    ERIC Educational Resources Information Center

    Buffmire, Judy Ann

    A 4-year research project involving 342 handicapped and 202 nonhandicapped children (in grades 1 through 6) was conducted to determine the practicality and impact of assigning special educators to support regular classroom teachers (the stratistician-generalist model). Examined were the following variables: teacher ratings of the student; student…

  19. The Urgency of Visual Media Literacy in Our Post-9/11 World: Reading Images of Muslim Women in the Print News Media

    ERIC Educational Resources Information Center

    Watt, Diane Patricia

    2012-01-01

    A decade after the 9/11 attacks, educators concerned with social justice issues are faced with the question of how media representations powerfully constitute the subjectivities of teachers and students. The roles of Muslim women in society are often narrowly construed and projected via media cultures--an unofficial curriculum of the everyday much…

  20. REPORT OF CHICO STATE COLLEGE GRIDLEY FARM LABOR CAMP, SUMMER PROJECT (1964).

    ERIC Educational Resources Information Center

    HOWSDEN, ARLEY L.; AND OTHERS

    A SUMMER SCHOOL AND CHILD CARE CENTER WAS OPERATED BY CHICO STATE COLLEGE AT A FARM LABOR CAMP IN GRIDLEY, CALIFORNIA. THE SUMMER SCHOOL WAS TAUGHT BY COLLEGE STUDENTS AND OFFERED CLASSES AT ALL LEVELS. THESE CLASSES, WITH AN AVERAGE DAILY ATTENDANCE OF 68.15, SOUGHT A POSITIVE SELF-IMAGE AMOUNG THE MIGRANT CHILDREN BY RELATING TO THEM ON AN…

  1. Bringing Terra Science to the People: 10 years of education and public outreach

    NASA Astrophysics Data System (ADS)

    Riebeek, H.; Chambers, L. H.; Yuen, K.; Herring, D.

    2009-12-01

    The default image on Apple's iPhone is a blue, white, green and tan globe: the Blue Marble. The iconic image was produced using Terra data as part of the mission's education and public outreach efforts. As far-reaching and innovative as Terra science has been over the past decade, Terra education and public outreach efforts have been equally successful. This talk will provide an overview of Terra's crosscutting education and public outreach projects, which have reached into educational facilities—classrooms, museums, and science centers, across the Internet, and into everyday life. The Earth Observatory web site was the first web site designed for the public that told the unified story of what we can learn about our planet from all space-based platforms. Initially conceived as part of Terra mission outreach in 1999, the web site has won five Webby awards, the highest recognition a web site can receive. The Visible Earth image gallery is a catalogue of NASA Earth imagery that receives more than one million page views per month. The NEO (NASA Earth Observations) web site and WMS (web mapping service) tool serves global data sets to museums and science centers across the world. Terra educational products, including the My NASA Data web service and the Students' Cloud Observations Online (S'COOL) project, bring Terra data into the classroom. Both projects target multiple grade levels, ranging from elementary school to graduate school. S'COOL uses student observations of clouds to help validate Terra data. Students and their parents have puzzled over weekly "Where on Earth" geography quizzes published on line. Perhaps the most difficult group to reach is the large segment of the public that does not seek out science information online or in a science museum or classroom. To reach these people, EarthSky produced a series of podcasts and radio broadcasts that brought Terra science to more than 30 million people in 2009. Terra imagery, including the Blue Marble, have seen wide distribution in books like Our Changing Planet and films like An Inconvenient Truth. The Blue Marble, courtesy Reto Stockli and Rob Simmon, NASA's Earth Observatory.

  2. The EducEO project

    NASA Astrophysics Data System (ADS)

    Fritz, Steffen; Dias, Eduardo; Zeug, Guenther; Vescovi, Fabio; See, Linda; Sturn, Tobias; McCallum, Ian; Stammes, Piet; Snik, Frans; Hendriks, Elise

    2015-04-01

    The ESA funded EducEO project is aimed at demonstrating the potential of citizen science and crowdsourcing for Earth Observation (EO), where citizen science and crowdsourcing refer to the involvement of citizens in tasks such as data collection. The potential for using citizens in the calibration and validation of satellite imagery through in-situ measurements and image recognition is largely untapped. The EducEO project will aim to achieve good integration with networks such as GLOBE (primary and secondary education) and COST (higher education) to involve students in four different applications that will be piloted as part of the EducEO project. The presentation will provide a brief overview and initial results of these applications, which include: the iSpex tool for measuring air pollution using an iPhone; a game to classify cropland and deforested areas from high resolution satellite imagery; an application to monitor areas of forest change using radar data from Sentinel-1; and the collection of in-situ yield and production data from both farmers (using high-tech farming equipment) and students. In particular initial results and future potential of the serious game on land cover and forest change monitoring will be discussed.

  3. [Experiences of a nation-wide integrated program for healthy body weight among students].

    PubMed

    Liou, Yiing Mei; Chen, Mei-Yen; Chiang, Li-Chi; Chien, Li-Yin; Chang, Po-Lun; Hung, Yung-Tai

    2007-10-01

    Taiwan has good support systems for obesity prevention and management. The percentage of elementary school students with normal body weight, however, has undergone a sustained decrease to 55%. Many factors are associated with this trend, such as lack of physical activity, dissatisfaction with body image, unbalanced dietary pattern, and unsupportive environment. Even though the rate of overweight and obesity is under control, the rate of underweight among girls has undergone a sustained increase, to 28%. Nurses therefore organized the "Aid students to fit" project, which emphasizes the bipolar issue of overweight and underweight. This national project is sponsored by the Ministry of Education and is expected to establish a beneficial environment, in which students can easily adopt healthy lifestyles and increase self-esteem. The program incorporates the AID triangle concept (Active, Image, Diet) and five strategies for achieving the goals. These strategies are: 1. Develop a persuasive statement to fit in with the philosophies of parents, students and teachers. 2. Set up measurable behavior indices and slogans. (Active life: 210 minutes per week. Image: confident and elegant. Diet: balanced and wise choice of low fat and high fiber foods.) 3. Establish a nation-wide interactive surveillance system for body weight control. 4. Develop an internet system that emphasizes tailored case management for overweight students. 5. Develop a supportive teaching plan, material, and aids to promote a healthy school environment. Five modeling schools, moreover, can be used to demonstrate the program. Educators can also download a free teaching plan, material, and aids at the website for healthy weight management (www.ym.edu.tw/active/aid). The authors brought together scholars from eight universities to accomplish the program. In support of the program, the Taiwan Ministry of Education addressed the new recommendation for physical activity which is to engage in moderate intensity physical activity every day for 30 minutes. We also shared this unique Asian experience at the round table discussion addressing the practical and policy issues of implementing public health strategies to reduce physical inactivity and prevent obesity in children. This was hosted by the Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) Collaborating Center for Physical Activity in order to establish declarations and recommendations for the prevention of obesity in children.

  4. My Summer Internship at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Philpott, Hobert Leon

    2011-01-01

    During my summer internship at Kennedy Space Center, I worked on several projects with my mentor Grace Johnson in the Education Programs Office. My primary project was the CubeSat project in which my job was to help mentor Merritt Island High School students in the building of a CubeSat. CubeSats are picosatellites that are used to carry out auxiliary missions; they "piggy back" into orbit on launch vehicles launching primary missions. CubeSats come in the sizes of 1U (10 by 10 by 10 cm) 2U (1Ux2) and 3U (1Ux3). The Cube Sats are housed in a protective deploying device called a Poly Picosatellite Orbital Deplored (P-POD). I also participated in a Balloon Workshop with the MIHS students. This was an intense 4-day project in which we constructed a balloon satellite equipped with a camera whose main goal was to obtain video images of the curvature of the earth at high altitudes and relay it back down to our ground station. I also began developing my own science research program for minority serving institutions to be implemented when funding becomes available. In addition to the projects that I completed during my internship, I got the opportunity to go on various tours of the technological facilities here at Kennedy Space Center.

  5. Yes, High School Students Can Analyze Chandra Data

    NASA Astrophysics Data System (ADS)

    Keohane, J. W.; Clearfield, C. R.; Olbert, C. M.

    2002-12-01

    For the past two years, high school students at the North Carolina School of Science and Math (NCSSM) have worked with new and archival Chandra data, and have produced interesting scientific results. These results have included one refereed paper in the Ap.J., and about a dozen presentations at scientific meetings (including three at this meeting). The students were selected, based on interest, from the junior class at NCSSM, to stay on campus and work intensively for 2 to 4 weeks over the summer. Each team of students selected an object with public Chandra ACIS data, and were taught how to produce data products such as images and spectra, as well as conduct a literature search. In most cases, a paper had already been published using those data, and the students were usually able to reproduce the results. As the students waded through the literature, they would search for a theory to test or an interesting new phenomenon. Often the students would request an image in another wavelength to compare in detail to the Chandra data. After the summer, many students continued to work throughout the following fall semester, producing a paper for submission to the Siemens Westinghouse Science and Technology Competition by the beginning of October. In the process of conducting research, the students learn to apply many physics concepts, and learn valuable scientific research and writing skills. Those students that choose to continue with astrophysics can often dive directly into a high-level research project immediately when they arrive at college. These programs have been funded by NASA, through E/PO grants attached to parent research grants.

  6. Fostering research skills in undergraduate medical students through mentored students projects: example from an Indian medical school.

    PubMed

    Devi, V; Abraham, R R; Adiga, A; Ramnarayan, K; Kamath, A

    2010-01-01

    Healthcare decision-making is largely reliant on evidence-based medicine; building skills in scientific reasoning and thinking among medical students becomes an important part of medical education. Medical students in India have no formal path to becoming physicians, scientists or academicians. This study examines students' perceptions regarding research skills improvement after participating in the Mentored Student Project programme at Melaka Manipal Medical College, Manipal Campus, India. Additionally, this paper describes the initiatives taken for the continual improvement of the Mentored Student Project programme based on faculty and student perspectives. At Melaka Manipal Medical College, Mentored Student Project was implemented in the curriculum during second year of Bachelor of Medicine and Bachelor of Surgery programme with the intention of developing research skills essential to the career development of medical students. The study design was cross-sectional. To inculcate the spirit of team work students were grouped (n=3 to 5) and each group was asked to select a research project. The students' research projects were guided by their mentors. A questionnaire (Likert's five point scale) on students' perceptions regarding improvement in research skills after undertaking projects and guidance received from the mentor was administered to medical students after they had completed their Mentored Student Project. The responses of students were summarised using percentages. The median grade with inter-quartile range was reported for each item in the questionnaire. The median grade for all the items related to perceptions regarding improvement in research skills was 4 which reflected that the majority of the students felt that Mentored Student Project had improved their research skills. The problems encountered by the students during Mentored Student Project were related to time management for the Mentored Student Project and mentors. This study shows that students acknowledged that their research skills were improved after participating in the Mentored Student Project programme. The Mentored Student Project programme was successful in fostering positive attitudes among medical students towards scientific research. The present study also provides scope for further improvement of the Mentored Student Project programme based on students' and faculty perspectives.

  7. Dissonance-based prevention of eating disorder risk factors in middle school girls: results from two pilot trials.

    PubMed

    Rohde, Paul; Auslander, Beth A; Shaw, Heather; Raineri, Kate M; Gau, Jeff M; Stice, Eric

    2014-07-01

    Although several eating disorder prevention programs reduce eating disorder risk factors and symptoms for female high school and college students, few efficacious prevention programs exist for female middle school students, despite the fact that body image and eating disturbances often emerge then. Two pilot trials evaluated a new dissonance-based eating disorder prevention program for middle school girls with body image concerns. Female middle school students with body dissatisfaction from two sites [Study 1: N = 81, M age = 12.1, standard deviation (SD) = 0.9; Study 2: N = 52, M age = 12.5, SD = 0.8] were randomized to a dissonance intervention (MS Body Project) or educational brochure control; Study 2 included a 3-month follow-up. Intervention participants showed significant post-test reductions in only one of the six variables with both Studies 1 and 2 (i.e., pressure to be thin and negative affect, respectively), though post-test effect sizes suggested medium reductions in eating disorder risk factors and symptoms (Study 1: M d = .40; Study 2: M d = .65); reductions at 3-month follow-up in Study 2 were not evident (M d = .19). Results suggest that this new middle school version of the Body Project is producing medium magnitude reductions in eating disorder risk factors at post-test but that effects are showing limited persistence. Continued refinement and evaluation of this intervention appears warranted to develop more effective prevention programs for this age group. © 2014 Wiley Periodicals, Inc.

  8. Technology as a Tool for Understanding: a Pipeline of Curriculum-based Programs for Grades 4 to high school

    NASA Astrophysics Data System (ADS)

    Schuster, G.

    2006-05-01

    New NASA-funded educational initiatives make for a pipeline of products meeting the needs of today's educators in inner city schools, for NASA Explorer Schools and across the nation. Three projects include training and include: 1) WDLC [Weather Data Learning Center] , a math achievement program with data entry, inquiry-based investigations, and the application of math using weather maps and imagery for Grade 4; 2) Project 3D-VIEW, where students in Grades 5 and 6 become experts in air, life, water, land and Earth systems using 3D technologies requiring 3D glasses. A formal literacy and math piece are included, and 1200 teachers will be provided training and materials free beginning in Fall 2006, and 3) Signals of Spring, where students in Grades 7 to 8, or high school, use NASA data to explain the movement of dozens of birds, land and marine animals that are tracked by satellite. Comprehensive content in life and Earth science is taught with curricular activities, interactive mapping, image interpretation, and online journals and common misconceptions are dispelled. Scientist involvement and support for a project is essential for students who are developing process skills and performing science activities. Current research partners include Columbia University's Teachers College and Stanford University's School of Education.

  9. Bringing Space Science to the Undergraduate Classroom: NASA's USIP Mission

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Christian, J. A.; Keesee, A. M.; Spencer, E. A.; Gross, J.; Lusk, G. D.

    2015-12-01

    As part of its participation in NASA's Undergraduate Student Instrument Project (USIP), a team of engineering and physics students at West Virginia University (WVU) built a series of sounding rocket and balloon missions. The first rocket and balloon missions were flown near-simultaneously in a campaign on June 26, 2014 (image). The second sounding rocket mission is scheduled for October 5, 2015. Students took a course on space science in spring 2014, and followup courses in physics and aerospace engineering departments have been developed since then. Guest payloads were flown from students affiliated with WV Wesleyan College, NASA's IV&V Facility, and the University of South Alabama. Students specialized in electrical and aerospace engineering, and space physics topics. They interacted regularly with NASA engineers, presented at telecons, and prepared reports. A number of students decided to pursue internships and/or jobs related to space science and technology. Outreach to the campus and broader community included demos and flight projects. The physics payload includes plasma density and temperature measurements using a Langmuir and a triple probe; plasma frequency measurements using a radio sounder (WVU) and an impedance probe (U.S.A); and a magnetometer (WVWC). The aerospace payload includes an IMU swarm, a GPS experiment (with TEC capability); a cubesat communications module (NASA IV&V), and basic flight dynamics. Acknowledgments: staff members at NASA Wallops Flight Facility, and at the Orbital-ATK Rocket Center, WV.

  10. The Farid & Moussa Raphael Observatory

    NASA Astrophysics Data System (ADS)

    Hajjar, R.

    2017-06-01

    The Farid & Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory.

  11. Use of Openly Available Satellite Images for Remote Sensing Education

    NASA Astrophysics Data System (ADS)

    Wang, C.-K.

    2011-09-01

    With the advent of Google Earth, Google Maps, and Microsoft Bing Maps, high resolution satellite imagery are becoming more easily accessible than ever. It have been the case that the college students may already have wealth experiences with the high resolution satellite imagery by using these software and web services prior to any formal remote sensing education. It is obvious that the remote sensing education should be adjusted to the fact that the audience are already the customers of remote sensing products (through the use of the above mentioned services). This paper reports the use of openly available satellite imagery in an introductory-level remote sensing course in the Department of Geomatics of National Cheng Kung University as a term project. From the experience learned from the fall of 2009 and 2010, it shows that this term project has effectively aroused the students' enthusiastic toward Remote Sensing.

  12. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Sandi Thompson of the National Center for Microgravity Research GRC makes a final adjustment to the drop package. This image is from a digital still camera; higher resolution is not available.

  13. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Meredith Mendenhall of Sycamore High School, Cincinnati, Ohio, flips on a tape recorder in preparation for a drop. This image is from a digital still camera; higher resolution is not available.

  14. The International Space Station (ISS) Education Accomplishments and Opportunities

    NASA Technical Reports Server (NTRS)

    Alleyne, Camille W.; Blue, Regina; Mayo, Susan

    2012-01-01

    The International Space Station (ISS) has the unique ability to capture the imaginations of both students and teachers worldwide and thus stands as an invaluable learning platform for the advancement of proficiency in research and development and education. The presence of humans on board ISS for the past ten years has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM) disciplines which will lead to an increase in quality of teachers, advancements in research and development, an increase in the global reputation for intellectual achievement, and an expanded ability to pursue unchartered avenues towards a brighter future. Over 41 million students around the world have participated in ISS-related activities since the year 2000. Projects such as the Amateur Radio on International Space Station (ARISS) and Earth Knowledge Acquired by Middle School Students (EarthKAM), among others, have allowed for global student, teacher, and public access to space through radio contacts with crewmembers and student image acquisition respectively. . With planned ISS operations at least until 2020, projects like the aforementioned and their accompanying educational materials will be available to enable increased STEM literacy around the world. Since the launch of the first ISS element, a wide range of student experiments and educational activities have been performed by each of the international partner agencies: National Aeronautics and Space Administration (NASA), Canadian Space Agency (CSA), European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA) and Russian Federal Space Agency (Roscosmos). Additionally, a number of non-participating countries, some under commercial agreements, have also participated in Station-related activities. Many of these programs still continue while others are being developed and added to the station crewmembers tasks on a regular basis. These diverse student experiments and programs fall into one of the following categories: student-developed experiments; students performing classroom versions of ISS experiments; students participating in ISS investigator experiments; students participating in ISS engineering education; education demonstrations and cultural activities. This paper summarizes some of the main student experiments and educational activities that have been conducted on the ISS. It also highlights some upcoming projects.

  15. REXUS/BEXUS: launching student experiments -a step towards a stronger space science community

    NASA Astrophysics Data System (ADS)

    Fittock, Mark; Stamminger, Andreas; Maria, Roth; Dannenberg, Kristine; Page, Helen

    The REXUS/BEXUS (Rocket/Balloon Experiments for University Students) programme pro-vides opportunities to teams of European student scientists and engineers to fly experiments on sounding rockets and high altitude balloons. This is an opportunity for students and the scientific community to benefit from encouragement and support for experiments. An important feature of the programme is that the students experience a full project life-cycle which is typically not a part of their university education and which helps to prepare them for further scientific work. They have to plan, organize, and control their project in order to develop and build up an experiment but must also work on the scientic aspects. Many of the students continue to work in the field on which they focused in the programme and can often build upon both the experience and the results from flight. Within the REXUS/BEXUS project cycle, they are encouraged to write and present papers about their experiments and results; increasing amounts of scientific output are seen from the students who participate. Not only do the students learn and develop from REXUS/BEXUS but the scientific community also reaps significant benefits. Another major benefit of the programme is the promotion that the students are able to bring to the whole space community. Not only are the public made more aware of advanced science and technical concepts but an advantage is present in the contact that the students who participate have to other university level students. Students are less restricted in their publicity and attract large public followings online as well as presenting themselves in more traditional media outlets. Many teams' creative approach to outreach is astonishing. The benefits are not only for the space science community as a whole; institutes, universities and departments can see increased interest following the support of participating students in the programme. The programme is realized under a bilateral Agency Agreement between the German Aerospace Center (DLR) and the Swedish National Space Board (SNSB). The Swedish share of the payload has been made available to students from other European countries through collaboration with the European Space Agency (ESA). EuroLaunch, a cooperation between the Esrange Space Center of the Swedish Space Corporation (SSC) and the Mobile Rocket Base (MORABA) of DLR, is responsible for the campaign management and operations of the launch vehicles. Project coordination is carried out at DLR's Institute of Space Systems and SSC's Esrange. Experts from DLR, SSC and ESA provide technical support to the student teams throughout their project cycles. The REXUS/BEXUS programme has been carried out in its current format since 2007. In that time, it has developed significantly, building upon strengths to provide a richer experience and increasing the educational, scientific, and promotional outputs. The programme is now showing the potential for students to reach out to a truly broad audience and promote the space science community with youthful enthusiasm and an accessible image.

  16. [Computer simulation of a clinical magnet resonance tomography scanner for training purposes].

    PubMed

    Hackländer, T; Mertens, H; Cramer, B M

    2004-08-01

    The idea for this project was born by the necessity to offer medical students an easy approach to the theoretical basics of magnetic resonance imaging. The aim was to simulate the features and functions of such a scanner on a commercially available computer by means of a computer program. The simulation was programmed in pure Java under the GNU General Public License and is freely available for a commercially available computer with Windows, Macintosh or Linux operating system. The graphic user interface is oriented to a real scanner. In an external program parameter, images for the proton density and the relaxation times T1 and T2 are calculated on the basis of clinical examinations. From this, the image calculation is carried out in the simulation program pixel by pixel on the basis of a pulse sequence chosen and modified by the user. The images can be stored and printed. In addition, it is possible to display and modify k-space images. Seven classes of pulse sequences are implemented and up to 14 relevant sequence parameters, such as repetition time and echo time, can be altered. Aliasing and motion artifacts can be simulated. As the image calculation only takes a few seconds, interactive working is possible. The simulation has been used in the university education for more than 1 year, successfully illustrating the dependence of the MR images on the measuring parameters. This should facititate the approach of students to the understanding MR imaging in the future.

  17. A Planetary System Exploration Project for Introductory Astronomy and Astrobiology Courses

    NASA Astrophysics Data System (ADS)

    Rees, Richard F.

    2015-01-01

    I have created three-part projects for the introductory astronomy and astrobiology courses at Westfield State University which simulate the exploration of a fictional planetary system. The introductory astronomy project is an initial reconnaissance of the system by a robotic spacecraft, culminating in close flybys of two or three planets. The astrobiology project is a follow-up mission concluding with the landing of a roving lander on a planet or moon. Student responses in earlier parts of each project can be used to determine which planets are targeted for closer study in later parts. Highly realistic views of the planets from space and from their surfaces can be created using programs such as Celestia and Terragen; images and video returned by the spacecraft are thus a highlight of the project. Although designed around the particular needs and mechanics of the introductory astronomy and astrobiology courses for non-majors at WSU, these projects could be adapted for use in courses at many different levels.

  18. Dropping In a Microgravity Environment (DIME) contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here Carol Hodanbosi of the National Center for Microgravity Research and Jose Carrion, a lab mechanic with AKAC, prepare a student experiment package (inside the silver-colored frame) inside the orange-colored drag shield that encloses all experiment hardware. This image is from a digital still camera; higher resolution is not available.

  19. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here Carol Hodanbosi of the National Center for Microgravity Research and Jose Carrion, a lab mechanic with AKAC, prepare a student experiment package (inside the silver-colored frame) inside the orange-colored drag shield that encloses all experiment hardware. This image is from a digital still camera; higher resolution is not available.

  20. Conceptual astronomy. II. Replicating conceptual gains, probing attitude changes across three semesters

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy

    1999-10-01

    We report on a long-term, large-scale study of a one-semester, conceptually based, introductory astronomy course with data from more than 400 students over three semesters at the University of New Mexico. Using traditional and alternative assessment tools developed for the project, we examined the pre- and postcourse results for Fall 1994, Spring 1995, and Fall 1995. We find our results are robust: novice students show large, positive gains on assessments of conceptual understanding and connected understanding of the knowledge structure of astronomy. We find no relationship between course achievement and completion of prior courses in science or math; we do find a small to moderate relationship between students' science self-image and course achievement. Also, we detect little change over each semester in students' mildly positive incoming attitudes about astronomy and science.

  1. Simplifying structure analysis projects with customizable chime-based templates*.

    PubMed

    Thompson, Scott E; Sears, Duane W

    2005-09-01

    Structure/function relationships are fundamental to understanding the properties of biological molecules, and thus it is imperative that biochemistry students learn how to analyze such relationships. Here we describe Chime-based web page templates and tutorials designed to help students develop their own strategies for exploring macromolecular three-dimensional structures like those on our course website. The templates can easily be customized for any structure of interest, and some templates include a Command Entry Line and a Message Recall Box for more refined macromolecular exploration using RasMol/Chime image modification commands. The tutorials present students with an integrated overview of the image modification capabilities of the Chime plug-in and its underlying RasMol-based command structure as accessed through the Command Entry Line. The tutorial also illustrates how RasMol/Chime command syntax addresses specific formatted structural information in a standard Protein Data Bank file. Judging by the high quality of structure-based presentations given by students who have used these templates and tutorials, it appears that these resources can help students learn to analyze complex macromolecular structures while also providing them with convenient tools for creating scientifically meaningful and visually effective molecular images to share with others. (The templates, tutorials, and our course website can be viewed at the following URLs, respectively: tutor.lscf.ucsb.edu/instdev/sears/biochemistry/presentations/demos-downloads.htm, tutor.lscf.ucsb.edu/instdev/sears/biochemistry/tutorials/pdbtutorial/frontwindow.html, and tutor.lscf.ucsb.edu/instdev/sears/biochemistry/.). Copyright © 2005 International Union of Biochemistry and Molecular Biology, Inc.

  2. E-learning in radiology: an Italian multicentre experience.

    PubMed

    Carriero, A; Bonomo, L; Calliada, F; Campioni, P; Colosimo, C; Cotroneo, A; Cova, M; Ettorre, G C; Fugazzola, C; Garlaschi, G; Macarini, L; Mascalchi, M; Meloni, G B; Midiri, M; Mucelli, R Pozzi; Rossi, C; Sironi, S; Torricelli, P; Beomonte, B Zobel; Zompatori, M; Zuiani, C

    2012-12-01

    The aim of this study was to design, deliver and evaluate an e-learning teaching programme for post-graduate radiodiagnostics training that would involve various post-graduate schools throughout Italy. All of the Directors of Italian post-graduate schools of radiodiagnostics were sent an e-mail on 27 September 2010 informing them of our willingness to set up an e-learning project for the academic year 2010-2011 in the form of single-subject teaching seminars. The proposed subjects were the semeiotics of the various organs and apparatuses in the context of "Urgent/Emergency Pathology". After having received registrations, a calendar of lessons was planned to be held between 10 November 2010 and 12 October 2011. The validity of the project was tested by means of a multiple-choice questionnaire covering the technical and didactic quality of the entire project, to be completed by the students. Fifty-one percent of the universities in Italy participated in the project: Trieste, Udine, Verona, Milan-Bicocca, Novara, Varese, Genoa, Sassari, Rome Campus, the Catholic University of Rome, Chieti, Foggia, Catania, Modena, Florence, Palermo, Bologna, Pavia, Parma and Ferrara. The lessons were attended by a total of 10,261 post-graduate medical students, for an average of 513.1 students per lesson. Seventy percent of the students judged the didactic content "excellent", 25% "good", and 5% "satisfactory"; none said it was unsatisfactory. In terms of visual quality (particularly the details of the radiological images proposed in the form of slides and/or video clips), 73% judged it "excellent", 20% "good", 6% "satisfactory", and 1% "poor". The audio quality was judged "excellent" by 71%, "good" by 22%, "satisfactory" by 6% and "poor" by 1%. In relation to judgement of audio and video quality, it has to be underlined that this was greatly affected by the hardware/software configuration and the band speed and technology of the Internet connection. Technological evolution is overcoming all barriers, and technology is also having a positive impact on the approach to teaching. Our multicentre teaching experience merits the following considerations: the quality of the teaching product was certified by the students' judgements of its didactic content and the quality of reception; the economic cost of the teaching had a minimal impact on the post-graduate schools (€ 18 per lesson). In terms of breaking down national barriers, it is to be hoped that the coordination and integration of diagnostic imaging e-learning projects, with the participation of post-graduate schools in different European countries, can be developed not only in a spirit of "cultural sharing" and the exchange of teaching experiences. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. A Killer Asteroids Research Project for Undergraduate Non-Majors

    NASA Astrophysics Data System (ADS)

    Puckett, Andrew W.; Rector, T. A.

    2009-01-01

    We present a progress report on the development and testing of our Killer Asteroids Research Project, which enables the assessment of asteroid impact risk in the undergraduate classroom. This is part of an NSF CCLI grant to develop Research Based Science Education (RBSE) curricula for non-majors. Our curricula include six projects covering astrometric, photometric, and spectroscopic techniques, which are being tested at multiple schools of varying sizes around the country. We report on the second semester of testing this project with undergraduates at the University of Alaska Anchorage. Students use our Polaris Plugin for ImageJ to perform both astrometry and aperture photometry on research-grade astronomical images. The output is fed into Find_Orb, which uses a Monte Carlo method to compute orbital elements for thousands of possible orbits. The resulting orbit database is then fed into a planetarium program, which allows students to visualize the uncertainty region and to observe how that region changes with time and/or additional data. For potentially hazardous asteroids, impact risk is assessed by counting the number of "clone” orbits that strike a planet's surface. Alternatively, the output from our plugin can be used directly to measure the lightcurves of minor planets, leading to an improved understanding of their shapes. This plugin is the first FITS reader to produce correct time-stamps for minor planet observations found in the SDSS, which observes in drift-scan mode. Recent progress is promising. We are in dialogue with software engineers behind both Starry Night and Guide, helping to improve these planetarium programs as research tools. We are also constantly improving the Polaris Plugin, most recently to make it compatible with the astrometry format used by the websites NeoDys and AstDys.

  4. The Perkins Telescope in the 21st Century: An NSF PREST Project

    NASA Astrophysics Data System (ADS)

    Janes, K. A.; Buie, M. W.; Bosh, A. S.; Clemens, D. P.; Jackson, J. M.

    2005-12-01

    With the help of a grant under the NSF "Program for Research and Education with Small Telescopes (PREST)," Boston University and Lowell Observatory are engaged in a project to improve the performance of the 1.83-meter Perkins Telescope on Anderson Mesa near Flagstaff, Arizona. Our goal is to bring the Perkins Telescope into the 21st century, to create effective resources in support of the scientific and educational missions of our two institutions and the larger community. Over the past several years we have re-instrumented the telescope; two facility-class instruments, Mimir, a wide-field infrared imager, polarimeter and spectrometer and PRISM, an optical counterpart, are now in operation at the Perkins Telescope. The new instrumentation at the Perkins will give our partnership and visiting observers access to an important niche in "observation space" not readily available elsewhere. Wide-field polarimetry and imaging and multi-object low-resolution spectroscopy are now possible across the spectrum from the near uv to the thermal IR. We are well-placed for surveys and synoptic studies, ranging from monitoring polarization variations in blazars to mapping the galactic magnetic field to tracking Kuiper-belt objects. Our PREST project includes four components: Thermal management to improve the seeing at the telescope, upgrades to the instrumentation, productivity enhancements to the facility, and integration of the Boston University access to the telescope into our graduate and undergraduate educational programs. In the first year of the PREST grant we have set up a visitor program (see www.lowell.edu/VisitingObservers/), established a graduate-student-in-residence program, installed fans and ductwork around the telescope and dome to improve seeing, and completed a student-led project to construct an innovative grism for optical spectroscopy based on a volume-phase holographic grating.

  5. Earth observation images taken as part of the EarthKAM educational program

    NASA Image and Video Library

    2000-02-13

    S99-E-5267 (13 February 2000) --- City of El Paso, Texas, and Ciudad Juarez, Chihuahua, Mexico and the Rio Grande River, which separates them. An electronic still camera (ESC), mounted in one of Endeavour's aft flight deck windows, is recording imagery of hundreds of Earth targets for the EarthKAM project. Students across the United States and in France, Germany and Japan are taking photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more. For general EarthKAM information and more images from this flight, go to http://www.earthkam.ucsd.edu/

  6. Permanent magnet-based MRI

    NASA Astrophysics Data System (ADS)

    Cole, David Mitchell

    1997-10-01

    The principal goal of this project is to design and build a low-cost, imaging quality permanent magnet, together with the requisite shim, gradient, and radiofrequency coils, and to integrate the magnet with an existing imaging station. There are commercial products presently available that are very similar to this imager, but information about these products is proprietary. We present here all of the details concerning the design and the manufacturing process for constructing the permanent magnet, and include suggestions for improvement. Specifically, the prototype has a mass of about 150 kilograms and is therefore portable. It's C-type geometry allows maximum access to the imaging region, which is an oblate sphere about 0.5 inches in diameter centered in a 4.7 inch air gap between two seven-inch diameter polefaces. It is hoped that this imaging magnet will serve as the prototype for a series of larger versions that will be clinically useful and affordable to physicians in developing nations. To this end, scientists in the United States and Mexico have begun to collaborate with the intention to create an MRI institute in Mexico that will train new students in this discipline, and fabricate improved imagers. The prototype resulting from this work will seed the creation of this institute, and is intended to entice students into the study of MRI by enabling hands-on interaction with an otherwise prohibitively expensive instrument.

  7. Workshop on active learning: two examples

    NASA Astrophysics Data System (ADS)

    Ben Lakhdar, Zohra; Lahmar, Souad; Lakshminarayanan, Vasudevan

    2014-07-01

    Optics is an enabling science that has far ranging importance in many diverse fields. However, many students do not find it to be of great interest. A solution to this problem is to train teachers in active learning methodologies so that the subject matter can be presented to generate student interest. We describe a workshop to present an example of an active learning process in Optics developed for training of teachers in developing countries (a UNESCO project) and will focus on 2 two different activities: 1. Interference and diffraction is considered by students as being very hard to understand and is taught in most developing countries as purely theoretical with almost no experiments. Simple experiments to enhance the conceptual understanding of these wave phenomena will be presented and 2. Image formation by the eye. Here we will discuss myopia, hyperopia and astigmatism as well as accommodation. In this module we will discuss image. The objective of the workshop will be to provide an experience of the use of the active learning method in optics including the use of experiments, mind's on and hands-on exercises, group and class discussions

  8. Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography.

    PubMed

    Hellbach, Katharina; Baehr, Andrea; De Marco, Fabio; Willer, Konstantin; Gromann, Lukas B; Herzen, Julia; Dmochewitz, Michaela; Auweter, Sigrid; Fingerle, Alexander A; Noël, Peter B; Rummeny, Ernst J; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Wieberneit, Nataly; Proksa, Roland; Koehler, Thomas; Rindt, Karsten; Schroeter, Tobias J; Mohr, Juergen; Bamberg, Fabian; Ertl-Wagner, Birgit; Pfeiffer, Franz; Reiser, Maximilian F

    2018-02-08

    The aim of this study was to assess the diagnostic value of x-ray dark-field radiography to detect pneumothoraces in a pig model. Eight pigs were imaged with an experimental grating-based large-animal dark-field scanner before and after induction of a unilateral pneumothorax. Image contrast-to-noise ratios between lung tissue and the air-filled pleural cavity were quantified for transmission and dark-field radiograms. The projected area in the object plane of the inflated lung was measured in dark-field images to quantify the collapse of lung parenchyma due to a pneumothorax. Means and standard deviations for lung sizes and signal intensities from dark-field and transmission images were tested for statistical significance using Student's two-tailed t-test for paired samples. The contrast-to-noise ratio between the air-filled pleural space of lateral pneumothoraces and lung tissue was significantly higher in the dark-field (3.65 ± 0.9) than in the transmission images (1.13 ± 1.1; p = 0.002). In case of dorsally located pneumothoraces, a significant decrease (-20.5%; p > 0.0001) in the projected area of inflated lung parenchyma was found after a pneumothorax was induced. Therefore, the detection of pneumothoraces in x-ray dark-field radiography was facilitated compared to transmission imaging in a large animal model.

  9. CosmoQuest: Making the public your students and collaborators

    NASA Astrophysics Data System (ADS)

    Gay, Pamela; Buxner, Sanlyn; Grier, Jennifer; Richardson, Matthew; CosmoQuest Team

    2018-01-01

    CosmoQuest is a second generation citizen science project that makes it possible for NASA Subject Matter Experts to engage the public as both learners and collaborators in research. Engaging the public in publishable science is termed “Citizen Science.” This is a powerful technique for accomplishing research projects and tasks that require many minds and eyes to complete. While some projects may use undergraduates for help, others simply have too many images or too much data for a small population to sort through. CosmoQuest is a platform that enables scientists to take advantage of already existing science tools to engage the public in their research and to acquire the data analysis they need. Citizen scientists, like students, need their experience properly scaffolded to their understanding, and they require mentoring and training to succeed.This presentation focuses on methods for focusing research projects for successful citizen science engagement, and determining what scaffolding must be built to support citizen education and engagement.This presentation will help you understand how to transform your research project into a successful citizen science engagement. We will also present a flowchart to help you define: what is required, how to focus on what science does and doesn’t work, and what support your project requires. The content presented will allow you to successfully implement a project within the CosmoQuest facility, and determine what educational support you should provide or request aid to provide.

  10. An Undergraduate Student Instrumentation Project (USIP) to Develop New Instrument Technology to Study the Auroral Ionosphere and Stratospheric Ozone Layer Using Ultralight Balloon Payloads

    NASA Astrophysics Data System (ADS)

    Nowling, M.; Ahmad, H.; Gamblin, R.; Guala, D.; Hermosillo, D.; Pina, M.; Marrero, E.; Canales, D. R. J.; Cao, J.; Ehteshami, A.; Bering, E. A., III; Lefer, B. L.; Dunbar, B.; Bias, C.; Shahid, S.

    2015-12-01

    This project is currently engaging twelve undergraduate students in the process of developing new technology and instrumentation for use in balloon borne geospace investigations in the auroral zone. Motivation stems from advances in microelectronics and consumer electronic technology. Given the technological innovations over the past 20 years it now possible to develop new instrumentation to study the auroral ionosphere and stratospheric ozone layer using ultralight balloon payloads for less than 6lbs and $3K per payload. The University of Houston Undergraduate Student Instrumentation Project (USIP) team has built ten such payloads for launch using 1500 gm latex weather balloons deployed in Houston, TX, Fairbanks, AK, and as well as zero pressure balloons launched from northern Sweden. The latex balloon project will collect vertical profiles of wind velocity, temperature, electrical conductivity, ozone, and odd nitrogen. This instrument payload will also produce profiles of pressure, electric field, and air-earth electric current. The zero pressure balloons will obtain a suite of geophysical measurements including: DC electric field, electric field and magnetic flux, optical imaging, total electron content of ionosphere via dual-channel GPS, X-ray detection, and infrared/UV spectroscopy. Students flew payloads with different combinations of these instruments to determine which packages are successful. Data collected by these instruments will be useful in understanding the nature of electrodynamic coupling in the upper atmosphere and how the global earth system is changing. Twelve out of the launched fifteen payloads were successfully launched and recovered. Results and best practices learned from lab tests and initial Houston test flights will be discussed.

  11. Shifting Engagements in Figured Worlds: Middle School Mathematics Students' Participation in an Architectural Design Project

    ERIC Educational Resources Information Center

    Jurow, A. Susan

    2005-01-01

    Project-based curricula have the potential to engage students' interests. But how do students become interested in the goals of a project? This article documents how a group of 8th-grade students participated in an architectural design project called the Antarctica Project. The project is based on the imaginary premise that students need to design…

  12. Real-time teleteaching in medical physics

    PubMed Central

    Woo, M; Ng, KH

    2008-01-01

    Medical physics is a relatively small professional community, usually with a scarcity of expertise that could greatly benefit students entering the field. However, the reach of the profession can span great geographical distances, making the training of students a difficult task. In addition to the requirement of training new students, the evolving field of medical physics, with its many emerging advanced techniques and technologies, could benefit greatly from ongoing continuing education as well as consultation with experts. Many continuing education courses and workshops are constantly being offered, including many web-based study courses and virtual libraries. However, one mode of education and communication that has not been widely used is the real-time interactive process. Video-based conferencing systems do exist, but these usually require a substantial amount of effort and cost to set up. The authors have been working on promoting the ever-expanding capability of the Internet to facilitate the education of medical physics to students entering the field. A pilot project has been carried out for six years and reported previously. The project is a collaboration between the Department of Medical Physics at the Toronto Odette Cancer Centre in Canada and the Department of Biomedical Imaging at the University of Malaya in Malaysia. Since 2001, medical physics graduate students at the University of Malaya have been taught by lecturers from Toronto every year, using the Internet as the main tool of communication. The pilot study explored the different methods that can be used to provide real-time interactive remote education, and delivered traditional classroom lectures as well as hands-on workshops. Another similar project was started in 2007 to offer real-time teaching to a class of medical physics students at Wuhan University in Hubei, China. There are new challenges as well as new opportunities associated with this project. By building an inventory of tools and experiences, the intent is to broaden the real-time teleteaching method to serve a wide community so that future students entering the field can have efficient access to high-quality education that will benefit the profession in the long term. PMID:21614306

  13. Whiteboards at Your Service: Interactive Whiteboards Can Assist Teachers, Students, Trainers, and District Office Personnel

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2007-01-01

    Interactive whiteboards have made quite a splash in classrooms in recent years. When a computer image is projected on the whiteboard using an LCD projector, users can directly control the computer from the whiteboard. In some systems such as Smart and Mimio, the finger is used in place of a mouse to open and run programs or move windows around. In…

  14. Sally Ride EarthKAM: 15 Years of STEM Education and Outreach from Aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Finley, T.; Griffin, R.; Klug, T.; Harbour, S.; Au, B.; Graves, S. J.

    2016-12-01

    Sally Ride EarthKAM @ Space Camp is a digital camera payload on board the International Space Station (ISS) that allows students from around the globe to request photos of the Earth from space. Since its launch to the ISS in 2001, approximately 110,000 images have been requested by students from over 90 countries. EarthKAM provides the ultimate platform for STEM engagement in both formal and informal educational settings, as it is currently the only earth observation science payload on station completely controlled by students. Images are requested and accessed through a web portal and can be used by educators in a multitude of ways to promote interest in geosciences, math, physics, and numerous other fields. EarthKAM is currently operated out of the US Space and Rocket Center in Huntsville, Alabama and is incorporated into many Space Camp programs. Space Camp hosts nearly 25,000 students and 500 educators each year, vastly improving EarthKAM exposure. Future concepts currently in development include the ability to collect new data products such as night-time and near-infrared imagery, additional science curricula in the form of focused lesson plans and image applications, and a redesigned graphical user interface for requesting photos. The EarthKAM project, a NASA educational outreach program, is currently managed by the US Space and Rocket Center, the University of Alabama in Huntsville, and Teledyne Brown Engineering, Inc.

  15. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. NASA and contractor personnel who conducted the DIME activity with the students. Shown (L-R) are: Daniel Dietrich (NASA) mentor for Sycamore High School team), Carol Hodanbosi (National Center for Microgravity Research; DIME staff), Jose Carrion (GRC Akima, drop tower technician), Dennis Stocker (NASA; DIME staff), Richard DeLombard (NASA; DIME staff), Sandi Thompson (NSMR sabbatical teacher; DIME staff), Peter Sunderland (NCMR, mentor for COSI Academy student team), Adam Malcolm (NASA co-op student; DIME staff). This image is from a digital still camera; higher resolution is not available.

  16. Radiographic anatomy of the foot and ankle—part 4: the metatarsals.

    PubMed

    Christman, Robert A

    2015-01-01

    The normal radiographic anatomy of the foot and ankle, aside from my previous work, has been addressed only superficially or sparingly in the medical literature. This project correlates the detailed radiographic anatomy of the entire adult foot and ankle (two-dimensional) to osteology (three-dimensional). Each bone's position was determined after meticulous examination and correlation to an articulated skeleton relative to the image receptor and direction of the x-ray beam, with correlation to the radiograph for confirmation. Images of each foot and distal leg bone ("front" and "back" perspectives) are presented alongside a corresponding radiographic image for comparison. The normal gross and radiographic anatomy is correlated and described for each radiographic positioning technique. Foundational knowledge is provided that future researchers can use as a baseline ("normal") and that students and practitioners can use for comparison when interpreting radiographs and distinguishing abnormal findings. The results of the original project, owing to its broad scope, have been divided into five parts: the lower leg, the greater tarsus, the lesser tarsus, the metatarsals (the focus of this article), and the phalanges.

  17. Radiographic anatomy of the foot and ankle-part 5. The phalanges.

    PubMed

    Christman, Robert A

    2015-03-01

    The normal radiographic anatomy of the foot and ankle, aside from my previous work, has been addressed only superficially or sparingly in the medical literature. This project correlates the detailed radiographic anatomy of the entire adult foot and ankle (two-dimensional) to osteology (three-dimensional). Each bone's position was determined after meticulous examination and correlation to an articulated skeleton relative to the image receptor and direction of the x-ray beam, with correlation to the radiograph for confirmation. Images of each foot and distal leg bone ("front" and "back" perspectives) are presented alongside a corresponding radiographic image for comparison. The normal gross and radiographic anatomy is correlated and described for each radiographic positioning technique. Foundational knowledge is provided that future researchers can use as a baseline ("normal") and that students and practitioners can use for comparison when interpreting radiographs and distinguishing abnormal findings. The results of the original project, owing to its broad scope, have been divided into five parts: the lower leg, the greater tarsus, the lesser tarsus, the metatarsals, and the phalanges (the focus of this article).

  18. Radiographic anatomy of the foot and ankle-part 2: the greater tarsus.

    PubMed

    Christman, Robert A

    2014-01-01

    Normal radiographic anatomy of the foot and ankle, aside from my previous work, has been addressed only superficially or sparingly in the medical literature. This project correlates detailed radiographic anatomy of the entire adult foot and ankle (two-dimensional) to osteology (three-dimensional). Each bone's position was determined after meticulous examination and correlation to an articulated skeleton relative to the image receptor and direction of the x-ray beam, with correlation to the radiograph for confirmation. Images of each foot and distal leg bone ("front" and "back" perspectives) are presented alongside a corresponding radiographic image for comparison. The normal gross and radiographic anatomy is correlated and described for each radiographic positioning technique. Foundational knowledge is provided that future researchers can use as a baseline ("normal") and that students and practitioners can use for comparison when interpreting radiographs and distinguishing abnormal findings. The results of the original project, owing to its broad scope, have been divided into five parts: the lower leg, the greater tarsus (the focus of this article), the lesser tarsus, the metatarsals, and the phalanges.

  19. The nuclear weapons inheritance project: student-to-student dialogues and interactive peer education in disarmament activism.

    PubMed

    Buhmann, Caecilie Böck

    2007-01-01

    The Nuclear Weapons Inheritance Project is a student run and student initiated project founded in 2001 with the purpose of increasing awareness of health effects of nuclear policies and empowering university students to take action in a local and international context. The project uses dialogues to discuss nuclear disarmament with university students and a method of interactive peer education to train new trainers. The project has met more than 1500 students in nuclear weapon states in dialogue and trained about 400 students from all over the world. This article describes the methods and results of the project and discuss how the experience of the project can be used in other projects seeking to increase awareness of a topic and to initiate action on social injustice.

  20. Learning in depth with the bespoke rubric-supported online poster presentation

    NASA Astrophysics Data System (ADS)

    Lajevardipour, Alireza; Wood, Andrew

    2017-08-01

    In our course of Biomedical Imaging, we introduced a research project as an assignment that included an online poster presentation. To assess the assignment, an adjusted criteria sheet was created, where it facilitated providing students with an effective feedback linked to particular criteria. Students are expected to produce a scientific poster to present the result of their investigation and upload it to an online discussion board. In addition, they are required to read their colleagues' works and provide peer-feedback by asking quality questions about principles and results, also on-line. Subtle distribution of marks in the rubric balances focus between preparing poster and providing peer-feedbacks.

  1. STS-99 Commander Kregel poses with EARTHKAM camera on OV-105's flight deck

    NASA Image and Video Library

    2000-03-30

    STS099-314-035 (11-22 February 2000) ---Astronaut Kevin R. Kregel, mission commander, works with camera equipment, which was used for the EarthKAM project. The camera stayed busy throughout the 11-day mission taking vertical imagery of the Earth points of opportunity for the project. Students across the United States and in France, Germany and Japan took photos throughout the STS-99 mission. And they are using these new photos, plus all the images already available in the EarthKAM system, to enhance their classroom learning in Earth and space science, social studies, geography, mathematics and more.

  2. Developing a Musical Vocabulary to Communicate, Perceive and Analyze Space Physics Data

    NASA Astrophysics Data System (ADS)

    Quinn, M. S.

    2008-12-01

    "Light Runners" is a touring E/PO program that provides unprecedented access to STEREO space mission imagery data to the blind and visually handicapped, as well as sighted populations across the country. The program builds on the successful implementation of the innovative science museum exhibit "Walk on the Sun", developed under NASA Ideas Grant ID05-049. The exhibit uses advanced sonification methods to present image pixel data as highly differentiated music, and visually tracks the explorer's physical movements to select those pixels. Musical feedback is generated in real-time based on selections of subsets of the image by the explorer's hands, arms and body movements. Initial indications suggest people not only enjoy the musical effects produced as they explore the imagery using their body movements, spending an average of 2 minutes on the exhibit, but also use the feedback to analyze and compare subsequent images. Blind students, for example, who spent 1 ½ to 3 hours on the exhibit, have reported being able to scan images of the Sun, find its edges and hot spots and control the playback and rewind of movies of the images as they explore imagery from up to 8 cameras on board each spacecraft. Explorers have access to over a million images, comprising more than a years worth of data from the mission and kept up to date as new images are received. The musical sonification vocabulary for this project is compared to two other space physics sonification projects.

  3. SU-E-J-66: Evaluation of a Real-Time Positioning Assistance Simulator System for Skull Radiography Using the Microsoft Kinect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurata, T; Ono, M; Kozono, K

    2014-06-01

    Purpose: The purpose of this study is to investigate the feasibility of a low cost, small size positioning assistance simulator system for skull radiography using the Microsoft Kinect sensor. A conventional radiographic simulator system can only measure the three-dimensional coordinates of an x-ray tube using angle sensors, but not measure the movement of the subject. Therefore, in this study, we developed a real-time simulator system using the Microsoft Kinect to measure both the x-ray tube and the subject, and evaluated its accuracy and feasibility by comparing the simulated and the measured x-ray images. Methods: This system can track a headmore » phantom by using Face Tracking, which is one of the functions of the Kinect. The relative relationship between the Kinect and the head phantom was measured and the projection image was calculated by using the ray casting method, and by using three-dimensional CT head data with 220 slices at 512 × 512 pixels. X-ray images were thus obtained by using a computed radiography (CR) system. We could then compare the simulated projection images with the measured x-ray images from 0 degrees to 45 degrees at increments of 15 degrees by calculating the cross correlation coefficient C. Results: The calculation time of the simulated projection images was almost real-time (within 1 second) by using the Graphics Processing Unit(GPU). The cross-correlation coefficients C are: 0.916; 0.909; 0.891; and, 0.886 at 0, 15, 30, and 45 degrees, respectively. As a result, there were strong correlations between the simulated and measured images. Conclusion: This system can be used to perform head positioning more easily and accurately. It is expected that this system will be useful for learning radiographic techniques by students. Moreover, it could also be used for predicting the actual x-ray image prior to x-ray exposure in clinical environments.« less

  4. MO-DE-BRA-03: TOPAS-edu: A Window Into the Stochastic World Through the TOPAS Tool for Particle Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perl, J; Villagomez-Bernabe, B; Currell, F

    2015-06-15

    Purpose: The stochastic nature of the subatomic world presents a challenge for physics education. Even experienced physicists can be amazed at the varied behavior of electrons, x-rays, protons, neutrons, ions and the any short-lived particles that make up the overall behavior of our accelerators, brachytherapy sources and medical imaging systems. The all-particle Monte Carlo particle transport tool, TOPAS Tool for Particle Simulation, originally developed for proton therapy research, has been repurposed into a physics teaching tool, TOPAS-edu. Methods: TOPAS-edu students set up simulated particle sources, collimators, scatterers, imagers and scoring setups by writing simple ASCII files (in the TOPAS Parametermore » Control System format). Students visualize geometry setups and particle trajectories in a variety of modes from OpenGL graphics to VRML 3D viewers to gif and PostScript image files. Results written to simple comma separated values files are imported by the student into their preferred data analysis tool. Students can vary random seeds or adjust parameters of physics processes to better understand the stochastic nature of subatomic physics. Results: TOPAS-edu has been successfully deployed as the centerpiece of a physics course for master’s students at Queen’s University Belfast. Tutorials developed there takes students through a step by step course on the basics of particle transport and interaction, scattering, Bremsstrahlung, etc. At each step in the course, students build simulated experimental setups and then analyze the simulated results. Lessons build one upon another so that a student might end up with a full simulation of a medical accelerator, a water-phantom or an imager. Conclusion: TOPAS-edu was well received by students. A second application of TOPAS-edu is currently in development at Zurich University of Applied Sciences, Switzerland. It is our eventual goal to make TOPAS-edu available free of charge to any non-profit organization, along with associated tutorial materials developed by the TOPAS-edu community. Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515. B. Villagomez-Bernabe is supported by CONACyT (Mexican Council for Science and Technology) project 231844.« less

  5. Student ownership of projects in an upper-division optics laboratory course: A multiple case study of successful experiences

    NASA Astrophysics Data System (ADS)

    Dounas-Frazer, Dimitri R.; Stanley, Jacob T.; Lewandowski, H. J.

    2017-12-01

    We investigate students' sense of ownership of multiweek final projects in an upper-division optics lab course. Using a multiple case study approach, we describe three student projects in detail. Within-case analyses focused on identifying key issues in each project, and constructing chronological descriptions of those events. Cross-case analysis focused on identifying emergent themes with respect to five dimensions of project ownership: student agency, instructor mentorship, peer collaboration, interest and value, and affective responses. Our within- and cross-case analyses yielded three major findings. First, coupling division of labor with collective brainstorming can help balance student agency, instructor mentorship, and peer collaboration. Second, students' interest in the project and perceptions of its value can increase over time; initial student interest in the project topic is not a necessary condition for student ownership of the project. Third, student ownership is characterized by a wide range of emotions that fluctuate as students alternate between extended periods of struggle and moments of success while working on their projects. These findings not only extend the literature on student ownership into a new educational domain—namely, upper-division physics labs—they also have concrete implications for the design of experimental physics projects in courses for which student ownership is a desired learning outcome. We describe the course and projects in sufficient detail that others can adapt our results to their particular contexts.

  6. Center of Excellence for Laser Applications in Medicine, Microlaser Microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, R. H.

    The Center of Excellence for Laser Applications in Medicine at the Schepens Eye Research Institute (SERI) is a Center for: A core group of researchers who support each other and their various projects for real-time medical imaging and diagnostics in contiguous space at SERI. Clinical collaborators who participate in the core research at SERI, MEEI, and local ophthalmology practices, and at associated sites around the world. Industrial partners who transfer our technology to commercial products that will reach clinical usage everywhere. Students, post-doctoral associates and medical fellows who work with us and learn how to practice real-time medical imaging andmore » diagnostics.« less

  7. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here Jose Carrion, a lab mechanic with AKAC, starts the orange-colored drag shield, and the experiment apparatus inside, on the hoist upward to the control station at the top of the drop tower. This image is from a digital still camera; higher resolution is not available.

  8. Mars Public Mapping Project: Public Participation in Science Research; Providing Opportunities for Kids of All Ages

    NASA Astrophysics Data System (ADS)

    Rogers, L. D.; Valderrama Graff, P.; Bandfield, J. L.; Christensen, P. R.; Klug, S. L.; Deva, B.; Capages, C.

    2007-12-01

    The Mars Public Mapping Project is a web-based education and public outreach tool developed by the Mars Space Flight Facility at Arizona State University. This tool allows the general public to identify and map geologic features on Mars, utilizing Thermal Emission Imaging System (THEMIS) visible images, allowing public participation in authentic scientific research. In addition, participants are able to rate each image (based on a 1 to 5 star scale) to help build a catalog of some of the more appealing and interesting martian surface features. Once participants have identified observable features in an image, they are able to view a map of the global distribution of the many geologic features they just identified. This automatic feedback, through a global distribution map, allows participants to see how their answers compare to the answers of other participants. Participants check boxes "yes, no, or not sure" for each feature that is listed on the Mars Public Mapping Project web page, including surface geologic features such as gullies, sand dunes, dust devil tracks, wind streaks, lava flows, several types of craters, and layers. Each type of feature has a quick and easily accessible description and example image. When a participant moves their mouse over each example thumbnail image, a window pops up with a picture and a description of the feature. This provides a form of "on the job training" for the participants that can vary with their background level. For users who are more comfortable with Mars geology, there is also an advanced feature identification section accessible by a drop down menu. This includes additional features that may be identified, such as streamlined islands, valley networks, chaotic terrain, yardangs, and dark slope streaks. The Mars Public Mapping Project achieves several goals: 1) It engages the public in a manner that encourages active participation in scientific research and learning about geologic features and processes. 2) It helps to build a mappable database that can be used by researchers (and the public in general) to quickly access image based data that contains particular feature types. 3) It builds a searchable database of images containing specific geologic features that the public deem to be visually appealing. Other education and public outreach programs at the Mars Space Flight Facility, such as the Rock Around the World and the Mars Student Imaging Project, have shown an increase in demand for programs that allow "kids of all ages" to participate in authentic scientific research. The Mars Public Mapping Project is a broadly accessible program that continues this theme by building a set of activities that is useful for both the public and scientists.

  9. Using Telescopic Observations to Mentor High School Students in STEM

    NASA Astrophysics Data System (ADS)

    McLin, Kevin M.; Cominsky, Lynn R.

    2011-03-01

    Over the past two summers (2009/2010) the NASA E/PO Group at Sonoma State University has sponsored local high school students in a summer science internship program at the University. The students, chosen from Sonoma County high schools in a competitive selection process, work in various STEM fields throughout the School of Science and Technology at SSU. The two interns sponsored by the E/PO Group each summer use GORT, the NASA/Fermi-sponsored robotic observatory operated by the Group, to monitor active galaxies. They are mentored in their projects by E/PO Group personnel and by SSU undergraduates who have experience with the telescope. The students learn about the sky, telescopes and the active galaxies they observe. They also learn how to make telescopic observations and how to reduce the CCD images obtained. Interns also participate in weekly meetings with other interns working on different projects around campus. At the end of the summer all the interns present their research results at a symposium held on campus.The symposium is attended by the interns themselves, their parents and sponsoring high school science teachers, and university faculty and administrators.The program has had a positive impact on how our interns view science, as reported by themselves, and specifically on their view of astronomy, in the first year of the program.

  10. Using ESRI Story Maps for Engaging Tribal Youth in Localized Climate Education

    NASA Astrophysics Data System (ADS)

    Masters, E. L.; Marsik, F. J.; Sonderegger, C.

    2017-12-01

    A critical step in any climate adaptation initiative is the engagement of the community through educational outreach about the impacts of climate change on vulnerable economic, infrastructure and natural resources within the community. For Tribal communities, such outreach must also highlight connections between these vulnerable assets, such as natural resources, and Tribal cultural practices. For adult members of these communities, the combination of traditional ecological knowledge and western science approaches can prove effective in this regard. For Tribal youth, the often complex and data-heavy nature of western science approaches may prove to be more of an obstacle than an aid in communicating the impacts of our changing climate on their local Tribal community. A collaborative educational effort between the Grand Traverse Band of Ottawa and Chippewa Indians (Peshawbestown, MI) and the University of Michigan seeks to lean upon the rich tradition of storytelling as a method of conveying information to younger generations. The ESRI Story Maps platform provides such a tool through its combined use of narratives, images, maps, and data. The ability to make a Story Map deep and complex, or simple and fun, makes this application ideal for communicating with a range of people, from school-age children to adults. For our project, we created two Story Maps with different complexity levels, with one for elementary to middle school students, and the other targeted at high school students. The project for younger children was aimed at engaging viewers through a series of images and maps, introducing them to the basics of what wetlands are, which types of wetlands can be found locally, Indigenous cultural connections to wetlands, and how to protect wetlands. The more complex project provided a more expansive discussion of these same topics, including threats to these wetlands from human activities, including climate change, as well as an extensive list of references and a glossary of terms that allow the older students to continue of their study of these topics on their own.

  11. The Development of GIS Educational Resources Sharing among Central Taiwan Universities

    NASA Astrophysics Data System (ADS)

    Chou, T.-Y.; Yeh, M.-L.; Lai, Y.-C.

    2011-09-01

    Using GIS in the classroom enhance students' computer skills and explore the range of knowledge. The paper highlights GIS integration on e-learning platform and introduces a variety of abundant educational resources. This research project will demonstrate tools for e-learning environment and delivers some case studies for learning interaction from Central Taiwan Universities. Feng Chia University (FCU) obtained a remarkable academic project subsidized by Ministry of Education and developed e-learning platform for excellence in teaching/learning programs among Central Taiwan's universities. The aim of the project is to integrate the educational resources of 13 universities in central Taiwan. FCU is serving as the hub of Center University. To overcome the problem of distance, e-platforms have been established to create experiences with collaboration enhanced learning. The e-platforms provide coordination of web service access among the educational community and deliver GIS educational resources. Most of GIS related courses cover the development of GIS, principles of cartography, spatial data analysis and overlaying, terrain analysis, buffer analysis, 3D GIS application, Remote Sensing, GPS technology, and WebGIS, MobileGIS, ArcGIS manipulation. In each GIS case study, students have been taught to know geographic meaning, collect spatial data and then use ArcGIS software to analyze spatial data. On one of e-Learning platforms provide lesson plans and presentation slides. Students can learn Arc GIS online. As they analyze spatial data, they can connect to GIS hub to get data they need including satellite images, aerial photos, and vector data. Moreover, e-learning platforms provide solutions and resources. Different levels of image scales have been integrated into the systems. Multi-scale spatial development and analyses in Central Taiwan integrate academic research resources among CTTLRC partners. Thus, establish decision-making support mechanism in teaching and learning. Accelerate communication, cooperation and sharing among academic units

  12. An Innovative, Experiential-Learning Project for Sales Management and Professional Selling Students

    ERIC Educational Resources Information Center

    Chapman, Joseph; Schetzsle, Stacey; Wahlers, Russell

    2016-01-01

    This article presents an innovative, experiential-learning project that incorporates students from two different courses: sales management and professional selling. Sales management students actually manage sales students on an outside sales project. Students apply classroom knowledge to a real-life sales project for a local community…

  13. Einstein's Symphony: A Gravitational Wave Voyage Through Space and Time

    NASA Astrophysics Data System (ADS)

    Shapiro Key, Joey; Yunes, Nico; Grimberg, Irene

    2015-01-01

    Einstein's Symphony: A Gravitational Wave Voyage Through Space and Time is a gravitational wave astronomy planetarium show in production by a collaboration of scientists, filmmakers, and artisits from the Center for Gravitational Wave Astonomy (CGWA) at the University of Texas at Brownsville (UTB) and Montana State University (MSU). The project builds on the success of the interdisciplinary Celebrating Einstein collaboration. The artists and scientists who created the A Shout Across Time original film and the Black (W)hole immersive art installation for Celebrating Einstein are teaming with the Museum of the Rockies Taylor Planetarium staff and students to create a new full dome Digistar planetarium show that will be freely and widely distributed to planetaria in the US and abroad. The show uses images and animations filmed and collected for A Shout Across Time and for Black (W)hole as well as new images and animations and a new soundtrack composed and produced by the MSU School of Music to use the full capability of planetarium sound systems. The planetarium show will be narrated with ideas drawn from the Celebrating Einstein danced lecture on gravitational waves that the collaboration produced. The combination of products, resources, and team members assembled for this project allows us to create an original planetarium show for a fraction of the cost of a typical show. In addition, STEM education materials for G6-12 students and teachers will be provided to complement and support the show. This project is supported by the Texas Space Grant Consortium (TSGC), Montana Space Grant Consortium (MSGC), and the American Physical Society (APS).

  14. The effectiveness of a new approach using movies in the training of medical students.

    PubMed

    Zeppegno, Patrizia; Gramaglia, Carla; Feggi, Alessandro; Lombardi, Ada; Torre, Eugenio

    2015-10-01

    The use of movies in medical (particularly psychiatric) education has been often limited to portraits of mental illness and psychiatrists. The Psychiatric Institute of the Università del Piemonte Orientale has a longstanding tradition of working with/on movies according to a method developed by Eugenio Torre, using dynamic images as educational incitements. Our aim is to describe the preliminary results on the impact of this intervention in medical students. The cinemeducation project lasted 6 months, and included 12 meetings. Forty randomly selected participants were assessed with: Attitudes Towards Psychiatry Scale (ATP-30), Social Distance Scale (SDS), Interpersonal Reactivity Index (IRI), and Toronto Alexithymia Scale (TAS), both at baseline and after 6 months, when the workshop was concluded. A significant increase was found in the ATP-30 score, and a reduction of the SDS and IRI-Personal Distress scale scores. Informal feedback from participants was strongly positive. Preliminary results from the assessment of participants are encouraging. Students' attitudes towards psychiatry and ability to tolerate anxiety when experiencing others' distress improved, while stigma decreased. The evocative power of movie dynamic images, developed in the group and integrated with the help of the group leader, can enrich students' knowledge, both from a cognitive and emotional standpoint.

  15. Optical Analogies for Teaching Physics of X-rays and CAT Scans*

    NASA Astrophysics Data System (ADS)

    Kalita, Spartak; Zollman, D. A.

    2006-12-01

    Our Modern Miracle Medical Machines project is devoted to improving motivation and performance of pre-med students in their undergraduate Physics classes. Under its framework we designed some non-traditional hands-on lab activities involving optical analogies to teach the application of contemporary physics to medical imaging. On the basis of our previous research (primarily clinical interviews with the target student population) we created activities using semi-transparent Lego blocks as analogs for understanding the image reconstruction process in computerized axial tomography (CAT or CT). Teaching interviews have been conducted with pre-med and other health-related majors using these materials. Students had to determine the shape of an object constructed of Lego blocks and hidden within a closed box. This arrangement imitated an unknown entity within a part of the human body. Using LEDs (light-emitting diodes) and a photo detector the students attempted to learn the contents of the box. They also had access to another similar Lego arrangement which they were free to open. Interviewees successfully transferred knowledge from their science and math classes (as well as from other sources) while completing activities and expressed great interest in this endeavor. Improvements to the activities have been based on the students’ feedback. *Supported by the National Science Foundation under grant 04-2675

  16. "I Now Have a Visual Image in My Mind and It Is Something I Will Never Forget": An Analysis of an Arts-Informed Approach to Health Professions Ethics Education

    ERIC Educational Resources Information Center

    Kinsella, Elizabeth Anne; Bidinosti, Susan

    2016-01-01

    This paper reports on a study of an arts informed approach to ethics education in a health professions education context. The purpose of this study was to investigate students' reported learning experiences as a result of engagement with an arts-informed project in a health professions' ethics course. A hermeneutic phenomenological methodological…

  17. The Benefits of Comparing Grapefruits and Tangerines: A Toolbox for European Cross-Cultural Comparisons in Engineering Education--Using This Toolbox to Study Gendered Images of Engineering among Students

    ERIC Educational Resources Information Center

    Godfroy-Genin, Anne-Sophie; Pinault, Cloe

    2006-01-01

    The main objective of the WomEng European research project was to assess when, how and why women decide to or not to study engineering. This question was addressed through an international cross-comparison by an interdisciplinary research team in seven European countries. This article presents, in the first part, the methodological toolbox…

  18. Il progetto Sole, cielo, ambiente

    NASA Astrophysics Data System (ADS)

    Guerrieri, Maria Antonietta

    2006-04-01

    A.T.A. (Tusculan Astronomy Association), with the financial support of the District of Rome, carried out an educational project in five high schools. After a theoretic introduction about the Sun, its physics and its interaction with the Earth, some A.T.A. members instructed the students in using the telescope to observe and photograph sunspots. All the schools collaborated in shooting the images of sunspots and in the final analysis and elaboration of data.

  19. Ideal gender identity related to parent images and locus of control: Jungian and social learning perspectives.

    PubMed

    Shimoda, Hiroko; Keskinen, Soili

    2004-06-01

    In this research, we wanted to clarify how gender images are different or invariant and related to parents, attributes, and the attitude of controlling life (locus of control) in two cultural contexts, Japan and Finland. For this purpose, students' ideal gender images, consisting of ideal mother, female, father and male images, and parents' similarity to the four ideal gender images were studied in 135 Japanese and 119 Finnish university students. Major findings were (a) Japanese students' ideal gender images were more stereotypic than those of Finnish students; (b) students' ideal mother image and parents' similarity to the ideal mother image were related only to their sex, which supports Jung's theory; (c) students socially learned other ideal gender images, but these did not fit with expectation from social learning theory; (d) Japanese students' mothers are models or examples of gender images, but Finnish male students did not seem to base their ideal gender images on their parents. Implication of measures was discussed.

  20. Lights! Camera! Action Projects! Engaging Psychopharmacology Students in Service-based Action Projects Focusing on Student Alcohol Abuse

    PubMed Central

    Kennedy, Susan

    2016-01-01

    Alcohol abuse continues to be an issue of major concern for the health and well-being of college students. Estimates are that over 80% of college students are involved in the campus “alcohol culture.” Annually, close to 2000 students die in the United States due to alcohol-related accidents, with another 600,000 sustaining injury due to alcohol-related incidents (NIAAA, 2013). Students enrolled in a Psychopharmacology course engaged in action projects (community outreach) focused on alcohol abuse on our campus. Research has indicated that these types of projects can increase student engagement in course material and foster important skills, including working with peers and developing involvement in one’s community. This paper describes the structure and requirements of five student outreach projects and the final projects designed by the students, summarizes the grading and assessment of the projects, and discusses the rewards and challenges of incorporating such projects into a course. PMID:27385923

  1. Lights! Camera! Action Projects! Engaging Psychopharmacology Students in Service-based Action Projects Focusing on Student Alcohol Abuse.

    PubMed

    Kennedy, Susan

    2016-01-01

    Alcohol abuse continues to be an issue of major concern for the health and well-being of college students. Estimates are that over 80% of college students are involved in the campus "alcohol culture." Annually, close to 2000 students die in the United States due to alcohol-related accidents, with another 600,000 sustaining injury due to alcohol-related incidents (NIAAA, 2013). Students enrolled in a Psychopharmacology course engaged in action projects (community outreach) focused on alcohol abuse on our campus. Research has indicated that these types of projects can increase student engagement in course material and foster important skills, including working with peers and developing involvement in one's community. This paper describes the structure and requirements of five student outreach projects and the final projects designed by the students, summarizes the grading and assessment of the projects, and discusses the rewards and challenges of incorporating such projects into a course.

  2. Informatics in radiology (infoRAD): multimedia extension of medical imaging resource center teaching files.

    PubMed

    Yang, Guo Liang; Aziz, Aamer; Narayanaswami, Banukumar; Anand, Ananthasubramaniam; Lim, C C Tchoyoson; Nowinski, Wieslaw Lucjan

    2005-01-01

    A new method has been developed for multimedia enhancement of electronic teaching files created by using the standard protocols and formats offered by the Medical Imaging Resource Center (MIRC) project of the Radiological Society of North America. The typical MIRC electronic teaching file consists of static pages only; with the new method, audio and visual content may be added to the MIRC electronic teaching file so that the entire image interpretation process can be recorded for teaching purposes. With an efficient system for encoding the audiovisual record of on-screen manipulation of radiologic images, the multimedia teaching files generated are small enough to be transmitted via the Internet with acceptable resolution. Students may respond with the addition of new audio and visual content and thereby participate in a discussion about a particular case. MIRC electronic teaching files with multimedia enhancement have the potential to augment the effectiveness of diagnostic radiology teaching. RSNA, 2005.

  3. Preservation Education for the Next Generation

    ERIC Educational Resources Information Center

    Morris, Ronald V.

    2017-01-01

    Students participate in historic preservation projects that fall along a continuum of student participation. Adults and students need to work to push more projects to be student led rather than students working for adults. A variety of example projects are presented and show how they fall on the continuum. In addition, an example of projects that…

  4. Incorporating Unmanned Aircraft Systems (UAS) into High School Curricula in Hawaii

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Lukaczyk, T.; Brendan, B.; Tomita, M.; Ralston, T.; Purdy, G.

    2016-12-01

    The availability of low-cost unmanned aircraft systems (UAS) permits their integration in educational programs. We report on experiences and future opportunities for incorporating UAS into High School curricula in Hawaii. We first review existing high school UAS programs and teaching material to highlight curricula options and needs. By working on the privately owned Island of Lana'i, we had permission for extensive UAS operation. Our initial focus of UAS educational outreach was on coastal ecosystems where erosion of overgrazed lands affects coral reefs and traditional coastal Hawaiian fishpond restoration projects which include high school students. We provide results of our classroom approach allowing students to learn to fly small, inexpensive UAS and discuss the different results at different grade levels. In addition to providing basic concepts of flight aeronautics, we reviewed information on safe and legal operation of UAS, as well as data management issues including geo-registration and imaging mosaics. We recommend science projects where UAS can study short-term events (e.g. storm runoff) or can be used for routine environmental monitoring over longer periods. Additionally, by linking students with local drone and drone racing clubs student participation and interest in UAS was extended beyond the classroom in a complementary manner. We propose inclusion of UAS into a future high school curriculum via a program called the Moonshot Laboratory which strives to repurpose traditional education structures toward design thinking, making use of individual and group collaborations to address self-selected projects relevant to local community interests. A Moonshot facility allows students to spend a portion of their week in a technology equipped makerspace, with access to university, business and community mentors, both local and remote. UAS projects are expected to address basic student questions, such as: how can I build a drone to take water samples?; how can I build a drone that works in high winds?; how can I improve 3D mapping programs? In summary, we discuss what we have found to work in terms of UAS inclusion into high school curricula, what remains for UAS curriculum development needs, and we propose a mechanism to develop educational capacity that will shape the future UAS educational outreach.

  5. An Undergraduate-Built Prototype Altitude Determination System (PADS) for High Altitude Research Balloons.

    NASA Astrophysics Data System (ADS)

    Verner, E.; Bruhweiler, F. C.; Abot, J.; Casarotto, V.; Dichoso, J.; Doody, E.; Esteves, F.; Morsch Filho, E.; Gonteski, D.; Lamos, M.; Leo, A.; Mulder, N.; Matubara, F.; Schramm, P.; Silva, R.; Quisberth, J.; Uritsky, G.; Kogut, A.; Lowe, L.; Mirel, P.; Lazear, J.

    2014-12-01

    In this project a multi-disciplinary undergraduate team from CUA, comprising majors in Physics, Mechanical Engineering, Electrical Engineering, and Biology, design, build, test, fly, and analyze the data from a prototype attitude determination system (PADS). The goal of the experiment is to determine if an inexpensive attitude determination system could be built for high altitude research balloons using MEMS gyros. PADS is a NASA funded project, built by students with the cooperation of CUA faculty, Verner, Bruhweiler, and Abot, along with the contributed expertise of researchers and engineers at NASA/GSFC, Kogut, Lowe, Mirel, and Lazear. The project was initiated through a course taught in CUA's School of Engineering, which was followed by a devoted effort by students during the summer of 2014. The project is an experiment to use 18 MEMS gyros, similar to those used in many smartphones, to produce an averaged positional error signal that could be compared with the motion of the fixed optical system as recorded through a string of optical images of stellar fields to be stored on a hard drive flown with the experiment. The optical system, camera microprocessor, and hard drive are enclosed in a pressure vessel, which maintains approximately atmospheric pressure throughout the balloon flight. The experiment uses multiple microprocessors to control the camera exposures, record gyro data, and provide thermal control. CUA students also participated in NASA-led design reviews. Four students traveled to NASA's Columbia Scientific Balloon Facility in Palestine, Texas to integrate PADS into a large balloon gondola containing other experiments, before being shipped, then launched in mid-August at Ft. Sumner, New Mexico. The payload is to fly at a float altitude of 40-45,000 m, and the flight last approximately 15 hours. The payload is to return to earth by parachute and the retrieved data are to be analyzed by CUA undergraduates. A description of the instrument is presented here as well as a preliminary analysis of the anticipated data, which were not available at the time of abstract submission. Acknowledgements: NASA grant NNX13AR61 under NASA's Undergraduate Student Instrument Program (USIP). Participating Brazilian students acknowledge support through Brazil's "Science without Borders" program.

  6. Investigation of contrast-enhanced subtracted breast CT images with MAP-EM based on projection-based weighting imaging.

    PubMed

    Zhou, Zhengdong; Guan, Shaolin; Xin, Runchao; Li, Jianbo

    2018-06-01

    Contrast-enhanced subtracted breast computer tomography (CESBCT) images acquired using energy-resolved photon counting detector can be helpful to enhance the visibility of breast tumors. In such technology, one challenge is the limited number of photons in each energy bin, thereby possibly leading to high noise in separate images from each energy bin, the projection-based weighted image, and the subtracted image. In conventional low-dose CT imaging, iterative image reconstruction provides a superior signal-to-noise compared with the filtered back projection (FBP) algorithm. In this paper, maximum a posteriori expectation maximization (MAP-EM) based on projection-based weighting imaging for reconstruction of CESBCT images acquired using an energy-resolving photon counting detector is proposed, and its performance was investigated in terms of contrast-to-noise ratio (CNR). The simulation study shows that MAP-EM based on projection-based weighting imaging can improve the CNR in CESBCT images by 117.7%-121.2% compared with FBP based on projection-based weighting imaging method. When compared with the energy-integrating imaging that uses the MAP-EM algorithm, projection-based weighting imaging that uses the MAP-EM algorithm can improve the CNR of CESBCT images by 10.5%-13.3%. In conclusion, MAP-EM based on projection-based weighting imaging shows significant improvement the CNR of the CESBCT image compared with FBP based on projection-based weighting imaging, and MAP-EM based on projection-based weighting imaging outperforms MAP-EM based on energy-integrating imaging for CESBCT imaging.

  7. Undergraduate projects - do they have to be within the conventional medical environment?

    PubMed

    Murdoch-Eaton, D; Jolly, B

    2000-02-01

    Undergraduate medical curricula now include increasing amounts of project work aimed at developing skills related to lifelong learning. One course allows students to choose from a wide range of projects, including 'conventional' hospital specialties and also from topics outside the mainstream of medicine. 'Conventional' and 'external' projects were compared in terms of the prior academic abilities of the students undertaking them, the assessment results and student and supervisor feedback, in order to consider whether the unconventional projects were equally valid within the undergraduate medical curriculum. School of Medicine, University of Leeds, UK. Medical students. No difference between the assessment results of the student groups was present, with over 85% of all students reaching a standard of 'excellent' or 'good' in their overall final grade. There was no difference in prior academic abilities between the student groups. Enjoyment of modules was comparable between student groups ('conventional' 89%, 'external' 93%) with good levels of satisfaction with the quality of supervision. There were no differences in students' self-appraisal of generic skill acquisition. Students who had undertaken 'external' projects felt they had gained less experience in data-handling and problem-solving skills. However, 'external' projects were rated higher by students in terms of having realistic and achievable objectives, and the supervisors of these projects were also more realistic about time commitments involved in project supervision. 'External' modules were very popular, with over 45% of students requesting places which were available for fewer than 20% of students per year. Concerns regarding the appropriateness of self-directed undergraduate medical student projects outside the mainstream of medical practice were unfounded.

  8. SU-F-E-10: Student-Driven Exploration of Radiographic Material Properties, Phantom Construction, and Clinical Workflows Or: The Extraordinary Life of CANDY MAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahon, RN; Riblett, MJ; Hugo, GD

    Purpose: To develop a hands-on learning experience that explores the radiological and structural properties of everyday items and applies this knowledge to design a simple phantom for radiotherapy exercises. Methods: Students were asked to compile a list of readily available materials thought to have radiation attenuation properties similar to tissues within the human torso. Participants scanned samples of suggested materials and regions of interest (ROIs) were used to characterize bulk attenuation properties. Properties of each material were assessed via comparison to a Gammex Tissue characterization phantom and used to construct a list of inexpensive near-tissue-equivalent materials. Critical discussions focusing onmore » samples found to differ from student expectations were used to revise and narrow the comprehensive list. From their newly acquired knowledge, students designed and constructed a simple thoracic phantom for use in a simulated clinical workflow. Students were tasked with setting up the phantom and acquiring planning CT images for use in treatment planning and dose delivery. Results: Under engineer and physicist supervision, students were trained to use a CT simulator and acquired images for approximately 60 different foodstuffs, candies, and household items. Through peer discussion, students gained valuable insights and were made to review preconceptions about radiographic material properties. From a subset of imaged materials, a simple phantom was successfully designed and constructed to represent a human thorax. Students received hands-on experience with clinical treatment workflows by learning how to perform CT simulation, create a treatment plan for an embedded tumor, align the phantom for treatment, and deliver a treatment fraction. Conclusion: In this activity, students demonstrated their ability to reason through the radiographic material selection process, construct a simple phantom to specifications, and exercise their knowledge of clinical workflows. Furthermore, the enjoyable and inexpensive nature of this project proved to attract participant interest and drive creative exploration. Mahon and Riblett have nothing to disclose; Hugo has a research agreement with Phillips Medical systems, a license agreement with Varian Medical Systems, research grants from the National Institute of Health. Authors do not have any potential conflicts of interest to disclose.« less

  9. Teaching qualitative research to BSW students through exposure to aging.

    PubMed

    Sidell, Nancy L

    2007-01-01

    This article describes one rural program's efforts to expose students to gerontology through teaching qualitative research methodology. A collaborative research pilot project was developed with a local nursing home. BSW students worked in two groups to conduct and present qualitative research projects by the course's completion. This article describes the research project and evaluates the project's success from student and instructor viewpoints. Significant differences were found in self-reported student knowledge of key concepts at the project's completion, compared with pre-test knowledge. Student comments revealed value in this teaching approach. Implications for further engaging students in gerontological research are discussed.

  10. Evaluation of authentic science projects on climate change in secondary schools: a focus on gender differences

    NASA Astrophysics Data System (ADS)

    Dijkstra, Elma; Goedhart, Martin

    2011-07-01

    Background and purpose This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from scientists about the global carbon cycle. This study focuses in particular on differences between male and female students, as female students normally like traditional school science less than male students. Sample and design Data, drawn from 1370 students from 60 secondary schools across Europe, were collected through questionnaires taken at the end of the projects. The evaluated aspects were: organization; enjoyment; difficulty; and impact of the projects. Results The findings suggest that authentic science education is appreciated very much by both male students and even more by female students. The projects had positive impacts on climate change ideas, in particular for female students. Female students felt that they had learned many new things more often than male students. Conclusions Both male and female students have positive opinions about the authentic science projects. The results further point to positive effects of activities in which students have an active role, like hands-on experiments or presentation of results. The findings are placed in the international context of science education and their implications for policy are discussed.

  11. The Sun: the Earth light source

    NASA Astrophysics Data System (ADS)

    Berrilli, Francesco; Giovannelli, Luca; Del Moro, Dario; Piazzesi, Roberto; Catena, Liu` Maria; Amicucci, Giordano; Vittorio, Nicola

    2015-04-01

    We have implemented at Department of Physics of University of Rome Tor Vergata a project called "The Sun: the Earth light source". The project obtained the official endorsement from the IAU Executive Committee Working Group for the International Year of Light. The project, specifically designed for high school students, is focused on the "scientific" study of Sun light by means of a complete acquisition system based on "on the shelf" appropriately CMOS low-cost sensor with free control s/w and self-assembled telescopes. The project (hereafter stage) plan is based on a course of two weeks (60 hours in total). The course contains 20 hours of theoretical lectures, necessary to learn basics about Sun, optics, telescopes and image sensors, and 40 hours of laboratory. During the course, scientists and astronomers share with high schools students, work activities in real research laboratories. High schools teachers are intensely involved in the project. Their role is to share activities with university teachers and realize outreach actions in the home institutions. Simultaneously, they are introduced to innovative teaching methods and the project in this way is regarded as a professional development course. Sun light analysis and Sun-Earth connection through light are the main scientific topics of this project. The laboratory section of the stage is executed in two phases (weeks): First phase aims are the realization of a keplerian telescope and low-cost acquisition system. During this week students are introduced to astronomical techniques used to safety collect and acquire solar light; Second phase aims is the realization of a low-cost instrument to analyse sunlight extracting information about the solar spectrum, solar irradiance and Sun-Earth connection. The proposed stage has been already tested in Italy reached the fifth edition in 2014. Since 2010, the project has been a cornerstone outreach program of the University of Rome Tor Vergata, the Italian Ministry of Education and the National Program for the diffusion of Scientific Degrees (Progetto Lauree Scientifiche or PLS). In the last years has been mainly aimed to underline the connections between Astronomy, Astrophysics and the new materials involved in the astronomical techniques. The Sun has always been used in the course as a key element since the final product was the production of a self-constructed solar telescope able to be used to monitor the solar activity through Wolf's number estimation. In the third edition the project has been extended to other three Universities on the Italian territory: University of l'Aquila, University of Camerino and University of Calabria. Over the years more than 80 students and 50 teachers where directly involved and more than 50 different high schools on all the national territory, reaching thousands of their students in the final dissemination part of the program. 25 telescopes are currently in use in high school institutes all-over Italy. A book describing the project has been published by Springer in 2013 (STUDENTI-RICERCATORI per cinque giorni "Stage a Tor Vergata" Editors: Liù M. Catena, Francesco Berrilli, Ivan Davoli, Paolo Prosposito, ISBN: 978-88-470-5271-0 (Online) ), the link to the book describing the project and reporting student interviews is at: http://link.springer.com/book

  12. Shuttle Transportation System Case-Study Development

    NASA Technical Reports Server (NTRS)

    Ransom, Khadijah

    2012-01-01

    A case-study collection was developed for NASA's Space Shuttle Program. Using lessons learned and documented by NASA KSC engineers, analysts, and contractors, decades of information related to processing and launching the Space Shuttle was gathered into a single database. The goal was to provide educators with an alternative means to teach real-world engineering processes and to enhance critical thinking, decision making, and problem solving skills. Suggested formats were created to assist both external educators and internal NASA employees to develop and contribute their own case-study reports to share with other educators and students. Via group project, class discussion, or open-ended research format, students will be introduced to the unique decision making process related to Shuttle missions and development. Teaching notes, images, and related documents will be made accessible to the public for presentation of Space Shuttle reports. Lessons investigated included the engine cutoff (ECO) sensor anomaly which occurred during mission STS-114. Students will be presented with general mission infom1ation as well as an explanation of ECO sensors. The project will conclude with the design of a website that allows for distribution of information to the public as well as case-study report submissions from other educators online.

  13. High-School Teams Joining Massive Pulsar Search

    NASA Astrophysics Data System (ADS)

    2008-09-01

    High school students and teachers will join astronomers on the cutting edge of science under a program to be operated by the National Radio Astronomy Observatory (NRAO) and West Virginia University (WVU), and funded by the National Science Foundation (NSF). The program, called the Pulsar Search Collaboratory, will engage West Virginia students and teachers in a massive search for new pulsars using data from the Robert C. Byrd Green Bank Telescope (GBT). Sue Ann Heatherly Sue Ann Heatherly, NRAO Education Officer CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) The NSF announced a $892,838 grant to NRAO and WVU to conduct the three-year program. The project will involve 60 teachers and some 600 students in helping astronomers analyze data from 1500 hours of observing time on the GBT. The 120 terabytes of data produced by some 70,000 individual pointings of the giant, 17-million-pound telescope is expected to reveal dozens of previously-unknown pulsars. "The students in this program will be partners in frontier research, discovering new pulsars and measuring changes in pulsars already known," said Sue Ann Heatherly, the NRAO Education Officer in Green Bank and Principal Investigator in the project. Pulsars are superdense neutron stars, the corpses of massive stars that have exploded as supernovae. As the neutron star spins, lighthouse-like beams of radio waves, streaming from the poles of its powerful magnetic field, sweep through space. When one of these beams sweeps across the Earth, radio telescopes can capture the pulse of radio waves. Pulsars serve as exotic laboratories for studying the physics of extreme conditions. Scientists can learn valuable new information about the physics of subatomic particles, electromagnetics, and General Relativity by observing pulsars and the changes they undergo over time. The Pulsar Search Collaboratory (PSC) combines the capabilities of NRAO and WVU to provide a unique opportunity for teachers and students to join in cutting-edge scientific research. The GBT has discovered more than 60 pulsars over the past five years, including the fastest-rotating pulsar ever found, a speedster spinning 716 times per second. At WVU, astronomers Maura McLaughlin and Duncan Lorimer are experienced pulsar specialists who use the GBT regularly for their research. Pulsar Graphic Pulsars Are Spinning Neutron Stars CREDIT: Bill Saxton, NRAO/AUI/NSF (Click on image for larger version) The PSC program will include training for teachers and student leaders at Green Bank, and an annual scientific seminar at WVU where all participants can present their research. During the year, participants will share information through an online collaboration site called the "collaboratory," operated by Northwestern University. Student teams will receive parcels of data from the GBT and analyze the data to discover pulsars. To do so, they will need to learn to use analysis software and to recognize man-made radio interference that contaminates the data. Each portion of the data will be analyzed by multiple teams. Of the 1500 hours of GBT observing data in the project, taken during the summer of 2007, some 300 hours is reserved for analysis by the student teams. This reserved data set is expected to include tens of new pulsars and about 100 known pulsars. "Because multiple teams will analyze each portion of the data, every student in the project is virtually guaranteed to discover a new pulsar," Heatherly said. "This will give West Virginia high school students the chance to make groundbreaking discoveries like finding exotic pulsar binary systems, pulsars with planetary systems, or pulsars spinning faster than currently thought possible," McLaughlin said. The project will begin recruiting teachers in February of 2008. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  14. [Self-images and perceptions of other professions among students of nursing, physiotherapy, and occupational therapy and their importance for interprofessional cooperation].

    PubMed

    Boggatz, Thomas; Altmeppen, Sandra; Unger, Angelika

    2010-07-01

    Interdisciplinary cooperation is necessary to provide effective and high quality treatment for clients of the health care system. Interaction between professional groups depends on how their members perceive their self-image and the image of other professions. Within the framework of the project "Quality in the education of health-professionals" a qualitative study with 23 nurses, 24 physiotherapists and 15 occupational therapists in the second or third year of training was conducted. Participants were asked to report their self-image and the image of the other two professions. A qualitative content analysis according to Mayring was used for data analysis. Four categories emerged that allowed describing the self image and the image of the other professions: roles of the respective health professions, relation of the health professionals to their clients, attributes that typically characterized members of a particular profession, and relationship between the health professions. Latent conflicts between professional groups became apparent. Contradicting perceptions are due to subjective bias in favour of the own professional group. Interdisciplinary collaboration requires a new culture of co-operation.

  15. Student Views of Class Projects as Learning Experiences

    ERIC Educational Resources Information Center

    Easter, Beth A.; Evans, Beverly

    2014-01-01

    Group projects have long been an important element of higher education classes. Class projects involve additional cooperation and coordination among students. Student perceptions are an important factor in evaluating the effectiveness of projects. This exploratory study used a 39-item questionnaire to examine undergraduate student perceptions of…

  16. Engaging Middle School Students with Google Earth Technology to Analyze Ocean Cores as Evidence for Sea Floor Spreading

    NASA Astrophysics Data System (ADS)

    Prouhet, T.; Cook, J.

    2006-12-01

    Google Earth's ability to captivate students' attention, its ease of use, and its high quality images give it the potential to be an extremely effective tool for earth science educators. The unique properties of Google Earth satisfy a growing demand to incorporate technology in science instruction. Google Earth is free and relatively easy to use unlike some other visualization software. Students often have difficulty conceptualizing and visualizing earth systems, such as deep-ocean basins, because of the complexity and dynamic nature of the processes associated with them (e.g. plate tectonics). Google Earth's combination of aerial photography, satellite images and remote sensing data brings a sense of realism to science concepts. The unobstructed view of the ocean floor provided by this technology illustrates three-dimensional subsurface features such as rift valleys, subduction zones, and sea-mounts enabling students to better understand the seafloor's dynamic nature. Students will use Google Earth to navigate the sea floor, and examine Deep Sea Drilling Project (DSDP) core locations the from the Glomar Challenger Leg 3 expedition. The lesson to be implemented was expanded upon and derived from the Joint Oceanographic Insitute (JOI) Learning exercise, Nannofossils Reveal Seafloor Spreading. In addition, students take on the role of scientists as they graph and analyze paleontological data against the distance from the Mid Ocean Ridge. The integration of ocean core data in this three-dimensional view aids students' ability to draw and communicate valid conclusions about their scientific observations. A pre and post survey will be given to examine attitudes, self-efficacy, achievement and content mastery to a sample of approximately 300 eighth grade science students. The hypothesis is that the integration of Google Earth will significantly improve all areas of focus as mentioned above.

  17. NASA space and Earth science data on CD-ROM

    NASA Technical Reports Server (NTRS)

    Towheed, Syed S.

    1993-01-01

    The National Space Science Data Center (NSSDC) is very interested in facilitating the widest possible use of the scientific data acquired through NASA spaceflight missions. Therefore, NSSDC has participated with projects and data management elements throughout the NASA science environment in the creation, archiving, and dissemination of data using Compact Disk-Read Only Memory (CD-ROM). This CD-ROM technology has the potential to enable the dissemination of very large data volumes at very low prices to a great many researchers, students and their teachers, and others. This catalog identifies and describes the scientific CD-ROM's now available from NSSDC including the following data sets: Einstein Observatory CD-ROM, Galileo Cruise Imaging on CD-ROM, International Halley Watch, IRAS Sky Survey Atlas, Infrared Thermal Mapper (IRTM), Magellan (MIDR), Magellan (ARCDR's), Magellan (GxDR's), Mars Digital Image Map (MDIM), Outer Planets Fields & Particles Data, Pre-Magellan, Selected Astronomical Catalogs, TOMS Gridded Ozone Data, TOMS Ozone Image Data, TOMS Update, Viking Orbiter Images of Mars, and Voyager Image.

  18. Project-Based Learning in Programmable Logic Controller

    NASA Astrophysics Data System (ADS)

    Seke, F. R.; Sumilat, J. M.; Kembuan, D. R. E.; Kewas, J. C.; Muchtar, H.; Ibrahim, N.

    2018-02-01

    Project-based learning is a learning method that uses project activities as the core of learning and requires student creativity in completing the project. The aims of this study is to investigate the influence of project-based learning methods on students with a high level of creativity in learning the Programmable Logic Controller (PLC). This study used experimental methods with experimental class and control class consisting of 24 students, with 12 students of high creativity and 12 students of low creativity. The application of project-based learning methods into the PLC courses combined with the level of student creativity enables the students to be directly involved in the work of the PLC project which gives them experience in utilizing PLCs for the benefit of the industry. Therefore, it’s concluded that project-based learning method is one of the superior learning methods to apply on highly creative students to PLC courses. This method can be used as an effort to improve student learning outcomes and student creativity as well as to educate prospective teachers to become reliable educators in theory and practice which will be tasked to create qualified human resources candidates in order to meet future industry needs.

  19. Scanning Rocket Impact Area with an UAV: First Results

    NASA Astrophysics Data System (ADS)

    Santos, C. C. C.; Costa, D. A. L. M.; Junior, V. L. S.; Silva, B. R. F.; Leite, D. L.; Junor, C. E. B. S.; Liberator, B. A.; Nogueira, M. B.; Senna, M. D.; Santiago, G. S.; Dantas, J. B. D.; Alsina, P. J.; Albuquerque, G. L. A.

    2015-09-01

    This paper presents the first subsystems developed for an UAV used in safety procedures of sounding rockets campaigns. The aim of this UAV is to scan the rocket impact area in order to search for unexpected boats. To achieve this mission, designers developed an image recognition algorithm, two human-machine interfaces and two communication links, one to control the drone and the other for receiving telemetry data. In this paper, developers take all major engineering decisions in order to overcome the project constraints. A secondary goal of the project is to encourage young people to take part in Brazilian space program. For this reason, most of designers are undergraduate students under supervision of experts.

  20. Social Media and Student Engagement in a Microgravity Planetary Science Experiment

    NASA Astrophysics Data System (ADS)

    Lane, S. S.; Lai, K.; Hoover, B.; Whitaker, A.; Tiller, C.; Benjamin, S.; Dove, A.; Colwell, J. E.

    2014-12-01

    The Collisional Accretion Experiment (CATE) is a planetary science experiment funded by NASA's Undergraduate Instrumentation Program (USIP). CATE is a microgravity experiment to study low-velocity collisions between cm-sized particles and 0.1-1.0 mm-sized particles in vacuum to better understand the conditions for accretion in the protoplanetary disk as well as collisions in planetary ring systems. CATE flew on three parabolic airplane flights in July, 2014, using NASA's "Weightless Wonder VI" aircraft. A significant part of the project was documenting the experience of designing, building, testing, and flying spaceflight hardware from the perspective of the undergraduates working on the experiment. The outreach effort was aimed at providing high schools students interested in STEM careers with a first-person view of hands-on student research at the university level. We also targeted undergraduates at the University of Central Florida to make them aware of space research on campus. The CATE team pursued multiple outlets, from social media to presentations at local schools, to connect with the public and with younger students. We created a website which hosted a blog, links to media publications that ran our story, videos, and galleries of images from work in the lab throughout the year. In addition the project had Facebook, Twitter, and Instagram accounts. These social media outlets had much more traffic than the website except during the flight week when photos posted on the blog generated significant traffic. The most effective means of communicating the project to the target audience, however, was through face-to-face presentations in classrooms. We saw a large increase in followers on Twitter and Instagram as the flight campaign got closer and while we were there. The main source of followers came after we presented to local high school students. These presentations were made by the undergraduate student team and the faculty mentors (Colwell and Dove).

  1. Precambrian Field Camp at the University of Minnesota Duluth - Teaching Skills Applicable to Mapping Glaciated Terranes of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Miller, J. D.; Hudak, G. J.; Peterson, D.

    2011-12-01

    Since 2007, the central program of the Precambrian Research Center (PRC) at the University of Minnesota Duluth has been a six-week geology field camp focused on the Precambrian geology of the Canadian Shield. This field camp has two main purposes. First and foremost is to teach students specialized field skills and field mapping techniques that can be utilized to map and interpret Precambrian shield terranes characterized by sparse outcrop and abundant glacial cover. In addition to teaching basic outcrop mapping technique , students are introduced to geophysical surveying (gravity, magnetics), glacial drift prospecting, and drill core logging techniques in several of our geological mapping exercises. These mapping methodologies are particularly applicable to minerals exploration in shield terranes. The second and equally important goal of the PRC field camp is to teach students modern map-making and map production skills. During the fifth and sixth weeks of field camp, students conduct "capstone" mapping projects. These projects encompass one week of detailed bedrock mapping in remote regions of northern Minnesota that have not been mapped in detail (e.g. scales greater than 1:24,000) and a second week of map-making and map generation utilizing geographic information systems (currently ArcGIS10), graphics software packages (Adobe Illustrator CS4), and various imaging software for geophysical and topographic data. Over the past five years, PRC students and faculty have collaboratively published 21 geologic maps through the Precambrian Research Center Map Series. These maps are currently being utilized in a variety of ways by industry, academia, and government for mineral exploration programs, development of undergraduate, graduate, and faculty research projects, and for planning, archeological studies, and public education programs in Minnesota's state parks. Acquisition of specialized Precambrian geological mapping skills and geologic map-making proficiencies has enabled our students to be highly sought after for employment and/or subsequent graduate studies.

  2. NSF Internships in Public Science Education: Sensing the Radio Sky

    NASA Astrophysics Data System (ADS)

    Hund, L.; Boltuch, D.; Fultz, C.; Buck, S.; Smith, T.; Harris, R.; Moffett, D.; LaFratta, M.; Walsh, L.; Castelaz, M. W.

    2005-12-01

    The intent of the "Sensing the Radio Sky" project is to teach high school students the concepts and relevance of radio astronomy through presentations in STARLAB portable planetariums. The two year project began in the summer of 2004. A total of twelve interns and four faculty mentors from Furman University and UNCA have participated at the Pisgah Astronomical Research Institute to develop the Radio Sky project. The project united physics and multimedia majors and allowed these students to apply their knowledge of different disciplines to a common goal. One component of the project is the development and production of a cylinder to be displayed in portable STARLAB planetariums. The cylinder gives a thorough view of the Milky Way and of several other celestial sources in radio wavelengths, yet these images are difficult to perceive without prior knowledge of radio astronomy. Consequently, the Radio Sky team created a multimedia presentation to accompany the cylinder. This multimedia component contains six informative lessons on radio astronomy assembled by the physics interns and numerous illustrations and animations created by the multimedia interns. The cylinder and multimedia components complement each other and provide a unique, thorough, and highly intelligible perspective on radio astronomy. The project is near completion and the final draft will be sent to Learning Technologies, Inc., for marketing to owners of STARLAB planetariums throughout the world. The development of the Radio Sky project has also provided a template for potential similar projects that examine our universe in different wavelengths, such as gamma ray, x-ray, and infrared. We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  3. Dropping In a Microgravity Environment (DIME) contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. Here Jose Carrion, a lab mechanic with AKAC, starts the orange-colored drag shield, and the experiment apparatus inside, on the hoist upward to the control station at the top of the drop tower. This image is from a digital still camera; higher resolution is not available.

  4. Motivating first-year university students by interdisciplinary study projects

    NASA Astrophysics Data System (ADS)

    Koch, Franziska D.; Dirsch-Weigand, Andrea; Awolin, Malte; Pinkelman, Rebecca J.; Hampe, Manfred J.

    2017-01-01

    In order to increase student commitment from the beginning of students' university careers, the Technische Universität Darmstadt has introduced interdisciplinary study projects involving first-year students from the engineering, natural, social and history, economics and/or human sciences departments. The didactic concept includes sophisticated task design, individual responsibility and a differentiated support system. Using a self-determination theory framework, this study examined the effects of the projects based on survey findings from two projects with more than 1000 students. The results showed that the projects were successful in fulfilling students' basic psychological needs and in promoting students' academic engagement. Basic psychological needs were found to be significant predictors of academic engagement. These findings suggest that interdisciplinary study projects can potentially contribute to improving higher education as they fulfil students' basic psychological needs for competence, relatedness and autonomy and enhance students' academic engagement.

  5. Integrating Computerized Virtual Reality with Traditional Methods of Teaching Skull Anatomy

    DTIC Science & Technology

    2002-12-01

    assisting students as they maneuver through the myriad of systems and structures of human anatomy . The global implications of VR are expanding with...2000). This project also seeks to find a way to integrate the print library of human anatomy with a Web-based structural anatomical image library...from their colleagues can potentially utilize a program such as VR from anywhere in the world to explore and reexamine the human anatomy at a time

  6. A Multiple Use MF/HF Radio Array for Radio Research, Development, and Education

    DTIC Science & Technology

    2016-04-27

    reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: A Multiple Use MF/HF Radio Array for Radio Research , Development...inspiring high school and university- level student projects. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers ...references, in the following categories: (b) Papers published in non-peer-reviewed journals (N/A for none) An MF/HF antenna array for radio and radar imaging

  7. Projects in Technology Education and Fostering Learning: The Potential and Its Realization

    NASA Astrophysics Data System (ADS)

    Barak, Moshe; Shachar, Ahron

    2008-06-01

    The current study aimed at examining the efficacy of technological projects as learning tools by exploring the following questions: the extent to which projects in technology develop students as independent learners; the types of knowledge the students deal with in working on their projects; the role of problem-solving in technological projects; and how projects integrate into traditional schooling. The subjects were 53 high school (12th grade) students who prepared graduating projects in technology under the supervision of nine teachers. Data were collected by observing the students in the laboratory, administrating two questionnaires to both the students and the teachers, and analyzing 25 portfolios prepared by the students of their projects. The findings indicate that projects in technology provide a good opportunity to engage students in challenging tasks that enhance their learning skills. To maximize this potential, it is necessary to employ the project method from the early stages of learning technology. It is especially important that teachers having a strong engineering orientation also acquire pedagogical knowledge on issues such as fostering independent learning, creativity, peer learning and reflective practice in the technological classroom.

  8. Dropping In a Microgravity Environment (DIME) Contest

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. NASA and contractor personnel who conducted the DIME activity with the students. Shown (L-R) are: Daniel Dietrich (NASA) mentor for Sycamore High School team), Carol Hodanbosi (National Center for Microgravity Research; DIME staff), Jose Carrion (GRC Akima, drop tower technician), Dennis Stocker (NASA; DIME staff), Richard DeLombard (NASA; DIME staff), Sandi Thompson (NSMR sabbatical teacher; DIME staff), Peter Sunderland (NCMR, mentor for COSI Academy student team), Adam Malcolm (NASA co-op student; DIME staff). This image is from a digital still camera; higher resolution is not available.

  9. An Earth System Scientist Network for Student and Scientist Partnerships

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative skills and content knowledge in the geosciences. The importance of fully developing each of these aspects of the ESSN research projects and how they can differ between projects will be discussed.

  10. Lessons Learned From Studying The Effects Of Forest Fires With High School Students

    NASA Astrophysics Data System (ADS)

    Kanjorski, N.; Hall, M.; Sundberg, F.

    2005-12-01

    We evaluated the educational successes and challenges of a high school research project designed to assess the effects of a wildfire and subsequent logging on soil erosion during the 2004-2005 school year. The project is extra-curricular for students from Show Low High School in Arizona. Fieldwork is done on Saturdays and lab work is done during lunch periods and after school sessions. Using a silt fence, shovels, and brushes, students collect and measure erosion rates of unburned, burned, and burned and logged land. The project has involved 17 students, 3 female and 14 male students, and their two science teachers. A key goal of the project is to introduce a group of high school students to the process of scientific inquiry through fieldwork and scientific research. A core requirement of this project is that the students will be self-motivated and will lead all major field and laboratory efforts. Interviews of the students and teachers in the fall of 2004 and spring of 2005 are the primary source of the assessment of this project in addition to data collected by informal interviews during two field trips. Consistent student participation was a main challenge to this project in the first year. While most students continued with the program throughout the year, participation was sporadic and generally low during any one class or field session. This is partially due to not having a set schedule for activities and the challenge for students to self-motivate. Interestingly, despite their actual amount of involvement in the project, the students all consider themselves active members of the project and are generally proud of their efforts. To increase the consistency of student participation in the coming year a regular semester schedule has been set and student time and effort requirements have been increased and explicitly stated. Students have a great amount of choice in which role they will fulfill in the project, and which data gathering and analysis skills they want to learn and apply. In general the project has been successful in significantly exciting a core group of students about science and has the potential to influence these students' undergraduate and career choices.

  11. WINDS (KIZUNA)-based Collaborative e-Learning Project in Thailand, Malaysia and Japan

    NASA Astrophysics Data System (ADS)

    Hisanaga, Makoto; Takahashi, Shin; Kameyama, Keisuke; Fukui, Yukio; Kitawaki, Nobuhiko

    The expanding digital divide deprives students in developing countries with opportunities for education. Advanced countries have the ability to enhance those opportunities. For this study, the authors set up and tested a remote lecture system using a commercial communication satellite beginning in 2002. This project attempted to solve issues in remote lecture systems using conventional satellite systems, and to build up a real-time collaborative lecture delivery system using a new satellite, called the Wideband InterNetworking engineering test and Demonstration Satellite (WINDS). This work proposes a remote education system using satellites, enabling the issues raised in the pilot experiments to be solved. Principal outcomes in this project include improvements of the quality of image and sound, and the communication delay. The authors also demonstrate the usefulness of WINDS in the education field.

  12. Continued multidisciplinary project-based learning - implementation in health informatics.

    PubMed

    Wessel, C; Spreckelsen, C

    2009-01-01

    Problem- and project-based learning are approved methods to train students, graduates and post-graduates in scientific and other professional skills. The students are trained on realistic scenarios in a broader context. For students specializing in health informatics we introduced continued multidisciplinary project-based learning (CM-PBL) at a department of medical informatics. The training approach addresses both students of medicine and students of computer science. The students are full members of an ongoing research project and develop a project-related application or module, or explore or evaluate a sub-project. Two teachers guide and review the students' work. The training on scientific work follows a workflow with defined milestones. The team acts as peer group. By participating in the research team's work the students are trained on professional skills. A research project on a web-based information system on hospitals built the scenario for the realistic context. The research team consisted of up to 14 active members at a time, who were scientists and students of computer science and medicine. The well communicated educational approach and team policy fostered the participation of the students. Formative assessment and evaluation showed a considerable improvement of the students' skills and a high participant satisfaction. Alternative education approaches such as project-based learning empower students to acquire scientific knowledge and professional skills, especially the ability of life-long learning, multidisciplinary team work and social responsibility.

  13. Using Contests to Provide Business Students Project-Based Learning in Humanitarian Logistics: PSAid Example

    ERIC Educational Resources Information Center

    Özpolat, Koray; Chen, Yuwen; Hales, Doug; Yu, Degan; Yalcin, Mehmet G.

    2014-01-01

    Business students appreciate working on classroom projects that are both enjoyable and useful in preparing them for future careers. Promoting competition among project teams is also used as a method to motivate students. The Humanitarian Logistics Project (HLP) teaches undergraduate students the logistical implications of unsolicited material…

  14. Simulated Thin-Film Growth and Imaging

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  15. Durham, North Carolina, Students Study Martian Volcanism

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of the wall of a graben a depressed block of land between two parellel faults in Tyrrhena Terra, in Mars' ancient southern highlands, was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 0914 UTC (4:14 a.m. EST) on February 6, 2008, near 17.3 degrees south latitude, 95.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 35 meters (115 feet) across. The region covered is just over 10 kilometers (6.2 miles) wide at its narrowest point.

    This image was part of an investigation planned by students in four high schools in Durham, North Carolina. The students are working with the CRISM science team in a project called the Mars Exploration Student Data Teams (MESDT), which is part of NASA's Mars Public Engagement Program and Arizona State University's Mars Education Program. Starting with a medium-resolution map of the area, taken as part of CRISM's 'multispectral survey' campaign to map Mars in 72 colors at 200 meters (660 feet) per pixel, the students identified a key rock outcrop to test their hypothesis that the irregular depression was formed by Martian volcanism. They provided the coordinates of the target to CRISM's operations team, who took a high-resolution image of the site. The Context Imager (CTX) accompanied CRISM with a 6 meter (20 feet) per pixel, high-resolution image to sharpen the relationship of spectral variations to the underlying surface structures. The Durham students worked with a mentor on the CRISM team to analyze the data, and presented their results at the 39th Lunar and Planetary Science Conference, held in League City, Texas, on March 10-14, 2008.

    The upper panel of the image shows the location of the CRISM data and the surrounding, larger CTX image, overlain on an image mosaic taken by the Thermal Emission Imaging System (THEMIS) on Mars Odyssey. The mosaic has been color-coded for elevation using data from the Mars Orbiter Laser Altimeter (MOLA) instrument on the Mars Global Surveyor (MGS) spacecraft. Redder colors indicate higher elevations. The bottom left image shows infrared brightness of the surface measured by CRISM at 2.5, 1.5, and 1.1 micrometers. In the lower right image, the data have been transformed into a map of spectral features indicating the presence of different minerals. Redder areas have a stronger signature of the iron-containing mineral olivine, and green and blue areas show the signature of the mineral pyroxene.

    These data sets, acquired over the last ten years, allow increasingly detailed and higher-resolution view of Mars' surface that provide scientists with a variety of measurements to understand Mars' past evolution. The same data provide teenage amateur geologists a fascinating and exciting 'field site' at which to exercise the principles of earth science in a real-life, hands-on science investigation.

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  16. Examining Thai high school students' developing STEM projects

    NASA Astrophysics Data System (ADS)

    Teenoi, Kultida; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    Like others, Thailand education strongly focused on STEM education. This paper aimed to examine existing Thai high school students' integrated knowledge about science, technology, engineering, and mathematics (STEM) in their developing science project. The participants included 49 high school students were studying the subject of individual study (IS) in Khon Kaen wittayayon school, Khon Kaen, Thailand. The IS was provided to gradually enhance students to know how to do science project starting from getting start to do science projects, They enrolled to study the individual study of science project for three year in roll. Methodology was qualitative research. Views of students' integrated knowledge about STEM were interpreted through participant observation, interview, and students' science projects. The first author as participant observation has taught this group of students for 3 years. It found that 16 science projects were developed. Views of students' integrated knowledge about STEM could be categorized into three categories. These included (1) completely indicated integration of knowledge about science, technology, engineering, and mathematics, (2) partial indicated integration of knowledge about science, technology, engineering, and mathematics, and (3) no integration. The findings revealed that majority of science projects could be categorized as completely indicated integration of knowledge about science, technology, engineering, and mathematics. The paper suggested some ideas of enhancing students to applying STEM for developing science projects.

  17. NASA Space Imaging is a Great Resource to Teach Science Topics in Professional Development Courses

    NASA Astrophysics Data System (ADS)

    Verner, E.; Bruhweiler, F. C.; Long, T.; Edwards, S.; Ofman, L.; Brosius, J. W.; Gordon, D.; St Cyr, O. C.; Krotkov, N. A.; Fatoyinbo, T. E.

    2013-12-01

    Our multi- component project aims to develop and test NASA educational resource materials, provide training for pre- and in-service elementary school teachers in STEM disciplines needed in Washington DC area. We use physics and math in a hands-on enquiry based setting and make extensive use of imagery from NASA space missions (SDO, SOHO, STEREO) to develop instructional modules focusing on grades, PK-8. Our two years of effort culminated in developing three modules: The Sun - the nearest star Students learn about the Sun as the nearest star. Students make outdoor observations during the day and all year round. At night, they observe and record the motion of the moon and stars. Students learn these bodies move in regular and predictable ways. Electricity & Magnetism - From your classroom to the Sun Students investigate electricity and magnetism in the classroom and see large scale examples of these concepts on the Sun's surface, interplanetary space, and the Earth's magnetosphere as revealed from NASA space missions. Solar Energy The Sun is the primary source of energy for Earth's climate system. Students learn about wavelength and frequency and develop skills to do scientific inquiry, including how to use math as a tool. They use optical, UV, EUV, and X-ray images to trace out the energetic processes of the Sun. Each module includes at least one lesson plan, vocabulary, activities and children book for each grade range PK-3; 4-5; 6-8

  18. How concept images affect students' interpretations of Newton's method

    NASA Astrophysics Data System (ADS)

    Engelke Infante, Nicole; Murphy, Kristen; Glenn, Celeste; Sealey, Vicki

    2018-07-01

    Knowing when students have the prerequisite knowledge to be able to read and understand a mathematical text is a perennial concern for instructors. Using text describing Newton's method and Vinner's notion of concept image, we exemplify how prerequisite knowledge influences understanding. Through clinical interviews with first-semester calculus students, we determined how evoked concept images of tangent lines and roots contributed to students' interpretation and application of Newton's method. Results show that some students' concept images of root and tangent line developed throughout the interview process, and most students were able to adequately interpret the text on Newton's method. However, students with insufficient concept images of tangent line and students who were unwilling or unable to modify their concept images of tangent line after reading the text were not successful in interpreting Newton's method.

  19. Effect of frontal facial type and sex on preferred chin projection.

    PubMed

    Choi, Jin-Young; Kim, Taeyun; Kim, Hyung-Mo; Lee, Sang-Hoon; Cho, Il-Sik; Baek, Seung-Hak

    2017-03-01

    To investigate the effects of frontal facial type (FFT) and sex on preferred chin projection (CP) in three-dimensional (3D) facial images. Six 3D facial images were acquired using a 3D facial scanner (euryprosopic [Eury-FFT], mesoprosopic [Meso-FFT], and leptoprosopic [Lepto-FFT] for each sex). After normal CP in each 3D facial image was set to 10° of the facial profile angle (glabella-subnasale-pogonion), CPs were morphed by gradations of 2° from normal (moderately protrusive [6°], slightly protrusive [8°], slightly retrusive [12°], and moderately retrusive [14°]). Seventy-five dental students (48 men and 27 women) were asked to rate the CPs (6°, 8°, 10°, 12°, and 14°) from the most to least preferred in each 3D image. Statistical analyses included the Kolmogorov-Smirnov test, Kruskal-Wallis test, and Bonferroni correction. No significant difference was observed in the distribution of preferred CP in the same FFT between male and female evaluators. In Meso-FFT, the normal CP was the most preferred without any sex difference. However, in Eury-FFT, the slightly protrusive CP was favored in male 3D images, but the normal CP was preferred in female 3D images. In Lepto-FFT, the normal CP was favored in male 3D images, whereas the slightly retrusive CP was favored in female 3D images. The mean preferred CP angle differed significantly according to FFT (Eury-FFT: male, 8.7°, female, 9.9°; Meso-FFT: male, 9.8°, female, 10.7°; Lepto-FFT: male, 10.8°, female, 11.4°; p < 0.001). Our findings might serve as guidelines for setting the preferred CP according to FFT and sex.

  20. Implementing service improvement projects within pre-registration nursing education: a multi-method case study evaluation.

    PubMed

    Baillie, Lesley; Bromley, Barbara; Walker, Moira; Jones, Rebecca; Mhlanga, Fortune

    2014-01-01

    Preparing healthcare students for quality and service improvement is important internationally. A United Kingdom (UK) initiative aims to embed service improvement in pre-registration education. A UK university implemented service improvement teaching for all nursing students. In addition, the degree pathway students conducted service improvement projects as the basis for their dissertations. The study aimed to evaluate the implementation of service improvement projects within a pre-registration nursing curriculum. A multi-method case study was conducted, using student questionnaires, focus groups with students and academic staff, and observation of action learning sets. Questionnaire data were analysed using SPSS v19. Qualitative data were analysed using Ritchie and Spencer's (1994) Framework Approach. Students were very positive about service improvement. The degree students, who conducted service improvement projects in practice, felt more knowledgeable than advanced diploma students. Selecting the project focus was a key issue and students encountered some challenges in practice. Support for student service improvement projects came from action learning sets, placement staff, and academic staff. Service improvement projects had a positive effect on students' learning. An effective partnership between the university and partner healthcare organisations, and support for students in practice, is essential. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Denali Geographic 2012 : A University led scientific field experience for High School students at the Alaska Summer Research Academy

    NASA Astrophysics Data System (ADS)

    Shipman, J. S.; Webley, P. W.; Burke, S.; Chebul, E.; Dempsey, A.; Hastings, H.; Terry, R.; Drake, J.

    2012-12-01

    The Alaska Summer Research Academy (ASRA) annually provides the opportunity for ~150 exceptional high school students to engage in scientific exploration at the university level. In July 2012, University of Alaska Fairbanks instructors led a two-week long ASRA module, called 'Denali Geographic', where eight student participants from across the USA and Canada learned how to observe changes in the natural world and design their own experiments for a field expedition to Denali National Park and Preserve, with assistance from the National Park Service. Each student designed an experiment/observational project prior to the expedition to investigate changes across the expanse of the park. Projects included wildlife documentation; scat and track observations; soil ph and moisture with elevation and vegetation changes; wildflowers species distribution; waterborne insect populations; atmospheric pressure and temperature variations; construction of sustainable buildings to minimize human impact on the park; and park geology comparisons between outcrop and distal stream deposits. The students learned how to design experiments, purchase supplies needed to conduct the work, and select good locations in which to sample in the park. Students used equipment such as GPS to mark field locations; a range finder to determine distance from wildlife; a hygrometer for temperature and pressure; nets and sorting equipments to analyze insects; and the preparation of Plaster of Paris for creating casts of animal tracks. All observations were documented in their field notebooks and blog entries made to share their experiences. Day excursions as part of the module included Poker Flats Research Range, where students learned about the use of unmanned aerial vehicles in scientific exploration; Alaska Volcano Observatory, where students learned about volcanic hazards in Alaska and the North Pacific; Chena Hot Springs and the Ice Museum, where students learned about thermal imaging using a Forward Looking Infrared Radiometer; and Pioneer Park to learn how to pan for gold. After the completion of the expedition, students had to then synthesize each of their research projects and create a collaborative presentation of their findings. On the final day of the camp, students delivered a presentation to 150 of their peers and instructors in the other ASRA modules. Presented here are details of the field camp and experiences gained by the students. The camp and two-week long module showed students how to pursue their own curiosities about the natural world. By encouraging students to take an idea and develop it into a research topic, we engaged them in the scientific method and illustrated possibilities for future avenues of academic study.

  2. Student perceptions of writing projects in a university differential-equations course

    NASA Astrophysics Data System (ADS)

    Latulippe, Christine; Latulippe, Joe

    2014-01-01

    This qualitative study surveyed 102 differential-equations students in order to investigate how students participating in writing projects in university-level mathematics courses perceive the benefits of writing in the mathematics classroom. Based on previous literature on writing in mathematics, students were asked specifically about the benefits of writing projects as a means to explore practical uses of mathematics, deepen content knowledge, and strengthen communication. Student responses indicated an awareness of these benefits, supporting justifications commonly cited by instructors assigning writing projects. Open-ended survey responses highlighted additional themes which students associated with writing in mathematics, including using software programs and technology, working in groups, and stimulating interest in mathematics. This study provides student feedback to support the use of writing projects in mathematics, as well as student input, which can be utilized to strengthen the impact of writing projects in mathematics.

  3. The effects of topic choice in project-based instruction on undergraduate physical science students' interest, ownership, and motivation

    NASA Astrophysics Data System (ADS)

    Milner-Bolotin, Marina

    2001-07-01

    Motivating nonscience majors in science and mathematics studies became one of the most interesting and important challenges in contemporary science and mathematics education. Therefore, designing and studying a learning environment, which enhances students' motivation, is an important task. This experimental study sought to explore the implications of student autonomy in topic choice in a project-based Physical Science Course for nonscience majors' on students' motivational orientation. It also suggested and tested a model explaining motivational outcomes of project-based learning environment through increased student ownership of science projects. A project, How Things Work, was designed and implemented in this study. The focus of the project was application of physical science concepts learned in the classroom to everyday life situations. Participants of the study (N = 59) were students enrolled in three selected sections of a Physical Science Course, designed to fulfill science requirements for nonscience majors. These sections were taught by the same instructor over a period of an entire 16-week semester at a large public research university. The study focused on four main variables: student autonomy in choosing a project topic, their motivational orientation, student ownership of the project, and the interest in the project topic. Achievement Goal Orientation theory became the theoretical framework for the study. Student motivational orientation, defined as mastery or performance goal orientation, was measured by an Achievement Goal Orientation Questionnaire. Student ownership was measured using an original instrument, Ownership Measurement Questionnaire, designed and tested by the researchers. Repeated measures yoked design, ANOVA, ANCOVA, and multivariate regression analysis were implemented in the study. Qualitative analysis was used to complement and verify quantitative results. It has been found that student autonomy in the project choice did not make a significant impact on their motivational orientation, while their initial interest in the project topic did. The latter was found to be related to students' ownership of the project, which was found to lead to improved mastery goal orientation. These findings indicate that incorporating project-based learning in science teaching may lead to increased student mastery goal orientation, and may result in improved science learning.

  4. An Accurate Scatter Measurement and Correction Technique for Cone Beam Breast CT Imaging Using Scanning Sampled Measurement (SSM) Technique.

    PubMed

    Liu, Xinming; Shaw, Chris C; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C; Kappadath, S Cheenu

    2006-02-28

    We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images.Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.

  5. The Benefits of Peer-Mentoring in Undergraduate Group Research Projects at The University of Arizona

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Kevin; McGraw, A. M.; Towner, A. P.; Walker-LaFollette, A.; Robertson, A.; Smith, C.; Turner, J.; Biddle, L. I.; Thompson, R.

    2013-06-01

    According to the American Institute of Physics, the number of graduate students enrolled in astronomy programs in the US has been steadily increasing in the past 15 years. Research experience is one of the key factors graduate admissions committees look for when choosing students. The University of Arizona Astronomy Club is setting a new precedent in research by having students introduce other students to research. This eases the transition to research projects, and allows students to work in a comfortable setting without the sometimes-overwhelming cognitive disconnect between a professor and their students. The University of Arizona's research projects have many benefits to all students involved. It is well established that people learn a subject best when they have to teach it to others. Students leading the projects learn alongside their peers in a peer-mentoring setting. When project leaders move on in their academic career, other project members can easily take the lead. Students learn how to work in teams, practice effective communication skills, and begin the processes of conducting a full research project, which are essential skills for all budding scientists. These research projects also give students hands-on research experience that supplement and greatly expand on concepts taught in the classroom, and make them more attractive to graduate schools and REU programs.

  6. Student design projects in applied acoustics.

    PubMed

    Bös, Joachim; Moritz, Karsten; Skowronek, Adam; Thyes, Christian; Tschesche, Johannes; Hanselka, Holger

    2012-03-01

    This paper describes a series of student projects which are intended to complement theoretical education in acoustics and engineering noise control with practical experience. The projects are also intended to enhance the students' ability to work in a team, to manage a project, and to present their results. The projects are carried out in close cooperation with industrial partners so that the students can get a taste of the professional life of noise control engineers. The organization of such a project, its execution, and some of the results from the most recent student project are presented as a demonstrative example. This latest project involved the creation of noise maps of a production hall, the acoustic analysis of a packaging machine, and the acoustic analysis of a spiral vibratory conveyor. Upon completion of the analysis, students then designed, applied, and verified some simple preliminary noise reduction measures to demonstrate the potential of these techniques. © 2012 Acoustical Society of America

  7. Project of the planetary terrain analogs research for technology development and education in geodesy and image processing.

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Gavrushin, Nikolay; Bataev, Mikhail; Kruzhkov, Maxim; Oberst, Juergen

    2013-04-01

    The MIIGAiK Extraterrestrial Laboratory (MExLab) is currently finalizing the development the robotic mobile science platform MExRover, designed for simulating rover activities on the surface of earth-type planets and satellites. In the project, we develop a hardware and software platform for full rover operation and telemetry processing from onboard instruments, as a means of training undergraduate and postgraduate students and young scientists working in the field of planetary exploration. 1. Introduction The main aim of the project is to provide the research base for image processing development and geodesy survey. Other focus is the development of research programs with participation of students and young scientists of the University, for digital terrain model creation for macro- and microrelief surveying. MExRover would be a bridge from the old soviet Lunokhod experience to the new research base for the future rover technology development support. 2. Rover design The design of the rover and its instrument suite allows acquiring images and navigation data satisfying the requirements for photogrammetric processing. The high-quality color panoramas as well as DTMs (Digital Terrain Models) will be produced aboard and could be used for the real-time track correction and environment analysis. A local operator may control the rover remotely from a distance up to 3 km and continuously monitor all systems. The MExRover has a modular design, which provides maximum flexibility for accomplishing different tasks with different sets of additional equipment weighing up to 15 kg. The framework can be easily disassembled and fit into 3 transport boxes, which allows transporting them on foot, by car, train or plane as a the ordinary luggage. The imaging system included in the present design comprises low resolution video cameras, high resolution stereo camera, microphone and IR camera. More instruments are planned to be installed later as auxiliary equipment, such as: spectrometer, odometer, solar radiation sensor, temperature sensor, wind sensor, magnetometer and radiation detector. The first version of the MExRover is operational and now is in testing process. We are open to proposals of mutual exploitation of MExRover platform for science, education and outreach purposes. 3. Specification Dimensions W×L×H 600×1000×400/1700 mm Maximum weight 60 kg Payload weight 20 kg Cruising range 3 km Mean velocity 1 km/h Acknowledgements This work is supported by the Ministry of Education and Science of the Russian Federation (MEGA-GRANT, Project name: "Geodesy, cartography and the study of planets and satellites", contract # 11.G34.31.0021 dd. 30.11.2010).

  8. Opportunities within NASA's Exploration Systems Mission Directorate for Engineering Students and Faculty

    NASA Technical Reports Server (NTRS)

    Garner, Lesley

    2008-01-01

    In 2006, NASA's Exploration Systems Mission Directorate (ESMD) launched two new Educational Projects: (1) The ESMID Space Grant Student Project ; and (2) The ESM1D Space Grant Faculty Project. The Student Project consists of three student opportunities: exploration-related internships at NASA Centers or with space-related industry, senior design projects, and system engineering paper competitions. The ESMID Space Grant Faculty Project consists of two faculty opportunities: (1) a summer faculty fellowship; and (2) funding to develop a senior design course.

  9. Understanding Student Mobility in the B.C. Public Post-Secondary System. Highlights from the Student Transitions Project: Post-Secondary Student Mobility

    ERIC Educational Resources Information Center

    British Columbia Council on Admissions and Transfer, 2013

    2013-01-01

    This annual newsletter summarizes the work of the Post-secondary Student Mobility (PSM) Subcommittee of the Student Transitions Project (STP) . In an effort to better understand student mobility in the B.C. public post-secondary system, the Student Transitions Project continues to describe and quantify the numerous education pathways of students…

  10. Project-Based Teaching: Helping Students Make Project Connections

    NASA Astrophysics Data System (ADS)

    Johnson, Heather Jo Pusich

    Project-based curriculum materials are designed to support students in engaging with scientific content and practices in meaningful ways, with the goal of improving students' science learning. However, students need to understand the connections between what they are doing on a day-to-day basis with respect to the goals of the overall project for students to get the motivational and cognitive benefits of a project-based approach. In this dissertation, I looked at the challenges that four ninth grade science teachers faced as they helped students to make these connections using a project-based environmental science curriculum. The analysis revealed that in general when the curriculum materials made connections explicit, teachers were better able to articulate the relationship between the lesson and the project during enactment. However, whether the connections were explicit or implicit in the materials, enactments of the same lesson across teachers revealed that teachers leveraged different aspects of the project context in different ways depending on their knowledge, beliefs, and goals about project-based teaching. The quantitative analysis of student data indicated that when teacher enactments supported project goals explicitly, students made stronger connections between a lesson and the project goal. Therefore, a teacher's ability to make clear connections during classroom instruction is essential. Furthermore, when students made connections between each lesson and the larger project goals their attitudes toward the lesson were more positive and they performed better on the final assessment. These findings suggest that connections between individual lessons and the goals of the project are critical to the effectiveness of project-based learning. This study highlights that while some teachers were able to forge these connections successfully as a result of leveraging cognitive resources, teachers' beliefs, knowledge and goals about project-based teaching are variable. As such, teachers adopting project-based curriculum materials need more support - through educative curriculum materials, coaching, or ongoing professional development - to help them support project connections consistently and explicitly in their teaching practice.

  11. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, C; Qi, H; Chen, Z

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using meanmore » filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.« less

  12. Scientists and Middle School Students; Learning and Working Together

    NASA Astrophysics Data System (ADS)

    Haste, T.

    2007-12-01

    Johns Hopkins University's Center for Talented Youth students enrolled in the Dynamic Earth class come from all over the world to study earth systems. Investigating plate action, crustal formation, glaciers, currents, weathering and atmospheric interactions, students develop a strong ability to identify the forces that continually change the landscape and the interconnectedness of the atmosphere, hydrosphere and lithosphere. As part of their regular course work, students work with a variety of cooperating scientists. US Geological Survey staff assists students in examining sand samples and exploring monitoring research on invasive foraminiferas in San Francisco Bay. Gulf of the Farallones National Marine Sanctuary and Mavericks Surf Ventures staff help students explore the off shore submarine formations of a storm swell at Half Moon Bay that develops into a world-class big wave. Students met a big wave surfer who described the ride and shared surf stories. A wave forecaster helped students use modeling software to create real-time forecasts. In the final project students assist faculty of University of Texas at Austin, Institute of Geophysics using cruise reports, project abstracts, and bathymetry images, in evaluating a series of submarine features in the Ross Sea, Antarctica. Students develop proposals and present their ideas in a seminar format, attended by cooperating scientists. Students have an opportunity to work with current scientists and learn how classroom "stuff" is used. One student commented, "I felt like I could talk with them about what they were doing and actually understand what they were talking about." Another stated, "I didn't know you could learn so much from forams. I always thought paleontology was about dinosaurs." As a result of the class, students understand the relevance of their learning, scientists like working with kids, and educators get excited about science. To evaluate program outcomes, the staff holds regular meetings with scientists as students begin the sessions. Faculty and scientists work collaboratively to develop activities students will be engaged in and that relates to the scientists' work. Students and faculty complete evaluations. A report is generated at the close of the summer outlining plans for the next season, detailing successes, and areas of improvement.

  13. Reduction of noise and image artifacts in computed tomography by nonlinear filtration of projection images

    NASA Astrophysics Data System (ADS)

    Demirkaya, Omer

    2001-07-01

    This study investigates the efficacy of filtering two-dimensional (2D) projection images of Computer Tomography (CT) by the nonlinear diffusion filtration in removing the statistical noise prior to reconstruction. The projection images of Shepp-Logan head phantom were degraded by Gaussian noise. The variance of the Gaussian distribution was adaptively changed depending on the intensity at a given pixel in the projection image. The corrupted projection images were then filtered using the nonlinear anisotropic diffusion filter. The filtered projections as well as original noisy projections were reconstructed using filtered backprojection (FBP) with Ram-Lak filter and/or Hanning window. The ensemble variance was computed for each pixel on a slice. The nonlinear filtering of projection images improved the SNR substantially, on the order of fourfold, in these synthetic images. The comparison of intensity profiles across a cross-sectional slice indicated that the filtering did not result in any significant loss of image resolution.

  14. The Galileoscope project: community-based technology education in Arizona

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Fine, Leonard W.; Sparks, Robert T.; Walker, Constance E.; Dugan, Charles L.; Dokter, Erin F. C.

    2014-07-01

    A program model has been developed and implemented over the last three years to provide a robust optical technologybased science education program to students aged 9-11 years (5th grade), a formative time in the development of a student's interest in science and engineering. We have created well-tested and evaluated teaching kits for the classroom to teach about the basics of image formation and telescopes. In addition we provide professional development to the teachers of these students on principles of optics and on using the teaching kits. The program model is to reach every teacher and every student in a number of mid-sized rural communities across the state of Arizona. The Galileoscope telescope kit is a key part of this program to explore optics and the nature of science. The program grew out of Module 3 of the NSF-Supported Hands-On Optics project (SPIE, OSA, and NOAO) and from the Science Foundation Arizona-supported Hands-On Optics Arizona program. NOAO has conducted this program in Flagstaff, Yuma, Globe, and Safford, Arizona and is being expanded to sites across the entire state of Arizona (295,254 square kilometers). We describe the educational goals, evaluations, and logistical issues connected to the program. In particular, we proposed that this model can be adapted for any rural or urban locations in order to encourage interest in science, astronomy and optics.-

  15. Using Telescopic Observations to Mentor High School Students in STEM

    NASA Astrophysics Data System (ADS)

    McLin, K. M.; Cominsky, L. R.

    2011-09-01

    Over the past two summers (2009 and 2010) the NASA EPO Group at Sonoma State University (SSU) has sponsored local high school students in a summer science internship program at the University. The students, chosen from Sonoma County high schools in a competitive selection process, work in various science, technology, engineering, and mathematics (STEM) fields throughout the School of Science and Technology at SSU. The two interns sponsored by the EPO Group each summer monitor active galaxies using GORT, the NASA/Fermi-sponsored optical robotic telescope operated by the Group. They are mentored in their projects by EPO Group personnel and by SSU undergraduates who have experience with the telescope. The students learn about the sky, telescopes and the active galaxies they observe. They also learn how to make telescopic observations and how to reduce the CCD images obtained. Interns also participate in weekly meetings with other interns working on different projects around campus. At the end of the summer all the interns present their research results at a symposium held on campus.The symposium is attended by the interns themselves, their parents, their high school science teachers, and university faculty and administrators.The program has had a positive impact on how our interns view science, and specifically on their view of astronomy, as reported by the interns themselves in the first two years of the program.

  16. Student and Faculty Outcomes of Undergraduate Science Research Projects by Geographically Dispersed Students

    ERIC Educational Resources Information Center

    Shaw, Lawton; Kennepohl, Dietmar

    2013-01-01

    Senior undergraduate research projects are important components of most undergraduate science degrees. The delivery of such projects in a distance education format is challenging. Athabasca University (AU) science project courses allow distance education students to complete research project courses by working with research supervisors in their…

  17. UNH Project SMART 2017: Space Science for High School Students

    NASA Astrophysics Data System (ADS)

    Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.

    2017-12-01

    Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  18. Unraveling the Geologic History of Antarctica Through the Study of Sediment and Rock Cores: The ANDRILL Education and Public Outreach Experience.

    NASA Astrophysics Data System (ADS)

    Rack, F. R.; Huffman, L.; Berg, M.; Levy, R.; Harwood, D.; Lacy, L.

    2007-12-01

    ANDRILL (ANtarctic geological DRILLing) is a multinational collaboration involving more than 250 scientists from Germany, Italy, New Zealand and the United States. The ANDRILL Program has mobilized scientists, technicians, drillers, engineers, students and educators from four member nations to bring world-class science into focus and provide in-depth immersive experiences to educators through the ARISE (ANDRILL Research Immersion for Science Educators) Program and Project Iceberg. During two seasons of scientific drilling, encompassing the McMurdo Ice Shelf (MIS) Project and the Southern McMurdo Sound (SMS) Project, 15 educators have been immersed in ANDRILL science and have participated in both learning and teaching experiences. Blogs, video journals, images and other resources were generated and distributed online to teachers, students and the general public through the ANDRILL website as part of Project Iceberg, which was used as a unifying theme for the outreach effort. The video journals chronicled the journey from Lincoln, Nebraska to Antarctica and introduced viewers to many aspects of the ANDRILL program in an engaging manner. An accompanying guide provided background information, discussion starters, and engaging activities for students and adults alike. Subtitles in German and Italian were used on each of the video journals in addition to the English narrative, and the resulting product was entitled, ANDRILL: A REAL WORLD GEOSCIENCE ADVENTURE. The primary objective was to introduce teachers, students, and the general public to Antarctica and the ANDRILL Program, and to provide preliminary insights into the following questions: How do scientists from around the world come together in the coldest, windiest, driest place on Earth to uncover the secrets that have been shrouded beneath the ice for millions of years? What secrets do the rocks record? How can I join the journey to learn more about Antarctica and ANDRILL?

  19. An Interdisciplinary Team Project: Psychology and Computer Science Students Create Online Cognitive Tasks

    ERIC Educational Resources Information Center

    Flannery, Kathleen A.; Malita, Mihaela

    2014-01-01

    We present our case study of an interdisciplinary team project for students taking either a psychology or computer science (CS) course. The project required psychology and CS students to combine their knowledge and skills to create an online cognitive task. Each interdisciplinary project team included two psychology students who conducted library…

  20. Preparing Hispanic Students for the Real World: Benefits of Problem-Based Service Learning Projects

    ERIC Educational Resources Information Center

    West, Jean Jaymes; Simmons, Donna

    2012-01-01

    Student learning is enriched by problem-based service learning (PBSL) projects. For Hispanic students, the learning that takes place in PBSL projects may be even more significant, although the research published in academic journals about client-based projects for Hispanic students is limited. This article begins to advance an understanding of how…

  1. University of Michigan lecture archiving and related activities of the U-M ATLAS Collaboratory Project

    NASA Astrophysics Data System (ADS)

    Herr, J.; Bhatnagar, T.; Goldfarb, S.; Irrer, J.; McKee, S.; Neal, H. A.

    2008-07-01

    Large scientific collaborations as well as universities have a growing need for multimedia archiving of meetings and courses. Collaborations need to disseminate training and news to their wide-ranging members, and universities seek to provide their students with more useful studying tools. The University of Michigan ATLAS Collaboratory Project has been involved in the recording and archiving of multimedia lectures since 1999. Our software and hardware architecture has been used to record events for CERN, ATLAS, many units inside the University of Michigan, Fermilab, the American Physical Society and the International Conference on Systems Biology at Harvard. Until 2006 our group functioned primarily as a tiny research/development team with special commitments to the archiving of certain ATLAS events. In 2006 we formed the MScribe project, using a larger scale, and highly automated recording system to record and archive eight University courses in a wide array of subjects. Several robotic carts are wheeled around campus by unskilled student helpers to automatically capture and post to the Web audio, video, slides and chalkboard images. The advances the MScribe project has made in automation of these processes, including a robotic camera operator and automated video processing, are now being used to record ATLAS Collaboration events, making them available more quickly than before and enabling the recording of more events.

  2. See-What-I-Do: Increasing Mentor and Trainee Sense of Co-Presence in Trauma Surgeries with the STAR Platform

    DTIC Science & Technology

    2016-04-01

    publications, images, and videos.  Technologies or techniques . The technique for one shot gesture recognition is a result from the research activity... shot learning concept for gesture recognition. Name: Aditya Ajay Shanghavi Project Role: Master Student Researcher Identifier (e.g. ORCID ID...use case . The transparency error depends more on the x than the z head tracking error. Head tracking is typically accurate to less than 10mm in x

  3. Interdependence and Integration Learning in Student Project Teams: Do Team Project Assignments Achieve What We Want Them to?

    ERIC Educational Resources Information Center

    Skilton, Paul F.; Forsyth, David; White, Otis J.

    2008-01-01

    Building from research on learning in workplace project teams, the authors work forward from the idea that the principal condition enabling integration learning in student team projects is project complexity. Recognizing the challenges of developing and running complex student projects, the authors extend theory to propose that the experience of…

  4. Building Bridges: Using the Office Consultation Project to Connect Students to Theory and Practice

    ERIC Educational Resources Information Center

    Wawrzynski, Korine Steinke; Jessup-Anger, Jody E.

    2014-01-01

    The Office Consultation Project is an innovative capstone project that partners graduate students in student affairs preparation programs with academic and student affairs practitioners. It provides an opportunity for students to apply research and scholarship to practical settings, while giving practitioners new insight into their units,…

  5. Three-dimensional printing of human skeletal muscle cells: An interdisciplinary approach for studying biological systems.

    PubMed

    Bagley, James R; Galpin, Andrew J

    2015-01-01

    Interdisciplinary exploration is vital to education in the 21st century. This manuscript outlines an innovative laboratory-based teaching method that combines elements of biochemistry/molecular biology, kinesiology/health science, computer science, and manufacturing engineering to give students the ability to better conceptualize complex biological systems. Here, we utilize technology available at most universities to print three-dimensional (3D) scale models of actual human muscle cells (myofibers) out of bioplastic materials. The same methodological approach could be applied to nearly any cell type or molecular structure. This advancement is significant because historically, two-dimensional (2D) myocellular images have proven insufficient for detailed analysis of organelle organization and morphology. 3D imaging fills this void by providing accurate and quantifiable myofiber structural data. Manipulating tangible 3D models combats 2D limitation and gives students new perspectives and alternative learning experiences that may assist their understanding. This approach also exposes learners to 1) human muscle cell extraction and isolation, 2) targeted fluorescence labeling, 3) confocal microscopy, 4) image processing (via open-source software), and 5) 3D printing bioplastic scale-models (×500 larger than the actual cells). Creating these physical models may further student's interest in the invisible world of molecular and cellular biology. Furthermore, this interdisciplinary laboratory project gives instructors of all biological disciplines a new teaching tool to foster integrative thinking. © 2015 The International Union of Biochemistry and Molecular Biology.

  6. Integrating a Project Management Approach to E-Business Application Course

    ERIC Educational Resources Information Center

    Chen, Kuan C.; Chuang, Keh-Wen

    2008-01-01

    Teaching students project managements requires a hands-on approach. Incorporating project management concepts and processes into a student team Web development project adds a dimension that exposes students to the realities of effective Web development. This paper will describe the project management approach used in a Web development course in…

  7. Visualizations and Mental Models - The Educational Implications of GEOWALL

    NASA Astrophysics Data System (ADS)

    Rapp, D.; Kendeou, P.

    2003-12-01

    Work in the earth sciences has outlined many of the faulty beliefs that students possess concerning particular geological systems and processes. Evidence from educational and cognitive psychology has demonstrated that students often have difficulty overcoming their na‹ve beliefs about science. Prior knowledge is often remarkably resistant to change, particularly when students' existing mental models for geological principles may be faulty or inaccurate. Figuring out how to help students revise their mental models to include appropriate information is a major challenge. Up until this point, research has tended to focus on whether 2-dimensional computer visualizations are useful tools for helping students develop scientifically correct models. Research suggests that when students are given the opportunity to use dynamic computer-based visualizations, they are more likely to recall the learned information, and are more likely to transfer that knowledge to novel settings. Unfortunately, 2-dimensional visualization systems are often inadequate representations of the material that educators would like students to learn. For example, a 2-dimensional image of the Earth's surface does not adequately convey particular features that are critical for visualizing the geological environment. This may limit the models that students can construct following these visualizations. GEOWALL is a stereo projection system that has attempted to address this issue. It can display multidimensional static geologic images and dynamic geologic animations in a 3-dimensional format. Our current research examines whether multidimensional visualization systems such as GEOWALL may facilitate learning by helping students to develop more complex mental models. This talk will address some of the cognitive issues that influence the construction of mental models, and the difficulty of updating existing mental models. We will also discuss our current work that seeks to examine whether GEOWALL is an effective tool for helping students to learn geological information (and potentially restructure their na‹ve conceptions of geologic principles).

  8. Learning the scientific method using GloFish.

    PubMed

    Vick, Brianna M; Pollak, Adrianna; Welsh, Cynthia; Liang, Jennifer O

    2012-12-01

    Here we describe projects that used GloFish, brightly colored, fluorescent, transgenic zebrafish, in experiments that enabled students to carry out all steps in the scientific method. In the first project, students in an undergraduate genetics laboratory course successfully tested hypotheses about the relationships between GloFish phenotypes and genotypes using PCR, fluorescence microscopy, and test crosses. In the second and third projects, students doing independent research carried out hypothesis-driven experiments that also developed new GloFish projects for future genetics laboratory students. Brianna Vick, an undergraduate student, identified causes of the different shades of color found in orange GloFish. Adrianna Pollak, as part of a high school science fair project, characterized the fluorescence emission patterns of all of the commercially available colors of GloFish (red, orange, yellow, green, blue, and purple). The genetics laboratory students carrying out the first project found that learning new techniques and applying their knowledge of genetics were valuable. However, assessments of their learning suggest that this project was not challenging to many of the students. Thus, the independent projects will be valuable as bases to widen the scope and range of difficulty of experiments available to future genetics laboratory students.

  9. A case study of autonomy and motivation in a student-led game development project

    NASA Astrophysics Data System (ADS)

    Prigmore, M.; Taylor, R.; De Luca, D.

    2016-07-01

    This paper presents the findings of an exploratory case study into the relationship between student autonomy and motivation in project based learning, using Self-Determination Theory (SDT) to frame the investigation. The case study explores how different forms of motivation affect the students' response to challenges and their intention to complete the project. Earlier studies have made little explicit use of theoretical perspectives on student autonomy and motivation, a weakness this study attempts to address. As an exploratory case study seeking to evaluate the suitability of a particular theoretical framework, we chose a small case: three students on a one-term computer games development project. Given the small scale, the approach is necessarily qualitative, drawing on project documentation and one-to-one interviews with the students. Our conclusion is that the concepts of SDT provide a useful framework for analysing students' motivations to undertake project work, and its predictions can offer useful guidance on how to initiate and supervise such projects.

  10. DOE/PSU Graduate Student Fellowship Program for Hydropower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cimbala, John M.

    The primary objective of this project is to stimulate academic interest in the conventional hydropower field by supplying research support for at least eight individual Master of Science (MS) or Doctoral (PhD) level research projects, each consisting of a graduate student supervised by a faculty member. We have completed many of the individual student research projects: 2 PhD students have finished, and 4 are still working towards their PhD degree. 4 MS students have finished, and 2 are still working towards their MS degree, one of which is due to finish this April. In addition, 4 undergraduate student projects havemore » been completed, and one is to be completed this April. These projects were supervised by 7 faculty members and an Advisory/Review Panel. Our students and faculty have presented their work at national or international conferences and have submitted several journal publications. Three of our graduate students (Keith Martin, Dan Leonard and Hosein Foroutan) have received HRF Fellowships during the course of this project. All of the remaining students are anticipated to be graduated by the end of Fall Semester 2014. All of the tasks for this project will have been completed once all the students have been graduated, although it will be another year or two until all the journal publications have been finalized based on the work performed as part of this DOE Hydropower project.« less

  11. Using Group Research Projects to Stimulate Undergraduate Astronomy Major Learning

    NASA Astrophysics Data System (ADS)

    McGraw, Allison M.; Hardegree-Ullman, K. K.; Turner, J. D.; Shirley, Y. L.; Walker-LaFollette, A. M.; Robertson, A. N.; Carleton, T. M.; Smart, B. M.; Towner, A. P. M.; Wallace, S. C.; Smith, C. W.; Small, L. C.; Daugherty, M. J.; Guvenen, B. C.; Crawford, B. E.; Austin, C. L.; Schlingman, W. M.

    2012-05-01

    The University of Arizona Astronomy Club has been working on two large group research projects since 2009. One research project is a transiting extrasolar planet project that is fully student led and run. We observed the transiting exoplanets, TrES-3b and TrES-4b, with the 1.55 meter Kupier Telescope in near-UV and optical filters in order to detect any asymmetries between filters. The second project is a radio astronomy survey utilizing the Arizona Radio Observatory 12m telescope on Kitt Peak to study molecular gas in cold cores identified by the Planck all sky survey. This project provides a unique opportunity for a large group of students to get hands-on experience observing with a world-class radio observatory. These projects involve students in every single step of the process including: proposal writing to obtain telescope time on various Southern Arizona telescopes, observing at these telescopes, data reduction and analysis, managing large data sets, and presenting results at scientific meetings and in journal publications. The primary goal of these projects is to involve students in cutting-edge research early on in their undergraduate studies. The projects are designed to be continuous long term projects so that new students can easily join. As of January 2012 the extrasolar planet project became an official independent study class. New students learn from the more experienced students on the projects creating a learner-centered environment.

  12. Research Experiences for 14 Year Olds: preliminary report on the `Sky Explorer' pilot program at Springfield (MA) High School of Science and Technology

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.

    1997-05-01

    This NSF supported program, emphasizing hands-on learning and observation with modern instruments, is described in its pilot phase, prior to being launched nationally. A group of 14 year old students are using a small (21 cm) computer controlled telescope and CCD camera to do: (1) a 'sky survey' of brighter celestial objects, finding, identifying, and learning about them, and accumulating a portfolio of images, (2) photometry of variable stars, reducing the data to get a light curve, and (3) learn modern computer-based communication/dissemination skills by posting images and data to a Web site they are designing (http://www.javanet.com/ sky) and contributing data to archives (e.g. AAVSO) via the Internet. To attract more interest to astronomy and science in general and have a wider impact on the school and surrounding community, peer teaching is used as a pedagogical technique and families are encouraged to participate. Students teach e.g. astronomy, software and computers, Internet, instrumentation, and observing to other students, parents and the community by means of daytime presentations of their results (images and data) and evening public viewing at the telescope, operating the equipment themselves. Students can contribute scientifically significant data and experience the `discovery' aspect of science through observing projects where a measurement is made. Their `informal education' activities also help improve the perception of science in general and astronomy in particular in society at large. This program could benefit from collaboration with astronomers wanting to organize geographically distributed observing campaigns coordinated over the Internet and willing to advise on promising observational programs for small telescopes in the context of current science.

  13. A Project To Make the Laboratory More Accessible to Students with Disabilities

    NASA Astrophysics Data System (ADS)

    Lunsford, Suzanne K.; Bargerhuff, Mary Ellen

    2006-03-01

    This article describes project CLASS (Creating Laboratory Access for Science Students) an innovative NSF-funded project originating at Wright State University in Dayton, Ohio. Project CLASS enables students to participate in chemistry labs regardless of physical or learning disabilities in grades 7 12. This nationally recognized project prepares educators to accommodate and develop adaptive lab equipment to meet the needs of students with physical and learning disabilities while maintaining the integrity of the science curriculum.

  14. Reflexive photography: an alternative method for documenting the learning process of cultural competence.

    PubMed

    Amerson, Roxanne; Livingston, Wade G

    2014-04-01

    This qualitative descriptive study used reflexive photography to evaluate the learning process of cultural competence during an international service-learning project in Guatemala. Reflexive photography is an innovative qualitative research technique that examines participants' interactions with their environment through their personal reflections on images that they captured during their experience. A purposive sample of 10 baccalaureate nursing students traveled to Guatemala, where they conducted family and community assessments, engaged in home visits, and provided health education. Data collection involved over 100 photographs and a personal interview with each student. The themes developed from the photographs and interviews provided insight into the activities of an international experience that influence the cognitive, practical, and affective learning of cultural competence. Making home visits and teaching others from a different culture increased students' transcultural self-efficacy. Reflexive photography is a more robust method of self-reflection, especially for visual learners.

  15. The General Education Astronomy Source (GEAS) Project: Extending the Reach of Astronomy Education

    NASA Astrophysics Data System (ADS)

    Vogt, N. P.; Muise, A. S.

    2014-07-01

    We present a set of NASA and NSF sponsored resources to aid in teaching astronomy remotely and in the classroom at the college level, with usage results for pilot groups of students. Our goal is to increase the accessibility of general education science coursework to underserved populations nationwide. Our materials are available for use without charge, and we are actively looking for pilot instructors. Primary components of our program include an interactive online tutorial program with over 12,000 questions, an instructor review interface, a set of hands-on and imaging- and spectra-driven laboratory exercises, including video tutorials, and interviews with diverse individuals working in STEM fields to help combat stereotypes. We discuss learning strategies often employed by students without substantial scientific training and suggest ways to incorporate them into a framework based on the scientific method and techniques for data analysis, and we compare cohorts of in-class and distance-education students.

  16. An Interpretive Study of Meanings Citizen Scientists Make When Participating in Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Mankowski, T. S.; Slater, S. J.; Slater, T. F.

    2011-09-01

    As the Web 2.0 world lurches forward, so do intellectual opportunities for students and the general public to meaningfully engage in the scientific enterprise. In an effort to assess the intrinsic motivation afforded by participation in Galaxy Zoo, we have inductively analyzed more than 1,000 contributions in the Galaxy Zoo Forum and coded posts thematically. We find that participants overwhelmingly want to meaningfully contribute to a larger scientific enterprise as well as have seemingly unique access to high quality, professional astronomical data. While other citizen science projects work through large data sets, Galaxy Zoo is unique in its motivations and retention abilities. Many of these motivations originate in the aesthetic power of astronomical images, which Galaxy Zoo successfully harnesses, while not compromising the scientific value of the project. From the data emerged several trends of motivation, the primary being the sense of community created within the project that promotes professional-amateur collaboration; fulfilling a dream of being an astronomer, physicist, or astronaut; tapping into a potential well of interest created during the space race era; the spiritual aspect generated when the imagination interacts with Galaxy Zoo; and, uniting them all, the aesthetic appeal of the galaxy images. In addition, a very powerful tool also emerged as a method of retention unique to Galaxy Zoo. This tool, known as variable ratio reinforcement in behavioral psychology, uses the most appealing images as positive reinforcement to maintain classification rates over time.

  17. Students Across Borders: A Summer Earth Science Workshop for Hispanic High School Students

    NASA Astrophysics Data System (ADS)

    Butler, R. F.; Kresan, P.; Baez, A.; Sheppard, P.; Forger, G.; Rendon-Coke, G.; Gray, F.

    2003-12-01

    Southern Arizona has a high school (HS) population that is 28% Hispanic. However this fast-growing minority group represents only 14% of undergraduate students at the University of Arizona and 11% of science and engineering majors. The Students Across Borders Program was designed to assist Hispanic HS students across borders that often separate them from higher education and careers in science. In June 2003, five person student-teacher teams from Tucson, Yuma, and northern Sonora, Mexico lived in dormitories and participated in a weeklong program based on the University of Arizona campus. Activities included: field trips featuring inquiry-based investigations of geology, water quality, and tree rings; tours of engineering and science laboratories; introduction to student support organizations such as the Society of Hispanic Professional Engineers; and counseling by Career Services and Admissions personnel. Technology training included instruction in web design, digital imaging and online communication tools. Web sites developed by the student teams were presented to participants and families at the conclusion of the on-campus program. Web site development is continuing during the academic year to foster continuing communication between the student teams and presentation of results of follow-on projects assisted by graduate and undergraduate CATTS fellows and university faculty.

  18. Titanic exploration with GIS

    USGS Publications Warehouse

    Kerski, J.J.

    2004-01-01

    To help teachers and students investigate one of the world's most famous historical events using the geographic perspective and GIS tools and methods, the U.S. Geological Survey (USGS) created a set of educational lessons based on the RMS Titanic's April 1912 sailing. With these lessons, student researchers can learn about latitude and longitude, map projections, ocean currents, databases, maps, and images through the analysis of the route, warnings, sinking, rescue, and eventual discovery of the submerged ocean liner in 1985. They can also consider the human and physical aspects of the maiden voyage in the North Atlantic Ocean at a variety of scales, from global to regional to local. Likewise, their investigations can reveal how the sinking of the Titanic affected future shipping routes.

  19. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    NASA Astrophysics Data System (ADS)

    Draper, Alison J.

    2004-02-01

    In an advanced environmental chemistry course, the inclusion of semester-long scientific service projects successfully integrated the research process with course content. Each project involved a unique community-based environmental analysis in which students assessed an aspect of environmental health. The projects were due in small pieces at even intervals, and students worked independently or in pairs. Initially, students wrote a project proposal in which they chose and justified a project. Following a literature review of their topic, they drafted sampling and analysis plans using methods in the literature. Samples were collected and analyzed, and all students assembled scientific posters describing the results of their study. In the last week of the semester, the class traveled to a regional professional meeting to present the posters. In all, students found the experience valuable. They learned to be professional environmental chemists and learned the value of the discipline to community health. Students not only learned about their own project in depth, but they were inspired to learn textbook material, not for an exam, but because it helped them understand their own project. Finally, having a community to answer to at the end of the project motivated students to do careful work.

  20. [Differences in sentence completion test responses based on degree of self-disclosure].

    PubMed

    Kumano, Michiko

    2006-10-01

    Projective tests are considered to uncover unconscious emotions while avoiding psychological resistance. However, the results of projective tests may be affected by conscious emotions. This study investigates whether self-disclosure, which is a conscious factor, affected the results of a sentence completion test (SCT), which is a projective test. Eighty-five university students completed a questionnaire about their degree of self-disclosure, and a SCT. The results showed that low disclosers gave more negative responses on the SCT (such as denial responses, physiologically related responses, short responses, and short emotional responses) than high disclosers. High disclosers expressed more emotions, thoughts and feelings (i.e., opinions, positive emotions, wishes, directive disclosure responses, and positive self-images) than low disclosers. Although projective tests are assumed to minimize psychological resistance, the low disclosers gave more defensive responses on the SCT, and the high disclosers exhibited more emotional responses. In summary, self-disclosure, which is a conscious factor, affected SCT responses.

  1. The process evaluation of It's Your Move!, an Australian adolescent community-based obesity prevention project.

    PubMed

    Mathews, Louise B; Moodie, Marj M; Simmons, Annie M; Swinburn, Boyd A

    2010-07-30

    Evidence on interventions for preventing unhealthy weight gain in adolescents is urgently needed. The aim of this paper is to describe the process evaluation for a three-year (2005-2008) project conducted in five secondary schools in the East Geelong/Bellarine region of Victoria, Australia. The project, 'It's Your Move!' aimed to reduce unhealthy weight gain by promoting healthy eating patterns, regular physical activity, healthy body weight, and body size perception amongst youth; and improve the capacity of families, schools, and community organisations to sustain the promotion of healthy eating and physical activity in the region. The project was supported by Deakin University (training and evaluation), a Reference Committee (strategic direction, budgetary approval and monitoring) and a Project Management Committee (project delivery). A workshop of students, teachers and other stakeholders formulated a 10-point action plan, which was then translated into strategies and initiatives specific to each school by the School Project Officers (staff members released from teaching duties one day per week) and trained Student Ambassadors. Baseline surveys informed intervention development. Process data were collected on all intervention activities and these were collated and enumerated, where possible, into a set of mutually exclusive tables to demonstrate the types of strategies and the dose, frequency and reach of intervention activities. The action plan included three guiding objectives, four on nutrition, two on physical activity and one on body image. The process evaluation data showed that a mix of intervention strategies were implemented, including social marketing, one-off events, lunch time and curriculum programs, improvements in infrastructure, and healthy school food policies. The majority of the interventions were implemented in schools and focused on capacity building and healthy eating strategies as physical activity practices were seen by the teachers as already meeting students' needs. While substantial health-promoting activities were conducted (especially related to healthy eating), there remain further opportunities for secondary schools to use a whole-of-school approach through the school curriculum, environment, policies and ethos to improve healthy eating, physical activity and healthy body perceptions in youth. To achieve this, significant, sustained leadership will be required within the education sector generally and within schools specifically.

  2. Follow-Up with Students after 6 Years of Participation in Project Excite

    ERIC Educational Resources Information Center

    Lee, Seon-Young; Olszewski-Kubilius, Paula; Peternel, George

    2009-01-01

    Project EXCITE is a program for minority students that supplements the regular school offerings with an emphasis on enhancing students' interest and performance in math and science. This study examines the experience and perceptions of 14 student participants in the program and their parents. In student and parent interviews, Project EXCITE was…

  3. The Hubble Space Telescope's Student ERO Pilot Project: Implementing Formal and Informal Collaborative Projects

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Ryer, H.; McCallister, D.; Taylor, J.; Bishop, M.

    2010-05-01

    The Hubble Space Telescope's Early Release Observations (EROs) were revealed to the public on September 9, 2009, and K-12 students and educators in six states across the country are joining in the celebration. Students and educators in Maryland, Ohio, New York, California, New Mexico, and Delaware have been invited to participate in the Hubble Space Telescope's Student ERO Pilot Project. This is an interdisciplinary project created by STScI's Office of Public Outreach in which students research the four ERO objects and create various types of projects. In recognition of their participation, the projects are displayed at host institutions in each state (museum, science center, school, planetarium or library) during a special public event for participating students, their families, and teachers. As part of its evaluation program, STScI's Office of Public Outreach has been conducting an evaluation of the project to determine the viability and potential of conducting large-scale, formal/informal collaborative projects in the future. This poster will highlight preliminary findings and share lessons learned.

  4. VEPP Exercise: Volcanic Activity and Monitoring of Pu`u `O`o, Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. A.

    2010-12-01

    A 10-week project will be tested during the Fall semester 2010, for a Volcanic Hazards elective course, for undergraduate Geology students of the University of Puerto Rico at Mayaguez. This exercise was developed during the Volcanoes Exploration Project: Pu`u `O`o (VEPP) Workshop, held on the Big Island of Hawaii in July 2010. For the exercise the students will form groups (of 2-4 students), and each group will be assigned a monitoring technique or method, among the following: seismic (RSAM data), deformation (GPS and tilt data), observations (webcam and lava flow maps), gas and thermal monitoring. The project is designed for Geology undergraduates who have a background in introductory geology, types of volcanoes and eruptions, magmatic processes, characteristics of lava flows, and other related topics. It is divided in seven tasks, starting with an introduction and demonstration of the VEPP website and the VALVE3 software, which is used to access monitoring data from the current eruption of Pu`u `O`o, Kilauea volcano, Hawaii. The students will also familiarize themselves with the history of Kilauea volcano and its current eruption. At least weekly the groups will acquire data (mostly near-real-time) from the different monitoring techniques, in the form of time series, maps, videos, and images, in order to identify trends in the data. The groups will meet biweekly in the computer laboratory to work together in the analysis and interpretation of the data, with the support of the instructor. They will give reports on the progress of the exercise, and will get feedback from the instructor and from the other expert groups. All groups of experts will relate their findings to the recent and current activity of Kilauea volcano, and the importance of their specific type of monitoring. The activity will culminate with a written report and an oral presentation. The last task of the project consists of a wrap-up volcano monitoring exercise, in which the students will participate in a 1-hr discussion and will report on what they think will happen at Kilauea in the near future. Students will be evaluated based on group participation, progress reports and discussions, the written and oral reports, and the final wrap-up exercise. This project can be modified to be based on any 10-week period in the eruption, for which data can be accessed through the VEPP web site. It can also include data from other volcanoes, if data are available from volcano observatories and/or government agencies.

  5. STAIRSTEP -- a research-oriented program for undergraduate students at Lamar University

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian

    2011-03-01

    The relative low number of undergraduate STEM students in many science disciplines, and in particular in physics, represents a major concern for our faculty and the administration at Lamar University. Therefore, a collaborative effort between several science programs, including computer science, chemistry, geology, mathematics and physics was set up with the goal of increasing the number of science majors and to minimize the retention rate. Lamar's Student Advancing through Involvement in Research Student Talent Expansion Program (STAIRSTEP) is a NSF-DUE sponsored program designed to motivate STEM students to graduate with a science degree from one of these five disciplines by involving them in state-of-the-art research projects and various outreach activities organized on-campus or in road shows at the secondary and high schools. The physics program offers hands-on experience in optics, such as computer-based experiments for studying the diffraction and interference of light incident on nettings or electronic wave packets incident on crystals, with applications in optical imaging, electron microscopy, and crystallography. The impact of the various activities done in STAIRSTEP on our Physics Program will be discussed.

  6. NASA's Student Airborne Research Program (2009-2013)

    NASA Astrophysics Data System (ADS)

    Schaller, E. L.; Shetter, R. E.

    2013-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2013, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA DC-8 aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. Several students will present the results of their research in science sessions at this meeting. We will discuss the results and effectiveness of the program over the past five summers and plans for the future.

  7. Computer Link Offering Variable Educational Records (Project CLOVER). A National Diffusion Network Developer/Demonstrator Project.

    ERIC Educational Resources Information Center

    Arkansas State Dept. of Education, Little Rock.

    Project CLOVER (Computerized Link Offering Variable Educational Records) is a demonstration project designed to increase use of the Migrant Student Record Transfer System (MSRTS). Project CLOVER (1) helps to ensure that schools attended by migrant students have the capability to receive and transmit academic and medical information on students;…

  8. Star Formation in Undergraduate ALFALFA Team Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Koopmann, Rebecca A.; Durbala, Adriana; Finn, Rose; Haynes, Martha P.; Coble, Kimberly A.; Craig, David W.; Hoffman, G. Lyle; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Troischt, Parker; Undergraduate ALFALFA Team; ALFALFA Team

    2017-01-01

    The Undergraduate ALFALFA Team (UAT) Groups project is a coordinated study of gas and star formation properties of galaxies in and around 36 nearby (z<0.03) groups and clusters of varied richness, morphological type mix, and X-ray luminosity. By studying a large range of environments and considering the spatial distributions of star formation, we probe mechanisms of gas depletion and morphological transformation. The project uses ALFALFA HI observations, optical observations, and digital databases like SDSS, and incorporates work undertaken by faculty and students at different institutions within the UAT. Here we present results from our wide area Hα and broadband R imaging project carried out with the WIYN 0.9m+MOSAIC/HDI at KPNO, including an analysis of radial star formation rates and extents of galaxies in the NGC 5846, Abell 779, NRGb331, and HCG 69 groups/clusters. This work has been supported by NSF grant AST-1211005 and AST-1637339.

  9. Fin and Feather: Lessons Both Old and New Are Found in the Familiar Splash of the Salmon and the Novel Cluck of the Chicken.

    ERIC Educational Resources Information Center

    Weeds, Denise Jarrett

    2002-01-01

    Descriptions of students projects raising chickens and studying salmon illustrate how project-based learning engages high-risk Alaska Native students. Projects make learning relevant, involve the community, increase student self-esteem, and help students and teachers bond with each other. A 4-day workshop for teachers emphasized how projects must…

  10. Developing Students' Ideas about Lens Imaging: Teaching Experiments with an Image-Based Approach

    ERIC Educational Resources Information Center

    Grusche, Sascha

    2017-01-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists' analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students' ideas, teaching experiments are performed and evaluated using…

  11. Student Project in Anatomy (SPA) - Making the First Year Medical Students Responsible and Creative.

    PubMed

    Nayak, Satheesha B; Mishra, Snigdha; George, Bincy M; Kumar, Naveen

    2016-09-01

    Creativity is a combination of ones' capacity to think outside the box, the gained knowledge and the passion for creating something. It very easily and effectively provides the creator a chance to be responsible for his/her creation and acts as a confidence booster for him/her. Creativity is inherent, but needs to be polished and nurtured. If nurtured well through proper motivation, the creator excels leaps and bounds. It develops an empathetic behaviour in the creator, when he allows his creations to be used by others. The study was done to generate learning resources through academically good students and make them available for the entire class. Academically, top 16 students were involved in a project of their choice. The projects included preparation of question answers, powerpoint presentations, cross-word puzzles, videos, models, atlases and wall hangers etc., ten weeks were given to finish the project. The project was guided and monitored by teachers. The end product of the project was given to the entire class for use. The perception of users of the end products of the projects was recorded through mini interviews. All the students who took part in the project liked working on the project. They felt motivated, rewarded and had mastery on the topic which they used in the project. The students who did not do the project but used the end product of the project also liked the project work. They felt that the end products of the projects were simple, informative and creative. By participating in Student Project in Anatomy (SPA), the students get to show their total potential through these creative ways. It provides a fresh and welcome change from the common routine followed otherwise in medical schools. The outcome of the projects can help the entire class. This type of projects can be easily tailored into existing curriculum and in disciplines other than anatomy too.

  12. Linguistic analysis of project ownership for undergraduate research experiences.

    PubMed

    Hanauer, D I; Frederick, J; Fotinakes, B; Strobel, S A

    2012-01-01

    We used computational linguistic and content analyses to explore the concept of project ownership for undergraduate research. We used linguistic analysis of student interview data to develop a quantitative methodology for assessing project ownership and applied this method to measure degrees of project ownership expressed by students in relation to different types of educational research experiences. The results of the study suggest that the design of a research experience significantly influences the degree of project ownership expressed by students when they describe those experiences. The analysis identified both positive and negative aspects of project ownership and provided a working definition for how a student experiences his or her research opportunity. These elements suggest several features that could be incorporated into an undergraduate research experience to foster a student's sense of project ownership.

  13. Imaging artificial satellites: An observational challenge

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Hill, D. C.

    2016-10-01

    According to the Union of Concerned Scientists, as of the beginning of 2016 there are 1381 active satellites orbiting the Earth, and the United States' Space Surveillance Network tracks about 8000 manmade orbiting objects of baseball-size and larger. NASA estimates debris larger than 1 cm to number more than half a million. The largest ones can be seen by eye—unresolved dots of light that move across the sky in minutes. For most astrophotographers, satellites are annoying streaks that can ruin hours of work. However, capturing a resolved image of an artificial satellite can pose an interesting challenge for a student, and such a project can provide connections between objects in the sky and commercial and political activities here on Earth.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosrow Behbehani

    The goal of this project was to create state-of-the-art optical medical imaging laboratories for the Biomedical Engineering faculty and student researchers of the University of Texas at Arlington (UTA) on the campus of the University of Texas Southwestern Medical Center (UTSW). This has been successfully achieved. These laboratories provide an unprecedented opportunity for the bioengineers (from UTA) to bring about new breakthroughs in medical imaging using optics. Specifically, three major laboratories have been successfully established and state-of-the-art scientific instruments have been placed in the labs. As a result of this grant, numerous journal and conference publications have been generated, patentsmore » for new inventions have been filed and received, and many additional grants for the continuation of the research has been received.« less

  15. Effects of Photobleaching on Microplastics

    NASA Astrophysics Data System (ADS)

    Ferrone, Salvatore; Sullivan, Kelley

    The presence of microplastics in our oceans and lakes is a contemporary environmental issue. A popular method for studying microplastics is fluorescence microscopy. We are studying the effects of fluorescence photo-bleaching on the imaging of microplastics. Our goal is to find out to what extent microplastics photo-bleach and if the photo-bleaching is recoverable. Photo-bleaching may entirely destroy the plastics' ability to fluoresce, hamper it for a short time, or have a minuscule effects. For this project, we consider the seven recyclable plastics. For each plastic type, we record a video of the micro-plastics for several hours under 405 nm light, then analyze and plot the image intensity as a function of time to see if the outputted light from the plastic decays over time. We then take single images at different time intervals to check if the intensity recovers. Our results will help set conditions under which fluorescence techniques can be used on microplastics. Undergraduate Student.

  16. Integrating advanced visualization technology into the planetary Geoscience workflow

    NASA Astrophysics Data System (ADS)

    Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb

    2011-09-01

    Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.

  17. Medical students' creative projects on a third year pediatrics clerkship: a qualitative analysis of patient-centeredness and emotional connection.

    PubMed

    Shapiro, Johanna; Ortiz, Diane; Ree, You Ye; Sarwar, Minha

    2016-03-16

    Increasingly, medical educators are incorporating reflective writing and original creative work into educational practices with the goals of stimulating student self-awareness, appreciation of multiple perspectives, and comfort with ambiguity and uncertainty. This study investigated students' creative projects to assess the extent to which they adopted a patient/relationship-centered, emotionally connected position toward patients and families. Over a 10 year period, students on a required third year pediatrics clerkship individually or in groups completed either a reflection or an education project using a creative medium. 520 projects (representing 595 students, 74.7 % of total eligible students) were qualitatively analyzed according to various thematic and emotion-based dimensions. The majority of projects were personal narrative essays and poetry. The largest number of project themes related to the importance of patient/relationship-centered medicine with patients. The next largest number of projects focused on health education of parents, patients, or classmates. In telling their stories, students were more likely to use a personal voice representing either their or the patient's perspective than an objective, impersonal one. In terms of emotional tone, projects were more likely to be serious than humorous. The largest number of students' emotions expressed an empathic tone. Students identified a large number and wide range of both negative and positive feelings in themselves and their patients. The majority of student emotions were positive, while the majority of patient and family emotions were negative. Students' preference for patient-centered, relational themes, as well as their tendency to favor the first voice, empathic tone, and willingness to express a range of positive and negative emotions in presenting their projects, suggests that they valued emotional connection with patients and families during the pediatrics clerkship experience.

  18. The CERES S'COOL Project: Development and Operational Phases

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Young, David F.; Racel, Anne M.

    1998-01-01

    As part of NASA's Mission to Planet Earth, the first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched on the Tropical Rainfall Measuring Mission (TRMM) spacecraft from the Tanegashima launch site in Japan in November 1997. The instrument will measure the radiation budget incoming and outgoing radiant energy - of the Earth. The major feature of interest is clouds, which play a very strong role in regulating our climate. CERES will identify clear and cloudy regions and determine cloud physical and microphysical properties using imager data from a companion instrument. Validation efforts for the remote sensing algorithms will be intensive. As one component of the validation, the S'COOL (Students' Cloud Observations On-Line) project will involve school children around the globe in making ground truth measurements at the time of a CERES overpass. They will report cloud type, height, fraction, and opacity, as well as the local surface conditions. Their observations will be collected at the NASA Langley Distributed Active Archive Center (DAAC) and made available over the Internet for educational purposes as well as for use by the CERES Science Team in validation efforts. Pilot testing of the S'COOL project began in January 1997 with two local schools in Southeastern Virginia and one remote site in Montana. National testing in April 1997 involved 8 schools (grades 3 to high school) across the United States. Global testing will be carried out in October 1997. Details of the S'COOL project, which is mainly Internet-based, are being developed in each of these phases according to feedback received from participants. In 1998, when the CERES instrument is operational, a global observer network should be in place providing useful information to the scientists and learning opportunities to the students. Broad participation in the S'COOL project is planned, both to obtain data from a wide range of geographic areas, and to involve as many students as possible in learning about clouds and atmospheric science. This paper reports on the development phase of the S'COOL project, including the reaction of the teachers and students who have been involved. It describes the operational state of the S'COOL network, and identifies opportunities for additional participants.

  19. Centaur Chiron's Calendar in our era

    NASA Astrophysics Data System (ADS)

    Spanos, S.

    2012-01-01

    Centaur Chiron's Calendar is an educational activity incorporated in environmental education which combines the principles of inter-scientific approach with fundamental astronomy conception. It is performed in school as a yearly environmental project. The famous centaur was teaching the hero Jason (and others) navigation based on stellar observation and medicine based on Pelion herbs collected at the right time of the year. Students are guided to discover his method of determination of the right time. The project evolves the creation of a photographic calendar based on collected pictures from the sunset during the various seasons of the year. It is developed in the same region that Chiron lived (Mount Pelion) according to mythology but it can be modified for use in other regions. Sunset positions are recorded daily or weekly and plotted on a wide-angle picture of the western hill crest. Students are then called to predict the date of a given sunset position. Students also record sunset time and duration of the day in order to relate it with the photographic calendar. The activity combines knowledge from various scientific fields such as history, geography and astronomy. Development of practical skills such as accurate observation, photography techniques and digital image processing is a welcomed side effect of this educational activity.

  20. Development of a Quality Improvement Curriculum in Physician Assistant Studies.

    PubMed

    Kindratt, Tiffany B; Orcutt, Venetia L

    2017-06-01

    The purpose of this project was to develop and evaluate a curriculum for physician assistant (PA) students addressing knowledge, skills, and attitudes (KSA) toward quality improvement (QI). Students (N = 77) completed a pretest rating their KSA. A curriculum was developed to improve KSA among didactic and clinical students. Two department-wide QI projects were developed for student participation. Students completed a posttest after completing curriculum components and changes in KSA had been measured. Postcurriculum implementation, QI knowledge, and skills increased significantly in most areas. Large improvements were seen in knowledge of Plan, Do, Study, Act models and life cycles of QI projects (p < .0001). Seven students (20%) participated in department-wide projects. Our curriculum model (1) was effective at improving students' QI knowledge and skills; (2) allowed students to participate in community-based QI projects; and (3) can be used by other PA programs looking to enhance their QI curriculum.

  1. A One-year Case Study: Understanding the Rich Potential of Project-based Learning in a Virtual Reality Class for High School Students

    NASA Astrophysics Data System (ADS)

    Morales, Teresa M.; Bang, EunJin; Andre, Thomas

    2013-10-01

    This paper presents a qualitative case analysis of a new and unique, high school, student-directed, project-based learning (PBL), virtual reality (VR) class. In order to create projects, students learned, on an independent basis, how to program an industrial-level VR machine. A constraint was that students were required to produce at least one educational application of VR. This study incorporated in-depth classroom observations, interviews with students, analyses of student projects, and surveys of parents and teachers to examine the social and learning processes in the class, and the nature of content learning represented in student projects. The results demonstrated that PBL can be effective even with minimal teacher guidance. The findings substantiate an educational approach rich with promise, for at least some students, that deserves considerable additional study to maximize its powerful potentials for independent and peer-mentored learning.

  2. Using a high-definition stereoscopic video system to teach microscopic surgery

    NASA Astrophysics Data System (ADS)

    Ilgner, Justus; Park, Jonas Jae-Hyun; Labbé, Daniel; Westhofen, Martin

    2007-02-01

    Introduction: While there is an increasing demand for minimally invasive operative techniques in Ear, Nose and Throat surgery, these operations are difficult to learn for junior doctors and demanding to supervise for experienced surgeons. The motivation for this study was to integrate high-definition (HD) stereoscopic video monitoring in microscopic surgery in order to facilitate teaching interaction between senior and junior surgeon. Material and methods: We attached a 1280x1024 HD stereo camera (TrueVisionSystems TM Inc., Santa Barbara, CA, USA) to an operating microscope (Zeiss ProMagis, Zeiss Co., Oberkochen, Germany), whose images were processed online by a PC workstation consisting of a dual Intel® Xeon® CPU (Intel Co., Santa Clara, CA). The live image was displayed by two LCD projectors @ 1280x768 pixels on a 1,25m rear-projection screen by polarized filters. While the junior surgeon performed the surgical procedure based on the displayed stereoscopic image, all other participants (senior surgeon, nurse and medical students) shared the same stereoscopic image from the screen. Results: With the basic setup being performed only once on the day before surgery, fine adjustments required about 10 minutes extra during the operation schedule, which fitted into the time interval between patients and thus did not prolong operation times. As all relevant features of the operative field were demonstrated on one large screen, four major effects were obtained: A) Stereoscopy facilitated orientation for the junior surgeon as well as for medical students. B) The stereoscopic image served as an unequivocal guide for the senior surgeon to demonstrate the next surgical steps to the junior colleague. C) The theatre nurse shared the same image, anticipating the next instruments which were needed. D) Medical students instantly share the information given by all staff and the image, thus avoiding the need for an extra teaching session. Conclusion: High definition stereoscopy bears the potential to compress the learning curve for undergraduate as well as postgraduate medical professionals in minimally invasive surgery. Further studies will focus on the long term effect for operative training as well as on post-processing of HD stereoscopy video content for off-line interactive medical education.

  3. Second and Third Grade Students in the Hunters Point-Bayview SEED Project: A Diagnostic Review.

    ERIC Educational Resources Information Center

    Counelis, James Steve

    This report supplements the first South East Education Development project (SEED) on first grade children. Full and partial records of 624 second grade students and 591 third grade students are the basis of this diagnostic review. The empirical data obtained for the SEED project students included: each student's sex and number of full days in…

  4. Collaborative Projects: A Study of Paired Work in a Malaysian University.

    ERIC Educational Resources Information Center

    Holmes, Richard

    2003-01-01

    Examines the project work of university students in a TESOL (Teaching of English as a Second Language) program in Malaysia. Compares phonetics and phonology projects completed by students working in pairs with those completed by students alone and reports student attitudes and strategies. (Author/LRW)

  5. Teacher and Student Intrinsic Motivation in Project-Based Learning

    ERIC Educational Resources Information Center

    Lam, Shui-fong; Cheng, Rebecca Wing-yi; Ma, William Y. K.

    2009-01-01

    In this study we examined the relationship between teacher and student intrinsic motivation in project-based learning. The participants were 126 Hong Kong secondary school teachers and their 631 students who completed evaluation questionnaires after a semester-long project-based learning program. Both teachers and students were asked to indicate…

  6. Creating Student Engagement: The Kickstarter Active Learning Project

    ERIC Educational Resources Information Center

    Manzon, Elliott

    2017-01-01

    Students can become disengaged from marketing material if they cannot see the direct application. Marketing material needs to be applied to a meaningful business task to engage and motivate students. This article introduces the Kickstarter Active Learning Project--an innovative semester-long project in which students create a Kickstarter…

  7. Project LEEDS: Leadership Education To Empower Disabled Students. Final Report.

    ERIC Educational Resources Information Center

    Aune, Betty; And Others

    This final report describes the activities of Project LEEDS (Leadership Education to Empower Disabled Students), a federally supported project designed to create student/staff teams from colleges and universities to encourage undergraduate/graduate students with disabilities to become leaders, through development of self-identity and identity with…

  8. The Wellspring: Historical Writing Project.

    ERIC Educational Resources Information Center

    McCarthy, Megan

    2003-01-01

    Describes a service learning project at Onekama Middle School (Michigan), that involves students from English, Computer Applications, Social Studies, and Michigan History courses. Students meet with senior citizens who share their life stories while the students teach them how to use computers. The project helps students develop pride in and a…

  9. Which Type of Inquiry Project Do High School Biology Students Prefer: Open or Guided?

    NASA Astrophysics Data System (ADS)

    Sadeh, Irit; Zion, Michal

    2012-10-01

    In teaching inquiry to high school students, educators differ on which method of teaching inquiry is more effective: Guided or open inquiry? This paper examines the influence of these two different inquiry learning approaches on the attitudes of Israeli high school biology students toward their inquiry project. The results showed significant differences between the two groups: Open inquiry students were more satisfied and felt they gained benefits from implementing the project to a greater extent than guided inquiry students. On the other hand, regarding documentation throughout the project, guided inquiry students believed that they conducted more documentation, as compared to their open inquiry peers. No significant differences were found regarding `the investment of time', but significant differences were found in the time invested and difficulties which arose concerning the different stages of the inquiry process: Open inquiry students believed they spent more time in the first stages of the project, while guided inquiry students believed they spent more time in writing the final paper. In addition, other differences were found: Open inquiry students felt more involved in their project, and felt a greater sense of cooperation with others, in comparison to guided inquiry students. These findings may help teachers who hesitate to teach open inquiry to implement this method of inquiry; or at least provide their students with the opportunity to be more involved in inquiry projects, and ultimately provide their students with more autonomy, high-order thinking, and a deeper understanding in performing science.

  10. ISeeYou - Evaluation of a woman-centred care pilot project in Bachelor midwifery education and research.

    PubMed

    Fontein-Kuipers, Yvonne; Romeijn, Enja

    2018-03-01

    to evaluate the ISeeYou project that aims to equip first year Bachelor midwifery students to support them in their learning of providing woman-centred care. the project has an ethnographic design. First year midwifery students buddied up to one woman throughout her continuum of the childbirth process and accompanied her during her antenatal and postnatal care encounters. Participant-observation was utilised by the students to support their learning. The Client Centred Care Questionnaire (CCCQ) was administered to collect data about women's care experiences. The project was evaluated using the SWOT model. 54 first year students completed the project and observed and evaluated on average eight prenatal visits and two postnatal visits. Students gained insight into women's lived experiences during the childbirth process and of received care throughout this period. Students reported that this was meaningful and supported and enhanced their comprehension of women-centred care. Logistic issues (lectures, travel, time) and being conscious of their role as an 'outsider' sometimes constrained, but never hindered, the students in meeting the requirements of the project. Overall, the project provided students with opportunities to expand competencies and to broaden their outlook on midwifery care. the project offers students unique and in-depth experiences supporting and augmenting their professional competencies and their personal, professional and academic development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Pilot Program for the Development of Classification and Accuracy Assessment Methods and Improved Accessibility for Landsat and Related GIS Data and Technology Transfer of These Methods to State and Local Governments

    NASA Technical Reports Server (NTRS)

    Limp, W. Fredrick

    1996-01-01

    This project has a single, comprehensive objective that is manifested in many tangible products and impacts throughout the state and the mid-south region. The primary objective or mission of this project is to expose the broadest possible cross-section of public sector decision makers responsible for developing and maintaining policy at the state, local and national levels, private sector professionals and students to the power, flexibility and utility of sensor based imagery and the mapping and interpretive products that are derived from these digital geodata. In accomplishing this mission this project has worked to provide hands-on exposure and training to primary and secondary teachers; developed and distributed instructional materials to students across the state; created an on-line archive of satellite images and related geographic data; implemented a service that enables users throughout the region and around the world to develop customized mapping products suitable for visualization and/or decision support from the comfort of their classroom or office via an internet connection to our facility; extended the use of sensor based imagery in natural resource management and commercial applications through a range of pilot research initiatives, demonstrations, presentations and professional papers.

  12. Building an Experiential Learning Model for a Project Management Course

    ERIC Educational Resources Information Center

    Chen, Kuan C.; Chuang, Keh-Wen

    2009-01-01

    Teaching students to become project management professionals requires a real world experience. Incorporating live clients into student projects, instead of using case studies or mock companies, adds a dimension that exposes students to the realities of project management. This paper will describe a structured methodology used in a project…

  13. The Effect of Project-Based Activities on Intermediate EFL Students' Reading Comprehension Ability

    ERIC Educational Resources Information Center

    Shiraz, Mona Poorverdi; Larsari, Ebrahim Ezati

    2014-01-01

    The present study investigates the relationship between the use of Project-based activities and intermediate EFL students' reading comprehension. The study addresses the questions of whether students' reading comprehension differs after implementing Project-based activities, and whether different projects lead to different degrees of reading…

  14. Public Scholarship Student Projects for Introductory Environmental Courses

    ERIC Educational Resources Information Center

    Baum, Seth D.; Aman, Destiny D.; Israel, Andrei L.

    2012-01-01

    This paper presents a model project for introductory undergraduate courses that develops students as citizens contributing scholarship to public discussions of environmental issues. In this field-based project, students actively and independently engage with an environmental issue and present their project experience to a relevant public forum. In…

  15. The Field Project as a Tool for Teaching Environmental Psychology.

    ERIC Educational Resources Information Center

    Howells, Gary N.

    1978-01-01

    Describes a university class project designed to enable students to translate environmental research into action. Students focused on a conflict between state and county government over solid waste management. Outlines steps involved in such a project and discusses student involvement and the success of the project. (KC)

  16. An Attributional Analysis of Personal and Interpersonal Motivation for Collaborative Projects

    ERIC Educational Resources Information Center

    Peterson, Sarah E.; Schreiber, James B.

    2006-01-01

    Attribution theory provides a framework for examining personal and interpersonal motivation for collaborative projects. Undergraduates were asked to read vignettes concerning student dyads engaged in collaborative projects. The vignettes systematically varied on outcome of the project, student self-ability, student self-effort, partner ability,…

  17. The Impact of Student-Directed Projects in Introductory Statistics

    ERIC Educational Resources Information Center

    Spence, Dianna J.; Bailey, Brad; Sharp, Julia L.

    2017-01-01

    A multi-year study investigated the impact of incorporating student-directed discovery projects into introductory statistics courses. Pilot instructors at institutions across the United States taught statistics implementing student-directed projects with the help of a common set of instructional materials designed to facilitate such projects.…

  18. Acquiring experience in pathology predominantly from what you see, not from what you read: the HIPON e-learning platform.

    PubMed

    Riccioni, Olga; Vrasidas, Charalambos; Brcic, Luka; Armenski, Goce; Seiwerth, Sven; Smeets, Annemieke; van Krieken, J Han Jm; Lazaris, Andreas C

    2015-01-01

    It is indisputable that nowadays one of the hardest and most important tasks in medicine and especially in medical education, is the conversion of the extensive amount of available data, into medical experience, after a proper analysis. A project under the title "ICT (Information and Communication Technology) eModules on HistoPathology: a useful online tool for students, researchers and professionals - HIPON", co-financed by the Lifelong Learning Program of the Education, Audiovisual and Culture Executive Agency (EACEA), The Commission of the European Union, has been launched at the beginning of 2013. HIPON's purpose is not to provide just another pathology website atlas, but to convey professional experience and thinking in pathology. HIPON has resulted in a well-structured and user-friendly, open resource, multi-language, e-learning platform which, taking advantage of modern image technology, offers medical students, researchers, and professionals a valuable teaching instrument so that they can acquire professional experience in pathology. The mid-term report of HIPON has been favorably evaluated by the EACEA experts who appreciated the potential of our teaching tool in providing the opportunity and the means to acquire medical experience. Through the use of virtual slides, educative videos and microscopic, high resolution, marked images accompanied by relevant questions and answers, HIPON project aims to make end-users able to think as experienced pathologists and become highly efficient in correlating pathologic data with other clinical-laboratory information.

  19. Combining Active Learning with Service Learning: A Student-Driven Demonstration Project.

    ERIC Educational Resources Information Center

    Hatcher-Skeers, Mary; Aragon, Ellen

    2002-01-01

    Describes a project that integrates active learning into service learning targeting both college students and middle schools students wherein college students perform chemical demonstrations for middle school students. (YDS)

  20. EDITORIAL: Student undergraduate laboratory and project work

    NASA Astrophysics Data System (ADS)

    Schumacher, Dieter

    2007-05-01

    During the last decade 'labwork' courses at university level have changed significantly. The beginning of this development was indicated and partly initiated by the EU-project 'Labwork in Science Education' funded by the European Community (1999-2001). The present special issue of the European Journal of Physics focuses on a multitude of different aspects of this process. The aim of this publication is to improve the exchange of experience and to promote this important trend. In physics research labs a silent revolution has taken place. Today the personal computer is omnipresent. It controls the experiment via stepping motors, piezo-microdrives etc, it monitors all parameters and collects the experimental data with the help of smart sensors. In particular, computer-based modern scanning and imaging techniques open the possibility of creating really new types of experiments. The computer allows data storage and processing on the one hand and simulation and modelling on the other. These processes occur in parallel or may even be interwoven. The web plays an important role in modern science for inquiry, communication, cooperation and publication. Traditional labwork courses do not prepare students for the many resulting demands. Therefore it is necessary to redefine the learning targets and to reconsider the learning methods. Two contributions show exemplarily how modern experimental devices could find their way into students' labs. In the article 'Infrared thermal imaging as a tool in university physics education' by Klaus-Peter Möllmann and Michael Vollmer we can see that infrared thermal imaging is a valuable tool in physics education at university level. It can help to visualize and thereby enhance understanding of physical phenomena of mechanics, thermal physics, electromagnetism, optics and radiation physics. The contribution 'Using Peltier cells to study solid-liquid-vapor transitions and supercooling' by Giacomo Torzo, Isabella Soletta and Mario Branca proves that new experiments which illustrate both fundamental physics and modern technology can be realized even with a small budget. Traditional labwork courses often provide a catalogue of well known experiments. The students must first learn the theoretical background. They then assemble the setup from specified equipment, collect the data and perform the default data processing. However, there is no way to learn to swim without water. In order to achieve a constructivist access to learning, 'project labs' are needed. In a project labwork course a small group of students works as a team on a mini research project. The students have to specify the question of research, develop a suitable experimental setup, conduct the experiment and find a suitable way to evaluate the data. Finally they must present their results e.g. in the framework of a public poster session. Three contributions refer to this approach, however they focus on different aspects: 'Project laboratory for first-year students' by Gorazd Planinšič, 'RealTime Physics: active learning laboratories' by David Sokoloff et al and 'Labs outside labs: miniprojects at a spring camp for future physics teachers' by Leos Dvorák. Is it possible to prepare the students specifically for project labwork? This question is answered by the contribution 'A new labwork course for physics students: devices, methods and research projects' by Knut Neumann and Manuela Welzel. The two main parts of the labwork course cover first experimental devices (e.g. multimeters, oscilloscopes, different sensors, operational amplifiers, step motors, AD/DA-converters). Then subjects such as data processing, consideration of measurement uncertainties, keeping records or using tools like LABVIEW etc are focused on. Another concrete proposal for a new curriculum is provided by James Sharp et al, in 'Computer based learning in an undergraduate physics laboratory: interfacing and instrument control using MATLAB'. One can well imagine that project labs will be the typical learning environment for physics students in the future. However, the details of this change should be based on a better understanding of the learning process in a students' lab. A deeper insight is given by the contribution of Claudia von Aufschnaiter and Stefan von Aufschnaiter in 'University students' activities, thinking and learning during laboratory work'. A second important alteration has taken place in physics education during the last decade. The so-called new media have changed the world of learning and teaching to an unprecedented extent. Learning with new media is often much more related to physics labwork than to traditional lectures or seminars (e.g. small learning groups, problem based learning, a high level of interactivity). We need to take these new tools into consideration as suitable amendment (blended learning) or substitution (e-learning, distance learning) of labwork courses. The developments with presumably the highest impact on physics education are modelling tools, interactive screen experiments and remote labs. Under 'modelling tools', all computer programs are summarized which enable the simulation of a physical process based on an explicit or implicit given formula. Many commercial program packages are available. The application of modelling tools in labwork courses permits a tight binding of theory and experiment. This is particularly valid and necessary in the case of project work. An interactive screen experiment (ISE) is a computer assisted representation of a physical experiment. When watching a video clip of an experiment students are forced to be passive observers. In the case of an ISE they can manipulate the setup on the screen with the help of a hand-like mouse pointer and the computer will show the appropriate result. The ISE consists of a large number of digital photos taken from the real experiment. From an epistemological point of view an ISE has the character of an experiment and can be used to discover or to prove a physical law. Many more details and an overview of possible applications can be found in the contribution 'Multimedia representation of experiments in physics' by Juergen Kirstein and Volkhard Nordmeier. A remotely controlled lab (RCL) or 'remote lab' (RL) is a physical experiment which can be remotely controlled via web-interface (server) and client-PC. During recent years a lot of RLs have appeared and also disappeared on the web. At first sight it seems fascinating to use a rare and sophisticated experiment from any PC which is connected to the web. However, in order to provide such a high level experiment continuously and to manage the schedule for sequential access, an enormous amount of manpower is necessary. Sebastian Gröber et al describe their efforts to provide a number of useful RCLs in the contribution 'Experimenting from a distance—remotely controlled laboratory (RCL)'. At many universities, physics labwork courses are also provided for students of other disciplines. Usually these groups are significantly larger than the group of physics students. Labwork courses for these groups must account for the specific objectives and students' learning conditions (previous knowledge, motivation). Heike Theyßen describes a targeted labwork course especially designed for medical students: 'Towards targeted labwork in physics as a subsidiary subject: enhancing the learning efficiency by new didactical concepts and media'. The term 'targeted' refers to the specific choice of content and methods regarding the students' learning conditions as well as the objectives of the labwork course. These differ significantly from those of labwork courses for physics students. In this case two targeted learning environments were developed, implemented and evaluated by means of several comparative studies. Both learning environments differ from traditional physics labwork courses in their objectives, didactical concept, content and experimental setups. One of them is a hypermedia learning environment, in which the real experiments are represented by ISEs. We are just at the beginning of the process of developing new labwork courses. Students' labs are often provided for large learning groups. Therefore the development of new methods as well as the acquisition of new equipment demands a large amount of investment. Using the paths of communication and cooperation established in science, we can optimize the process of renewal in order to spare manpower and financial means. Robert Lambourne exemplarily presented the cooperation project piCETL in his article 'Laboratory-based teaching and the Physics Innovations Centre for Excellence in Teaching and Learning'. The articles show that the renewal process has many different facets. New concepts are in demand as well as new experimental setups; the new media as well as the recent progress in didactic research have a strong influence on the trends. All aspects are closely linked, which can be seen by the number of mutual citations in the contributions. In order to give the reader an orientation we have structured the content of this special issue along the following lines: • successful new ideas for student labs and projects • new roles of student labs and project work • information and communication technology in laboratory and project work. This special issue provides an overview and examples of best practice as well as general concepts and personal contacts as stimuli for an enhancement of the renewal of labwork courses at university level.

  1. Land Application of Wastewater Sludges: A National Science Foundation Student-Originated Studies Project.

    ERIC Educational Resources Information Center

    Bender, Timothy J.; Barnard, Walther M.

    1981-01-01

    Summarizes a student-originated studies project, funded by the National Science Foundation, on land application of wastewater sludges. Describes the students' proposal, research methods, and evaluation of the project. (DS)

  2. Viewing-zone control of integral imaging display using a directional projection and elemental image resizing method.

    PubMed

    Alam, Md Ashraful; Piao, Mei-Lan; Bang, Le Thanh; Kim, Nam

    2013-10-01

    Viewing-zone control of integral imaging (II) displays using a directional projection and elemental image (EI) resizing method is proposed. Directional projection of EIs with the same size of microlens pitch causes an EI mismatch at the EI plane. In this method, EIs are generated computationally using a newly introduced algorithm: the directional elemental image generation and resizing algorithm considering the directional projection geometry of each pixel as well as an EI resizing method to prevent the EI mismatch. Generated EIs are projected as a collimated projection beam with a predefined directional angle, either horizontally or vertically. The proposed II display system allows reconstruction of a 3D image within a predefined viewing zone that is determined by the directional projection angle.

  3. Project Career: A qualitative examination of five college students with traumatic brain injuries.

    PubMed

    Nardone, Amanda; Sampson, Elaine; Stauffer, Callista; Leopold, Anne; Jacobs, Karen; Hendricks, Deborah J; Elias, Eileen; Chen, Hui; Rumrill, Phillip

    2015-01-01

    Project Career is an interprofessional five-year development project designed to improve the employment success of undergraduate college and university students with traumatic brain injury (TBI). The case study information was collected and synthesized by the project's Technology and Employment Coordinators (TECs) at each of the project's three university sites. The project's evaluation is occurring independently through JBS International, Inc. Five case studies are presented to provide an understanding of student participants' experiences within Project Career. Each case study includes background on the student, engagement with technology, vocational supports, and interactions with his/her respective TEC. A qualitative analysis from the student's case notes is provided within each case study, along with a discussion of the overall qualitative analysis. Across all five students, the theme Positive Outcomes was mentioned most often in the case notes. Of all the different type of challenges, Cognitive Challenges were most often mentioned during meetings with the TECs, followed by Psychological Challenges, Physical Challenges, Other Challenges, and Academic Challenges, respectively. Project Career is providing academic enrichment and career enhancement that may substantially improve the unsatisfactory employment outcomes that presently await students with TBI following graduation.

  4. The image of mathematics held by Irish post-primary students

    NASA Astrophysics Data System (ADS)

    Lane, Ciara; Stynes, Martin; O'Donoghue, John

    2014-08-01

    The image of mathematics held by Irish post-primary students was examined and a model for the image found was constructed. Initially, a definition for 'image of mathematics' was adopted with image of mathematics hypothesized as comprising attitudes, beliefs, self-concept, motivation, emotions and past experiences of mathematics. Research focused on students studying ordinary level mathematics for the Irish Leaving Certificate examination - the final examination for students in second-level or post-primary education. Students were aged between 15 and 18 years. A questionnaire was constructed with both quantitative and qualitative aspects. The questionnaire survey was completed by 356 post-primary students. Responses were analysed quantitatively using Statistical Package for the Social Sciences (SPSS) and qualitatively using the constant comparative method of analysis and by reviewing individual responses. Findings provide an insight into Irish post-primary students' images of mathematics and offer a means for constructing a theoretical model of image of mathematics which could be beneficial for future research.

  5. Student Research Projects in Geophysics Through a Consortium of Undergraduate Geology Departments

    NASA Astrophysics Data System (ADS)

    Kroeger, G. C.

    2003-12-01

    Beginning in 1987, and continuing to the present, the Keck Geology Consortium, a group of 12 undergraduate institutions, has sponsored a series of summer research projects. These projects typically involve from 9 to 12 students and 3 to 4 faculty members and consist of a 4 to 5 week summer research program followed by continuation of the research at the students' home institutions, often as a senior thesis. Many of these projects have included extensive field and laboratory geophysical components. In order for students to carry out successful research projects in geophysics, several hurdles have to be cleared. Frequently these students have not had a formal course in geophysics, so although they may have strong geologic and quantitative skills, there is usually the need for a concentrated classroom immersion in the geophysical theory and methods related to the project. Field geophysics projects are labor intensive, so it is common for a group of three or more students to produce only one or two complete data sets in the course of the summer program. Generating individualized projects so that students feel ownership of their thesis research can be challenging. Most of the departments do not have a geophysicist on the faculty, so follow-up support for the student research involves continued long-distance collaboration between project directors, students and sponsoring faculty. The impact of the internet on this collaboration cannot be overstated. Finally, diverse computing environments at the participating institutions were a significant problem in the early years. Migration of geophysical software to Windows from Unix, and the widespread availability of Linux has mitigated these problems in recent years. The geophysical components of these projects have been largely successful. A series of vignettes is presented showing the range and nature of geophysical projects that have been carried out. In addition to anecdotal evidence of student satisfaction, there is quantitative evidence of success. A substantial number of students have gone on to graduate work in geophysics. Of those students who did not pursue geophysics, a substantial fraction has pursued graduate work or careers in other areas of quantitative geosciences.

  6. How to change students' images of science and technology

    NASA Astrophysics Data System (ADS)

    Scherz, Zahava; Oren, Miri

    2006-11-01

    This paper examines the images middle school students have of science and technology, the workplaces, and the relevant professions. It also describes the effect on these images caused by an instructional initiative, Investigation into Science and Technology (IST), designed to introduce students to science and technology in the real life. Students' images were delineated via questionnaires, drawing tasks, and interviews before and after their participation in the IST program. The sample consisted of 100 students from six classes (eighth or ninth grade) of three schools. We found that before the IST intervention students' images about the scientific or technological environments were superficial, unreal, and even incorrect. Their impressions of the characteristics of scientists and technologists were superficial, misleading, and sometimes reflected ignorance. The findings demonstrate that the IST program stimulated a positive effect on students' images. Their preconceptions were altered in several dimensions: in the cognitive dimension, from superficial and vague to precise and correct images; in the perceptive dimension, from stereotypic to rational and open-minded images; and in the affective dimension, from negative to positive attitudes.

  7. Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency

    NASA Astrophysics Data System (ADS)

    Petrone, C.

    2017-12-01

    Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.

  8. Barriers and incentives for choosing to specialise in mammography: Qualitative analysis.

    PubMed

    Warren-Forward, H M; Taylor, J

    2017-02-01

    There is a projected shortage of radiographers working in breast screening and this study aimed to examine comments from open response questions from a mixed methods survey of current diagnostic radiography students on their perceptions of working in mammography. The survey asked three open ended questions: Justification of choice of modality in which they would want to specialise, why they believed there was a shortage of radiographers working in breast screening and any other comment about mammography. Reasons given for specialising in any modality was interest, feature of a modality, amount of clinical exposure during the degree program, personal issues and career prospects. Few current diagnostic radiography students indicated that they would be interested in specialising in breast imaging. They considered there to be a shortage of radiographers as breast imaging was seen to be repetitive, high pressure, intimate and gender biased. Lack of education, clinical exposure, limited career prospects and low pay were also discussed. Increasing education to the modality during the degree, allowing males to be involved in breast imaging and promoting part-time work in mammography while also working in other modalities may alter the perception that mammography offers a limited career pathway. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  9. NASA IYA Programs

    NASA Astrophysics Data System (ADS)

    Hasan, Hashima; Smith, D.

    2009-05-01

    NASA's Science Mission Directorate (SMD) launched a variety of programs to celebrate the International Year of Astronomy (IYA) 2009. A few examples will be presented to demonstrate how the exciting science generated by NASA's missions in astrophysics, planetary science and heliophysics has been given an IYA2009 flavor and made available to students, educators and the public worldwide. NASA participated in the official kickoff of US IYA activities by giving a sneak preview of a multi-wavelength image of M101, and of other images from NASA's space science missions that are now traveling to 40 public libraries around the country. NASA IYA Student Ambassadors represented the USA at the international Opening Ceremony in Paris, and have made strides in connecting with local communities throughout the USA. NASA's Object of the Month activities have generated great interest in the public through IYA Discovery Guides. Images from NASA's Great Observatories are included in the From Earth to the Universe (FETTU) exhibition, which was inaugurated both in the US and internationally. The Hubble Space Telescope Project had a tremendous response to its 100 Days of Astronomy "You Decide” competition. NASA's IYA programs have started a journey into the world of astronomy by the uninitiated and cultivated the continuation of a quest by those already enraptured by the wonders of the sky.

  10. IYA2009 NASA Programs: Midyear Status

    NASA Astrophysics Data System (ADS)

    Hasan, H.; Smith, D. A.

    2010-08-01

    NASA's Science Mission Directorate's (SMD) celebration of the International Year of Astronomy (IYA) 2009 was kicked off in January 2009 with a sneak preview of a multi-wavelength image of M101, and of other images from NASA's space science missions. Since then some of the exciting science generated by NASA's missions in astrophysics, planetary science and heliophysics, which has been given an IYA2009 flavor, has been made available to students, educators and the public worldwide. Some examples of the progress of NASA's programs are presented. The Visions of the Universe traveling exhibit of NASA images to public libraries around the country has been a spectacular success and is being extended to include more libraries. NASA IYA Student Ambassadors met at summer workshop and presented their projects. NASA's Afterschool Universe has provided IYA training to community-based organizations, while pre-launch teacher workshops associated with the Kepler and WISE missions have been designed to engage educators in the science of these missions. IYA activities have been associated with several missions launched this year. These include the Hubble Servicing Mission 4, Kepler, Herschel/Planck, and LCROSS. The NASA IYA website continues to be popular, getting visitors spanning a wide spectrum. NASA's IYA programs have captured the imagination of the public and continue to keep it engaged in the scientific exploration of the universe.

  11. Microgravity

    NASA Image and Video Library

    2001-04-26

    The first NASA Dropping In a Microgravity Environment (DIME) student competition pilot project came to a conclusion at the Glenn Research Center in April 2001. The competition involved high-school student teams who developed the concept for a microgravity experiment and prepared an experiment proposal. The two student teams - COSI Academy, sponsored by the Columbus Center of Science and Industry, and another team from Cincinnati, Ohio's Sycamore High School, designed a microgravity experiment, fabricated the experimental apparatus, and visited NASA Glenn to operate their experiment in the 2.2 Second Drop Tower. NASA and contractor personnel who conducted the DIME activity with the students. Shown (L-R) are: Eric Baumann (NASA, 2.2-second Drop Tower Facility manager), Daniel Dietrich (NASA) mentor for Sycamore High School team), Carol Hodanbosi (National Center for Microgravity Research; DIME staff), Richard DeLombard (NASA; DIME staff), Jose Carrion (GRC Akima, drop tower technician), Dennis Stocker (NASA; DIME staff), Peter Sunderland (NCMR, mentor for COSI Academy student team), Sandi Thompson (NSMR sabbatical teacher; DIME staff), Dan Woodard (MASA Microgravity Outreach Program Manager), Adam Malcolm (NASA co-op student; DIME staff), Carla Rosenberg (NCMR; DIME staff), and Twila Schneider (Infinity Technology; NASA Microgravity Research program contractor). This image is from a digital still camera; higher resolution is not available.

  12. [The formation of professional identity in nursing students: a qualitative study].

    PubMed

    Negrillo Durán, Carmen; Herrera Sánchez, Isabel María

    2013-06-01

    To investigate how students, who begin their studies in nursing, understand this profession from their own personal experiences and discover the processes of changing, contributing to the identification with the profession. Students from the first year nursing in 2010-2011 participated. Four online discussion groups were established. The grounded theory methodology was used for qualitative analysis. Before starting studies, the students acknowledged having a vision of nursing as a female profession subordinate to medicine but more human and close. Direct contact with the profession through the family and personal experiences contributed to the development of a conception of nursing as an autonomous profession while the media projected a social image of nursing as an auxiliary profession. With the early learning experiences the students began to experience changes in the meaning of nursing, expanding the look towards their autonomous role and revaluing their competences in the care of the patient. The identification of nursing is established in many cases by comparison with medicine, this circumstance forces to the students to search for distinctive elements of nursing. Early learning experiences, that emphasize the aspects linked to care, contribute to the positive identification with the profession.

  13. Best Practices at the Lamont-Doherty Earth Observatory (LDEO) REU Site

    NASA Astrophysics Data System (ADS)

    Abbott, D. H.

    2014-12-01

    At the LDEO REU site, we take student health and safety very seriously. In 2014, we gave the students training on laboratory safety, fire safety, and a Title IX orientation covering discrimination and sexual harassment. We also compile emergency contact information for all the students and distribute it to students, mentors and the administration. Students choose a research project and mentors then pick the best student for their project. Because the mentors choose the student, they are more invested in the student. Students and mentors are encouraged to interact before the program starts, both through discussions and assigned background reading. During these discussions, research projects are often modified to better-fit students interests and skill levels. During the program, we facilitate student-mentor interaction by conducting three research-focusing sessions with small groups of students. Students give 20-minute long oral presentations on the progress of their research and answer questions about their project. Mentors prepare the students for these sessions, thereby increasing student knowledge about their research project. Mid-way through the summer, students write a 3-page proposal about their research as part of a special seminar on scientific writing. The students also participate in a final poster session that is attended by the LDEO community. We maximize student engagement by giving students a choice of research projects that are specifically selected for their suitability for and interest among undergraduates. The track record of mentors is also considered. Mentors must be in residence at LDEO during most of the intern program and arrange a suitable co-mentor during any absences. Mentors must be individuals who are able to encourage the students while giving them constructive input on the progress of their research project. We also encourage students to present their research results at a national scientific meeting. Students and mentors are given a schedule at the start of the summer that includes the abstract deadlines for major national meetings. When it is possible, we fund each student's attendance of a national meeting. Enthusiastic students who wish to attend a second meeting are given information on how to apply for funding to support attendance.

  14. Optical projects in the Clinic program at Harvey Mudd College

    NASA Astrophysics Data System (ADS)

    Yang, Q.

    2017-08-01

    Clinic program is the senior capstone program at Harvey Mudd College (HMC). Multidisciplinary and industry-sponsored projects allow a team of students to solve a real-world problem over one academic year. Over its 50 plus years, Clinic program has completed numerous optics related projects. This report gives an overview of the Clinic program, reviews recent optical projects and discusses how this program supports the learning of the HMC engineering students. A few sample optical projects with more details are presented to provide an insight of what challenges that undergraduates can overcome. Students achieve learning within the optics discipline and the related engineering disciplines. The experiences in these optical projects indicate the great potential to bringing optical hands-on projects into the undergraduate level. Because of the general engineering curriculum at HMC, these projects often work the best with a multidisciplinary nature even if the core of the project is optically focused. Students gain leadership training, oral and written communication skills and experiences in team work. Close relationship with the sponsor liaisons allows for the students to gain skills in professional conduct, management of tight schedule and a specified budget, and it well prepares the students to their engineering practice. Optical projects have their own sets of specific challenges, so it needs to be chosen properly to match the undergraduate skill sets such as those of HMC engineering students.

  15. Using wireless (Pocket)PCs in Large Introductory Courses to Expand Discourse and Interactivity

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B. A.; Knoop, P. A.; Samson, P. J.; Teasley, S. D.

    2005-12-01

    Teaching methods in introductory, undergraduate courses traditionally rely on static textbooks and/or course packs, with presentation delivered as a monologue in front of a mostly passive, large audience. The concepts presented in class are often best illustrated using visualizations and/or demonstrations, but even the most stunning of images or spectacular exhibits, while motivating, offer students only passive participation in the learning process. Add to this the advent of course websites with lecture notes and PowerPoint presentations and the students are left with little incentive to attend, much less participate. Clearly this model does not provide much opportunity or motivation for today's students to learn and think more critically about the arguments being developed. What is needed is a coupling of the rich imagery of many fields with advances in technology and in learning, toward revitalizing pedagogical approaches in survey-level courses and student-instructor interaction. Our IT-enhanced classroom project couples the use of peer instruction techniques in large classes (as originally described by Mazur, 1997) with the use of interactive spatial concept challenges, utilizing wireless PocketPCs (handhelds) or student-owned wireless-enabled laptops. The technologies employed (web, PocketPC/laptop, WiFi) are off-the-shelf technologies and the Peer Instruction technique is increasingly documented in undergraduate science classes. However, the combination is not employed due to its initial cost, wrongly perceived level of effort to implement, availability of engaging activities and modest volume of data on student learning. We'll show our development, implementation and preliminary cognitive assessment efforts of this IT-enhanced classroom experience, involving interactive image quizzes and data manipulation in large introductory classes at the University of Michigan.

  16. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    NASA Astrophysics Data System (ADS)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and coastal resources. 11/14 teacher participants established citizen science clubs that focused on marine related issues. Science fair participation increased by 42% and of those students whose mentor teacher was a project participant 90% stated they would likely pursue a marine science related major in college.

  17. Evaluation of the e-Learning material developed by EMERALD and EMIT for diagnostic imaging and radiotherapy.

    PubMed

    Aitken, Victoria; Tabakov, Slavik

    2005-09-01

    Two Leonardo projects, EMERALD and EMIT, have developed in a partnershipof university and hospital departments (the consortia) e-Learning materials in X-ray diagnostic radiology, nuclear medicine, radiotherapy, ultrasound and magnetic resonance imaging for medical physics graduates and other healthcare professionals. These e-Learning materials are described in a separate paper in this issue. To assess the effectiveness and relevance of the e-Learning material, a series of evaluations by student users groups plus experts in medical physics education and training were undertaken. The students, with backgrounds in physics and clinical ultrasound, reviewed the e-Learning material using an evaluation form developed by the consortia. The student feedback was favourable with students commenting that their level of knowledge had increased having completed the tasks. Areas identified for development were a reduction in text volume and an increase in the time allowed for completion of some tasks. The feedback from the experts was positive with an overall appreciation of the value of the learning material as a resource for students in medical physics field across Europe and identified other disciplines in which the access to the learning material could be useful contribution to their learning. Suggestions made for improvements ranged from grading the tasks into basic and advanced topics to increasing the interactive nature of the material. These early evaluation of the e-Learning material look promising and provide a framework for further developments in the field. Insight into users and providers views is important if developers are to provide relevant and worthwhile educational learning opportunities.

  18. Project support of practical training in biophysics.

    PubMed

    Mornstein, V; Vlk, D; Forytkova, L

    2006-01-01

    The Department of Biophysics ensures practical training in biophysics and related subjects for students of medical and health study programmes. Demonstrations of medical technology are an important part of this training. Teaching for Faculty of Sciences in biophysical study programmes becomes also very important. Some lectures and demonstrations of technology are involved, but the practical trainig is missing. About 1 mil. CZK for additional laboratory equipment was obtained from the HEIDF project No. 1866/ 2005 "The demonstration and measuring technology for education in medical biophysics and radiological physics" for measuring system DEWETRON for high frequency signal analysis, Fluke Ti30 IR camera, PM 9000B patient monitor, ARSENAL AF 1 fluorescence microscope, and Nikon Coolpix 4500 digital camera with accessories for microphotography. At the present time, further financial resources are being provided by a development project of Ministry of Education "Inter-university co-operation in biomedical technology and engineering using top technologies" in total amount of almost 5 mil CZK, whereas over 2 mil CZK from this project are reserved for student laboratory equipment. The main goal of this project is to ensure the participation of Medical Faculty in educational co-operation in the biomedical technology and engineering, namely with the Faculty of Electrical Engineering and Communication (FEEC), Brno University of Technology. There will be taught those areas of biophysics which are not covered by FEEC, thus forming a separate subject "General Biophysics". The following instruments will be installed: UV-VIS spectrophotometers, rotation viscometers, tensiometers, microscopes with digital image processing, cooled centrifuge, optical benches, and some smaller instruments for practical measurements.

  19. Students Upgrading through Computer and Career Education System Services (Project SUCCESS). Final Evaluation Report 1993-94. OER Report.

    ERIC Educational Resources Information Center

    Greene, Judy

    Students Upgrading through Computer and Career Education System Services (Project SUCCESS) was an Elementary and Secondary Education Act Title VII-funded project in its fourth year of operation. The project operated at two high schools in Brooklyn and one in Manhattan (New York). In the 1993-94 school year, the project served 393 students of…

  20. Interdisciplinary Project-Based Learning: Technology for Improving Student Cognition

    ERIC Educational Resources Information Center

    Stozhko, Natalia; Bortnik, Boris; Mironova, Ludmila; Tchernysheva, Albina; Podshivalova, Ekaterina

    2015-01-01

    The article studies a way of enhancing student cognition by using interdisciplinary project-based learning (IPBL) in a higher education institution. IPBL is a creative pedagogic approach allowing students of one area of specialisation to develop projects for students with different academic profiles. The application of this approach in the Ural…

  1. A Discussion Project on High School Adolescents' Perceptions of the Relationship between Students and Teachers

    ERIC Educational Resources Information Center

    Fisher, Ronald J.

    1976-01-01

    Describes a small group discussion project involving students and teachers in two large white suburban high schools. The project's intention was to focus discussion on the social quality of the relationship between students and teachers, and to assess the impact of the discussions on student perceptions. (Author/RK)

  2. Program Assistance for Neophytes. Project PAN, 1988-89. OREA Evaluation Section Report.

    ERIC Educational Resources Information Center

    Berney, Tomi D.; Hriskos, Constantine

    In its fourth year, Program Assistance for Neophytes (Project PAN) served 455 students at 2 high schools. The program provided support services and supplemental instruction to students of limited English proficiency (LEP) as well as English-proficient (EP) students. The project provided LEP students with a transitional period of bilingual…

  3. Lesion insertion in the projection domain: Methods and initial results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng

    2015-12-15

    Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated bothmore » axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically acquired for the ACR phantom in terms of Hounsfield unit and high-contrast resolution. For the validation of the lesion realism, lesions of various types were successfully inserted, including well circumscribed and invasive lesions, homogeneous and heterogeneous lesions, high-contrast and low-contrast lesions, isolated and vessel-attached lesions, and small and large lesions. The two experienced radiologists who reviewed the original and inserted lesions could not identify the lesions that were inserted. The same lesion, when inserted into the projection domain and reconstructed with different parameters, demonstrated a parameter-dependent appearance. Conclusions: A framework has been developed for projection-domain insertion of lesions into commercial CT images, which can be potentially expanded to all geometries of CT scanners. Compared to conventional image-domain methods, the authors’ method reflected the impact of scan and reconstruction parameters on lesion appearance. Compared to prior projection-domain methods, the authors’ method has the potential to achieve higher anatomical complexity by employing clinical patient projections and real patient lesions.« less

  4. Lesion insertion in the projection domain: Methods and initial results

    PubMed Central

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; Ma, Chi; McCollough, Cynthia

    2015-01-01

    Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated both axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically acquired for the ACR phantom in terms of Hounsfield unit and high-contrast resolution. For the validation of the lesion realism, lesions of various types were successfully inserted, including well circumscribed and invasive lesions, homogeneous and heterogeneous lesions, high-contrast and low-contrast lesions, isolated and vessel-attached lesions, and small and large lesions. The two experienced radiologists who reviewed the original and inserted lesions could not identify the lesions that were inserted. The same lesion, when inserted into the projection domain and reconstructed with different parameters, demonstrated a parameter-dependent appearance. Conclusions: A framework has been developed for projection-domain insertion of lesions into commercial CT images, which can be potentially expanded to all geometries of CT scanners. Compared to conventional image-domain methods, the authors’ method reflected the impact of scan and reconstruction parameters on lesion appearance. Compared to prior projection-domain methods, the authors’ method has the potential to achieve higher anatomical complexity by employing clinical patient projections and real patient lesions. PMID:26632058

  5. Slope histogram distribution-based parametrisation of Martian geomorphic features

    NASA Astrophysics Data System (ADS)

    Balint, Zita; Székely, Balázs; Kovács, Gábor

    2014-05-01

    The application of geomorphometric methods on the large Martian digital topographic datasets paves the way to analyse the Martian areomorphic processes in more detail. One of the numerous methods is the analysis is to analyse local slope distributions. To this implementation a visualization program code was developed that allows to calculate the local slope histograms and to compare them based on Kolmogorov distance criterion. As input data we used the digital elevation models (DTMs) derived from HRSC high-resolution stereo camera image from various Martian regions. The Kolmogorov-criterion based discrimination produces classes of slope histograms that displayed using coloration obtaining an image map. In this image map the distribution can be visualized by their different colours representing the various classes. Our goal is to create a local slope histogram based classification for large Martian areas in order to obtain information about general morphological characteristics of the region. This is a contribution of the TMIS.ascrea project, financed by the Austrian Research Promotion Agency (FFG). The present research is partly realized in the frames of TÁMOP 4.2.4.A/2-11-1-2012-0001 high priority "National Excellence Program - Elaborating and Operating an Inland Student and Researcher Personal Support System convergence program" project's scholarship support, using Hungarian state and European Union funds and cofinances from the European Social Fund.

  6. Comparing Design Constraints to Support Learning in Technology-Guided Inquiry Projects

    ERIC Educational Resources Information Center

    Applebaum, Lauren R.; Vitale, Jonathan M.; Gerard, Elizabeth; Linn, Marcia C.

    2017-01-01

    Physical design projects are a way to motivate and engage students in authentic science and engineering practices. Web-based tools can support design projects to ensure that students address and reflect upon critical science concepts during the course of the project. In addition, by specifying challenging design goals that require students to…

  7. Designing Informal Learning Spaces Using Student Perspectives

    ERIC Educational Resources Information Center

    Riddle, Matthew David; Souter, Kay

    2012-01-01

    This article describes the design of informal learning spaces at an Australian university that support students in the generation of knowledge. Recent learning space design projects at La Trobe have been informed by a number of pre-existing projects, including a small research project on student use of technologies, a national project on learning…

  8. Getting Girls EX.I.T.E.D about Project Management

    ERIC Educational Resources Information Center

    Norstrom, Bjorn; Smith, Carol; Haglund, Annika

    2008-01-01

    Students are asked to complete projects every day--from a simple PowerPoint presentation to college applications and financial aid forms. Students are expected to complete these projects to certain standards. However, students are often not provided with the tools and skills needed to successfully manage projects, especially complex ones. As…

  9. Using Profile Projects to Pull Together Concepts

    ERIC Educational Resources Information Center

    Krueger, Jerome A.; Noyd, Robert K.

    2008-01-01

    The Profile Project promotes intellectual curiosity, connects concepts, and enhances student visual and information literacy skills. During the past 10 years, we have used the Profile Project as a semester-long student project in a number of undergraduate biology courses, where students produce a one-page profile of an organism. We have guided…

  10. Using MBTI for the Success Assessment of Engineering Teams in Project-Based Learning

    ERIC Educational Resources Information Center

    Rodríguez Montequín, V.; Mesa Fernández, J. M.; Balsera, J. Villanueva; García Nieto, A.

    2013-01-01

    Project-Based Learning (PBL) is a teaching and learning methodology that emphasizes student centered instruction by assigning projects. The students have to conduct significant projects and cope with realistic working conditions and scenarios. PBL is generally done by groups of students working together towards a common goal. Several factors play…

  11. Effective Use of Group Projects in Online Learning

    ERIC Educational Resources Information Center

    Ekblaw, Robert

    2016-01-01

    Group projects have long been used in face-to-face instruction to improve cognitive learning among its students. Group projects not only provide practical experience and allow students to practice the concepts they have learned, but also teach the students creative construction and group dynamics. As important as group projects have proven in…

  12. Using Roving Cloud Observations from the S'COOL Project to Engage Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Lewis, P. M.; Oostra, D.; Moore, S. W.; Rogerson, T. M.; Crecelius, S. A.; Chambers, L. H.

    2011-12-01

    Students' Clouds Observations On-Line (S'COOL) is a hands-on project, which supports NASA research on the Earth's climate. Through their observations, participants are engaged in identifying cloud-types and levels and sending that information to NASA. The two main groups of S'COOL observers are permanent locations such as regularly participating classrooms, and non-permanent locations or Rovers. These non-permanent locations can be a field trip, vacation, or just an occasional observation from a backyard. S'COOL welcomes participation from any interested observers, especially from places where official weather observations are few and far between. This program is offered to citizen scientists all over the world. They are participating in climate research by reporting cloud types and levels within +/- 15 minutes of a satellite overpass and sending that information back to NASA. When a participant's cloud observation coincides with a satellite overpass, the project sends them an email with a MODIS image of the overpass location, and a comparison of the satellite's cloud data results next to their ground-based report. This allows for the students and citizen scientists to participate in ground-truthing the CERES satellite data, to determine the level of agreement/disagreement. A new tool slated for future use in cloud identification, developed by the S'COOL team, is a mobile application. The application is entitled "Cloud Identification for Students" or "CITRUS". The mobile application utilizes a cloud dichotomous key with images to help with cloud identification. Also included in the application is a link to the project's cloud-reporting page to help with data submission in the field. One of the project's recent and most unique roving observers is a solo ocean rower who has traversed many of the world's ocean basins alone in a rowboat. While rowing across the oceans, she has recently been making cloud observations, which she sends back to us for analysis. In doing so, she is contributing difficult-to-collect ground-based data from points over the ocean, where there are typically no human inhabitants. As a result of the cloud reporting, we are able to better validate satellite data that give us a more complete picture of clouds in the atmosphere and their interactions with other parts of the integrated global Earth system. After making the cloud observations, students and citizen scientists are able to analyze the report they get back from NASA, improving their observation/data collection skills while keeping track of cloud patterns as they participate. Through the use of mobile technology, it will be possible to observe and immediately report the observation, allowing for a faster turn around on satellite reports and ground-truth data analysis. This paper will provide an analysis of the non-permanent observations made by the roving observers. These observations will give us an insight to their usefulness, as well as future steps for the program.

  13. Student-Designed Service-Learning Projects in an Undergraduate Neurobiology Course.

    PubMed

    Northcutt, Katharine V

    2016-03-01

    One of the challenges in teaching a service-learning course is obtaining student buy-in from all students in the course. To circumvent this problem, I have let students in my undergraduate Neurobiology course design their own service-learning projects at the beginning of the semester. Although this can be chaotic because it requires last-minute planning, I have made it successful through facilitating student communication in the classroom, requiring thorough project proposals, meeting with students regularly, and monitoring group progress through written reflection papers. Most of my students have strong opinions about the types of projects that they want to carry out, and many students have used connections that they have already made with local organizations. Almost all projects that students have designed to this point involve teaching basic concepts of neurobiology to children of various ages while simultaneously sparking their interest in science. Through taking ownership of the project and designing it such that it works well with their strengths, interests, and weekly schedule, students have become more engaged in service learning and view it as a valuable experience. Despite some class time being shifted away from more traditional assignments, students have performed equally well in the course, and they are more eager to talk with others about course concepts. Furthermore, the feedback that I have received from community partners has been excellent, and some students have maintained their work with the organizations.

  14. Great Times Now and In the Future For Telescopes Afar in Education

    NASA Astrophysics Data System (ADS)

    Pennypacker, Carlton

    2011-03-01

    These are very exciting times in education and astronomy, and our communities have growing capabilities to positively change teachers and students lives through the use of remote telescopes. This has been a long haul, but traction is evident. Over the last 17 years, beginning with researchers and students acquiring and discovering our first automatically requested images of supernovae from UC Berkeley's automated Leuschner Observatory (arguably one of the first successful civilian automated telescopes). we, as other groups, have found extremely high engagement with students of various ages in using remote telescopes, both in real-time and cue-based observing modes. E.G., we currently have a small GHOU network of small telescopes that can intermittently serve our teachers, and eagerly try to use every telescope that might share a few photons with our kids, some living in tough circumstances. (some GHOU students are from very low-economic conditions, but still love the stars, and love to communicate and collaboate with children around the world). Other groups are actively pursuing making such networks succeed, too. The project I work with is called "Global Hands-On Universe" (GHOU). The need for regular and robust remote telescopes could grow to very high levels, if the astronomy community can produce reliable and robust telescope networks. For example, as part of the International Year of Astronomy, I helped in efforts that eventually led to the training (coordinated by Rosa Doran, of Portugal) of 5000 teachers in greater than 90 nations in the use of .fts images, Salsa J image processing, and Stellarium software (both French softwares). We have a particular focus and have found huge resonances for this work in developing nations, including nations in Africa, Asia, and South America. In addition, we have developed good after school programs that teach astronomy and use of real images, again which can benefit by astronomy community cooperation and collaboration. A substantial GHOU program is now being mounted in Chile, for instance, with a 30-teacher workshop held the first week of this January, good participation by Chilean and International Universities, research, and education organizations. Our GHOU educators are selfless and share everything, including curricula, software, training, other materials, and themselves. For example this spring, teachers from France will fly to Paranal with their students, and train Chilean teachers on Black Holes in galaxies and measuring exo-planets, all with real .fts image, on their way to the VLT! Finally, I describe a collaborating group with GHOU, the International Asteroid Search "IASC" (led by GHOU'er Patrick Miller of Hardin Simmons University) -- IASC has found phenomenal success with enabling students to discover asteroids, with approximately 50 to 100 asteroids a year being discovered by this group of international teachers and students.

  15. Project Career: An individualized postsecondary approach to promoting independence, functioning, and employment success among students with traumatic brain injuries.

    PubMed

    Minton, Deborah; Elias, Eileen; Rumrill, Phillip; Hendricks, Deborah J; Jacobs, Karen; Leopold, Anne; Nardone, Amanda; Sampson, Elaine; Scherer, Marcia; Gee Cormier, Aundrea; Taylor, Aiyana; DeLatte, Caitlin

    2017-09-14

    Project Career is a five-year interdisciplinary demonstration project funded by NIDILRR. It provides technology-driven supports, merging Cognitive Support Technology (CST) evidence-based practices and rehabilitation counseling, to improve postsecondary and employment outcomes for veteran and civilian undergraduate students with traumatic brain injury (TBI). Provide a technology-driven individualized support program to improve career and employment outcomes for students with TBI. Project staff provide assessments of students' needs relative to assistive technology, academic achievement, and career preparation; provide CST training to 150 students; match students with mentors; provide vocational case management; deliver job development and placement assistance; and maintain an electronic portal regarding accommodation and career resources. Participating students receive cognitive support technology training, academic enrichment, and career preparatory assistance from trained professionals at three implementation sites. Staff address cognitive challenges using the 'Matching Person with Technology' assessment to accommodate CST use (iPad and selected applications (apps)). JBS International (JBS) provides the project's evaluation. To date, 117 students participate with 63% report improved life quality and 75% report improved academic performance. Project Career provides a national model based on best practices for enabling postsecondary students with TBI to attain academic, employment, and career goals.

  16. 'Ain't nothin' like the real thing'. Motivation and study processes on a work-based project course in information systems design.

    PubMed

    Helle, Laura; Tynjälä, Päivi; Olkinuora, Erkki; Lonka, Kirsti

    2007-06-01

    Advocates of the project method claim that project-based learning inspires student learning. However, it has been claimed that project-based learning environments demand quite a bit of self-regulation on the part of the learner. Consequently, it was tested whether students scoring low in self-regulation of learning experienced 'friction', an incompatibility between student self-regulation and the demands posed by the learning environment. This would be manifest in cognitive processing and motivation. The target group consisted of 58 mainly third-year Finnish university students taking a mandatory project course in information systems design. During the project course, student teams completed a commissioned assignment. The study also included a matched nonequivalent comparison group composed of computer science students attending study programmes without a project-based component. Data were gathered by means of a questionnaire administered at the beginning and end of the project course and it was analysed by between-groups repeated measures ANOVA. In addition, the students on the course were interviewed. Results suggest that the work-based project model in question may indeed have a substantial motivational impact, interestingly benefitting especially those students who scored low in self-regulation. It is argued that we tend to view learning environments too simplistically. In particular, a basic distinction should be made between individual and collaborative learning contexts, since peer scaffolding, group grading and choice of group roles may explain why students scoring low in self-regulation of learning did not encounter friction as expected.

  17. "The Chemicals Project": Connecting General Chemistry to Students' Lives

    NASA Astrophysics Data System (ADS)

    Stout, Roland

    2000-10-01

    "The Chemicals Project" described here strives to bring freshman chemistry alive for students by emphasizing its connection to the real world and to their own lives and experiences. Its major assignments deal with chemical phobias, recognizing the chemicals found in everyday life and chemical hazards (using Material Data Safety Sheets). The project is described in a cooperative learning format, employs portfolio grading, and includes a significant writing component. Ways of linking this project with the course lecture and student evaluations of the project are described. The bottom line: pre- and post-testing shows that it works. The Chemicals Project brings chemistry alive for students.

  18. A Symposium for Students.

    ERIC Educational Resources Information Center

    Chokotho, N. C.; Leisten, J. A.

    1981-01-01

    Suggests a method for students to engage in research projects and orally present results in class. The basic idea is to have students work on individual projects around a central theme. Describes 20 projects centered around the halogenation of ketones. (Author/JN)

  19. A novel augmented reality system of image projection for image-guided neurosurgery.

    PubMed

    Mahvash, Mehran; Besharati Tabrizi, Leila

    2013-05-01

    Augmented reality systems combine virtual images with a real environment. To design and develop an augmented reality system for image-guided surgery of brain tumors using image projection. A virtual image was created in two ways: (1) MRI-based 3D model of the head matched with the segmented lesion of a patient using MRIcro software (version 1.4, freeware, Chris Rorden) and (2) Digital photograph based model in which the tumor region was drawn using image-editing software. The real environment was simulated with a head phantom. For direct projection of the virtual image to the head phantom, a commercially available video projector (PicoPix 1020, Philips) was used. The position and size of the virtual image was adjusted manually for registration, which was performed using anatomical landmarks and fiducial markers position. An augmented reality system for image-guided neurosurgery using direct image projection has been designed successfully and implemented in first evaluation with promising results. The virtual image could be projected to the head phantom and was registered manually. Accurate registration (mean projection error: 0.3 mm) was performed using anatomical landmarks and fiducial markers position. The direct projection of a virtual image to the patients head, skull, or brain surface in real time is an augmented reality system that can be used for image-guided neurosurgery. In this paper, the first evaluation of the system is presented. The encouraging first visualization results indicate that the presented augmented reality system might be an important enhancement of image-guided neurosurgery.

  20. Making the Most of a Limited Opportunity: Empowering our Future Earth Science Educators by Engaging Them in Field-Based Inquiry.

    NASA Astrophysics Data System (ADS)

    Levy, R.; David, H.; Carlson, D.; Kunz, G.

    2004-12-01

    Geoscience courses that engage students in our K-12 learning environments represent a fundamental method to increase public awareness and understanding of Earth systems science. K-12 teachers are ultimately responsible for developing and teaching these courses. We recognize that it is our role as university instructors to ensure that our future K-12 teachers receive a high-quality and practical Earth science education; unfortunately many education majors at our institution receive no formal exposure to geoscience. Furthermore, for those students who choose to take a geoscience course, the experience is typically limited to a large introductory lecture-lab. While these courses are rich in content they neither provide opportunities for students to experience `real' Earth science nor address the skills required to teach Earth science to others. In 2002 we began to develop a field-based introductory geoscience course designed specifically for education students. Our major goal was to attract education majors and provide a field-based geoscience learning experience that was challenging, exciting, and directly applicable to their chosen career. Specific objectives of our project were to: (1) teach geoscience concepts and skills that K-12 teachers are expected to understand and teach to their students (outlined in national standards); (2) provide students with an opportunity to learn through scientific inquiry; (3) enhance student confidence in their ability to teach geoscience in the K-12 classroom. We piloted a two-week field course during summer 2004. The field excursion followed a route through Nebraska and Wyoming. Instructors focused on exposing students to the Earth systems concepts and content outlined in national education standards. The primary instructional approach was to engage students in inquiry-based learning. Students were provided many opportunities to utilize science process skills including: observation, documentation, classification, questioning, formulation of hypotheses and models, and interpretation and debate. Evening `classes' on effective teaching practices were conducted at camp. A mobile library, comprising a range of K-12 Earth science curricular materials and activities, was provided for students to utilize, examine, and critique. Students were given sample boxes so that they could collect and curate Earth materials to build their own `teaching set'. Digital cameras were used to record images of natural phenomena. Each student will receive a DVD of the images to use in their future classroom activities. Near the end of the course students were asked to generate a series of lesson plans to teach plate tectonics. Evaluation of our pilot project comprised a series of pre and post instruments to measure: geoscience content knowledge, science process skills, confidence for teaching science related courses, self-efficacy for self-regulation, and student perceptions of classroom knowledge-building. Results indicate significant gains in all measures. The course instructors have also spent time reflecting on instructional approach and associated activities and will use student feedback to modify and improve the course for the future. We are currently applying the evaluation instruments to education majors taking a large lecture-lab course in order to compare outcomes between the two course models. Results will help guide future geoscience education course development.

Top