Sample records for student materials examples

  1. Faded-example as a Tool to Acquire and Automate Mathematics Knowledge

    NASA Astrophysics Data System (ADS)

    Retnowati, E.

    2017-04-01

    Students themselves accomplish Knowledge acquisition and automation. The teacher plays a role as the facilitator by creating mathematics tasks that assist students in building knowledge efficiently and effectively. Cognitive load caused by learning material presented by teachers should be considered as a critical factor. While the intrinsic cognitive load is related to the degree of complexity of the material learning ones can handle, the extraneous cognitive load is directly caused by how the material is presented. Strategies to present a learning material in computational learning domains like mathematics are a namely worked example (fully-guided task) or problem-solving (discovery task with no guidance). According to the empirical evidence, learning based on problem-solving may cause high-extraneous cognitive load for students who have limited prior knowledge, conversely learn based on worked example may cause high-extraneous cognitive load for students who have mastered the knowledge base. An alternative is a faded example consisting of the partly-completed task. Learning from faded-example can facilitate students who already acquire some knowledge about the to-be-learned material but still need more practice to automate the knowledge further. This instructional strategy provides a smooth transition from a fully-guided into an independent problem solver. Designs of faded examples for learning trigonometry are discussed.

  2. Evaluation of Student Outcomes in Materials Science and Technology

    NASA Technical Reports Server (NTRS)

    Piippo, Steven

    1996-01-01

    This paper specifies 14 benchmarks and exit standards for the introduction of Materials Science and Technology in a secondary school education. Included is the standard that students should be able to name an example of each category of technological materials including metals, glass/ceramics, polymers (plastics) and composites. Students should know that each type of solid material has specific properties that can be measured. Students will learn that all solid materials have either a long range crystalline structure or a short range amorphous structure (i.e., glassy). They should learn the choice of materials for a particular application depends on the properties of the material, and the properties of the material depends on its crystal structure and microstructure. The microstructure may be modified by the methods by which the material is processed; students should explain this by the example of sintering a ceramic body to reduce its porosity and increase its densification and strength. Students will receive exposure to the world of work, post secondary educational opportunities, and in general a learning that will lead to a technologically literate intelligent citizen.

  3. The Hamburger War. Instructor's Guide [and] Student Materials. Business Issues in the Classroom. Revised.

    ERIC Educational Resources Information Center

    Maxey, Phyllis F.; Meier, Stephen C.

    One of a series of units on business issues for high school students, this packet uses the example of hamburger wars ("price wars" between hamburger stands) to introduce students to the ways in which businesses operate in a competitive environment. A teacher's guide and student materials are provided in two separate sections. Following…

  4. Teaching hearing science to undergraduate nonscientists

    NASA Astrophysics Data System (ADS)

    Weiler, Ernest M.; Boyce, Suzanne; Steger, Joseph

    2003-04-01

    For those students interested in potential clinical careers in Speech Pathology, or Audiology, a knowledge of some of the scientific bases is important, but should not create a distaste for science. The authors have addressed themselves to these goals: (1) calculation of period, Hz, summation of two sine waves, phase and dB; (2) anticipating undergraduate Speech Science; (3) simple examples of hearing pathology; and (4) basic psycho-acoustical issues. The classic material of Harry Helson was used to elucidate issues of context in experimental science, and that of S.S. Stevens was used to exemplify psycho-acoustical formulas of common use. Four texts that have been tried on approximately 200 students were evaluated. Surprisingly, the best provided the fewest formulas, short study questions with answers, good examples, and a list of common terms. The next best was aimed at slightly more advanced students, but each chapter contained introductory material, examples, and definitions suitable for naïve undergraduates. The least satisfactory text provided excerpts of technical material with abrupt transitions, no examples, and only part of the definitions needed for the naïve student. Perhaps the most difficult teaching issue is to avoid demanding graduate-level science from those undergraduates with clinical aspirations.

  5. The Cognitive Costs of Context: The Effects of Concreteness and Immersiveness in Instructional Examples

    PubMed Central

    Day, Samuel B.; Motz, Benjamin A.; Goldstone, Robert L.

    2015-01-01

    Prior research has established that while the use of concrete, familiar examples can provide many important benefits for learning, it is also associated with some serious disadvantages, particularly in learners’ ability to recognize and transfer their knowledge to new analogous situations. However, it is not immediately clear whether this pattern would hold in real world educational contexts, in which the role of such examples in student engagement and ease of processing might be of enough importance to overshadow any potential negative impact. We conducted two experiments in which curriculum-relevant material was presented in natural classroom environments, first with college undergraduates and then with middle-school students. All students in each study received the same relevant content, but the degree of contextualization in these materials was varied between students. In both studies, we found that greater contextualization was associated with poorer transfer performance. We interpret these results as reflecting a greater degree of embeddedness for the knowledge acquired from richer, more concrete materials, such that the underlying principles are represented in a less abstract and generalizable form. PMID:26648905

  6. Identifying and Addressing Student Difficulties and Misconceptions: Examples from Physics and from Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rosenblatt, Rebecca

    2012-01-01

    Here I present my work identifying and addressing student difficulties with several materials science and physics topics. In the first part of this thesis, I present my work identifying student difficulties and misconceptions about the directional relationships between net force, velocity, and acceleration in one dimension. This is accomplished…

  7. The Computer in Second Semester Introductory Physics.

    ERIC Educational Resources Information Center

    Merrill, John R.

    This supplementary text material is meant to suggest ways in which the computer can increase students' intuitive understanding of fields and waves. The first way allows the student to produce a number of examples of the physics discussed in the text. For example, more complicated field and potential maps, or intensity patterns, can be drawn from…

  8. The Effects of a History-Based Instructional Material on the Students' Understanding of Field Lines

    ERIC Educational Resources Information Center

    Pocovi, M. Cecilia

    2007-01-01

    Many students in physics courses fail to achieve a desired conceptual change because they assign an incorrect ontology to the to-be-learned concept. This situation has been detected in previous research for the case of field lines: many college students assign material properties to the lines and describe them, for example, as tubes that contain…

  9. Humor in the Classroom: The Effects of Integrated Humor on Student Learning

    ERIC Educational Resources Information Center

    Bolkan, San; Griffin, Darrin J.; Goodboy, Alan K.

    2018-01-01

    This study was conducted to examine the impact of integrated humor on direct measures of students' ability to retain and transfer information from educational lessons. In two experiments, participants were randomly exposed to either a lesson with humorous examples or standard examples and were subsequently asked to take tests on the material. Data…

  10. Functions, Use and Effects of Embedded Support Devices in Printed Distance Learning Materials.

    ERIC Educational Resources Information Center

    Martens, Rob; And Others

    1996-01-01

    To support distance learning, printed materials for the course are enriched with embedded support devices (ESD) such as schemes, illustrations, examples, questions, or margin texts. Results of 3 studies involving 900 Dutch university students indicated that students used and appreciated ESD, and that they led to better study results. (SLD)

  11. Mobile Learning Based Worked Example in Electric Circuit (WEIEC) Application to Improve the High School Students' Electric Circuits Interpretation Ability

    ERIC Educational Resources Information Center

    Yadiannur, Mitra; Supahar

    2017-01-01

    This research aims to determine the feasibility and effectivity of mobile learning based Worked Example in Electric Circuits (WEIEC) application in improving the high school students' electric circuits interpretation ability on Direct Current Circuits materials. The research method used was a combination of Four-D Models and ADDIE model. The…

  12. Classroom Demonstrations in Materials Science/Engineering.

    ERIC Educational Resources Information Center

    Hirschhorn, J. S.; And Others

    Examples are given of demonstrations used at the University of Wisconsin in a materials science course for nontechnical students. Topics include crystal models, thermal properties, light, and corrosion. (MLH)

  13. Applying the Multilevel Framework of Discourse Comprehension to Evaluate the Text Characteristics of General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Pyburn, Daniel T.; Pazicni, Samuel

    2014-01-01

    Prior chemistry education research has demonstrated a relationship between student reading skill and general chemistry course performance. In addition to student characteristics, however, the qualities of the learning materials with which students interact also impact student learning. For example, low-knowledge students benefit from texts that…

  14. Learning communication from erroneous video-based examples: A double-blind randomised controlled trial.

    PubMed

    Schmitz, Felix Michael; Schnabel, Kai Philipp; Stricker, Daniel; Fischer, Martin Rudolf; Guttormsen, Sissel

    2017-06-01

    Appropriate training strategies are required to equip undergraduate healthcare students to benefit from communication training with simulated patients. This study examines the learning effects of different formats of video-based worked examples on initial communication skills. First-year nursing students (N=36) were randomly assigned to one of two experimental groups (correct v. erroneous examples) or to the control group (no examples). All the groups were provided an identical introduction to learning materials on breaking bad news; the experimental groups also received a set of video-based worked examples. Each example was accompanied by a self-explanation prompt (considering the example's correctness) and elaborated feedback (the true explanation). Participants presented with erroneous examples broke bad news to a simulated patient significantly more appropriately than students in the control group. Additionally, they tended to outperform participants who had correct examples, while participants presented with correct examples tended to outperform the control group. The worked example effect was successfully adapted for learning in the provider-patient communication domain. Implementing video-based worked examples with self-explanation prompts and feedback can be an effective strategy to prepare students for their training with simulated patients, especially when examples are erroneous. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Language Guidelines for a Mathematics Task Centre.

    ERIC Educational Resources Information Center

    Padula, Janice; Nin, Lucy

    1999-01-01

    Describes some of the thinking associated with the improvement of tasks, suggesting some guidelines for others to consider in producing written mathematics materials for young students. Provides examples of written mathematics materials. (ASK)

  16. Leveled Reading and Engagement with Complex Texts

    ERIC Educational Resources Information Center

    Hastings, Kathryn

    2016-01-01

    The benefits of engaging with age-appropriate reading materials in classroom settings are numerous. For example, students' comprehension is developed as they acquire new vocabulary and concepts. The Common Core requires all students have daily opportunities to engage with "complex text" regardless of students' decoding levels. However,…

  17. Whittling away Students' Education.

    ERIC Educational Resources Information Center

    Manilov, Marianne

    1994-01-01

    Argues that Channel One is an example of commercialization of today's classroom. Reports a study conducted by the Student Environmental Action Coalition concluding that Channel One is pervasive in schools that spend less per student on textbooks, instructional materials, and total expenditures, and contain a greater percentage of African American…

  18. Designing worked examples for learning tangent lines to circles

    NASA Astrophysics Data System (ADS)

    Retnowati, E.; Marissa

    2018-03-01

    Geometry is a branch of mathematics that deals with shape and space, including the circle. A difficult topic in the circle may be the tangent line to circle. This is considered a complex material since students have to simultaneously apply several principles to solve the problems, these are the property of circle, definition of the tangent, measurement and Pythagorean theorem. This paper discusses designs of worked examples for learning tangent line to circles and how to apply this design to an effective and efficient instructional activity. When students do not have sufficient prior knowledge, solving tangent problems might be clumsy, and as a consequence, the problem-solving activity hinders learning. According to a Cognitive Load Theory, learning occurs when students can construct new knowledge based on the relevant knowledge previously learned. When the relevant knowledge is unavailable, providing students with the worked example is suggested. Worked example may reduce unproductive process during learning that causes extraneous cognitive load. Nevertheless, worked examples must be created in such a way facilitate learning.

  19. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    NASA Astrophysics Data System (ADS)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of materials, and present initial assessment data evaluating both content learning and student attitudes.

  20. Student/Scientist Partnerships: A Teacher's Guide To Evaluating the Critical Components.

    ERIC Educational Resources Information Center

    Evans, Celia A.; Abrams, Eleanor D.; Rock, Barret N.; Spencer, Shannon L.

    2001-01-01

    Presents a guide to the critical components of partnerships in Students/Scientist Partnerships (SSPs), a project-based instruction. Uses examples from the Forest Watch (FW) program to support the ideas. Focuses on access to experts, workshops, training sessions, student congresses, support materials and research protocols, science education…

  1. Creating a blended learning module in an online master study programme in oncology.

    PubMed

    Mayer, Benjamin; Ring, Christina; Muche, Rainer; Rothenbacher, Dietrich; Schmidt-Strassburger, Uta

    2015-01-01

    The medical faculty of Ulm University has launched the postgraduate master online study programme Advanced Oncology (AO) in 2010. We describe the challenges in developing an e-learning module using the example of a medical biometry course, focusing the implementation of the course material and our single-loop learning experience after the first students have finished and evaluated the lecture. Programme participants are qualified medical doctors and researchers in biomedical areas related to the field of oncology. The study programme provides the majority of lectures online via didactic videos accompanied by one-week attendance seminars. Supplementary learning materials include review articles, supportive reading material, multiple choice questions, and exercises for each unit. Lecture evaluations based on specific questions concerning learning environment and information learned, each measured on a five-point Likert scale. Lecture videos were implemented following the classical triad of the didactic process, using oncological examples from practice to teach. The online tutorial support offered to students was hardly used, thus we enhanced faculty presence during the face-to-face seminars. Lecture evaluations improved after revising the learning material on the basis of the first AO student cohort's comments. Developing and implementing an online study programme is challenging with respect of maximizing the information students learn due to limited opportunities for personal contact between lecturers and students. A more direct interaction of lecturers and students in a blended learning setting outperforms a mere web-based contact in terms of learning advantage and students' satisfaction, especially for complex methodological content.

  2. Responsive Education Applied to Engineering Mechanics.

    ERIC Educational Resources Information Center

    Brillhart, Lia V.

    1981-01-01

    With less time to spend with individual students, teachers of large classes may need course materials that augment texts and lectures. The author discusses what criteria such materials must meet and gives examples from a course in statics. (Author/DS)

  3. Teaching to Different Learning Styles.

    ERIC Educational Resources Information Center

    Stickle, Julia E.

    1999-01-01

    Illustrates how to support and incorporate different student learning styles into teaching. Presents example materials pertaining to laboratory diagnosis of liver disease in a veterinary medical curriculum and demonstrates how a body of material can be adapted to multiple presentation formats. (EV)

  4. Development of teaching modules for geology and engineering coursework using terrestrial LiDAR scanning systems

    NASA Astrophysics Data System (ADS)

    Yarbrough, L. D.; Katzenstein, K.

    2012-12-01

    Exposing students to active and local examples of physical geologic processes is beneficial to the learning process. Students typically respond with interest to examples that use state-of-the-art technologies to investigate local or regional phenomena. For lower cognitive level of learning (e.g. knowledge, comprehension, and application), the use of "close-to-home" examples ensures that students better understand concepts. By providing these examples, the students may already have a familiarity or can easily visit the location. Furthermore, these local and regional examples help students to offer quickly other examples of similar phenomena. Investigation of these examples using normal photographic techniques, as well as a more sophisticated 3-D Light Detection And Ranging (LiDAR) (AKA Terrestrial Laser Scanning or TLS) system, allows students to gain a better understanding of the scale and the mechanics of the geologic processes and hazards. The systems are used for research, teaching and outreach efforts and depending on departmental policies can be accessible to students are various learning levels. TLS systems can yield scans at sub-centimeter resolution and contain surface reflectance of targets. These systems can serve a number of learning goals that are essential for training geoscientists and engineers. While querying the data to answer geotechnical or geomorphologic related questions, students will develop skills using large, spatial databases. The upper cognitive level of learning (e.g. analysis, synthesis, and evaluation) is also promoted by using a subset of the data and correlating the physical geologic process of stream bank erosion and rock slope failures with mathematical and computer models using the scanned data. Students use the examples and laboratory exercises to help build their engineering judgment skills with Earth materials. The students learn not only applications of math and engineering science but also the economic and social implication of designed engineering solutions. These course learning modules were developed for traditional geological engineering courses delivered on campus, for more intensive field work courses and online-based asynchronous course delivery.

  5. Seeking instructional specificity: An example from analogical instruction

    NASA Astrophysics Data System (ADS)

    Kuo, Eric; Wieman, Carl E.

    2015-12-01

    Broad instructional methods like "interactive engagement" have been shown to be effective, but such general characterization provides little guidance on the details of how to structure instructional materials. In this study, we seek instructional specificity by comparing two ways of using an analogy to learn a target physical principle: (i) applying the analogy to the target physical domain on a case-by-case basis and (ii) using the analogy to create a general rule in the target physical domain. In the discussion sections of a large, introductory physics course (N =2 3 1 ), students who sought a general rule were better able to discover and apply a correct physics principle than students who analyzed the examples case by case. The difference persisted at a reduced level after subsequent direct instruction. We argue that students who performed case-by-case analyses were more likely to focus on idiosyncratic problem-specific features rather than the deep structural features. This study provides an example of investigations into how the specific structure of instructional materials can be consequential for what is learned.

  6. Twenty Activities to Expand Your Students' Knowledge of the World While Studying Your State. A Global Perspectives Experimental Unit.

    ERIC Educational Resources Information Center

    Cleveland, Alice Ann; Lewis, Nancy G.

    This unit contains 20 classroom activities which have a global approach and will enable junior or high school students to learn about their state and the world. Student materials and teaching procedures are provided for each activity. Some examples of the activities follow. In one activity students compare the size of New Mexico with another area…

  7. Patio Stone Project Gives Students a Concrete Learning Experience

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2005-01-01

    In this article, the author presents an overview of concrete as a building material and as an example of a particle composite, and discusses the origins of concrete in ancient Rome. He then describes an activity in which students can cast a concrete patio stone. Students can apply the technological design process, as well as the elements of…

  8. Elaborating Selected Statistical Concepts with Common Experience.

    ERIC Educational Resources Information Center

    Weaver, Kenneth A.

    1992-01-01

    Presents ways of elaborating statistical concepts so as to make course material more meaningful for students. Describes examples using exclamations, circus and cartoon characters, and falling leaves to illustrate variability, null hypothesis testing, and confidence interval. Concludes that the exercises increase student comprehension of the text…

  9. Describing Matter

    ERIC Educational Resources Information Center

    Adams, Krista; Feagin, Shannon

    2017-01-01

    This article presents a lesson that was designed to explore the scientific descriptions of matter through both the intensive and extensive properties that students successfully added to their vocabulary. Students' examples demonstrated that there were places where their reasoning about matter faltered as related to how the material is the same…

  10. Materials Science and the Problem of Garbage

    ERIC Educational Resources Information Center

    McPherson, Heather

    2016-01-01

    Materials science--the science of stuff--has made our lives better by making it possible for manufacturers to supply us with products. Students have misconceptions about materials use. Many may think using bottled water, for example, is harmless because they recycle the plastic empties, but they fail to consider the resources and energy used to…

  11. Developing Quantitative Mental Imagery

    ERIC Educational Resources Information Center

    Thomas, Jonathan N.; Tabor, Pamela D.

    2012-01-01

    Moving beyond physical interactions with materials is a significant mathematical step for students that is often difficult to take. Persistent tally-mark use, for example, among older children is a testament to this challenge. For many students, shifting away from tangible tools begins a precarious journey; teachers should support it with…

  12. Moodog: Tracking Student Activity in Online Course Management Systems

    ERIC Educational Resources Information Center

    Zhang, Hangjin; Almeroth, Kevin

    2010-01-01

    Many universities are currently using Course Management Systems (CMSes) to conduct online learning, for example, by distributing course materials or submitting homework assignments. However, most CMSes do not include comprehensive activity tracking and analysis capabilities. This paper describes a method to track students' online learning…

  13. Teaching with Games: Online Resources and Examples for Entry Level Courses

    NASA Astrophysics Data System (ADS)

    Teed, R.; Manduca, C.

    2004-12-01

    Using games to teach introductory geoscience can motivate students to enthusiastically learn material that they might otherwise condemn as "boring". A good educational game is one that immerses the players in the material and engages them for as long as it takes to master that material. There are some good geoscience games already available, but instructors can also create their own, suitable to their students and the content that they are teaching. Game-Based Learning is a module on the Starting Point website for faculty teaching entry level geosciences. It assists faculty in using games in their teaching by providing a description of the features of game-based learning, why you would use it, how to use games to teach geoscience, examples, and references. Other issues discussed include the development of video games for teaching, having your students create educational games, what makes a good game, handling competition in the classroom, and grading. The examples include descriptions of and rules for a GPS treasure hunt, a geology quiz show, and an earthquake game, as well as links to several online geological video games, and advice on how to design a paleontology board game. Starting Point is intended to help both experienced faculty and new instructors meet the challenge of teaching introductory geoscience classes, including environmental science and oceanography as well as more traditional geology classes. For many students, these classes are both the first and the last college-level science class that they will ever take. They need to learn enough about the Earth in that one class to sustain them for many decades as voters, consumers, and sometimes even as teachers. Starting Point is produced by a group of authors working with the Science Education Resource Center. It contains dozens of detailed examples categorized by geoscience topic with advice about using them and assessing learning. Each example is linked to one of many modules, such as Game-Based Learning, Interactive Lectures, or Using an Earth History Approach. These modules describe teaching tools and techniques, provide examples and advice about using them in an introductory geoscience class, and give instructors details on how to create their own exercises.

  14. Explorers of the Universe

    NASA Technical Reports Server (NTRS)

    Alvarez, Marino C.; Busby, Michael R.; Sotoohi, Goli; Rodriguez, William J.; Hennig, Lee Ann; Berenty, Jerry; King, Terry; Grener, Doreen; Kruzan, John

    1998-01-01

    The Explorers of the Universe is a multifaceted scientific/literacy project that involves teachers and their students with problem oriented situations using authentic materials. This paper presents examples of self-directed cases researched by high school students and the met acognitive tools they use in the planning, carrying out, and finalizing their reports.

  15. BUSINESS, INDUSTRIAL ARTS, AND GENERAL CONSUMER MATHEMATICS GUIDE, TENTATIVE.

    ERIC Educational Resources Information Center

    WINGET, LERUE

    THIS "CONSUMER MATHEMATICS GUIDE" IS DESIGNED TO GIVE CONCRETE HELP TO TEACHERS OF NON-ACADEMIC MATHEMATICS STUDENTS IN THE PRACTICAL AREAS OF BUSINESS AND INDUSTRIAL ARTS. THE COURSE, WHICH IS RECOMMENDED FOR JUNIOR AND SENIOR HIGH SCHOOL STUDENTS, PLACES EMPHASIS ON CONCRETE EXAMPLES, APPLICATIONS, AND VISUAL MATERIALS. SOME UNITS OF…

  16. Tackling Production Techniques: Telling Tales with Transparencies.

    ERIC Educational Resources Information Center

    Martin, Ron

    1986-01-01

    This lesson introduces students to procedures for creating both hand-drawn and machine-made transparencies and requires each of them to create one example to illustrate the same story. Detailed plans include performance objectives, materials needed, instructions for presenting the lesson, a sample student task card, and suggestions for evaluating…

  17. Recommended Literature, Grades Nine through Twelve.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento.

    Intended as a guide for local-level policymakers, curriculum planners, teachers, and librarians, this book lists over 1200 titles of books as examples of good literature for high school students. It is intended to encourage educators to review their literature programs and the accompanying instructional materials and to encourage students to read…

  18. Using Local History, Primary Source Material, and Comparative History to Teach Reconstruction.

    ERIC Educational Resources Information Center

    Adomanis, James F.

    1989-01-01

    Suggests using local history, primary source material, and comparative history to alleviate the boredom most students experience when studying the Reconstruction period of U.S. history. Provides an example of comparative history usage through a discussion of ante-bellum Maryland and the history of Liberia. (KO)

  19. Copyright in a Digital Age: How To Comply with the Law--and Set a Good Example for Students.

    ERIC Educational Resources Information Center

    Becker, Gary H.

    2000-01-01

    As classroom technology has developed, so have copyright laws and guidelines. Guidelines are outlined for taping broadcasts, using "home use only" videocasettes, networking and duplicating computer software, incorporating copyrighted material for multimedia productions, creating materials for posting on Internet websites, and…

  20. Household Hazardous Materials and Their Labels: A Reference for Teachers.

    ERIC Educational Resources Information Center

    Dean, Lillian F.

    Household hazardous materials are products or wastes which are toxic, corrosive, reactive, and/or ignitable. Although common products such as pesticides, oils, gasoline, solvents, cleaners, and polishes are hazardous, students and adults are not always aware of potential dangers. This sourcebook contains definitions and examples of household…

  1. Priorities for the Slavic Languages.

    ERIC Educational Resources Information Center

    Gribble, Charles E.

    The changing situation in the world and in academia requires a new perspective on priorities for Slavic language instructional materials. For example, courses must be developed that concentrate on reading skills, the main skill today's students of Slavic languages generally require. Materials needed for Slavic languages can be grouped into 16…

  2. The Image of Daniel: An Ancient Graphic Organizer

    ERIC Educational Resources Information Center

    Li, Loretta F.

    2008-01-01

    Teachers who use graphic organizers find that students' memory of important material is strengthened. Graphic organizers also lend themselves to the presentation of material in an interdisciplinary fashion. An example of a successful graphic organizer from religion and ancient history is the image of Nebuchadnezzar's dream that was interpreted by…

  3. Creation and application of three-dimensional computer-graphic animations for introduction to radiological physics and technology.

    PubMed

    Hasegawa, Tomoyuki; Kojima, Haruna; Masu, Chisato; Fukushima, Yasuhiro; Kojima, Hironori; Konokawa, Kiminori; Isobe, Tomonori; Sato, Eisuke; Murayama, Hideo; Maruyama, Koichi; Umeda, Tokuo

    2010-01-01

    Physics-related subjects are important in the educational fields of radiological physics and technology. However, conventional teaching tools, for example texts, equations, and two-dimensional figures, are not very effective in attracting the interest of students. Therefore, we have created several multimedia educational materials covering radiological physics and technology. Each educational presentation includes several segments of high-quality computer-graphic animations designed to attract students' interest. We used personal computers (PCs) and commercial software to create and compile these. Undergraduate and graduate students and teachers and related professionals contributed to the design and creation of the educational materials as part of student research. The educational materials can be displayed on a PC monitor and manipulated with popular free software. Opinion surveys conducted in undergraduate courses at Kitasato University support the effectiveness of our educational tools in helping students gain a better understanding of the subjects offered and in raising their interest.

  4. Toolkit for US colleges/schools of pharmacy to prepare learners for careers in academia.

    PubMed

    Haines, Seena L; Summa, Maria A; Peeters, Michael J; Dy-Boarman, Eliza A; Boyle, Jaclyn A; Clifford, Kalin M; Willson, Megan N

    2017-09-01

    The objective of this article is to provide an academic toolkit for use by colleges/schools of pharmacy to prepare student pharmacists/residents for academic careers. Through the American Association of Colleges of Pharmac (AACP) Section of Pharmacy Practice, the Student Resident Engagement Task Force (SRETF) collated teaching materials used by colleges/schools of pharmacy from a previously reported national survey. The SRETF developed a toolkit for student pharmacists/residents interested in academic pharmacy. Eighteen institutions provided materials; five provided materials describing didactic coursework; over fifteen provided materials for an academia-focused Advanced Pharmacy Practice Experiences (APPE), while one provided materials for an APPE teaching-research elective. SRETF members created a syllabus template and sample lesson plan by integrating submitted resources. Submissions still needed to complete the toolkit include examples of curricular tracks and certificate programs. Pharmacy faculty vacancies still exist in pharmacy education. Engaging student pharmacists/residents about academia pillars of teaching, scholarship and service is critical for the future success of the academy. Published by Elsevier Inc.

  5. A Methodology for Reading Skill Improvement in Vocational Secondary Programs.

    ERIC Educational Resources Information Center

    Martin, Wanda; And Others

    Designed to help vocational teachers aid students in reading vocational education class materials, this handbook contains six sections of background information and suggested activities geared to various aspects of reading and a section of ideas for use in improving the reading skills of vocational students. While most of the examples in the…

  6. Applying Social Psychological Concepts Outside the Classroom

    ERIC Educational Resources Information Center

    Lakin, Jessica L.; Wichman, Aaron L.

    2005-01-01

    This article evaluates a writing assignment in which social psychology students gathered examples from outside the classroom (e.g., cartoons, movies) and analyzed them with course material. Compared to a control group, students who completed the assignment learned that it was easier to apply social psychology to the real world. A follow-up survey…

  7. Student-Created Homework Problems Based on YouTube Videos

    ERIC Educational Resources Information Center

    Liberatore, Matthew W.; Marr, David W. M.; Herring, Andrew M.; Way, J. Douglas

    2013-01-01

    Inspired by YouTube videos, students created homework problems as part of a class project. The project has been successful at different parts of the semester and demonstrated learning of course concepts. These new problems were implemented both in class and as part of homework assignments without significant changes. Examples from a material and…

  8. An Example of Inquiry in Linear Algebra: The Roles of Symbolizing and Brokering

    ERIC Educational Resources Information Center

    Zandieh, Michelle; Wawro, Megan; Rasmussen, Chris

    2017-01-01

    In this paper we address practical questions such as: How do symbols appear and evolve in an inquiry-oriented classroom? How can an instructor connect students with traditional notation and vocabulary without undermining their sense of ownership of the material? We tender an example from linear algebra that highlights the roles of the instructor…

  9. Learning the Brain in Introductory Psychology: Examining the Generation Effect for Mnemonics and Examples

    ERIC Educational Resources Information Center

    McCabe, Jennifer A.

    2015-01-01

    The goal of this research was to determine whether there is a generation effect for learner-created keyword mnemonics and real-life examples, compared to instructor-provided materials, when learning neurophysiological terms and definitions in introductory psychology. Students participated in an individual (Study 1) or small-group (Study 2)…

  10. Laminated thermoplastic composite material from recycled high density polyethylene

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.

  11. Iron dominated magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, G.E.

    1985-07-01

    These two lectures on iron dominated magnets are meant for the student of accelerator science and contain general treatments of the subjects design and construction. The material is arranged in the categories: General Concepts and Cost Considerations, Profile Configuration and Harmonics, Magnetic Measurements, a few examples of ''special magnets'' and Materials and Practices. Extensive literature is provided.

  12. The Big Crush: An Introduction to Materials Testing

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2011-01-01

    Lots of engineering thinking can be involved in crushing things. As an example, engineers spend a great deal of time designing crush-proof packaging for delicate equipment and packing materials for items that must be stored or shipped. This article presents an activity wherein students can begin to appreciate the technology behind the engineering.…

  13. Consumer Law-Related Education Materials (Grades 4-7). Okeechobee County.

    ERIC Educational Resources Information Center

    Allen, Rodney F., Ed.; Landry, Russell H., Ed.

    These teacher-developed learning activities for grades 4-7 deal with consumer law-related topics. The self-contained activities are organized into five sections. Section one contains a role-playing card game that helps students examine rules and feelings. For example, one role-playing situation involves a confrontation between a student and a bus…

  14. Thinking outside the Box Office: Using Movies to Build Shared Experiences and Student Engagement in Online or Hybrid Learning

    ERIC Educational Resources Information Center

    Kresse, William; Watland, Kathleen Hanold

    2016-01-01

    Movies and films are widely recognized as valuable pedagogical tools. Motion pictures provide concrete and illustrative examples of important concepts and can improve students' understanding of course material as well as increase their satisfaction with courses. Online learning is becoming an increasing dominant facet of higher education. Online…

  15. Sets, Probability and Statistics: The Mathematics of Life Insurance. [Computer Program.] Second Edition.

    ERIC Educational Resources Information Center

    King, James M.; And Others

    The materials described here represent the conversion of a highly popular student workbook "Sets, Probability and Statistics: The Mathematics of Life Insurance" into a computer program. The program is designed to familiarize students with the concepts of sets, probability, and statistics, and to provide practice using real life examples. It also…

  16. An Analysis of English Language Teaching Coursebooks by Turkish Writers: "Let's Speak English 7" Example

    ERIC Educational Resources Information Center

    Tekir, Serpil; Arikan, Arda

    2007-01-01

    It is known that English language coursebooks written by Turkish writers is widely used in Turkey although much research is needed to assess their quality as educational materials. In this research study, opinions of 7th grade students' and teachers' on "Let's Speak English 7" were studied through teacher and student questionnaires…

  17. On Developing Content-Oriented Theories Taking Biological Evolution as an Example

    ERIC Educational Resources Information Center

    Andersson, Bjorn; Wallin, Anita

    2006-01-01

    Both in Europe and the United States there is a growing interest in design research. One example is the design and validation of topic-oriented teaching-learning sequences. This research may be said to have two objectives. One is to design and test "useful products", such as teachers guides and study material for students, which may be…

  18. Simulated Students and Classroom Use of Model-Based Intelligent Tutoring

    NASA Technical Reports Server (NTRS)

    Koedinger, Kenneth R.

    2008-01-01

    Two educational uses of models and simulations: 1) Students create models and use simulations ; and 2) Researchers create models of learners to guide development of reliably effective materials. Cognitive tutors simulate and support tutoring - data is crucial to create effective model. Pittsburgh Science of Learning Center: Resources for modeling, authoring, experimentation. Repository of data and theory. Examples of advanced modeling efforts: SimStudent learns rule-based model. Help-seeking model: Tutors metacognition. Scooter uses machine learning detectors of student engagement.

  19. The Topology Prediction of Membrane Proteins: A Web-Based Tutorial.

    PubMed

    Kandemir-Cavas, Cagin; Cavas, Levent; Alyuruk, Hakan

    2018-06-01

    There is a great need for development of educational materials on the transfer of current bioinformatics knowledge to undergraduate students in bioscience departments. In this study, it is aimed to prepare an example in silico laboratory tutorial on the topology prediction of membrane proteins by bioinformatics tools. This laboratory tutorial is prepared for biochemistry lessons at bioscience departments (biology, chemistry, biochemistry, molecular biology and genetics, and faculty of medicine). The tutorial is intended for students who have not taken a bioinformatics course yet or already have taken a course as an introduction to bioinformatics. The tutorial is based on step-by-step explanations with illustrations. It can be applied under supervision of an instructor in the lessons, or it can be used as a self-study guide by students. In the tutorial, membrane-spanning regions and α-helices of membrane proteins were predicted by internet-based bioinformatics tools. According to the results achieved from internet-based bioinformatics tools, the algorithms and parameters used were effective on the accuracy of prediction. The importance of this laboratory tutorial lies on the facts that it provides an introduction to the bioinformatics and that it also demonstrates an in silico laboratory application to the students at natural sciences. The presented example education material is applicable easily at all departments that have internet connection. This study presents an alternative education material to the students in biochemistry laboratories in addition to classical laboratory experiments.

  20. Students' explanations in complex learning of disciplinary programming

    NASA Astrophysics Data System (ADS)

    Vieira, Camilo

    Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or representing complex phenomena that are not easy to experiment with. Despite the relevance of CSE, current professionals and scientists are not well prepared to take advantage of this set of tools and methods. Computation is usually taught in an isolated way from engineering disciplines, and therefore, engineers do not know how to exploit CSE affordances. This dissertation intends to introduce computational tools and methods contextualized within the Materials Science and Engineering curriculum. Considering that learning how to program is a complex task, the dissertation explores effective pedagogical practices that can support student disciplinary and computational learning. Two case studies will be evaluated to identify the characteristics of effective worked examples in the context of CSE. Specifically, this dissertation explores students explanations of these worked examples in two engineering courses with different levels of transparency: a programming course in materials science and engineering glass box and a thermodynamics course involving computational representations black box. Results from this study suggest that students benefit in different ways from writing in-code comments. These benefits include but are not limited to: connecting xv individual lines of code to the overall problem, getting familiar with the syntax, learning effective algorithm design strategies, and connecting computation with their discipline. Students in the glass box context generate higher quality explanations than students in the black box context. These explanations are related to students prior experiences. Specifically, students with low ability to do programming engage in a more thorough explanation process than students with high ability. This dissertation concludes proposing an adaptation to the instructional principles of worked-examples for the context of CSE education.

  1. Physics for Allied Health Students

    NASA Astrophysics Data System (ADS)

    Goldick, Howard

    2000-04-01

    In this paper I will describe two courses that I have been teaching for the past 6 years to physical therapy and occupational therapy students Emphasis will be paced on those points that distinguish these courses from others with which I am familiar. I will discuss the syllabus: homework, exams, labs and the final grade. I will also present a topic outline of the courses showing how examples are drawn from the human body to illustrate the physics concept under discussion and to stimulate the students's interest in the material. The following basic concepts of physics will be covered (each with human body examples): vectors, components, statics, conservation of energy, efficiency, change of state, heat transfer, electric charge, electric field, voltage and capacitance.

  2. Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Miranda, R.

    1989-01-01

    Described is a heterogeneous catalysis course which has elements of materials processing embedded in the classical format of catalytic mechanisms and surface chemistry. A course outline and list of examples of recent review papers written by students are provided. (MVL)

  3. Distance Learning Materials for Elementary Astronomy with Lab

    NASA Astrophysics Data System (ADS)

    Castle, K. G.

    2004-05-01

    I have developed a distance learning astronomy course with an integral lab. The materials for this course are available from the site below. Test and quiz contents can be obtained upon request In this distance-learning format, students take quizzes online, tests in person and meet with the instructor for assistance. Student activities include homework, laboratory exercises and observing projects using household and community resources. This course (Astro 128) has been approved to fulfill general education requirements for University of California and the California State University system. Materials include instructions and reference materials for measuring parallax, analyzing radial velocity and light curves, finding ages of star clusters, tracking planets, recording sunrise or sunset time, simulating lunar phases, assessing lunar feature ages, classifying stellar spectra from tracings, and classifying galaxy morphology. Students analyze actual astronomical data from the literature in many cases. A comparatively large number of observational examples allows each student to work with a unique assignment. Course management includes a calendar where students schedule meetings with the instructor and WebCT test, quiz and grade maintenance. Course materials are supplied with links to data sets in PDF. This class was developed with technical assistance from the Instructional Technology Department at Diablo Valley College.

  4. Teaching and Learning Communities through Online Annotation

    NASA Astrophysics Data System (ADS)

    van der Pluijm, B.

    2016-12-01

    What do colleagues do with your assigned textbook? What they say or think about the material? Want students to be more engaged in their learning experience? If so, online materials that complement standard lecture format provide new opportunity through managed, online group annotation that leverages the ubiquity of internet access, while personalizing learning. The concept is illustrated with the new online textbook "Processes in Structural Geology and Tectonics", by Ben van der Pluijm and Stephen Marshak, which offers a platform for sharing of experiences, supplementary materials and approaches, including readings, mathematical applications, exercises, challenge questions, quizzes, alternative explanations, and more. The annotation framework used is Hypothes.is, which offers a free, open platform markup environment for annotation of websites and PDF postings. The annotations can be public, grouped or individualized, as desired, including export access and download of annotations. A teacher group, hosted by a moderator/owner, limits access to members of a user group of teachers, so that its members can use, copy or transcribe annotations for their own lesson material. Likewise, an instructor can host a student group that encourages sharing of observations, questions and answers among students and instructor. Also, the instructor can create one or more closed groups that offers study help and hints to students. Options galore, all of which aim to engage students and to promote greater responsibility for their learning experience. Beyond new capacity, the ability to analyze student annotation supports individual learners and their needs. For example, student notes can be analyzed for key phrases and concepts, and identify misunderstandings, omissions and problems. Also, example annotations can be shared to enhance notetaking skills and to help with studying. Lastly, online annotation allows active application to lecture posted slides, supporting real-time notetaking during lecture presentation. Sharing of experiences and practices of annotation could benefit teachers and learners alike, and does not require complicated software, coding skills or special hardware environments.

  5. Concerthalls.org: A webpage for architectural acoustics education

    NASA Astrophysics Data System (ADS)

    Wang, Lily M.; Hall, Jessica M.

    2002-11-01

    A website focusing on concert hall acoustics (www.concerthalls.org) has been developed under the Schultz Grant from the Newman Student Award Fund. The website includes historical information, discussions on a variety of architectural acoustical measures, links to other websites of interest including a collection of concert hall webpages, and a comprehensive reference list. Of particular interest are the many listening examples provided on the website, which help students and other visitors to understand each subjective quality audibly and give insight on how to measure and control the associated objective measure. Examples are provided for reverberation, clarity, intimacy, warmth, loudness, and spaciousness. Various samples will be played during this presentation. Instructors of architectural acoustics are encouraged to introduce the site to their students and incorporate it into their instructional materials. [Work supported by Schultz Grant from the Newman Student Award Fund.

  6. Using a Three-Step Method in a Calculus Class: Extending the Worked Example

    ERIC Educational Resources Information Center

    Miller, David

    2010-01-01

    This article discusses a three-step method that was used in a college calculus course. The three-step method was developed to help students understand the course material and transition to be more independent learners. In addition, the method helped students to transfer concepts from short-term to long-term memory while lowering cognitive load.…

  7. Color Counts, Too!

    ERIC Educational Resources Information Center

    Sewell, Julia H.

    1983-01-01

    Students with undetected color blindness can have problems with specific teaching methods and materials. The problem should be ruled out in children with suspected learning disabilities and taken into account in career counseling. Nine examples of simple classroom modifications are described. (CL)

  8. Canine Paternity Testing--Using Personal Experiences To Teach Science.

    ERIC Educational Resources Information Center

    Rascati, Ralph J.

    2002-01-01

    Outlines how an example from the field of animal husbandry is used in a DNA Technology course to motivate students to take a deeper interest in the material. Focuses on paternity testing in dogs. (DDR)

  9. The Importance of Accuracy, Stimulating writing, and Relevance in Middle School Science Textbook Writing

    NASA Astrophysics Data System (ADS)

    Hubisz, John

    2004-05-01

    While accuracy in Middle School science texts is most important, the texts should also read well, stimulating the student to want to go on, and the material must be relevant to the subject at hand as the typical student is not yet prepared to ignore that which is irrelevant. We know that children will read if the material is of interest (witness The Lord of the Rings and the Harry Potter book sales) and so we must write in a way that stimulates the student to want to examine the subject further and eliminate that which adds nothing to the discipline. Examples of the good and the bad will be presented.

  10. Using Just in Time Teaching in a Global Climate Change Course to Address Misconceptions

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.

    2013-12-01

    Just in Time Teaching (JiTT) is employed in an introductory Global Climate Change college course with the intention of addressing common misconceptions and climate myths. Students enter the course with a variety of prior knowledge and opinions on global warming, and JiTT can be used as a constructivist pedagogical approach to make use of this prior knowledge. Students are asked to watch a short video or do a reading, sometimes screen capture videos created by the professor as review of material from the previous class, a video available on the web from NASA or NOAA, for example, or a reading from an online article or their textbook. After the video or reading, students answer a question carefully designed to pry at a common misconception, or simply are asked for the 'muddiest point' that remains on the concept. This assignment is done the night before class using a web program. The program aggregates the answers in an organized way so the professor can use the answers to design the day's lesson to address common misconceptions or concerns students displayed in their answers, as well as quickly assign participation credit to students who completed the assignment. On the other hand, if students display that they have already mastered the material, the professor can confidently move on to the next concept. The JiTT pedagogical method personalizes each lecture period to the students in that particular class for maximum efficiency while catching and fixing misconceptions in a timely manner. This technique requires students to spend time with the material outside of class, acts as review of important concepts, and increases engagement in class due to the personalization of the course. Evaluation results from use of this technique will be presented. Examples of successful JiTT videos, questions, student answers, and techniques for addressing misconceptions during lecture will also be presented with the intention that instructors can easily apply this technique to their next course.

  11. Reflecting Equity and Diversity. Part I: Guidelines and Procedure for Evaluating Bias in Instructional Materials. Part II: Bias Awareness Training Worksheets. Part III: Bias Awareness and Procedure Training Course.

    ERIC Educational Resources Information Center

    Bebermeyer, Jim; Edmond, Mary, Ed.

    Reflecting a need to prepare students for working in diverse organizations, this document was developed to increase school officials' awareness of bias in instructional materials and help them select bias-free materials. A number of the examples illustrate situations dealing with diversity in the workplace. The guide is divided into three parts:…

  12. Conquering Fear: The Role of Fantasy and Horror Fiction in the Classroom.

    ERIC Educational Resources Information Center

    Compora, Daniel P.

    Many English teachers face the widespread misconception that if a work of fiction is enjoyable, it cannot be good, or, conversely, if it is good, it cannot be enjoyable. Critics of horror fiction, for example, would likely argue that better reading materials are available for students to read. Inclusion of materials other than "classics" into the…

  13. Acid Rain Classroom Projects.

    ERIC Educational Resources Information Center

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  14. NAEP 1997 Arts Report Card: Eighth-Grade Findings from the National Assessment of Educational Progress. [CD-ROM].

    ERIC Educational Resources Information Center

    National Assessment of Educational Progress, Princeton, NJ.

    This "NAEP Arts Report Card" for music, theater, visual arts, and dance is in the form of a CD-ROM. This version includes recordings, videos, and other materials used as stimuli for students, extensive examples of student works of art and performances, and explanations of how these works of art and performances were scored. The report's…

  15. Teaching Technical Competencies for Fluid Mechanics Research

    NASA Astrophysics Data System (ADS)

    Tagg, Randall

    2014-11-01

    We are developing an ``on demand'' framework for students to learn techniques used in fluid mechanics research. The site for this work is a university-grade laboratory situated next to Gateway High School in Aurora, Colorado. Undergraduate university students work with K-12 students on research and technical innovation projects. Both groups need customized training as their projects proceed. A modular approach allows particular competencies such as pump selection, construction of flow piping and channels, flow visualization, and specific flow measurement methods to be acquired through focused lessons. These lessons can be learned in either a stand-alone fashion or assembled into units for formal courses. A research example was a student project on diffusion of infectious material in micro-gravity in the event of an intestinal puncture wound. A curriculum example is a 9-week quarter of high-school instruction on instrumentation that uses small-scale water treatment systems as a case study.

  16. TEACHING PHYSICS: The quantum understanding of pre-university physics students

    NASA Astrophysics Data System (ADS)

    Ireson, Gren

    2000-01-01

    Students in England and Wales wishing to read for a physics-based degree will, in all but the more exceptional situations, be required to follow the two-year GCE Advanced-level physics course. This course includes, in its mandatory core, material that addresses the topic of `quantum phenomena'. Over the years journals such as this have published teaching strategies, for example Lawrence (1996), but few studies addressing what students understand of quantum phenomena can be found. This paper aims to address just this problem.

  17. The Impact and Promise of Open-Source Computational Material for Physics Teaching

    NASA Astrophysics Data System (ADS)

    Christian, Wolfgang

    2017-01-01

    A computer-based modeling approach to teaching must be flexible because students and teachers have different skills and varying levels of preparation. Learning how to run the ``software du jour'' is not the objective for integrating computational physics material into the curriculum. Learning computational thinking, how to use computation and computer-based visualization to communicate ideas, how to design and build models, and how to use ready-to-run models to foster critical thinking is the objective. Our computational modeling approach to teaching is a research-proven pedagogy that predates computers. It attempts to enhance student achievement through the Modeling Cycle. This approach was pioneered by Robert Karplus and the SCIS Project in the 1960s and 70s and later extended by the Modeling Instruction Program led by Jane Jackson and David Hestenes at Arizona State University. This talk describes a no-cost open-source computational approach aligned with a Modeling Cycle pedagogy. Our tools, curricular material, and ready-to-run examples are freely available from the Open Source Physics Collection hosted on the AAPT-ComPADRE digital library. Examples will be presented.

  18. Teaching Psychological Defense Mechanisms: "The Defense Mechanisms Game."

    ERIC Educational Resources Information Center

    Waugh, Charles G.

    1980-01-01

    Presents the rules for an educational game in which students reinforce psychology lecture material by creating and dramatizing defense mechanisms such as reaction formation, displacement, and fantasy. Provides definitions and examples of the various defense mechanisms that can be portrayed. (JP)

  19. Applying cognitive load theory to the redesign of a conventional database systems course

    NASA Astrophysics Data System (ADS)

    Mason, Raina; Seton, Carolyn; Cooper, Graham

    2016-01-01

    Cognitive load theory (CLT) was used to redesign a Database Systems course for Information Technology students. The redesign was intended to address poor student performance and low satisfaction, and to provide a more relevant foundation in database design and use for subsequent studies and industry. The original course followed the conventional structure for a database course, covering database design first, then database development. Analysis showed the conventional course content was appropriate but the instructional materials used were too complex, especially for novice students. The redesign of instructional materials applied CLT to remove split attention and redundancy effects, to provide suitable worked examples and sub-goals, and included an extensive re-sequencing of content. The approach was primarily directed towards mid- to lower performing students and results showed a significant improvement for this cohort with the exam failure rate reducing by 34% after the redesign on identical final exams. Student satisfaction also increased and feedback from subsequent study was very positive. The application of CLT to the design of instructional materials is discussed for delivery of technical courses.

  20. Involving High School Students in Computational Physics University Research: Theory Calculations of Toluene Adsorbed on Graphene

    PubMed Central

    Borck, Øyvind; Gunnarsson, Linda; Lydmark, Pär

    2016-01-01

    To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research. PMID:27505418

  1. Involving High School Students in Computational Physics University Research: Theory Calculations of Toluene Adsorbed on Graphene.

    PubMed

    Ericsson, Jonas; Husmark, Teodor; Mathiesen, Christoffer; Sepahvand, Benjamin; Borck, Øyvind; Gunnarsson, Linda; Lydmark, Pär; Schröder, Elsebeth

    2016-01-01

    To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research.

  2. Classroom Materials from the Acoustical Society of America

    NASA Astrophysics Data System (ADS)

    Adams, W. K.; Clark, A.; Schneider, K.

    2013-09-01

    As part of the new education initiatives of the Acoustical Society of America (ASA), an activity kit for teachers that includes a variety of lessons addressing acoustics for a range of students (K-12) has been created. The "Sound and Music Activity Kit" is free to K-12 teachers. It includes materials sufficient to teach a class of 30 students plus a USB thumb drive containing 47 research-based, interactive, student-tested lessons, laboratory exercises, several assessments, and video clips of a class using the materials. ASA has also partnered with both the Optical Society of America (OSA) and the American Association of Physics Teachers. AAPT Physics Teaching Resource Agents (PTRA) have reviewed the lessons along with members of the ASA Teacher Activity Kit Committee. Topics include basic learning goals for teaching the physics of sound with examples and applications relating to medical imaging, animal bioacoustics, physical and psychological acoustics, speech, audiology, and architectural acoustics.

  3. Techniques and Technology to Revise Content Delivery and Model Critical Thinking in the Neuroscience Classroom

    PubMed Central

    Illig, Kurt R.

    2015-01-01

    Undergraduate neuroscience courses typically involve highly interdisciplinary material, and it is often necessary to use class time to review how principles of chemistry, math and biology apply to neuroscience. Lecturing and Socratic discussion can work well to deliver information to students, but these techniques can lead students to feel more like spectators than participants in a class, and do not actively engage students in the critical analysis and application of experimental evidence. If one goal of undergraduate neuroscience education is to foster critical thinking skills, then the classroom should be a place where students and instructors can work together to develop them. Students learn how to think critically by directly engaging with course material, and by discussing evidence with their peers, but taking classroom time for these activities requires that an instructor find a way to provide course materials outside of class. Using technology as an on-demand provider of course materials can give instructors the freedom to restructure classroom time, allowing students to work together in small groups and to have discussions that foster critical thinking, and allowing the instructor to model these skills. In this paper, I provide a rationale for reducing the use of traditional lectures in favor of more student-centered activities, I present several methods that can be used to deliver course materials outside of class and discuss their use, and I provide a few examples of how these techniques and technologies can help improve learning outcomes. PMID:26240525

  4. Techniques and Technology to Revise Content Delivery and Model Critical Thinking in the Neuroscience Classroom.

    PubMed

    Illig, Kurt R

    2015-01-01

    Undergraduate neuroscience courses typically involve highly interdisciplinary material, and it is often necessary to use class time to review how principles of chemistry, math and biology apply to neuroscience. Lecturing and Socratic discussion can work well to deliver information to students, but these techniques can lead students to feel more like spectators than participants in a class, and do not actively engage students in the critical analysis and application of experimental evidence. If one goal of undergraduate neuroscience education is to foster critical thinking skills, then the classroom should be a place where students and instructors can work together to develop them. Students learn how to think critically by directly engaging with course material, and by discussing evidence with their peers, but taking classroom time for these activities requires that an instructor find a way to provide course materials outside of class. Using technology as an on-demand provider of course materials can give instructors the freedom to restructure classroom time, allowing students to work together in small groups and to have discussions that foster critical thinking, and allowing the instructor to model these skills. In this paper, I provide a rationale for reducing the use of traditional lectures in favor of more student-centered activities, I present several methods that can be used to deliver course materials outside of class and discuss their use, and I provide a few examples of how these techniques and technologies can help improve learning outcomes.

  5. The Recursive Paradigm: Suppose We Already Knew.

    ERIC Educational Resources Information Center

    Maurer, Stephen B.

    1995-01-01

    Explains the recursive model in discrete mathematics through five examples and problems. Discusses the relationship between the recursive model, mathematical induction, and inductive reasoning and the relevance of these concepts in the school curriculum. Provides ideas for approaching this material with students. (Author/DDD)

  6. Similarities and Differences In Ideas Generated by Physics Learners: US College Students Vs. Tibetan Buddhist Monks

    NASA Astrophysics Data System (ADS)

    Johnson, Andy

    2008-10-01

    We have used PER-based course materials to teach various physics topics to Tibetan Buddhist monks over the last four years. While listening to the monks' ideas through interpreters, we found some striking similarities with ideas that we hear in our own classrooms in the US. However, the degree of similarity of monks' ideas with those of US students varied with the topic. For example, ideas that emerged in the topic of magnetism were often consistent with western ideas while ideas about color addition were sometimes strikingly different from ideas that American students use. The monks' ways of talking lead us to believe that cultural background partially determines how they think initially about particular physics topics. This poster will give examples of similarities and of differences, and attempt to identify reasons for both.

  7. Using iPads to illustrate the impulse-momentum relationship

    NASA Astrophysics Data System (ADS)

    Streepey, Jefferson W.

    2013-01-01

    One of the fundamental challenges in teaching is making the students able to transform course material in ways that help them solve "real world" problems. Sophisticated mobile technology (such as smartphones, iPads, or iTouches) offers students an opportunity to apply physics content to a broad range of scenarios to enhance their understanding and improve their class engagement. For the outlined example, students in an upper-level biomechanics class used the native accelerometers in iPads to record and analyze human movement. This activity allowed the students to experiment with the impulse-momentum relationship.

  8. Limnological Projects.

    ERIC Educational Resources Information Center

    Hambler, David J.; Dixon, Jean M.

    1982-01-01

    Describes collection of quantitative samples of microorganisms and accumulation of physical data from a pond over a year. Provides examples of how final-year degree students have used materials and data for ecological projects (involving mainly algae), including their results/conclusions. Also describes apparatus and reagents used in the student…

  9. Performance-Based Assessment Resource Guide.

    ERIC Educational Resources Information Center

    Gilbert, Judith C.; Burger, Patricia

    This resource guide reviews a variety of performance-based student assessment strategies, and provides examples of, and references for, the strategies. Strategies include anecdotal records, interviews, peer report and group evaluations, and portfolios. Materials in the guide include: (1) a resource guide update form for teachers; (2) department…

  10. MISESS: Web-Based Examination, Evaluation, and Guidance

    ERIC Educational Resources Information Center

    Tanrikulu, Zuhal

    2006-01-01

    Many universities are reevaluating their traditional educational methods and providing pedagogical material through the Internet. Some Web-based systems offer a constructionist learning environment, for example, where students can learn by designing their own objects. Providing effective, convenient technology to support learning is important, and…

  11. Computer-Enriched Instruction (CEI) Is Better for Preview Material Instead of Review Material: An Example of a Biostatistics Chapter, the Central Limit Theorem

    ERIC Educational Resources Information Center

    See, Lai-Chu; Huang, Yu-Hsun; Chang, Yi-Hu; Chiu, Yeo-Ju; Chen, Yi-Fen; Napper, Vicki S.

    2010-01-01

    This study examines the timing using computer-enriched instruction (CEI), before or after a traditional lecture to determine cross-over effect, period effect, and learning effect arising from sequencing of instruction. A 2 x 2 cross-over design was used with CEI to teach central limit theorem (CLT). Two sequences of graduate students in nursing…

  12. Colorado Student Assessment Program: 2001 Released Passages, Items, and Prompts. Grade 4 Reading and Writing, Grade 4 Lectura y Escritura, Grade 5 Mathematics and Reading, Grade 6 Reading, Grade 7 Reading and Writing, Grade 8 Mathematics, Reading and Science, Grade 9 Reading, and Grade 10 Mathematics and Reading and Writing.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver.

    This document contains released reading comprehension passages, test items, and writing prompts from the Colorado Student Assessment Program for 2001. The sample questions and prompts are included without answers or examples of student responses. Test materials are included for: (1) Grade 4 Reading and Writing; (2) Grade 4 Lectura y Escritura…

  13. Project ALPHA (Advanced Learning Program in the Humanities and Arts): The Art, Music and Philosophy of China. A Study Unit Designed for Education of the Gifted in the Humanities and the Arts.

    ERIC Educational Resources Information Center

    Le Storti, Anthony J.; McCarry, Maureen

    The unit, designed for junior and senior high gifted students interested in Chinese thought and art, is intended to to acquaint students with examples of Chinese painting, sculpture, and music along with examination of related philosophical ideas. Five subject areas are presented in terms of objectives, materials, and teaching presentation. The…

  14. Enriching Student Learning of Astronomy in Online Courses via Hybrid Texts

    NASA Astrophysics Data System (ADS)

    Montgomery, M.

    2016-01-01

    Hybrid texts such as Horizons: Exploring the Universe, Hybrid (with CengageNOW) and Universe, Hybrid (with CengageNOW) are designed for higher education learning of astronomy in undergraduate online courses. In these hybrid texts, quiz and test bank questions have been revised to minimize easy look-up of answers by students via the Internet and discussion threads have been re-designed to allow for student selection of learning and for personalized learning, for example. By establishing connections between the student and the course content, student learning is enriched, students spend more time learning the material, student copying of answers is minimized, and student social engagement on the subject matter is increased. In this presentation, we discuss how Hybrid texts in Astronomy can increase student learning in online courses.

  15. Mercury in Retrograde: Shaking Up the Study of Orbital Motion with Kinesthetic Learning

    NASA Astrophysics Data System (ADS)

    DeStefano, Paul; Allen, Thomas; Widenhorn, Ralf

    2018-06-01

    We are investigating the use of kinesthetic activities to teach the orbital motion of planets at the introductory astronomy level. In addition to breaking the monotony of traditional classroom settings, kinesthetic activities can allow novel connections to form between the student and the material, as established in a recent study. In our example active learning activity, two students walk along predetermined paths in the classroom, simulating the dynamics of any two real or fictional bodies in orbital motion about a common object. Each student carries a short-range, local positioning device that records its 2D position, continuously. The position data from both devices are collected on a single computer. After acquisition, the data can be used to highlight interesting features of orbital dynamics. For example, we demonstrate a particular transformation of the data that shows apparent retrograde motion arising directly from the relative motion of two bodies orbiting a common object. This activity provides students with the opportunity to observe interesting orbital dynamics on a human scale.

  16. Community as classroom: teaching and learning public health in rural Appalachia.

    PubMed

    Florence, James; Behringer, Bruce

    2011-01-01

    Traditional models for public health professional education tend to be didactic, with brief, discrete practica appended. National reports of both practitioners and academicians have called for more competency-driven, interdisciplinary-focused, community-based, service-oriented, and experientially-guided learning for students across the curriculum. East Tennessee State University began its own curricular revisioning in health professions education nearly 2 decades ago with a grant from the W.K. Kellogg Foundation, emphasizing competencies development through community-based learning in community-academic partnerships. This article describes 3 examples that grew from that initiative. In the first example, students in multiple classes delivered a longitudinal community-based employee wellness intervention for a rural county school district. BS public health students conducted needs assessments and prepared health education materials; MPH students conducted health assessments and worked with school wellness councils to deliver client-centered interventions; DrPH students supervised the project and provided feedback to the schools using participatory methods. In the second example, MPH students in a social-behavioral foundations course used experiential learning to investigate the region's elevated cancer mortality ranking. Following meetings with multiple community groups, students employed theoretical constructs to frame regional beliefs about cancer and presented findings to community leaders. One outcome was a 5-year community-based participatory research study of cancer in rural Appalachia. In the third example, MPH students in a health-consulting course assessed local African Americans' awareness of the university's health and education programs and perceptions of their community health issues. Students learned consultation methods by assisting at multiple regional African American community meetings to discover issues and interest that resulted in the organization of a regional African American health coalition, multiple community health interventions, and the region's first health disparities summit. Lessons learned are presented which identify key elements of success and factors that influence adoption of community-based teaching and learning in public health.

  17. Stress in Children Bibliography.

    ERIC Educational Resources Information Center

    Gerlach, Kent

    This annotated bibliography concerns itself with issues that may contribute to childhood stress, provides resource materials for teachers and parents, and covers a wide variety of fiction and non-fiction for students (K-12). The publication's organization along with examples of the issues included follows: (1) adolescence issues (substance abuse,…

  18. Grammaire et communication (Grammar and Communication).

    ERIC Educational Resources Information Center

    Stirman-Langlois, Martine

    1994-01-01

    A technique for teaching French grammar that involves reading, rereading, and analyzing the language in authentic materials is discussed. The student is led to recognition and generalization of structures in the text. Text examples used here include a comic strip and a publicity blurb for a French city. (MSE)

  19. Using NASA and the Space Program to Help High School and College Students Learn Chemistry.

    ERIC Educational Resources Information Center

    Kelter, Paul B.; And Others

    1987-01-01

    Discusses the current state of space-related research and manufacturing techniques. Focuses on the areas of spectroscopy, materials processing, electrochemistry, and analysis. Provides examples and classroom application for using these aspects of the space program to teach chemistry. (TW)

  20. An Interdisciplinary Program in Materials Science at James Madison University.

    NASA Astrophysics Data System (ADS)

    Hughes, Chris

    2008-03-01

    Over the past decade a core group of faculty at James Madison University has created an interdisciplinary program in materials science that provides our students with unique courses and research experiences that augment the existing, high-quality majors in physics and astronomy, chemistry and biochemistry, geology and environmental science, mathematics and statistics, and integrated science and technology. The university started this program by creating a Center for Materials Science whose budget is directly allocated by the provost. This source of funds acts as seed money for research, support for students, and a motivating factor for each of the academic units to support the participation of their faculty in the program. Courses were created at the introductory and intermediate level that are cross-listed by the departments to encourage students to enroll in them as electives toward their majors. Furthermore, the students are encouraged to participate in undergraduate research in materials since this is the most fundamental unifying theme across the disciplines. This talk will cover some of the curricular innovations that went into the design of the program to make it successful, examples of faculty and student research and how that feeds back into the classroom, and success stories of the interactions that have developed between departments because of this program. Student outcomes and future plans to improve the program will also be discussed.

  1. Helping geoscience students improve their numeracy using online quizzes

    NASA Astrophysics Data System (ADS)

    Nuttall, Anne-Marie; Stott, Tim; Sparke, Shaun

    2010-05-01

    This project aims to help geoscience undergraduates improve their competence and confidence in numeracy using online quizzes delivered via the Blackboard virtual learning environment. Numeracy materials are being developed based on actual examples used in a range of modules in the geoscience degree programmes taught at Liverpool John Moores University. This is to ensure the subject relevance which is considered vital to maintaining student interest & motivation. These materials are delivered as a collection of Blackboard quizzes on specific numeracy topics which students can access at any point in their studies, either on or off campus. Feedback and guidance is provided immediately so that a student gains a confidence boost if they get it right or else they can learn where they have gone wrong. It is intended that positive feedback and repetition/reinforcement will help build the confidence in numeracy which so many students seem to lack. The anonymous nature of the delivery means that students avoid the common fear of ‘asking a stupid question' in class, which can hamper their progress. The fact that students can access the quizzes anytime and from anywhere means that they can use the materials flexibly to suit their individual learning needs. In preliminary research, 70% of the students asked felt that they were expected to have greater numeracy skills than they possessed and 65% said that they would use numeracy support materials on Blackboard. Once fully developed and evaluated, the Blackboard quizzes can be opened up to other departments who may wish to use them with their own students.

  2. Enhancing professionalism among engineering students through involvements in technical societies.

    PubMed

    Ghosh, Sreejita; Samineni, Anvesh; Mandal, Subhamoy; Murari, Bhaskar Mohan

    2015-08-01

    A student chapter can be considered to be a miniature enterprise; however without the latter's major financial risks. Involvement in the student chapter of a professional society like IEEE at undergraduate level plays a pivotal role in the overall professional development of the student by keeping the students informed about the various career possibilities. A student chapter shapes the hitherto naive students into industry ready professionals and to suitable candidates for some of the best grad schools worldwide. This assertion has been discussed in-depth taking the example of IEEE EMBS Student Branch chapter of VIT University. It has been described how the entire process, - starting from inception of an idea to its materialization in to an activity, has shaped the volunteers and participants into better professionals.

  3. You...Alcohol and Driving.

    ERIC Educational Resources Information Center

    American Automobile Association, Falls Church, VA. Traffic Engineering and Safety Dept.

    This pamphlet is an example of cooperation between the private sector (AAA) and the National Highway Traffic Safety Administration. AAA has adapted materials prepared by the National Public Service Research Institute under an NHTSA contract and developed a 54-page student manual. The manual takes a complete and objective look at drinking and…

  4. A Test of Strategies for Enhanced Learning of AP Descriptive Chemistry

    ERIC Educational Resources Information Center

    Kotcherlakota, Suhasini; Brooks, David W.

    2008-01-01

    The Advanced Placement (AP) Descriptive Chemistry Website allows users to practice chemistry problems. This study involved the redesign of the Website using worked examples to enhance learner performance. The population sample for the study includes users (students and teachers) interested in learning descriptive chemistry materials. The users…

  5. Digging into Rocks with Young Children

    ERIC Educational Resources Information Center

    Trundle, Kathy; Miller, Heather; Krissek, Lawrence

    2013-01-01

    Rocks and other Earth materials are included in national, state, and local standards. For example, "A Framework for K-12 Science Education" (NRC 2012) contains topics related to Earth systems, which include the hydrosphere, atmosphere, biosphere, and geosphere. By second grade, students should be able to describe how most areas where…

  6. Teaching Controversy by Seminar: An Example in Quaternary Geomorphology.

    ERIC Educational Resources Information Center

    Harwood, Doug

    1987-01-01

    Describes how seminar work can be structured to help students develop skills of critical thinking and expression when discussing controversial issues in their chosen subject. Particular emphasis is given to methods of organizing instructional materials and appropriate roles for seminar leaders. The debate surrounding the existence of a prehistoric…

  7. "Madame Bovary": Illusion and Reality. [Lesson Plan].

    ERIC Educational Resources Information Center

    Carangelo, Audrey

    Based on Gustave Flaubert's novel "Madame Bovary," this lesson plan presents activities designed to help students explore the theme of "illusion versus reality" in the novel; identify and list alternate themes in the novel; and cite specific examples of illusion versus reality from the novel. It includes objectives, materials, procedures,…

  8. The JASON Project: Discover Scientific Treasure as You Accompany Scientists to the Bottom of the Mediterranean Sea.

    ERIC Educational Resources Information Center

    Science and Children, 1989

    1989-01-01

    Describes an underwater expedition which will allow students to participate in activities without being physically present. Provides a list of participating museums and examples of activities from curriculum materials which include a poster, bathymetric map, and 25 lessons. (RT)

  9. CAI--Socratic Dialogue and Laboratory Simulation in Pathology. Technical Report Number Three.

    ERIC Educational Resources Information Center

    Hellerstein, Earl E.; And Others

    The report describes work accomplished in the development of instructional materials for second-year medical students taking a histopathology laboratory course. The objectives and methods are described and several examples of techniques are illustrated with short segments of dialogue. These segments also illustrate the branching characteristics of…

  10. "Amazing Grace": Literature as a Window on Colonial Slavery.

    ERIC Educational Resources Information Center

    Basker, James G.

    2003-01-01

    Describes the book, "Amazing Grace: An Anthology of Poems about Slavery 1660-1810." Presents poems, written by 250 writers, that focus on slavery during the 150 year period. Provides examples of materials included in this book and how it can enable students to increase their understanding of slavery. (CMK)

  11. Elementary Computer Literacy. Student Activity Handbook.

    ERIC Educational Resources Information Center

    Sather, Ruth; And Others

    This workbook of ideas and activities is designed for use in correlation with the curriculum guide "Elementary Computer Literacy," which contains the answer key and suggestions for use. The Apple II microcomputer is used as an example, but the material is adaptable to other computer models. Varied activities provide practice in drawing,…

  12. Cur Wild Neighbors: Teaching Unit (Grades 1-3).

    ERIC Educational Resources Information Center

    Sammut-Tovar, Dorothy

    Designed to sensitize primary grade students to the responsibilities of protecting wild animals, this teaching unit contains a variety of interdisciplinary worksheets and activities. Although focusing on wild animals indigenous to San Mateo County (California), materials are easily adaptable for use in other areas. Examples of activities are…

  13. From the Ground Up: Art in American Built Environment Education.

    ERIC Educational Resources Information Center

    Guilfoil, Joanne K.

    2000-01-01

    Provides a case for teaching children about local architecture. Describes a specific example called the Kentucky Project as a humanist approach to built environmental education that enabled middle and high school students to study their architectural heritage through a program of videos and related teaching materials. (CMK)

  14. Kansas Extended Curricular Standards for Mathematics.

    ERIC Educational Resources Information Center

    Kansas State Board of Education, Topeka.

    This document is an extension of the Kansas Curricular Standards for Mathematics. These standards, benchmarks, and examples are intended to be used in developing curricular materials for students who are eligible for the alternative assessment. One difference in the extended mathematics standards from the general education standards is that grade…

  15. Teaching the Black Experience.

    ERIC Educational Resources Information Center

    Kirschenbaum, Howard

    1968-01-01

    Instructional materials and teaching approaches can be used to get students to seriously and constructively confront problems in race relations which they will eventually have to solve. For example, Richard Wright's "Black Boy," an anthology of Negro poetry or a collection of poems on race relations, and such films as "Where is Prejudice?" can…

  16. Billy and the Three Billy-Goats Gruff or, How Billy Learned to Read Naturally.

    ERIC Educational Resources Information Center

    Huffman, Gail M.

    1981-01-01

    Presents an example of one five-year-old child's efforts to learn to read. Concludes that teachers can make learning to read easier by knowing the interests of their students and by providing them with books and other materials that stimulate those interests. (FL)

  17. The MMWR: A Resource for Teaching Medical Geography.

    ERIC Educational Resources Information Center

    Pyle, Gerald F.

    1984-01-01

    Accounts from the Morbidity and Mortality Weekly Report, published by the Centers for Disease Control in Atlanta, Georgia can be integrated with materials from related scientific sources to help college students develop an understanding of the emerging geography of recently discovered diseases. Legionnaires' disease is used as an example. (RM)

  18. The Role of Introductory Geosciences in Students' Quantitative Literacy

    NASA Astrophysics Data System (ADS)

    Wenner, J. M.; Manduca, C.; Baer, E. M.

    2006-12-01

    Quantitative literacy is more than mathematics; it is about reasoning with data. Colleges and universities have begun to recognize the distinction between mathematics and quantitative literacy, modifying curricula to reflect the need for numerate citizens. Although students may view geology as 'rocks for jocks', the geosciences are truthfully rife with data, making introductory geoscience topics excellent context for developing the quantitative literacy of students with diverse backgrounds. In addition, many news items that deal with quantitative skills, such as the global warming phenomenon, have their basis in the Earth sciences and can serve as timely examples of the importance of quantitative literacy for all students in introductory geology classrooms. Participants at a workshop held in 2006, 'Infusing Quantitative Literacy into Introductory Geoscience Courses,' discussed and explored the challenges and opportunities associated with the inclusion of quantitative material and brainstormed about effective practices for imparting quantitative literacy to students with diverse backgrounds. The tangible results of this workshop add to the growing collection of quantitative materials available through the DLESE- and NSF-supported Teaching Quantitative Skills in the Geosciences website, housed at SERC. There, faculty can find a collection of pages devoted to the successful incorporation of quantitative literacy in introductory geoscience. The resources on the website are designed to help faculty to increase their comfort with presenting quantitative ideas to students with diverse mathematical abilities. A methods section on "Teaching Quantitative Literacy" (http://serc.carleton.edu/quantskills/methods/quantlit/index.html) focuses on connecting quantitative concepts with geoscience context and provides tips, trouble-shooting advice and examples of quantitative activities. The goal in this section is to provide faculty with material that can be readily incorporated into existing introductory geoscience courses. In addition, participants at the workshop (http://serc.carleton.edu/quantskills/workshop06/index.html) submitted and modified more than 20 activities and model courses (with syllabi) designed to use best practices for helping introductory geoscience students to become quantitatively literate. We present insights from the workshop and other sources for a framework that can aid in increasing quantitative literacy of students from a variety of backgrounds in the introductory geoscience classroom.

  19. Toward an Integrated Online Learning Environment

    NASA Astrophysics Data System (ADS)

    Teodorescu, Raluca E.; Pawl, Andrew; Rayyan, Saif; Barrantes, Analia; Pritchard, David E.

    2010-10-01

    We are building in LON-CAPA an integrated learning environment that will enable the development, dissemination and evaluation of PER-based material. This environment features a collection of multi-level research-based homework sets organized by topic and cognitive complexity. These sets are associated with learning modules that contain very short exposition of the content supplemented by integrated open-access videos, worked examples, simulations, and tutorials (some from ANDES). To assess students' performance accurately with respect to a system-wide standard, we plan to implement Item Response Theory. Together with other PER assessments and purposeful solicitation of student feedback, this will allow us to measure and improve the efficacy of various research-based materials, while getting insights into teaching and learning.

  20. Research as a guide for developing curricula on wave behavior at boundaries

    NASA Astrophysics Data System (ADS)

    Kryjevskaia, Mila; Stetzer, Mackenzie; Heron, Paula; McDermott, Lillian

    2007-03-01

    The Physics Education Group at the University of Washington has been developing research-based instructional materials on mechanical waves and physical optics.* As a part of this ongoing process, we continue to assess and refine existing tutorials. In particular, we are focusing on tutorials designed to help students apply boundary conditions to the propagation and refraction of periodic waves. Pretest and post-test results are being used to inform curriculum modifications and to assess the effectiveness of the revised materials. Specific examples of persistent student difficulties will be presented. * Tutorials in Introductory Physics, L.C. McDermott, P.S. Shaffer and the Physics Education Group at the University of Washington, Prentice Hall (2002)

  1. Resources for Designing, Selecting and Teaching with Visualizations in the Geoscience Classroom

    NASA Astrophysics Data System (ADS)

    Kirk, K. B.; Manduca, C. A.; Ormand, C. J.; McDaris, J. R.

    2009-12-01

    Geoscience is a highly visual field, and effective use of visualizations can enhance student learning, appeal to students’ emotions and help them acquire skills for interpreting visual information. The On the Cutting Edge website, “Teaching Geoscience with Visualizations” presents information of interest to faculty who are teaching with visualizations, as well as those who are designing visualizations. The website contains best practices for effective visualizations, drawn from the educational literature and from experts in the field. For example, a case is made for careful selection of visualizations so that faculty can align the correct visualization with their teaching goals and audience level. Appropriate visualizations will contain the desired geoscience content without adding extraneous information that may distract or confuse students. Features such as labels, arrows and contextual information can help guide students through imagery and help to explain the relevant concepts. Because students learn by constructing their own mental image of processes, it is helpful to select visualizations that reflect the same type of mental picture that students should create. A host of recommended readings and presentations from the On the Cutting Edge visualization workshops can provide further grounding for the educational uses of visualizations. Several different collections of visualizations, datasets with visualizations and visualization tools are available on the website. Examples include animations of tsunamis, El Nino conditions, braided stream formation and mountain uplift. These collections are grouped by topic and range from simple animations to interactive models. A series of example activities that incorporate visualizations into classroom and laboratory activities illustrate various tactics for using these materials in different types of settings. Activities cover topics such as ocean circulation, land use changes, earthquake simulations and the use of Google Earth to explore geologic processes. These materials can be found at http://serc.carleton.edu/NAGTWorkshops/visualization. Faculty and developers of visualization tools are encouraged to submit teaching activities, references or visualizations to the collections.

  2. Duenna-An experimental language teaching application

    NASA Astrophysics Data System (ADS)

    Horváth, Balázs Zsigmond; Blaske, Bence; Szabó, Anita

    The presented TTS (text-to-speech) application is an auxiliary tool for language teaching. It utilizes computer-generated voices to simulate dialogs representing different grammatical problems or speech contexts. The software is capable of producing as many examples of dialogs as required to enhance the language learning experience and thus serve curriculum representation, grammar contextualization and pronunciation at the same time. It is designed to be used on a regular basis in the language classroom and students gladly write materials for listening comprehension tasks with it. A pilot study involving 26 students (divided into control and trial groups) practicing for their school-leaving exam, indicates that computer-generated voices are adequate to recreate audio course book materials as well. The voices used were able to involve the students as effectively as if they were listening to recorded human speech.

  3. Example-based learning: effects of model expertise in relation to student expertise.

    PubMed

    Boekhout, Paul; van Gog, Tamara; van de Wiel, Margje W J; Gerards-Last, Dorien; Geraets, Jacques

    2010-12-01

    Worked examples are very effective for novice learners. They typically present a written-out ideal (didactical) solution for learners to study. This study used worked examples of patient history taking in physiotherapy that presented a non-didactical solution (i.e., based on actual performance). The effects of model expertise (i.e., worked example based on advanced, third-year student model or expert physiotherapist model) in relation to students' expertise (i.e., first- or second-year) were investigated. One hundred and thirty-four physiotherapy students (61 first-year and 73 second-year). Design was 2 × 2 factorial with factors 'Student Expertise' (first-year vs. second-year) and 'Model Expertise' (expert vs. advanced student). Within expertise levels, students were randomly assigned to the Expert Example or the Advanced Student Example condition. All students studied two examples (content depending on their assigned condition) and then completed a retention and test task. They rated their invested mental effort after each example and test task. Second-year students invested less mental effort in studying the examples, and in performing the retention and transfer tasks than first-year students. They also performed better on the retention test, but not on the transfer test. In contrast to our hypothesis, there was no interaction between student expertise and model expertise: all students who had studied the Expert examples performed better on the transfer test than students who had studied Advanced Student Examples. This study suggests that when worked examples are based on actual performance, rather than an ideal procedure, expert models are to be preferred over advanced student models.

  4. Music Education and the Earth Sciences

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  5. A virtual, interactive and dynamic excursion in Google Earth on soil management and conservation (AgroGeovid)

    NASA Astrophysics Data System (ADS)

    Vanwalleghem, Tom; Giráldez, Juan Vicente

    2013-04-01

    Many courses on natural resources require hands-on practical knowledge and experience that students traditionally could only acquire by expensive and time-consuming field excursions. New technologies and social media however provide an interesting alternative to train students and help them improve their practical knowledge. AgroGeovid is a virtual excursion, based on Google Earth, Youtube, Facebook and Twitter that is aimed at agricultural engineering students, but equally useful for any student interested in soil management and conservation, e.g. geography, geology and environmental resources. Agrogeovid provides the framework for teachers and students to upload geotagged photos, comments and discussions. After the initial startup phase, where the teacher uploaded material on e.g. soil erosion phenomena, soil conservation structures and different soil management strategies under different agronomic systems, students contributed with their own material gathered throughout the academic year. All students decided to contribute via Facebook, in stead of Twitter, which was not known to most of them. The final result was a visual and dynamic tool which students could use to train and perfect skills adopted in the classroom using case-studies and examples from their immediate environment.

  6. Enhancing Space Science Communication with Cross-Cultural Venues in Latino Communities

    NASA Astrophysics Data System (ADS)

    Morris, P. A.; Reiff, P.; Sumners, C.; McKay, G. A.

    2006-12-01

    Brownsville, Texas in the Rio Grande Valley is the site of an annual space science outreach event that illustrates successful methods of communicating science across cultural and economical boundaries. The Lower Rio Grande valley is predominantly rural, Spanish speaking with large portions of the population at or below the poverty line. Many of the Latino students drop out of school before receiving a high school diploma. For the past four years the University of Texas at Brownsville (UTB) has brought a group of educators, high school and undergraduate students to Houston for training at Johnson Space Center and the Houston Museum of Natural Science. The group subsequently organizes a one day event for 5th-8th grade students, teachers and administrators that is focused on a space science theme. In 2006 over 500 participants learned about NASA's return to the Moon. The attendees listened to a talk by a NASA scientist, viewed exhibits of lunar materials and participated in 20 different hands-on activities. Examples of the activities were the effects of the Sun's solar winds on regolith formation, lunar craters, potential water resources and future exploration. The event is a success because it is locally supported and organized by UTB and its students. UTB has taken "ownership" of the yearly activity. Outside support is limited to scientific data and information, supplying a guest speaker and materials support. Materials support can include NASA displays, telescopes, a portable planetarium and selected planetarium shows. Communication barriers between English speaking and Spanish speaking are eliminated as over ninety percent of the local leaders are bilingual. Additionally the portable planetarium has Spanish language programs. This is an example of an activity that crosses across cultural boundaries and can be exported to other regions of the western hemisphere.

  7. Integrating Public Health and Health Promotion Practice in the Medical Curriculum: A Self-Directed Team-Based Project Approach.

    PubMed

    Kershaw, Geraldine; Grivna, Michal; Elbarazi, Iffat; AliHassan, Souheila; Aziz, Faisal; Al Dhaheri, Aysha Ibrahim

    2017-01-01

    Preparing health professionals in health promotion (HP) and disease prevention is essential for improvement of population health, community HP, and better health care for individuals. The aim of this article is to describe an HP project in the form of a major self-directed project-based learning task integrated within the curriculum in the second year of the medical degree program at United Arab Emirates University. The project introduces students to public health and HP practice and develops students' literature searching, writing, presentation skills, and team work. Students learn the principles underlying behavioral change, and the design of HP programs and materials, through a lecture format. Small groups of students each choose a specific health topic for their project. Over 11 weeks, students obtain information about their topic from appropriate sources (library, PubMed, Google Scholar, credible health sources such as World Health Organization). Using the principles learned in the lectures, they develop appropriate materials for their target audience: for example, posters, a pamphlet, social media content, or a video or radio message. Students seek advice from specialist faculty as needed. In week 12, each team presents their project background, rationale, and materials to their colleagues in a seminar format open to all faculty. They then submit the materials they developed for assessment. Group marks are assigned for presentations and materials. Key concepts are assessed by multiple choice questions in comprehensive course examinations. By participation in the HP project, many students develop a solid background in prevention. The information retrieval, writing, and presentation skills, as well as experience of team work, are valuable both for the remaining years of their training and their future careers.

  8. Methods of integrating Islamic values in teaching biology for shaping attitude and character

    NASA Astrophysics Data System (ADS)

    Listyono; Supardi, K. I.; Hindarto, N.; Ridlo, S.

    2018-03-01

    Learning is expected to develop the potential of learners to have the spiritual attitude: moral strength, self-control, personality, intelligence, noble character, as well as the skills needed by themselves, society, and nation. Implementation of role and morale in learning is an alternative way which is expected to answer the challenge. The solution offered is to inject student with religious material Islamic in learning biology. The content value of materials teaching biology includes terms of practical value, religious values, daily life value, socio-political value, and the value of art. In Islamic religious values (Qur'an and Hadith) various methods can touch human feelings, souls, and generate motivation. Integrating learning with Islamic value can be done by the deductive or inductive approach. The appropriate method of integration is the amtsal (analog) method, hiwar (dialog) method, targhib & tarhib (encouragement & warning) method, and example method (giving a noble role model / good example). The right strategy in integrating Islamic values is outlined in the design of lesson plan. The integration of Islamic values in lesson plan will facilitate teachers to build students' character because Islamic values can be implemented in every learning steps so students will be accustomed to receiving the character value in this integrated learning.

  9. Colour and Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour

    NASA Astrophysics Data System (ADS)

    Tilley, Richard J. D.

    2003-05-01

    Colour is an important and integral part of everyday life, and an understanding and knowledge of the scientific principles behind colour, with its many applications and uses, is becoming increasingly important to a wide range of academic disciplines, from physical, medical and biological sciences through to the arts. Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chose to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. Features: * Introduces the science behind the subject whilst closely connecting it to modern applications, such as colour displays, optical amplifiers and colour centre lasers * Richly illustrated with full-colour plates * Includes many worked examples, along with problems and exercises at the end of each chapter and selected answers at the back of the book * A Web site, including additional problems and full solutions to all the problems, which may be accessed at: www.cardiff.ac.uk/uwcc/engin/staff/rdjt/colour Written for students taking an introductory course in colour in a wide range of disciplines such as physics, chemistry, engineering, materials science, computer science, design, photography, architecture and textiles.

  10. Measuring Conceptual Gains and Benefits of Student Problem Designs

    NASA Astrophysics Data System (ADS)

    Mandell, Eric; Snyder, Rachel; Oswald, Wayne

    2011-10-01

    Writing assignments can be an effective way of getting students to practice higher-order learning skills in physics. One example of such an assignment is that of problem design. One version of the problem design assignment asks the student to evaluate the material from a chapter, after all instruction and other activities are complete. The student is to decide what concepts and ideas are most central, or critical in the chapter, and construct a problem that he or she feels best encompasses the major themes. Here, we use two concept surveys (FCI and EMCS) to measure conceptual gains for students completing the problem design assignment and present the preliminary results, comparing across several categories including gender, age, degree program, and class standing.

  11. Identifying Student Difficulties with Control of Variables Reasoning

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew

    2005-03-01

    Emerging standards for the science learning of precollege students can be regarded as a statement of what constitutes science literacy.^1 These standards emphasize basic concepts such as mass, volume and density, and fundamental process skills such as proportional reasoning, the interpretation of graphs and other representations, and the control of variables in the design of experiments. At Western Washington University, the liberal arts physics course is a general university requirement and for many students one of the only physical science course taken between high school and college graduation. Thus the pre-course understandings of these students can be taken as a measure of the level of science literacy attained in precollege education. An effort is underway at Western Washington University to examine what students know and are able to do both before and after course instruction. Preliminary results indicate that in many cases students have serious conceptual and reasoning difficulties with the material. An example that involves the interpretation of experimental results in deciding whether a particular variable influences (i.e., affects) or determines (i.e., predicts) a given result will be discussed. Evidence from written questions will be presented to identify specific student difficulties.^1See, for example, Project 2061, American Association for the Advancement of Science. 1990. Science for All Americans.New York, NY: Oxford University Press.

  12. Werbung im Englischunterricht: Das Beispiel Einhorn - Onehorn - Unicorn (Advertising Material in English Teaching: The Example "Einhorn-Onehorn-Unicorn")

    ERIC Educational Resources Information Center

    Ruettgens, Hannelore

    1976-01-01

    Presents an advertisement from "Der Spiegel," composed in English that is saturated with Germanisms. Teaching procedures based on this are suggested: finding and classifying errors, composing alternative versions, translating into German, retranslating into English. Suggestions are given for further work based on the students' own…

  13. Sustainability in a Differential Equations Course: A Case Study of Easter Island

    ERIC Educational Resources Information Center

    Koss, Lorelei

    2011-01-01

    Easter Island is a fascinating example of resource depletion and population collapse, and its relatively short period of human habitation combined with its isolation lends itself well to investigation by students in a first-semester ordinary differential equations course. This article describes curricular materials for a semester-long case study…

  14. INFORMATION ABOUT NARCOTICS - RESOURCE MATERIAL FOR TEACHERS.

    ERIC Educational Resources Information Center

    ABRAMS, IRVING; HAWKINS, BARBARA A.

    A SHORT HISTORY OF NARCOTICS AND THEIR LEGAL CONTROL IN THE UNITED STATES IS PRESENTED WITH AN EXPLANATION OF ADDICTION AND METHODS OF ITS PREVENTION. TEACHERS ARE INFORMED OF WAYS IN WHICH TO IDENTIFY ADDICTED STUDENTS. FOR EXAMPLE, THEY MAY BE CLOSELY OBSERVED IN PHYSICAL EDUCATION CLASSES, AND ABNORMALITIES INVESTIGATED BY A PHYSICIAN.…

  15. The Constructed Relief: Put the Carving Tools Away and Build a Sculpture.

    ERIC Educational Resources Information Center

    Kostyniuk, Ron

    1990-01-01

    Describes origins of the constructed relief and shows some examples of contemporary artists' work. Suggests using this history to motivate students to construct their own reliefs. Outlines a four-step lesson: preliminary drawing, finished drawing, mock-up relief, and finished construction using durable materials, such as wood, acrylic sheet, or…

  16. Precession of the Earth-Moon System

    ERIC Educational Resources Information Center

    Urbassek, Herbert M.

    2009-01-01

    The precession rate of the Earth-Moon system by the gravitational influence of the Sun is derived. Attention is focussed on a physically transparent but complete presentation accessible to first- or second-year physics students. Both a shortcut and a full analysis are given, which allows the inclusion of this material as an example of the physics…

  17. Basic Reference Tools for Nursing Research. A Workbook with Explanations and Examples.

    ERIC Educational Resources Information Center

    Smalley, Topsy N.

    This workbook is designed to introduce nursing students to basic concepts and skills needed for searching the literatures of medicine, nursing, and allied health areas for materials relevant to specific information needs. The workbook introduces the following research tools: (1) the National Library of Medicine's MEDLINE searches, including a…

  18. AITIA and KAIROS: Classical Rhetoric in the Writing across the Curriculum Program.

    ERIC Educational Resources Information Center

    Gates, Rosemary L.

    Three areas of the classical rhetoric of Aristotle, adapted for the modern discourse of inquiry and demonstration, provide a systematic framework for students to understand thought, investigation, and writing in other disciplines: aitia, kairos, and the enthymeme and the example. Aitia, or cause, has four aspects--the material cause, the formal…

  19. Braille Makes a Comeback

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2008-01-01

    A few decades ago, Braille was on the wane. Technology was seen as likely to replace the tactile communication method, as text-to-speech readers and recorded books, for example, offered access to classroom materials. Students at special schools for the blind moved into regular classrooms, which are rich in text, but not text that is accessible to…

  20. Navigation. Northern New England Marine Education Project.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. Coll. of Education.

    This guide provides student practice problems which use the procedures of ship navigators to reinforce the skills of mathematics learned in the secondary school and which seek to provide examples of the application of mathematical concepts. Along with the practice problems, teacher background material is provided briefly in the body of the unit.…

  1. Note Launchers: Promoting Active Reading of Mathematics Textbooks

    ERIC Educational Resources Information Center

    Helms, Josh W.; Helms, Kimberly Turner

    2010-01-01

    Note launchers, an instructor-designed reading guide, model how to select, decide, and focus upon what textbook material is important to learn. Reading guides are specially-designed study aids that can steer students through difficult parts of assigned readings (Bean, 1996) while encouraging advance preparation. As an example of a reading guide,…

  2. A Case Example of Insect Gymnastics: How Is Non-Euclidean Geometry Learned?

    ERIC Educational Resources Information Center

    Junius, Premalatha

    2008-01-01

    The focus of the article is on the complex cognitive process involved in learning the concept of "straightness" in Non-Euclidean geometry. Learning new material is viewed through a conflict resolution framework, as a student questions familiar assumptions understood in Euclidean geometry. A case study reveals how mathematization of the straight…

  3. Remixing Old and New Literacies = Motivated Students

    ERIC Educational Resources Information Center

    Gainer, Jesse S.; Lapp, Diane

    2010-01-01

    Although not a new concept, remix has recently gained popularity in mainstream sources ranging from video games to newspaper columns and television commercials for airline tickets, fried chicken, and soft drinks. All these examples draw on a concept that originates from hip-hop culture and refers to the creative blending of materials from…

  4. Assessing Uncertainties in a Simple and Cheap Experiment

    ERIC Educational Resources Information Center

    de Souza, Paulo A., Jr.; Brasil, Gutemberg Hespanha

    2009-01-01

    This paper describes how to calculate measurement uncertainties using as a practical example the assessment of the thickness of ping-pong balls and their material density. The advantages of a randomized experiment are also discussed. This experiment can be reproduced in the physics laboratory for undergraduate students. (Contains 7 tables, 1…

  5. The mathematics textbook at tertiary level as curriculum material - exploring the teacher's decision-making process

    NASA Astrophysics Data System (ADS)

    Randahl, Mira

    2016-08-01

    This paper reports on a study about how the mathematics textbook was perceived and used by the teacher in the context of a calculus part of a basic mathematics course for first-year engineering students. The focus was on the teacher's choices and the use of definitions, examples and exercises in a sequence of lectures introducing the derivative concept. Data were collected during observations of lectures and an interview, and informal talks with the teacher. The introduction and the treatment of the derivative as proposed by the teacher during the lectures were analysed in relation to the results of the content text analysis of the textbook. The teacher's decisions were explored through the lens of intended learning goals for engineering students taking the mathematics course. The results showed that the sequence of concepts and the formal introduction of the derivative as proposed by the textbook were closely followed during the lectures. The examples and tasks offered to the students focused strongly on procedural knowledge. Although the textbook proposes both examples and exercises that promote conceptual knowledge, these opportunities were not fully utilized during the observed lectures. Possible reasons for the teacher's choices and decisions are discussed.

  6. A Visualization-Based Tutoring Tool for Engineering Education

    NASA Astrophysics Data System (ADS)

    Nguyen, Tang-Hung; Khoo, I.-Hung

    2010-06-01

    In engineering disciplines, students usually have hard time to visualize different aspects of engineering analysis and design, which inherently are too complex or abstract to fully understand without the aid of visual explanations or visualizations. As examples, when learning materials and sequences of construction process, students need to visualize how all components of a constructed facility are assembled? Such visualization can not be achieved in a textbook and a traditional lecturing environment. In this paper, the authors present the development of a computer tutoring software, in which different visualization tools including video clips, 3 dimensional models, drawings, pictures/photos together with complementary texts are used to assist students in deeply understanding and effectively mastering materials. The paper will also discuss the implementation and the effectiveness evaluation of the proposed tutoring software, which was used to teach a construction engineering management course offered at California State University, Long Beach.

  7. A family health case study. Stillbirth.

    PubMed

    Edmands, E M

    1982-01-01

    This is an example of a case study written to describe the physical and psychological impact of stillbirth on the patient and the family, and how it can be used in the teaching of family health. It is suggested that the teacher prepare the students by reviewing the known causes of stillbirth and the physiology of labor and delivery. The patient, her family, and her community are described in detail. The situation and events are given in the form of a story. After the presentation, questions are put to the students that require their assessment of the requirements of the patient and her family in terms of nursing-midwifery management. A number of follow-ups are suggested for the teacher and students. This material was prepared by INTRAH staff members. Other materials prepared include training exercise in group dynamics, how to use tracing techniques to create visual aids, how to evaluate teaching and how to create a family health case study.

  8. Making Space Science and Exploration Accessible

    NASA Astrophysics Data System (ADS)

    Runyon, C. J.; Guimond, K. A.; Hurd, D.; Heinrich, G.

    There are currently 28 million hard of hearing and deaf Americans, approximately 10 to 11 million blind and visually impaired people in North America, and more than 50 million Americans with disabilities, approximately half of whom are students. The majority of students with disabilities in the US are required to achieve the same academic levels as their non-impaired peers. Unfortunately, there are few specialized materials to help these exceptional students in the formal and informal settings. To assist educators in meeting their goals and engage the students, we are working with NASA product developers, scientists and education and outreach personnel in concert with teachers from exceptional classrooms to identify the types of materials they need and which mediums work best for the different student capabilities. Our goal is to make the wonders of space science and exploration accessible to all. As such, over the last four years we have been hosting interactive workshops, observing classroom settings, talking and working with professional educators, product developers, museum and science center personnel and parents to synthesize the most effective media and method for presenting earth and space science materials to audiences with exceptional needs. We will present a list of suggested best practices and example activities that can help engage and encourage a person with special needs to study the sciences, technology, engineering, and mathematics.

  9. Effectiveness of project ACORDE materials: applied evaluative research in a preclinical technique course.

    PubMed

    Shugars, D A; Trent, P J; Heymann, H O

    1979-08-01

    Two instructional strategies, the traditional lecture method and a standardized self-instructional (ACORDE) format, were compared for efficiency and perceived usefulness in a preclinical restorative dentistry technique course through the use of a posttest-only control group research design. Control and experimental groups were compared on (a) technique grades, (b) didactic grades, (c) amount of time spent, (d) student and faculty perceptions, and (e) observation of social dynamics. The results of this study demonstrated the effectiveness of Project ACORDE materials in teaching dental students, provided an example of applied research designed to test contemplated instructional innovations prior to use and used a method which highlighted qualitative, as well as quantitative, techniques for data gathering in applied research.

  10. Peer Assisted Learning Strategy for Improving Students’ Physiologic Literacy

    NASA Astrophysics Data System (ADS)

    Diana, S.

    2017-09-01

    Research about the implementation of the Peer Assisted Learning (PAL) strategy in Plant Physiology lecture has carried out, in which it aims to improve students’ physiologic literacy. The PAL strategy began with a briefing by the lecturers to the students tutor about pretest questions, followed by the interaction between student tutors with their peers to discuss response problems, terminated by answering responsiveness questions individually. This study used a quasi-experimental method, one - group pre-test post-test design. This design includes a group of students observed in the pre-test phase (tests carried out before PAL treatment) which is then followed by treatment with PAL and ends with post-test. The other students group (control) was given the pre-test and post-test only. The results showed that the PAL strategy can increase student’s physiologic literacy significantly. One of the weaknesses of students’ physiologic literacy is that they have not been able to read the graph. The faculties are encouraged to begin introducing and teaching material using a variety of strategies with scientific literacy aspects, for example teaching research-based material. All students respond positively to the PAL strategy.

  11. Integrating Public Health and Health Promotion Practice in the Medical Curriculum: A Self-Directed Team-Based Project Approach

    PubMed Central

    Kershaw, Geraldine; Grivna, Michal; Elbarazi, Iffat; AliHassan, Souheila; Aziz, Faisal; Al Dhaheri, Aysha Ibrahim

    2017-01-01

    Preparing health professionals in health promotion (HP) and disease prevention is essential for improvement of population health, community HP, and better health care for individuals. The aim of this article is to describe an HP project in the form of a major self-directed project-based learning task integrated within the curriculum in the second year of the medical degree program at United Arab Emirates University. The project introduces students to public health and HP practice and develops students’ literature searching, writing, presentation skills, and team work. Students learn the principles underlying behavioral change, and the design of HP programs and materials, through a lecture format. Small groups of students each choose a specific health topic for their project. Over 11 weeks, students obtain information about their topic from appropriate sources (library, PubMed, Google Scholar, credible health sources such as World Health Organization). Using the principles learned in the lectures, they develop appropriate materials for their target audience: for example, posters, a pamphlet, social media content, or a video or radio message. Students seek advice from specialist faculty as needed. In week 12, each team presents their project background, rationale, and materials to their colleagues in a seminar format open to all faculty. They then submit the materials they developed for assessment. Group marks are assigned for presentations and materials. Key concepts are assessed by multiple choice questions in comprehensive course examinations. By participation in the HP project, many students develop a solid background in prevention. The information retrieval, writing, and presentation skills, as well as experience of team work, are valuable both for the remaining years of their training and their future careers. PMID:28879173

  12. Using a general problem-solving strategy to promote transfer.

    PubMed

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John

    2014-09-01

    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Subjective Experience and the Preparation of Activist Teachers: Confronting the Mean Old Snapping Turtle and the Great Big Bear.

    ERIC Educational Resources Information Center

    Kugelmass, Judy W.

    2000-01-01

    Describes the use of autobiographical storytelling, personal myths, and visual imagery in preparing elementary and special educators for activist roles in creating effective, inclusive schools. Graduate students were presented with a social-constructivist perspective toward the content and process of schooling. Examples of materials produced by…

  14. Teaching Evolution through the Hardy-Weinberg Principle: A Real-Time, Active-Learning Exercise Using Classroom Response Devices

    ERIC Educational Resources Information Center

    Brewer, Michael S.; Gardner, Grant E.

    2013-01-01

    Teaching population genetics provides a bridge between genetics and evolution by using examples of the mechanisms that underlie changes in allele frequencies over time. Existing methods of teaching these concepts often rely on computer simulations or hand calculations, which distract students from the material and are problematic for those with…

  15. What "Dirty Dancing" Taught Me about Media Literacy Education

    ERIC Educational Resources Information Center

    Fuxa, Robin

    2012-01-01

    The author reflects on her youthful viewing of "Dirty Dancing" on video against her parents' wishes as one example of the ineffectiveness of a protectionist approach to media. She offers ideas on how she and her students (pre-service and in-service educators) think through how to navigate selection of materials for effective media literacy…

  16. Physics for Medicine and Biology: Determining Body Fat Content

    NASA Astrophysics Data System (ADS)

    Aaron, Ronald; Altman, Albert

    2011-04-01

    Hydrostatic weighing is a technique for determining body fat content that is based on Archimedes principle and varied applications of the ideal gas law. We use this procedure as an example of the types of physics material which should be presented in an introductory course for students that are interested in careers in biology and medicine.

  17. Unit 1002: The Modes and Functions of Discourse.

    ERIC Educational Resources Information Center

    Minnesota Univ., Minneapolis. Center for Curriculum Development in English.

    The purpose of this 10th-grade unit on language is to pose, for students, basic and tentative questions about the rhetorical uses of language. Examples are provided which designate the modes of language: Daniel Fogarty's story of rhetoric to show language which informs; materials from Northrop Frye to show language which inquires; a John F.…

  18. Pheromone Caterpillar Trails: An Easy Lab Exercise for the Classroom

    ERIC Educational Resources Information Center

    Travis, Holly

    2003-01-01

    Lab activities using live specimens always seem to catch students' attention faster than those using inanimate materials. For example, many teachers are familiar with the activities using goldfish to study the effect of temperature on respiration rate. Insects are particularly useful because they are cheap, easy to find, and have a certain "yuck"…

  19. Using Eye Movements to Model the Sequence of Text-Picture Processing for Multimedia Comprehension

    ERIC Educational Resources Information Center

    Mason, L.; Scheiter, K.; Tornatora, M. C.

    2017-01-01

    This study used eye movement modeling examples (EMME) to support students' integrative processing of verbal and graphical information during the reading of an illustrated text. EMME consists of a replay of eye movements of a model superimposed onto the materials that are processed for accomplishing the task. Specifically, the study investigated…

  20. Cascade Outreach Competitions for schools - an efficient way to introduce Particle Physics to many students

    NASA Astrophysics Data System (ADS)

    Watkins, Peter; Long, Lynne

    2016-04-01

    The Particle Physics group at the University of Birmingham has tried many different formats for Outreach competitions over recent years. We have found that a Cascade competition is a very efficient way to introduce Particle Physics concepts and experiments to a wide range of students. Small groups of students research, prepare and deliver a short presentation to other students. We will describe variations on the format of this type of competition and include some examples from our winning entries. All the material that we have used for these competitions is freely available on the web which we hope will make it easier for more groups to try similar competitions in the future. The name Cascade emphasises that the competition aims to introduce and inform many students about Particle Physics. However relatively limited time is required from researchers and teachers to enable this. The students research the material themselves and give their presentations, which often include novel demonstrations well matched to the target age group, to younger students or students of their own age. The participants also gain valuable experience in teamwork from the challenge of producing and delivering a clear and interesting talk by all members of the team, as well as improving their own understanding of the subject during the process.

  1. Physics of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Caballero, Rodrigo

    2014-11-01

    With the increasing attention paid to climate change, there is ever-growing interest in atmospheric physics and the processes by which the atmosphere affects Earth's energy balance. This self-contained text, written for advanced undergraduate and graduate students in physics or meteorology, assumes no prior knowledge apart from basic mechanics and calculus and contains material for a complete course. Augmented with worked examples, the text considers all aspects of atmospheric physics except dynamics, including moist thermodynamics, cloud microphysics, atmospheric radiation and remote sensing, and will be an invaluable resource for students and researchers.

  2. Integrating local environmental research into K-12 science classrooms and the value of graduate student-educator partnerships

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Petrik-Finley, R.

    2015-12-01

    Collaboration between researchers and K-12 educators enables an invaluable exchange of teaching philosophies and educational tools. Programs that partner graduate students with K-12 educators serve the dual purpose of training future educators and providing K-12 students with unique opportunities and perspectives. The benefits of this type of partnership include providing students with enhanced educational experiences and positive student-mentor relationships, training STEM graduate students in effective teaching strategies, and providing teachers with a firsthand resource for scientific information and novel educational materials. Many high school students have had little exposure to science beyond the classroom. Frequent interactions with "real-life" scientists can help make science more approachable and is an effective strategy for promoting science as a career. Here I describe my experiences and several lessons designed as a NSK GK-12 fellow. For example, a month-long unit on biogeochemical principles was framed as a crime scene investigation of a fish kill event in Hood Canal, Washington, in which students were given additional pieces of evidence to solve the mystery as they satisfied checkpoints in their understanding of key concepts. The evidence pieces included scientific plots, maps, datasets, and laboratory exercises. A clear benefit of this investigation-style unit is that students were able to learn the material at their individual pace. This structure allowed for a streamlined integration of differentiated materials such as simplified background readings or visual learning aids for struggling students or more detailed news articles and primary literature for more advanced students. Although the NSF GK-12 program has been archived, educators and researchers should pursue new partnerships, leveraging local and state-level STEM outreach programs with the goal of increasing national exposure of the societal benefits of such synergistic activities.

  3. Teaching Epidemiology at the Undergraduate Level: Considerations and Approaches.

    PubMed

    Goldmann, Emily; Stark, James H; Kapadia, Farzana; McQueen, Matthew B

    2018-06-01

    The rapid growth in undergraduate public health education has offered training in epidemiology to an increasing number of undergraduate students. Epidemiology courses introduce undergraduate students to a population health perspective and provide opportunities for these students to build essential skills and competencies such as ethical reasoning, teamwork, comprehension of scientific methods, critical thinking, quantitative and information literacy, ability to analyze public health information, and effective writing and oral communication. Taking a varied approach and incorporating active learning and assessment strategies can help engage students in the material, improve comprehension of key concepts, and further develop key competencies. In this commentary, we present examples of how epidemiology may be taught in the undergraduate setting. Evaluation of these approaches and others would be a valuable next step.

  4. Showcasing the InTeGrate STEP Center principles and implementation programs through interactive webinars and websites

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; McFadden, R.; Manduca, C. A.; Newman, A.

    2016-12-01

    Teaching sustainability curriculum provides an opportunity for building connections between academic learning and examples, experiences, and issues from beyond academia. Done well, this can increase students interest in a topic that feels relevant to their lives and help them transfer this learning to real life situations in their professional and personal lives. To support this approach to teaching, the NSF STEP Center InTeGrate developed a set of five core principles to guide development of teaching materials and programs that draw content from grand challenges to society and work to improve students' ability to understand the nature of science and think like a scientist. These principles include both effective pedagogical approaches and an interdisciplinary framework and are reflected in example curriculum modules, and implementation programs supported by InTeGrate. In order to promote adoption of teaching aligned with the InTeGrate philosophy and to use the InTeGrate-developed materials as tools, we organized a public webinar series led by materials developers and program leaders in the InTeGrate community. The webinars highlight programs that have addressed bigger-scale challenges such as increasing diversity of our majors and creating pathways to the workforce, as well as the materials used by these programs. They provide detailed examples designed to help other groups implement similar programs including showcase teaching activities and examples of their use in a wide range of settings. The webinars are interactive, with built-in activities and reflections that promote discussion among participants and speakers. Topics include natural hazards and risks, water resources and sustainability, energy and atmosphere, integrating sustainability into your course, and tracing environmental contaminants. These have clear components of geoscience, but promote an interdisciplinary perspective, that provides a deeper and more thorough discussion. Each webinar is archived on the InTeGrate website. We invite people to learn about InTeGrate teaching strategies, activities, and interdisciplinary approaches, and models for implementing the principles highlighted through the STEP Center work.

  5. GigaPan Technology to Enhance In-Class and In-Field Learning in Community College Settings

    NASA Astrophysics Data System (ADS)

    Villalobos, J. I.; Bentley, C.

    2014-12-01

    Community college students account for over 40% of all undergraduates in the United States as well as the majority of minority and non-traditional students attending undergraduate courses. Implementing innovative, cost effective, and formative pedagogies to the diverse backgrounds of students that typically enroll at a community is often a challenge. Interactive pedagogies in geology pose a unique challenge considering that students gain the most long-term knowledge when topics covered in a course are exposed to them in outdoor settings where they are allowed to explore and make connections. The ability to expose students to real world examples is challenging to many community college faculty considering that that many; lack funds or means for transportation of students, do not have administrative support on such endeavors, teach evening or night classes, or have a high percentage of students who are physically limited or have obligations to work and family. A joint collaborative between El Paso Community College (EPCC) and Northern Virginia Community College (NOVA) has explored the usage of GigaPan technology to create multi-layered online material to minimize these issues faced by many community college faculty and students. The primary layer of the online material is GigaPans of local geological sites that highlight large-scale structures in the El Paso, Texas region that are commonly used in local field trips and lab book material. The second layer is of Macro-GigaPans of hand samples of key outcrops from the primarily GigaPans which facilitate student learning, exploration, and ability to make connections by exploring smaller scale features of the primary layer. A third layer of online material, GigaPans of thin sections of hand samples (from secondary layers), and curriculum based on the GigaPans was then created to assist students in evaluating proposed hypotheses on the primary layers' geological origin. GigaPan cirriculum was utilized in introductory geology courses as well as a capstone Geological Field Methods course at El Paso Community College.

  6. Research and education at the NASA Fisk University Center for Photonic Materials and Devices

    NASA Astrophysics Data System (ADS)

    Silberman, Enrique

    1996-07-01

    In 1992, NASA awarded Fisk University a 5 year grant to establish a center for research and education on photonic materials are synthesized, characterized and, in some cases, developed into devices with applications in the fields of radiation detectors and nonlinear optical crystals, glasses and nanomaterials. The educational components include participation in the research by 3 types of students majoring in Physics, Chemistry and Biology: 1) Fisk undergraduates participating during the academic year. 2) Fisk graduates performing their Maser Thesis research. 3) Fisk and other HBCU's and Minority Institutions' undergraduates attending a 10 week summer workshop with a very rigorous program of study, research and progress reporting. Funds are available for supporting participating students. Prerequisite, schedules of activities, evaluation procedures and typical examples of the outcome are presented.

  7. How Can Students Generalize Examples? Focusing on the Generalizing Geometric Properties

    ERIC Educational Resources Information Center

    Park, JinHyeong; Kim, Dong-Won

    2017-01-01

    The purpose of this study is to determine the progression of exemplifying and example generalization by students. We investigated whether example generalization occurs by analyzing collected data by identifying whether students recognize, describe, and define general features of geometric examples. We also investigate how example generalization…

  8. Rapid Prototyping as Method for Developing Instructional Strategies for Supporting Computer-Mediated Communication among University Students

    ERIC Educational Resources Information Center

    Knowlton, Dave S.

    2006-01-01

    Because rapid prototyping results in the quick development of curriculum, materials, and processes, it is a form of design that could be particularly useful to professors in higher education. Yet, literature documenting the use of rapid prototyping in higher education is scarce. This paper offers a case example of rapid prototyping being used as a…

  9. Evanston Women in the Progressive Era: Women Performed Social Work Representative of National Concerns.

    ERIC Educational Resources Information Center

    Fisher, Darlene Emmert

    1986-01-01

    Intended as an example of the kind of material that a student doing research on the Progressive Era might find at a local historical society or in the files of a hometown or city newspaper, this article details the philanthropic efforts of women living in the Chicago area in the early 1900s. (JDH)

  10. Teachers and Students "In the Field": What We Have (re-)Learned from Anthropology.

    ERIC Educational Resources Information Center

    Tinberg, Howard

    Strange as it may seem, the classroom is not, by and large, accepted within the composition discipline as a scene for genuine knowledge-making and theory-building. Teachers should go back to the "concrete materials" from which knowledge and theory are made. An example of what can be learned in the classroom comes from an effort to…

  11. A Resource for Using Real-World Examples in the Physics Classroom

    ERIC Educational Resources Information Center

    Van Dongen, Janelle; Rieger, Georg

    2013-01-01

    Physics Teaching for the 21st Century (://c21.phas.ubc.ca) is a free online resource for teachers who are interested in teaching physics concepts in real-world contexts. The materials on this site were developed by a team of physics faculty and graduate and undergraduate students at the Department of Physics & Astronomy, University of British…

  12. Writing Assignments that Promote Active Learning

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2014-12-01

    Encourage students to write a detailed, analytical report correlating classroom discussions to an important historical event or a current event. Motivate students interview an expert from industry on a topic that was discussed in class. Ask the students to submit a report with supporting sketches, drawings, circuit diagrams and graphs. Propose that the students generate a complete a set of reading responses pertaining to an assigned topic. Require each student to bring in one comment or one question about an assigned reading. The assignment should be a recent publication in an appropriate journal. Have the students conduct a web search on an assigned topic. Ask them to generate a set of ideas that can relate to classroom discussions. Provide the students with a study guide. The study guide should provide about 10 or 15 short topics. Quiz the students on one or two of the topics. Encourage the students to design or develop some creative real-world examples based on a chapter discussed or a topic of interest. Require that students originate, develop, support and defend a viewpoint using a specifically assigned material. Make the students practice using or utilizing a set of new technical terms they have encountered in an assigned chapter. Have students develop original examples explaining the different terms. Ask the students to select one important terminology from the previous classroom discussions. Encourage the students to explain why they selected that particular word. Ask them to talk about the importance of the terminology from the point of view of their educational objectives and future career. Angelo, T. A. (1991). Ten easy pieces: Assessing higher learning in four dimensions. In T. A. Angelo (Ed.), Classroom research: Early lessons from success (pp. 17-31). New Directions for Teaching and Learning, No. 46. San Francisco: Jossey-Bass.

  13. Improving Geoscience Students' Spatial Thinking Skills: Applying Cognitive Science Research in the Classroom

    NASA Astrophysics Data System (ADS)

    Ormand, C. J.; Shipley, T. F.; Manduca, C. A.; Tikoff, B.

    2011-12-01

    Spatial thinking skills are critical to success in many subdisciplines of the geosciences (and beyond). There are many components of spatial thinking, such as mental rotation, penetrative visualization, disembedding, perspective taking, and navigation. Undergraduate students in introductory and upper-level geoscience courses bring a wide variety of spatial skill levels to the classroom, as measured by psychometric tests of many of these components of spatial thinking. Furthermore, it is not unusual for individual students to excel in some of these areas while struggling in others. Although pre- and post-test comparisons show that student skill levels typically improve over the course of an academic term, average gains are quite modest. This suggests that it may be valuable to develop interventions to help undergraduate students develop a range of spatial skills that can be used to solve geoscience problems. Cognitive science research suggests a number of strong strategies for building students' spatial skills. Practice is essential, and time on task is correlated to improvement. Progressive alignment may be used to scaffold students' successes on simpler problems, allowing them to see how more complex problems are related to those they can solve. Gesturing has proven effective in moving younger students from incorrect problem-solving strategies to correct strategies in other disciplines. These principles can be used to design instructional materials to improve undergraduate geoscience students' spatial skills; we will present some examples of such materials.

  14. Hazardous materials: chemistry and safe handling aspects of flammable, toxic and radioactive materials. A course of study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.W.

    1983-01-01

    The subject of this dissertation is a one semester, three credit course designed for students who have taken at least twelve credits college chemistry, and for high school teachers as a continuing education course. The need for such a course arises from the increased concern for safety in recent years and the introduction of many regulations of which the working chemist should be aware, notably those issued by the Occupational Safety and Health Administration. A few colleges have recently started to offer courses in laboratory safety to undergraduate and graduate chemistry students. Thus, there is a need for the developmentmore » of courses in which chemical safety is taught. This course is divided into three units: 1) flammable materials; 2) toxic materials; and 3) radioactive materials. Each unit is self contained and could be taught separately as a one credit course. The material necessary for lecture presentation is given in the text of this dissertation: there are about seven topics in each unit. The chemical properties of selected substances are emphasized. Examples of governmental regulations are given, and there are sample examination questions for each unit and homework assignments that require the use of reference sources. Laboratory exercises are included to enable students to gain experience in the safe handling of hazardous chemicals and of some equipment and instruments used to analyze and study flammable, toxic and radioactive materials.« less

  15. Engineering mechanics: statics and dynamics. [Textbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandor, B.I.

    1983-01-01

    The purpose of this textbook is to provide engineering students with basic learning material about statics and dynamics which are fundamental engineering subjects. The chapters contain information on: an introduction to engineering mechanics; forces on particles, rigid bodies, and structures; kinetics of particles, particle systems, and rigid bodies in motion; kinematics; mechanical vibrations; and friction, work, moments of inertia, and potential energy. Each chapter contains introductory material, the development of the essential equations, worked-out example problems, homework problems, and, finally, summaries of the essential methods and equations, graphically illustrated where appropriate. (LCL)

  16. Discussion of a didactic proposal on quantum mechanics with secondary school students

    NASA Astrophysics Data System (ADS)

    Michelini, M.; Ragazzon, R.; Santi, L.; Stefanel, A.

    2004-09-01

    Within some research projects a proposal for the teaching of quantum mechanics in secondary school has been carried out, and some didactic material has been prepared in order to illustrate it, offering resources for its class experimentation (www.fisica.uniud.it/URDF/). In order to study in depth the critical points, which cause learning difficulties for the students in this field, a pilot activity was carried out for a restricted group of students with which the crucial points were discussed. Some interesting elements emerged, such as for example the fact that the major problems in understanding the concept of quantum state are linked to the meaning of incompatible observables.

  17. Using simple manipulatives to improve student comprehension of a complex biological process: protein synthesis.

    PubMed

    Guzman, Karen; Bartlett, John

    2012-01-01

    Biological systems and living processes involve a complex interplay of biochemicals and macromolecular structures that can be challenging for undergraduate students to comprehend and, thus, misconceptions abound. Protein synthesis, or translation, is an example of a biological process for which students often hold many misconceptions. This article describes an exercise that was developed to illustrate the process of translation using simple objects to represent complex molecules. Animations, 3D physical models, computer simulations, laboratory experiments and classroom lectures are also used to reinforce the students' understanding of translation, but by focusing on the simple manipulatives in this exercise, students are better able to visualize concepts that can elude them when using the other methods. The translation exercise is described along with suggestions for background material, questions used to evaluate student comprehension and tips for using the manipulatives to identify common misconceptions. Copyright © 2012 Wiley Periodicals, Inc.

  18. Potential of information technology in dental education.

    PubMed

    Mattheos, N; Stefanovic, N; Apse, P; Attstrom, R; Buchanan, J; Brown, P; Camilleri, A; Care, R; Fabrikant, E; Gundersen, S; Honkala, S; Johnson, L; Jonas, I; Kavadella, A; Moreira, J; Peroz, I; Perryer, D G; Seemann, R; Tansy, M; Thomas, H F; Tsuruta, J; Uribe, S; Urtane, I; Walsh, T F; Zimmerman, J; Walmsley, A D

    2008-02-01

    The use of information technology (IT) in dentistry is far ranging. In order to produce a working document for the dental educator, this paper focuses on those methods where IT can assist in the education and competence development of dental students and dentists (e.g. e-learning, distance learning, simulations and computer-based assessment). Web pages and other information-gathering devices have become an essential part of our daily life, as they provide extensive information on all aspects of our society. This is mirrored in dental education where there are many different tools available, as listed in this report. IT offers added value to traditional teaching methods and examples are provided. In spite of the continuing debate on the learning effectiveness of e-learning applications, students request such approaches as an adjunct to the traditional delivery of learning materials. Faculty require support to enable them to effectively use the technology to the benefit of their students. This support should be provided by the institution and it is suggested that, where possible, institutions should appoint an e-learning champion with good interpersonal skills to support and encourage faculty change. From a global prospective, all students and faculty should have access to e-learning tools. This report encourages open access to e-learning material, platforms and programs. The quality of such learning materials must have well defined learning objectives and involve peer review to ensure content validity, accuracy, currency, the use of evidence-based data and the use of best practices. To ensure that the developers' intellectual rights are protected, the original content needs to be secure from unauthorized changes. Strategies and recommendations on how to improve the quality of e-learning are outlined. In the area of assessment, traditional examination schemes can be enriched by IT, whilst the Internet can provide many innovative approaches. Future trends in IT will evolve around improved uptake and access facilitated by the technology (hardware and software). The use of Web 2.0 shows considerable promise and this may have implications on a global level. For example, the one-laptop-per-child project is the best example of what Web 2.0 can do: minimal use of hardware to maximize use of the Internet structure. In essence, simple technology can overcome many of the barriers to learning. IT will always remain exciting, as it is always changing and the users, whether dental students, educators or patients are like chameleons adapting to the ever-changing landscape.

  19. Measures of Success for Earth System Science Education: The DLESE Evaluation Services and the Evaluation Toolkit Collection

    NASA Astrophysics Data System (ADS)

    McCaffrey, M. S.; Buhr, S. M.; Lynds, S.

    2005-12-01

    Increased agency emphasis upon the integration of research and education coupled with the ability to provide students with access to digital background materials, learning activities and primary data sources has begun to revolutionize Earth science education in formal and informal settings. The DLESE Evaluation Services team and the related Evaluation Toolkit collection (http://www.dlese.org/cms/evalservices/ ) provides services and tools for education project leads and educators. Through the Evaluation Toolkit, educators may access high-quality digital materials to assess students' cognitive gains, examples of alternative assessments, and case studies and exemplars of authentic research. The DLESE Evaluation Services team provides support for those who are developing evaluation plans on an as-requested basis. In addition, the Toolkit provides authoritative peer reviewed articlesabout evaluation research techniques and strategies of particular importance to geoscience education. This paper will provide an overview of the DLESE Evaluation Toolkit and discuss challenges and best practices for assessing student learning and evaluating Earth system sciences education in a digital world.

  20. A Student-Centered Astronomical Research Community of Practice

    NASA Astrophysics Data System (ADS)

    Genet, Russell; Johnson, Jolyon; Boyce, Pat; Boyce, Grady; Buchheim, obert; Harshaw, Richard; Kenney, John; Collins, Dwight; Rowe, David; Brewer, Mark; Estrada, Reed; Estrada, Chris; Gillette, Sean; Ridgely, John; McNab, Christine; Freed, Rachel; Wallen, Vera

    2016-05-01

    For over a decade, students from Cuesta College and number of high schools have engaged in astronomical research during one-term seminars. A community of practice - consisting of students, educators, and astronomers - has formed that is centered on supporting the students' astronomical research. The seminar has recently adopted distance education technology and automated telescopes in a hybrid form of on-line and inperson collaborations between students, educators, and astronomers. This hybridization is not only resulting in new areas of growth and opportunity, but has created a number of challenges. For example, as more schools joined this seminar, standardized teaching materials such as a textbook and self-paced, online learning units had to be developed. Automated telescopes devoted to expanding student research opportunities within this community of practice are being brought on line by Concordia University and the Boyce Research Initiatives and Educational Foundation. The Institute for Student Astronomical Research supports this growing community in many ways including maintaining a website and editing books of student papers published through the Collins Foundation Press.

  1. An Example of Body-Centered Cubic Crystal Structure: The Atomium in Brussels as an Educative Tool for Introductory Materials Chemistry

    ERIC Educational Resources Information Center

    Pinto, Gabriel

    2012-01-01

    When students are introduced to the ways in which atoms are arranged in crystal structures, transposing the textbook illustrations into three-dimensional structures is difficult for some of them. To facilitate this transition, this article describes an approach to the study of the structure of solids through a well-known monument, the Atomium in…

  2. The Swedish Schoolhouse: A Case Study in Transnational Influences in Education at the 1870s World Fairs

    ERIC Educational Resources Information Center

    Lundahl, Christian; Lawn, Martin

    2015-01-01

    At the world exhibitions of the 1870s Sweden displayed a schoolhouse, with examples of teaching material and student work. How did Sweden ship an entire schoolhouse to these exhibitions? What impact did the schoolhouse have on visitors to the exhibition? The purpose of this article is to shed light on the transnational influences operating between…

  3. The Mathematics Textbook at Tertiary Level as Curriculum Material--Exploring the Teacher's Decision-Making Process

    ERIC Educational Resources Information Center

    Randahl, Mira

    2016-01-01

    This paper reports on a study about how the mathematics textbook was perceived and used by the teacher in the context of a calculus part of a basic mathematics course for first-year engineering students. The focus was on the teacher's choices and the use of definitions, examples and exercises in a sequence of lectures introducing the derivative…

  4. PROBLEM-BASED LEARNING FOR PROFESSIONALISM AND ETHICS TRAINING OF BIOMEDICAL GRADUATE STUDENTS: PROCESS EVALUATION

    PubMed Central

    Jones, Nancy L.; Peiffer, Ann M.; Lambros, Ann; Eldridge, J. Charles

    2013-01-01

    Purpose A process evaluation was conducted to assess whether the newly developed Problem-Based Learning (PBL) curriculum designed to teach professionalism and ethics to biomedical graduate students was achieving its objectives. The curriculum was chosen to present realistic cases and issues in the practice of science, to promote skill development and to acculturate students to professional norms of science. Method The perception to which the objectives for the curriculum and courses were being reached was assessed using 5-step Likert-scaled questions, open-ended questions and interviews of students and facilitators. Results Process evaluation indicated that both facilitators and students perceived course objectives were being met. For example, active learning was preferred over lectures; both faculty and students percieved that the curriculum increased their understanding of norms, role obligations, and responsibilities of professional scientists; their ability to identify ethical situations was increased; skills in moral reasoning and effective group work were developed. Conclusions Information gathered was used to improve course implementation and instructional material. For example, a negative perception as an “ethics” course was addressed by redesigning case debriefing activities that reinforced learning objectives and important skills. Cases were refined to be more engaging and relevant for students, and facilitators were given more specific training and resources for each case. The PBL small group strategy can stimulate an environment more aware of ethical implications of science and increase socialization and open communication about professional behavior. PMID:20663754

  5. Incorporating Real-time Earthquake Information into Large Enrollment Natural Disaster Course Learning

    NASA Astrophysics Data System (ADS)

    Furlong, K. P.; Benz, H.; Hayes, G. P.; Villasenor, A.

    2010-12-01

    Although most would agree that the occurrence of natural disaster events such as earthquakes, volcanic eruptions, and floods can provide effective learning opportunities for natural hazards-based courses, implementing compelling materials into the large-enrollment classroom environment can be difficult. These natural hazard events derive much of their learning potential from their real-time nature, and in the modern 24/7 news-cycle where all but the most devastating events are quickly out of the public eye, the shelf life for an event is quite limited. To maximize the learning potential of these events requires that both authoritative information be available and course materials be generated as the event unfolds. Although many events such as hurricanes, flooding, and volcanic eruptions provide some precursory warnings, and thus one can prepare background materials to place the main event into context, earthquakes present a particularly confounding situation of providing no warning, but where context is critical to student learning. Attempting to implement real-time materials into large enrollment classes faces the additional hindrance of limited internet access (for students) in most lecture classrooms. In Earth 101 Natural Disasters: Hollywood vs Reality, taught as a large enrollment (150+ students) general education course at Penn State, we are collaborating with the USGS’s National Earthquake Information Center (NEIC) to develop efficient means to incorporate their real-time products into learning activities in the lecture hall environment. Over time (and numerous events) we have developed a template for presenting USGS-produced real-time information in lecture mode. The event-specific materials can be quickly incorporated and updated, along with key contextual materials, to provide students with up-to-the-minute current information. In addition, we have also developed in-class activities, such as student determination of population exposure to severe ground shaking (i.e. simulating the USGS PAGER product), tsunami warning calculations, and building damage analyses that allow the students to participate in realistic hazard analyses as the event unfolds. Examples of these templates and activities will be presented. Key to the successful implementation of real-time materials is sufficient flexibility and adaptability in the course syllabus.

  6. Integration of Student Field-Based Research with Development of Educational Material Utilizing Gigapan Technology

    NASA Astrophysics Data System (ADS)

    Gonzales, J.; Goodell, P.; Bentley, C.

    2013-12-01

    Formative field-based research and innovative interactive learning have both shown to dramatically improve student retention and participation in STEM fields. El Paso Community (EPCC), Northern Virginia Community College (NOVA), and the University of Texas at El Paso (UTEP) have formed a collaborative to develop interactive pedagogy regarding local El Paso geology for online learning utilizing Gigapan technology. The pedagogy will be geared for grades 8-12, community and four-year college educational purposes, and as a virtual experience used to elaborate and enhance real field experiences. Field samples for thin-sections and Gigapan material were collected at key geological sites and of key lithologies of the region. The educational material from these site will range from macro-scale (Gigapans) to micro-scale (thin sections) and are expected to be completed by spring 2014. This collaboration between EPCC, NOVA, and UTEP is an example of a successful model of community colleges and universities working together sharing their respective resources to accomplish a common educational goal.

  7. Mining for preparatory processes of transfer learning in a blended course

    NASA Astrophysics Data System (ADS)

    Ng, K.; Hartman, K.; Goodkin, N.; Wai Hoong Andy, K.

    2017-12-01

    585 undergraduate science students enrolled in a multidisciplinary environmental sustainability course. Each week, students were given the opportunity to read online materials, answer multiple choice and short answer questions, and attend a three-hour lecture. The online materials and questions were released one week prior to the lecture. After each week, we mined the student data logs exported from the course learning management system and used a model-based clustering algorithm to divide the class into six groups according to resource access patterns. The patterns were mostly based on the frequency with which a student accessed the items in the growing set of online resources and whether those resources were relevant to the upcoming exam. Each exam was self-contained—meaning the second exam did not reference content taught during the first half of the course. The exam items themselves were intentionally designed to provide a mix of recall, application, and transfer items. Recall items referenced facts and examples provided during the lectures and course materials. Application items asked students to solve problems using the methods shown during lecture. Transfer items asked students to use what they had learned to analyze new data sets and unfamiliar problems. We then used a log-likelihood analysis to determine if there were differences in item accuracy on the exams by resource pattern clusters. We found students who deviated from the majority of student access patterns by accessing prior material during the recess break before new material had been assigned and introduced performed significantly more accurately on the transfer items than the other cluster groups. This finding fits with the concept of Preparation for Future Learning (Bransford & Schwartz, 1999) which suggests learners can be strategic about their learning to prepare themselves to complete new tasks in the future. Our findings also suggest that using learning analytics to call attention activity during expected lulls in a course might be a productive method of predicting future performance. Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal with multiple implications. In A. Iran-Nejad & P. D. Pearson (Eds.), Review of research in education, 24 (pp. 61-101). Washington, DC: American Educational Research Association

  8. Mathematics and online learning experiences: a gateway site for engineering students

    NASA Astrophysics Data System (ADS)

    Masouros, Spyridon D.; Alpay, Esat

    2010-03-01

    This paper focuses on the preliminary design of a multifaceted computer-based mathematics resource for undergraduate and pre-entry engineering students. Online maths resources, while attractive in their flexibility of delivery, have seen variable interest from students and teachers alike. Through student surveys and wide consultations, guidelines have been developed for effectively collating and integrating learning, support, application and diagnostic tools to produce an Engineer's Mathematics Gateway. Specific recommendations include: the development of a shared database of engineering discipline-specific problems and examples; the identification of, and resource development for, troublesome mathematics topics which encompass ideas of threshold concepts and mastery components; the use of motivational and promotional material to raise student interest in learning mathematics in an engineering context; the use of general and lecture-specific concept maps and matrices to identify the needs and relevance of mathematics to engineering topics; and further exploration of the facilitation of peer-based learning through online resources.

  9. Online Prelectures: An Alternative to Textbook Reading Assignments

    NASA Astrophysics Data System (ADS)

    Sadaghiani, Homeyra R.

    2012-05-01

    To engage students in a more meaningful discussion of course material and prompt their higher thinking skills, most instructors expect students to read the course textbook for initial exposure to the course content before class. However, as many instructors are aware, most students do not read their textbook throughout the quarter.1,2 At California State Polytechnic University, Pomona (Cal Poly Pomona) we have adopted web-based multimedia learning modules (MLMs) as prelecture assignments to help students to prepare for the class activities. The MLMs place lecture contents into the hands and control of the learners; similar to "flipped"3 or "inverted"4 classroom approaches, this method allows students to receive key course content outside of class and apply and analyze the content actively during class. In addition to initial exposure to basic principle, the MLMs provide additional worked examples that cannot be thoroughly covered in class.

  10. Matrix of educational and training materials in remote sensing

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Lube, B. M.

    1976-01-01

    Remote sensing educational and training materials developed by LARS have been organized in a matrix format. Each row in the matrix represents a subject area in remote sensing and the columns represent different types of instructional materials. This format has proved to be useful for displaying in a concise manner the subject matter content, prerequisite requirements and technical depth of each instructional module in the matrix. A general description of the matrix is followed by three examples designed to illustrate how the matrix can be used to synthesize training programs tailored to meet the needs of individual students. A detailed description of each of the modules in the matrix is contained in a catalog section.

  11. LETTERS AND COMMENTS: Permeability measurements in undergraduate vacuum laboratories: a simple experiment using a He leak detector

    NASA Astrophysics Data System (ADS)

    dos Santos, J. M. F.; Veloso, J. F. C. A.; Monteiro, C. M. B.

    2004-01-01

    We describe a simple experiment intended for didactic laboratory vacuum classes of undergraduate courses, using a helium leak detector. The helium throughput flowing into the vacuum volume due to the permeability of materials can be taken as a real leak, which can be measured with the helium leak detector. The experiment allows students to perform actual measurements of helium permeability constants of different materials, and access the dependence of the helium permeability throughput on the material thickness, area and helium pressure differential. As an example, a set of measurements are presented for Kapton foils, exhibiting results that are in good agreement with those presented in the literature.

  12. Learning from Worked-Examples in Mathematics: Students Relate Procedures to Principles

    ERIC Educational Resources Information Center

    Renkl, Alexander

    2017-01-01

    This article discusses the relevance of the worked-example effect for mathematics education. This effect refers to the finding that, in initial cognitive skill acquisition, students profit more from studying worked examples as compared to solving problems. One reason for the effectiveness of worked examples is that the students get the opportunity…

  13. Support for Struggling Students in Algebra: Contributions of Incorrect Worked Examples

    ERIC Educational Resources Information Center

    Barbieri, Christina; Booth, Julie L.

    2016-01-01

    Middle school algebra students (N = 125) randomly assigned within classroom to a Problem-solving control group, a Correct worked examples control group, or an Incorrect worked examples group, completed an experimental classroom study to assess the differential effects of incorrect examples versus the two control groups on students' algebra…

  14. Education in space science

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  15. The EarthScope Transportable Array Migrates Eastward: Engaging the Science Community and Students

    NASA Astrophysics Data System (ADS)

    Dorr, P. M.; Busby, R. W.; Hafner, K.; Taber, J.; Woodward, R.

    2009-12-01

    The EarthScope Transportable Array (TA) is at the midway point of its ten-year migration from the Pacific to the Atlantic coasts of North America. In 2010, TA activities will begin on the eastern side of the Mississippi River, and will be fully deployed around the New Madrid region for the 2011-2012 bicentennial of these historic earthquakes. As the TA migrates eastward, it supports outreach activities to increase awareness and understanding of seismology concepts and scientific discoveries enabled by the EarthScope facilities, including several in collaboration with the EarthScope National Office and the Plate Boundary Observatory. The TA also has a goal of actively engaging students who will become the next generation of Earth scientists. The TA contributes to this goal by offering university students an opportunity to perform site reconnaissance for future seismic stations. Through its Student Siting Program, the TA provides a unique opportunity for scientists and students to become directly involved in the TA. From 2005 to 2009, about 90 students from 31 universities conducted site reconnaissance for more than 835 sites across the western half of the US. The students are supervised by faculty drawn from a number of universities in the siting region, thus further increasing the involvement in USArray. In the summer of 2010, participants in the Student Siting Program will identify sites in Michigan's Upper Peninsula, Wisconsin, Illinois, western Kentucky, western Tennessee, Mississippi and Alabama. Universities, regional seismic networks, and other interested organizations have the unique opportunity to adopt one or more installed, fully operational Transportable Array stations at the end of their two-year deployments. Such adopted stations become a permanent resource for educational and research seismology. In addition, EarthScope and USArray provide a range of outreach materials that support geoscientists in their own regional outreach efforts. For example, the EarthScope onSite newsletter and other publications can be used for outreach to colleagues, schools, and the general public to communicate the excitement and scientific discoveries of EarthScope. Other outreach activities include teacher workshops, classroom seismographs and a DVD of earthquake-related educational materials, and EarthScope-specific and regional-specific pages for the Active Earth interactive display. We will present TA deployment maps and schedules, comprehensive information about the station adoption and siting reconnaissance programs, and examples of outreach materials to facilitate and support the science community’s involvement in EarthScope as it moves into the continental interior.

  16. Web-based elective courses for medical students: an example in pain.

    PubMed

    Puljak, Livia; Sapunar, Damir

    2011-06-01

    Online learning is an efficient new educational method that is able to link teachers with geographically dispersed students and capture the interest of students with interactive materials. Our objective was to describe curricula of new Web-based electives about pain for undergraduate medical education. We created three interactive Web-based elective courses about pain targeted to medical and dental students. "The Puzzle of Pain" course introduced basic concepts of pain and neurobiology of pain. The humanities-based curriculum of "Empathy and Pain" taught students about emotional aspects of pain and empathetic responses. "The Cochrane Library and Pain" course introduced students to the concept of evidence-based medicine, critical appraisal of the literature, and the hierarchy of evidence in medicine. We measured program effectiveness with a pretest/posttest instrument and student satisfaction survey. Mean knowledge scores increased significantly after the program and overall evaluations were positive. Delivering the pain electives for medical students in an online format was an efficient educational method, with high student satisfaction scores. Medical educators should consider online electives for medical students in pain studies as well as in other content areas. Wiley Periodicals, Inc.

  17. Preparing Students in Online Debates with Worked Examples

    ERIC Educational Resources Information Center

    Tollison, Scott; Xie, Kui

    2012-01-01

    The current study investigates the effects of preparing students for an online debate through a worked example in terms of student perception, participation, and level of cognitive skills. The study found that students prepared for online debate through a worked example participated more frequently, wrote more words or phrases that encouraged the…

  18. The Use of Learning Study in Designing Examples for Teaching Physics

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Peng; Yang, Ling-Yan; Ding, Yi

    2017-07-01

    Researchers have consistently demonstrated that studying multiple examples is more effective than studying one example because comparing multiple examples can promote schema construction and facilitate discernment of critical aspects. Teachers, however, are usually absent from those self-led text-based studies. In this experimental study, a learning study approach based on variation theory was adopted to examine the effectiveness of teachers' different ways of designing multiple examples in helping students learn a physics principle. Three hundred and fifty-one tenth-grade students learned to distinguish action-reaction from equilibrium (a) by comparing examples that varied critical aspects first separately and then simultaneously, or (b) by comparing examples that separately varied critical aspects only. Results showed that students with average academic attainment benefited more from comparing examples in the first condition. Students with higher academic attainment learned equally within both conditions. This finding supports the advantage of simultaneous variation. The characteristics of students and instructional support should be taken into account when considering the effectiveness of patterns of variation.

  19. Examples from Astronomy for High School Physics

    NASA Astrophysics Data System (ADS)

    Dieterich, Sergio

    2016-01-01

    A formal course in physics is increasingly becoming a standard requirement in the high school curriculum. With that dissemination comes the challenge of reaching and motivating a population that is more diverse in their academic abilities and intrinsic motivation. The abstract nature of pure physics is often made more accessible when motivated by examples from everyday life, and providing copious mathematical as well as conceptual examples has become standard practice in high school physics textbooks. Astronomy is a naturally captivating subject and astronomical examples are often successful in capturing the curiosity of high school students as well as the general population. This project seeks to diversify the range of pedagogical materials available to the high school physics instructor by compiling and publishing specific examples where an astronomical concept can be used to motivate the physics curriculum. This collection of examples will consist of both short problems suitable for daily homework assignments as well as longer project style activities. Collaborations are encouraged and inquiries should be directed to sdieterich at carnegiescience dot edu.This work is funded by the NSF Astronomy and Astrophysics Postdoctoral Fellowship Program through NSF grant AST-1400680.

  20. The envelope of ballistic trajectories and elliptic orbits

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene I.

    2015-11-01

    Simple geometric derivations are given for the shape of the "safety domain" boundary for the family of Keplerian orbits of equal energy in a central gravitational field and for projectile trajectories in a uniform field. Examples of practical uses of the envelope of the family of orbits are discussed and illustrated by computer simulations. This material is appropriate for physics teachers and undergraduate students studying classical mechanics and orbital motions.

  1. Constructing objective tests

    NASA Astrophysics Data System (ADS)

    Aubrecht, Gordon J.; Aubrecht, Judith D.

    1983-07-01

    True-false or multiple-choice tests can be useful instruments for evaluating student progress. We examine strategies for planning objective tests which serve to test the material covered in science (physics) courses. We also examine strategies for writing questions for tests within a test blueprint. The statistical basis for judging the quality of test items are discussed. Reliability, difficulty, and discrimination indices are defined and examples presented. Our recommendation are rather easily put into practice.

  2. Effects of Illustration Types on the English Reading Performance of Senior High School Students with Different Cognitive Styles

    ERIC Educational Resources Information Center

    Luo, Yang; Lin, Yuewu

    2017-01-01

    Illustration is always used as an example to make the written text or the utterance more clear in general. In Winarski's opinion (1997), one picture equals thousands of words. That is to say, illustrations are capable to express the meaning of unfamiliar language or a great deal of information in the reading material by vivid pictures, tables,…

  3. Environmental Sense Box: A Strategy for Helping Elementary School Students Understand Abstract Environments through Concrete Learning Activities.

    ERIC Educational Resources Information Center

    Sesow, F. Wm.

    This paper suggests a technique for the development, collection, and organization of materials that will aid learning through the use of the senses by building an environmental sense box. England is used as an example of a place that provides many sensory experiences which can be duplicated in such a box. The box can be made from a cardboard…

  4. Spatial Visualization in Introductory Geology Courses

    NASA Astrophysics Data System (ADS)

    Reynolds, S. J.

    2004-12-01

    Visualization is critical to solving most geologic problems, which involve events and processes across a broad range of space and time. Accordingly, spatial visualization is an essential part of undergraduate geology courses. In such courses, students learn to visualize three-dimensional topography from two-dimensional contour maps, to observe landscapes and extract clues about how that landscape formed, and to imagine the three-dimensional geometries of geologic structures and how these are expressed on the Earth's surface or on geologic maps. From such data, students reconstruct the geologic history of areas, trying to visualize the sequence of ancient events that formed a landscape. To understand the role of visualization in student learning, we developed numerous interactive QuickTime Virtual Reality animations to teach students the most important visualization skills and approaches. For topography, students can spin and tilt contour-draped, shaded-relief terrains, flood virtual landscapes with water, and slice into terrains to understand profiles. To explore 3D geometries of geologic structures, they interact with virtual blocks that can be spun, sliced into, faulted, and made partially transparent to reveal internal structures. They can tilt planes to see how they interact with topography, and spin and tilt geologic maps draped over digital topography. The GeoWall system allows students to see some of these materials in true stereo. We used various assessments to research the effectiveness of these materials and to document visualization strategies students use. Our research indicates that, compared to control groups, students using such materials improve more in their geologic visualization abilities and in their general visualization abilities as measured by a standard spatial visualization test. Also, females achieve greater gains, improving their general visualization abilities to the same level as males. Misconceptions that students carry obstruct learning, but are largely undocumented. Many students, for example, cannot visualize that the landscape in which rock layers were deposited was different than the landscape in which the rocks are exposed today, even in the Grand Canyon.

  5. Random learning units using WIRIS quizzes in Moodle

    NASA Astrophysics Data System (ADS)

    Mora, Ángel; Mérida, Enrique; Eixarch, Ramon

    2011-09-01

    Moodle is an extended learning management system for developing learning units, including mathematically-based subjects. A wide variety of material can be developed in Moodle which contains facilities for forums, questionnaires, lessons, tasks, wikis, glossaries and chats. Therefore, the Moodle platform provides a meeting point for those working in a mathematics course. Mathematics requires special materials and activities: The material must include mathematical objects and the activities included in the virtual course must be able to do mathematical computations. WIRIS is a powerful software for educational environments. It has libraries for calculus, algebra, geometry and much more. In this article, examples showing the use of WIRIS in numerical methods and examples of using a new tool, WIRIS quizzes, are illustrated. By enhancing Moodle with WIRIS, we can add random learning questions to modules. Moodle has a simpler version of this capability, but WIRIS extends the method in which the random material is presented to the students. Random objects can appear in a question, in a variable of a question, in a plot or in the definition of a mathematical object. This article illustrates material prepared for numerical methods using a WIRIS library integrated in WIRIS quizzes. As a result, WIRIS in Moodle can be considered as a global solution for mathematics education.

  6. Intro Courses that Entice Majors and Future Teachers

    NASA Astrophysics Data System (ADS)

    Stewart, Gay

    2004-05-01

    University of Arkansas is part of the Physics Teacher Education Coalition (PhysTEC), an APS/AAPT/AIP program. PhysTEC provides dramatic improvement of science preparation of teachers, developing programs to work at a range of institutions. Features of our undergraduate program already in place that benefit all students, including future teachers, and in-progress curricular revisions will be discussed. As an example, we began with introductory calculus-based electromagnetism and optics, UPII. Our goal was to improve the level of student learning, confidence, and enjoyment of science, while maintaining the resource level common to large institutions. The program is successful. Confidence is up, particularly women end the course as confident as men, with strong correlation between confidence and performance. Students who successfully complete UPII go on to earn a SMET degree. This is the majority, as we make it hard not to learn the material. Students given a 50-minute closed-book test from a 1990 class (ave=53.8%) finished in 35 minutes with an average of 69.2%. They outperformed previous classes where the concepts had been specifically addressed by 18% on multiple-choice questions. Students have a higher retention to degree than university average. Graduation rates tripled concurrent with our first UPII students graduating and continues to increase. Our method involves leading the student from concrete hands-on examples to conceptual understanding through group discussion. Experimental results provide verification. Concepts are related to familiar phenomena. Students are taught to reason in a structured manner about both conceptual and quantitative problems. Cooperative learning, found to improve retention of female and minority students, is emphasized. The increased number of majors impacts almost every aspect of the department.

  7. Integrating Field-Centered, Project Based Activities with Academic Year Coursework: A Curriculum Wide Approach

    NASA Astrophysics Data System (ADS)

    Kelso, P. R.; Brown, L. M.

    2015-12-01

    Based upon constructivist principles and the recognition that many students are motivated by hands-on activities and field experiences, we designed a new undergraduate curriculum at Lake Superior State University. One of our major goals was to develop stand-alone field projects in most of the academic year courses. Examples of courses impacted include structural geology, geophysics, and geotectonics, Students learn geophysical concepts in the context of near surface field-based geophysical studies while students in structural geology learn about structural processes through outcrop study of fractures, folds and faults. In geotectonics students learn about collisional and rifting processes through on-site field studies of specific geologic provinces. Another goal was to integrate data and samples collected by students in our sophomore level introductory field course along with stand-alone field projects in our clastic systems and sequence stratigraphy courses. Our emphasis on active learning helps students develop a meaningful geoscience knowledge base and complex reasoning skills in authentic contexts. We simulate the activities of practicing geoscientists by engaging students in all aspects of a project, for example: field-oriented project planning and design; acquiring, analyzing, and interpreting data; incorporating supplemental material and background data; and preparing oral and written project reports. We find through anecdotal evidence including student comments and personal observation that the projects stimulate interest, provide motivation for learning new concepts, integrate skill and concept acquisition vertically through the curriculum, apply concepts from multiple geoscience subdisiplines, and develop soft skills such as team work, problem solving, critical thinking and communication skills. Through this projected-centered Lake Superior State University geology curriculum students practice our motto of "learn geology by doing geology."

  8. A Guided Tour of Mathematical Methods - 2nd Edition

    NASA Astrophysics Data System (ADS)

    Snieder, Roel

    2004-09-01

    Mathematical methods are essential tools for all physical scientists. This second edition provides a comprehensive tour of the mathematical knowledge and techniques that are needed by students in this area. In contrast to more traditional textbooks, all the material is presented in the form of problems. Within these problems the basic mathematical theory and its physical applications are well integrated. The mathematical insights that the student acquires are therefore driven by their physical insight. Topics that are covered include vector calculus, linear algebra, Fourier analysis, scale analysis, complex integration, Green's functions, normal modes, tensor calculus, and perturbation theory. The second edition contains new chapters on dimensional analysis, variational calculus, and the asymptotic evaluation of integrals. This book can be used by undergraduates, and lower-level graduate students in the physical sciences. It can serve as a stand-alone text, or as a source of problems and examples to complement other textbooks. All the material is presented in the form of problems Mathematical insights are gained by getting the reader to develop answers themselves Many applications of the mathematics are given

  9. Integrating Ubunifu, informal science, and community innovations in science classrooms in East Africa

    NASA Astrophysics Data System (ADS)

    Semali, Ladislaus M.; Hristova, Adelina; Owiny, Sylvia A.

    2015-12-01

    This study examines the relationship between informal science and indigenous innovations in local communities in which students matured. The discussion considers methods for bridging the gap that exists between parents' understanding of informal science ( Ubunifu) and what students learn in secondary schools in Kenya, Tanzania, and Uganda. In an effort to reconcile the difference between students' lived experiences and Science, Technology, Engineering, and Mathematics (STEM) taught in classrooms, this study presents an experiential iSPACES instructional model as an example of curriculum integration in science classrooms. The culmination is presentation of lessons learned from history, including Africa's unique contributions to science, theory, and indigenous innovations, in the hope that these lessons can spur the development of new instructional practices, standards, curriculum materials, professional and community development, and dialogue among nations.

  10. Earth Remote Sensing: What is it Really? What to do with it?

    NASA Technical Reports Server (NTRS)

    Meeson, Blanche W.

    1998-01-01

    NASA!s Earth Sciences Program supports a wide range of endeavors in basic Earth system scientific research, technology development to support that research, development of materials and training for educators and students based on that research and information, and increasingly practical applications. A brief overview of the scope of this scientific research and the key features of the necessary remote sensing instrumentation will be given. I will also describe available educational materials and training courses for a wide range of grade levels. Information will be provided on how to obtain educational materials or to participate in a training course. Finally, a few examples will be given to illustrate how Earth remote sensing effects our daily life.

  11. Points of View: Effective Partnerships between K-12 and Higher Education. "Modern Genetics for All Students": An Example of a High School/University Partnership

    ERIC Educational Resources Information Center

    Elgin, Sarah C. R.; Flowers, Susan; May, Victoria

    2005-01-01

    Teaching laboratory science in a high school setting has never been easy. Time is available in short blocks; laboratory facilities are often quite limited. In most American high schools, teachers are responsible not only for preparation of their lesson plans, but also for ordering and preparing any materials to be used in a lab, with little or no…

  12. The portal of geriatrics online education: a 21st-century resource for teaching geriatrics.

    PubMed

    Ramaswamy, Ravishankar; Leipzig, Rosanne M; Howe, Carol L; Sauvigne, Karen; Usiak, Craig; Soriano, Rainier P

    2015-02-01

    The way students are taught and evaluated is changing, with greater emphasis on flexible, individualized, learner-centered education, including the use of technology. The goal of assessment is also shifting from what students know to how they perform in practice settings. Developing educational materials for teaching in these ways is time-consuming and can be expensive. The Portal of Geriatrics Online Education (POGOe) was developed to aid educators in meeting these needs and become quicker, better-prepared teachers of geriatrics. POGOe contains more than 950 geriatrics educational materials that faculty at 45% of allopathic and 7% of osteopathic U.S. medical schools and the Centers for Geriatric Nursing Excellence have created. These materials include various instructional and assessment methodologies, including virtual and standardized patients, games, tutorials, case-based teaching, self-directed learning, and traditional lectures. Materials with common goals and resource types are available as selected educational series. Learner assessments comprise approximately 10% of the educational materials. POGOe also includes libraries of videos, images, and questions extracted from its educational materials to encourage educators to repurpose content components to create new resources and to align their teaching better with their learners' needs. Web-Geriatric Education Modules, a peer-reviewed online modular curriculum for medical students, is a prime example of this repurposing. The existence of a robust compendium of instructional and assessment materials allows educators to concentrate more on improving learner performance in practice and not simply on knowledge acquisition. It also makes it easier for nongeriatricians to teach the care of older adults in their respective disciplines. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  13. Analysis misconception of integers in microteaching activities

    NASA Astrophysics Data System (ADS)

    Setyawati, R. D.; Indiati, I.

    2018-05-01

    This study view to analyse student misconceptions on integers in microteaching activities. This research used qualitative research design. An integers test contained questions from eight main areas of integers. The Integers material test includes (a) converting the image into fractions, (b) examples of positive numbers including rational numbers, (c) operations in fractions, (d) sorting fractions from the largest to the smallest, and vice versa; e) equate denominator, (f) concept of ratio mark, (g) definition of fraction, and (h) difference between fractions and parts. The results indicated an integers concepts: (1) the students have not been able to define concepts well based on the classification of facts in organized part; (2) The correlational concept: students have not been able to combine interrelated events in the form of general principles; and (3) theoretical concepts: students have not been able to use concepts that facilitate in learning the facts or events in an organized system.

  14. Introducing Interactive Teaching Styles into Astronomy Lectures

    NASA Astrophysics Data System (ADS)

    Deming, G. L.

    1997-12-01

    The majority of undergraduate students who take an astronomy class are non-science majors attempting to satisfy a science requirement. Often in these "scientific literacy" courses, facts are memorized for the exam and forgotten shortly afterwards. Scientific literacy courses should advance student skills toward processing information and applying higher order thinking rather than simple recall and memorization of facts. Thinking about material as it is presented, applying new knowledge to solve problems, and thinking critically about topics are objectives that many astronomy instructors hope their students are achieving. A course in astronomy is more likely to achieve such goals if students routinely participate in their learning. Interactive techniques can be quite effective even in large classes. Examples of activities are presented that involve using cooperative learning techniques, writing individual and group "minute papers," identifying and correcting misconceptions, including the whole class in a demonstration, and applying knowledge to new situations.

  15. Gender neutrality improved completion rate for all

    NASA Astrophysics Data System (ADS)

    Svedin, Maria; Bälter, Olle

    2016-07-01

    The purpose of the present study was to investigate if we could improve retention by redesigning an online programming course from a gender perspective, while maintaining the focus on preferable and sustainable learning approaches. The study builds on results from an earlier study that investigated the relationship between approaches to learning and course completion and involves 1067 students that responded to the short version of the Approaches and Study Skills Inventory for Students (ASSIST) in 2010, 2012 and 2013. Three principles for course material design were identified; gender neutral and non-biased messages, emphasize the interdisciplinary approach and link to everyday examples. Responses to ASSIST were analysed in relation to performed changes in the course literature from a gender perspective. The probability to complete the course increased with 7% points for all students, in particular for men, and decreased for students with a high score in surface approach to learning, especially among women.

  16. Teaching Climate Change Science to Undergradutes with Diverse & Digital Pedagogical Techniquees

    NASA Astrophysics Data System (ADS)

    Kauffman, C.; Brey, J. A.; Nugnes, K. A.; Weinbeck, R. S.; Geer, I. W.

    2015-12-01

    California University of Pennsylvania (CalUPA) is unique relative to other undergraduate geoscience programs in that their climate science offerings are varied and inter-woven into an existing meteorology degree program, which aligns with the guidelines established by the American Meteorological Society (AMS). In addition to the rigorous meteorological requirements, the program strives to increase students' climate literacy. At the introductory course level, students are required to use the educational resources offered by the AMS—specifically their weather and climate studies materials, which have recently transitioned to a digital format. The Earth Sciences Program at CalUPA recently incorporated these new digital resources into a climatology course with novel pedagogical variants. These teaching strategies were well received by students and may benefit other climatology courses at similar institutions. For example, students were tasked with expounding upon textbook content from 'Topic In Depth' segments; they were required to present tangential climate topics in a digital presentation. Moreover, students mined the scientific literature listed at the end of each chapter in the text to identify climate scientists immersed in social media. Students were then required to follow these scientists and engage each other within a social media platform. Finally, as a culminating experience, students were required to create digital portfolios (e.g., infographic) related to climate science and the AMS materials. This presentation will further detail CalUPA's climatological course offerings and detail how the AMS resources were connected to course requirements listed herein.

  17. Using the Humanities to Teach Neuroscience to Non-majors.

    PubMed

    McFarlane, Hewlet G; Richeimer, Joel

    2015-01-01

    We developed and offered a sequence of neuroscience courses geared toward changing the way non-science students interact with the sciences. Although we accepted students from all majors and at all class levels, our target population was first and second year students who were majoring in the fine arts or the humanities, or who had not yet declared a major. Our goal was to engage these students in science in general and neuroscience in particular by teaching science in a way that was accessible and relevant to their intellectual experiences. Our methodology was to teach scientific principles through the humanities by using course material that is at the intersection of the sciences and the humanities and by changing the classroom experience for both faculty and students. Examples of our course materials included the works of Oliver Sacks, V.S. Ramachandran, Martha Nussbaum, Virginia Woolf and Karl Popper, among others. To change the classroom experience we used a model of team-teaching, which required the simultaneous presence of two faculty members in the classroom for all classes. We changed the structure of the classroom experience from the traditional authority model to a model in which inquiry, debate, and intellectual responsibility were central. We wanted the students to have an appreciation of science not only as an endeavor guided by evidence and experimentation, but also a public discourse driven by creativity and controversy. The courses attracted a significant number of humanities and fine arts students, many of whom had already completed their basic science requirement.

  18. Learning to Become a More Effective Research or Inquiry-based Project Mentor

    NASA Astrophysics Data System (ADS)

    Hooper, E. J.; Pfund, C.; Mathieu, R.; Branchaw, J.

    2010-08-01

    How effective of a mentor are you? Have you thought much about this question? Have you participated in training to become a better mentor? For many academics, the typical three answers are "pretty good, I think ... why wouldn't I be?!"; "I am right now while reading this;" "Uh, no." The University of Wisconsin-Madison has developed a program called Research Mentor Training to help train scientists in myriad STEM (science, technology, engineering and mathematics) disciplines, including astronomy, for their crucial role of mentoring the next generation. Most of the field testing to date has focused on graduate students, post-docs, academic staff, and faculty mentoring undergraduate students who are participating in summer research experiences. The materials have proven quite effective in other areas as well, with only modest modifications. For example, several faculty cohorts concentrating on mentoring graduate students and post-docs have completed the training. In addition, the materials are used to prepare graduate students and undergraduates to mentor high school students. The preferred venue for the mentor training program is a seminar meeting one hour per week for 8 to 9 weeks, plus readings and outside activities, including mentoring a student. However, the structure is flexible, and some meaningful learning can occur in a single 90-minute interactive workshop like the one presented at the 2009 ASP annual meeting, "Science Education and Outreach: Forging a Path to the Future." All of the materials, including case studies, facilitator notes and guidelines, plus reading lists, are available online for no charge (http://researchmentortraining.org). Users can select pre-built curricula, or they can customize a package using a "shopping cart" interface.

  19. Chemical Applications of a Programmable Image Acquisition System

    NASA Astrophysics Data System (ADS)

    Ogren, Paul J.; Henry, Ian; Fletcher, Steven E. S.; Kelly, Ian

    2003-06-01

    Image analysis is widely used in chemistry, both for rapid qualitative evaluations using techniques such as thin layer chromatography (TLC) and for quantitative purposes such as well-plate measurements of analyte concentrations or fragment-size determinations in gel electrophoresis. This paper describes a programmable system for image acquisition and processing that is currently used in the laboratories of our organic and physical chemistry courses. It has also been used in student research projects in analytical chemistry and biochemistry. The potential range of applications is illustrated by brief presentations of four examples: (1) using well-plate optical transmission data to construct a standard concentration absorbance curve; (2) the quantitative analysis of acetaminophen in Tylenol and acetylsalicylic acid in aspirin using TLC with fluorescence detection; (3) the analysis of electrophoresis gels to determine DNA fragment sizes and amounts; and, (4) using color change to follow reaction kinetics. The supplemental material in JCE Online contains information on two additional examples: deconvolution of overlapping bands in protein gel electrophoresis, and the recovery of data from published images or graphs. The JCE Online material also presents additional information on each example, on the system hardware and software, and on the data analysis methodology.

  20. Student Motivation in Science Subjects in Tanzania, Including Students' Voices

    NASA Astrophysics Data System (ADS)

    Mkimbili, Selina Thomas; Ødegaard, Marianne

    2017-12-01

    Fostering and maintaining students' interest in science is an important aspect of improving science learning. The focus of this paper is to listen to and reflect on students' voices regarding the sources of motivation for science subjects among students in community secondary schools with contextual challenges in Tanzania. We conducted a group-interview study of 46 Form 3 and Form 4 Tanzanian secondary school students. The study findings reveal that the major contextual challenges to student motivation for science in the studied schools are limited resources and students' insufficient competence in the language of instruction. Our results also reveal ways to enhance student motivation for science in schools with contextual challenges; these techniques include the use of questioning techniques and discourse, students' investigations and practical work using locally available materials, study tours, more integration of classroom science into students' daily lives and the use of real-life examples in science teaching. Also we noted that students' contemporary life, culture and familiar language can be utilised as a useful resource in facilitating meaningful learning in science in the school. Students suggested that, to make science interesting to a majority of students in a Tanzanian context, science education needs to be inclusive of students' experiences, culture and contemporary daily lives. Also, science teaching and learning in the classroom need to involve learners' voices.

  1. InTeGrate: Interdisciplinary Teaching about the Earth for a Sustainable Future

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.

    2017-12-01

    InTeGrate supports integrated interdisciplinary learning about resource and environmental issues across the undergraduate curriculum to create a sustainable and just civilization. The project has developed teaching materials and examples of their use in programs and is currently engaged in a suite of activities that support use of these resources in improving undergraduate Earth education. Thirty-three sets of teaching materials supporting instruction over time periods of 2 weeks to a full semester have been developed by teams of faculty and peer-reviewed to ensure strong research-based pedagogic design and attention to five design principles: 1) address one or more grand challenges involving the Earth and society, 2) develop student ability to address interdisciplinary problems, 3) improve student understanding of the nature and methods of science and developing geoscientific habits of mind, 4) make use of authentic and credible science data to learn central concepts in the context of scientific methods of inquiry, and, 5) incorporate systems thinking. They have been tested in a wide variety of institutional and disciplinary settings and are documented with instructor notes describing adaptation for specific settings. All published materials passed a review for scientific accuracy. Sixteen program models demonstrate strategies for strengthening learning about Earth and sustainability at scales ranging from a department to an interinstitutional collaboration. These examples document the use of InTeGrate resources in the development and evaluation of these programs. A synthesis of lessons learned by these projects addresses strategies for teaching about the Earth across the curriculum. InTeGrate is currently supporting use of ideas and resources developed over the past six years of project work through a webinar series, workshops at professional society meetings, a traveling workshop program for departments and regions, a set of online learning communities and ongoing development of its website and publications. More than 50,000 students have received instruction influenced by InTeGrate.

  2. Using Data-Collection Sensors to Improve Reasoning About Experiment Design and Hypothesis Testing: An Undergraduate Course for Underrepresented Minorities Pursuing Careers Astrophysics Research

    NASA Astrophysics Data System (ADS)

    Robbins, Dennis M.; Ford, K. E. Saavik

    2015-01-01

    Strategies to improve the retention of underrepresented students in STEM fields include directly targeted programs and specialized courses. The NSF-supported 'AstroCom NYC' program, a collaboration of the City University of New York, American Museum of Natural History (AMNH), and Columbia University is one example of such a program with the explicit goal of increasing the participation of underrepresented minorities in astronomy and astrophysics through pedagogical mentoring and research experiences for undergraduate students. In addition, 'AstroCom NYC' provides students with a semester-long specialized course emphasizing scientific reasoning and mathematical modeling. The course curriculum uses computers and interfaced digital probeware (sensors) in a laboratory environment that encourages collaborative and active learning.We share course materials on preparing students to reason about control of variable experiment design and hypothesis testing and provide course data on student understanding of scientific reasoning, mathematical modeling and views about science.

  3. A phenomenological evaluation: using storytelling as a primary teaching method.

    PubMed

    Davidson, Michele R

    2004-09-01

    This phenomenological study examines the experiences of students who had been enrolled in an undergraduate women's health issues course where storytelling served as one of the primary teaching and learning tools. Using hermeneutic phenomenology, the investigator explored the perceptions of participants at the conclusion of the course. A purposive sample of 10 students made up the focus group. Themes were explicated and analyzed from interviews until data saturation was reached. Content analysis from focus groups revealed three themes: personalizing learning, participatory learning, and group trust/safe environment. Storytelling provided students with an opportunity to become more actively involved, provided a forum to relate real life examples to concrete didactic data, served as a trigger for information recollection, and made material seem more realistic. The increased discussion and interaction within the classroom setting enabled students to probe alternative views and perspectives in the class room. The use of more diverse teaching tools can enhance the students' experiences in the classroom setting.

  4. A Multi-Institution Study on the Effectiveness of ClassAction to Promote Student Understanding in Astro 101

    NASA Astrophysics Data System (ADS)

    Lee, Kevin M.; French, R. S.; Hands, D. R.; Loranz, D. R.; Martino, D.; Rudolph, A. L.; Wysong, J.; Young, T. S.; Prather, E. E.; CATS

    2010-01-01

    ClassAction is a computer database of materials designed to enhance the conceptual understanding and reasoning abilities of Astro 101 students by promoting interactive engagement and providing rapid feedback. The main focus is dynamic conceptual questions largely based upon graphics that can be projected in the classroom. Instructors have the capability to select, order, and recast these questions into alternate permutations based on their own preferences and student responses. Instructors may also provide feedback through extensive resources including outlines, graphics, and simulations. The Light and Spectroscopy Concept Inventory (LSCI) is a multiple-choice assessment instrument which focuses on the electromagnetic spectrum, Doppler shift, Wien's Law, Stefan-Boltzmann Law, and Kirchhoff's Laws. Illustrative examples of how these concepts are targeted by the questions and resources of the ClassAction module are shown. ClassAction materials covering light and spectra concepts were utilized in multiple classrooms at 6 different institutions and the LSCI was delivered as a pretest and posttest to measure the gains in student understanding. A comparison of the gains achieved in these classes will be made against the national LSCI data. We will report on our investigation into correlations between gain and the extent of ClassAction usage. ClassAction materials are publicly available at http://astro.unl.edu. We would like to thank the NSF for funding under Grant Nos. 0404988 and 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS) Program.

  5. The pre-college teaching of geosciences in the USA

    NASA Astrophysics Data System (ADS)

    Stewart, R.

    2003-04-01

    Most students in the USA learn about the earth in elementary and middle school, with most of the learning in middle schools (students who are 12 to 15 years old). A few students study geosciences in high school (ages 15 to 19). In some states, for example Texas, the high-school courses are being de-emphasized, and very few students take geoscience courses after they are 15 years old. As a result, most high-school graduates know little about such important issues as global warming, air pollution, or water quality. In the USA, the geoscience curriculum is guided by national and state standards for teaching mathematics and science. But the guidance is weak. Curricula are determined essentially by local school boards and teachers with some overview by state governments. For example, the State of Texas requires all students to pass standardized examinations in science at grades 5,10, and 11. The tests are based on the Texas Essential Knowledge and Skills, the state's version of the national standards. The teaching of the geosciences, especially oceanography, is hindered by the weak guidance provided by the national standards. Because of the lack of strong guidance, textbooks include far too much material with very weak ties between the geosciences. As a result, students learn many disconnected facts, not earth system science. Improvements in the teaching of the geosciences requires a clear statement of the important in the geosciences. Why must they be taught? What must be taught? What are the major themes of geoscience research? What is important for all to know?

  6. BOOK REVIEW: New Understanding Physics for Advanced Level

    NASA Astrophysics Data System (ADS)

    Breithaupt, Jim

    2000-09-01

    Breithaupt's new book is big: at 727 pages, it will be a hefty addition to any student's bag. According to the preface, the book is designed to help students achieve the transition from GCSE to A-level and to succeed well at this level. It also aims to cover the requirements of the compulsory parts of all new syllabuses and to cover most of the optional material, too. The book is organized into seven themes along traditional lines: mechanics, materials, fields, waves, electricity, inside the atom, and physics in medicine. Each theme begins with a colourful title page that outlines what the theme is about, lists the applications that students will meet in their reading, identifies prior learning from GCSE and gives a checklist of what students should be able to do once they have finished their reading of the theme. This is all very useful. The text of the book is illustrated with many colourful photographs, pictures and cartoons, but despite this it looks very dense. There are a lot of words on every page in a small font that makes them seem very unfriendly, and although the book claims to be readable I rather doubt that the layout will encourage voluntary reading of the text. Each chapter ends with a useful summary and a selection of short questions that allow students to test their understanding. Each theme has a set of multiple choice and long questions. Some of the questions have an icon referring the student to the accompanying CD (more of this later). There is much up-to-date material in the book. For example, the section on cosmology gives a brief description of the inflationary scenario within the Big Bang model of the origin of the universe, although no mechanism for the inflation is given, which might prove unsatisfying to some students. I do have some reservations about the presentation of some topics within the book: the discussion of relativistic mass, for example, states that `Einstein showed that the mass ... is given by the formula ...' and quotes the equation for relativistic mass. In fact, Einstein came to the conclusion that the only sensible definition of mass is the rest mass and this point ought at least to be mentioned. When discussing de Broglie's relation, the text states: `Each photon has energy hf which is equivalent to mass m on a scale mc2 = hf'. This may lead some to think that the photon has mass, especially when this relationship is compared with the equation for relativistic mass, which seems then to imply that the photon has non-zero rest mass. de Broglie came to his relation via the connection between the momentum and energy of a photon so that pc=hf and the de Broglie relationship then follows. When discussing particle physics, forces between particles mediated by virtual photons are discussed and it is stated that `the exchange is impossible to detect and hence the term virtual is used to describe the photon'. Of course, the exchange is not impossible to detect as it is the cause of the detectable force between the particles. These quibbles aside, the book is a comprehensive reference that students and teachers will find useful. The accompanying Course Guide has a lot of very useful material in it. It gives students advice on the transition from GCSE to A-level, sections on essential mathematics, data analysis, laboratory work, communication and IT skills, advice on assessment, A-level grade criteria and information about how Key Skills are incorporated into A-level physics. A very useful section, given Mr Breithaupt's experience as an examiner at this level, is the section on model answers, which shows exactly what examiners are looking for when they mark A-level scripts. My one reservation here regards units and dimensions: the technique of dimensional analysis is explained and there is advice on using equations to derive the units of answers. It was then disappointing to see that when example calculations were given, units were not consistently used in all steps of the calculations: it is in my view good practice to keep track of the units by including them at each step. Not only were units sometimes given and sometimes not, worse was to find examples where the units for only some quantities were given at intermediate stages. This leads to examples where intermediate steps apparently have different units from the final answers. Students at this level should be aware that not only the numerical values but also the units must balance in equations. The CD gives model answers with a unique feature: Live Authored Solutions. Students can choose to have solutions presented as if they are being written by hand on the computer screen with an accompanying commentary that explains the thought processes of the writer. This could be a very useful feature for students who need to see more than the steps in the solution written out. Disappointing here was that all the solutions---at least on the sample CD I saw---were given by the same male voice. A little variety and the implication that women too might be able to answer the problems would have been nice! Overall, the whole package is comprehensive. A reference copy might well prove a sound investment and I can see a great deal of value in students having their own copies of the course guide. S R Carson

  7. Course constructions: A case-base of forensic toxicology.

    PubMed

    Zhou, Nan; Wu, Yeda; Su, Terry; Zhang, Liyong; Yin, Kun; Zheng, Da; Zheng, Jingjing; Huang, Lei; Wu, Qiuping; Cheng, Jianding

    2017-08-01

    Forensic toxicology education in China is limited by insufficient teaching methods and resources, resulting in students with adequate theoretical principles but lacking practice experience. Typical cases used as teaching materials vividly represent intoxication and provide students with an opportunity to practice and hone resolving skills. In 2013, the Department of Forensic Pathology at Zhongshan School of Medicine began to construct top-quality courses in forensic toxicology, with its first step, creating a base containing typical cases of intoxication. This essay reviews the construction process of said cases-base, which is intended to set an example of forensic toxicology education. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  8. Theoretical Model of Professional Competence Development in Dual-Specialty Students (On the Example of the "History, Religious Studies" Specialty)

    ERIC Educational Resources Information Center

    Karimova, A. E.; Amanova, A. S.; Sadykova, A. M.; Kuzembaev, N. E.; Makisheva, A. T.; Kurmangazina, G. Zh.; Sakenov, Janat

    2016-01-01

    The article explores the significant problem of developing a theoretical model of professional competence development in dual-specialty students (on the example of the "History, Religious studies" specialty). In order to validate the specifics of the professional competence development in dual-specialty students (on the example of the…

  9. Using Example Problems to Improve Student Learning in Algebra: Differentiating between Correct and Incorrect Examples

    ERIC Educational Resources Information Center

    Booth, Julie L.; Lange, Karin E.; Koedinger, Kenneth R.; Newton, Kristie J.

    2013-01-01

    In a series of two "in vivo" experiments, we examine whether correct and incorrect examples with prompts for self-explanation can be effective for improving students' conceptual understanding and procedural skill in Algebra when combined with guided practice. In Experiment 1, students working with the Algebra I Cognitive Tutor were randomly…

  10. Using Example Problems to Improve Student Learning in Algebra: Differentiating between Correct and Incorrect Examples

    ERIC Educational Resources Information Center

    Booth, Julie L.; Lange, Karin E.; Koedinger, Kenneth R.; Newton, Kristie J.

    2013-01-01

    In a series of two in vivo experiments, we examine whether correct and incorrect examples with prompts for self-explanation can be effective for improving students' conceptual understanding and procedural skill in Algebra when combined with guided practice. In Experiment 1, students working with the Algebra I Cognitive Tutor were randomly assigned…

  11. Relation between contemplative exercises and an enriched psychology students' experience in a neuroscience course

    PubMed Central

    Levit Binnun, Nava; Tarrasch, Ricardo

    2014-01-01

    This article examines the relation of contemplative exercises with enhancement of students' experience during neuroscience studies. Short contemplative exercises inspired by the Buddhist tradition of self-inquiry were introduced in an undergraduate neuroscience course for psychology students. At the start of the class, all students were asked to participate in short “personal brain investigations” relevant to the topic presented. These investigations were aimed at bringing stable awareness to a specific perceptual, emotional, attentional, or cognitive process and observing it in a non-judgmental, non-personal way. In addition, students could choose to participate, for bonus credit, in a longer exercise designed to expand upon the weekly class activity. In the exercise, students continued their “personal brain investigations” for 10 min a day, 4 days a week. They wrote “lab reports” on their daily observations, obtained feedback from the teacher, and at the end of the year reviewed their reports and reflected upon their experiences during the semester. Out of 265 students, 102 students completed the bonus track and their final reflections were analyzed using qualitative methodology. In addition, 91 of the students answered a survey at the end of the course, 43 students participated in a quiz 1 year after course graduation, and the final grades of all students were collected and analyzed. Overall, students reported satisfaction from the exercises and felt they contributed to their learning experience. In the 1-year follow-up, the bonus-track students were significantly more likely than their peers to remember class material. The qualitative analysis of bonus-track students' reports revealed that the bonus-track process elicited positive feelings, helped students connect with class material and provided them with personal insights. In addition, students acquired contemplative skills, such as increased awareness and attention, non-judgmental attitudes, and better stress-management abilities. We provide examples of “personal brain investigations” and discuss limitations of introducing a contemplative approach. PMID:25477833

  12. Helping secondary school students develop a conceptual understanding of refraction

    NASA Astrophysics Data System (ADS)

    Ashmann, Scott; Anderson, Charles W.; Boeckman, Heather

    2016-07-01

    Using real-world examples, ray diagrams, and a cognitive apprenticeship cycle, this paper focuses on developing students’ conceptual (not mathematical) understanding of refraction. Refraction can be a difficult concept for students to comprehend if they do not have well-designed opportunities to practice explaining situations where reflection and refraction occur. The use of ray diagrams can be useful in (a) the teacher modelling a correct explanation to a situation where refraction occurs and (b) for students to create as they practice other examples. This paper includes eight examples of increasing complexity that use a cognitive apprenticeship cycle approach to scaffold student learning. The first examples (rock fish, floating penny) are shown and a solution is modeled using a ray diagram. Three more examples (bent pencil, dropping an item in water, sunrise/sunset) are presented for students to practice, with each becoming more sophisticated. Three assessment exercises are then provided (two dots, three coins, broken tube).

  13. Preservation Education for the Next Generation

    ERIC Educational Resources Information Center

    Morris, Ronald V.

    2017-01-01

    Students participate in historic preservation projects that fall along a continuum of student participation. Adults and students need to work to push more projects to be student led rather than students working for adults. A variety of example projects are presented and show how they fall on the continuum. In addition, an example of projects that…

  14. Teaching the First Law of Thermodynamics via Real-Life Examples

    NASA Astrophysics Data System (ADS)

    Chang, Wheijen

    2011-04-01

    The literature has revealed that many students encounter substantial difficulties in applying the first law of thermodynamics. For example, university students sometimes fail to recognize that heat and work are independent means of energy transfer. When discussing adiabatic processes for an ideal gas, few students can correctly refer to the concept of "work" to justify a change in temperature. Some students adopt the notion that "collisions between molecules produce heat" to explain the rise in temperature for an adiabatic compression process.2 When explaining processes entailing temperature variation, students tend to adopt the ideal-gas law.1,2 Although most university students have acquired a reasonable grasp of the state-function concept, which is valid for variation of internal energy, they fail to grasp the concept that work depends not only on the states but also the processes. Thus, they are unable to use the first law effectively.3 In order to help students comprehend the meaning, usages, and value of the first law, and to realize that the ideal-gas law itself is insufficient to analyze many real-life examples, this paper introduces four examples, some of which can be demonstrated in the classroom. The examples have been devised and gradually modified over a period of several years based on implementation in a calculus-based introductory physics course. Details of when, how, and why each example is adopted, along with the students' pitfalls, are described below.

  15. Memorable Exemplification in Undergraduate Biology: Instructor Strategies and Student Perceptions

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Bretzlaff, Tiffany; Brown, Adam O.

    2018-03-01

    The present study examines the exemplification practices of a university biology instructor during a semester-long course. Attention is given specifically to how the instructor approaches memorable exemplification—classroom episodes identified by students as a source of memorable learning experiences. A mixed-method research approach is adopted wherein descriptive statistics is combined with qualitative multimodal analysis of video recordings and survey data. Our findings show that memorable experiencing of examples may depend on a multiplicity of factors, including whether students can relate to the example, how unique and extreme the example is, how much detail is provided, whether the example is enacted rather than told, and whether the example makes students feel sad, surprised, shocked, and/or amused. It is argued that, rather than simply assuming that all examples are equally effective, careful consideration needs be given to how exemplification can serve as an important source of memorable science learning experiences.

  16. The Crossroads of Science and Faith

    NASA Astrophysics Data System (ADS)

    Benecchi, Susan D.; Kober, Gladys; Gossard, Paula

    2015-11-01

    We have recently completed a 4-year project to produce a textbook for students that uniquely addresses the needs of the Christian homeschool community. It is also relevant for students of other faith and non-faith backgrounds. Two elements are at work: parents want their kids to become mature adults adhering to the faith of their upbringing, and students are challenged when they don't understand how to rationally discuss their beliefs in relation to many current scientific discoveries. To add to the polarization, a few scientists have spread an atheistic naturalistic worldview together with their teaching of science as if it was part of science itself. As a result many parents avoid materials they consider controversial and students later come to believe they must choose between science and their faith. The key to bridging this gap are professional astronomers who hold to a Christian worldview and who can speak both languages, understanding the complexities of both communities. The role of science educators is to teach science, not to impose worldviews. Science is well received by Christians when it is presented not as a threat to faith, but rather as a complementary way to understand God, leading to a more integrated view of reality. Our textbook boasts four hallmarks, providing students with: 1) An understanding of the relationship between faith and science with the goal of helping students to identify and integrate their own worldview. 2) Scientifically reviewed and accurate astronomical information. 3) Examples of scientists who have wrestled with science/faith issues and come to a coherent relationship between the two. And 4) exercises for the students to interact with the material in both faith and scientific areas. We hope this will be a resource to help parents who hold tightly to particular ideologies to be less closed to current scientific discovery and more excited about how new discoveries can bolster and enable their faith. We will present an overview of our materials, the positive experience we have had so far in testing our materials, and our goals for future training within the homeschool and church communities. For more information about the textbook see, http://www.glimpseofhissplendor.com/

  17. Problem-based writing with peer review improves academic performance in physiology.

    PubMed

    Pelaez, Nancy J

    2002-12-01

    The aim of this study was to determine whether problem-based writing with peer review (PW-PR) improves undergraduate student performance on physiology exams. Didactic lectures were replaced with assignments to give students practice explaining their reasoning while solving qualitative problems, thus transferring the responsibility for abstraction and generalization to the students. Performance on exam items about concepts taught using PW-PR was compared with performance on concepts taught using didactic lectures followed by group work. Calibrated Peer Review, a Web-delivered program, was used to collect student essays and to manage anonymous peer review after students "passed" three calibration peer reviews. Results show that the students had difficulty relating concepts. Relationship errors were categorized as (1) problems recognizing levels of organization, (2) problems with cause/effect, and (3) overgeneralizations. For example, some described cells as molecules; others thought that vesicles transport materials through the extracellular fluid. With PW-PR, class discussion was used to confront and resolve such difficulties. Both multiple-choice and essay exam results were better with PW-PR instead of lecture.

  18. "What's A Geoscientist Do?": A Student Recruitment And Education Tool

    NASA Astrophysics Data System (ADS)

    Hughes, C. G.

    2015-12-01

    Student perception of science, particularly the earth sciences, is not based on actual science jobs. Students have difficulty envisioning themselves as scientists, or in understanding the role of science in their lives as a result. Not all students can envision themselves as scientists when first enrolling in college. While student recruitment into geoscience programs starts before college enrollment at many universities, general education science requirements can act as a gateway into these majors as well. By providing students in general education science classes with more accurate insights into the scientific process and what it means to be a scientist, these classes can help students envision themselves as scientists. A short module, to be embedded within lectures, has been developed to improve recruitment from Clarion University's Introductory Earth Science classes entitled "What's A Geoscientist Do?". As this module aims to help students visualize themselves as geoscientists through examples, diversity of the examples is critical to recruiting students from underrepresented groups. Images and subjects within these modules are carefully selected to emphasize the fact that the geosciences are not, and should not be, the exclusive province of the stereotypical older, white, male scientist. Noteworthy individuals (e.g. John Wesley Powell, Roger Arliner Young) may be highlighted, or the discussion may focus on a particular career path (e.g. hydrologist) relevant to that day's material. While some students are initially attracted to the geosciences due to a love of the outdoors, many students have never spent a night outdoors, and do not find this aspect of the geosciences particularly appealing. "What's A Geoscientist Do?" has been designed to expose these students to the breadth of the field, including a number of geoscience jobs focused on laboratory (e.g. geochemistry) or computer (e.g. GIS, remote sensing, scientific illustration) work instead of focusing exclusively on fieldwork. As Clarion University students tend to be very job-oriented, information on careers includes average starting salaries with the hope of improving student's opinions of the position as possible future employment - helping students (and their families) realize they can support themselves in a geoscience career.

  19. The Effectiveness of Using Incorrect Examples to Support Learning about Decimal Magnitude

    ERIC Educational Resources Information Center

    Durkin, Kelley; Rittle-Johnson, Bethany

    2012-01-01

    Comparing common mathematical errors to correct examples may facilitate learning, even for students with limited prior domain knowledge. We examined whether studying incorrect and correct examples was more effective than studying two correct examples across prior knowledge levels. Fourth- and fifth-grade students (N = 74) learned about decimal…

  20. An Exploration of High School (12 17 Year Old) Students' Understandings of, and Attitudes Towards Biotechnology Processes

    NASA Astrophysics Data System (ADS)

    Dawson, Vaille

    2007-03-01

    The products of modern biotechnology processes such as genetic engineering, DNA testing and cloning will increasingly impact on society. It is essential that young people have a well-developed scientific understanding of biotechnology and associated processes so that they are able to contribute to public debate and make informed personal decisions. The aim of this study was to examine the development of understandings and attitudes about biotechnology processes as students progress through high school. In a cross-sectional case study, data was obtained from student interviews and written surveys of students aged 12 to 17 years. The results indicate that students' ability to provide a generally accepted definition and examples of biotechnology, cloning and genetically modified foods was relatively poor amongst 12 13 year old students but improved in older students. Most students approved of the use of biotechnology processes involving micro-organisms, plants and humans and disapproved of the use of animals. Overall, 12 13 year old students' attitudes were less favourable than older students regardless of the context. An awareness of the development and range of students' understandings and attitudes may lead to a more appropriate use of biotechnology curriculum materials and thus improved biotechnology education in schools.

  1. Using the Humanities to Teach Neuroscience to Non-majors

    PubMed Central

    McFarlane, Hewlet G.; Richeimer, Joel

    2015-01-01

    We developed and offered a sequence of neuroscience courses geared toward changing the way non-science students interact with the sciences. Although we accepted students from all majors and at all class levels, our target population was first and second year students who were majoring in the fine arts or the humanities, or who had not yet declared a major. Our goal was to engage these students in science in general and neuroscience in particular by teaching science in a way that was accessible and relevant to their intellectual experiences. Our methodology was to teach scientific principles through the humanities by using course material that is at the intersection of the sciences and the humanities and by changing the classroom experience for both faculty and students. Examples of our course materials included the works of Oliver Sacks, V.S. Ramachandran, Martha Nussbaum, Virginia Woolf and Karl Popper, among others. To change the classroom experience we used a model of team-teaching, which required the simultaneous presence of two faculty members in the classroom for all classes. We changed the structure of the classroom experience from the traditional authority model to a model in which inquiry, debate, and intellectual responsibility were central. We wanted the students to have an appreciation of science not only as an endeavor guided by evidence and experimentation, but also a public discourse driven by creativity and controversy. The courses attracted a significant number of humanities and fine arts students, many of whom had already completed their basic science requirement. PMID:26240533

  2. Disciplining Students Receiving Special Education

    ERIC Educational Resources Information Center

    Gordon, Vincent H. A., Jr.

    2017-01-01

    A brief synopsis of the legality of disciplining students with special needs in public education is presented. An example of a case study is also presented from the experience of the author demonstrating laws surrounding providing students with a free and public education (FAPE). Examples of the application of the laws protecting students' rights…

  3. Within-Class Variability in Student-Teacher Evaluations: Examples and Problems

    ERIC Educational Resources Information Center

    Clayson, Dennis E.

    2005-01-01

    Although student evaluation of instruction has been shown to produce reliable results over class averages, considerable within-class variability exists that has not been investigated. This study looked at examples of student evaluations in which students diametrically differed in their evaluation of the same instructor. Patterns were noted. A…

  4. Ubiquitous Presenter: A Tablet PC-based System to Support Instructors and Students

    NASA Astrophysics Data System (ADS)

    Price, Edward; Simon, Beth

    2009-12-01

    Digital lecturing systems (computer and projector, often with PowerPoint) offer physics instructors the ability to incorporate graphics and the power to share and reuse materials. But these systems do a poor job of supporting interaction in the classroom. For instance, with digital presentation systems, instructors have limited ability to spontaneously respond to student questions. This limitation is especially acute during classroom activities such as problem solving, Peer Instruction, and Interactive Lecture Demonstrations (ILDs).2 A Tablet PC, a laptop computer with a stylus that can be used to "write" on the screen, provides a way for instructors to add digital ink spontaneously to a presentation in progress. The Tablet PC can be a powerful tool for teaching,3,4 especially when combined with software systems specifically designed to leverage digital ink for pedagogical uses. Ubiquitous Presenter (UP) is one such freely available system.5 Developed at the University of California, San Diego, and based on Classroom Presenter,6 UP allows the instructor to ink prepared digital material (such as exported PowerPoint slides) in real time in class. Ink is automatically archived stroke by stroke and can be reviewed through a web browser (by both students and instructors). The system also supports spontaneous in-class interaction through a web interface—students with web-enabled devices (Tablet PCs, regular laptops, PDAs, and cell phones) can make text-, ink-, or image-based submissions on the instructor's slides. The instructor can review and then project submitted slides to the class and add additional ink, so that material generated by students can be a focus for discussion. A brief video showing UP in action is at http://physics.csusm.edu/UP. In this article, we describe UP and give examples of how UP can support the physics classroom.

  5. ADA (Trade Name) Software Engineering Education and Training Symposium (2nd) Held in Dallas, Texas on 9-11 June 1987.

    DTIC Science & Technology

    1987-06-11

    illustrative examples throughout. The book seems adecuate for a beginners class if instructor complements book with his or her own material. Ada: An...point, boolean, character, and enumeration) are taught, but proper declaration of types and subtypes are fully covered. Flowcharts are used to design the...placed on accurately following the stated requirements and sample run. Normally, students have one week to complete each project. A flowchart showing the

  6. Infusing Sustainability Across Disciplines to Build Student Engagement

    NASA Astrophysics Data System (ADS)

    Bruckner, M. Z.; O'Connell, K.; McDaris, J. R.; Kirk, K. B.; Larsen, K.; Kent, M.; Manduca, C. A.; Egger, A. E.; Blockstein, D.; Mogk, D. W.; Taber, J.

    2014-12-01

    Establishing relevance and effective communication are key mechanisms for building student and community engagement in a topic and can be used to promote the importance of working across disciplines to solve problems. Sustainability, including the impacts of and responses to climate change, is an inherently interdisciplinary issue and can be infused across courses and curricula in a variety of ways. Key topics such as climate change, hazards, and food, water, and energy production and sustainability are relevant to a wide audience and can be used to build student engagement. Using real-world examples, service learning, and focusing on the local environment may further boost engagement by establishing relevance between sustainability issues and students' lives. Communication plays a key role in the exchange of information across disciplines and allows for a more holistic approach to tackling the complex climate and sustainability issues our society faces. It has the power to bridge gaps, break down disciplinary silos, and build connections among diverse audiences with a wide range of expertise, including scientists, policy-makers, stakeholders, and the general public. It also aids in planning and preparation for, response to, and mitigation of issues related to sustainability, including the impacts of climate change, to lessen the detrimental effects of unavoidable events such as sea level rise and extreme weather events. Several workshops from the InTeGrate and On the Cutting Edge projects brought together educators and practitioners from a range of disciplines including geoscience, engineering, social science, and more to encourage communication and collaboration across disciplines. They supported networking, community-building, and sharing of best practices for preparing our students for a sustainable future, both in and out of the workplace, and across disciplines. Interdisciplinary teams are also working together to author curricular materials that highlight societal issues. The InTeGrate Teaching Materials web pages highlight major outcomes from the workshops and feature community-contributed resources and pedagogic guidance designed to enhance teaching about sustainability across disciplines. Explore these materials at: serc.carleton.edu/integrate/teaching_materials/

  7. A Study on Contingency Learning in Introductory Physics Concepts

    NASA Astrophysics Data System (ADS)

    Scaife, Thomas M.

    Instructors of physics often use examples to illustrate new or complex physical concepts to students. For any particular concept, there are an infinite number of examples, thus presenting instructors with a difficult question whenever they wish to use one in their teaching: which example will most effectively illustrate the concept so that student learning is maximized? The choice is typically made by an intuitive assumption about which exact example will result in the most lucid illustration and the greatest student improvement. By questioning 583 students in four experiments, I examined a more principled approach to example selection. By controlling the manner in which physical dimensions vary, the parameter space of each concept can be divided into a discrete number of example categories. The effects of training with members of each of category was explored in two different physical contexts: projectile motion and torque. In the first context, students were shown two trajectories and asked to determine which represented the longer time of flight. Height, range, and time of flight were the physical dimensions that were used to categorize the examples. In the second context, students were shown a balance-scale with loads of differing masses placed at differing positions along either side of the balance-arm. Mass, lever-arm length, and torque were the physical dimensions used to categorize these examples. For both contexts, examples were chosen so that one or two independent dimensions were varied. After receiving training with examples from specific categories, students were tested with questions from all question categories. Successful training or instruction can be measured either as producing correct, expert-like behavior (as observed through answers to the questions) or as explicitly instilling an understanding of the underlying rule that governs a physical phenomenon. A student's behavior might not be consistent with their explicit rule, so following the investigation of their behavior, students were asked what rule they used when answering questions. Although the self-reported rules might not be congruent with their behavior, training with specific examples might affect how students explicitly think about physics problems. In addition to exploring the effectiveness of various training examples, the results were also compared to a cognitive theory of causality: the contingency model. Physical concepts can often be expressed in terms of causal relations (e.g., a net force causes an object to accelerate), and a large body of work has found that people make many decisions that are consistent with causal reasoning. The contingency model, in particular, explains how certain statistical regularities in the co-occurrence of two events can be interpreted by individuals as causal relations, and was chosen primarily because it of its robust results and simple, parsimonious form. The empirical results demonstrate that different categories of training examples did affect student answers differently. Furthermore, these effects were mostly consistent with the predictions made by the contingency model. When rule use was explored, the self-reported rules were consistent with contingency model predictions, but indicated that examples alone were insufficient to teach complex functional relationships between physical dimensions, such as torque.

  8. Giving Personal Examples and Telling Stories in Academic Essays.

    ERIC Educational Resources Information Center

    Hinkel, Eli

    2001-01-01

    Analyzes the extensive use of personal examples and stories in the academic essays of students who are nonnative speakers of English. Draws on a large database of college examination essays to compare the use of personal examples in essays written by native and nonnative speakers. Finds nonnative students not only use examples more often than…

  9. Arrows as anchors: An analysis of the material features of electric field vector arrows

    NASA Astrophysics Data System (ADS)

    Gire, Elizabeth; Price, Edward

    2014-12-01

    Representations in physics possess both physical and conceptual aspects that are fundamentally intertwined and can interact to support or hinder sense making and computation. We use distributed cognition and the theory of conceptual blending with material anchors to interpret the roles of conceptual and material features of representations in students' use of representations for computation. We focus on the vector-arrows representation of electric fields and describe this representation as a conceptual blend of electric field concepts, physical space, and the material features of the representation (i.e., the physical writing and the surface upon which it is drawn). In this representation, spatial extent (e.g., distance on paper) is used to represent both distances in coordinate space and magnitudes of electric field vectors. In conceptual blending theory, this conflation is described as a clash between the input spaces in the blend. We explore the benefits and drawbacks of this clash, as well as other features of this representation. This analysis is illustrated with examples from clinical problem-solving interviews with upper-division physics majors. We see that while these intermediate physics students make a variety of errors using this representation, they also use the geometric features of the representation to add electric field contributions and to organize the problem situation productively.

  10. Teleconferences and Audiovisual Materials in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Cortina, L. M.

    2007-05-01

    Unidad de Educacion Continua y a Distancia, Universidad Nacional Autonoma de Mexico, Coyoaca 04510 Mexico, MEXICO As stated in the special session description, 21st century undergraduate education has access to resources/experiences that go beyond university classrooms. However in some cases, resources may go largely unused and a number of factors may be cited such as logistic problems, restricted internet and telecommunication service access, miss-information, etc. We present and comment on our efforts and experiences at the National University of Mexico in a new unit dedicated to teleconferences and audio-visual materials. The unit forms part of the geosciences institutes, located in the central UNAM campus and campuses in other States. The use of teleconference in formal graduate and undergraduate education allows teachers and lecturers to distribute course material as in classrooms. Course by teleconference requires learning and student and teacher effort without physical contact, but they have access to multimedia available to support their exhibition. Well selected multimedia material allows the students to identify and recognize digital information to aid understanding natural phenomena integral to Earth Sciences. Cooperation with international partnerships providing access to new materials and experiences and to field practices will greatly add to our efforts. We will present specific examples of the experiences that we have at the Earth Sciences Postgraduate Program of UNAM with the use of technology in the education in geosciences.

  11. Students' Views of Example Generation Tasks

    ERIC Educational Resources Information Center

    Breen, Sinead; O'Shea, Ann; Pfeiffer, Kirsten

    2016-01-01

    We report here on students' views of example generation tasks assigned to them in two first year undergraduate Calculus courses. The design and use of such tasks was undertaken as part of a project which aimed to afford students opportunities to develop their thinking skills and their conceptual understanding. In interviews with 10 students, we…

  12. Design patterns for instructional materials that foster proficiency at analyzing and interpreting complex geoscience data

    NASA Astrophysics Data System (ADS)

    Kastens, K. A.; Krumhansl, R.

    2016-12-01

    The Next Generation Science Standards incorporate a stronger emphasis on having students work with data than did prior standards. This emphasis is most obvious in Practice 4: Analyzing and Interpreting Data, but also permeates performance expectations built on Practice 2 when students test models, Practice 6 when students construct explanations, and Practice 7 when student test claims with evidence. To support curriculum developers who wish to guide high school students towards more sophisticated engagement with complex data, we analyzed a well-regarded body of instructional materials designed for use in introductory college courses (http://serc.carleton.edu/integrate/teaching_materials/). Our analysis sought design patterns that can be reused for a variety of topics at the high school or college level. We found five such patterns, each of which was used in at least half of the modules analyzed. We describe each pattern, provide an example, and hypothesize a theory of action that could explain how the sequence of activities leverages known perceptual, cognitive and/or social processes to foster learning from and about data. In order from most to least frequent, the observed design patterns are as follows: In Data Puzzles, students respond to guiding questions about high-value snippets of data pre-selected and sequenced by the curriculum developer to lead to an Aha! inference. In Pooling Data to See the Big Picture, small groups analyze different instances of analogous phenomenon (e.g. different hurricanes, or different divergent plate boundaries) and pool their insights to extract the commonalities that constitute the essence of that phenomenon. In Make a Decision or Recommendation, students combine geoscience data with other factors (such as economic or environmental justice concerns) to make a decision or recommendation about a human or societal action. In Predict-Observe-Explain, students make a prediction about what the Earth will look like under conditions they have not yet seen and test their prediction with data. In Nested Data Sets, students first interpret local data leveraging field experience or life experience, and then expand their interpretation across larger spatial or temporal scales, drawing on lines of reasoning developed at the local scale.

  13. Workforce Preparation - A Breakout Session for the Building Strong Geoscience Departments Visiting Workshop Program

    NASA Astrophysics Data System (ADS)

    Doser, D. I.

    2009-12-01

    We have designed a workshop breakout session and accompanying web based materials to assist geoscience departments in better preparing their students for professional careers following graduation. The session explores ways to obtain feedback about career preparation from employers and alumni that can be used to develop more effective curriculum, as well as departmental activities to better prepare students for employment opportunities. In addition, it identifies sources outside a department that can be used in the workforce preparation process and methods to assess any changes implemented to prepare students for the workforce. Concrete examples include feedback from a survey of recent (< 5 years) alumni at the University of Texas at El Paso, student run research meetings with built-in assessment opportunities, and a wealth of on-line resources. The session was initially tested in June 2009 at the Strengthening Your Strong Geoscience Department workshop. Comments from the June participants have been used to improve the session for the 2009-2010 “visiting workshop” program.

  14. Design and fabrication of self-assembled thin films

    NASA Astrophysics Data System (ADS)

    Topasna, Daniela M.; Topasna, Gregory A.

    2015-10-01

    Students experience the entire process of designing, fabricating and testing thin films during their capstone course. The films are fabricated by the ionic-self assembled monolayer (ISAM) technique, which is suited to a short class and is relatively rapid, inexpensive and environmentally friendly. The materials used are polymers, nanoparticles, and small organic molecules that, in various combinations, can create films with nanometer thickness and with specific properties. These films have various potential applications such as pH optical sensors or antibacterial coatings. This type of project offers students an opportunity to go beyond the standard lecture and labs and to experience firsthand the design and fabrication processes. They learn new techniques and procedures, as well as familiarize themselves with new instruments and optical equipment. For example, students learn how to characterize the films by using UV-Vis-NIR spectrophotometry and in the process learn how the instruments operate. This work compliments a previous exercise that we introduced where students use MATHCAD to numerically model the transmission and reflection of light from thin films.

  15. "Her energy kind of went into a different place": a qualitative study examining supervisors' experience of promoting reflexive learning in students.

    PubMed

    McCandless, Robert; Eatough, Virginia

    2012-10-01

    For family therapists in training, a key learning outcome is the development of reflexive abilities. This study explores the experience of three experienced training supervisors as they address this learning outcome with students. Transcripts of semi-structured interviews were analyzed using interpretative phenomenological analysis. The Supervisory Relationship emerged as a single overarching theme that contained and contextualized three further themes: Promoting Learning, Dimensions of Power, and The Self of the Supervisor. One theme is reported here, Promoting Learning, with an illustrative example of experiential learning in a student that demonstrates the overriding significance of The Supervisory Relationship. The findings are discussed in the context of current literature and research regarding supervision and training. This study adds richness and detail to material published on supervisory experience, and documents supervisory "micro-skills" relevant to the development of reflexive abilities in students. © 2012 American Association for Marriage and Family Therapy.

  16. Investigating the relationship between children's environmental perceptions and ecological actions through environmental learning experiences

    NASA Astrophysics Data System (ADS)

    Manoli, Constantinos C.

    This study investigated the relationship between children's environmental perceptions and their ecological actions before and after attending Earthkeepers, an earth education program. Participants were 604 4th , 5th, and 6th grade students from 14 schools in Arizona and Pennsylvania. A comparison of the environmental perceptions of participants revealed a statistically significant difference between those who undertook more and those who undertook fewer or no positive ecological actions. After the program, students who undertook more positive ecological actions, for example using less energy and fewer materials, had more pro-environmental perceptions than their counterparts. Individual interviews with 18 of the participants supported the positive relationship between environmental perceptions and ecological actions and provided further explanations for those actions.

  17. Introduction to the Practice of Statistics David Moore Introduction to the Practice of Statistics and George McCabe WH. Freeman 850 £39.99 071676282X 071676282X [Formula: see text].

    PubMed

    2005-10-01

    This is a very well-written and beautifully presented book. It is north American in origin and, while it will be invaluable for teachers of statistics to nurses and other healthcare professionals, it is probably not suitable for many preor post-registration students in health in the UK. The material is quite advanced and, while well illustrated, exemplified and with numerous examples for students, it takes a fairly mathematical approach in places. Nevertheless, the book has much to commend it, including a CD-ROM package containing tutorials, a statistical package, solutions based on the exercises in the text and case studies.

  18. The entomologist as a science partner and curriculum advisor: The Earth School model for grades 6--8

    NASA Astrophysics Data System (ADS)

    Marshall, Bethany Johnston

    The Earth School model for creation of partnerships between university scientists and public schools began with a traditional research project involving the study of macroinvertebrate recolonization of agriculturally based restored wetlands. From fieldwork designed to address hypotheses of community composition over time, protocols and equipment evolved for application in middle-school classrooms. In addition to classroom teachers guiding their students in replicating active scientific research, the inclusion of a science partner was key to the success of this model. To ensure that the classroom teachers were themselves comfortable as researchers, monthly staff development workshops were conducted as a component of the Earth School model. The use of entomology as a unifying theme for educational scientific investigation lets the student explore virtually every other system in the biosphere. Because of the unparalleled survivability and adaptability of insects, we can find examples from all biomes, all time references and all disciplines. Over the course of long-term continuous exploration, learners become familiar with relationships and patterns evident in natural situations. These same patterns of birth, growth and decay are much more vividly demonstrated in the field than in textbooks. Similarly, concrete examples of feeding relationships between organisms are plentiful in nearly any outdoor situation. The following model incorporates current research from multiple scientific disciplines but focuses on the many and varied research activities offered by the entomological community. Teachers and students in a primarily urban setting made extensive use of the materials developed through the course of this model's development. Their feedback as the materials were integrated into an established curriculum allowed for the fine-tuning of activity development. A conversion template has evolved that gives teachers, curriculum directors, parents and other educators a simple mechanism for adapting the work of leading researchers into activities suitable for all age levels and all learning abilities. As public schools rally to change the course of science education, they are met with a seemingly never-ending supply of materials promoted as hands-on learning. To the extent that the manipulation of tangible objects and materials supports identified outcome objectives, these materials fulfill their promise. Although there is merit in offering these types of kinesthetic experiences to reinforce theories and principles of science, this approach does not address the same goal as activities that promote 'doing science' through investigation and discovery using a process that includes observation, inquiry, design and collaboration. The active recruiting of and collaboration with science partners from universities offers public school teachers and their students an alternative for curriculum enrichment as the nation strives to reach literacy goals in the sciences.

  19. An intelligent computer tutor to guide self-explanation while learning from examples

    NASA Astrophysics Data System (ADS)

    Conati, Cristina

    1999-11-01

    Many studies in cognitive science show that self-explanation---the process of clarifying and making more complete to oneself the solution of an example---improves learning, and that guiding self-explanation extends these benefits. This thesis presents an intelligent computer tutor that aims to improve learning from examples by supporting self-explanation. The tutor, known as the SE (self-explanation) Coach, is innovative in two ways. First, it represents the first attempt to develop a computer tutor that supports example studying instead of problem solving. Second, it explicitly guides a domain-general, meta-cognitive skill: self-explanation. The SE-Coach is part of the Andes tutoring system for college physics and is meant to be used in conjunction with the problem solving tasks that Andes supports. In order to maximize the system capability to trigger the same beneficial cognitive processes, every element of the SE-Coach embeds existing hypotheses about the features that make self-explanation effective for learning. Designing the SE-Coach involved finding solutions for three main challenges: (1) To design an interface that effectively monitors and supports self-explanation. (2) To devise a student model that allows the assessment of example understanding from reading and self-examination actions. (3) To effectively elicit further self-explanation that improves student's example understanding. In this work we present our solutions to these challenges: (1) An interface including principled, interactive tools to explore examples and build self-explanations under the SECoach's supervision. (2) A probabilistic student model based on a Bayesian network, which integrates a model of correct self-explanation and information on the student's knowledge and studying actions to generate a probabilistic assessment of the student's example understanding. (3) Tutorial interventions that rely on the student model to detect deficits in the student's example understanding and elicit self-explanations that overcome them. In this thesis we also present the results of a formal study with 56 college students to evaluate the effectiveness of the SE-Coach. We discuss some hypotheses to explain the obtained results, based on the analysis of the data collected during the experiment.

  20. Integrating quantitative thinking into an introductory biology course improves students' mathematical reasoning in biological contexts.

    PubMed

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students' apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students' understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students' inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students' biology learning.

  1. Examining Teachers' Instructional Moves Aimed at Developing Students' Ideas and Questions in Learner-Centered Science Classrooms

    NASA Astrophysics Data System (ADS)

    Harris, Christopher J.; Phillips, Rachel S.; Penuel, William R.

    2012-11-01

    Prior research has shown that orchestrating scientific discourse in classrooms is difficult and takes a great deal of effort on the part of teachers. In this study, we examined teachers' instructional moves to elicit and develop students' ideas and questions as they orchestrated discourse with their fifth grade students during a learner-centered environmental biology unit. The unit materials included features meant to support teachers in eliciting and working with students' ideas and questions as a source for student-led investigations. We present three contrasting cases of teachers to highlight evidence that shows teachers' differing strategies for eliciting students' ideas and questions, and for developing their ideas, questions and questioning skills. Results from our cross case analysis provide insight into the ways in which teachers' enactments enabled them to work with students' ideas and questions to help advance learning. Consistent with other studies, we found that teachers could readily elicit ideas and questions but experienced challenges in helping students develop them. Findings suggest a need for more specified supports, such as specific discourse strategies, to help teachers attend to student thinking. We explore implications for curricular tools and discuss a need for more examples of effective discourse moves for use by teachers in orchestrating scientific discourse.

  2. What works with worked examples: Extending self-explanation and analogical comparison to synthesis problems

    NASA Astrophysics Data System (ADS)

    Badeau, Ryan; White, Daniel R.; Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.

    2017-12-01

    The ability to solve physics problems that require multiple concepts from across the physics curriculum—"synthesis" problems—is often a goal of physics instruction. Three experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these instructional techniques, analogical comparison and self-explanation, have previously been studied primarily in the context of single-concept problems. Across three experiments with students from introductory calculus-based physics courses, both self-explanation and certain kinds of analogical comparison of worked examples significantly improved student performance on a target synthesis problem, with distinct improvements in recognition of the relevant concepts. More specifically, analogical comparison significantly improved student performance when the comparisons were invoked between worked synthesis examples. In contrast, similar comparisons between corresponding pairs of worked single-concept examples did not significantly improve performance. On a more complicated synthesis problem, self-explanation was significantly more effective than analogical comparison, potentially due to differences in how successfully students encoded the full structure of the worked examples. Finally, we find that the two techniques can be combined for additional benefit, with the trade-off of slightly more time on task.

  3. An Analysis of Misconceptions in Science Textbooks: Earth science in England and Wales

    NASA Astrophysics Data System (ADS)

    King, Chris John Henry

    2010-03-01

    Surveys of the earth science content of all secondary (high school) science textbooks and related publications used in England and Wales have revealed high levels of error/misconception. The 29 science textbooks or textbook series surveyed (51 texts in all) showed poor coverage of National Curriculum earth science and contained a mean level of one earth science error/misconception per page. Science syllabuses and examinations surveyed also showed errors/misconceptions. More than 500 instances of misconception were identified through the surveys. These were analysed for frequency, indicating that those areas of the earth science curriculum most prone to misconception are sedimentary processes/rocks, earthquakes/Earth's structure, and plate tectonics. For the 15 most frequent misconceptions, examples of quotes from the textbooks are given, together with the scientific consensus view, a discussion, and an example of a misconception of similar significance in another area of science. The misconceptions identified in the surveys are compared with those described in the literature. This indicates that the misconceptions found in college students and pre-service/practising science teachers are often also found in published materials, and therefore are likely to reinforce the misconceptions in teachers and their students. The analysis may also reflect the prevalence earth science misconceptions in the UK secondary (high school) science-teaching population. The analysis and discussion provide the opportunity for writers of secondary science materials to improve their work on earth science and to provide a platform for improved teaching and learning of earth science in the future.

  4. SOFTWARE REVIEW: Oxford Personal Revision Guides: A-level Physics 1999/2000 Syllabus GCSE Physics 1999/2000 Syllabus

    NASA Astrophysics Data System (ADS)

    Parker, Kerry

    2000-09-01

    Is it any better than a textbook and a pad of A4 paper? That's the question we have to ask if we consider investing in a `Revision' CD-ROM. Of course, nothing, in our lifetimes, will quite replace the students' own notes, some paper and a pencil. But, so far as private study is concerned, the computer offers a number of potential advantages: sound, animation, hyperlinks, interactivity, a calculator and a clock. For those with a modem, we can add Internet connections too. A few years ago the only revision materials available for computers were simply electronic versions of textbooks: a few animations and voice commentaries, with maybe a few multiple choice tests was the best you could expect. I was universally disappointed with all such CD-ROMs; they were a waste of money. At last things are changing and theseOxford Personal Revision Guides are definitely software of the new generation: there is commentary, there are animated diagrams (ripple tanks, Hertzsprung-Russell diagrams, falling stones...), there are plenty of hyperlinks to other sections of the CD, and to exam board websites on the Internet, so that students can check their own syllabus.... This CD is not a rip-off! The software uses Microscoft Internet Explorer to produce a screen that looks as if you are connected to the Internet. Few students will have any problems in navigating the system. It is a massive piece of programming requiring a fairly modern PC (Pentium 166, 32 MB RAM, quad-speed CD-ROM drive and a good monitor and sound card really are the minimum; I loaded the programme on an older machine and it struggled!). Installation took a good while because the software insists on installing/updating Internet Explorer to 5.0 and checking for, and loading if necessary, Real Player 7, Microsoft Java Virtual Machine and Macromedia Shockwave 7.0.2 Player. Once all this was loaded it worked extremely well, and at first I kept imagining that I was in fact connected to a fantastic educational site on the web! Both CDs begin with an introductory section which guides the student into the Revision Plan Wizard. The authors have suggested how much time each section requires, so depending upon what topics the students needs to work at, and the date of their exam, they can design a revision timetable. The student is simply told how long they have to revise each day, and then in the main physics section they are told what they have to study each week. Both packages also feature an equation handler: `a piece of software that allows different manipulations on a predefined equation and is aimed at bettering one's arithmetical skills.' (I think the language gives away the fact that this software is not designed for lower ability GCSE candidates!) The GCSE physics content is divided into seven `chapters' - Making things happen, Heat, Forces at work, Waves, Electrical and magnetic phenomena, Properties of materials and The cosmic onion. There is also a comprehensive introduction, an equation handler, some exam board questions, tests and reports. The physics is well written and is taught in colourful images, many of which are animated and have a brief commentary. There are plenty of brief six-minute tests, interspersed with the revision materials, to keep the students on their toes, but I was disappointed with the interactivity in the physics content pages. To progress, the student only has to keep clicking `I've read this page'. The A-level material is subdivided into Foundations, Key topics, Further topics and Physical data. Foundations involves motion, work, electricity, magnetism and waves, while Key topics looks at dimensions, vectors, moments, circular motion and other material from the core syllabus. Further topics cover most of the material required by the options from different boards, like many revision books. The text is clearly written and the graphics are colourful, but most of the content is still a slightly animated electronic textbook. I was disappointed, for example, that although I was asked for my exam board when I constructed my revision timetable, this didn't appear to make any difference to the content I was given to work through. I was recommended to get the current syllabus from the board's website, but given that this CD is aimed specifically at the 1999-2000 syllabus we might have hoped.... There are some advantages to having an electronic version of a book, of course. These CDs will allow a student to copy text and paste it into their own revision notes, and also the beautiful pictures can be printed. With imaginative support there is a lot more you could do with a resource like this. Inevitably, there are still lots of bugs, mistakes and problems. For example, the diagnostic pre-test to indicate my weak areas was `currently not available' for the A-level revision programme, while as a GCSE student I faced a very daunting diagnostic test. (It wasn't just that the questions were difficult - the test is two hours long, with a stop clock counting down the minutes!) Having played with the programs for a while, I still can't see how to get the answers to the questions. (Each test question has a `show me the answer' button, but I couldn't get it to work!) At the end of each test you get a summary score, but I couldn't get it to tell me which questions I had got wrong! There seems to have been a bit of a mix-up with the commentaries for the animations. Many of the commentaries simply tell you to `click to start the animation'. This was very frustrating in some of the sequences - for example, the evolution of the Sun is shown very nicely animated on a Hertzsprung-Russell diagram, but the text that explains this evolution remains unspoken - and unread, of course, if you are a student watching the sequence. And there are the usual errors in text and graphics which inevitably get into textbooks. Multimedia is not exempt, for example, from diffraction at a wide slit producing no central maximum, there was no arrow for my iron core to label the correct place in the electric bell.... The usual slips, just like paper-based publishing. So - is it worth it? For a bright student who likes surfing the Internet - definitely. It may not have flashing lights, but if you are disciplined enough to work through it, it is more supportive than a book. My guess is that most students would dip into it, find that the physics is the same as their book, and go back to the book. For teachers, some of the materials might provide excellent material for an electronic white board. In short: useful, if you like that sort of thing, good value for money, but nothing to revolutionize your teaching.

  5. Example Postings' Effects on Online Discussion and Cognitive Load

    ERIC Educational Resources Information Center

    Jin, Li

    2012-01-01

    This study investigated the effects of example-postings on students' cognitive load and performance in online discussions. Cognitive overload was assumed had caused the problem of the lack of reflective and thoughtful contributions in student discussions. The theoretical foundation supporting the use of example-postings aiming at reduce…

  6. Learning about Functions through Learner-Generated Examples

    ERIC Educational Resources Information Center

    Dinkelman, Martha O.; Cavey, Laurie O.

    2015-01-01

    In many mathematics classrooms, the teacher provides "worked examples" to demonstrate how students should perform certain algorithms or processes. Some students find it difficult to generalize from the examples that teachers provide and cannot apply what they have learned in new situations (Watson and Mason 2002). Instead, teachers might…

  7. Effect of Worked Examples and Cognitive Tutor Training on Constructing Equations

    ERIC Educational Resources Information Center

    Reed, Stephen K.; Corbett, Albert; Hoffman, Bob; Wagner, Angela; MacLaren, Ben

    2013-01-01

    Algebra students studied either static-table, static-graphics, or interactive-graphics instructional worked examples that alternated with Algebra Cognitive Tutor practice problems. A control group did not study worked examples but solved both the instructional and practice problems on the Cognitive Tutor (CT). Students in the control group…

  8. Using Gagne's theory to teach chest X-ray interpretation.

    PubMed

    Belfield, Jane

    2010-03-01

    as a Radiologist providing teaching for medical students and junior doctors, I have spent time devising lesson plans. It is vital to know the aims and objectives prior to teaching sessions in order that the students benefit as much as possible. This article describes a lesson plan for interpretation of a chest X-Ray using a theory described by Robert Gagne. Gagne developed a model of instructional design, which provides information and interaction to enhance the learning process. This model is based on nine instructional events used during a teaching session. These are: gaining attention, informing the learner of the objective, stimulating recall of prior material, presenting the stimulus material, providing learning guidance, eliciting the performance, providing feedback, assessing the performance and enhancing retention and transfer. this article uses the nine points described by Gagne and describes a model of how to teach chest X-ray interpretation. Each of Gagne's points is illustrated with a specific example of how this would fit into the Radiology teaching session. Gagne's theory of instructional design can be adapted depending on the subject being taught. It is useful, both for the teacher and the student, to prepare a lesson plan in advance with knowledge of required aims and objectives. Having run teaching sessions which use Gagne's theory, students have given very positive feedback and as a teacher I found the lesson ran more smoothly. Blackwell Publishing Ltd 2010.

  9. Energy Lessons by Contract.

    ERIC Educational Resources Information Center

    Wagganer, John W.

    1981-01-01

    An elementary activity based energy education unit which utilizes student contracts is described. Examples of the preparation involved, student involvement entailed, and examples of contracts and grading criteria are included. (DS)

  10. Student Behavior and Epistemological Framing: Examples from Collaborative Active-Learning Activities in Physics

    ERIC Educational Resources Information Center

    Scherr, Rachel E.; Hammer, David

    2009-01-01

    The concept of framing from anthropology and sociolinguistics is useful for understanding student reasoning. For example, a student may frame a learning activity as an opportunity for sensemaking or as an assignment to fill out a worksheet. The student's framing affects what she notices, what knowledge she accesses, and how she thinks to act. We…

  11. Teaching Astronomy through e-learning in Poland: Astronomical Education in teacher training conducted by the Regional Teacher Training Center in Skierniewice

    NASA Astrophysics Data System (ADS)

    Dabrowska, A. E.

    2014-12-01

    Regional Teacher Training Centre (RTTC) in Skierniewice is one of 49 public, accredited institutions in Poland carrying out it statutory goals at the regional level. It has been operating since 1989 and is responsible for organizing of support of schools, institutions, networks of teachers for cooperation and self-education, organizing various forms of in-service training and disseminating examples of good practice. It also has rich experience in teaching by using modern Interactive Computer Technology (ICT) tools and e-learning platform. I present examples about teaching of Astronomical issues through teacher training both as hands on workshops as well as through e-learning. E-learning is playing an important role in organizing educational activities not only in the field of modern didactic but also in learning Science subjects. Teachers find e-learning as a very economical, easy and convenient way of learning and developing their knowledge and skills. Moreover, they are no longer afraid of using new ICT tools and programs which help them to cooperate with students effectively. Since 2011 RTTC in Skierniewice has been an organizer of many on-line in-service programs for teachers, in learning Science. Some of them are organized as blended-learning programs which allow teachers to participate first in hands on activities then continue learning on the Moodle platform. These courses include two 15 and 30-hours of Astronomical topics. Teachers have the opportunity to gain knowledge and receive materials not only about the Universe and the Solar System but also can learn to use tools like Stellarium, Celestia, WorldWide Telescope, Your Sky and other tools. E-learning modules consist of both publishing learning materials in various forms, eg. PowerPoint Presentations, Word & PDF materials, web sites, publications, working sheets as well as practical duties like participation in chats, forums, tasks, Wiki, group workshop. Teachers use these materials for extending their knowledge as well as for preparing their own tasks, like lesson's scenarios and school projects. Realizing school projects pay an important role in students' education. It is obligatory for students representing lower secondary level to implement school project during their 3 years education. Some of these projects are devoted to Astronomy.

  12. Student Outreach with Renewable Energy Technology

    NASA Technical Reports Server (NTRS)

    Buffinger, D. R.; Fuller, C. W.; Gordon, E. M.; Kalu, A.; Hepp, Aloysius F. (Technical Monitor)

    2000-01-01

    The Student Outreach with Renewable Energy Technology (SORET) program is an education program involving three Historically Black Colleges and Universities and NASA's John H. Glenn Research Center at Lewis Field. These three universities; Central State University (CSU), Savannah State University (SSU) and Wilberforce University (WU) are working together with NASA Glenn to use the theme of renewable energy to improve the science, engineering and technology education of minority students and to attract minority students to these fields. In this vein, a renewable energy laboratory course is being offered at WU with the goal of giving the students of WU and CSU hands on experiences. As part of this course, the students are constructing solar light posts for a local high school with a high minority population. A Physics teacher from this school and some of his high school students are involved with this project. A lecture course on energy systems and sustainability is being developed by SSU to be delivered via distance reaming to the other institutions. Summer activities are being planned at all three institutions involving student projects in renewable energy. For example, WU students will work on a study of the synthesis and properties of photovoltaic materials. In addition, CSU will present a weeklong summer program to high school students with the assistance of WU. This presentation will focus on the student involvement and achievements in the educational area to date and plot the future course of this program.

  13. Cloning, Stem Cells, and the Current National Debate: Incorporating Ethics into a Large Introductory Biology Course

    PubMed Central

    2002-01-01

    Discussing the ethical issues involved in topics such as cloning and stem cell research in a large introductory biology course is often difficult. Teachers may be wary of presenting material biased by personal beliefs, and students often feel inhibited speaking about moral issues in a large group. Yet, to ignore what is happening “out there” beyond the textbooks and lab work is to do a disservice to students. This essay describes a semester-long project in which upperclass students presented some of the most complex and controversial ideas imaginable to introductory students by staging a mock debate and acting as members of the then newly appointed President's Council on Bioethics. Because the upperclass students were presenting the ideas of real people who play an important role in shaping national policy, no student's personal beliefs were put on the line, and many ideas were articulated. The introductory audience could accept or reject what they were hearing and learn information important for making up their own minds on these issues. This project is presented as an example of how current events can be used to put basic cell biology into context and of how exciting it can be when students teach students. PMID:12669102

  14. Bioengineering and Bioinformatics Summer Institutes: Meeting Modern Challenges in Undergraduate Summer Research

    PubMed Central

    Dong, Cheng; Snyder, Alan J.; Jones, A. Daniel; Sheets, Erin D.

    2008-01-01

    Summer undergraduate research programs in science and engineering facilitate research progress for faculty and provide a close-ended research experience for students, which can prepare them for careers in industry, medicine, and academia. However, ensuring these outcomes is a challenge when the students arrive ill-prepared for substantive research or if projects are ill-defined or impractical for a typical 10-wk summer. We describe how the new Bioengineering and Bioinformatics Summer Institutes (BBSI), developed in response to a call for proposals by the National Institutes of Health (NIH) and the National Science Foundation (NSF), provide an impetus for the enhancement of traditional undergraduate research experiences with intense didactic training in particular skills and technologies. Such didactic components provide highly focused and qualified students for summer research with the goal of ensuring increased student satisfaction with research and mentor satisfaction with student productivity. As an example, we focus on our experiences with the Penn State Biomaterials and Bionanotechnology Summer Institute (PSU-BBSI), which trains undergraduates in core technologies in surface characterization, computational modeling, cell biology, and fabrication to prepare them for student-centered research projects in the role of materials in guiding cell biology. PMID:18316807

  15. Web-Based Learning Support System

    NASA Astrophysics Data System (ADS)

    Fan, Lisa

    Web-based learning support system offers many benefits over traditional learning environments and has become very popular. The Web is a powerful environment for distributing information and delivering knowledge to an increasingly wide and diverse audience. Typical Web-based learning environments, such as Web-CT, Blackboard, include course content delivery tools, quiz modules, grade reporting systems, assignment submission components, etc. They are powerful integrated learning management systems (LMS) that support a number of activities performed by teachers and students during the learning process [1]. However, students who study a course on the Internet tend to be more heterogeneously distributed than those found in a traditional classroom situation. In order to achieve optimal efficiency in a learning process, an individual learner needs his or her own personalized assistance. For a web-based open and dynamic learning environment, personalized support for learners becomes more important. This chapter demonstrates how to realize personalized learning support in dynamic and heterogeneous learning environments by utilizing Adaptive Web technologies. It focuses on course personalization in terms of contents and teaching materials that is according to each student's needs and capabilities. An example of using Rough Set to analyze student personal information to assist students with effective learning and predict student performance is presented.

  16. Learning Algebra from Worked Examples

    ERIC Educational Resources Information Center

    Lange, Karin E.; Booth, Julie L.; Newton, Kristie J.

    2014-01-01

    For students to be successful in algebra, they must have a truly conceptual understanding of key algebraic features as well as the procedural skills to complete a problem. One strategy to correct students' misconceptions combines the use of worked example problems in the classroom with student self-explanation. "Self-explanation" is the…

  17. Analyzing Student-Level Disciplinary Data: A Guide for Districts. REL 2017-263

    ERIC Educational Resources Information Center

    Petrosino, Anthony; Fronius, Trevor; Goold, Cailean C.; Losen, Daniel J.; Turner, Herbert M.

    2017-01-01

    Discipline in schools can be categorized as exclusionary actions, which remove students from their normal learning setting (for example, out-of-school suspension), or inclusionary actions, which do not (for example, afterschool detention). The relationship of exclusionary discipline to negative outcomes for students, particularly racial/ethnic…

  18. 75 FR 35881 - Smaller Learning Communities Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ..., particularly if the evaluations are rigorous and use, for example, an experimental design. For this reason, in..., are designed to enable grantees to develop strategies to improve student outcomes. For example, among... students. We have designed this priority to apply to both teachers who share the same students and teachers...

  19. Cheating the Business Template: Filling in the Blanks

    ERIC Educational Resources Information Center

    Mechenbier, Mahli Xuan

    2011-01-01

    Business professionals often use standard templates when composing documents, and teachers of business writing direct students to textbook examples to use as sample formats. Good instructors do want to provide their students with informative examples of what is expected, especially in an online course environment where students cannot raise their…

  20. Students' Conceptualisations of Function Revealed through Definitions and Examples

    ERIC Educational Resources Information Center

    Ayalon, Michal; Watson, Anne; Lerman, Steve

    2017-01-01

    This study aims to explore the conceptualisations of function that some students express when they are responding to fictitious students' statements about functions. We also asked them what is meant by "function" and many voluntarily used examples in their responses. The task was developed in collaboration with teachers from two…

  1. A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets

    ERIC Educational Resources Information Center

    Lee, Kevin M.; Nicoll, Gayle; Brooks, David W.

    2004-01-01

    This paper compares two protocols for web-based instruction using simulations in an introductory physics class. The Inquiry protocol allowed students to control input parameters while the Worked Example protocol did not. Students in the Worked Example group performed significantly higher on a common assessment. The ramifications of this study are…

  2. Integrating Worked Examples into Problem Posing in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Hsiao, Ju-Yuan; Hung, Chun-Ling; Lan, Yu-Feng; Jeng, Yoau-Chau

    2013-01-01

    Most students always lack of experience and perceive difficult regarding problem posing. The study hypothesized that worked examples may have benefits for supporting students' problem posing activities. A quasi-experiment was conducted in the context of a business mathematics course for examining the effects of integrating worked examples into…

  3. Erathostenes: An Example of Work with University Students in Didactics and History of Astronomy

    NASA Astrophysics Data System (ADS)

    Lanciano, Nicoletta; Berardo, Mariangela

    2016-12-01

    We present below, through an example, the richness of the use of a method of clues to enter the history of Astronomy, tested with university students and teachers in training. The question presented as an example is the study of the work of Eratosthenes to measure the Earth's meridian. It shows how the course generates a chain of questions and new questions and problems arise as the students learn to look for answers and solutions.

  4. Post-16 update

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Post-16 Initiative logo This is the first of a regular series of contributions from the Institute's Post-16 Initiative. The Initiative is taking a hard and searching look at the physics taught in schools and colleges from age 16 to age 19. To start with, it is responding to Government initiatives, but hopes to encourage and stimulate good practice in physics teaching on a longer time scale than can be afforded in making responses to current developments. Here Jon Ogborn writes about what AS courses need to be, while Peter Campbell gives his thoughts about teaching matter. Advanced Subsidiary physics: what should it be? From September 2000 all A-levels will be new. Students can take the first Advanced Subsidiary (AS) year and stop there - or decide to go on. In the Institute of Physics post-16 Initiative, we have been thinking how to provide a satisfying one-year experience of physics at the new AS level, and what it should achieve. The students will decide. So the AS course must give a decent picture of what physics is, what it offers for their futures, what interests it can satisfy. That all says breadth, with enough depth to see what is in store later. And this sounds like the right recipe for someone who is taking a single AS year of physics to broaden their A-level experience. It must also be attractive. A way forward is shown by the Salters - Horners course, attracting interest through leading from applications. Why does that work? It gives physics a story to tell, into which ideas fit and make sense. Our own new A-level, Advancing Physics, must also have interesting stories to tell, which must in addition build up an honest picture of physics. An example: teach electric circuits through modern sensing devices. Sensor instrumentation is a key activity of physicists, full of new ideas, but also simple. It makes essential use of circuits such as the potential divider. Practical work gets better things to do than checking the equation for resistors in parallel. It requires good use of computers. Other examples: use modern imaging methods to teach information processing and optics; study `designer materials' to reflect both the inventiveness and the curiosity of physicists. Tell stories from fundamental efforts to understand the world: forces and motion, waves and photons, the structure of the Universe, a hint of relativity. The new AS course has to fit QCA criteria, but should also look beyond them to suggest how to shape the future of A-level physics. Jon Ogborn Director, Institute of Physics Post-16 Initiative The study of matter The study of matter is as central to pure physics as it is to technological applications. Currently Advanced GNVQ Science requires much more detailed knowledge of materials than most A-level courses. But in every case, what 16 - 19 year-old students experience is a rather dated study of engineering materials, with an emphasis on mechanical properties. Almost entirely absent is the notion of our new ability to design materials. Recently, new techniques of visualization, modelling the hierarchy of structures inside a material and simulating the resulting changes in properties, have all dramatically changed the nature of materials science. Post-16 physics courses should mention some new classes of materials responsible for major industrial and social changes. For example, let's look at `soft matter' such as polymers, liquid crystals and emulsions. These are the stuff of Nature, which we are only now learning to imitate. The continuing miniaturization of computer chips and sensors is based on functional properties - optical, electrical, thermal or magnetic. If students are to understand and perhaps later to contribute to developments such as these, they deserve a better introduction. Careful thinking needs to go into deciding what a basic course might entail. But what topic could be better suited to coursework in the form of student research? Teaching about matter in an up-to-date way may sound too great a challenge for schools and colleges, if we forget the power of new technologies. We can now enhance student learning using key visualization tools: images of materials, from all types of microscopy; animations to show dynamics as well as structure, sometimes in 3D; `virtual experimentation': models to manipulate, with data as well as image outputs. Universities and research organizations could help by contributing to new collections of these tools, annotated at an appropriate level, in CD-ROM format but also at their own websites. Peter Campbell

  5. 3D Immersive Visualization: An Educational Tool in Geosciences

    NASA Astrophysics Data System (ADS)

    Pérez-Campos, N.; Cárdenas-Soto, M.; Juárez-Casas, M.; Castrejón-Pineda, R.

    2007-05-01

    3D immersive visualization is an innovative tool currently used in various disciplines, such as medicine, architecture, engineering, video games, etc. Recently, the Universidad Nacional Autónoma de México (UNAM) mounted a visualization theater (Ixtli) with leading edge technology, for academic and research purposes that require immersive 3D tools for a better understanding of the concepts involved. The Division of Engineering in Earth Sciences of the School of Engineering, UNAM, is running a project focused on visualization of geoscience data. Its objective is to incoporate educational material in geoscience courses in order to support and to improve the teaching-learning process, especially in well-known difficult topics for students. As part of the project, proffessors and students are trained in visualization techniques, then their data are adapted and visualized in Ixtli as part of a class or a seminar, where all the attendants can interact, not only among each other but also with the object under study. As part of our results, we present specific examples used in basic geophysics courses, such as interpreted seismic cubes, seismic-wave propagation models, and structural models from bathymetric, gravimetric and seismological data; as well as examples from ongoing applied projects, such as a modeled SH upward wave, the occurrence of an earthquake cluster in 1999 in the Popocatepetl volcano, and a risk atlas from Delegación Alvaro Obregón in Mexico City. All these examples, plus those to come, constitute a library for students and professors willing to explore another dimension of the teaching-learning process. Furthermore, this experience can be enhaced by rich discussions and interactions by videoconferences with other universities and researchers.

  6. NASA's Student Launch Projects: A Government Education Program for Science and Engineering

    NASA Technical Reports Server (NTRS)

    Shepherd, Christena C.

    2009-01-01

    Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.

  7. The Bases of Chemical Thermodynamics, Volumes 1 and 2 by Michael Graetzel and Pierre Infelta

    NASA Astrophysics Data System (ADS)

    van Hecke, Gerald R.

    2001-09-01

    Universal Publishers: Parkland, FL, 2000. Vol. 1: 298 pp. ISBN 1-58112-772-3. 25.95. Vol. 2: 300 pp. ISBN 1-58112-771-5. 25.95. Rarely does one pick up a text and find in it so many of one's favorite pedagogical devices. Graetzel and Infelta was a treat to read. The text offers many new and clever derivations of the well-worn equations of chemical thermodynamics and for this reason alone the text should be on the bookshelf of every serious teacher of thermodynamics. The writing is easy to read: not terse, but carefully worded as a thermodynamics text should be. There are no fancy sidebars or tidbits, just a straightforward presentation of material that is frankly refreshing. A brief description of the text should come next, for it consist of two volumes. You find in Volume 1 introductory material, the laws of thermodynamics, auxiliary functions, molar and partial molar quantities, gases, and component phase equilibria; in Volume 2, the energetics of chemical reactions, chemical equilibria, properties of ideal and nonideal mixtures, and an introduction to statistical mechanics. The authors make careful definitions of those slippery concepts, systems, states, and extensive and intensive variables, and use those definitions to show how the thermodynamic state of a system can be described in a minimum number of variables. A pedagogical feature that makes a hit with me is the authors' disuse of deltas. They explicitly write Ufinal - Uinitial instead of just good old DU, which really tells a reader nothing. How much better our students would understand thermodynamics if we were to ban D 's remains to be seen. The authors are consistent in their disuse of D 's except for standard expressions such as DrG°. Entropy, every beginning student's random nightmare, is introduced by the concept of arrangements available to the system. The number of arrangements can be quantified by various permutation formulas. Thank the authors for sticking with arrangements that can be calculated and not trying to discuss randomness, which cannot. The second law is introduced via traditional heat engines with arguments as thorough as those of K. G. Denbigh in his classic Chemical Thermodynamics text. However, the authors use quite different examples, which are highly readable. The overworked term "entropy of the universe" has been abandoned in favor of "global entropy", meaning a combination of the system and surroundings. The term works for me. In addition to the Carnot cycle, there are compelling expositions on the Otto, Stirling, and Joule cycles. When discussing chemical reactions, extensive use is made of the extent of reaction concept. In fact a very clever derivation of the temperature dependencies of DrG°, DrH°, and DrS° is offered using the temperature dependency of the extent of reaction. Still on the topic of chemical equilibrium, the authors provide an example (and make the point quite clearly) of how in cases involving simultaneous chemical equilibria, it is quite possible to drive a reaction with a positive DrG° toward completion through the device of coupling the reaction with other favorable reactions. For biochemical systems this is the reason for life. Having (I hope) intrigued the reader of this review to this point, I'd better describe something more of the text. The two volumes would need to be used as companions in the sense that while Volume 1 could be used alone, Volume 2 definitely refers to crucial material contained in Volume 1. The separation into two volumes does seem a bit odd; and in fact, the volumes are continuously numbered. Each volume contains fully worked-out examples pertinent to the material in that volume. The examples, which the authors call problems but that is a stretch, are not the typical three-line, use the formula, plug-and-chug variety, but very elaborate applications of the principles discussed in the text. The examples could be studied on their own, without the benefit of the text. The text proper has very few worked-out examples and virtually none of those involve numerical calculations. I cannot decide whether to prefer a volume of principles and a separate volume of examples, or one volume containing everything. No doubt students would eventually find the use of the two volumes as inconvenient I have. Who would profitably use these volumes? Clearly teachers looking for deeper understanding and different approaches would appreciate the authors' efforts here. These volumes would not be a good absolute first introduction to thermodynamics. A senior-level or an introductory graduate course in chemical thermodynamics is probably the right place for this presentation. Teachers using this text would probably want to discuss additional examples, especially numerical ones. There are some points of concern to be raised, however.

    All of the thermodynamic variables, U, H, G, A, and S as well as the traditional directly experimentally observable variables T, p, and V, are introduced in the first chapter largely as mathematical functions. This presentation would be appreciated by students who have heard of these variables, but others will wonder what is the purpose, since no examples using the variables are presented. Some teachers will wonder what the Schwarz theorem is and whatever happened to Maxwell's relationships. The use of Lagrangian multipliers when deriving the criteria for phase equilibria in terms of chemical potentials, while mathematically elegant, is probably overkill. The discussion of osmotic pressure, which is little more than one page long, is far too brief in today's biologically steeped environment. In discussing the phase rule f=c+2-p, the authors unfortunately let c represent components or species. Nothing is more confusing to students applying the phase rule than the distinction between species and components. To use the same symbol for both invites disaster. The use of matrix algebra to determine the number of independent reactions relating chemically reacting species is one of my favorite pedagogical devices, but the examples in the text do not go far enough to teach first-time students the methodology. Other points could be raised but this review needs to end, so only one more criticism. The chapter on statistical mechanics, although it ends well with the appropriate formulas and applications, needs help in the introduction section. I found the switching between microcanonical and canonical too subtle for a first exposure to this subject. Also there is little point to introducing Bose-Einstein and Fermi-Dirac statistics unless some examples are discussed. This chapter on statistical methods is just 31 pages long and tries to do too much in the short space. I would say that students deserve this text. I hope they would not find it so different from their current generation of ever glossier and slicker textbooks as to dismiss the powerful presentation contained in its simple pages.

  8. Analysis of Panel Data

    NASA Astrophysics Data System (ADS)

    Hsiao, Cheng

    2003-02-01

    Panel data models have become increasingly popular among applied researchers due to their heightened capacity for capturing the complexity of human behavior, as compared to cross-sectional or time series data models. This second edition represents a substantial revision of the highly successful first edition (1986). Recent advances in panel data research are presented in an accessible manner and are carefully integrated with the older material. The thorough discussion of theory and the judicious use of empirical examples make this book useful to graduate students and advanced researchers in economics, business, sociology and political science.

  9. Note on online books and articles about the history of dissociation.

    PubMed

    Alvarado, Carlos S

    2008-01-01

    Students of the history of dissociation will be interested in the materials on the subject available in the digital document database Google Book Search. This includes a variety of books and journals covering automatic writing, hypnosis, mediumship, multiple personality, trance, somnambulism, and other topics. Among the authors represented in the database are: Eugène Azam, Alfred Binet, James Braid, Jean-Martin Charcot, Pierre Janet, Frederic W.H. Myers, Morton Prince, and Boris Sidis, among others. The database includes examples of case reports, conceptual discussions, and psychiatric and psychological textbook literature.

  10. NASA LeRC/Akron University Graduate Cooperative Fellowship Program and Graduate Student Researchers Program

    NASA Technical Reports Server (NTRS)

    Fertis, D. G.; Simon, A. L.

    1981-01-01

    The requisite methodology to solve linear and nonlinear problems associated with the static and dynamic analysis of rotating machinery, their static and dynamic behavior, and the interaction between the rotating and nonrotating parts of an engine is developed. Linear and nonlinear structural engine problems are investigated by developing solution strategies and interactive computational methods whereby the man and computer can communicate directly in making analysis decisions. Representative examples include modifying structural models, changing material, parameters, selecting analysis options and coupling with interactive graphical display for pre- and postprocessing capability.

  11. Factors potentially influencing academic performance among medical students.

    PubMed

    Al Shawwa, Lana; Abulaban, Ahmad A; Abulaban, Abdulrhman A; Merdad, Anas; Baghlaf, Sara; Algethami, Ahmed; Abu-Shanab, Joullanar; Balkhoyor, Abdulrahman

    2015-01-01

    Studies are needed to examine predictors of success in medical school. The aim of this work is to explore factors that potentially influence excellence of medical students. The study was conducted in the Medical Faculty of King Abdulaziz University during October 2012. A self-administered questionnaire was used. Medical students with a grade point average (GPA) ≥4.5 (out of 5) were included and compared to randomly selected medical students with a GPA <4.5, who were available at the time of the study. A total of 359 undergraduate students participated in the study. 50.4% of the sample was students with a GPA ≥4.5. No statistically significant difference regarding the time spent on outings and social events was found. However, 60.7% of high GPA students spend less than 2 hours on social networking per day as compared to 42.6% of the lower GPA students (P<0.01). In addition, 79% of high GPA students prefer to study alone (P=0.02), 68.0% required silence and no interruptions during studying time (P=0.013), and 47% revise their material at least once before an exam (P=0.02). Excellent medical students have many different characteristics. For example, they do not use social networking for prolonged periods of time, and they have strong motivation and study enjoyment. Further studies are needed to examine whether these differences have a real impact on GPA or not.

  12. Developing Atmospheric Science Tools for Teachers Based on Research at the Pico Mountain Observatory, Pico Island, Azores

    NASA Astrophysics Data System (ADS)

    Harkness, L.; Mazzoleni, L. R.; Dzepina, K.; Mazzoleni, C.; China, S.

    2013-12-01

    Atmospheric science and climate change are becoming increasingly important, especially in education, as the Next Generation Science Standards now include climate change. A collaborating team of research scientists and students are studying the free troposphere, specifically the aerosol composition and properties, on the island of Pico in the Azores Archipelago. The research station sits in the caldera of Mount Pico, 2225 meters above sea level. At this elevation, the station is above the marine boundary layer, thus placing it in the free troposphere. In this work, collaboration between a high school Earth Science teacher and university researchers was formed with the goal of developing classroom and outreach materials regarding atmospheric science. Among the materials, a video was created containing: site and project background, explanation of some of the instruments used and candid conversations regarding science and research. The video serves several purposes, such as informing students and the general public about what is happening in the atmosphere and informing students about the importance of science and research. The video could also be used to educate the local island community and tourists. Other materials designed include data directly obtained from the project, such as measurements of aerosol particles in electron microscopy photos (which were imaged for particle morphology and size), and composition of the aerosol particles. Students can use this evidence, as well as other data, to gain a better understanding of aerosols and the overall effect they have on the climate. Students will discover this evidence as they work through a series of experiments and activities. Using the strategy of Claim-Evidence-Reasoning as a way to answer scientific questions, students will use the evidence they gathered to explain their ideas. One such question could be, 'How do aerosols affect the climate?' and the student's 'claim' is their answer to that question. In the 'evidence' portion, the student lists the evidence they gathered that supports their claim. Some evidence could include the shape of the aerosol (has it traveled a long distance or is it local), the composition (does it contain carbon or mineral dust for example), the color (does it reflect or absorb light). Finally, the student explains how their evidence relates to the claim and question in the 'reasoning' section. While learning about the atmosphere, students would also be learning about science and the importance of research.

  13. Morphological Analysis as a Vocabulary Strategy for L1 and L2 College Preparatory Students

    ERIC Educational Resources Information Center

    Bellomo, Tom S.

    2009-01-01

    Students enrolled in a college preparatory reading class were categorized based on language origin. Native English speakers comprised one group and foreign students were dichotomized into Latin-based (for example, Spanish) and non Latin-based (for example, Japanese) language groups. A pretest assessment quantified existing knowledge of Latinate…

  14. Combining Qualitative and Quantitative Data: An Example.

    ERIC Educational Resources Information Center

    Sikka, Anjoo; And Others

    Methodology from an ongoing research study to validate teaching techniques for deaf and blind students provides an example of the ways that several types of quantitative and qualitative data can be combined in analysis. Four teacher and student pairs were selected. The students were between 14 and 21 years old, had both auditory and visual…

  15. Applied Examples of Screening Students at Risk of Emotional and Behavioral Disabilities

    ERIC Educational Resources Information Center

    Pierce, Corey D.; Nordness, Philip D.; Epstein, Michael H.; Cullinan, Douglas

    2016-01-01

    Early identification of student behavioral needs allows educators the opportunity to apply appropriate interventions before negative behaviors become more intensive and persistent. A variety of screening tools are available to identify which students are at risk for persistent behavior problems in school. This article provides two examples in…

  16. Teaching the First Law of Thermodynamics via Real-Life Examples

    ERIC Educational Resources Information Center

    Chang, Wheijen

    2011-01-01

    The literature has revealed that many students encounter substantial difficulties in applying the first law of thermodynamics. For example, university students sometimes fail to recognize that heat and work are independent means of energy transfer. When discussing adiabatic processes for an ideal gas, few students can correctly refer to the…

  17. Differential-associative processing or example elaboration: Which strategy is best for learning the definitions of related and unrelated concepts?

    PubMed

    Hannon, Brenda

    2012-10-01

    Definitions of related concepts (e.g., genotype - phenotype ) are prevalent in introductory classes. Consequently, it is important that educators and students know which strategy(s) work best for learning them. This study showed that a new comparative elaboration strategy, called differential-associative processing, was better for learning definitions of related concepts than was an integrative elaborative strategy, called example elaboration. This outcome occurred even though example elaboration was administered in a naturalistic way (Experiment 1) and students spent more time in the example elaboration condition learning (Experiments 1, 2, 3), and generating pieces of information about the concepts (Experiments 2 and 3). Further, with unrelated concepts ( morpheme-fluid intelligence ), performance was similar regardless if students used differential-associative processing or example elaboration (Experiment 3). Taken as a whole, these results suggest that differential-associative processing is better than example elaboration for learning definitions of related concepts and is as good as example elaboration for learning definitions of unrelated concepts.

  18. Differential-associative processing or example elaboration: Which strategy is best for learning the definitions of related and unrelated concepts?

    PubMed Central

    Hannon, Brenda

    2013-01-01

    Definitions of related concepts (e.g., genotype–phenotype) are prevalent in introductory classes. Consequently, it is important that educators and students know which strategy(s) work best for learning them. This study showed that a new comparative elaboration strategy, called differential-associative processing, was better for learning definitions of related concepts than was an integrative elaborative strategy, called example elaboration. This outcome occurred even though example elaboration was administered in a naturalistic way (Experiment 1) and students spent more time in the example elaboration condition learning (Experiments 1, 2, 3), and generating pieces of information about the concepts (Experiments 2 and 3). Further, with unrelated concepts (morpheme-fluid intelligence), performance was similar regardless if students used differential-associative processing or example elaboration (Experiment 3). Taken as a whole, these results suggest that differential-associative processing is better than example elaboration for learning definitions of related concepts and is as good as example elaboration for learning definitions of unrelated concepts. PMID:24347814

  19. Self-Explanations: How Students Study and Use Examples in Learning To Solve Problems. Technical Report No. 9.

    ERIC Educational Resources Information Center

    Chi, Michelene T. H.; And Others

    A study examined in detail the initial encoding of worked-out examples of mechanics problems by "good" and "poor" students, and their subsequent reliance on examples during problem solving. The subjects, three males and five females, were selected from responses to a university campus advertisement. Six of them were working…

  20. The Representation of Reality in Teaching: A "Mimetic Didactic" Perspective on Examples in Plenary Talk

    ERIC Educational Resources Information Center

    Willbergh, Ilmi

    2017-01-01

    Using an observation study in Norwegian lower-secondary school classrooms this paper explores how subject matter and students' real-world experiences are linked within the use of examples in teaching. The theory of "mimetic didactics" claims that giving students the possibility to interpret examples as both subject matter and something…

  1. Promoting College Students' Construction of Problem Schemata in Statistics Using Schema-Emphasizing Worked Examples

    ERIC Educational Resources Information Center

    Yan, Jie

    2010-01-01

    In this study, the effectiveness of worked examples that emphasizes problem features (data type, number of groups, purpose of analysis) associated with specific problem types (t-test, chi-square, correlation) were examined on students' construction of problem schemata compared to traditional solution-only worked examples. A sample of 96 students…

  2. The Power of Examples: Illustrative Examples Enhance Conceptual Learning of Declarative Concepts

    ERIC Educational Resources Information Center

    Rawson, Katherine A.; Thomas, Ruthann C.; Jacoby, Larry L.

    2015-01-01

    Declarative concepts (i.e., key terms with short definitions of the abstract concepts denoted by those terms) are a common kind of information that students are expected to learn in many domains. A common pedagogical approach for supporting learning of declarative concepts involves presenting students with concrete examples that illustrate how the…

  3. Large-Scale Assessment of Change in Student Achievement: Dutch Primary School Students' Results on Written Division in 1997 and 2004 as an Example

    ERIC Educational Resources Information Center

    van den Heuvel-Panhuizen, Marja; Robitzsch, Alexander; Treffers, Adri; Koller, Olaf

    2009-01-01

    This article discusses large-scale assessment of change in student achievement and takes the study by Hickendorff, Heiser, Van Putten, and Verhelst (2009) as an example. This study compared the achievement of students in the Netherlands in 1997 and 2004 on written division problems. Based on this comparison, they claim that there is a performance…

  4. Open Course Ware, Distance Education, and 21st Century Geoscience Education

    NASA Astrophysics Data System (ADS)

    Connors, M. G.

    2010-12-01

    Open Course Ware (OCW) allows the highest quality educational materials (including videos of lectures from the best classroom lecturers) to find a wide audience. This audience may include many who wish to obtain credentials for formal study yet who are unable to be campus-based students. This opens a role for formal, credentialed and accredited distance education (DE) to efficiently integrate OCW into DE courses. OCW materials will in this manner be able to be used for education of credential-seeking students who would not otherwise benefit from them. Modern presentation methods using the Internet and video (including mobile device) technologies may offer pedagogical advantages over even traditional classroom learning. A detailed analysis of the development of Athabasca University’s PHYS 302 Vibrations and Waves course (based mainly on MIT’s OCW), and application of lessons learned to development of PHYS 305 Electromagnetism is presented. These courses are relevant to the study of geophysics, but examples of GEOL (Geology) courses will also be mentioned, along with an broad overview of OCW resources in Geoscience.

  5. Computer Based Collaborative Problem Solving for Introductory Courses in Physics

    NASA Astrophysics Data System (ADS)

    Ilie, Carolina; Lee, Kevin

    2010-03-01

    We discuss collaborative problem solving computer-based recitation style. The course is designed by Lee [1], and the idea was proposed before by Christian, Belloni and Titus [2,3]. The students find the problems on a web-page containing simulations (physlets) and they write the solutions on an accompanying worksheet after discussing it with a classmate. Physlets have the advantage of being much more like real-world problems than textbook problems. We also compare two protocols for web-based instruction using simulations in an introductory physics class [1]. The inquiry protocol allowed students to control input parameters while the worked example protocol did not. We will discuss which of the two methods is more efficient in relation to Scientific Discovery Learning and Cognitive Load Theory. 1. Lee, Kevin M., Nicoll, Gayle and Brooks, Dave W. (2004). ``A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets'', Journal of Science Education and Technology 13, No. 1: 81-88. 2. Christian, W., and Belloni, M. (2001). Physlets: Teaching Physics With Interactive Curricular Material, Prentice Hall, Englewood Cliffs, NJ. 3. Christian,W., and Titus,A. (1998). ``Developing web-based curricula using Java Physlets.'' Computers in Physics 12: 227--232.

  6. Art for the Smart: Paper and oral presentation assignments for an Earth Materials course

    NASA Astrophysics Data System (ADS)

    Wetzel, L. R.

    2011-12-01

    A letter from the fictional Art for the Smart company addresses students in the Earth Materials course: "You might be wondering why an artist needs a geology consultant. I am creating a sculpture garden filled with mythical beings. I would like each student to recommend two unique minerals for one of these sculptures..." For this project students randomly select a mythical being, two mineral groups, and a mineral characteristic. For example, a student might be assigned the goddess Freya, a sulfate, a vanadate, and twinning. Students then choose a specific mineral from each group, describe their physical and chemical characteristics, and recommend how the minerals could be incorporated into the sculpture. Reports are presented in short oral presentations and two-page business letters with accompanying bibliography and illustrations. The letter format provides a concise way to communicate results to the Art for the Smart "client" while preparing students for their job-hunting days ahead. The oral presentations are structured as features for a news program. Talks are limited to three to five minutes and four slides: title page, mineral #1, mineral #2, and mythical being. The strict limits help students concentrate on scientific content and smooth delivery rather than flashy visual aids. The student audience and the professor evaluate each in-class presentation. This has become a popular assignment because it engages student imaginations to relate minerals to mythical beings and creatively design a sculpture. Each project is unique and therefore more interesting for both students and faculty to evaluate. The projects are nearly impossible to plagiarize from previous years or from internet sources. Earth Materials is a sophomore level course for Geoscience and Marine Science majors at Eckerd College. The Art for the Smart project leads into an assignment for the second half of the semester featuring building stones. A new "client" sends a letter to the class explaining the situation: "I own a building in downtown St. Petersburg adorned with natural building stone. I am planning to expand my business to your hometown. I would like your professional opinion on whether or not I should use the same stone on my new building..." In this case, students examine thin sections and hand specimens to identify building stones. Each student chooses one building stone and conducts literature research to explain the advantages and disadvantages of using the rock on a building. The ultimate goal is not only to describe the rock and its geologic origins, but also to persuade the "client" to use or not use the building stone in a new location. In addition to writing a business letter and giving an in-class presentation, students give a short talk in the "field" at the downtown location featuring the building stone. In completing the two Earth Materials projects over the course of the semester, students progress from recognizing minerals in hand specimens to identifying rocks using thin sections and developing theories regarding their geologic origins.

  7. Graduate Student and High School Teacher Partnerships Implementing Inquiry-Based Lessons in Earth Science

    NASA Astrophysics Data System (ADS)

    Smith, M. A.; Preston, L.; Graham, K.

    2007-12-01

    Partnering science graduate students with high school teachers in their classroom is a mutually beneficial relationship. Graduate students who may become future university level faculty are exposed to teaching, classroom management, outreach scholarship, and managing time between teaching and research. Teachers benefit by having ready access to knowledgeable scientists, a link to university resources, and an additional adult in the classroom. Partnerships in Research Opportunities to Benefit Education (PROBE), a recent NSF funded GK-12 initiative, formed partnerships between science and math graduate students from the University of New Hampshire (UNH) and local high school science teachers. A primary goal of this program was to promote inquiry-based science lessons. The teacher-graduate student teams worked together approximately twenty hours per week on researching, preparing, and implementing new lessons and supervising student-led projects. Several new inquiry-based activities in Geology and Astronomy were developed as a result of collaboration between an Earth Science graduate student and high school teacher. For example, a "fishbowl" activity was very successful in sparking a classroom discussion about how minerals are used in industrial materials. The class then went on to research how to make their own paint using minerals. This activity provided a capstone project at the end of the unit about minerals, and made real world connections to the subject. A more involved geology lesson was developed focusing on the currently popular interest in forensics. Students were assigned with researching how geology can play an important part in solving a crime. When they understood the role of geologic concepts within the scope of the forensic world, they used techniques to solve their own "crime". Astronomy students were responsible for hosting and teaching middle school students about constellations, using a star- finder, and operating an interactive planetarium computer program. In order to successfully convey this information to the younger students, the high school students had to learn their material well. This model of pairing graduate students with science teachers is continuing as a component of the Transforming Earth System Science Education (TESSE) program.

  8. Performance Assessment as a Diagnostic Tool for Science Teachers

    NASA Astrophysics Data System (ADS)

    Kruit, Patricia; Oostdam, Ron; van den Berg, Ed; Schuitema, Jaap

    2018-04-01

    Information on students' development of science skills is essential for teachers to evaluate and improve their own education, as well as to provide adequate support and feedback to the learning process of individual students. The present study explores and discusses the use of performance assessments as a diagnostic tool for formative assessment to inform teachers and guide instruction of science skills in primary education. Three performance assessments were administered to more than 400 students in grades 5 and 6 of primary education. Students performed small experiments using real materials while following the different steps of the empirical cycle. The mutual relationship between the three performance assessments is examined to provide evidence for the value of performance assessments as useful tools for formative evaluation. Differences in response patterns are discussed, and the diagnostic value of performance assessments is illustrated with examples of individual student performances. Findings show that the performance assessments were difficult for grades 5 and 6 students but that much individual variation exists regarding the different steps of the empirical cycle. Evaluation of scores as well as a more substantive analysis of students' responses provided insight into typical errors that students make. It is concluded that performance assessments can be used as a diagnostic tool for monitoring students' skill performance as well as to support teachers in evaluating and improving their science lessons.

  9. Piaget and Organic Chemistry: Teaching Introductory Organic Chemistry through Learning Cycles

    NASA Astrophysics Data System (ADS)

    Libby, R. Daniel

    1995-07-01

    This paper describes the first application of the Piaget-based learning cycle technique (Atkin & Karplus, Sci. Teach. 1962, 29, 45-51) to an introductory organic chemistry course. It also presents the step-by-step process used to convert a lecture course into a discussion-based active learning course. The course is taught in a series of learning cycles. A learning cycle is a three phase process that provides opportunities for students to explore new material and work with an instructor to recognize logical patterns in data, and devise and test hypotheses. In this application, the first phase, exploration, involves out-of-class student evaluation of data in attempts to identify significant trends and develop hypotheses that might explain the trends in terms of fundamental scientific principles. In the second phase, concept invention, the students and instructor work together in-class to evaluate student hypotheses and find concepts that work best in explaining the data. The third phase, application, is an out-of-class application of the concept to new situations. The development of learning cycles from lecture notes is presented as an 8 step procedure. The process involves revaluation and restructuring of the course material to maintain a continuity of concept development according to the instructor's logic, dividing topics into individual concepts or techniques, and refocusing the presentation in terms of large numbers of examples that can serve as data for students in their exploration and application activities. A sample learning cycle and suggestions for ways of limited implementation of learning cycles into existing courses are also provided.

  10. Does Medical Students' Diagnostic Performance Improve by Observing Examples of Self-Explanation Provided by Peers or Experts?

    ERIC Educational Resources Information Center

    Chamberland, Martine; Mamede, Sílvia; St-Onge, Christina; Setrakian, Jean; Schmidt, Henk G.

    2015-01-01

    Educational strategies that promote the development of clinical reasoning in students remain scarce. Generating self-explanations (SE) engages students in active learning and has shown to be an effective technique to improve clinical reasoning in clerks. Example-based learning has been shown to support the development of accurate knowledge…

  11. Astronomy LITE Demonstrations

    NASA Astrophysics Data System (ADS)

    Brecher, Kenneth

    2006-12-01

    Project LITE (Light Inquiry Through Experiments) is a materials, software, and curriculum development project. It focuses on light, optics, color and visual perception. According to two recent surveys of college astronomy faculty members, these are among the topics most often included in the large introductory astronomy courses. The project has aimed largely at the design and implementation of hands-on experiences for students. However, it has also included the development of lecture demonstrations that employ novel light sources and materials. In this presentation, we will show some of our new lecture demonstrations concerning geometrical and physical optics, fluorescence, phosphorescence and polarization. We have developed over 200 Flash and Java applets that can be used either by teachers in lecture settings or by students at home. They are all posted on the web at http://lite.bu.edu. For either purpose they can be downloaded directly to the user's computer or run off line. In lecture demonstrations, some of these applets can be used to control the light emitted by video projectors to produce physical effects in materials (e.g. fluorescence). Other applets can be used, for example, to demonstrate that the human percept of color does not have a simple relationship with the physical frequency of the stimulating source of light. Project LITE is supported by Grant #DUE-0125992 from the NSF Division of Undergraduate Education.

  12. [Social medicine in medical faculties: realisation of the topic in the specialty "social medicine, occupational health"].

    PubMed

    Behmann, M; Bisson, S; Walter, U

    2011-12-01

    The 9 (th) Revision of German Medical Licensing Regulations for Physicians has come into effect on October 1 (st) 2003. Social medicine was separated into the fields "occupational health, social medicine" and the various cross-sectional modules: epidemiology, biometry, medical computer science; health economics, health-care system, public health; prevention, health promotion; rehabilitation, physical medicine, naturopathic treatment. This paper studies the realisation of teaching in the field social medicine at German medical faculties. The survey was conducted in collaboration with the German Association for Social Medicine and Prevention (DGSMP). A survey was conducted at 38 institutes of 36 German medical faculties. The written questionnaire contained mostly selection items in which chances and barriers of the field were queried with supply items. Information about time scale, general conditions and resources was aked for. On the basis of the guidelines of the DGSMP, the topics to be taught were evaluated concerning their relevance and integration into education. The response rate was 68% (n=26). Social insurance, basic principles, responsibility in the Social Security Code and the different providers were judged as the most important topics. There was a strong demand for lecturing material. 82% (n=18) of the faculties wished to have specific material, for example e-learning, examples, lesson plans, curricula and also textbooks. 91% (n=19) of the faculties requested an exchange of information between the faculties concerning educational contents, motivation of students and e-learning. The realisation of teaching is different between the faculties concerning the number of hours, teaching methods and number of students per year. The motivation of the students is one of the problems, but also the lack of acceptance within the clinic. Specific resources and exchange between the faculties are necessary concerning e-learning, which is offered at only few faculties so far, but interest for a more intensive usage exists. Potentials of social medicine are the promotion of awareness among the students and the "identification of basics for medical acts in the social security system". Social medicine offers the possibility to connect the theoretical institutes with the clinic. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Exploring the Role of a Discrepant Event in Changing the Conceptions of Evaporation and Boiling in Elementary School Students

    ERIC Educational Resources Information Center

    Paik, Seoung-Hey

    2015-01-01

    The purpose of this study was to explore how examples used in teaching may influence elementary school students' conceptions of evaporation and boiling. To this end, the examples traditionally used to explain evaporation and boiling in Korean 4th grade science textbooks were analyzed. The functions of these published examples were explanation…

  14. Framework for Instructional Technology: Methods of Implementing Adaptive Training and Education

    DTIC Science & Technology

    2014-01-01

    with when they were correct and certain, performed better on a posttest than students who got the same (positive) feedback for every correct...analogous step in previous examples. Students in this condition performed better on a posttest than students who had received fading of worked examples...well on a module posttest would get the next module at a higher level. Students learning with this system outperformed those learning with the

  15. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum, Rupturing Continental Lithosphere Part I: Introducing Seismic Interpretation and Isostasy Principles Using Gulf of California Examples

    NASA Astrophysics Data System (ADS)

    Lamb, M. A.; Cashman, S. M.; Dorsey, R. J.; Bennett, S. E. K.; Loveless, J. P.; Goodliffe, A. M.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate the significant findings from the MARGINS program into open-source college-level curriculum. The Gulf of California (GOC) served as the focus site for the Rupturing Continental Lithosphere initiative, which addressed several scientific questions: What forces drive rift initiation, localization, propagation and evolution? How does deformation vary in time and space, and why? How does crust evolve, physically and chemically, as rifting proceeds to sea-floor spreading? What is the role of sedimentation and magmatism in continental extension? We developed two weeks of curriculum designed for an upper-division structural geology, tectonics or geophysics course. The curriculum includes lectures, labs, and in-class activities that can be used as a whole or individually. The first set of materials introduces the RCL initiative to students and has them analyze the bathymetry and oblique-rifting geometry of the GOC in an exercise using GeoMapApp. The second set of materials has two goals: (1) introduce students to fundamental concepts of interpreting seismic reflection data via lectures and in-class interpretation of strata, basement, and faults from recent GOC seismic data, and (2) encourage students to discover the structural geometry and rift evolution, including the east-to-west progression of faulting and transition from detachment to high-angle faulting in the northern GOC, and changes in deformation style from north to south. In the third set of materials, students investigate isostatic affects of sediment fill in GOC oblique rift basins. This activity consists of a problem set, introduced in a lecture, where students integrate their findings from the previous bathymetry- and seismic-interpretation exercises.

  16. Using Systems Thinking to Frame the Evaluation of a Complex Educational Intervention

    NASA Astrophysics Data System (ADS)

    Kastens, K. A.; Baldassari, C.; DeLisi, J.; Manduca, C. A.

    2014-12-01

    InTeGrate (serc.carleton.edu/integrate/) is the geoscience component of NSF's STEM Talent Expansion Center program. As such, it is a $10M, 5 year effort, with dual goals of improving undergraduate STEM education and addressing an important national challenge, which in InTeGrate's case is environmental sustainability. InTeGrate is very complicated, involving five PI's, dozens of curriculum developers, scores of workshops and webinars, hundreds of faculty, and thousands of students. To get a handle on this complexity, the leadership team and evaluators are viewing project activities and outcomes through a system thinking lens, analogous to how geoscientists view the Earth system. For each major component of the project, we have a flowchart logic model that traces the flows of information, materials, influence, and people that are thought to result from project activities. As is to be expected in a complex system, individual activities are often influenced by multiple inputs and contribute to multiple outputs. The systems approach allows us to spot critical points in the system where evaluative probes are needed; for example, are workshops actually resulting in a flux of new people into roles of increased responsibility within InTeGrate as intended? InTeGrate is permeated with opportunities for participants to engage in assessment, reflection and peer-review. From a systems perspective, this evaluative culture can be seen as an effort to create reinforcing feedback loops for processes that advance InTeGrate's values. For example, assessment team members review draft instructional materials against a materials development rubric and coach developers through an iterative development cycle towards materials that embody InTeGrate's priorities. Of particular interest are flows of information or influence that may carry InTeGrate's impact outward in space and time beyond activities that are directly funded by the project. For example, positive experiences during materials development may influence developers' teaching practice such that they embed InTeGrate's methods into their teaching of non-InTeGrate materials and advocate for InTeGrate methods on their campuses. Only if such influence pathways exist will InTeGrate be able to achieve national and enduring impact.

  17. A Very Different Non-Stressful Comprehensive Final Exam that Achieve Our Goals for Student Evaluation and Learning

    NASA Astrophysics Data System (ADS)

    Bhavsar, Suketu

    2015-08-01

    I will introduce the radical concept of a final exam where the questions are given beforehand, a method I first encountered as a graduate student at Princeton University from an outstanding and well known astrophysicist and exceptional teacher, Lyman Spitzer.Every Instructor aspires for students to master all the material covered. A comprehensive final can assess the breadth and depth of their learning. Students are required to review early material in light of later topics, create connections and integrate understanding, thus retaining knowledge for the long term. Comprehensive finals can therefore be a significant basis for student learning and evaluation, but are especially daunting for non-STEM majors in required GE synthesis STEM classes. The exam format proposed here calmed student fears and encouraged thorough review.Ten days before the exam students received 20-30 challenging, well-crafted, numbered questions that interconnected and spanned the entire range of topics. The key is crafting questions that lead to deeply understanding the subject matter and mastering skills to solve problems. At the final, each student was required to pick a number out of a hat and answer that numbered question in a 5-minute presentation. They also had to critically comment on 10 other presentations of their peers. They are graded equally on both.The exam sets up definite goals for a student. Equally important, it enhances collaborative learning and peer mentoring. The conceptual questions and problems that students are required to answer can be studied together in study groups. The final presentation is theirs and they are not only encouraged but required to be constructively critical of their peer presentations.I will provide examples of some of the conceptual and problem solving questions I used. These were crafted to interconnect and span the entire range of topics. This method requires students to be prepared for all of the multitude of crafted question encouraging interaction and communication while studying. Knowing the questions beforehand provides a guide to their studying as well as allays their fears about what could be asked. The students also receive guidance to what constitutes a good answer, namely accuracy, thoroughness and the quality of the presentation.

  18. Research on the Countermeasures for High-end Talent Development in the New Material Industry from the Perspective of Four-dimensional Subject-With Hunan Province as an Example

    NASA Astrophysics Data System (ADS)

    Wen, Qiong

    2018-03-01

    In the context of the increasingly severe international economic situation, the new material industry is as one of the seven strategic emerging industries, and its development has become a major strategic decision of China that should be insisted at present and in the future. The implementation of this strategic decision cannot be achieved without talents. Based on the actual situation of Hunan Province, this paper points out the four major problems in high-end talent development of Hunan Province, namely, immaturity of industry development, unreasonable talent structure, imperfect training mechanism and unscientific incentive measures, and purposes the countermeasures in the perspective of four-dimensional subject involving government, enterprises, schools and students.

  19. Improvements in Students' Understanding from Increased Implementation of Active Learning Strategies

    NASA Astrophysics Data System (ADS)

    Hayes-Gehrke, Melissa N.; Prather, E. E.; Rudolph, A. L.; Collaboration of Astronomy Teaching Scholars CATS

    2011-01-01

    Many instructors are hesitant to implement active learning strategies in their introductory astronomy classrooms because they are not sure which techniques they should use, how to implement those techniques, and question whether the investment in changing their course will really bring the advertised learning gains. We present an example illustrating how thoughtful and systematic implementation of active learning strategies into a traditionally taught Astro 101 class can translate into significant increases in students' understanding. We detail the journey of one instructor, over several years, as she changes the instruction and design of her course from one that focuses almost exclusively on lecture to a course that provides an integrated use of several active learning techniques such as Lecture-Tutorials and Think-Pair-Share questions. The students in the initial lecture-only course achieved a low normalized gain score of only 0.2 on the Light and Spectroscopy Concept Inventory (LSCI), while the students in the re-designed learner-centered course achieved a significantly better normalized gain of 0.43. This material is based upon work supported by the National Science Foundation under Grant No. 0715517, a CCLI Phase III Grant for the Collaboration of Astronomy Teaching Scholars (CATS), and Grant No. 0847170, a PAARE Grant for the Calfornia-Arizona Minority Partnership for Astronomy Research and Education (CAMPARE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  20. Attitude towards Oral Health at Various Colleges of the University of Zagreb: A Pilot Study

    PubMed Central

    Ivica, Anja; Galić, Nada

    2014-01-01

    Purpose The aim of this study was to compare the oral status of three various groups of students: students of the School of Dental Medicine, students of technical sciences and students of humanities. Material and methods Research included 58 students of the University of Zagreb. They answered 3 questions: how often they brush their teeth, how often they visit their dentist and how important dental health is to them. After a standard dental check-up we calculated the DMFT index. They were given an indicator for plaque Mira-2-Ton® (Hager Werken, Duisburg, Germany) and we calculated the plaque index. For statistical analysis the ANOVA test was used. Results Students of the School of Dental Medicine had a lower plaque index than other students and this was statistically significant (p=0.0018; f=7.14). They also had a lower DMFT index, but it was not statistically significant (p=0.1004; f=2.4). 83% of students said that they brushed their teeth 2-3 times a day. Only 17% of all students brush their teeth more than 3 times a day and they are all students of the School of Dental Medicine (21% of them). Perception of oral health is on a high level, but perception of oral disease is not. The social approval of the answer was also an important factor. Conclusion Students of the School of Dental Medicine are an illustrative example of improving our habits due to education. PMID:27688358

  1. Interviewing Neuroscientists for an Undergraduate Honors Project

    PubMed Central

    Montiel, Catalina; Meitzen, John

    2017-01-01

    Honors projects that supplement standard coursework are a widely used practice in undergraduate curricula. These projects can take many forms, ranging from laboratory research projects to performing service learning to literature analyses. Here we discuss an honors project focused on interviewing neuroscientists to learn about individual scientific practice and career paths, and synthesizing the resulting information into a personal reflection essay. We detail step-by-step instructions for performing this type of project, including how to develop interview questions, a sample project timeline, deliverables, learning objectives and outcomes, and address potential pitfalls. We provide sample interview questions, an interview solicitation email, and in the supplemental materials an example student reflection essay, assessment rubrics, and the transcription of a student-conducted interview of Drs. John Godwin and Santosh Mishra of North Carolina State University. This type of project is a promising method to enable student-researcher communication, and potentially useful to a broad spectrum of both honors and non-honors neuroscience coursework. PMID:29371847

  2. NEXUS/Physics: An interdisciplinary repurposing of physics for biologists

    NASA Astrophysics Data System (ADS)

    Redish, E. F.; Bauer, C.; Carleton, K. L.; Cooke, T. J.; Cooper, M.; Crouch, C. H.; Dreyfus, B. W.; Geller, B. D.; Giannini, J.; Gouvea, J. S.; Klymkowsky, M. W.; Losert, W.; Moore, K.; Presson, J.; Sawtelle, V.; Thompson, K. V.; Turpen, C.; Zia, R. K. P.

    2014-05-01

    In response to increasing calls for the reform of the undergraduate science curriculum for life science majors and pre-medical students (Bio2010, Scientific Foundations for Future Physicians, Vision & Change), an interdisciplinary team has created NEXUS/Physics: a repurposing of an introductory physics curriculum for the life sciences. The curriculum interacts strongly and supportively with introductory biology and chemistry courses taken by life-science students, with the goal of helping students build general, multi-discipline scientific competencies. NEXUS/Physics stresses interdisciplinary examples and the content differs markedly from traditional introductory physics to facilitate this: it extends the discussion of energy to include interatomic potentials and chemical reactions, the discussion of thermodynamics to include enthalpy and Gibbs free energy and includes a serious discussion of random vs coherent motion including diffusion. The development of instructional materials is coordinated with careful education research. Both the new content and the results of the research are described in a series of papers for which this paper serves as an overview and context.

  3. Magnetohydrodynamic Propulsion for the Classroom

    NASA Astrophysics Data System (ADS)

    Font, Gabriel I.; Dudley, Scott C.

    2004-10-01

    The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.

  4. Interviewing Neuroscientists for an Undergraduate Honors Project.

    PubMed

    Montiel, Catalina; Meitzen, John

    2017-01-01

    Honors projects that supplement standard coursework are a widely used practice in undergraduate curricula. These projects can take many forms, ranging from laboratory research projects to performing service learning to literature analyses. Here we discuss an honors project focused on interviewing neuroscientists to learn about individual scientific practice and career paths, and synthesizing the resulting information into a personal reflection essay. We detail step-by-step instructions for performing this type of project, including how to develop interview questions, a sample project timeline, deliverables, learning objectives and outcomes, and address potential pitfalls. We provide sample interview questions, an interview solicitation email, and in the supplemental materials an example student reflection essay, assessment rubrics, and the transcription of a student-conducted interview of Drs. John Godwin and Santosh Mishra of North Carolina State University. This type of project is a promising method to enable student-researcher communication, and potentially useful to a broad spectrum of both honors and non-honors neuroscience coursework.

  5. Using superheroes such as Hawkeye, Wonder Woman and the Invisible Woman in the physics classroom

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Barry W.

    2018-05-01

    Communication of difficult concepts in the physics classroom can be negatively affected by the absence of a strong link between physics content and the experiences or interests of students. One possible method towards addressing this issue is to motivate physics content with reference to popular culture figures such as superheroes. We find ourselves in an age where superhero films are immensely popular with numerous superhero films scheduled for release over the coming years. With many students familiar with many of these characters and their superpowers, superheroes can facilitate a unique platform to aid in the dissemination of physics materials in the classroom. In this paper, we present three examples where superheroes can be used to motivate learning objectives in physics and, if desired, promote critical thinking on behalf of the student. We also reflect on how using the superhero genre in the classroom can be used to address underrepresentation of women, stereotyping, and diversity issues in physics.

  6. Particle Physics, 2nd Edition

    NASA Astrophysics Data System (ADS)

    Martin, B. R.; Shaw, G.

    1998-01-01

    Particle Physics, Second Edition is a concise and lucid account of the fundamental constituents of matter. The standard model of particle physics is developed carefully and systematically, without heavy mathematical formalism, to make this stimulating subject accessible to undergraduate students. Throughout, the emphasis is on the interpretation of experimental data in terms of the basic properties of quarks and leptons, and extensive use is made of symmetry principles and Feynman diagrams, which are introduced early in the book. The Second Edition brings the book fully up to date, including the discovery of the top quark and the search for the Higgs boson. A final short chapter is devoted to the continuing search for new physics beyond the standard model. Particle Physics, Second Edition features: * A carefully structured and written text to help students understand this exciting and demanding subject. * Many worked examples and problems to aid student learning. Hints for solving the problems are given in an Appendix. * Optional "starred" sections and appendices, containing more specialised and advanced material for the more ambitious reader.

  7. ‘Building Core Knowledge - Reconstructing Earth History’: Transforming Undergraduate Instruction by Bringing Ocean Drilling Science on Earth History and Global Climate Change into the Classroom (Invited)

    NASA Astrophysics Data System (ADS)

    St. John, K.; Leckie, R. M.; Jones, M. H.; Pound, K. S.; Pyle, E.; Krissek, L. A.

    2009-12-01

    This NSF-funded, Phase 1 CCLI project effectively integrates scientific ocean drilling data and research (DSDP-ODP-IODP-ANDRILL) with education. We have developed, and are currently testing, a suite of data-rich inquiry-based classroom learning materials based on sediment core archives. These materials are suitable for use in introductory geoscience courses that serve general education students, early geoscience majors, and pre-service teachers. 'Science made accessible' is the essence of this goal. Our team consists of research and education specialists from institutions ranging from R1 research to public liberal arts to community college. We address relevant and timely ‘Big Ideas’ with foundational geoscience concepts and climate change case studies, as well transferable skills valued in professional settings. The exercises are divided into separate but inter-related modules including: introduction to cores, seafloor sediments, microfossils and biostratigraphy, paleomagnetism and magnetostratigraphy, climate rhythms, oxygen-isotope changes in the Cenozoic, past Arctic and Antarctic climates, drill site selection, interpreting Arctic and Antarctic sediment cores, onset of Northern Hemisphere glaciation, onset of Antarctic glaciation, and the Paleocene-Eocene Thermal Maximum. Each module has several parts, and each is designed to be used in the classroom, laboratory, or assigned as homework. All exercises utilize authentic data. Students work with scientific uncertainty, practice quantitative and problem-solving skills, and expand their basic geologic and geographic knowledge. Students have the opportunity to work individually and in groups, evaluate real-world problems, and formulate hypotheses. Initial exercises in each module are useful to introduce a topic, gauge prior knowledge, and flag possible areas of student misconception. Comprehensive instructor guides provide essential background information, detailed answer keys, and alternative implementation strategies, as well as providing links to other supplementary materials and examples for assessment. Preliminary assessment data indicates positive gains in student attitudes towards science, and in their content knowledge and scientific skills. In addition, student outcomes appear to depend somewhat on students’ motivation for taking the course and their institution, but are generally independent of students’ class rank or GPA. Our classroom-tested learning materials are being disseminated through a variety of outlets including instructor workshops and eventually to the web.

  8. Engaging adolescents with LD in higher order thinking about history concepts using integrated content enhancement routines.

    PubMed

    Bulgren, Janis; Deshler, Donald D; Lenz, B Keith

    2007-01-01

    The understanding and use of historical concepts specified in national history standards pose many challenges to students. These challenges include both the acquisition of content knowledge and the use of that knowledge in ways that require higher order thinking. All students, including adolescents with learning disabilities (LD), are expected to understand and use concepts of history to pass high-stakes assessments and to participate meaningfully in a democratic society. This article describes Content Enhancement Routines (CERs) to illustrate instructional planning, teaching, and assessing for higher order thinking with examples from an American history unit. Research on the individual components of Content Enhancement Routines will be illustrated with data from 1 of the routines. The potential use of integrated sets of materials and procedures across grade levels and content areas will be discussed.

  9. Learning about Chemiosmosis and ATP Synthesis with Animations Outside of the Classroom †

    PubMed Central

    Goff, Eric E.; Reindl, Katie M.; Johnson, Christina; McClean, Phillip; Offerdahl, Erika G.; Schroeder, Noah L.; White, Alan R.

    2017-01-01

    Many undergraduate biology courses have begun to implement instructional strategies aimed at increasing student interaction with course material outside of the classroom. Two examples of such practices are introducing students to concepts as preparation prior to instruction, and as conceptual reinforcement after the instructional period. Using a three-group design, we investigate the impact of an animation developed as part of the Virtual Cell Animation Collection on the topic of concentration gradients and their role in the actions of ATP synthase as a means of pre-class preparation or post-class reinforcement compared with a no-intervention control group. Results from seven sections of introductory biology (n = 732) randomized to treatments over two semesters show that students who viewed animation as preparation (d = 0.44, p < 0.001) or as reinforcement (d = 0.53, p < 0.001) both outperformed students in the control group on a follow-up assessment. Direct comparison of the preparation and reinforcement treatments shows no significant difference in student outcomes between the two treatment groups (p = 0.87). Results suggest that while student interaction with animations on the topic of concentration gradients outside of the classroom may lead to greater learning outcomes than the control group, in the traditional lecture-based course the timing of such interactions may not be as important. PMID:28512512

  10. TMS 2014 143rd Annual Meeting & Exhibition, Annual Meeting Supplemental Proceedings (ISBN: 978-1-118-88972-5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, K; Zhukov, A; Ipatov, M

    The Magnetic Materials for Energy Applications IV, held at the 2014, 143rd Annual Meeting of The Minerals, Metals, and Materials Society (TMS), brought together experts, young investigators, and students from this sub-discipline of materials science in order for them to share their latest discoveries and develop collaborations. This symposium, which is organized by The Minerals, Metals, and Materials Society, is an important event for this community of scientists. This year, over 50 high-level technical talks were planned over the course of the event. In addition, the students and young investigators in attendance ensured the maximum benefit to the next generation’smore » work force in this area of study. Meeting global energy needs in a clean, efficient, secure and sustainable manner is arguably the greatest challenge facing mankind today. Magnetic materials play a critical role in myriad devices for the collection, conversion, transmission and storage of energy. For example, high performance permanent magnets are currently in great demand for the generators in wind turbines and electric motors in hybrid vehicles. Other classes of advanced magnetic materials are essential for efficient inductors/transformers and motors. Energy efficient cooling based on the magnetocaloric effect is another exciting possibility which is rapidly becoming industrially viable. The potential energy savings related to refrigeration and air conditioning based on magnetocaloric materials are highly attractive. This symposium allowed experts in areas relating to the advanced characterization, simulation, and optimization of magnetic materials to convene and present their latest research. The types of interactions afforded by this event are beneficial to society at large primarily because they provide opportunities for the leaders within this field to learn from one another and thus improve the quality and productivity of their investigations. Additionally, the presence of young investigators and students with technical interests in this field provides promise that the United States will continue to be a leader in this area. The support provided by the Department of Energy for this event directly enhanced its impact on the field by helping a number of students, young investigators, and technical experts attend and participate in this event. This symposium brought together research experts and students in the field to present the latest developments on the science surrounding advanced characterization, simulation, and optimization of magnetic materials and their use in energy applications such as generation and magnetic cooling. A strong technical program, containing more than 50 presentations was developed and organized around the following technical sessions. A strong list of invited speakers contributed to the high quality of technical content. Rare Earth Permanent Magnets: Processing, Characterization and Modeling Rare Earth Free Permanent Magnets Fundamentals of the Magnetocaloric Effect and Current Status of Magnetic Cooling Technology Magnetocaloric Materials High Performance Soft Magnets I High Performance Soft Magnets II« less

  11. Thinking outside the (voice) box: a case study of students' perceptions of the relevance of anatomy to speech pathology.

    PubMed

    Weir, Kristy A

    2008-01-01

    Speech pathology students readily identify the importance of a sound understanding of anatomical structures central to their intended profession. In contrast, they often do not recognize the relevance of a broader understanding of structure and function. This study aimed to explore students' perceptions of the relevance of anatomy to speech pathology. The effect of two learning activities on students' perceptions was also evaluated. First, a written assignment required students to illustrate the relevance of anatomy to speech pathology by using an example selected from one of the four alternative structures. The second approach was the introduction of brief "scenarios" with directed questions into the practical class. The effects of these activities were assessed via two surveys designed to evaluate students' perceptions of the relevance of anatomy before and during the course experience. A focus group was conducted to clarify and extend discussion of issues arising from the survey data. The results showed that the students perceived some course material as irrelevant to speech pathology. The importance of relevance to the students' "state" motivation was well supported by the data. Although the students believed that the learning activities helped their understanding of the relevance of anatomy, some structures were considered less relevant at the end of the course. It is likely that the perceived amount of content and surface approach to learning may have prevented students from "thinking outside the box" regarding which anatomical structures are relevant to the profession.

  12. Unsticking from time to create a parasitologic amalgamation.

    PubMed

    Bowman, Dwight D

    2018-03-15

    Parasitology is a relevant and integral part of veterinary medicine, and the WAAVP membership has skills ranging from morphological diagnostics and routine parasite control recommendations through the cutting edges of many disciplines, e.g., pharmacology, immunology, molecular biology and genomics. We regularly face a majority of students who want only the practical information useful the moment they enter the clinics. However, we are preparing them for careers lasting 30-50 years. Thus, we also must help them prepare for their futures. There is a constant squeeze on parasitology in the curricular footprint accompanying a mandatory need to cover the licensure basics. The basic material has stood the test of time, and until the agents are eradicated or the hosts extinct, they have value. But, a critical need is the interweaving of the marvels of modern science into the parasitology regularly presented. Often this has been done with boxes, highlights, or examples within classes or texts, but asides are mentally treated as such. Also, many of those teaching parasitology are unfamiliar with many of the concepts and details of this material, but these same folks remain a grand part of the profession. Also, it is hard to sneak this apparently unwarranted material past the clinically oriented veterinary student. Somehow, WAAVP needs to work with its membership to develop and assist faculty in the presentation of a curriculum that can meld the old and the avant guard into a fusion of tastes and flavours palatable to today's veterinary student and tomorrow's practitioner. Copyright © 2018. Published by Elsevier B.V.

  13. Preparing nurses internationally for emergency planning and response.

    PubMed

    Weiner, Elizabeth

    2006-09-30

    Competency-based education provides an international infrastructure for nurses to learn about emergency preparedness and response. The International Nursing Coalition for Mass Casualty Education (INCMCE) has developed competencies for all nurses, as well as online modules for meeting those competencies. In addition, other curriculum resources are available that range from face-to-face classes, web-based modules, and electronic journals, to complete pre-packaged materials. The author of this article describes competencies needed for emergency preparedness identified by Columbia University, Vanderbilt University, and the International Nursing Coalition for Mass Casualty Education, as well as various curriculum resources for emergency planning and response and also processes to prepare nurses for emergency responses. Examples of international "Best Practices" feature programs that provide examples of innovative educational strategies for preparing nurses for emergency response are presented. The author concludes that while curriculum resources are widely available, a better centralized clearinghouse could be made available for both faculty and students.

  14. A study of concept-based similarity approaches for recommending program examples

    NASA Astrophysics Data System (ADS)

    Hosseini, Roya; Brusilovsky, Peter

    2017-07-01

    This paper investigates a range of concept-based example recommendation approaches that we developed to provide example-based problem-solving support in the domain of programming. The goal of these approaches is to offer students a set of most relevant remedial examples when they have trouble solving a code comprehension problem where students examine a program code to determine its output or the final value of a variable. In this paper, we use the ideas of semantic-level similarity-based linking developed in the area of intelligent hypertext to generate examples for the given problem. To determine the best-performing approach, we explored two groups of similarity approaches for selecting examples: non-structural approaches focusing on examples that are similar to the problem in terms of concept coverage and structural approaches focusing on examples that are similar to the problem by the structure of the content. We also explored the value of personalized example recommendation based on student's knowledge levels and learning goal of the exercise. The paper presents concept-based similarity approaches that we developed, explains the data collection studies and reports the result of comparative analysis. The results of our analysis showed better ranking performance of the personalized structural variant of cosine similarity approach.

  15. On the reality of the incorporeal intelligibles: a reflection on the metaphysics of psychology.

    PubMed

    Bakan, D

    2001-10-01

    An argument is made for the existence of entities which are neither necessarily material nor mental as real and which are apprehensible and generatable by human beings. Money, color, triangle, natural and social law, instruction, danger, and invention are given as examples. It is the task of the science of psychology to grasp, conceptualise, and characterise the human being that lives in a world of incorporeal intelligibles and makes them as well. The tradition of Aristotle, Brentano and his two students, Freud and Husserl, and Wertheimer is identified favorably in this connection.

  16. Teaching physics mysteries versus pseudoscience

    NASA Astrophysics Data System (ADS)

    Kuttner, Fred

    2007-04-01

    The interpretation of quantum mechanics (and the encounter with consciousness) is contentious and has been called ``physics' skeleton in the closet.'' The reluctance of physicists to share this enigma with students and with the larger public has left the discussion open to the wild claims of purveyors of pseudoscience. The movie ``What the Bleep'' is a recent example. Bringing the enigma into the open is the best way to combat pseudoscience and share the true, deep mysteries that physics has uncovered. I will discuss my own experience and that of colleagues with ways of presenting this material to physics majors, non-majors, and the public.

  17. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2014-04-29

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  18. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  19. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D [Reno, NV; Sulchek, Todd A [Oakland, CA; Feigin, Stuart C [Reno, NV

    2012-07-10

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  20. Cantilevered probe detector with piezoelectric element

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2010-04-06

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  1. Delayed Learning Effects with Erroneous Examples: A Study of Learning Decimals with a Web-Based Tutor

    ERIC Educational Resources Information Center

    McLaren, Bruce M.; Adams, Deanne M.; Mayer, Richard E.

    2015-01-01

    Erroneous examples--step-by-step problem solutions with one or more errors for students to find and fix--hold great potential to help students learn. In this study, which is a replication of a prior study (Adams et al. 2014), but with a much larger population (390 vs. 208), middle school students learned about decimals either by working with…

  2. Students' Ontological Security and Agency in Science Education--An Example from Reasoning about the Use of Gene Technology

    ERIC Educational Resources Information Center

    Lindahl, Mats Gunnar; Linder, Cedric

    2013-01-01

    This paper reports on a study of how students' reasoning about socioscientific issues is framed by three dynamics: societal structures, agency and how trust and security issues are handled. Examples from gene technology were used as the forum for interviews with 13 Swedish high-school students (year 11, age 17-18). A grid based on modalities from…

  3. Attention to the Model's Face When Learning from Video Modeling Examples in Adolescents with and without Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    van Wermeskerken, Margot; Grimmius, Bianca; van Gog, Tamara

    2018-01-01

    We investigated the effects of seeing the instructor's (i.e., the model's) face in video modeling examples on students' attention and their learning outcomes. Research with university students suggested that the model's face attracts students' attention away from what the model is doing, but this did not hamper learning. We aimed to investigate…

  4. Multilingual education of students on a global scale and perspective-international networking on the example of bioindication and biomonitoring (B&B technologies).

    PubMed

    Markert, Bernd; Baltrėnaitė, Edita; Chudzińska, Ewa; De Marco, Silvia; Diatta, Jean; Ghaffari, Zahra; Gorelova, Svetlana; Marcovecchio, Jorge; Tabors, Guntis; Wang, Meie; Yousef, Naglaa; Fraenzle, Stefan; Wuenschmann, Simone

    2014-04-01

    Living or formerly living organisms are being used to obtain information on the quality of the general health status of our environment by bioindication and biomonitoring methods for many decades. Thus, different roads toward this common scientific goal were developed by a lot of different international research groups. Global cooperation in between various scientific teams throughout the world has produced common ideas, scientific definitions, and highly innovative results of this extremely attractive working field. The transdisciplinary approach of different and multifaceted scientific areas-starting from biology, analytical chemistry, via health physics, up to social and economic issues-have surpassed mental barriers of individual scientists, so that "production" of straightforward common results related to the influence of material and immaterial environmental factors to the well-being of organisms and human life has now reached the forefront of international thinking. For the further sustainable development of our common scientific "hobby" of bioindication and biomonitoring, highest personal energy has to be given by us, being teachers to our students and to convince strategically decision makers as politicians to invest (financially) into the development of education and research of this innovative technique. Young people have to be intensively convinced on the "meaning" of our scientific doing, e.g., by extended forms of education. One example of multilingual education of students on a global scale and perspective is given here, which we started about 3 years ago.

  5. Serpentine Solutions.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    2003-01-01

    Focuses on works of art that are serpentine, which means the artist either depicts snakes or use snake-like designs. Explains that the four examples given are to motivate students to search for more examples. Discusses different ways to help students learn about serpentine designs by observing real snakes. (CMK)

  6. A Worked Example for Creating Worked Examples

    ERIC Educational Resources Information Center

    McGinn, Kelly M.; Lange, Karin E.; Booth, Julie L.

    2015-01-01

    Researchers have extensively documented, and math teachers know from experience, that algebra is a "gatekeeper" to more advanced mathematical topics. Students must have a strong understanding of fundamental algebraic concepts to be successful in later mathematics courses. Unfortunately, algebraic misconceptions that students may form or…

  7. Ideals into Reality: Some Examples.

    ERIC Educational Resources Information Center

    Capuzzi, Dave; And Others

    Examples of innovations in college and adult reading reading programs in five states are described. At Maricopa Technical College (Arizona) adult students have access to a special reading program emphasizing the language experience approach, capitalizing on students' life experiences and oral language facility. Otero Junior College (Colorado)…

  8. Online or not? A comparison of students' experiences of an online and an on-campus class.

    PubMed

    Mgutshini, Tennyson

    2013-03-18

    Educational discourse has long portrayed online, or e-based, learning and all non-campus-based learning options as second best to traditional face-to-face options. Critically much of the research and debate in this area of study has focused on evidence relating to student performance, attrition and retention with little consideration of the total learning experience, which values both the traditional learning outcome measures side-by-side with student-centered factors, such as students' satisfaction with their learning experience. The objective of this study was to present a synchronous head-to-head comparison between online and campus-based students' experiences of an undergraduate course. This paper reports on a qualitative comparative cross-sectional study, which used multiple data collection approaches to assess student learning and student satisfaction of 61 students who completed a semester of an undergraduate course. Of the 61 students, 34 were enrolled purely as online students, whilst the remaining 27 students studied the same material entirely through the traditional face-to-face medium. Methods included a standardised student satisfaction survey and an 'achievement of learning outcomes' measurement tool. Students on the online cohort performed better in areas where 'self-direction' in learning was indicated, for example self-directed problem-based tasks within the course. Online students gave less positive self-assessments of their perceived content mastery than their campus-based counterparts, despite performing just as well in both summative and formative assignments. A multi-factorial comparison shows online students to have comparable educational success and that, in terms of student satisfaction, online learners reported more satisfaction with their learning experience than their campus-based counterparts.

  9. Teaching the Interior Composition and Rheology of the Earth to Undergraduate Students Using an Inquiry Based Approach

    NASA Astrophysics Data System (ADS)

    Hayden, T. G.; Callahan, C. N.; Sibert, R. J.; Ewald, S. K.

    2011-12-01

    Most introductory geology courses include a lesson on the internal layered structure of the Earth. Due to the abstract nature of the content, this topic is difficult to teach using an inquiry-based approach. The challenge is two-fold: first, students cannot directly see the layers from their perspective on the earth's surface, and second, students have trouble grasping the vast scale of the earth, which far exceeds their everyday experiences. In addition, the two separate classification systems for dividing the internal structure of the Earth are often a point of confusion and source of misconceptions. In response to this challenge, we developed an inquiry lesson that scaffolds students' understanding of the compositional and rheological properties of the Earth's interior. The intent is to build students' understanding of the Earth's layers by guiding their attention to the reasons for the separate classification systems and the individual layers. The investigation includes teacher- or material-driven components such as guiding questions and specific hand-samples for analogues as well as student-driven components like collecting data and constructing explanations. The lesson opens with a series of questions designed to elicit students' existing ideas about the Earth's interior. The students are then guided to make observations of hand samples meant to represent examples of the crust and mantle as well as physical materials meant to serve as analogues for the lithosphere and asthenosphere. The lesson concludes with students integrating their observations into a model of the Earth's internal structure that accounts for both the compositional and rheological properties. Although this lesson was originally developed as a roughly 60 minute lesson for a class of 24 students, we also note ways this lesson can be modified for use at a variety of course levels. The lesson was pilot-tested in an introductory Earth Science course for future elementary (K-8) teachers. Data collected includes both pre- and post-instruction drawings as well as responses to multiple-choice test items derived from the Geoscience Content Inventory (GCI).

  10. The problem of polysemy in the first thousand words of the General Service List: A corpus study of secondary chemistry texts

    NASA Astrophysics Data System (ADS)

    Clemmons, Karina

    Vocabulary in a second language is an indispensable building block of all comprehension (Folse, 2006; Nation, 2006). Teachers in content area classes such as science, math, and social studies frequently teach content specific vocabulary, but are not aware of the obstacles that can occur when students do not know the basic words. Word lists such as the General Service List (GSL) were created to assist students and teachers (West, 1953). The GSL does not adequately take into account the high level of polysemy of many common English words, nor has it been updated by genre to reflect specific content domains encountered by secondary science students in today's high stakes classes such as chemistry. This study examines how many words of the first 1000 words of the GSL occurred in the secondary chemistry textbooks sampled, how often the first 1000 words of the GSL were polysemous, and specifically which multiple meanings occurred. A discussion of results includes word tables that list multiple meanings present, example phrases that illustrate the context surrounding the target words, suggestions for a GSL that is genre specific to secondary chemistry textbooks and that is ranked by meaning as well as type, and implications for both vocabulary materials and classroom instruction for ELLs in secondary chemistry classes. Findings are essential to second language (L2) researchers, materials developers, publishers, and teachers.

  11. Flipping the Classroom: Assessment of Strategies to Promote Student-Centered, Self-Directed Learning in a Dental School Course in Pediatric Dentistry.

    PubMed

    Bohaty, Brenda S; Redford, Gloria J; Gadbury-Amyot, Cynthia C

    2016-11-01

    The aim of this study was to explore student and course director experiences with the redesign of a traditional lecture-based course into a flipped classroom for teaching didactic content in pediatric dentistry to second-year dental students. The study assessed student satisfaction, extent of student engagement, overall course grades, and course director satisfaction. The students enrolled in a flipped classroom pediatric dentistry course (spring semester 2014; SP14) were asked to complete pre- and post-course questionnaires to assess their perceptions of active learning, knowledge acquisition, and course satisfaction. The process was repeated with the class enrolled in the same course the following year (SP15). Responses for SP14 and SP15 resulted in an overall response rate of 95% on the pre questionnaire and 84% on the post questionnaire. The results showed that the greatest perceived advantage of the flipped classroom design was the availability and access to online content and course materials. Students reported enhanced learning due to heightened engagement in discussion. The results also showed that students' overall course grades improved and that the course director was satisfied with the experience, particularly after year two. Many calls have been made for educational strategies that encourage critical thinking instead of passive learning environments. This study provides one example of a course redesign and demonstrates the need for both faculty and student development to ensure success when a flipped classroom methodology is introduced.

  12. Connecting Oceanography and Music

    NASA Astrophysics Data System (ADS)

    Beauregard, J. L.

    2016-02-01

    Capturing and retaining the interest of non-science majors in science classes can be difficult, no matter what type of science. At Berklee College of Music, this challenge is especially significant, as all students are music majors. In my Introductory Oceanography course, I use a final project as a way for the students to link class material with their own interests. The students may choose any format to present their projects to the class; however, many students write and perform original music. The performances of ocean-themed music have become a huge draw of the Introductory Oceanography course. In an effort to expand the reach of this music, several colleagues and I organized the first Earth Day event at Berklee, `Earthapalooza 2015.' This event included performances of music originally written for the final projects, as well as other musical performances, poetry readings, guest talks, and information booths. Although the idea of an Earth Day event is not new, this event is unique in that student performances really resonate with the student audience. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of oceanography through music. In this presentation, I will play examples of original student compositions and show video of the live student performances. I will also discuss the benefits and challenges of the final projects and the Earth Day event. Finally, I will highlight the future plans to continue ocean-themed music at Berklee.

  13. The Challenges and Benefits of Using Computer Technology for Communication and Teaching in the Geosciences

    NASA Astrophysics Data System (ADS)

    Fairley, J. P.; Hinds, J. J.

    2003-12-01

    The advent of the World Wide Web in the early 1990s not only revolutionized the exchange of ideas and information within the scientific community, but also provided educators with a new array of teaching, informational, and promotional tools. Use of computer graphics and animation to explain concepts and processes can stimulate classroom participation and student interest in the geosciences, which has historically attracted students with strong spatial and visualization skills. In today's job market, graduates are expected to have knowledge of computers and the ability to use them for acquiring, processing, and visually analyzing data. Furthermore, in addition to promoting visibility and communication within the scientific community, computer graphics and the Internet can be informative and educational for the general public. Although computer skills are crucial for earth science students and educators, many pitfalls exist in implementing computer technology and web-based resources into research and classroom activities. Learning to use these new tools effectively requires a significant time commitment and careful attention to the source and reliability of the data presented. Furthermore, educators have a responsibility to ensure that students and the public understand the assumptions and limitations of the materials presented, rather than allowing them to be overwhelmed by "gee-whiz" aspects of the technology. We present three examples of computer technology in the earth sciences classroom: 1) a computer animation of water table response to well pumping, 2) a 3-D fly-through animation of a fault controlled valley, and 3) a virtual field trip for an introductory geology class. These examples demonstrate some of the challenges and benefits of these new tools, and encourage educators to expand the responsible use of computer technology for teaching and communicating scientific results to the general public.

  14. Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno

    DOEpatents

    Adams, Jesse D.; Sulchek, Todd A.; Feigin, Stuart C.

    2017-07-11

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  15. Problem Solving: Helping Students Move From Novices Toward Experts

    NASA Astrophysics Data System (ADS)

    Harper, Kathleen A.

    2010-10-01

    When introductory physics students engage in problem solving, they often exhibit behaviors that can frustrate their teachers. Some well-known examples of these habits include refusing to draw free-body diagrams, hunting through the book to find an example problem to use as a (perhaps inappropriate) template, and the classic ``plug-n-chug'' mentality. Studies in science education and cognitive science have yielded rational explanations for many of these novice behaviors and lay a groundwork for instructors to aid their students in beginning to develop more expert-like skills and behaviors. A few examples of these studies, as well as curricular tools that have developed as a result, will be shared. These tools not only encourage students to try more expert-like strategies, but also prime them for developing conceptual understanding.

  16. Hauntings, homeopathy, and the Hopkinsville Goblins: using pseudoscience to teach scientific thinking

    PubMed Central

    Schmaltz, Rodney; Lilienfeld, Scott O.

    2014-01-01

    With access to information ever increasing, it is essential that students acquire the skills to distinguish fact from fiction. By incorporating examples of pseudoscience into lectures, instructors can provide students with the tools needed to understand the difference between scientific and pseudoscientific or paranormal claims. We discuss examples involving psychics, ghosts, aliens, and other phenomena in relation to scientific thinking. In light of research literature demonstrating that presenting and dispelling scientific misconceptions in the classroom is an effective means of countering non-scientific or pseudoscientific beliefs, we provide examples of pseudoscience that can be used to help students acquire healthy skepticism while avoiding cynicism. PMID:24860520

  17. Hauntings, homeopathy, and the Hopkinsville Goblins: using pseudoscience to teach scientific thinking.

    PubMed

    Schmaltz, Rodney; Lilienfeld, Scott O

    2014-01-01

    With access to information ever increasing, it is essential that students acquire the skills to distinguish fact from fiction. By incorporating examples of pseudoscience into lectures, instructors can provide students with the tools needed to understand the difference between scientific and pseudoscientific or paranormal claims. We discuss examples involving psychics, ghosts, aliens, and other phenomena in relation to scientific thinking. In light of research literature demonstrating that presenting and dispelling scientific misconceptions in the classroom is an effective means of countering non-scientific or pseudoscientific beliefs, we provide examples of pseudoscience that can be used to help students acquire healthy skepticism while avoiding cynicism.

  18. The College Science Learning Cycle: An Instructional Model for Reformed Teaching

    PubMed Central

    Withers, Michelle

    2016-01-01

    Finding the time for developing or locating new class materials is one of the biggest barriers for instructors reforming their teaching approaches. Even instructors who have taken part in training workshops may feel overwhelmed by the task of transforming passive lecture content to engaging learning activities. Learning cycles have been instrumental in helping K–12 science teachers design effective instruction for decades. This paper introduces the College Science Learning Cycle adapted from the popular Biological Sciences Curriculum Study 5E to help science, technology, engineering, and mathematics faculty develop course materials to support active, student-centered teaching approaches in their classrooms. The learning cycle is embedded in backward design, a learning outcomes–oriented instructional design approach, and is accompanied by resources and examples to help faculty transform their teaching in a time-efficient manner. PMID:27909030

  19. [A Multimedia Tutorial to Train Ultrasonography of the Thyroid for Medical Students].

    PubMed

    Ritter, Julia; Wolfram, Maximilian; Schuler, Stefan; Guntinas-Lichius, Orlando

    2017-11-01

    Physicians in education often have poor experience in practice and assessment of ultrasonography on entering their profession, due to a deficiency of training offers during their study of medicine. Hence, a multimedia device for stepwise learning and training ultrasonography of the thyroid was developed. A software for a portable ultrasonography system was used to design a multimedia device for ultrasonography of the thyroid. It allows the user to illustrate texts and pictorial material simultaneously with ultrasound examination in order to compare own findings with examples from a database. The device was evaluated by 8 medical students and compared to a tutor-guided training. A structured, stepwise manual for ultrasonography of the thyroid with a large content of examples in different sectional images was designed for simultaneous reconstruction with the ultrasonography device. The informative content of the device and the replicability of the examination procedure were evaluated positively. Assessment respecting clarity, eligibility for users without experience and learning success was varying. The tutorial to learn and train ultrasonography of the thyroid is an instrument for self-learning and improving practical education in ultrasonography in medical education. In the next version, the manual for the examination will be structured in greater detail. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Exploring The Moon through a 21st Century Learning Environment of Interactive Whiteboards

    NASA Astrophysics Data System (ADS)

    Runyon, C. J.; Hall, C.; Joyner, E.; Meyer, H. M.

    2012-12-01

    Lunar exploration has an important role to play in inspiring students to hone their skills and understanding, as well as encouraging them to pursue careers in science, technology engineering and math (STEM). Many of NASA's current lunar educational materials do not dynamically engage the whole learner or effectively address 21st Century skills. We present examples of several dynamic lunar science activities for use on interactive white boards. These activities are replicable and incorporate NASA mission-derived sampling and analysis techniques. Building on a highly visual and tactile workforce, it is imperative that today's classrooms keep up with technologies that are the media of modern life. Interactive white boards offer a coordinated curricula and supporting resources that are immediately usable in most classrooms across America. Our dynamic classroom materials are rich in scientific processes, meet the national standards of learning in STEM, and are teacher-vetted for content and usability. Incorporating educational activities created from the NASA Lunar Science Institute team activities, the Moon Mineralogy Mapper (M3) Educator's Guide, and more current NASA lunar missions, we offer three dynamic modules for use on an interactive white board. SMART activities implement the mastery teaching model, employing instructional strategies so that all students can achieve the same level of learning. Our goal is to provide educators with multiple resources for teaching their students about the Moon and engaging their interest in pursuing STEM in the future. In addition to background information, inquiry-oriented lessons allow students to gather information and data directly through the Internet. For example, with the return of high resolution/high spatial data from M3/Chandrayaan-1, we can now better identify, discern and understand the compositional variations on the lunar surface. Data and analysis techniques from the M3 imaging spectrometer are incorporated into the lessons. Module I: Students explore the properties of light and use an ALTA hand-held spectrometer to identify and map compositional variation on the moon's surface, discovering that the Moon is similar to, yet different from, the Earth and terrestrial planets. Module II: Students break up into teams of "Orbiters" and "Earth scientists" to gather reflectance data from "Moon rocks" and Earth rocks respectively. Students compare the reflectance spectra from those to identify the rock types on the Moon. Module III: Students create and compare color-coded mineralogy maps and topographical maps of the Moon. Using spectroscopic data and their understanding of cratering and volcanism from previous activities, students create questions and devise theories for the geologic history of the Moon. Current research is inconclusive as to whether or not the use of 21st century technologies are effective as learning tools. Although the technology may be available in modern classrooms, many teachers still teach with traditional instructional strategies. We have seen, that when students actively engage and are a part of using the technology, they develop a deeper understanding and a desire to learn more about the topics covered. The interactive whiteboard technology permits students to directly immerse themselves with the content.

  1. Computer programs of information processing of nuclear physical methods as a demonstration material in studying nuclear physics and numerical methods

    NASA Astrophysics Data System (ADS)

    Bateev, A. B.; Filippov, V. P.

    2017-01-01

    The principle possibility of using computer program Univem MS for Mössbauer spectra fitting as a demonstration material at studying such disciplines as atomic and nuclear physics and numerical methods by students is shown in the article. This program is associated with nuclear-physical parameters such as isomer (or chemical) shift of nuclear energy level, interaction of nuclear quadrupole moment with electric field and of magnetic moment with surrounded magnetic field. The basic processing algorithm in such programs is the Least Square Method. The deviation of values of experimental points on spectra from the value of theoretical dependence is defined on concrete examples. This value is characterized in numerical methods as mean square deviation. The shape of theoretical lines in the program is defined by Gaussian and Lorentzian distributions. The visualization of the studied material on atomic and nuclear physics can be improved by similar programs of the Mössbauer spectroscopy, X-ray Fluorescence Analyzer or X-ray diffraction analysis.

  2. Multimedia Thermofluid Dynamics, an Undergraduate Education Project

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Dreibelbis, L. J.; Miller, J. D.; Smith, B. P.

    2002-11-01

    New multimedia materials are being developed for undergraduate instruction in thermofluid dynamics (e.g. convective heat transfer, thermodynamics, and gas dynamics), with strong emphasis on experimental and optical flow visualization. Since textbooks often show only simple line diagrams, our emphasis is on real flow images as in Van Dyke's classic "Album of Fluid Motion." Here, however, digital video clips illustrate the pertinent phenomena in motion, with voice-over explanations and occasional musical accompaniment. Beyond that, no attempt is made to duplicate traditional textbook material, but rather to provide a visual "window" into the laboratory experience. The results will be produced and distributed in DVD form for instructors and students as a visual supplement to the standard textbooks on these topics. The suitability of such materials for national dissemination has already been demonstrated. This approach is believed to be especially important for small and minority universities that sometimes lack laboratory facilities. Several examples will be shown, including transitional flow, hydraulic jumps, nucleate boiling, convective heat transfer, and supersonic flow. (Supported by NSF DUE Grant.)

  3. The Evolution of Interstellar Gas: Massive Stars and the Dispersal of Neutral Material

    NASA Technical Reports Server (NTRS)

    Federman, Steven R.

    2003-01-01

    We studied the effects of newly formed O and B stars on their surrounding interstellar material through a combination of observations and theoretical modeling. The observational data came from measurements of absorption seen in the spectra of background, newly formed stars. Particular attention was given to stellar radiation which converts molecular to atomic material. Laboratory data on absorption cross sections relevant to the analysis and interpretation of carbon monoxide formed part of the effort. The grant supported Postdoctoral Fellows, Drs. Min Yan and Yaron Sheffer, and a laboratory technician. Though the students themselves were not supported. one M.S. Thesis and two Ph.D. dissertations from the University of Toledo were based on the research done under the grant. The research accomplished under this grant led directly to other funded programs. An observing proposal to study the chemistry of diffuse molecular clouds in the Large and Small Magellanic Clouds with ESO s Very Large Telescope was another example of a successful outcome of my LTSA program.

  4. An oral exam model for teaching advanced "Batchelor-level" fluid mechanics in the US

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan

    2016-11-01

    A teaching model is developed to meet the challenge of teaching fluid mechanics at what might be considered a high level, at least by the current norms in the US. The initial goal was to avoid loss of concepts amidst the challenge of particular mathematical manipulations on particular assignments. However, it evolved toward fostering facile working knowledge of challenging material, such as in the books by Batchelor (e.g. streaming flow), Whitham (e.g. ship waves), and van Dyke (e.g. second-order boundary layer). To this end, the course model forgoes traditional assigned problems to focus on completion, augmentation, and in-depth understanding of the lecture material. The lectures are relatively traditional in structure, albeit with somewhat more interactive examples. The main unusual feature-again, by modern US standards-was assessment via multiple half-hour oral exams. This model has now been successful over 8 semesters for 3 different graduate courses in 2 departments. For all, students were assume to have already completed a full course at a "Navier-Stokes level". The presentation will include specifics of the course and exam structure, impressions of positive outcomes from the instructor, and a summary of the overwhelmingly positive student feedback.

  5. The role of university research in primary and secondary education

    NASA Astrophysics Data System (ADS)

    Redondo, A.; Llopart, M.; Ramos, L.; Roger, T.; Rafols, R.; Redondo, J. M.

    2009-04-01

    One of the most important roles of educators at all levels(transversally and inter-generationally between adult education, university and the primary schools, specially in sciences is to estimulate the quest for new knowledge and to help to provide the basic thinking tools of the proper scientific method. An innovative plan has been set up though the Campus Universitari de la Mediterrania that integrates the UPC, the local Education authorities and the local governement in Vilanova i la Geltru, Barcelona. To coordinate university professors invited to lecture in summer courses, so their research and lecturing materials may be used as school level material (as a CD collection) and to help younger students to iniciate their own research proyects. During 2006-2008 a series of Environmental science seminars, group proyects decided by the students or proposed jointly by the CUM were started. Examples of these works, such as Cetacean comunication (with the help of the Laboratory of Bioacustic Applications of the UPC), Shapes and patterns in the environment (Cosmocaixa Science Museum), the Rainbow, Waves and Tides, Turbulence, The growth of snails and the Fibonacci sequence, etc... will be presented, showing the importance of comunicating scientific interest to the younger generations.

  6. Talking Physics: Two Case Studies on Short Answers and Self-explanation in Learning Physics

    NASA Astrophysics Data System (ADS)

    Badeau, Ryan C.

    This thesis explores two case studies into the use of short answers and self-explanation to improve student learning in physics. The first set of experiments focuses on the role of short answer questions in the context of computer-based instruction. Through a series of six experiments, we compare and evaluate the performance of computer-assessed short answer questions versus multiple choice for training conceptual topics in physics, controlling for feedback between the two formats. In addition to finding overall similar improvements on subsequent student performance and retention, we identify unique differences in how students interact with the treatments in terms of time spent on feedback and performance on follow-up short answer assessment. In addition, we identify interactions between the level of interactivity of the training, question format, and student attitudinal ratings of each respective training. The second case study focuses on the use of worked examples in the context of multi-concept physics problems - which we call "synthesis problems." For this part of the thesis, four experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these instructional techniques, analogical comparison and self-explanation, have previously been studied primarily in the context of single-concept problems. As such, the work presented here represents a novel focus on extending these two techniques to this class of more complicated physics problem. Across the four experiments, both self-explanation and certain kinds of analogical comparison of worked examples significantly improved student performance on a target synthesis problem, with distinct improvements in recognition of the relevant concepts. More specifically, analogical comparison significantly improved student performance when the comparisons were invoked between worked synthesis examples. In contrast, similar comparisons between corresponding pairs of worked single-concept examples did not significantly improve performance. On a more complicated synthesis problem, self-explanation was significantly more effective than analogical comparison, potentially due to differences in how successfully students encoded the full structure of the worked examples. Finally, we find that the two techniques can be combined for additional benefit, with the trade-off of slightly more time-on-task.

  7. A Resource for Using Real-World Examples in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Van Dongen, Janelle; Rieger, Georg

    2013-02-01

    Physics Teaching for the 21st Century (://c21.phas.ubc.ca) is a free online resource for teachers who are interested in teaching physics concepts in real-world contexts. The materials on this site were developed by a team of physics faculty and graduate and undergraduate students at the Department of Physics & Astronomy, University of British Columbia, based on issues of great current concern—reusable energy, climate change, and medical advancement. Topics on the website also focus on applications of physics in the natural world around us. There are currently about 70 different topics on the website and it is not possible to justly give a sense of the website in total here. Instead we will present one complete example of the resources available on our website and show how it can be used in the classroom or in lecture. The example discussed here is suitable for a first-year university course and focuses on diffraction through a circular aperture and Rayleigh's resolution criterion by looking at the effect of pupil size on the minimum angle of resolution. The original idea came from reading a book on zoological physics,2 and a short example was later found in a first-year physics textbook.3

  8. Ordering Elements and Subsets: Examples for Student Understanding

    ERIC Educational Resources Information Center

    Mellinger, Keith E.

    2004-01-01

    Teaching the art of counting can be quite difficult. Many undergraduate students have difficulty separating the ideas of permutation, combination, repetition, etc. This article develops some examples to help explain some of the underlying theory while looking carefully at the selection of various subsets of objects from a larger collection. The…

  9. Attribution and Learning English as a Foreign Language

    ERIC Educational Resources Information Center

    Peacock, Matthew

    2010-01-01

    Learner attributions, perceived causes of success and failure, have received little attention in EFL research. Attributions are categorized as either internal (for example effort) or external (for example luck) and may affect how students learn about and impose order on their world. We investigated the attributions of 505 university students in…

  10. Finite Topological Spaces as a Pedagogical Tool

    ERIC Educational Resources Information Center

    Helmstutler, Randall D.; Higginbottom, Ryan S.

    2012-01-01

    We propose the use of finite topological spaces as examples in a point-set topology class especially suited to help students transition into abstract mathematics. We describe how carefully chosen examples involving finite spaces may be used to reinforce concepts, highlight pathologies, and develop students' non-Euclidean intuition. We end with a…

  11. A Student Teacher's Choice and Use of Examples in Teaching Probability

    ERIC Educational Resources Information Center

    Ünver, Semiha Kula; Güzel, Esra Bukova; Dede, Ayse Tekin; Hidiroglu, Çaglar Naci

    2015-01-01

    The purpose of this study is to examine a mathematics student teacher's lessons by using example types named "teaching concepts and procedures" and "the provision of exercises." The participant's two lessons regarding the probability concept were observed and the semi-structured interviews were realized. The participant…

  12. Using Online Media to Write Extended Persuasive Text

    ERIC Educational Resources Information Center

    Morton-Standish, Leisa

    2014-01-01

    This article examines methods of teaching students immersed in online media to write extended persuasive text. Specific examples for the writing classroom are outlined to engage students in persuasive writing through the use of online media. The persuasive writing examples are linked to the Common Core State Standards.

  13. Magnetic Force and Work: An Accessible Example

    ERIC Educational Resources Information Center

    Gates, Joshua

    2014-01-01

    Despite their physics instructors' arguments to the contrary, introductory students can observe situations in which there seems to be compelling evidence for magnetic force doing work. The counterarguments are often highly technical and require physics knowledge beyond the experience of novice students, however. A simple example is presented…

  14. Multiple-Solution Problems in a Statistics Classroom: An Example

    ERIC Educational Resources Information Center

    Chu, Chi Wing; Chan, Kevin L. T.; Chan, Wai-Sum; Kwong, Koon-Shing

    2017-01-01

    The mathematics education literature shows that encouraging students to develop multiple solutions for given problems has a positive effect on students' understanding and creativity. In this paper, we present an example of multiple-solution problems in statistics involving a set of non-traditional dice. In particular, we consider the exact…

  15. Educational outreach at the NSF Engineering Research Center for Data Storage Systems

    NASA Astrophysics Data System (ADS)

    Williams, James E., Jr.

    1996-07-01

    An aspect of the National Science Foundation Engineering Research Center in Data Storage Systems (DSSC) program that is valued by our sponsors is the way we use our different educational programs to impact the data storage industry in a positive fashion. The most common way to teach data storage materials is in classes that are offered as part of the Carnegie Mellon curriculum. Another way the DSSC attempts to educate students is through outreach programs such as the NSF Research Experiences for Undergraduates and Young Scholars programs, both of which have been very successful and place emphasis and including women, under represented minorities and disable d students. The Center has also established cooperative outreach partnerships which serve to both educate students and benefit the industry. One example is the cooperative program we have had with the Magnetics Technology Centre at the National University of Singapore to help strengthen their research and educational efforts to benefit U.S. data storage companies with plants in Singapore. In addition, the Center has started a program that will help train outstanding students from technical institutes to increase their value as technicians to the data storage industry when they graduate.

  16. Instruction of Multidisciplinary Content in Introductory Courses

    NASA Astrophysics Data System (ADS)

    Shaibani, Saami J.

    2017-01-01

    There has been an ever-increasing emphasis on the integration of material in the areas of science, technology, engineering and mathematics during the past decade or so. However, there are two major requirements for accomplishing the effective delivery of such multidisciplinary content in the classroom: having high levels of expertise in all of the subjects; and, having the ability to combine the separate fields in a consistent manner without compromising academic purity. The research reported here involves a teacher with this skill set and it includes an example from kinematics, which is initially explored with standard treatment of concepts in mechanics and then developed with analysis employing algebra. As often happens, the non-trivial nature of the result in this case does not readily allow students to have a sense that the physics-based outcome is correct. This shortfall is remedied by adopting a complementary approach with geometry and calculus, which adds an independent perspective that reassures students by confirming the validity of the original answer. The enhanced quality of instruction achieved with the above methodology produces many benefits, including greater student understanding and more opportunities for active involvement by students in the learning process.

  17. Performable Case Studies in Ethics Education.

    PubMed

    Robeson, Richard; King, Nancy M P

    2017-09-12

    Bioethics education often includes the study of short stories, novels, plays, and films, because such materials present case examples that can highlight relevant issues and questions especially vividly for a wide range of students. In addition, creative writing is widely used in the education of health professional students and in continuing education settings for health professionals. There are very few academic or professional disciplines that do not use case studies, but the case study in dialogic form has not been standard practice for thousands of years. Dramatic arts casuistry-the creation and performance of short case studies designed specifically to raise bioethics issues for discussion-represents an application of literature and the medical humanities that is both unique and uniquely valuable. This essay describes the development and history of a course that has been successfully taught to medical students and graduate bioethics students, in which the class researches, writes, and performs a case study designed to elicit reflection and discussion about a topic and set of bioethics issues of current interest to both academic and general audiences. The model is also suited to the presentation and discussion of existing case studies, both live and via on-demand audio.

  18. Performable Case Studies in Ethics Education

    PubMed Central

    Robeson, Richard; King, Nancy M. P.

    2017-01-01

    Bioethics education often includes the study of short stories, novels, plays, and films, because such materials present case examples that can highlight relevant issues and questions especially vividly for a wide range of students. In addition, creative writing is widely used in the education of health professional students and in continuing education settings for health professionals. There are very few academic or professional disciplines that do not use case studies, but the case study in dialogic form has not been standard practice for thousands of years. Dramatic arts casuistry—the creation and performance of short case studies designed specifically to raise bioethics issues for discussion—represents an application of literature and the medical humanities that is both unique and uniquely valuable. This essay describes the development and history of a course that has been successfully taught to medical students and graduate bioethics students, in which the class researches, writes, and performs a case study designed to elicit reflection and discussion about a topic and set of bioethics issues of current interest to both academic and general audiences. The model is also suited to the presentation and discussion of existing case studies, both live and via on-demand audio. PMID:28895903

  19. The use of gamification in the teaching of disease epidemics and pandemics.

    PubMed

    Robinson, L A; Turner, I J; Sweet, M J

    2018-06-01

    With the launch of the teaching excellence framework, teaching in higher education (HE) is under greater scrutiny than ever before. Didactic lecture delivery is still a core element of many HE programmes but there is now a greater expectation for academics to incorporate alternative approaches into their practice to increase student engagement. These approaches may include a large array of techniques from group activities, problem-based learning, practical experience and mock scenarios to newly emerging approaches such as flipped learning practices and the use of gamification. These participatory forms of learning encourage students to become more absorbed within a topic that may otherwise be seen as rather 'dry' and reduce students engagement with, and therefore retention of, material. Here we use participatory-based teaching approaches in microbiology as an example to illustrate to University undergraduate students the potentially devastating effects that a disease can have on a population. The 'threat' that diseases may pose and the manner in which they may spread and/or evolve can be challenging to communicate, especially in relation to the timescales associated with these factors in the case of an epidemic or pandemic.

  20. The use of gamification in the teaching of disease epidemics and pandemics

    PubMed Central

    Robinson, L A; Turner, I J

    2018-01-01

    Abstract With the launch of the teaching excellence framework, teaching in higher education (HE) is under greater scrutiny than ever before. Didactic lecture delivery is still a core element of many HE programmes but there is now a greater expectation for academics to incorporate alternative approaches into their practice to increase student engagement. These approaches may include a large array of techniques from group activities, problem-based learning, practical experience and mock scenarios to newly emerging approaches such as flipped learning practices and the use of gamification. These participatory forms of learning encourage students to become more absorbed within a topic that may otherwise be seen as rather ‘dry’ and reduce students engagement with, and therefore retention of, material. Here we use participatory-based teaching approaches in microbiology as an example to illustrate to University undergraduate students the potentially devastating effects that a disease can have on a population. The ‘threat’ that diseases may pose and the manner in which they may spread and/or evolve can be challenging to communicate, especially in relation to the timescales associated with these factors in the case of an epidemic or pandemic. PMID:29718203

  1. Application of Computer Technologies in Building Design by Example of Original Objects of Increased Complexity

    NASA Astrophysics Data System (ADS)

    Vasilieva, V. N.

    2017-11-01

    The article deals with the solution of problems in AutoCAD offered at the All-Russian student Olympiads at the section of “Computer graphics” that are not typical for the students of construction specialties. The students are provided with the opportunity to study the algorithm for solving original tasks of high complexity. The article shows how the unknown parameter underlying the construction can be determined using a parametric drawing with geometric constraints and dimensional dependencies. To optimize the mark-up operation, the use of the command for projecting the points and lines of different types onto bodies and surfaces in different directions is shown. For the construction of a spring with a different pitch of turns, the paper describes the creation of a block from a part of the helix and its scaling when inserted into a model with unequal coefficients along the axes. The advantage of the NURBS surface and the application of the “body-surface-surface-NURBS-body” conversion are reflected to enhance the capabilities of both solid and surface modeling. The article’s material introduces construction students into the method of constructing complex models in AutoCAD that are not similar to typical training assignments.

  2. Using Science Fiction in the Classroom

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    2002-05-01

    At the University of Arizona, all non-science majors are required to take two Tier 1 and one Tier 2 General Education science classes. These are the only science classes that most of these students will take at the University. This groups includes all future K-8 certified teachers. Improving reading comprehension in science and improving writing skills are two of the main requirements of the General Education classes. For my 150 -- 300 students (1 -- 2 classes per semester) I have chosen to use science fiction stories to meet part of these requirements. This assignment provides for assessment of students' writing in several ways: As an alternative assessment: connecting the course material to what they have read. As an alternative assessment: student knowledge of science and technology in general. This assignment also provides for assessment of their comprehension of the authors' application of science fact as follows: Making students aware of how our science knowledge and technology have changed in the years since these books were written (30 -- 140 years ago). Students are required to turn in a short draft version of the assignment about halfway through the semester. They receive feedback on their format (i.e., following directions), appropriateness of chosen topics, spelling, grammar, etc. Books are chosen at a variety of reading levels to accommodate a range of reading levels including students with limited proficiency in English and those with learning disabilities. The books that we are presently using and examples of student writing will be displayed.

  3. Student performance and attitudes in a collaborative and flipped linear algebra course

    NASA Astrophysics Data System (ADS)

    Murphy, Julia; Chang, Jen-Mei; Suaray, Kagba

    2016-07-01

    Flipped learning is gaining traction in K-12 for enhancing students' problem-solving skills at an early age; however, there is relatively little large-scale research showing its effectiveness in promoting better learning outcomes in higher education, especially in mathematics classes. In this study, we examined the data compiled from both quantitative and qualitative measures such as item scores on a common final and attitude survey results between a flipped and a traditional Introductory Linear Algebra class taught by two individual instructors at a state university in California in Fall 2013. Students in the flipped class were asked to watch short video lectures made by the instructor and complete a short online quiz prior to each class attendance. The class time was completely devoted to problem solving in group settings where students were prompted to communicate their reasoning with proper mathematical terms and structured sentences verbally and in writing. Examination of the quality and depth of student responses from the common final exam showed that students in the flipped class produced more comprehensive and well-explained responses to the questions that required reasoning, creating examples, and more complex use of mathematical objects. Furthermore, students in the flipped class performed superiorly in the overall comprehension of the content with a 21% increase in the median final exam score. Overall, students felt more confident about their ability to learn mathematics independently, showed better retention of materials over time, and enjoyed the flipped experience.

  4. Effects of Example Variability and Prior Knowledge in How Students Learn to Solve Equations

    ERIC Educational Resources Information Center

    Guo, Jian-Peng; Yang, Ling-Yan; Ding, Yi

    2014-01-01

    Researchers have consistently demonstrated that multiple examples are better than one example in facilitating learning because the comparison evoked by multiple examples supports learning and transfer. However, research outcomes are unclear regarding the effects of example variability and prior knowledge on learning from comparing multiple…

  5. Incorporating Inquiry into Upper-Level Homework Assignments: The Mini-Journal

    NASA Astrophysics Data System (ADS)

    Whittington, A. G.; Speck, A. K.; Witzig, S. B.; Abell, S. K.

    2009-12-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. As part of an NSF-funded project, “CUES: Connecting Undergraduates to the Enterprise of Science,” new inquiry-based homework materials were developed for two upper-level classes at the University of Missouri: Geochemistry (required for Geology majors), and Solar System Science (open to seniors and graduate students, co-taught and cross-listed between Geology and Physics & Astronomy). We engage students in inquiry-based learning by presenting homework exercises as “mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. Mini-journals replace traditional homework problem sets with a format that more directly reflects and encourages scientific practice. Students are engaged in inquiry-based homework which encompass doing, thinking, and communicating, while the minijournal allows the instructor to contain lines of inquiry within the limits posed by available resources. In the examples we present, research is conducted via spreadsheet modeling, where the students develop their own spreadsheets. The key differences between the old and new formats include (i) the active participation of the students in defining the problem that they will pursue, (ii) the open-ended nature of the inquiry, such that students need to recognize when they have enough information to answer their question, (iii) presentation of results in graphical and tabular formats, and (iv) a written discussion of their findings. We present both the rationale for and concept of using mini-journal homeworks, and provide specific examples we are currently employing in classes. In addition, we explore the challenges (real and perceived) and successes associated with implementing such a technique, and examine student feedback comparing mini-journal and traditional homework formats from the same classes.

  6. Analysis of the Characteristics of Discussion Materials that Promote Group Discussion in the Medical Humanities.

    PubMed

    Ahn, Jae Hee; Jeon, Woo Taek

    2011-12-01

    This study aims to analyze the characteristics of discussion materials that promote student participation in discussions, satisfaction with student instruction, and tutor intervention in the medical humanities. We surveyed 117 premedical students and 7 tutors who attended 4-week group discussions in the medical humanities in 2010. We described the discussion materials using the following 4 characteristics as independent variables: material type, level of understanding, interest, and quantity. Dependent variables were: student participation in the discussion, student instruction satisfaction, and tutor intervention. Correlation analysis, multiple regression analysis, and crosstab were performed using SPSS 15.0. The correlation between the characteristics of the discussion materials differed by grade. When the books were chosen as the discussion material in the instruction of first-year premedical students, the correlation between level of understanding, interest, and quantity was negative. Higher levels of understanding of the material and interest in the material led to an increase in discussion participation among both first- and second-year premedical students. Higher levels of understanding and interest of the discussion material also increased student satisfaction with the instruction, regardless of grade. Finally, levels of understanding of the material affected the degree of tutor intervention. Tutors intervened more often in discussions with first-year premedical students than with second-year premedical students. Differences in grades and the understanding of the discussion material should be considered when choosing discussion materials. Further study is required to continue the development of the discussion model and improve methods of facilitate discussion among students in the medical humanities.

  7. Perspective: the potential of student organizations for developing leadership: one school's experience.

    PubMed

    Veronesi, Michael C; Gunderman, Richard B

    2012-02-01

    Leadership development is vital to the future of medicine. Some leadership development may take place through the formal curriculum of the medical school, yet extracurricular activities, such as student government and affiliated student organizations, can provide additional, highly valuable leadership development opportunities. These organizations and their missions can serve as catalysts for students to work with one another, with the faculty and administration of the medical school, with the community, and with local, regional, and national organizations. The authors have organized this discussion of the leadership development potential of student organizations around six important principles of leadership: ownership, experience, efficacy, sense of community, service learning, and peer-to-peer mentoring. They provide practical examples of these leadership principles from one institution. They do not presume that the school is unique, but they do believe their practical examples help to illuminate the potential of extracurricular programs for enhancing the leadership capabilities of future physicians. In addition, the authors use their examples to demonstrate how the medical school, its surrounding community, and the profession of medicine can benefit from promoting leadership through student organizations.

  8. The Didactical Contract Surrounding CAS When Changing Teachers in the Classroom

    ERIC Educational Resources Information Center

    Jankvist, Uffe Thomas; Misfeldt, Morten; Marcussen, Anders

    2016-01-01

    The article discusses three empirical examples of Computer Algebra System (CAS) use in a Danish upper secondary school mathematics class that had experienced a recent change of teacher. All examples lead to didactical problems surrounding the situation and unclear expectations between teacher and students, involving loss of students' mathematical…

  9. Flight Physics for Beginners: Simple Examples of Applying Newton's Laws

    ERIC Educational Resources Information Center

    Spathopoulos, Vassilis

    2011-01-01

    Educators are constantly trying to find new ways of motivating their students. In subjects such as mechanics with a strong mathematical component, it is particularly important to devise real-life examples that can increase interest and student excitement. Aircraft flight is a topic that most young people find exciting. It therefore would seem…

  10. Hamilton's Principle for Beginners

    ERIC Educational Resources Information Center

    Brun, J. L.

    2007-01-01

    I find that students have difficulty with Hamilton's principle, at least the first time they come into contact with it, and therefore it is worth designing some examples to help students grasp its complex meaning. This paper supplies the simplest example to consolidate the learning of the quoted principle: that of a free particle moving along a…

  11. Kuhn's Paradigm and Example-Based Teaching of Newtonian Mechanics.

    ERIC Educational Resources Information Center

    Whitaker, M. A. B.

    1980-01-01

    Makes a recommendation for more direct teaching of the basic principles of mechanics. Contends that students currently learn mechanics in terms of standard examples. This causes difficulty when the student is confronted with a problem that can be solved from basic principles, but which does not fit a standard category. (GS)

  12. Learning Algebra by Example in Real-World Classrooms

    ERIC Educational Resources Information Center

    Booth, Julie L.; Oyer, Melissa H.; Paré-Blagoev, E. Juliana; Elliot, Andrew J.; Barbieri, Christina; Augustine, Adam; Koedinger, Kenneth R.

    2015-01-01

    Math and science textbook chapters invariably supply students with sets of problems to solve, but this widely used approach is not optimal for learning; instead, more effective learning can be achieved when many problems to solve are replaced with correct and incorrect worked examples for students to study and explain. In the present study, the…

  13. Issues in Institutional Benchmarking of Student Learning Outcomes Using Case Examples

    ERIC Educational Resources Information Center

    Judd, Thomas P.; Pondish, Christopher; Secolsky, Charles

    2013-01-01

    Benchmarking is a process that can take place at both the inter-institutional and intra-institutional level. This paper focuses on benchmarking intra-institutional student learning outcomes using case examples. The findings of the study illustrate the point that when the outcomes statements associated with the mission of the institution are…

  14. Power Play: Rethinking Roles in the Art Classroom

    ERIC Educational Resources Information Center

    Buffington, Melanie L.

    2014-01-01

    This article describes how art teachers can work toward changing the power dynamics in their classrooms by using a student centered approach, as demonstrated by an example lesson about contemporary painter Kehinde Wiley. As the class unpacked the idea of power prevalent in Wiley's portraits, the students gave relevant examples of how power…

  15. Designing Clinical Examples To Promote Pattern Recognition: Nursing Education-Based Research and Practical Applications.

    ERIC Educational Resources Information Center

    Welk, Dorette Sugg

    2002-01-01

    Sophomore nursing students (n=162) examined scenarios depicting typical and atypical signs of heart attack. Examples were structured to include essential and nonessential symptoms, enabling pattern recognition and improved performance. The method provides a way to prepare students to anticipate and recognize life-threatening situations. (Contains…

  16. Discovering Reliable Sources of Biochemical Thermodynamic Data to Aid Students' Understanding

    ERIC Educational Resources Information Center

    Me´ndez, Eduardo; Cerda´, María F.

    2016-01-01

    Students of physical chemistry in biochemical disciplines need biochemical examples to capture the need, not always understood, of a difficult area in their studies. The use of thermodynamic data in the chemical reference state may lead to incorrect interpretations in the analysis of biochemical examples when the analysis does not include relevant…

  17. Studying and Working Abroad. Leonardo da Vinci Series: Good Practices.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium). Directorate-General for Education and Culture.

    This document profiles recent successful examples of students studying and working abroad as part of the European Commission's Leonardo da Vinci program, which is designed to give students across the European Union the opportunity to experience vocational training in a foreign country. The following examples are presented: (1) 3 Finnish students…

  18. Leave Her out of It: Person-Presentation of Strategies is Harmful for Transfer.

    PubMed

    Riggs, Anne E; Alibali, Martha W; Kalish, Charles W

    2015-11-01

    A common practice in textbooks is to introduce concepts or strategies in association with specific people. This practice aligns with research suggesting that using "real-world" contexts in textbooks increases students' motivation and engagement. However, other research suggests this practice may interfere with transfer by distracting students or leading them to tie new knowledge too closely to the original learning context. The current study investigates the effects on learning and transfer of connecting mathematics strategies to specific people. A total of 180 college students were presented with an example of a problem-solving strategy that was either linked with a specific person (e.g., "Juan's strategy") or presented without a person. Students who saw the example without a person were more likely to correctly transfer the novel strategy to new problems than students who saw the example presented with a person. These findings are the first evidence that using people to present new strategies is harmful for learning and transfer. Copyright © 2015 Cognitive Science Society, Inc.

  19. Interpretations of virtual reality.

    PubMed

    Voiskounsky, Alexander

    2011-01-01

    University students were surveyed to learn what they know about virtual realities. The two studies were administered with a half-year interval in which the students (N=90, specializing either in mathematics and science, or in social science and humanities) were asked to name particular examples of virtual realities. The second, but not the first study, was administered after the participants had the chance to see the movie "Avatar" (no investigation was held into whether they really saw it). While the students in both studies widely believed that activities such as social networking and online gaming represent virtual realities, some other examples provided by the students in the two studies differ: in the second study the participants expressed a better understanding of the items related to virtual realities. At the same time, not a single participant reported particular psychological states (either regular or altered) as examples of virtual realities. Profound popularization efforts need to be done to acquaint the public, including college students, with virtual realities and let the public adequately understand how such systems work.

  20. Encapsulation methods for organic electrical devices

    DOEpatents

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  1. Screening combinatorial arrays of inorganic materials with spectroscopy or microscopy

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2004-02-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  2. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  3. Combinatorial sythesis of organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-07-16

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  4. Polymer arrays from the combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong

    2004-09-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  5. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-02-12

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  6. Preparation and screening of crystalline inorganic materials

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Xiang, Xiaodong [Danville, CA; Goldwasser, Isy [Palo Alto, CA; Brice{hacek over }o, Gabriel; Sun, Xiao-Dong [Fremont, CA; Wang, Kai-An [Cupertino, CA

    2008-10-28

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  7. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1999-12-21

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  8. Combinatorial synthesis of novel materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2001-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  9. Combinatorial screening of inorganic and organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  10. Preparation and screening of crystalline zeolite and hydrothermally-synthesized materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2005-03-08

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  11. Volta-Based Cells Materials Chemical Multiple Representation to Improve Ability of Student Representation

    NASA Astrophysics Data System (ADS)

    Helsy, I.; Maryamah; Farida, I.; Ramdhani, M. A.

    2017-09-01

    This study aimed to describe the application of teaching materials, analyze the increase in the ability of students to connect the three levels of representation and student responses after application of multiple representations based teaching materials chemistry. The method used quasi one-group pretest-posttest design to 71 students. The results showed the application of teaching materials carried 88% with very good category. A significant increase ability to connect the three levels of representation of students after the application of multiple representations based teaching materials chemistry with t-value > t-crit (11.402 > 1.991). Recapitulation N-gain pretest and posttest showed relatively similar for all groups is 0.6 criterion being achievement. Students gave a positive response to the application of multiple representations based teaching materials chemistry. Students agree teaching materials used in teaching chemistry (88%), and agrees teaching materials to provide convenience in connecting the three levels of representation (95%).

  12. Introducing student inquiry in large introductory genetics classes.

    PubMed Central

    Pukkila, Patricia J

    2004-01-01

    An appreciation of genetic principles depends upon understanding the individual curiosity that sparked particular investigations, the creativity involved in imagining alternative outcomes and designing experiments to eliminate these outcomes, and the clarity of thought necessary to convince one's scientific peers of the validity of the conclusions. At large research universities, students usually begin their study of genetics in large lecture classes. It is widely assumed that the lecture format, coupled with the pressures to be certain that students become familiar with the principal conclusions of genetics investigations, constrains most if not all departures from the formats textbooks used to explain these conclusions. Here I present several examples of mechanisms to introduce meaningful student inquiry in an introductory genetics course and to evaluate student creative effort. Most of the examples involve altered student preparation prior to class and additional in-class activities, while a few depend upon a smaller recitation section, which accompanies the course from which the examples have been drawn. I conclude that large introductory classes are suitable venues to teach students how to identify scientific claims, determine the evidence that is essential to eliminate alternative conclusions, and convince their peers of the validity of their arguments. PMID:15020401

  13. Students' knowledge of, and attitudes towards biotechnology revisited, 1995-2014: Changes in agriculture biotechnology but not in medical biotechnology.

    PubMed

    Chen, Shao-Yen; Chu, Yih-Ru; Lin, Chen-Yung; Chiang, Tzen-Yuh

    2016-09-10

    Modern biotechnology is one of the most important scientific and technological revolutions in the 21st century, with an increasing and measurable impact on society. Development of biotechnology curriculum has become important to high school bioscience classrooms. This study has monitored high school students in Taiwan on their knowledge of and attitudes towards biotechnology for nearly two decades. Not surprisingly, knowledge of biotechnology of current students has increased significantly (p < 0.001) and most students have learned some definitions and examples of biotechnology. There was a positive correlation between biotechnology knowledge and attitudes toward biotechnology for current students who study Advanced Biology (AB). However, for current students who did not study AB, there was a negative correlation.The attitude results showed that students today expressed less favorable opinions toward agricultural biotechnology (p < 0.001) despite studying AB or not. However, there is no significant difference between students today and 18 years ago in opinions towards medical biotechnology. In addition, current students showed a greater concern involving environmental risks than former students. Interestingly, the high school curriculum did affect students' attitudes toward genetically engineered (GE) plants but not GE animals. Our current study also found that the students' attitude towards GE animals was influenced more by their limited knowledge than by their moral belief. On the basis of findings from this study, we suggest that more materials of emerging animal biotechnology should be included in high school curriculum and recommend that high school teachers and university faculty establish a collaborative framework in the near future. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):475-491, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  14. The implementation of an integrated on-line health education system at RMIT.

    PubMed

    Zylinski, J; Allan, G L; Jamieson, P; Maher, K P; Green, R; Hislop, J

    1998-06-01

    The Faculty of Biomedical and Health Sciences at RMIT has been developing an on-line health education system using a systems thinking approach, to create a learning environment whose basis is supported by Information Technology (IT). The centre-piece of this system is the Faculty Learning Centre, which has been created, both in space and layout, to promote collaborative learning between the students, so that the educator is physically assimilated with the student body. This facility is supplemented by the Faculty WWW server, which has been the main vehicle for course material dissemination to students. To ensure an effective on-line teaching environment, the position of an on-line facilitator has been created, whose responsibilities include both the continual evaluation of the system and the implementation of appropriate system changes. Aspects have included the production of a staff development training program and extensive user documentation. This paper discusses the systems thinking approach used to implement this integrated on-line system, and the establishment of explicit educational rationales in the use of IT to support learning strategies. Some examples of the on-line educational programs are also presented.

  15. Sand dollar sites orogenesis

    NASA Astrophysics Data System (ADS)

    Amos, Dee

    2013-04-01

    The determinology of the humble sand dollars habitat changing from inception to the drastic evolution of the zone to that of present day. Into the cauldron along the southern Californian 'ring of fire' lithosphere are evidence of geosynclinals areas, metasedimentary rock formations and hydrothermal activity. The explanation begins with 'Theia' and the Moon's formation, battles with cometary impacts, glacial ages, epochs with evolutionary bottlenecks and plate tectonics. Fully illustrated the lecture includes localised diagrams and figures with actual subject photographic examples of plutonic, granitic, jade and peridodite. Finally, the origins of the materials used in the lecture are revealed for prosecution by future students and the enjoyment of interested parties in general.

  16. Teaching psychiatry in a new medical school: a multimedia approach.

    PubMed

    Baskett, S J

    1978-12-01

    As a developing department in a new medical school, we were able to improve our curriculum by using a multimedia approach to teaching psychiatry. We relied heavily on a programmed self-instructional text with videotaped clinical examples (PLS), learning objectives, formal classroom presentations, small group discussions, self-assessment exercises, an affective approach to the patient-doctor relationship using role-playing and videotaped patient vignettes, and finally live patient interviews. We believe we have been able to present the widely agreed upon content in the basic science years, using a wide variety of teaching materials and technics which maintain the interest of most students.

  17. Dumpster Optics: teaching and learning optics without a kit

    NASA Astrophysics Data System (ADS)

    Donnelly, Judy; Magnani, Nancy; Robinson, Kathleen

    2016-09-01

    The Next Generation Science Standards (NGSS) and renewed emphasis on STEM education in the U.S. have resulted in the development of many educational kits for teaching science in general and optics in particular. Many teachers do not have funding to purchase kits and practical experience has shown that even costly kits can have poorly written and misleading instructions and may include experiments that would not work in a classroom. Dumpster Optics lessons are designed to use inexpensive, commonly found materials. All lessons have been field-tested with students. We will describe the development of the lessons, provide examples of field testing experiences and outline possible future activities.

  18. SAGE III Educational Outreach and Student's On-Line Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Woods, D. C.; Moore, S. W.; Walters, S. C.

    2002-05-01

    Students On-Line Atmospheric Research (SOLAR) is a NASA-sponsored educational outreach program aimed at raising the level of interest in science among elementary, middle, and high school students. SOLAR is supported by, and closely linked to, NASA's Stratospheric Aerosol and Gas Experiment III (SAGE III). SAGE III, launched on a Russian METEOR 3M spacecraft in December 2001, is a key component of NASA's Earth Observing System. It will monitor the quantity and distribution of aerosols, ozone, clouds, and other important trace gases in the upper atmosphere. Early data from SAGE III indicate that the instrument is performing as expected. SAGE III measurements will extend the long-term data record established by its predecessors, SAGE I and SAGE II, which spans from 1979 to the present. In addition, SAGE III's added measurement capabilities will provide more detailed data on certain atmospheric species. SOLAR selects interesting topics related to the science issues addressed by the SAGE III experiments, and develops educational materials and projects to enhance science teaching, and to help students realize the relevance of these issues to our lives on Earth. For example, SOLAR highlights some of the major questions regarding the health of the atmosphere such as possible influences of aerosols on global climate, and atmospheric processes related to ozone depletion. The program features projects to give students hands-on experience with scientific equipment and help develop skills in collecting, analyzing, and reporting science results. SOLAR focuses on helping teachers become familiar with current research in the atmospheric sciences, helping teachers integrate SOLAR developed educational materials into their curriculum. SOLAR gives special presentations at national and regional science teacher conferences and conducts a summer teacher workshop at the NASA Langley Research Center. This poster will highlight some of the key features of the SOLAR program and will present descriptions of student projects, teacher workshops, and SOLAR resources.

  19. Combinatorial synthesis and screening of non-biological polymers

    DOEpatents

    Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2006-04-25

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  20. Giant magnetoresistive cobalt oxide compounds

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    1998-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  1. Giant magnetoresistive cobalt oxide compounds

    DOEpatents

    Schultz, P.G.; Xiang, X.; Goldwasser, I.

    1998-07-07

    Methods and apparatus are disclosed for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties. 58 figs.

  2. Synthesis and screening combinatorial arrays of zeolites

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2003-11-18

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  3. A New Paradigm for Intelligent Tutoring Systems: Example-Tracing Tutors

    ERIC Educational Resources Information Center

    Aleven, Vincent; McLaren, Bruce M.; Sewall, Jonathan; Koedinger, Kenneth R.

    2009-01-01

    The Cognitive Tutor Authoring Tools (CTAT) support creation of a novel type of tutors called example-tracing tutors. Unlike other types of ITSs (e.g., model-tracing tutors, constraint-based tutors), example-tracing tutors evaluate student behavior by flexibly comparing it against generalized examples of problem-solving behavior. Example-tracing…

  4. Comparing Examples: WebAssign versus Textbook

    NASA Astrophysics Data System (ADS)

    Richards, Evan; Polak, Jeff; Hardin, Ashley; Risley, John, , Dr.

    2005-11-01

    Research shows students can learn from worked examples.^1 This pilot study compared two groups of students' performance (10 each) in solving physics problems. One group had access to interactive examples^2 released in WebAssign^3, while the other group had access to the counterpart textbook examples. Verbal data from students in problem solving sessions was collected using a think aloud protocol^4 and the data was analyzed using Chi's procedures.^5 An explanation of the methodology and results will be presented. Future phases of this pilot study based upon these results will also be discussed. ^1Atkinson, R.K., Derry, S.J., Renkl A., Wortham, D. (2000). ``Learning from Examples: Instructional Principles from the Worked Examples Research'', Review of Educational Research, vol. 70, n. 2, pp. 181-214. ^2Serway, R.A. & Faughn, J.S. (2006). College Physics (7^th ed.). Belmont, CA: Thomson Brooks/Cole. ^3 see www.webassign.net ^4 Ericsson, K.A. & Simon, H.A. (1984). Protocol Analysis: Verbal Reports as Data. Cambridge, Massachusetts: The MIT Press. ^5 Chi, Michelene T.H. (1997). ``Quantifying Qualitative Analyses of Verbal Data: A Practical Guide,'' The Journal of the Learning Sciences, vol. 6, n. 3, pp. 271-315.

  5. Recycling positive-electrode material of a lithium-ion battery

    DOEpatents

    Sloop, Steven E.

    2017-11-21

    Examples are disclosed of methods to recycle positive-electrode material of a lithium-ion battery. In one example, the positive-electrode material is heated under pressure in a concentrated lithium hydroxide solution. After heating, the positive-electrode material is separated from the concentrated lithium hydroxide solution. After separating, the positive electrode material is rinsed in a basic liquid. After rinsing, the positive-electrode material is dried and sintered.

  6. Summary of the Journal of Geoscience Education Urban Theme Issue (Published in November, 2004)

    NASA Astrophysics Data System (ADS)

    Abolins, M. J.

    2004-12-01

    The urban geoscience education theme issue includes twelve manuscripts describing efforts to make geoscience more inclusive. These efforts reflect two central beliefs: (1) that urban geoscience education more effectively serves urban residents (slightly more than 80% of the American population) and (2) that urban education encourages minority participation in the geosciences. These convictions spawned educational programs serving many different kinds of learners. Educators developed unique curricula to meet the needs of each audience, but most curricula incorporate content associated with the built environment. The following paragraphs summarize audience characteristics and curricular content. Audience Urban geoscience education served many different kinds of learners. Although most programs targeted an audience with a specific level of educational experience (e.g., elementary school students) at a specific location (e.g., Syracuse, NY), audience characteristics varied greatly from one program to another: (1) Participants included elementary, middle, and high school students, undergraduates (both majors and non-majors), K-12 teachers (both pre-service and in-service), graduate students, realtors, and community members. (2) At least three programs served populations with substantial numbers of African American, Hispanic, and Asian American students. (3) Audiences were drawn from every corner of the nation except the Pacific Northwest and Florida and resided in cities varying greatly in population. These cities included the nation's largest combined metropolitan area (New York City, NY-NJ-CT-PA), other metropolitan areas containing populations of over one million, and communities as small as Ithaca, NY (population: 96,501). As illustrated by the preceding examples, urban geoscience education served learners with different levels of educational experience, some programs focused on minority learners, and program participants lived in cities both big and small. Content Most urban geoscience curricula include content associated with the built environment. Some content is organized around themes that are unique to the largest cities, but much content is explicitly suburban. Examples follow: (1) A good example of a theme unique to the largest cities is the impact of geology on the construction of early Twentieth Century skyscrapers. (2) Much explicitly suburban material addresses human-environment interactions in urbanizing areas. The above examples show that curricula described in the theme issue include content relevant to both big city and suburban learners. Summary Although urban geoscience education programs serve many different kinds of learners, most curricula include content focusing on the built environment. Taken together, urban geoscience education programs utilized content relevant to both big city and suburban learners and served audiences with different levels of educational experience and various ethnic backgrounds.

  7. Project-Based Learning as a Vehicle for Teaching Science at the University Level

    NASA Astrophysics Data System (ADS)

    Courtney, A. R.; Wade, P.

    2012-12-01

    In a typical science course learning is teacher directed. Students are presented with knowledge and concepts via textbooks and lecture and then given the opportunity to apply them. Project-based learning (PBL) creates a context and reason to learn information and concepts. In PBL, learning is student directed and teacher facilitated. Students take ownership of their learning by finding, evaluating and synthesizing information from a variety of resources and via interaction between each other. In PBL, the project is central rather than peripheral to the curriculum. It is not just an activity that provides examples, additional practice or applications of the course content, but rather, the vehicle through which major concepts are discovered. The PBL process requires students to do revision and reflection encouraging them to think about what and how they are learning. PBL projects also allow students to develop important life-work skills such as collaboration, communication and critical thinking within the discipline. We have employed PBL in both Liberal Arts courses for non-science majors and upper division courses for science students. Three examples will be discussed. The first will be the production of video documentaries in a non-science major course; the second, a student generated electronic textbook in a 300-level energy course for science students; and lastly, a student designed analysis project in a chemistry major capstone laboratory course. The product in each of these examples was used to deliver knowledge to others in the class as well as members of the public providing motivation for students to do high-quality work. In our examples, student documentaries are publicly screened as part of a university-wide Academic Excellence Showcase; the student generated electronic textbook is available for public use on the internet; and the results of the student designed analysis were communicated to the real-world clients via letters and reports. We will discuss various technology tools employed in these projects such as the internet, wikis for collaborative writing, bookmarking management tools for sharing literature resources, photo sharing sites, and electronic literature searching tools. Also described will be assessment methods to gauge how the projects affected student learning.

  8. Using a Hybrid of Student-Sourced Data and Web-Based Data for an Undergraduate Earth System Science Course

    NASA Astrophysics Data System (ADS)

    Sinton, C.

    2014-12-01

    In an undergraduate Earth System Science (ESS) course, students learn about the processes in which material and energy move between the different earth spheres. It is critical that quantitative analysis be part of the class in order to have students understand rates and magnitudes of these processes. It is even better if the students generate the data and research questions. At Ithaca College, ESS is a requirement for all Environmental Science majors and is their introduction into earth science. The majority of the lab periods for the class are devoted to research-based exercises in which students are asked to generate research questions and working hypotheses prior to data gathering. Several exercises use a hybrid of student-generated data and information available from on-line sources such as NOAA and USGS. For example, student groups gather water data from four water bodies on the campus over the course of the semester (e.g., temperature, pH, turbidity, conductivity) while at the same time accessing NOAA climatic data from a nearby weather station. The advantages of this approach include student ownership (and responsibility) and rich, diverse datasets that can be used to answer a variety of questions. Disadvantages include the inability of the instructor to fully anticipate the results, which can make planning difficult. In addition, considerable time is required to have students wade through the data, make mistakes, and then correct the mistakes. Nevertheless, the overall approach results in a richer and more effective learning experience compared to lab exercises that use data sets provided by the instructor.

  9. Mentoring Strategies and Outcomes of Two Federally Funded Cancer Research Training Programs for Underrepresented Students in the Biomedical Sciences.

    PubMed

    Ford, Marvella E; Abraham, Latecia M; Harrison, Anita L; Jefferson, Melanie S; Hazelton, Tonya R; Varner, Heidi; Cannady, Kimberly; Frichtel, Carla S; Bagasra, Omar; Davis, Leroy; Rivers, David E; Slaughter, Sabra C; Salley, Judith D

    2016-06-01

    The US is experiencing a severe shortage of underrepresented biomedical researchers. The purpose of this paper is to present two case examples of cancer research mentoring programs for underrepresented biomedical sciences students. The first case example is a National Institutes of Health/National Cancer Institute (NIH/NCI) P20 grant titled "South Carolina Cancer Disparities Research Center (SC CaDRe)" Training Program, contributing to an increase in the number of underrepresented students applying to graduate school by employing a triple-level mentoring strategy. Since 2011, three undergraduate and four graduate students have participated in the P20 SC CaDRe program. One graduate student published a peer-reviewed scientific paper. Two graduate students (50 %) have completed their master's degrees, and the other two graduate students will receive their degrees in spring 2015. Two undergraduate students (67 %) are enrolled in graduate or professional school (grad./prof. school), and the other graduate student is completing her final year of college. The second case example is a prostate cancer-focused Department of Defense grant titled "The SC Collaborative Undergraduate HBCU Student Summer Training Program," providing 24 students training since 2009. Additionally, 47 students made scientific presentations, and two students have published peer-reviewed scientific papers. All 24 students took a GRE test preparation course; 15 (63 %) have applied to graduate school, and 11 of them (73 %) are enrolled in grad./prof. school. Thirteen remaining students (54 %) are applying to grad./prof. school. Leveraged funding provided research-training opportunities to an additional 201 National Conference on Health Disparities Student Forum participants and to 937 Ernest E. Just Research Symposium participants at the Medical University of South Carolina.

  10. Development and Evaluation of Internet-Based Hypermedia Chemistry Tutorials

    NASA Astrophysics Data System (ADS)

    Tissue, Brian M.; Earp, Ronald L.; Yip, Ching-Wan; Anderson, Mark R.

    1996-05-01

    This progress report describes the development and student use of World-Wide-Web-based prelaboratory exercises in senior-level Instrumental Analysis during the 1995 Fall semester. The laboratory preparation exercises contained hypermedia tutorials and multiple-choice questions that were intended to familiarize the students with the experiments and instrumentation before their laboratory session. The overall goal of our work is to explore ways in which computer and network technology can be applied in education to improve the cost-effectiveness and efficacy of teaching. The course material can be accessed at http://www.chem.vt.edu/chem-ed/4114/Fall1995.html. The students were instructed to read their experimental procedure and to do the relevant laboratory preparation exercise. The individual tutorial documents were primarily text that provided basic theoretical and experimental descriptions of analytical and instrumental methods. The documents included hyperlinks to basic concepts, simple schematics, and color graphics of experimental set-ups or instrumentation. We chose the World-Wide Web (WWW) as the delivery platform for this project because of the ease of developing, distributing, and modifying hypermedia material in a client-server system. The disadvantage of the WWW is that network bandwidth limits the size and sophistication of the hypermedia material. To minimize internet transfer time, the individual documents were kept short and usually contained no more than 3 or 4 inline images. After reading the tutorial the students answered several multiple-choice questions. The figure shows one example of a multiple-choice question and the response page. Clicking on the "Submit answer" button calls a *.cgi file, which contains instructions in the PERL interpretive language, that generates the response page and saves the date, time, and student's answer to a file on the server. Usage and student perception of the on-line material was evaluated from server logs and student surveys. On-time completion of the assignments was 75%, but use of other on-line resources such as a question-and-answer page was minimal. Responses from student surveys indicated that the students had sufficient access to the internet. Approximately half of the students completed the prelaboratory exercises from one of several computers in the laboratory, and half worked from a workplace, university library, or home. Greater than 85% of all student usage from the laboratory computers occurred between 11 am and 4 pm. A mid-semester student survey indicated that the spectroscopy prelabs with three multiple-choice questions were better for increasing conceptual understanding rather than preparing the students for the actual lab work. An end-of-the-semester survey based on the electrochemistry assignments, which consisted of two multiple-choice questions and one clickable-map graphical exercise, produced a slightly higher rating for preparing students for the laboratory work. The differences between the spectroscopy and electrochemistry exercises prevent drawing any real conclusions from these two surveys, however, they do help guide the preparation of the content of future exercises. Next year's materials will contain three multiple-choice questions and one graphics-based exercise. The clickable-map graphics and at least one of the multiple-choice questions will be designed to test an understanding of the experimental procedure and instrument use to better prepare students for the actual laboratory work. Acknowledgment. We would like to thank Professor Gary Long for his assistance with the course, and the NSF for financial support through the Division of Undergraduate Education (DUE-9455382) and a CAREER award (CHE-9502460). Literature Cited. Laurillard, D. Rethinking Teaching, a Framework for the Effective Use of Educational Technology; Routledge: London, 1993. Tissue, B. M.; Earp, R. L.; Yip, C.-W. Chem. Educator 1996, 1(1), S1430-4171(96)01010-2. Only available at http://journals.springer-ny.com/chedr.

  11. Effectiveness of an Education Program on Donation and Transplant Aimed at Students of the Nursing Degree Course.

    PubMed

    Potenza, R; Guermani, A; Peluso, M; Casciola, A; Ginosa, I; Sperlinga, R; Donadio, P P

    2015-09-01

    Health workers' awareness and knowledge of transplant medicine can improve people's sensitivity and reduce their degree of opposition to donations. The medical literature contains numerous examples of education programs aimed at university students. This work describes the experience of an education program for students of the second and third year of a nursing degree course. From April to September 2013, an education program was set up for 80 university students. It was divided into 3 stages: group self-learning based on prearranged topics, sharing of the results, and participation in the final seminar. The effectiveness was assessed according to a pretest/posttest design. The first questionnaire contained 19 questions, and the second contained 27. The questions were subdivided into specific areas: subjective knowledge, objective knowledge, attitude, awareness, participation in the event, evaluation of the information material handed out, and appreciation of the tools used. There was a significant increase for items relating to knowledge, whereas awareness and attitude (already high at the start of the program) showed no changes. After the program, many students discussed the question of donation with their relatives and friends, and about 70% filled in a donor card. The students expressed a highly positive opinion of the initiative and the tools used. The initiative proved its validity, improving subjective and objective knowledge to a statistically significant extent and also increasing awareness and attitude. The students' evaluation was extremely positive. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Using Response Cards in Teacher Education--A Case Example in Taiwan

    ERIC Educational Resources Information Center

    Wang, Hui-Ting

    2016-01-01

    Using response cards is one strategy to increase active student response. This approach may also satisfy a unique cultural learning need in some cultures like Taiwan where students are hesitant to speak in class. This paper provides a case example of using personal writing boards (PWBs) as an alternative response option to improve student…

  13. The Effect of Worked Examples on Student Learning and Error Anticipation in Algebra

    ERIC Educational Resources Information Center

    Booth, Julie L.; Begolli, Kreshnik N.; McCann, Nicholas

    2016-01-01

    The present study examines the effectiveness of incorporating worked examples with prompts for self-explanation into a middle school math textbook. Algebra 1 students (N = 75) completed an equation-solving unit with reform textbooks either containing the original practice problems or in which a portion of those problems were converted into…

  14. Urban Fifth Graders' Connections-Making between Formal Earth Science Content and Their Lived Experiences

    ERIC Educational Resources Information Center

    Brkich, Katie Lynn

    2014-01-01

    Earth science education, as it is traditionally taught, involves presenting concepts such as weathering, erosion, and deposition using relatively well-known examples--the Grand Canyon, beach erosion, and others. However, these examples--which resonate well with middle- and upper-class students--ill-serve students of poverty attending urban schools…

  15. High-Stakes Testing and Student Achievement: Problems for the No Child Left Behind Act. Appendices

    ERIC Educational Resources Information Center

    Nichols, Sharon L.; Glass, Gene V.; Berliner, David C.

    2005-01-01

    This paper presents the appendices to the "High-Stakes Testing and Student Achievement: Problems for the No Child Left Behind Act" report. It contains the following appendices: (1) Example of Context for Assessing State-Level Stakes Sheet--Connecticut; (2) Example of Completed Rewards and Sanctions Worksheet--Connecticut; (3) Directions…

  16. Tie Goes to the Runner: The Physics and Psychology of a Close Play

    ERIC Educational Resources Information Center

    Starling, David J.; Starling, Sarah J.

    2017-01-01

    Since physics is often a service course for college students, it is important to incorporate everyday examples in the curriculum that inspire students of diverse backgrounds and interests. In this regard, baseball has been a workhorse for the physics classroom for a long time, taking the form of demonstrations and example problems. In this…

  17. Developing Student Science and Information Literacy through Contributions to the Society of Exploration Geophysicists (SEG) Wiki

    NASA Astrophysics Data System (ADS)

    Guertin, L. A.; Farley, I.; Geary, A.

    2016-12-01

    Introductory-level Earth science courses provide the opportunity for science and non-science majors to expand discipline-specific content knowledge while enhancing skill sets applicable to all disciplines. The outcomes of the student work can then benefit the education and outreach efforts of an international organization - in this case, a wiki devoted exclusively to the geosciences, managed by the Society of Exploration Geophysicists (SEG). The course Environment Earth at Penn State Brandywine is a general education science course with the overarching course goal for students to understand, communicate examples, and make informed decisions relating to big ideas and fundamental concepts of Earth science. To help accomplish this goal, students carry out a semester-long digital engaged scholarship project that benefits the users of the SEG Wiki (http://wiki.seg.org/). To begin with developing the literacy of students and their ability to read, interpret, and evaluate sources of scientific news, the first assignment requires students to write an annotated bibliography on a specific topic that serves as the foundation for a new SEG Wiki article. Once students have collected and summarized information from reliable sources, students learn how writing for a wiki is different than writing a term paper and begin drafting their wiki page. Students peer review each other's work for content and clarity before publishing their work on the SEG wiki. Students respond positively to this project, reporting a better understanding of and respect towards the authors of online wiki pages, as well as an overall satisfaction of knowing their work will benefit others. Links to student-generated pages and instructional materials can be found at: http://sites.psu.edu/segwiki/.

  18. Example-based learning: comparing the effects of additionally providing three different integrative learning activities on physiotherapy intervention knowledge.

    PubMed

    Dyer, Joseph-Omer; Hudon, Anne; Montpetit-Tourangeau, Katherine; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara

    2015-03-07

    Example-based learning using worked examples can foster clinical reasoning. Worked examples are instructional tools that learners can use to study the steps needed to solve a problem. Studying worked examples paired with completion examples promotes acquisition of problem-solving skills more than studying worked examples alone. Completion examples are worked examples in which some of the solution steps remain unsolved for learners to complete. Providing learners engaged in example-based learning with self-explanation prompts has been shown to foster increased meaningful learning compared to providing no self-explanation prompts. Concept mapping and concept map study are other instructional activities known to promote meaningful learning. This study compares the effects of self-explaining, completing a concept map and studying a concept map on conceptual knowledge and problem-solving skills among novice learners engaged in example-based learning. Ninety-one physiotherapy students were randomized into three conditions. They performed a pre-test and a post-test to evaluate their gains in conceptual knowledge and problem-solving skills (transfer performance) in intervention selection. They studied three pairs of worked/completion examples in a digital learning environment. Worked examples consisted of a written reasoning process for selecting an optimal physiotherapy intervention for a patient. The completion examples were partially worked out, with the last few problem-solving steps left blank for students to complete. The students then had to engage in additional self-explanation, concept map completion or model concept map study in order to synthesize and deepen their knowledge of the key concepts and problem-solving steps. Pre-test performance did not differ among conditions. Post-test conceptual knowledge was higher (P < .001) in the concept map study condition (68.8 ± 21.8%) compared to the concept map completion (52.8 ± 17.0%) and self-explanation (52.2 ± 21.7%) conditions. Post-test problem-solving performance was higher (P < .05) in the self-explanation (63.2 ± 16.0%) condition compared to the concept map study (53.3 ± 16.4%) and concept map completion (51.0 ± 13.6%) conditions. Students in the self-explanation condition also invested less mental effort in the post-test. Studying model concept maps led to greater conceptual knowledge, whereas self-explanation led to higher transfer performance. Self-explanation and concept map study can be combined with worked example and completion example strategies to foster intervention selection.

  19. Student Affairs as Formal Educators: When Rhetoric Meets Reality

    ERIC Educational Resources Information Center

    Virkus, Annie J.

    2013-01-01

    The Student Affairs literature contains numerous approaches and strategies for bridging the gap between Student and Academic Affairs on college campuses. The use of student affairs professionals as instructors of credit-bearing courses is one example of such collaborative efforts. The student affairs literature identifies student affairs…

  20. Using Oceanography to Support Active Learning

    NASA Astrophysics Data System (ADS)

    Byfield, V.

    2012-04-01

    Teachers are always on the lookout for material to give their brightest students, in order to keep them occupied, stimulated and challenged, while the teacher gets on with helping the rest. They are also looking for material that can inspire and enthuse those who think that school is 'just boring!' Oceanography, well presented, has the capacity to do both. As a relatively young science, oceanography is not a core curriculum subject (possibly an advantage), but it draws on the traditional sciences of biology, chemistry, physic and geology, and can provide wonderful examples for teaching concepts in school sciences. It can also give good reasons for learning science, maths and technology. Exciting expeditions (research cruises) to far-flung places; opportunities to explore new worlds, a different angle on topical debates such as climate change, pollution, or conservation can bring a new life to old subjects. Access to 'real' data from satellites or Argo floats can be used to develop analytical and problem solving skills. The challenge is to make all this available in a form that can easily be used by teachers and students to enhance the learning experience. We learn by doing. Active teaching methods require students to develop their own concepts of what they are learning. This stimulates new neural connections in the brain - the physical manifestation of learning. There is a large body of evidence to show that active learning is much better remembered and understood. Active learning develops thinking skills through analysis, problem solving, and evaluation. It helps learners to use their knowledge in realistic and useful ways, and see its importance and relevance. Most importantly, properly used, active learning is fun. This paper presents experiences from a number of education outreach projects that have involved the National Oceanography Centre in Southampton, UK. All contain some element of active learning - from quizzes and puzzles to analysis of real data from satellites and Argo floats - all combined with background information about the Ocean. Many also aim to inspire and enthuse, by bringing in the human and personal, for example through blogs and Q/A sessions. This presentation takes a look at what has worked, and what may perhaps have been a little less successful.

  1. New Student-Centered and Data-Based Approaches to Hydrology Education

    NASA Astrophysics Data System (ADS)

    Bloeschl, G.; Troch, P. A. A.; Sivapalan, M.

    2014-12-01

    Hydrology as a science has evolved over the last century. The knowledge base has significantly expanded, and there are requirements to meet with the new expectations of a science where the connections between the parts are just as important as the parts themselves. In this new environment, what should we teach, and how should we teach it? Given the limited time we have in an undergraduate (and even graduate) curriculum, what should we include, and what should we leave out? What new material and new methods are essential, as compared to textbooks? Past practices have assumed certain basics as being essential to undergraduate teaching. Depending on the professor's background, these include basic process descriptions (infiltration, runoff generation, evaporation etc.) and basic techniques (unit hydrographs, flood frequency analysis, pumping tests). These are taught using idealized (textbook) examples and examined to test this basic competence. The main idea behind this "reductionist" approach to teaching is that the students will do the rest of the learning during practice and apprenticeship in their workplaces. Much of current hydrology teaching follows this paradigm, and the books provide the backdrop to this approach. Our view is that this approach is less than optimum, as it does not prepare the students to face up to the new challenges of the changing world. It is our view that the basics of hydrologic science are not just a collection of individual processes and techniques, but process interactions and underlying concepts or principles, and a collection of techniques that highlights these, combined with student-driven and data-based learning that enables the students to see the manifestations of these process interactions and principles in action in real world situations. While the actual number of items that can be taught in the classroom by this approach in a limited period of time may be lower than in the traditional approach, it will help the students make connections between the understanding gained in this way in solving real world problems. We will illustrate the feasibility of the approach through key examples from our own teaching.

  2. Physicians take to the field.

    PubMed

    Penfield, W

    1992-10-01

    A joint project on the Ministry of Health, Addis Ababa University, the Jimma Institute of Health Services, the Gondar College of Health Sciences, and McGill University in Montreal, Canada is involved with working to improve the health care system in Ethiopia. The Ethiopian government has established postgraduate degrees in public health for district health managers, and overseas fellowships for students in order to train health professionals to work in 359 districts (awrajas). The emphasis is on district managers because of their link to the people, to stimulating community participation, and to coordinating activities. Training programs are available for physicians who have worked in rural areas for 2 years; completion of the program usually means placement as district health managers. One student was able to reduce respiratory illness among textile mill workers because of the success of his research thesis on byssinosis. 40% of Ethiopia has district health centers which provide primary health care and coordinate health resources. A 1st priority is convincing local leaders to construct latrines and provide safe sources of drinking water. The example of the functioning of the Suluta health district is provided. Of the 129,000 inhabitants, the health personnel and facilities provide for only 25% of the villages in the district. The district director is completing his thesis on field trials of oral rehydration therapy. Student research is supervised by physicians based at Addis Ababa University. An example is given of one such visit to a student studying adolescent sexual behavior and illegal abortion increases. Student work involved research, an action plan which identifies priorities for the area, and a health profile. Students learn how to compile data and plot graphs in a country where rural birth and death records are not kept. Record keeping, reference books and materials were also needed for the organization; technical resources were provided to this end. Computers and CD-ROMS have expended the resource base. Standards have improved since the initiation of the program, and the importance of the training was evident in the ability to handle the meningitis epidemic in 1989 and the coup in 1991. Economic conditions need to improve and be directed to health personnel, drugs, books and supplies.

  3. Students' Reactions to Climate Change Adaptation Risks and Opportunities

    NASA Astrophysics Data System (ADS)

    Thiel, M.; Grant, J. H.

    2015-12-01

    Objectives/Scope How undergraduate (UG) business students at a major public university in the Rocky Mountain region develop appreciation, and some understanding of physical and natural sciences causing climate change (CC) and their implications for society through examples drawn from the students' immediate and meaningful physical environments. Methods, Procedures, Process Three regional examples of ways in which CC impacts the lives of students on the local campus will provide practical approaches for students' environmentally responsible actions beyond the classroom. The cases from different industries will help UG students learn how they play critical roles in preventing and managing natural hazards, disaster management, ecology, development, famine, and secure livelihoods. Observations, Results, Conclusions Classroom discussions of "businesses' ecological responsibilities" in some remote location often fail to "connect" with students who have spent most of their lives within 300 miles of campus. However, when businesses in Asia are adding particulate to the atmosphere in the jet stream over the Pacific, and subsequently graying the local ski slopes, causing early melting and delaying the start of ski seasons, that is a different matter! However, more summer activities offer economic opportunities! A second example is found among the local entrepreneurial woodworkers who take "beetle kill" pine trees that are wildfire hazards and convert them into beautiful, creatively described "blue pine" furniture, interior beams, wall panels and table-top decorations. The "industrial scale" anaerobic digesters used in the "circular economy" of giant cheese factories, dairy farms and packing plants offer a third example for linking business to chemistry, engineering, and aesthetics (odor reduction).

  4. Combinatorial synthesis of inorganic or composite materials

    DOEpatents

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  5. Faculty and student perceptions of effective study strategies and materials.

    PubMed

    Suda, Katie J; Bell, Gillian C; Franks, Andrea S

    2011-12-15

    To evaluate faculty members' and students' perceptions of study strategies and materials. Focus groups were conducted with course directors and first- and second-year students to generate ideas relating to use of course materials, technology, class attendance, and study strategies for mastering class concepts. Students and faculty members differed in their opinions about the utility of textbooks and supplemental resources. The main learning method recommended by students and faculty members was repeated review of course material. Students recommended viewing classroom lectures again online, if possible. Course directors reported believing that class attendance is important, but students based their opinions regarding the importance of attendance on their perceptions of lecture and handout quality. Results did not differ by campus or by student group (first-year vs. second-year students). Students and faculty members have differing opinions on the process that could influence learning and course design. Faculty members should understand the strategies students are using to learn course material and consider additional or alternative course design and delivery techniques based on student feedback.

  6. Encapsulation methods and dielectric layers for organic electrical devices

    DOEpatents

    Blum, Yigal D; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijan

    2013-07-02

    The disclosure provides methods and materials suitable for use as encapsulation barriers and dielectric layers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device with a dielectric layer comprising alternating layers of a silicon-containing bonding material and a ceramic material. The methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  7. Encouraging Example Generation: A Teaching Experiment in First-Semester Calculus

    ERIC Educational Resources Information Center

    Wagner, Elaine Rumsey; Orme, Susan Marla; Turner, Heidi Jean; Yopp, David

    2017-01-01

    Mathematicians use example generation to test and verify mathematical ideas; however, the processes through which undergraduates learn to productively generate examples are not well understood. We engaged calculus students in a teaching experiment designed to develop skills in productively generating examples to learn novel concepts. This article…

  8. Analytical Chemistry: A Literary Approach

    NASA Astrophysics Data System (ADS)

    Lucy, Charles A.

    2000-04-01

    The benefits of incorporating real-world examples of chemistry into lectures and lessons is reflected by the recent inclusion of the Teaching with Problems and Case Studies column in this Journal. However, these examples lie outside the experience of many students, and so much of the impact of "real-world" examples is lost. This paper provides an anthology of references to analytical chemistry techniques from history, popular fiction, and film. Such references are amusing to both instructor and student. Further, the fictional descriptions can serve as a focal point for discussions of a technique's true capabilities and limitations.

  9. Derivation of the Biot-Savart Law from Ampere's Law Using the Displacement Current

    NASA Astrophysics Data System (ADS)

    Buschauer, Robert

    2013-12-01

    The equation describing the magnetic field due to a single, nonrelativistic charged particle moving at constant velocity is often referred to as the "Biot-Savart law for a point charge." Introductory calculus-based physics books usually state this law without proof.2 Advanced texts often present it either without proof or as a special case of a complicated mathematical formalism.3 Either way, little or no physical insight is provided to the student regarding the underlying physics. This paper presents a novel, basic, and transparent derivation of the Biot-Savart law for a point charge based only on Maxwell's displacement current term in Ampere's law. This derivation can serve many pedagogical purposes. For example, it can be used as lecture material at any academic level to obtain the Biot-Savart law for a point charge from simple principles. It can also serve as a practical example of the important fact that a changing electric flux produces a magnetic field.

  10. Group Theory with Applications in Chemical Physics

    NASA Astrophysics Data System (ADS)

    Jacobs, Patrick

    2005-10-01

    Group Theory is an indispensable mathematical tool in many branches of chemistry and physics. This book provides a self-contained and rigorous account on the fundamentals and applications of the subject to chemical physics, assuming no prior knowledge of group theory. The first half of the book focuses on elementary topics, such as molecular and crystal symmetry, whilst the latter half is more advanced in nature. Discussions on more complex material such as space groups, projective representations, magnetic crystals and spinor bases, often omitted from introductory texts, are expertly dealt with. With the inclusion of numerous exercises and worked examples, this book will appeal to advanced undergraduates and beginning graduate students studying physical sciences and is an ideal text for use on a two-semester course. An introductory and advanced text that comprehensively covers fundamentals and applications of group theory in detail Suitable for a two-semester course with numerous worked examples and problems Includes several topics often omitted from introductory texts, such as rotation group, space groups and spinor bases

  11. Students as Clients in a Professional/Client Relationship.

    ERIC Educational Resources Information Center

    Bailey, Jeffrey J.

    2000-01-01

    Proposes the metaphor of professional/client rather than student-as-customer to characterize the relationship between professors and students. Uses examples of fitness trainer, management consultant, accounting service, and mountain guide to illustrate faculty and student roles. (SK)

  12. Supporting Geoscience Students at Two-Year Colleges: Career Preparation and Academic Success

    NASA Astrophysics Data System (ADS)

    McDaris, J. R.; Kirk, K. B.; Layou, K.; Macdonald, H.; Baer, E. M.; Blodgett, R. H.; Hodder, J.

    2013-12-01

    Two-year colleges play an important role in developing a competent and creative geoscience workforce, teaching science to pre-service K-12 teachers, producing earth-science literate citizens, and providing a foundation for broadening participation in the geosciences. The Supporting and Advancing Geoscience Education in Two-Year Colleges (SAGE 2YC) project has developed web resources for geoscience faculty on the preparation and support of students in two-year colleges (2YCs). Online resources developed from two topical workshops and several national, regional, and local workshops around the country focus on two main categories: Career Preparation and Workforce Development, and Supporting Student Success in Geoscience at Two-year Colleges. The Career Preparation and Workforce Development resources were developed to help faculty make the case that careers in the geosciences provide a range of possibilities for students and to support preparation for the geoscience workforce and for transfer to four-year programs as geoscience majors. Many two-year college students are unaware of geoscience career opportunities and these materials help illuminate possible futures for them. Resources include an overview of what geoscientists do; profiles of possible careers along with the preparation necessary to qualify for them; geoscience employer perspectives about jobs and the knowledge, skills, abilities and attitudes they are looking for in their employees; employment trends in sectors of the economy that employ geoscience professionals; examples of geotechnician workforce programs (e.g. Advanced Technological Education Centers, environmental technology programs, marine technician programs); and career resources available from professional societies. The website also provides information to support student recruitment into the geosciences and facilitate student transfer to geoscience programs at four- year colleges and universities, including sections on advising support before and after transfer, research opportunities, and 2YC-4YC collaborations. Improving student success is an important priority at most 2YCs, and is especially challenging because students who enroll at a 2YC arrive with a wide range of abilities, preparation, and goals. Web resources that build on research from education, cognitive science, and psychology address topics such as stereotype threat, solo status, the affective domain, and effective teaching approaches. Other materials describe how to work with various student populations (e.g., English-language learners, students with disabilities, veterans), approaches to strengthening students' ability to monitor their own learning, and other strategies for supporting student success. Programs that support student success in general are important for the more specific goal of developing the geoscience workforce.

  13. Learner-Centered Teaching and Improving Learning by Writing Down the Statement of Problems in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Aurora, Tarlok

    2005-04-01

    In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.

  14. The Influence of Student Characteristics on the Use of Adaptive E-Learning Material

    ERIC Educational Resources Information Center

    van Seters, J. R.; Ossevoort, M. A.; Tramper, J.; Goedhart, M. J.

    2012-01-01

    Adaptive e-learning materials can help teachers to educate heterogeneous student groups. This study provides empirical data about the way academic students differ in their learning when using adaptive e-learning materials. Ninety-four students participated in the study. We determined characteristics in a heterogeneous student group by collecting…

  15. Using Science Fiction in the Classroom

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; Lebofsky, N. R.

    2002-09-01

    At the University of Arizona, all non-science majors are required to take two Tier 1 and one Tier 2 General Education science classes. These are the only science classes that most of these students will take at the University. This includes all future K-8 certified teachers --- our future teachers of science. Improving reading comprehension in science and improving writing skills are two of the main requirements of the General Education classes. For my 150 -- 300 students (1 -- 2 classes per semester) I have chosen to use science fiction stories to meet part of these requirements. This assignment provides for assessment of students' writing in several ways: As an alternative assessment: connecting the course material to what they have read. As an alternative assessment: student knowledge of science and technology in general. This assignment also provides for assessment of their comprehension of the authors' application of science fact: Making students aware of how our science knowledge and technology have changed in the years since these books were written (30 -- 140 years ago). Students are required to turn in a short draft version of the assignment about halfway through the semester. They receive feedback on their format (i.e., following directions), appropriateness of chosen topics, spelling, grammar, etc. Books are chosen at a variety of reading levels to accommodate a range of proficiencies, including choices appropriate for students with limited proficiency in English and those with learning disabilities. The books that we are presently using and examples of student writing will be displayed. This work was supported in part with a grant from the Department of Education (AzTEC).

  16. Student Teachers’ Proof Schemes on Proof Tasks Involving Inequality: Deductive or Inductive?

    NASA Astrophysics Data System (ADS)

    Rosyidi, A. H.; Kohar, A. W.

    2018-01-01

    Exploring student teachers’ proof ability is crucial as it is important for improving the quality of their learning process and help their future students learn how to construct a proof. Hence, this study aims at exploring at the proof schemes of student teachers in the beginning of their studies. Data were collected from 130 proofs resulted by 65 Indonesian student teachers on two proof tasks involving algebraic inequality. To analyse, the proofs were classified into the refined proof schemes level proposed by Lee (2016) ranging from inductive, which only provides irrelevant inferences, to deductive proofs, which consider addressing formal representation. Findings present several examples of each of Lee’s level on the student teachers’ proofs spanning from irrelevant inferences, novice use of examples or logical reasoning, strategic use examples for reasoning, deductive inferences with major and minor logical coherence, and deductive proof with informal and formal representation. Besides, it was also found that more than half of the students’ proofs coded as inductive schemes, which does not meet the requirement for doing the proof for the proof tasks examined in this study. This study suggests teacher educators in teacher colleges to reform the curriculum regarding proof learning which can accommodate the improvement of student teachers’ proving ability from inductive to deductive proof as well from informal to formal proof.

  17. Remote atomic force microscopy of microscopic organisms: Technological innovations for hands-on science with middle and high school students

    NASA Astrophysics Data System (ADS)

    Jones, M. G.; Andre, T.; Kubasko, D.; Bokinsky, A.; Tretter, T.; Negishi, A.; Taylor, R.; Superfine, R.

    2004-01-01

    This study examined hands-on experiences in the context of an investigation of viruses and explored how and why hands-on experiences may be effective. We sought to understand whether or not touching and manipulating materials and objects could lead to a deeper, more effective type of knowing than that we obtain from sight or sound alone. Four classes of high school biology students and four classes of seventh graders participated in the study that examined students' use of remote microscopy with a new scientific tool called the nanoManipulator, which enabled them to reach out and touch live viruses inside an atomic force microscope. Half of the students received full haptic (tactile and kinesthetic) feedback from a haptic joystick, whereas half of the students were able to use the haptic joystick to manipulate viruses but the tactile feedback was blocked. Results showed that there were significant gains from pre- to postinstruction across treatment groups for knowledge and attitudes. Students in both treatment groups developed conceptual models of viruses that were more consistent with current scientific research, including a move from a two-dimensional to a three-dimensional understanding of virus morphology. There were significant changes in students' understandings of scale; after instruction, students were more likely to identify examples of nanosized objects and be able to describe the degree to which a human would have to be shrunk to reach the size of a virus. Students who received full-haptic feedback had significantly better attitudes suggesting that the increased sensory feedback and stimulation may have made the experience more engaging and motivating to students.

  18. Improving Students' Formal Writing: The IDOL Writing Device

    ERIC Educational Resources Information Center

    Dillon, Patrick J.; Jenkins, J. Jacob

    2013-01-01

    In this article, the authors describe an acrostic-based mnemonic device they created to aid students in constructing and supporting arguments in a manner consistent with the claim-data-warrant model. They call it the "IDOL writing device": I-"I"dentify a specific claim, D-"D"evelop an argument to support your claim, O-"O"ffer an example(s) that…

  19. Writing Abstracts for MLIS Research Proposals Using Worked Examples: An Innovative Approach to Teaching the Elements of Research Design

    ERIC Educational Resources Information Center

    Ondrusek, Anita L.; Thiele, Harold E.; Yang, Changwoo

    2014-01-01

    The authors examined abstracts written by graduate students for their research proposals as a requirement for a course in research methods in a distance learning MLIS program. The students learned under three instructional conditions that involved varying levels of access to worked examples created from abstracts representing research in the LIS…

  20. Constructing a High-Stakes Community in the Classroom: A Case Study of One Urban Middle-School Teacher

    ERIC Educational Resources Information Center

    Rothrock, Racheal M.

    2017-01-01

    A teacher at an urban middle school worked to become part of her students' communities and utilized the notion of community within her pedagogy. Her example offers hope that engaging with students' communities and building community within the classroom are attainable and valuable goals. Her example also demonstrates that the concept of community…

  1. A Model of Self-Explanation Strategies of Instructional Text and Examples in the Acquisition of Programming Skills.

    ERIC Educational Resources Information Center

    Recker, Margaret M.; Pirolli, Peter

    Students learning to program recursive LISP functions in a typical school-like lesson on recursion were observed. The typical lesson contains text and examples and involves solving a series of programming problems. The focus of this study is on students' learning strategies in new domains. In this light, a Soar computational model of…

  2. Propositions d'Outils pour une Grammaire du Francais Langue Etrangere (Suggestions for Tools for a Grammar of French as a Foreign Language)

    ERIC Educational Resources Information Center

    Lamy, Andre

    1975-01-01

    Recommends some deformalization of instruction, without rendering it simplistic, by cultivation of students' discrimination of the appropriateness of grammatical elements, at a level where the student has already accumulated examples of structures and situations in the language. Substantial examples are provided. (Text is in French.) (MSE)

  3. Transfer of Solutions to Conditional Probability Problems: Effects of Example Problem Format, Solution Format, and Problem Context

    ERIC Educational Resources Information Center

    Chow, Alan F.; Van Haneghan, James P.

    2016-01-01

    This study reports the results of a study examining how easily students are able to transfer frequency solutions to conditional probability problems to novel situations. University students studied either a problem solved using the traditional Bayes formula format or using a natural frequency (tree diagram) format. In addition, the example problem…

  4. Insights from Students' Private Work in Their Notebooks: How Do Students Learn from the Teacher's Examples?

    ERIC Educational Resources Information Center

    Yau, King Woon; Mok, Ida Ah Chee

    2016-01-01

    Students' seatwork plays an important part in their learning in their lessons, and very often, students record their private work in the notebooks during seatwork. The students' private work in their notebooks reflects students' learning and thinking, representing explicit learning outcomes. The students' private work in their notebooks of 14…

  5. From Predictive Models to Instructional Policies

    ERIC Educational Resources Information Center

    Rollinson, Joseph; Brunskill, Emma

    2015-01-01

    At their core, Intelligent Tutoring Systems consist of a student model and a policy. The student model captures the state of the student and the policy uses the student model to individualize instruction. Policies require different properties from the student model. For example, a mastery threshold policy requires the student model to have a way…

  6. What Could Critical Mathematics Education Mean for Different Groups of Students?

    ERIC Educational Resources Information Center

    Skovsmose, Ole

    2016-01-01

    In this article I consider what critical mathematics education could mean for different groups of students. Much discussion and research has addressed students at social risk. My point, however, is that critical mathematics education concerns other groups as well: for example, students in comfortable positions, blind students, elderly students,…

  7. Cosmic Times: Astronomy History and Science for the Classroom

    NASA Astrophysics Data System (ADS)

    Lochner, James C.; Mattson, B.

    2008-05-01

    Cosmic Times is a series of curriculum support materials and classroom activities for upper middle school and high school students which teach the nature of science by exploring the history of our understanding of the universe during the past 100 years. Starting with the confirmation of Einstein's theory of gravity in 1919 to the current conundrum posed by the discovery of dark energy, Cosmic Times examines the discoveries, the theories, and the people involved in this changing [understanding] of the universe. Cosmic Times takes the form of 6 posters, each resembling the front page of a newspaper from a particular time in this history with articles describing the discoveries. Each poster is accompanied by 4-5 classroom lessons which enable students to examine the science concepts behind the discoveries, develop techniques to improve science literacy, and investigate the nature of science using historical examples. Cosmic Times directly connects with the IYA theme of Astronomy in the Classroom, as well as the general theme of the impact of astronomy history. Cosmic Times has been developed with a freelance writer to write the articles for the posters, a group of teachers to develop the lessons, and evaluator to provide testing of the materials with a group of rural teachers in underserved communities. This poster presentation previews the Cosmic Times materials, which are posted on http://cosmictimes.gsfc.nasa.gov/ as they become available. Cosmic Times is funded in part via a NASA IDEAS grant.

  8. Quantum Mechanics - Fundamentals and Applications to Technology

    NASA Astrophysics Data System (ADS)

    Singh, Jasprit

    1996-10-01

    Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. The many helpful features include * Twenty-eight application-oriented sections that focus on lasers, transistors, magnetic memories, superconductors, nuclear magnetic resonance (NMR), and other important technology-driving materials and devices * One hundred solved examples, with an emphasis on numerical results and the connection between the physics and its applications * End-of-chapter problems that ground the student in both fundamental and applied concepts * Numerous figures and tables to clarify the various topics and provide a global view of the problems under discussion * Over two hundred illustrations to highlight problems and text A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.

  9. Illustrated Examples of the Effects of Risk Preferences and Expectations on Bargaining Outcomes.

    ERIC Educational Resources Information Center

    Dickinson, David L.

    2003-01-01

    Describes bargaining examples that use expected utility theory. Provides example results that are intuitive, shown graphically and algebraically, and offer upper-level student samples that illustrate the usefulness of the expected utility theory. (JEH)

  10. Comprehending Comprehension: Selected Possibilities for Clinical Practice Within a Multidimensional Model.

    PubMed

    Wallach, Geraldine P; Ocampo, Alaine

    2017-04-20

    In this discussion as part of a response to Catts and Kamhi's "Prologue: Reading Comprehension Is Not a Single Activity" (2017), the authors provide selected examples from 4th-, 5th-, and 6th-grade texts to demonstrate, in agreement with Catts and Kamhi, that reading comprehension is a multifaceted and complex ability. The authors were asked to provide readers with evidence-based practices that lend support to applications of a multidimensional model of comprehension. We present examples from the reading comprehension literature that support the notion that reading is a complex set of abilities that include a reader's ability, especially background knowledge; the type of text the reader is being asked to comprehend; and the task or technique used in assessment or intervention paradigms. An intervention session from 6th grade serves to demonstrate how background knowledge, a text's demands, and tasks may come together in the real world as clinicians and educators aim to help students comprehend complex material. The authors agree with the conceptual framework proposed by Catts and Kamhi that clinicians and educators should consider the multidimensional nature of reading comprehension (an interaction of reader, text, and task) when creating assessment and intervention programs. The authors might depart slightly by considering, more closely, those reading comprehension strategies that might facilitate comprehension across texts and tasks with an understanding of students' individual needs at different points in time.

  11. Introducing chemical biology applications to introductory organic chemistry students using series of weekly assignments.

    PubMed

    Kanin, Maralee R; Pontrello, Jason K

    2016-01-01

    Calls to bring interdisciplinary content and examples into introductory science courses have increased, yet strategies that involve course restructuring often suffer from the need for a significant faculty commitment to motivate change. Minimizing the need for dramatic course reorganization, the structure, reactivity, and chemical biology applications of classes of biological monomers and polymers have been integrated into introductory organic chemistry courses through three series of semester-long weekly assignments that explored (a) Carbohydrates and Oligosaccharides, (b) Amino Acids, Peptides, and Proteins, and (c) Nucleosides, Nucleotides, and Nucleic Acids. Comparisons of unannounced pre- and post tests revealed improved understanding of a reaction introduced in the assignments, and course examinations evaluated cumulative assignment topics. Course surveys revealed that demonstrating biologically relevant applications consistently throughout the semesters enhanced student interest in the connection between basic organic chemistry content and its application to new and unfamiliar bio-related examples. Covering basic material related to these classes of molecules outside of the classroom opened lecture time to allow the instructor to further build on information developed through the weekly assignments, teaching advanced topics and applications typically not covered in an introductory organic chemistry lecture course. Assignments were implemented as homework, either with or without accompanying discussion, in both laboratory and lecture organic courses within the context of the existing course structures. © 2015 The International Union of Biochemistry and Molecular Biology.

  12. Case-Based Learning with Worked Examples in Complex Domains: Two Experimental Studies in Undergraduate Medical Education

    ERIC Educational Resources Information Center

    Stark, Robin; Kopp, Veronika; Fischer, Martin R.

    2011-01-01

    To investigate the effects of example format (erroneous examples vs. correct examples) and feedback format (elaborated feedback vs. knowledge of results feedback) on medical students' diagnostic competence in the context of a web-based learning environment containing case-based worked examples, two studies with a 2 x 2 design were conducted in the…

  13. Life science students' attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    NASA Astrophysics Data System (ADS)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-06-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  14. Example-Based Learning: Effects of Different Types of Examples on Student Performance, Cognitive Load and Self-Efficacy in a Statistical Learning Task

    ERIC Educational Resources Information Center

    Huang, Xiaoxia

    2017-01-01

    Previous research has indicated the disconnect between example-based research focusing on worked examples (WEs) and that focusing on modeling examples. The purpose of this study was to examine and compare the effect of four different types of examples from the two separate lines of research, including standard WEs, erroneous WEs, expert (masterly)…

  15. Multiple-solution problems in a statistics classroom: an example

    NASA Astrophysics Data System (ADS)

    Chu, Chi Wing; Chan, Kevin L. T.; Chan, Wai-Sum; Kwong, Koon-Shing

    2017-11-01

    The mathematics education literature shows that encouraging students to develop multiple solutions for given problems has a positive effect on students' understanding and creativity. In this paper, we present an example of multiple-solution problems in statistics involving a set of non-traditional dice. In particular, we consider the exact probability mass distribution for the sum of face values. Four different ways of solving the problem are discussed. The solutions span various basic concepts in different mathematical disciplines (sample space in probability theory, the probability generating function in statistics, integer partition in basic combinatorics and individual risk model in actuarial science) and thus promotes upper undergraduate students' awareness of knowledge connections between their courses. All solutions of the example are implemented using the R statistical software package.

  16. Identifying content knowledge for teaching energy: Examples from high school physics

    NASA Astrophysics Data System (ADS)

    Robertson, Amy D.; Scherr, Rachel E.; Goodhew, Lisa M.; Daane, Abigail R.; Gray, Kara E.; Aker, Leanna B.

    2017-06-01

    "Content knowledge for teaching" is the specialized content knowledge that teachers use in practice—the content knowledge that serves them for tasks of teaching such as revoicing students' ideas, choosing an instructional activity to address a student misunderstanding, and evaluating student statements. We describe a methodology for selecting and analyzing classroom episodes showing content knowledge for teaching about energy (CKT-E), and illustrate this methodology with examples from high school physics instruction. Our work has implications for research on teacher knowledge and for professional development that enhances teacher CKT-E.

  17. Patient Storytelling in the Classroom: A Memorable Way to Teach Spiritual Care.

    PubMed

    Garner, Shelby L

    2016-01-01

    Storytelling is an evidence-based teaching and learning strategy that engages students and promotes critical thinking. Although most nursing textbooks incorporate spiritual nursing care, the texts lack examples of how to tie evidence-based spiritual interventions to specific medical-suigical content. Stories told from the patient's perspective can communicate insights that nurses and students can use when planning spiritual carefor patients. Stories shared by patients with undergraduate nursing students were effective in promoting learning and offered concrete examples of supportive spiritual resources for patients.

  18. The learning effects of different presentations of worked examples on medical students' breaking-bad-news skills: A randomized and blinded field trial.

    PubMed

    Schmitz, Felix Michael; Schnabel, Kai Philipp; Bauer, Daniel; Bachmann, Cadja; Woermann, Ulrich; Guttormsen, Sissel

    2018-02-24

    Effective instructional approaches are needed to enable undergraduates to optimally prepare for the limited training time they receive with simulated patients (SPs). This study examines the learning effects of different presentation formats of a worked example on student SP communication. Sixty-seven fourth-year medical students attending a mandatory communication course participated in this randomized field trial. Prior to the course, they worked through an e-learning module that introduced the SPIKES protocol for delivering bad news to patients. In this module, a single worked example was presented to one group of students in a text version, to a second group in a video version, and to a third group in a video version enriched with text hints denoting the SPIKES steps. The video-with-hints group broke bad news to SPs significantly more appropriately than either of the other groups. Although no further condition-related effects were revealed, students who learned from the text version most frequently (although non-significantly) ignored unpleasant emotions (standardised emotional cues and concerns) expressed by the SPs. The learning effect was strongest when the video-based worked example was accompanied by hints. Video-related learning approaches that embed attention-guiding hints can effectively prepare undergraduates for SP encounters. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Stifling Student Expression: A Lesson Taught, A Lesson Learned.

    ERIC Educational Resources Information Center

    Eveslage, Thomas E.

    1995-01-01

    Substantive student publications can bring the democratic process to life in high schools. The article presents examples of student censorship by high school teachers and advisors, noting that the attempt to inhibit students' written expression may short-circuit a useful learning tool that can prepare students for productive citizenship. (SM)

  20. Transition Supports for At-Risk Students: A Case Example

    ERIC Educational Resources Information Center

    Buchanan, Rohanna; Ruppert, Traci; Cariveau, Tom

    2016-01-01

    Middle school students with emotional and behavioral disorders are at risk for myriad negative outcomes. Transitioning between schools may increase risk for students being reintegrated into their neighborhood school. The current study seeks to inform supports for students and their families during these transitions. Students With Involved Families…

  1. Blending Education and Polymer Science: Semi Automated Creation of a Thermodynamic Property Database.

    PubMed

    Tchoua, Roselyne B; Qin, Jian; Audus, Debra J; Chard, Kyle; Foster, Ian T; de Pablo, Juan

    2016-09-13

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature; yet, while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our work is whether, and to what extent, the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction, while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semi-automated creation of a thermodynamic property database.

  2. Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchoua, Roselyne B.; Qin, Jian; Audus, Debra J.

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature, yet while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our workmore » is whether and to what extent the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semiautomated creation of a thermodynamic property database.« less

  3. The impact of mathematical models of teaching materials on square and rectangle concepts to improve students' mathematical connection ability and mathematical disposition in middle school

    NASA Astrophysics Data System (ADS)

    Afrizal, Irfan Mufti; Dachlan, Jarnawi Afghani

    2017-05-01

    The aim of this study was to determine design of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition in middle school through experimental studies. The design in this study was quasi-experimental with non-equivalent control group type. This study consisted of two phases, the first phase was identify students' learning obstacle on square and rectangle concepts to obtain the appropriate design of teaching materials, beside that there were internalization of the values or characters expected to appear on students through the teaching materials. Second phase was experiments on the effectiveness and efficiency of mathematical models of teaching materials to improve students' mathematical connection ability and mathematical disposition. The result of this study are 1) Students' learning obstacle that have identified was categorized as an epistemological obstacle. 2) The improvement of students' mathematical connection ability and mathematical disposition who used mathematical teaching materials is better than the students who used conventional learning.

  4. A Qualitative Research on Example Generation Capabilities of University Students

    ERIC Educational Resources Information Center

    Saglam, Yasemin; Dost, Senol

    2016-01-01

    Examples which are used in exploring a procedure or comprehending/concretizing a mathematical concept are powerful teaching tools. Generating examples other than conventional ones is both a means for research and a pedagogical method. The aim of this study is to determine the transition process between example generation strategies, and the…

  5. Differentiating Instruction: Providing the Right Kinds of Worked Examples for Individual Students

    ERIC Educational Resources Information Center

    Booth, Julie L.; Koedinger, Kenneth R.; Newton, Kristie J.; Lange, Karin E.

    2013-01-01

    A plethora of laboratory studies have shown that including the study of worked examples during problem-solving practice improves learning (Sweller, 1999; Sweller & Cooper, 1985). While most worked-example research focuses on the use of correct examples, recent work suggests that asking children to explain a combination of correct and incorrect…

  6. Scaffolding Meta-Cognitive Skills for Effective Analogical Problem Solving via Tailored Example Selection

    ERIC Educational Resources Information Center

    Muldner, Kasia; Conati, Cristina

    2010-01-01

    Although worked-out examples play a key role in cognitive skill acquisition, research demonstrates that students have various levels of meta-cognitive abilities for using examples effectively. The Example Analogy (EA)-Coach is an Intelligent Tutoring System that provides adaptive support to foster meta-cognitive behaviors relevant to a specific…

  7. Examples in the Teaching of Mathematics: Teachers' Perceptions

    ERIC Educational Resources Information Center

    Ng, Lay Keow; Dindyal, Jaguthsing

    2015-01-01

    As part of a study examining how teachers in Singapore select and use examples for teaching mathematics, 121 teachers from 24 secondary schools responded to three open-ended questions about the use of examples in teaching. The results show that students' abilities and the difficulty level of the examples were among the topmost considerations…

  8. Teaching Health Literacy Using Popular Television Programming: A Qualitative Pilot Study

    PubMed Central

    Primack, Brian A.; Wickett, Dustin J.; Kraemer, Kevin L.; Zickmund, Susan

    2011-01-01

    Background Teaching of health and medical concepts in the K-12 curriculum may help improve health literacy. Purpose The purpose of this project was to determine acceptability and preliminary efficacy of pilot implementation of a health literacy curriculum using brief clips from a popular television program. Methods Participants included 55 ninth-grade students in a low-income school with a high proportion of minority students. The curriculum used three brief interspersed segments from the television show ER to teach basic topics in cardiology. After the 30-minute experimental curriculum, students completed open-ended surveys which were coded qualitatively. Result The most common codes described “enjoyment” (N=28), “acquisition of new knowledge” (N=28), “informative” (N=15), “interesting” (N=12), and “TV/video” (N=10). We found on average 2.9 examples of medical content per participant. Of the 26 spontaneously-generated verifiable statements, 24 (92.3%) were judged as accurate by two independent coders (κ=0.70, P=.0002). Discussion Use of brief segments of video material contributed to the acceptability of health education curricula without detracting from students’ acquisition of accurate information. Translation to Health Education Practice Health education practitioners may wish to include brief clips from popular programming to motivate students and provide context for health-related lessons. PMID:23998135

  9. Just do it: flipped lecture, determinants and debate

    NASA Astrophysics Data System (ADS)

    Kensington-Miller, Barbara; Novak, Julia; Evans, Tanya

    2016-08-01

    This paper describes a case study of two pure mathematicians who flipped their lecture to teach matrix determinants in two large mathematics service courses (one at Stage I and the other at Stage II). The purpose of the study was to transform the passive lecture into an active learning opportunity and to introduce valuable mathematical skills, such as debate, argument and disagreement. The students were told in advance to use the online material to prepare, which had a short handout on matrix determinants posted, as the lesson would be interactive and would rely on them having studied this. At the beginning of the lesson, the two mathematicians worked together to model the skill of professional disagreement, one arguing for the cofactor expansion method and the other for the row reduction method. After voting for their preferred method, the students worked in small groups on examples to defend their choice. Each group elected a spokesperson and a political style debate followed as the students argued the pros and cons of each technique. Although one lecture does not establish whether the flipped lecture model is preferable for student instruction, the paper presents a case study for pursuing this approach and for further research on incorporating this style of teaching in Science, Technology, Engineering and Mathematics subjects.

  10. Integrating Quantitative Thinking into an Introductory Biology Course Improves Students’ Mathematical Reasoning in Biological Contexts

    PubMed Central

    Hester, Susan; Buxner, Sanlyn; Elfring, Lisa; Nagy, Lisa

    2014-01-01

    Recent calls for improving undergraduate biology education have emphasized the importance of students learning to apply quantitative skills to biological problems. Motivated by students’ apparent inability to transfer their existing quantitative skills to biological contexts, we designed and taught an introductory molecular and cell biology course in which we integrated application of prerequisite mathematical skills with biology content and reasoning throughout all aspects of the course. In this paper, we describe the principles of our course design and present illustrative examples of course materials integrating mathematics and biology. We also designed an outcome assessment made up of items testing students’ understanding of biology concepts and their ability to apply mathematical skills in biological contexts and administered it as a pre/postcourse test to students in the experimental section and other sections of the same course. Precourse results confirmed students’ inability to spontaneously transfer their prerequisite mathematics skills to biological problems. Pre/postcourse outcome assessment comparisons showed that, compared with students in other sections, students in the experimental section made greater gains on integrated math/biology items. They also made comparable gains on biology items, indicating that integrating quantitative skills into an introductory biology course does not have a deleterious effect on students’ biology learning. PMID:24591504

  11. Learning with Interactive Computer Graphics in the Undergraduate Neuroscience Classroom

    PubMed Central

    Pani, John R.; Chariker, Julia H.; Naaz, Farah; Mattingly, William; Roberts, Joshua; Sephton, Sandra E.

    2014-01-01

    Instruction of neuroanatomy depends on graphical representation and extended self-study. As a consequence, computer-based learning environments that incorporate interactive graphics should facilitate instruction in this area. The present study evaluated such a system in the undergraduate neuroscience classroom. The system used the method of adaptive exploration, in which exploration in a high fidelity graphical environment is integrated with immediate testing and feedback in repeated cycles of learning. The results of this study were that students considered the graphical learning environment to be superior to typical classroom materials used for learning neuroanatomy. Students managed the frequency and duration of study, test, and feedback in an efficient and adaptive manner. For example, the number of tests taken before reaching a minimum test performance of 90% correct closely approximated the values seen in more regimented experimental studies. There was a wide range of student opinion regarding the choice between a simpler and a more graphically compelling program for learning sectional anatomy. Course outcomes were predicted by individual differences in the use of the software that reflected general work habits of the students, such as the amount of time committed to testing. The results of this introduction into the classroom are highly encouraging for development of computer-based instruction in biomedical disciplines. PMID:24449123

  12. Project Soar.

    ERIC Educational Resources Information Center

    Austin, Marion

    1982-01-01

    Project Soar, a Saturday enrichment program for gifted students (6-14 years old), allows students to work intensively in a single area of interest. Examples are cited of students' work in crewel embroidery, creative writing, and biochemistry. (CL)

  13. Exploring anatomy and physiology using iPad applications.

    PubMed

    Chakraborty, Tandra R; Cooperstein, Deborah F

    2017-11-07

    This study examined the use of iPads with anatomy applications (apps) in the laboratory sections of the largest undergraduate course at the university, Anatomy and Physiology, serving more than 300 students. The majority of these students were nursing, exercise science/physical education and biology majors. With a student survey (student opinion) and student practicum grades as metrics, this study determined whether the introduction of this novel mobile technology improved student grades and aided the students in learning the course material. The results indicated that students' grades improved with the introduction of the iPads, and 78% of the students reported that the iPads facilitated their ability to learn the course material. There was a positive association between frequency of app use and standardized mastery of the course material, as students who used the apps more frequently scored higher and indicated that they felt as though they had learned the material more comprehensively. Owning or having an iPad at home did not have a significant effect on the learning of the material. The general consensus by students was that iPad anatomy apps should be used frequently to better develop student understanding of the course material. Anat Sci Educ. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  14. An Overview of contributions of NASA Space Shuttle to Space Science and Engineering education

    NASA Astrophysics Data System (ADS)

    Lulla, Kamlesh

    2012-07-01

    This paper provides an indepth overview of the enormous contrbutions made by the NASA Space Shuttle Program to Space science and engineering education over the past thirty years. The author has served as one of the major contributors and editors of NASA book "Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle program" (NASA SP-2010-3409). Every Space Shuttle mission was an education mission: student involvement programs such as Get Away Specials housed in Shuttle payload allowed students to propose research and thus enrich their university education experience. School students were able to operate "EarthKAM" to learn the intricacies of orbital mechanics, earth viewing opportunities and were able to master the science and art of proposal writing and scientific collaboration. The purpose of this presentation is to introduce the global student and teaching community in space sciences and engineering to the plethora of educational resources available to them for engaging a wide variety of students (from early school to the undergraduate and graduate level and to inspire them towards careers in Space sciences and technologies. The volume "Wings In Orbit" book is one example of these ready to use in classroom materials. This paper will highlight the educational payloads, experiments and on-orbit classroom activities conducted for space science and engineering students, teachers and non-traditional educators. The presentation will include discussions on the science content and its educational relevance in all major disiciplines in which the research was conducted on-board the Space Shuttle.

  15. Comparative Study of Learning Using E-Learning and Printed Materials on Independent Learning and Creativity

    NASA Astrophysics Data System (ADS)

    Wahyu Utami, Niken; Aziz Saefudin, Abdul

    2018-01-01

    This study aims to determine: 1) differences in students taking independent learning by using e-learning and the students who attend the learning by using the print instructional materials ; 2) differences in the creativity of students who follow learning with e-learning and the students who attend the learning by using the print instructional materials ; 3) differences in learning independence and creativity of students attend learning with e-learning and the students who attend lessons using printed teaching materials in the subject of Mathematics Instructional Media Development. This study was a quasi-experimental research design using only posttest control design. The study population was all students who take courses in Learning Mathematics Media Development, Academic Year 2014/2015 100 students and used a random sample (random sampling) is 60 students. To test the hypothesis used multivariate analysis of variance or multivariable analysis of variance (MANOVA) of the track. The results of this study indicate that 1) There is a difference in student learning independence following study using the e-learning and the students who attend lessons using printed teaching materials in the lecture PMPM ( F = 4.177, p = 0.046 < 0.05 ) ; 2 ) There is no difference in the creativity of the students who complete the learning by using e -learning and students to follow the learning using printed teaching materials in the lecture PMPM ( F = 0.470, p = 0.496 > 0.05) ; No difference learning independence and creativity of students attend learning by using e-learning and the students who attend the learning using printed teaching materials in the lecture PMPM (F = 2.452, p = 0.095 > 0.05). Based on these studies suggested that the learning using e -learning can be used to develop student creativity, while learning to use e -learning and teaching materials can be printed to use to develop students’ independence.

  16. Analysis of requirements for teaching materials based on the course bioinformatics for plant metabolism

    NASA Astrophysics Data System (ADS)

    Balqis, Widodo, Lukiati, Betty; Amin, Mohamad

    2017-05-01

    A way to improve the quality of learning in the course of Plant Metabolism in the Department of Biology, State University of Malang, is to develop teaching materials. This research evaluates the needs of bioinformatics-based teaching material in the course Plant Metabolism by the Analyze, Design, Develop, Implement, and Evaluate (ADDIE) development model. Data were collected through questionnaires distributed to the students in the Plant Metabolism course of the Department of Biology, University of Malang, and analysis of the plan of lectures semester (RPS). Learning gains of this course show that it is not yet integrated into the field of bioinformatics. All respondents stated that plant metabolism books do not include bioinformatics and fail to explain the metabolism of a chemical compound of a local plant in Indonesia. Respondents thought that bioinformatics can explain examples and metabolism of a secondary metabolite analysis techniques and discuss potential medicinal compounds from local plants. As many as 65% of the respondents said that the existing metabolism book could not be used to understand secondary metabolism in lectures of plant metabolism. Therefore, the development of teaching materials including plant metabolism-based bioinformatics is important to improve the understanding of the lecture material in plant metabolism.

  17. Beyond Performance Data: Improving Student Help Seeking by Collecting and Displaying Influential Data in an Online Middle-School Science Curriculum

    ERIC Educational Resources Information Center

    Daley, Samantha G.; Hillaire, Garron; Sutherland, LeeAnn M.

    2016-01-01

    Technology makes possible abundant new opportunities to capture and display data in online learning environments. We describe here an example of using these opportunities to improve students' use of the rich supports available in online learning environments. We describe an example of a blended learning experience that uses an online inquiry-based…

  18. How to Teach Yourself Physical Skills: An Audio Tape for College Students with Some Introductory Comments and a Detailed Outline.

    ERIC Educational Resources Information Center

    Hodges, Daniel L.

    This guide provides a detailed summary of the information, techniques, and examples offered in an audiotape developed to help students teach themselves physical skills. After section I introduces the topic and the objectives of the tape, section II provides concrete examples of adults learning motor skills. Section III presents and discusses nine…

  19. Examining the Use of Worked Example Video Podcasts in Middle School Mathematics Classrooms: A Formative Analysis

    ERIC Educational Resources Information Center

    Kay, Robin; Edwards, Jaime

    2012-01-01

    Video podcasts allow students to control when, where, and what they learn, as well as the pace of learning. Considerable research has been conducted in higher education on video podcast use, but not in middle schools (grades six to eight). This study investigated the use of worked example video podcasts in mathematics classrooms with students 11…

  20. Developing Teaching Materials Using Comic Media to Enhance Students’ Mathematical Communication

    NASA Astrophysics Data System (ADS)

    Yulian, V. N.

    2018-04-01

    Teaching materials are a set of materials that are arranged systematically written or not, to create an environment or atmosphere that allows students to learn. The purpose of this study is to provide an overview of how the development of teaching materials using comic media that enhance mathematical communication, as well as feasible and effective teaching materials developed. Research method used in this research is Research and Development. In the sense of research contains about how to develop teaching materials through several stages such as validation by experts, as well as revisions. Sources of data used in this study were students and teachers SMK Bandung Barat. The results showed that the teaching materials developed feasible and effective use for students of class X SMK Bandung Barat. Teaching materials received a proper assessment of the experts after going through several stages of revision, in addition to the effective teaching materials used by students seen from the liveliness and the value of classical completeness that reaches more 85% of students. Based on the result of the research, it can be concluded that the developed teaching material gets the proper judgment from the expert, and effectively used in the learning by the students of X-1 Pharmacy class with the classical completeness reach 86% and the student activity is 91,4%.

Top